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a b s t r a c t

The coastal waters around Yantai have been subjected to a variety of anthropogenic pressures over the
last two decades. To assess the current benthic ecological health and the recovery process of the benthic
ecosystem, four surveys were conducted in 2010 and 2011. The AMBI and M-AMBI were applied to assess
the benthic ecological status. The ecological status of the Sishili Bay and Taozi Bay was ‘‘moderate’’ to
‘‘good’’ at most sampling stations during four surveys, but some stations were degraded due to pollution
and eutrophication induced by human activities. The ecological status improved after removal of the
marine raft culture and minimizing the amount of waste water discharged into the coastal waters of Yan-
tai. The AMBI and M-AMBI could be used as suitable bio-indicator indices to assess the benthic ecological
status of coastal waters in Yantai, Shandong Province.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Yellow Sea was once the most productive fishing grounds in
Chinese waters, providing a huge amount of marine food before the
1980s; however, due to the intensive human activities, such as, the
aquaculture, sewage discharge and land reclamation, the ecological
health of the marine ecosystem was degraded greatly, especially
along the coastal water zone where most human activities oc-
curred (Tang, 2004; Wang et al., 1995; Liu D. et al., 2009). Yantai
is located in the northern Yellow Sea, with a history of over
60 years of marine raft culture in the coastal waters, from seaweed
Laminaria japonica and Asian kelp Undaria pinnatifida to scallop
Chlamys farreri, Argopecten irradians, and mussel Mytilus edulis
farming. The farming area in Sishili Bay was once up to 2450 ha,
of which the farming area for scallop, mussel and seaweed was
800 ha, 400 ha and 250 ha, respectively (Wan, 2012; Gao et al.,
2011). The scallop culture duration normally lasts for 1–2 years,
and harvest time was at the end of October each year.

Over the last two decades, the rapid economic growth coupled
with increased population have imposed unpredictable deleterious
impacts on the coastal marine ecosystem around Yantai, especially
in Sishili Bay (SB) and Taozi Bay (TB), e.g., aquaculture, wastewater
discharge and shipping cargo throughput (Yantai Statistics Bureau,
2001–2009). Large quantities of nutrients caused by sewage dis-

charge and aquaculture have been discharged into the SB and TB,
including 150 tonnes of total phosphorus (TP) and 1910 tonnes
of total nitrogen (TN) each year (Liu et al., 2006). The deterioration
of this marine ecosystem was also confirmed by the increased
occurrence of red tides and jellyfish blooms (Dong et al., 2010).

In order to assess ecosystem status and health, several integra-
tive approaches have been developed involving biological (Borja
et al., 2000, 2009a, 2011), chemical (Borja et al., 2004b; Tueros
et al., 2008), and physio-chemical components (Bald et al., 2005).
Of all the biological elements used to evaluate water bodies, e.g.,
phytoplankton, zooplankton, benthos, algae, phanerogams, fishes,
macrobenthos have been more extensively used as a biological
indicator in the assessment of ecosystem health (Borja and Tun-
berg, 2011), due to their rapid response to anthropogenic and nat-
ural stress and unique community characteristics, including
relatively sedentary, long life span, different species composition
with different tolerances to stress, and an important role of biotur-
bation and bioirrigation (Pearson and Rosenberg, 1978; Dauer,
1993; Borja et al., 2000; Lohrer et al., 2004).

To establish the ecological quality of European coasts, Borja
et al. (2000) proposed the AZTI’s Marine Biotic Index (AMBI), espe-
cially for areas under anthropogenic disturbances. Based on differ-
ent tolerances and sensitivity to an anthropogenic stress gradient,
macrobenthic species were classified into five ecological groups
(EG) (Borja et al., 2000). Up to now, AMBI has proved to be an effi-
cient biotic index in detecting degradation of habitat quality and is
commonly used in different water bodies of the Atlantic Ocean,
Baltic Sea, Mediterranean Sea, North Sea, Norwegian Sea, and the
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Bohai Sea (Muxika et al., 2005; Cai et al., 2012). However, due to
the complexity of benthic communities and diversity of benthic
gradients, the AMBI was not always consistent with some environ-
mental parameters related to pollution under some conditions
(Muxika et al., 2005). In order to overcome this potential weakness
and to minimize some misclassification problems when assessing
the ecological status by AMBI, the Multivariate AZTI Marine Biotic
Index (M-AMBI) was proposed by Muxika et al. (2007), which inte-
grates the Shannon’s diversity, richness and AMBI into a factor
analysis multivariate approach to assess the ecological status.

The aims of the present study were: (i) to assess the benthic
ecological health of the Yantai coastal waters at the ecosystem le-
vel, and to test the recovery process based on the effect of remov-
ing the raft culture, using AMBI and M-AMBI; (ii) to test the
adaptability of these two indices in coastal waters of Yantai by
linking the AMBI, M-AMBI with environmental factors, especially
the trace metals in the sediment; and (iii) to establish a suitable
Chinese species assignation to EG.

