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a b s t r a c t

Clam Ruditapes philippinarum is one of the important marine aquaculture species in North China.
However, pathogens can often cause diseases and lead to massive mortalities and economic losses of
clam. In this work, we compared the metabolic responses induced by Vibrio anguillarum and Vibrio
splendidus challenges towards hepatopancreas of clam using NMR-based metabolomics. Metabolic re-
sponses suggested that both V. anguillarum and V. splendidus induced disturbances in energy metabolism
and osmotic regulation, oxidative and immune stresses with different mechanisms, as indicated by
correspondingly differential metabolic biomarkers (e.g., amino acids, ATP, glucose, glycogen, taurine,
betaine, choline and hypotaurine) and altered mRNA expression levels of related genes including ATP
synthase, ATPase, glutathione peroxidase, heat shock protein 90, defensin and lysozyme. However, V.
anguillarum caused more severe oxidative and immune stresses in clam hepatopancreas than
V. splendidus. Our results indicated that metabolomics could be used to elucidate the biological effects of
pathogens to the marine clam R. philippinarum.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Manila clam Ruditapes philippinarum is one of the most impor-
tant economic species in marine aquaculture in China because of
its wide geographic distribution, high tolerance to environmental
changes (e.g., salinity, temperature) and great consumption as
seafood. However, mass moralities of clams occur frequently due
to the outbreaks of bacterial diseases (e.g., vibriosis) induced by
bacterial pathogens, resulting vast economic losses [1]. Evidences
have indicated that bacterial pathogens can also induce various
stresses, including oxidative stress, immune stress, DNA damage,
protein denaturation and disruption in energy metabolism, in
mollusks [2e4].

As it is known, vibrios, such as Vibrio anguillarum, Vibrio splen-
didus, Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio furnissii,
Vibrio harveyi and Vibrio tapetis, are main causative pathogens of
vibriosis in both fish and shellfish [5,6]. Among these vibrios, both
V. anguillarum and V. splendidus are common Gram-negative,
facultatively anaerobic vibrios and widely investigated in immu-
nity studies due to their frequent occurrences in marine
: þ86 535 6696598.

All rights reserved.
environment [3,4,7]. Traditional immunity studies on marine
aquaculture animals infected by vibrios focus on the identification
of a certain class of immune-related functional molecules involved
in the immune network, which usually can provide primary but
global understanding on the immune mechanisms [8]. To better
understand the responsive mechanisms of marine aquaculture
species to vibrio challenges, a global analysis on the biological re-
sponses and corresponding biomarkers should be carried out in
marine aquaculture animals, such as clam, to bacterial challenges at
molecular levels (e.g., metabolite).

In the post-genomic era, several system biology approaches
including transcriptomics, proteomics and metabolomics have
been well-established with the development of modern analytical
techniques, such as nuclear magnetic resonance (NMR) spectros-
copy and mass (MS) spectrometry [9,10]. Among these approaches,
metabolomics is defined as the ‘systematic study of the unique
chemical fingerprints that specific cellular processes leave behind’
[11]. Routinely, metabolomic studies focus on the global analysis of
all low molecular weight (<1000 Da) metabolites that are the end
products of metabolism, representing the physiological status and
functional responses in biological systems (e.g., cell, tissue, urine,
plasma) [10,11]. Due to its high throughput, low expenditure and
comprehensive analysis of metabolites, metabolomics has been
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successfully used in multiple areas, such as drug toxicity, disease
diagnosis, functional genomics, and environmental sciences
[10,12e14]. Both MS spectrometry and NMR spectroscopy are
widely applied in metabolomics [10,15]. Specifically, high resolu-
tion proton nuclear magnetic resonance (HR-1H NMR) spectros-
copy is suited to detect a large range of endogenous low molecular
weight metabolites in an organism since this technique allows
metabolites to be analyzed simultaneously [16]. It is well-
established that NMR techniques (e.g., one dimensional 1H NMR
and two dimensional J-resolved 1H NMR spectroscopies) coupled
with multivariate statistical analysis or computer-based pattern
recognition methods can provide a global view on the biochemical
information of biological perturbations that are induced by exog-
enous factors, through the analysis of biofluids, tissues or tissue
extracts [10,16e18]. To date, however, very few studies have been
carried out in immunity responses of marine aquaculture shellfish
towards marine bacterial pathogen challenges using NMR-based
metabolomics.