The AMBI was firstly adopted to assess the benthic quality of
intertidal zones of Bohai Sea in China at 2012 (Cai et al., 2012).
Whereas, this is the first time that such methods have been applied
to assess the ecological status in coastal waters of Yantai, Shan-
dong Province by linking the AMBI, M-AMBI with environmental
factors. Sishili Bay is a typical temperate coastal bay with a tem-
perature range of 23.3–27.4 �C in summer and 2.5–3.5 �C in winter
(Liu et al., 2012), and Yantai is also a typical city with rapid indus-
trialization and intensification of coastal uses continue in the north
of China. Moreover, it is urgent to set a useful biological indicator
in the assessment of ecosystem health to meet the needs of man-
agement of Chinese government. Hopefully an important criterion
will be set up for assessing the ecological status of coastal water of
many similar cities in China from the research of this paper.

2. Material and methods

2.1. Study area

Considering the different kinds of anthropogenic disturbance on
macrobenthos, up to 24 stations were selected to study the macro-
benthos in the SB and TB, covering the outlet of Jiahe River, the big-
gest river that runs into the coastal waters; the sewage outfall near
Zhifu Island, the Yantai Harbor and the marine raft culture zone. 14
stations were assessed in April 2010, 14 stations in August 2010,
21 stations in October 2010, and 19 stations in March 2011 (Fig. 1).

To improve the ecosystem health, the Fisheries and Oceans Bu-
reau of Yantai minimized the amount of waste water discharged
from some pollutant point sources since 2009, especially some
chemical plants. And, to achieve a better landscape for tourism
along the coastal zone of Sishili Bay, the Yantai government grad-
ually removed most of the raft culture in Sishili Bay at the early of
2010, whereas, permitted the aquaculture in Taozi Bay. Thus, the
different stress from aquaculture on ecosystem health between
Sishili Bay and Taozi Bay provide two ideal sampling sites for
comparison.

2.2. Sampling methods and procedure

Two separate replicate sediment samples were collected by a
0.05 m2 box-corer grab at every station; the sediments were then
sieved through a mesh with 0.5 mm aperture to obtain the macro-
benthic organisms. The macrobenthic samples were preserved in
80% ethanol until laboratory identification to the lowest possible
taxonomic level, then counted and weighted using a 0.01 g preci-
sion electric balance to get the number and wet weight. Sediment
samples were also collected to measure trace elements (Pb,Cr,Co,-

Ni,Cu,Zn,A,Cd). The sediment trace element contents were ana-
lyzed by inductively coupled plasma mass spectrometry (ICP-MS)
(Perkin-Elmer, USA). To obtain a complete digestion of sediment,
firstly, 0.1–0.2 g dried sediment was homogenized by grindingwith
mortar and pestle, and then sieved through a 200-meshes sieve.
The sized sample was digested in an acid mixture of HF(5 ml),
HNO3(3 ml) and HClO4(1 ml) in a sealed PTFE vessel for 12 h at
140 �C. Secondly, the extracts was dissolved in HNO3 solution
(50%) at 150 �C, and lastly diluted to 50 ml with ultrapure water.

2.3. Statistical analysis

Macrofauna data were analyzed using several univariate indi-
ces: species richness, Shannon index (H0), AMBI (Borja et al.,
2000), and M-AMBI (Muxika et al., 2007), which were all computed
by using the AMBI program (version 5.0) freely available online at
http://ambi.azti.es, and on the basis of the AMBI guidelines (Borja
and Muxika, 2005). Based on Borja and Tunberg (2011), the
threshold values for the M-AMBI conditions are as follows:
‘high’ quality > 0.77; ‘good’ = 0.53–0.77; ‘moderate’ = 0.38–0.53;
‘poor’ = 0.20–0.38; and ‘bad’ < 0.20. According to the guidelines
for the use of AMBI (Borja and Muxika, 2005), all of the non-ben-
thic invertebrate taxa (fish and megafauna) were removed.

To evaluate the hypotheses that (i) different kinds of anthropo-
genic disturbance would impose different stresses on macroben-
thos, and (ii) the benthic ecological status and health would
recover in 1 year after some control measures implemented by lo-
cal government, the results of AMBI and M-AMBI of 7 stations that
are common to all 4 sampling events were tested by the analysis of
variance (ANOVA) and Kruskal–Wallis ANOVA analysis in the case
of heterogeneity of variance. The 7 common stations in all 4
sampling events suffered from different kinds of anthropogenic
activities, e.g., stations 1, 2, 3 (outside of Taozi Bay with less
anthropogenic stress), 4 (near to the waste water discharge point
with pollution stress), 9, 11 (near to the raft culture zone with
mariculture stress), and 28 (at the Dagujia River Mouth with waste
water discharge stress). All statistical analyses were performed
using the software PASW Statistics 18.

2.4. Species assignation

According to the species-list of V. March 2012 (included in the
package of software AMBI program version 5.0), most of the spe-
cies were assigned. Some Chinese local species were based on
our own knowledge (expert opinion).

3. Results

3.1. Abiotic parameters

According to Chinese Marine Sediment Quality Standard GB
18668-2002 (National Standard of the People’s Republic of China
GB 18668-2002, was issued by General Administration of Quality
Supervision, Inspection and Quarantine of the People’s Republic
of China at March 10 2012), the marine sediment of Class I quality
can be used for marine fishery, natural reserve areas, natural pres-
ervation zones for rare and endangered animals, marine culture
zones, bathing beaches, direct body contact marine sports and
industrial water area related to marine foods; Class II can be used
for normal industrial water and coastal scenic areas. Most of the
trace metals in the sediment of all sampling stations qualified as
superior Class I, indicating that the sediment quality of the Yantai
coastal area was generally good (Table 1).
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3.2. AMBI

By using the species-list of March 2012 and expert opinion, of
all the 72 taxa identified in April 2010, 18 (25.0%) were not initially
assigned to any ecological group. After assignment, 10 (13.8%) re-
mained unassigned. In August 2010, 21 (25.0%) from 84 taxa iden-
tified were not initially assigned to any ecological group, and 10
(11.9%) remained unassigned after assignment. In October 2010,
33 (29.2%) from 113 taxa identified were not initially assigned to
any ecological groups, and 14 (12.3%) still remained unassigned
after assignment. In March 2011, 33 (32.7%) from 101 taxa identi-
fied were not initially assigned to any ecological groups, and 13
(12.9%) still remained unassigned after assignment.

In April 2010, the mean AMBI values of 14 sampling stations
ranged from 1.08 to 2.63, with 2 (14.3%) undisturbed stations
and 12 (85.7%) slightly disturbed stations, which implied that the
benthic environment had suffered slight impacts from human
activities (Table 2). The biodiversity index was not high, from
1.58 to 4.25, and richness from 3 to 29, which also indicated that
the macrobenthos community had been disturbed by some envi-
ronmental factors and human activities. Apart from station 29 with
the high percentage of taxa that were not assigned, the results of
AMBI at most of stations were acceptable.

In August 2010, the mean AMBI values for the 14 sampling sta-
tions ranged from 1.45 to 2.86, and all stations were slightly

disturbed. The diversity ranged from 0.77 to 3.62, and richness
from 3 to 27, which also indicated that the macorobenthos
community had been disturbed by some environmental factors
and human activities. Because the percentages of not-assigned spe-
cies in most of stations were less than 20%, the results of AMBI
were considered acceptable.

In October 2010, the mean AMBI values of 21 sampling stations
ranged from 0.81 to 3.90, with 3 (14.3%) undisturbed stations, 16
(76.2%) slightly disturbed stations and 2 (9.5%) moderately
disturbed stations, implying that the benthic environment suffered
disturbance in the study area (Table 2).

In March 2011, the mean AMBI values for the 19 sampling sta-
tions ranged from 1.12 to 4.15, with 1 (5.3%) undisturbed station,
16 (76.6%) slightly disturbed stations and 2 (10.5%) moderately dis-
turbed stations. The diversity ranged from 0.76 to 4.07, and rich-
ness from 6 to 36, also indicating that the macorobenthos
community had been disturbed by some environmental factors
and human activities. Because the percentages of not-assigned spe-
cies in all of stations were less than 20%, the results of AMBI were
considered acceptable (Table 2).

When taking into account the 7 stations (1,2,3,4,9,11,28) that
are common to all 4 sampling events, the AMBI values among 7
common stations in four surveys were statistically significantly
different (Krushal–Wallis ANOVA, Chi-sq = 12.33, p = 0.055 < 0.1),
which confirms the hypothesis that different kinds of anthropo-
genic disturbance imposed different stresses on the macrobenthos
community. Also, the AMBI values of the 7 common stations across
the four surveys were also statistically significantly different
(Krushal–Wallis ANOVA, Chi-sq = 155.02, p = 0.075 < 0.1), which
indicated that the benthic ecological status and health had chan-
ged in 1 year after some control measures were implemented by
the local government.

3.3. M-AMBI

M-AMBI reference conditions were set for the Yantai coastal
water by the lowest AMBI value and highest diversity H0 and rich-
ness S from the area, then increased by 15% of highest diversity and
richness S, e.g., AMBI = 0, diversity = 4.89 and richness = 41. Bad
status values were: AMBI = 6, diversity and richness = 0.

Fig. 1. Study area and locations of sampling stations in coastal waters of Yantai.

Table 1
Trace metals analyzed in the sediment of some stations sampled in April 2010 (unit:
mg/kg).

Station Pb Cr Co Ni Cu Zn As Cd

2 4.49 11.60 2.44 6.75 4.60 14.99 2.27 0.029
3 3.52 9.32 2.18 6.06 3.78 12.58 1.92 0.027
4 4.28 13.71 2.37 7.02 4.58 14.53 2.16 0.043
5 3.73 9.18 2.21 5.71 4.02 12.90 2.10 0.027
6 3.80 8.16 2.16 5.54 3.92 12.58 1.98 0.025
8 3.41 7.69 1.91 5.30 3.53 11.30 1.77 0.030
9 3.34 9.16 2.01 5.07 3.76 11.33 1.94 0.028

11 3.20 9.36 1.76 5.16 3.27 10.49 1.49 0.036
24 3.19 8.08 1.96 4.91 3.37 11.56 1.64 0.030
29 2.68 7.56 1.76 3.51 1.95 8.07 2.38 0.014
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Table 2
Results of AMBI and biodiversity of macrobenthos from SB and TB in four surveys.