In this study, the metabolomic responses were compared in Ma-
nila clam R. philippinarum challenged by two typical vibrios,
V. anguillarum and V. splendidus, respectively. The tissue of hepato-
pancreas from R. philippinarum was used for metabolomic analysis,
since this organ is an important digestive and immune organ in bi-
valves and can accumulate a largenumberof bacteria due to thefilter-
feedinghabitofR.philippinarum. Theaimof thisworkwas to illustrate
the differential effects induced by these two representative Gram-
negativebacteria inR.philippinarumusingNMR-basedmetabolomics.

2. Materials and methods

2.1. Experimental animals and conditions

The healthy clams R. philippinarum (shell length: 3.0e3.6 cm,
White pedigree) were purchased from local culturing farm in
Yantai, China. After transported to the culture laboratory, the clams
were acclimatized for 7 days before bacterial challenge. The
seawater was aerated continuously, and salinity and temperature
were maintained at 32 practical salinity units (psu) and 25 �C
throughout the experiment. Clams were fed with Chlorella vulgaris
Beij daily and the seawater was renewed daily. After the acclima-
tization, the clams were randomly divided into three flat-bottomed
rectangular tanks (one control and two bacterial challenges), each
containing 8 individuals in 20 L seawater.

2.2. Challenge experiment

These two species of bacteria, V. anguillarum (1A07299) and
V. splendidus (1A00376), were purchased from Marine Culture
Table 1
The list of primers used for the determination of internal control and quantification of g

Gene name Forward prim

Reference genes
beta-actin ACACCTCTAT
18S ribosomal RNA gene ATGACTTCCG
Elongation factor 1-alpha CATTGGGGAG
Ubiquitin-conjugating enzyme e2d3 TTACTAGATG
Glyceraldehyde-3-phosphate dehydrogenase CTTATACTGC
40s ribosomal protein s20 CTGGGATAGA
Tested genes
ATP synthase TATCTGCTTA
ATPase CACAAGCTGG
HSP 90 GGGCATTGAG
GPx CCAGATGGCA
Defensin GGTTGCCCTG
Lysozyme AAATGCCTCC
Collection of China. The bacteria were cultured in liquid 2216E
broth (Tryptone 5 g L�1, yeast extract 1 g L�1, C6H5Fe$5H2O 0.1 g L�1,
pH 7.6) at 29 �C and centrifuged at 3000 rpm for 5 min to harvest
the bacteria. For the challenge experiment, live V. anguillarum and
V. splendidus were re-suspended in filtered seawater (FSW) and
adjusted to a concentration of 5 � 108 CFU mL�1 (1 unit OD550
corresponds to 5 � 108 CFU mL�1). For both bacterial challenged
groups, the clams were challenged with high density of
V. anguillarum and V. splendidus with final concentrations of
1 � 107 CFU mL�1, respectively. It should be noted that this con-
centration of bacteria was used to study the differential responses
of R. philippinarum to V. anguillarum and V. splendidus challenges
and not environmentally relevant. The group without any treat-
ment was used as control group. After exposure for 24 h, the
hepatopancreas tissue of each clamwas dissected quickly and flash-
frozen in liquid nitrogen, and then stored at�80 �C before RNA and
metabolite extraction.

2.3. Metabolite extraction

Polar metabolites in clam hepatopancreas tissues (n ¼ 8 for
each treatment) were extracted by the modified extraction pro-
tocol as described previously [19,20]. Briefly, the hepatopancreas
tissue (ca. 100 mg wet weight) was homogenized and extracted in
4 mL g�1 of methanol, 5.25 mL g�1 of water and 2 mL g�1 of
chloroform. The methanol/water layer with polar metabolites was
transferred to a glass vial and dried in a centrifugal concentrator.
The extracts of hepatopancreas tissue were then re-suspended in
600 ml phosphate buffer (100 mM Na2HPO4 and NaH2PO4,
including 0.5 mM 3-(trimethylsilyl)propionic-2,2,3,3-d4 acid so-
dium (TSP), pH 7.0) in D2O. The mixture was vortexed and then
centrifuged at 3000 g for 5 min at 4 �C. The supernatant substance
(550 ml) was then pipetted into a 5 mm NMR tube prior to NMR
analysis.