Surveys Stations I (%) II (%) III (%) IV (%) V (%) Mean AMBI Disturbance classification Richness Diversity Not assigned (%)

April 2010
1 41.2 19.6 29.4 9.8 0 1.62 Slightly disturbed 23 3.98 7.3
2 40 53.3 1.7 5 0 1.08 Undisturbed 16 3.52 1.6
3 41.2 36.8 11.8 10.3 0 1.37 Slightly disturbed 24 4.16 1.4
4 37.8 39.2 20.3 2.7 0 1.32 Slightly disturbed 25 3.97 0
5 30 56.7 11.7 1.7 0 1.28 Slightly disturbed 26 3.9 0
6 8.8 61.8 8.8 20.6 0 2.12 Slightly disturbed 11 2.97 0
8 18.7 50.7 16 14.7 0 1.9 Slightly disturbed 22 3.76 0
9 9.5 75.1 2.4 13 0 1.79 Slightly disturbed 20 1.63 0
11 26 55 13 6 0 1.49 Slightly disturbed 21 3.14 1
24 41.1 27.4 13.7 17.8 0 1.62 Slightly disturbed 29 4.25 8.8
26 40 40 20 0 0 1.2 Undisturbed 4 1.92 0
28 33.3 33.3 33.3 0 0 1.5 Slightly disturbed 3 1.58 0
29 36.6 2.4 9.8 51.2 0 2.63 Slightly disturbed 11 2.8 26.8
30 40.5 2.7 0 56.8 0 2.60 Slightly disturbed 8 2.34 2.6

August 2010
1 17.3 28.8 38.5 15.4 0 2.28 Slightly disturbed 15 3.25 0
2 28.2 53.8 7.7 10.3 0 1.50 Slightly disturbed 15 3.62 0
3 21.5 22.8 53.2 2.5 0 2.05 Slightly disturbed 16 2.99 0
4 25.8 46.8 16.1 11.3 0 1.69 Slightly disturbed 17 3.61 1.6
9 20 0 80 0 0 2.40 Slightly disturbed 3 1.38 28.6
10 21.7 60.2 3.1 15 0 1.67 Slightly disturbed 27 2.61 1.3
11 28.2 41.3 20.9 9.7 0 1.68 Slightly disturbed 33 3.62 3.3
13 24.6 23.1 2.1 50.3 0 2.67 Slightly disturbed 14 1.92 0.5
15 30.4 47.8 16.5 5.2 0 1.45 Slightly disturbed 20 2.84 0.9
19 0.4 91.5 0 8.1 0 1.74 Slightly disturbed 9 0.77 0
22 5.6 33.3 50 11.1 0 2.50 Slightly disturbed 8 2.39 5.3
26 13.8 35.4 4.6 46.2 0 2.75 Slightly disturbed 12 2.3 1.5
28 9.6 36.5 7.7 46.2 0 2.86 Slightly disturbed 14 2.66 7.1
29 33.3 45.6 8.9 12.2 0 1.50 Slightly disturbed 9 2.41 1.1

October 2010
1 56.7 6.7 30 6.7 0 1.30 Slightly disturbed 14 3.25 3.2
2 38.8 26.9 32.8 1.5 0 1.46 Slightly disturbed 17 3.23 2.9
3 33.3 60 6.7 0 0 1.10 Undisturbed 11 3.15 6.3
4 20 60 20 0 0 1.50 Slightly disturbed 4 1.92 0
5 36.7 27.8 11.4 24.1 0 1.84 Slightly disturbed 28 4.1 4.8
6 44.1 22 10.2 23.7 0 1.70 Slightly disturbed 17 3.74 0
8 34.8 41.6 9 14.6 0 1.55 Slightly disturbed 26 4.08 6.3
9 6.6 82.3 3.9 7.2 0 1.67 Slightly disturbed 14 1.79 1.1
10 25.4 58.4 2.3 13.9 0 1.57 Slightly disturbed 22 2.62 1.1
11 17.9 58.9 15.3 7.9 0 1.70 Slightly disturbed 25 2.9 1
12 50 33.3 1.5 15.2 0 1.23 Slightly disturbed 21 3.72 1.5
13 1.4 33.6 2.3 62.7 0 3.40 Moderately disturbed 20 2.01 0.9
15 21.1 60.1 3.1 15.8 0 1.70 Slightly disturbed 25 2.58 0.4
18 43.2 18.9 2.7 35.1 0 1.95 Slightly disturbed 15 2.94 0
19 46.2 53.8 0 0 0 0.81 Undisturbed 7 2.5 7.1
21 50.7 28.2 12.7 8.5 0 1.18 Undisturbed 21 3.79 0
22 35 4.9 56.9 3.3 0 1.93 Slightly disturbed 12 1.81 0.8
23 37.5 37.5 25 0 0 1.31 Slightly disturbed 7 2.73 11.1
25 8 44 32 16 0 2.34 Slightly disturbed 13 3.29 0
28 8 8 0 84 0 3.90 Moderately disturbed 9 1.4 5.7
29 39.5 7.9 28.9 23.7 0 2.05 Slightly disturbed 16 3.3 26.9