2.4. RNA extraction and quantitation of gene expressions

Total RNA from hepatopancreas of clam (n ¼ 8) was extracted
following the manufacturer’s directions (Invitrogen), and the first-
strand cDNA was synthesized according to M-MLV RT Usage in-
formation (Promega). Gene-specific primers employed for as the
determination of internal control (beta-actin, 18S ribosomal RNA
gene, elongation factor 1-alpha, ubiquitin-conjugating enzyme
e2d3, glyceraldehyde-3-phosphate dehydrogenase and 40s ribo-
somal protein s20) for gene expression normalization and quanti-
fication of mRNA expression including ATP synthase, ATPase,
glutathione peroxidase (GPx), heat shock protein 90 (HSP 90),
defensin and lysozyme were listed in Table 1.
ene expressions by qPCR.

er (50-30) Reverse primer (50-30)

GTACGTCGCCATCC GAAGCGTAAAGTGACAGGACAGC
CCCGTGTT CTCAGATTTCTGAACAGGTGTCG
GTTTGCTGTC TCAACCTGTCCCACAGGCAT
AATGGAAACCGTCCT GTGAGCATATAGCCAGCAAAAT
CACCCAGAAGGT TCAGGGGTTGGTACACGGAAT
TTTCAGATGCGT CAAGTTCAAGGGGGGATAATCT

CATCCCAACT TGACCGACAAACCTACAT
TTCAGAGGT GGCTAGTGTTGGCTGGTAA
GTCATTTAC CTTGTCCAGGATTTCTTTG
GACCTATT GGAACTCTTATCCCACAAC
AAGATGAA ATTGCGTGTTGGTGCTGT
TCTGTATG TAGGGTTGCTTTATCTGG



Fig. 1. Representative 1-dimensional 500 MHz 1H NMR spectra of tissue extracts from
hepatopancreas of R. philippinarum from (A) control, (B) V. anguillarum- and (C) V.
splendidus-challenged groups. Keys: (1) leucine, (2) isoleucine, (3) valine, (4) unknown
1 (1.12 ppm), (5) threonine, (6) alanine, (7) arginine, (8) glutamate, (9) glutamine, (10)
acetoacetate, (11) succinate, (12) b-alanine, (13) hypotaurine, (14) aspartate, (15)
dimethylglycine, (16) lysine, (17) malonate, (18) choline, (19) phosphocholine, (20)
taurine, (21) glycine, (22) betaine, (23) homarine, (24) a-glucose, (25) b-glucose, (26)
glycogen, (27) unknown 1 (5.98 ppm), (28) ATP, (29) fumarate, (30) tyrosine, (31)
histidine and (32) phenylalanine.
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The mRNA expression of the housekeeping genes in R. philip-
pinarum hepatopancreas was determined by qPCR using an ABI
7500 Fast Real-Time PCR System (Applied Biosystems, Foster City,
CA, USA). Briefly, the reaction was conducted in triplicate in a total
volume of 20 ml containing 10 ml SYBR Premix Ex Taq� (TaKaRa),
0.2 ml of each primer, 7.6 ml DEPC-treated H2O and 2 ml cDNA. The
PCR program was 95 �C for 10 min, followed by 40 cycles at 94 �C
for 15 s, 58 �C for 15 s, and 72 �C for 30 s. Dissociation curve
analysis of amplification products was performed at the end of
each PCR to confirm that only one PCR product was amplified and
detected. PCR efficiency (E) and correlation coefficient (R2) were
calculated based on the slopes of standard curves generated using
serial 10-fold dilutions of cDNA [21]. The E values between 90%
and 110% were acceptable (data not shown). Negative controls
without cDNA were used in all assays. The sizes of the PCR
products were analyzed by electrophoresis in 2% agarose gels.
After the PCR program, data were analyzed with the ABI 7500 SDS
software (Applied Biosystems, Foster City, CA, USA). Statistical
significance (P < 0.05) between mRNA expression levels was
determined by one-way analysis of variance (ANOVA). The data
were analyzed with geNorm to calculate the expression stability
(M values) and the optimal number of reference genes required for
accurate normalization (V values) [21]. GeNorm identified 40s ri-
bosomal protein s20 as the most stable gene, which was lower
than the expression stability threshold of 1.5, then were followed
by glyceraldehyde-3-phosphate dehydrogenase, ubiquitin-
conjugating enzyme e2d3, elongation factor 1-alpha, 18S rRNA
and beta-actin to determine the number of genes required for
optimal data normalization. The results showed that the V2/3
value 0.139 is less than the proposed geNorm cutoff value of 0.15,
which meant that the gene of 40s ribosomal protein s20 was the
most stable gene and was then used as the internal control for
gene expression normalization.

The fluorescent real-time quantitative PCR amplifications for
tested genes were carried out in triplicate in a total volume of 50 ml
containing 25 ml of 2 � SYBR Premix Ex Taq� (TaKaRa), 1.0 ml of
50 � ROX Reference DYE __, 12.0 ml DEPC-treated H2O, 1.0 ml of each
primer and 10.0 ml of 1:20 diluted cDNA. The fluorescent real-time
quantitative PCR program was as following: 50 �C for 2 min and
95 �C for 10 min, followed by 40 cycles of 94 �C for 15 s, 58 �C for
45 s, 72 �C for 30 s. Dissociation curve analysis of amplification
products was performed at the end of each PCR to confirm that only
one PCR product was amplified and detected. To maintain consis-
tency, the baseline was set automatically by the software. The
comparative CT method (2�DDCT method) was used to analyze the
relative expression level of the genes [22].

2.5. 1H NMR spectroscopy

Metabolite extracts of hepatopancreas from clams were
analyzed on a Bruker AV 500 NMR spectrometer performed at
500.18 MHz (at 25 �C) as described previously [23,24]. All 1H NMR
spectra were phased, baseline-corrected, and calibrated (TSP at
0.0 ppm) manually using TopSpin (version 2.1, Bruker).

2.6. Spectral pre-processing and multivariate analysis

All one dimensional 1H NMR spectra were converted to a data
matrix using the custom-written ProMetab software in Matlab
version 7.0 (The MathsWorks, Natick, MA) [25]. Each spectrumwas
segmented into bins with a width of 0.005 ppm between 0.2 and
10.0 ppm. The bins of residual water peak between 4.70 and
5.20 ppm were excluded from all the NMR spectra. The total
spectral area of the remaining bins was normalized to unity to
facilitate the comparison between the spectra. All the NMR spectra
were generalized log transformed (glog) with a transformation
parameter l ¼ 2.0 � 10�8 to stabilize the variance across the
spectral bins and to increase the weightings of the less intense
peaks [25]. Data were mean-centered before multivariate data
analysis.

The supervised multivariate data analysis methods, partial least
squares discriminant analysis (PLS-DA) and orthogonal projection
to latent structure with discriminant analysis (O-PLS-DA), were
sequentially used to uncover and extract the statistically signifi-
cant metabolite variations related to bacterial challenges. The re-
sults were visualized in terms of scores plots to show the
classifications and corresponding loadings plots to show the NMR
spectral variables contributing to the classifications. The model
coefficients were calculated from the coefficients incorporating
the weight of the variables in order to enhance interpretability of
the model. Then metabolic differences responsible for the classi-
fications between control and bacteria-challenged groups could be
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detected in the coefficient-coded loadings plots. The coefficient
plots were generated by using MATLAB (V7.0, the Mathworks Inc.,
Natwick, USA) with an in-house developed program and were
color-coded with absolute value of coefficients (r). A hot color (i.e.,
red) corresponds to the metabolites with highly positive/negative
significances in discriminating between groups, while a cool color
(i. e. blue) corresponds to no significance. The correlation coeffi-
cient was determined according to the test for the significance of
the Pearson’s product-moment correlation coefficient. The vali-
dation of the model was conducted using 10-fold cross validation
and the cross-validation parameter Q2 was calculated, and an
additional validation method, permutation test (permutation
number ¼ 200), was also conducted in order to evaluate the val-
idity of the PLS-DA models. The R2 in the permutated plot
described how well the data fit the derived model, whereas Q2