March 2011
1 39.4 22.7 36.4 1.5 0 1.50 Slightly disturbed 19 3.37 7
2 48.2 25 21.4 5.4 0 1.26 Slightly disturbed 25 4.06 8.9
3 24.1 44.3 27.8 3.8 0 1.67 Slightly disturbed 21 3.68 8.1
4 36.2 55.3 6.4 2.1 0 1.12 Undisturbed 15 3.42 9.6
5 22.2 50.8 14.3 12.7 0 1.76 Slightly disturbed 19 3.5 7.4
6 20 43.6 25.5 10.9 0 1.91 Slightly disturbed 23 4.07 19.1
8 18.5 62.3 8 11.1 0 1.68 Slightly disturbed 29 3.97 6.9
9 3.1 95.8 1.1 0 0 1.47 Slightly disturbed 12 0.76 0.3
10 8.1 82.7 1.5 7.6 0 1.63 Slightly disturbed 16 1.45 0
11 16.9 71 1.9 10.1 0 1.58 Slightly disturbed 21 2.25 1.4
12 21.5 54.4 6.3 17.7 0 1.80 Slightly disturbed 19 3.22 2.5
13 1.4 4.1 11 83.6 0 4.15 Moderately disturbed 10 2.1 1.4
15 5.3 81.3 0.6 12.9 0 1.82 Slightly disturbed 12 1.48 0
18 12 60 4 24 0 2.10 Slightly disturbed 8 2.22 0
19 3.2 91.3 2.3 3.2 0 1.58 Slightly disturbed 17 0.94 0.5
22 5.5 17.6 68.1 8.8 0 2.70 Slightly disturbed 16 2.09 2.2
23 26.8 39.4 33.8 0 0 1.61 Slightly disturbed 16 3.1 6.6
25 40.5 34.1 10.7 14.6 0 1.49 Slightly disturbed 36 4.03 2.4
28 9.5 4.8 0 85.7 0 3.93 Moderately disturbed 6 1.3 4.5
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In April 2010, 8 stations (57.1%) had ‘good’ ecological status
(ES), and other 6 (42.9%) stations had ‘moderate’ ES. In August
2010, the benthic ecological health was almost same to that of
April 2010 based on the M-AMBI, except for 2 stations with ‘poor’
ecological status (ES). Comparing April and August 2010, the ben-
thic ecological health was slowly improving in October 2010, with
most stations (71.4%) having ‘good’ ES, only 1 station (4.8%) with
‘poor’ ES. In March 2011, the benthic ecological health had one sta-
tion with ‘high’ ES, 52.6% stations with ‘good’ ES, and 2 stations
with ‘poor’ ES (Fig. 2).

When taking into account 7 common stations (1,2,3,4,9,11,28)
to all 4 sampling events, the M-AMBI values among the 7 common
stations in four surveys were statistically significantly different
(Krushal–Wallis ANOVA, Chi-sq = 16.08, p = 0.01 < 0.1), again con-
firming the hypothesis that different kinds of anthropogenic dis-
turbance imposed different stresses on the macrobenthos
community. The M-AMBI values of the 7 common stations across
the four surveys did not show statistically significant differences
(Krushal–Wallis ANOVA, Chi-sq = 3.67, p = 0.30 > 0.1), which indi-
cated that the benthic ecological status and health had not changed
in 1 year.

4. Discussion

4.1. Ecological status of Yantai coastal waters and the stresses from
anthropogenic activities

According to AMBI, the ecological status of the SB and TB was in
the condition of ‘‘slightly disturbed’’ for most of sampling stations
during the four surveys, while based on M-AMBI, the status condi-
tions were ‘‘moderate’’ to ‘‘good’’. The interpretation of ecological
status by using AMBI was relatively consistent with that of M-
AMBI in Yantai coastal waters for most sampling stations. Station
28 with ‘‘poor’’ condition in October 2010 and March 2011 is near
the Dagujia River estuary, where the effect of pollutants is the main
disturbance source. As the second largest river of Yantai, the water
quality of Dagujia River was in a relatively good condition over the
past 20 years; it was also affected by the point pollution sources
and agriculture non-point pollution sources (Li and Liu, 2007). Sta-
tions 9 and 19 are very close to the beach, where the tourism is the
main disturbance source; Station 13 is just inside the harbor zone,
which is disturbed by shipping activities, such as waterway dredg-
ing, waste waters, oil and trace metals (Wang et al., 1994; Di et al.,
2013).