describes the predictive ability of the derived model and provides
a measure of the model quality. If the maximum value of Q2 max
from the permutation test was smaller than or equal to the Q2 of
the real model, the model was regarded as a predictable model.
Similarly, the R2 value and difference between the R2 and Q2 were
used to evaluate the possibility of over-fitted models [26,27].
Metabolites were assigned following the tabulated chemical shifts
[28] and quantified by using the software, Chenomx (Evaluation
Version, Chenomx Inc., Edmonton, Alberta, Canada). The metab-
olite concentrations were normalized to the mass of hepatopan-
creas tissue by calculating the concentrations of metabolites in
each NMR tube.
Fig. 2. O-PLS-DA scores derived from 1H NMR spectra of tissue extracts from control ( ) a
sponding coefficient plots (B) and (D). The color map shows the significance of metabolite va
direction indicate metabolites that are more abundant in the bacteria-challenged groups. Co
peaks in the negative direction. Keys: (1) branched chain amino acids: leucine, isoleucine an
(8) b-glucose, (9) ATP, (10) tyrosine, (11) phenylalanine, (12) hypotaurine, (13) dimethylglyc
color in this figure legend, the reader is referred to the web version of this article.)
2.7. Statistical analysis

Metabolite concentrations were tested for normal distribution
(Ryan-Joiner’s test) and homogeneity of variances (Bartlett’s
test). All metabolite concentrations were expressed as
means � standard deviation. One ANOVA with Tukey’s test was
performed on metabolite concentrations between control and
bacteria-challenged groups, respectively. A P value less than 0.05
was considered statistically significant. The Minitab software
(Version 15, Minitab Inc., USA) was used for the statistical
analysis.

3. Results

3.1. Metabolomic responses in hepatopancreas of clams challenged
by V. anguillarum and V. splendidus

Fig. 1 shows the representative 1H NMR spectra of hepatopan-
creas tissue extracts from control, V. anguillarum and V. splendidus-
challenged groups. Several classes of metabolites were identified in
hepatopancreas of R. philippinarum, including amino acids (valine,
leucine, isoleucine, threonine, alanine, glutamate, glutamine,
lysine, glycine, tyrosine, histidine and phenylalanine), osmolytes
(betaine, homarine, dimethylglycine, taurine and hypotaurine),
intermediates in the Krebs cycle (succinate and fumarate) and en-
ergy metabolism-related metabolites (ATP, glucose and glycogen).
All the 1H NMR spectra were dominated by the organic osmolytes,
nd bacteria-challenged groups ( ), (A) V. anguillarum and (C) V. splendidus and corre-
riations between the two classes (control and bacterial challenge). Peaks in the positive
nsequently, metabolites that are more abundant in the control group are presented as
d valine, (2) threonine, (3) arginine, (4) glutamate, (5) lysine, (6) taurine, (7) a-glucose,
ine (14) choline, (15) betaine and (16) glycogen. (For interpretation of the references to



Table 2
Metabolite concentrations (mmol g�1 wet tissue) in hepatopancreas from
R. philippinarum challenged by Vibrio anguillarum and Vibrio splendidus. Values are
presented as mean � standard deviation.

Metabolites Chemical shift
(ppm,
multiplicity)a

Control V. anguillarum V. splendidus

Leucine 0.94 (t) 0.09 � 0.02 0.14 ± 0.02c 0.10 � 0.03
Isoleucine 1.00 (d) 0.08 � 0.02 0.13 ± 0.02c 0.04 � 0.02
Valine 1.05 (d) 0.10 � 0.02 0.17 ± 0.03c 0.12 � 0.02
Threonine 1.34 (d) 0.18 � 0.04 0.25 ± 0.04b 0.14 � 0.01b

Alanine 1.48 (d) 2.53 � 0.62 3.01 � 0.94 2.82 � 0.69
Arginine 1.70 (m) 1.14 � 0.16 1.68 ± 0.39c 1.06 � 0.14
Glutamate 2.05 (m) 1.47 � 0.24 2.26 ± 0.42c 1.02 � 0.26c

Glutamine 2.14 (m) 0.53 � 0.12 0.54 � 0.14 0.51 � 0.14
Acetoacetate 2.26 (s) 0.24 � 0.09 0.25 � 0.12 0.21 � 0.07
Succinate 2.41 (s) 0.47 � 0.34 0.74 � 0.26 0.52 � 0.25
b-alanine 2.54 (t) 0.15 � 0.03 0.16 � 0.03 0.12 � 0.04
Hypotaurine 2.66 (t) 3.45 � 0.31 3.22 � 0.67 2.42 ± 0.44c

Aspartate 2.68 (ABX) 1.53 � 0.32 1.72 � 0.48 1.47 � 0.39
Dimethylglycine 2.91 (s) 0.10 � 0.02 0.11 � 0.03 0.06 ± 0.02b

Lysine 3.02 (t) 0.42 � 0.06 0.58 ± 0.11b 0.46 � 0.09
Choline 3.19 (s) 0.18 � 0.03 0.20 � 0.04 0.14 ± 0.02b

Phosphocholine 3.21 (s) 0.62 � 0.17 0.67 � 0.28 0.53 � 0.20
Taurine 3.45 (t) 39.78 � 1.51 35.23 ± 1.22c 37.48 � 2.17
Betaine 3.27 (s) 27.25 � 1.26 28.97 � 1.64 30.97 ± 1.72c

Glycine 3.57 (s) 4.43 � 1.08 4.68 � 1.56 2.36 ± 1.01c

Glucose 4.64 (d), 5.23 (d) 2.43 � 0.56 4.27 ± 1.18c 1.25 ± 0.32c

Homarine 4.37 (s) 8.33 � 1.98 8.57 � 1.29 8.76 � 2.08
ATP 6.14 (d) 0.43 � 0.03 0.32 ± 0.06c 0.42 � 0.05
Fumarate 6.52 (s) 0.012 � 0.003 0.012 � 0.005 0.011 � 0.004
Tyrosine 6.91 (d) 0.07 � 0.02 0.11 ± 0.03b 0.06 � 0.02
Histidine 7.10 (s) 0.07 � 0.03 0.08 � 0.04 0.07 � 0.03
Phenylalanine 7.35 (m) 0.20 � 0.05 0.28 ± 0.04b 0.22 � 0.06

Statistical significances (bP < 0.05, cP < 0.01) between control and bacteria-
challenged R. philippinarum samples were determined by one-way ANOVA.

a s ¼ singlet, d ¼ doublet, t ¼ triplet, m ¼ multiplet, ABX ¼ complex multiplet
involving 2 protons (A and B) and a heavy atom (X).
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betaine (3.27 and 3.90 ppm), taurine (3.27 and 3.45 ppm) and
glycine (3.56 ppm).

O-PLS-DA and one way ANOVA combined with Tukey’s test
were performed on the 1H NMR spectral datasets and quantified
metabolite concentrations for metabolic biomarker discovery in
V. anguillarum- and V. splendidus-treated groups, respectively
(Fig. 2). Fig. 2(A) and (C) indicated that O-PLS-DA resulted in clear
classifications between control and bacterial challenges, respec-
tively, with reliable Q2 values (>0.5). Apparently, the concentra-
tions of amino acids (valine, leucine, isoleucine, arginine, lysine,
glutamate, tyrosine and phenylalanine) and glucose were signifi-
cantly (P < 0.05) increased in V. anguillarum-challenged clam
hepatopancreas, as shown in the loading plot of O-PLS-DA (Fig. 2B
and Table 2). However, the levels of taurine and ATP were signif-
icantly (P < 0.05) decreased. Compared to the metabolic profile
from V. anguillarum-challenged group, the challenge of
V. splendidus induced completely different metabolic responses in
clam hepatopancreas. Based on the corresponding loading plot of
O-PLS-DA, betaine and glycogen were found to be increased in
V. splendidus-challenged clam samples (Fig. 2D). Hypotaurine,
dimethylglycine, choline and glycine were significantly (P < 0.05)
decreased. In addition, the amino acids, threonine and glutamate,
and glucose were significantly (P < 0.05) decreased, which was
contrary to the changes in V. anguillarum-challenged clam hepa-
topancreas tissue samples.