According to Chinese Sea Water Quality Standard (GB3097-
1997) and Chinese Marine Sediment Quality Standard (GB
18668-2002), the seawater and sediment quality of most coastal
areas in Yantai were qualified as Class I and Class II (Yantai Marine
Environment Bulletin 2011 & 2011, in Chinese). The interpretations
of ecological status indicated by the AMBI and M-AMBI matched
well with the above mentioned bulletins and the results of good
sediment quality conducted in April 2010. (Note: The sea water
quality of Class I can be applied to the following purpose: marine
fishery, natural reserve areas, natural preservation zone for rare
and endangered animal; Class II for the purpose of marine culture
zone, bathing beach, directly body contact marine sports and
industrial water area related to marine food.) Due to the sediment
characteristics of study area was almost homogeneous, with 78.6%
of the sediment dominated by clay and silt (Di et al., 2013), the
grain size of sediment at different sites should not have great ef-
fects on the spatial distribution of macrobenthos.

Coastal marine benthic communities are threatened by anthro-
pogenic activities, and the rate of habitat degradation is considered
alarming in many locations (Grey, 1997; Snelgrove et al., 1997). The
spatial and temporal distributions of macrofaunal abundance and
biomass can be influenced by different kinds of anthropogenic
activities and environmental variables (DelValls et al., 1998; Magni
et al., 2005, 2006). In the present study, AMBI and M-AMBI both
indicated that different kinds of anthropogenic disturbance im-
posed different stresses on macrobenthos, but it remains hard to
quantify the stress due to the complicated mutual relations and
combined actions resulting from anthropogenic disturbance and
environmental variables. On the whole, the stations outside of SB
and TB with less anthropogenic stress (stations, 1,2,3,5,6,8,11)
were in a relatively good ecological status, whereas, the stations in-
side the TB still with dense raft culture (stations, 9,22,26,28,29,30)
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Fig. 2. M-AMBI values for coastal water of Yantai in April, August, October 2010 and
March 2011.
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and station 13 inside the Yantai Harbor were in a poor to moderate
ecological status.

At least five anthropogenic processes could affect the biodiver-
sity and diversity across the sediment–water interface: global
climate change, coastal-zone eutrophication, species introductions,
mariculture, and bottom fishing (Smith et al., 2000). Bivalve aqua-
culture has multiple effects on local marine ecosystems, influenc-
ing both physical and biological factors, including local benthic
effects (Forrest et al., 2009), all of which could directly or indirectly
affect benthic assemblages. One of the most obvious effects of
mariculture on benthic habitats is organic enrichment (Weston,
1990), which has similar effects to those resulting from organic
loading and low oxygen stress induced by coastal eutrophication
(Smith et al., 2000). In Sishili Bay, different human activities have
impacted on the water quality and spatial distribution of benthic
assemblages, including lantern net culture of bivalves in Shishili
Bay affected the distribution of dissolved inorganic nitrogen
(DIN) and soluble reactive phosphorus (SRP) (Wang et al., 2012);
shipping, shellfish aquaculture farm and grain size affected the dis-
tribution of diatom and silicoflagellate fossils (Di et al., 2013), as
well as different pollution source affected modern dinoflagellate
cysts (Liu et al., 2012). In the present work, the ecological status
of stations inside the TB (with dense raft culture) were all relatively
poorer than the stations inside the SB (removal of raft culture),
which was most likely due to the effects of aquaculture. The poor
ecological status of station 13 (inside the Yantai Harbor) was prob-
ably related to bottom disturbance due to waterway dredging,
which could alter the benthic biodiversity dramatically (Smith
et al., 2000).

4.2. The reasons for the improving ES in coastal water of Yantai

In the 1990s, the quality of seawater around the coastal zone of
Yantai was in a very poor condition (Liu Y. et al., 2009) and the
environmental status in the sediment was also highly polluted
(Lin et al., 1998). Since then, the ES of Yantai coastal waters has im-
proved greatly, and the water quality was no longer showing an
eutrophication status in 2006 (Liu Y. et al., 2009; Yantai Marine
Environment Bulletin 2011 & 2011, in Chinese). According to
statistical analysis, the AMBI and M-AMBI were not significantly
different during the four surveys, which indicated that the ES in
coastal water of Yantai were almost stable or even slowly improv-
ing from 2010 to 2011. Two main reasons could explain the slowly
improving ES. The first one was the removal of raft culture in Sishili
Bay. In the early of 2010, the Yantai government gradually re-
moved most of the raft culture to achieve a better landscape for
tourism along the coastal zone of Sishili Bay. Several studies had
shown the negative impact on the environment from aquaculture,
including the effects of waste products on benthic and planktonic
communities (Primavera, 2006; Borja et al., 2009c), the spread of
pests (Forrest et al., 2009), the effects of increased biodeposition
(Canford et al., 2009) and functional value of coastal ecosystem
(Godet et al., 2009). Although we could not get the quantitative
assessment of the effect of removing raft culture upon the ES of
coastal water in the present work, raft culture removal is certainly
to be beneficial for water and benthic quality in this area in the
long run. The second reason was minimizing the amount of waste
water by some pollutant point source discharging into the coastal
water. To improve the ecosystem health, the Fisheries and Oceans
Bureau of Yantai minimized the amount of waste water discharged
from some pollutant point sources since 2009, especially some
chemical plants, which also contributed to the improving ES of
coastal waters. So, the ecological status of water body and sedi-
ment were both in a relatively good condition, which meets the
Class I and II according to Chinese Sea Water Quality Standard

GB 3097-1997 (Bulletin of Yantai’ s Environmental Status for the
Year of 2010 & 2011).