3.2. ATP synthase, ATPase, GPx, HSP 90, defensin and lysozyme
expression in hepatopancreas of clams challenged by V. anguillarum
and V. splendidus

In this study, six genes related diverse functions were selected
for the quantification of mRNA expression. ATP synthase and
ATPase are involved in energy metabolism. GPx, HSP 90, defensin
and lysozyme play important roles in anti-oxidative stress and
immune defense. After bacterial challenges for 24 h, the expression
of ATP synthase, ATPase, GPx, HSP 90, defensin and lysozyme mRNA
in heapatopancreas of control and bacterial challenged clams was
quantified using quantitative real-time RT-PCR technique with 40s
ribosomal protein s20 as internal control (Fig. 3). The mRNA
expression levels of ATP synthase and ATPase were significantly
(P < 0.05) down-regulated and up-regulated in V. anguillarum-
challenged clam hepatopancreas, respectively. However, both ATP
synthase and ATPase mRNA expressions were not significantly
(P > 0.05) altered in V. splendidus-challenged clam samples. The
mRNA expression levels of GPx, HSP 90, defensin and lysozyme
were all significantly (P < 0.05) up-regulated in both V. anguillarum-
and V. splendidus-challenged clam samples. However, V. anguillarum
challenge resulted in significantly (P < 0.05) higher mRNA expres-
sion levels of GPx and defesin than V. splendidus challenge did in
clam hepatopancreas (Fig. 3).

4. Discussion

From the visual observation 1H NMR spectra (Fig. 1), betaine
is the most abundant metabolite in clam hepatopancreas. As
it is known, betaine is an organic osmolyte that is the result of
a two-step reaction of choline: choline / betaine
aldehyde þ NADþ / betaine þ NADH in marine bivalves to regu-
late osmotic balance between intracellular and external environ-
ments [29]. In the reactions, the first step is usually catalyzed by
choline dehydrogenase and the second is catalyzed by betaine
aldehyde dehydrogenase. In addition, other osmolytes including
taurine (3.27 and 3.45 ppm) and glycine (3.56 ppm) were also
found at relatively high concentrations in clam samples (Fig. 1).
These osmolytes play important roles in osmotic regulation and
therefore were observed in clam hepatopancreas with high con-
centrations [29].

After challenge with V. anguillarum for 24 h, as a primary
osmolyte inmarinemollusks, taurinewas significantly decreased in
clam hepatopancreas. Hereby, it implied that the challenge of
V. anguillarum induced hypo-osmotic stress in clams. A total of nine
amino acids were significantly elevated in clam hepatopancreas. In
our previous study, V. anguillarum challenge induced a similar
profile of amino acids in gills of mussel Mytilus galloprovincialis [2].
Marine mollusks can use high concentrations of amino acids to
regulate their intracellular osmolarity with their environment [30].
Therefore, the elevation of amino acids might be used to compen-
sate the decrease of taurine. In addition, amino acids are also
involved in cellular energy metabolism [30]. Since the osmolyte,
taurine, was significantly decreased, these increased amino acids
could be related to the disturbances in both osmotic regulation and
energy metabolism, which was confirmed by increased glucose
(enhanced gluconeogenesis) and decreased ATP. The similar
changes in taurine, glucose and ATP concentrations were also
observed in Micrococcus luteus-challenged M. galloprovincialis gills
[2]. Among these altered amino acids, the branched chain amino
acids (BCAA) including valine, leucine and isoleucine, have avail-
ability on the immune system to function by incorporating BCAA
into proteins [31]. Upon pathogenic infection, there is a remarkable
increase in demand for BCAA for substrates by the immune system
[31]. These BCAA then provide energy and are used as the pre-
cursors for the biosynthesis of newprotectivemolecules [31]. In our
case, therefore, the branched chain amino acids were increased to
deal with the infection of V. anguillarum in clam immune organ,
hepatopancreas.
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Fig. 3. Expression levels of ATP synthase, ATPase, GPx, HSP 90, defensin and lysozyme mRNA relative to 40s ribosomal protein s20 measured by qPCR in hepatopancreas of
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In V. splendidus-challenged clam samples, the metabolic profile
was completely different with that in V. anguillarum-challenged
clams, especially, some metabolites including threonine, glutamate
and glucose were contrarily altered. These metabolic responses
demonstrated the differential effects between V. anguillarum and
V. splendidus towards clam R. philippinarum. The significant alter-
ations in osmolytes, including elevated betaine and depleted
hypotaurine, dimethylglycine and glycine, indicated the clear
disruption in osmotic regulation in clam hepatopancreas by
V. splendidus challenge via different metabolic pathways, compared
with those in V. anguillarum-challenged clams. The decreased
amino acids (threonine and glutamate) meant the enhanced utili-
zation of amino acids for energy demand, because glycogenesis was
promoted as indicated by decreased glucose and increased
glycogen. Since choline is the precursor of biosynthesis of betaine,
as mentioned above, the decrease of choline was consistent with
the increase of betaine in V. splendidus-challenged clam samples. It
implied the enhancement of betaine biosynthesis induced by
V. splendidus challenge in clam.

Since pathogens can induce disturbance in energy metabolism,
oxidative stress and immune responses, the mRNA expression
levels of six related genes including ATP synthase, ATPase, GPx, HSP
90, defensin and lysozyme were quantified using qPCR technique
(Fig. 3). Obviously, the significant down-regulation of ATP synthase
and up-regulation of ATPase were consistent with the alteration of
corresponding metabolite, ATP, in V. anguillarum-challenged clam
hepatopancreas. However, the mRNA expression levels of both ATP
synthase and ATPase were not significantly changed in
V. splendidus-challenged clam samples. Interestingly, the level of
ATP in V. anguillarum-challenged group was not significantly
changed as well. Since ATP is the metabolite catalyzed by ATP
synthase and ATPase in energy metabolic pathways, the consis-
tency between the mRNA expression levels of these two enzymes
and ATP changes confirmed the disruption in energy metabolism
induced by V. anguillarum but V. splendidus. GPx is an essential
component of cellular scavenger of ROS in the maintenance of the
balance between ROS and antioxidants. It catalyzes the reduction of
various organic hydroperoxide (ROOH) and H2O2 using glutathione
(GSH) as the reducing substrate [32]. The roles of GPx in the host
antioxidant defense system and immune defense system have been
well documented in mollusks [33,34]. HSPs have a large family of
molecular chaperones and play vital roles in preventing irreversible
protein denaturation, aggregation and misfolding [4,35]. They can
be induced by osmotic stress, oxidative stress and pathogen
infection [4]. Both defensin and lysozyme are antibacterial com-
ponents that have been characterized in marine mollusks [36,37].
In this work, the significant (P < 0.05) up-regulation of mRNA
expression levels of GPx, HSP 90, defensin and lysozyme were
found in both V. anguillarum- and V. splendidus-challenged clam
samples. It suggested that the challenges of V. anguillarum and
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V. splendidus could induce oxidative and immune stresses in clam
hepatopancreas. Wang et al. found the increased amount of ROS in
V. anguillarum-challenged scallop Chlamys farreri and subsequent
oxidative stress, together with the immune stress indicated by
increased SOD activity, up-regulated mRNA expression levels of
HSP 90, HSP 70 and so on [4]. Essentially, the oxidative and immune
stresses are often concurrently in marine bivalves induced by
pathogens or environmental contaminants, since the generation of
ROS such as free radicals can damage those molecules involved in
the immune system [3,4,38]. The significantly higher levels of
mRNA expression of GPx and defensin in V. anguillarum-challenged
group implied that V. anguillarum could induce more severe
oxidative and immune stresses than V. splendidus did in clam.

In summary, the differential metabolic responses induced by V.
anguillarum and V. splendidus, were investigated using NMR-based
metabolomics in hepatopancreas of clam R. philippinarum. Overall,
both V. anguillarum and V. splendidus induced disturbances in en-
ergy metabolism, osmotic regulation, oxidative and immune
stresses with different mechanisms, as indicated by correspond-
ingly differential metabolic biomarkers and altered expression
levels of related genes. However, V. anguillarum causedmore severe
oxidative and immune stresses in clam hepatopancreas than
V. splendidus. Our results indicated that metabolomics could be
used to elucidate the biological effects of pathogens to the marine
clam R. philippinarum.
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