4.3. Species assignation

According to the newest version of species list March 2012,
about 68–75% of the species collected in the four surveys were ini-
tially assigned to a specific ecological groups. Those species not on
the list were assigned by the following approach, e.g., consulting
references, same genus and expert opinion (Borja et al., 2008).
However, some territorial and Chinese local species still could
not be assigned to any ecological groups due to the lack of informa-
tion. Based on the guidelines of AMBI (Borja and Muxika, 2005),
‘when the percentage of taxa that are not assigned is high
(>20%), the results should be evaluated with care, because there
may be subsequent problems in the interpretation’. In the present
study, only one station had the percentage of unassigned taxa over
20% in four surveys after species assignment. So, the results of
AMBI should be acceptable, and could be used to proceed with
the ecological status analysis.

4.4. Reference condition

The setting of the reference condition for a water body is very
crucial for calculating M-AMBI (Muxika et al., 2007). Four options
could be used to derive reference conditions: (i) comparison with
an existing ‘‘pristine’’/undisturbed site; (ii) historical data and infor-
mation; (iii) models and (iv) expert judgment (see details in Borja
et al., 2004a; Muxika et al., 2007; Forchino et al., 2011; Borja et al.,
2012). However, it is impractical to find pristine/undisturbed sites
worldwide with the increasing pressure on water bodies brought
about by human activities. Also, because reference conditions can
change naturally with ecoregion, water body type and habitat (Borja
et al., 2009b), sometimes it is particularly difficult to set reference
conditions. To set a rational reference condition, several approaches
have been applied, e.g., M-AMBI default (lowest AMBI value and
highest diversity H0 and richness S from the area), using minimally
disturbed sampling stations, literature, data-driven, knowledge dri-
ven and real reference stations (Forchino et al., 2011; Borja et al.,
2012). The approach for setting the reference condition by selecting
the highest richness and diversity values observed in their study
and increased these by 10–15%, was considered to be reasonable
(Borja et al., 2008; Paganelli et al., 2011).

This is the first assessment of the ES of the coastal water in Yantai
by AMBI and M-AMBI. In the present study, due to the stress of hu-
man activities on the study region, we chose the highest value of
diversity, richness of four surveys, then increased these value by
15%, as the reference conditions in the Yantai coastal water, e.g.,
AMBI = 0, H0 = 3.5, S = 28 and the ‘‘worst’’ possible values were based
on the following values: AMBI = 6, H0 = 0, and S = 0, representing the
conditions resulting from major human activities impact.

5. Conclusions

The benthic ecological health of the Yantai was assessed using
AMBI and M-AMBI indices in this work. The following conclusions
have been made:

(1). The AMBI and M-AMBI indicated that the ecological status of
the Sishili Bay and Taozi Bay was‘‘moderate’’ to ‘‘good’’ at
most sampling stations during four surveys, but some sta-
tions were degraded due to pollution and eutrophication
induced by human activities.

(2). The ecological status improved after removal of the marine
raft culture and minimizing the amount of waste water dis-
charged into the coastal waters of Yantai.
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(3). AMBI and M-AMBI could be used as suitable bio-indicator
indices to assess the benthic ecological status of coastal
waters in Yantai, Shandong Province. This study also
provides an important criterion for assessing the ecological
status of coastal water of many similar cities in China.
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Appendix A

Species list and their ecological group assignation in coastal
water of Yantai.

Group Family Species Ecological
group
(EG)

Arthropoda Calanticidae Smilium scorpio Not
assigned

Arthropoda Nymphonidae Nymphon sp. I
Chaetognatha Sagittidae Aidanosagitta

crassa
I

Cnidaria Actiniidae Anthopleura
nigrescens

Not
assigned

Polychaeta Ampharetidae Paramphicteis
angustifolia

II

Polychaeta Ampharetidae Amphicteis
scaphobranchiata

I

Polychaeta Ampharetidae Samytha
gurjanovae

I

Polychaeta Amphinomidae Linopherus
ambigua

IV

Polychaeta Cirratulidae Chaetozone
setosa

IV

Polychaeta Cirratulidae Cirriformia
chrysoderma

IV

Polychaeta Cirratulidae Tharyx multifilis IV
Polychaeta Flabelligeridae Pherusa

bengalensis
I

Polychaeta Glyceridae Glycera prashadi II
Polychaeta Goniadidae Glycinde

gurjanovae
II

Polychaeta Lumbrineridae Lumbrineris
latreilli

II

Polychaeta Magelonidae Magelona cincta I
Polychaeta Maldanidae Maldane sarsi I
Polychaeta Maldanidae Asychis gotoi II
Polychaeta Nephtyidae Inermonephtys

inermis
II

Polychaeta Nephtyidae Nephtys caeca II
Polychaeta Nephtyidae Nephtys

californiensis
II

Polychaeta Nephtyidae Nephtys
polybranchia

II

Polychaeta Nereididae Nereis
heterocirrata

III

Polychaeta Nereididae Perinereis
cultrifera

III

Appendix A (continued)

Group Family Species Ecological
group
(EG)

Polychaeta Nereididae Perinereis nuntia III
Polychaeta Nereididae Tambalagamia

fauveli
Not
assigned

Polychaeta Oenonidae Arabella iricolor I
Polychaeta Onuphidae Epidiopatra

hupferiana
Not
assigned

Polychaeta Onuphidae Onuphis
geophiliformis

II

Polychaeta Opheliidae Ophelina
acuminata

III

Polychaeta Orbiniidae Naineris
laevigata

I

Polychaeta Orbiniidae Scoloplos
marsupialis

I

Polychaeta Oweniidae Owenia
fusiformis

II

Polychaeta Paralacydoniidae Paralacydonia
paradoxa

II

Polychaeta Paraonidae Aricidea fragilis I
Polychaeta Phyllodocidae Eteone longa III
Polychaeta Phyllodocidae Eumida

tubiformis
II

Polychaeta Polynoidae Gattyana
pohaiensis

III

Polychaeta Polynoidae Gaudichaudius
cimex

III

Polychaeta Polynoidae Halosydnopsis
pilosa

Not
assigned

Polychaeta Polynoidae Lepidonotus sp. II
Polychaeta Sabellidae Potamilla

neglecta
II

Polychaeta Phyllodocidae Phyllodoce
madeirensis

II

Polychaeta Serpulidae Salmacina dysteri Not
assigned

Polychaeta Sigalionidae Sthenolepis
japonica

I

Polychaeta Spionidae Prionospio sp. Not
assigned

Polychaeta Spionidae Laonice cirrata III
Polychaeta Spionidae Paraprionospio

pinnata
IV

Polychaeta Spionidae Prionospio
pygmaeus

II

Polychaeta Spionidae Prionospio
queenslandica

IV

Polychaeta Spionidae Spiophanes
bombyx

III

Polychaeta Sternaspidae Sternaspis
scutata

III

Polychaeta Syllidae Ehlersia cornuta II
Polychaeta Syllidae Typosyllis

adamanteus
II

Polychaeta Terebellidae Amaeana
occidentalis

III

Polychaeta Terebellidae Pista fasciata I
Polychaeta Ampharetidae Phyllocomus

hiltoni
I

Polychaeta Ampharetidae Amphicteis III

(continued on next page)
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Appendix A (continued)

Group Family Species Ecological
group
(EG)

gunneri
Polychaeta Capitellidae Heteromastus

filiformis
IV

Polychaeta Cirratulidae Cirratulus
cirratus

IV

Polychaeta Cirratulidae Cirriformia
tentaculata

IV

Polychaeta Glyceridae Glycera rouxi II
Polychaeta Glyceridae Glycera

onomichiensis
II

Polychaeta Hesionidae Oxydromus
angustifrons

II

Polychaeta Lumbrineridae Lumbrineris
tetraura

II

Polychaeta Nephtyidae Aglaophamus
sinensis

II

Polychaeta Nereididae Platynereis
bicanaliculata

II

Polychaeta Nereididae Nereis
aibuhitensis

III

Polychaeta Onuphidae Diopatra bilobata I
Polychaeta Opheliidae Armandia

intermedia
I

Polychaeta Orbiniidae Haploscoloplos
elongatus

IV

Polychaeta Phyllodocidae Phyllodoce
papillosa

II

Polychaeta Pilargidae Sigambra bassi IV
Polychaeta Poecilochaetidae Poecilochaetus

serpens
I

Polychaeta Sabellidae Sabella
spallanzanii

I

Polychaeta Sphaerodoridae Sphaerodoropsis
sp.

II

Polychaeta Spionidae Aonides
oxycephala

III

Polychaeta Spionidae Spiophanes
bombyx

III

Polychaeta Terebellidae Artacama
proboscidea

I

Polychaeta Terebellidae Pista cristata I
Polychaeta Trichobranchidae Terebellides

stroemii
II

Mollusca Cardiidae Clinocardium
buelowi

Not
assigned

Mollusca Cardiidae Fulvia mutica Not
assigned

Mollusca Columbellidae Mitrella bella I
Mollusca Hiatellidae Hiatella orientalis I
Mollusca Littorinidae Littorina

brevicula
II

Mollusca Mactridae Mactra cygnus I
Mollusca Mactridae Raetellops

pulchella
III

Mollusca Mactridae Mactra chinensis I
Mollusca Mactridae Mactra nipponica I
Mollusca Mactridae Mactra sp. I
Mollusca Mytilidae Idas japonicus Not

assigned

Appendix A (continued)

Group Family Species Ecological
group
(EG)

Mollusca Naticidae Neverita didyma I
Mollusca Nuculidae Nucula faba I
Mollusca Philinidae Philine sp. II
Mollusca Pholadidae Barnea sp. Not

assigned
Mollusca Psammobiidae Nuttallia olivacea Not

assigned
Mollusca Pyramidellidae Chemnclzia

acosmia
Not
assigned

Mollusca Pyramidellidae Odostomia
sublirulata

II
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