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We present numerical calculations of the conductance of an interface between a phase-coherent two-
dimensional electron gas and a superconductor with a quantum point contact in the normal region. Using a
scattering matrix approach we reconsider the geometry of De Raedt, Michielsen, and Kldiwijk Rev. B
50, 631(1994)] which was studied within the time-dependent Bogoliubov—de Gennes formalism. We find that
the factor-of-2 enhancement of the conducta@gg compared to the normal state conductaGgefor ideal
interfaces may be suppressed for interfaces with a quantum point contact with only a few propagating modes.
The suppression is found to depend strongly on the position of the Fermi level. We also study the suppression
due to a barrier at the interface and find an anomalous behavior caused by quasiparticle interference. Finally,
we consider the limit of sequential tunneling and find a suppression of the factor-of-2 enhancement which may
explain the absence of conductance enhancement in experiments on metal-superconductor structures.
[S0163-18209)07943-9

I. INTRODUCTION tween the Andreev reflection and the mesoscopic effects seen
in mesoscopic semiconductor structutésin recent years
Charge transport through a normal-conductor—the technological efforts have revealed a variety of new me-
superconducto(NS) interface is accompanied by a conver- soscopic phenomena, see Refs. 4—7, and references therein.
sion of quasiparticle current to a supercurrent. In the An-One class of the studied devices are the quantum point con-
dreev reflection, by which the conversion occurs, anact(QPO 2DEG-S and S-2DEG-S devices with the QPC in
electronlike quasiparticle in the normal conductaith an  the normal region. The dc Josephson effect and the quanti-
excitation energy lower than the energy gap of the supercoryation of the critical current in QPC S-2DEG-S junctions
ductop incident on the NS interface is retroreflected into apave been studied extensively both experimentally by, e.g.,
holelike quasiparticléwith reversal of its momentum and its Takayanagi and co-workérsand theoretically by, e.g.,
energy relative to the Fermi leyednd a Cooper pair is added Beenakker and van Houtér? Beenakker! and Furusaki,
to the condensate of the superconduétéor an ideal NS Takayanagi, and Tsukada.
interface, the signature of Cooper pair transport and the An- The linear-response conducting properties of QPC
dreev scattering is a doubling of the conductance compareppgG-S structures have been studied by several groups. In
to the normal state conductance. the analytical work of BeenakkEra ballistic normal region
A theoretical framework for studies of the scattering atyith a QPC modeled by a saddle-point potential was consid-
NS interfaces is provided by the Bogoliubov—de Gennesred. The effect of elastic impurity scattering was considered
(BdG) formalism? where the scattering states are eigenfuncnymerically by Takagaki and Takayangivho considered a

tions of the BAG equation disordered region between a narrow-wigV) constriction
and the superconductor. Both of these studies of the conduc-
H(r) A(r) u(r) u(r) tance were based on a scattering mat8xgatrix) approach
. R ( ) = ( ) (1 and the BdG formalism. In the numerical simulations of De
A*(r)  —F*(r)) \v(r) v(r) Raedt, Michielsen, and Klapwifl® based on the time-

o L ) o dependent BdG equation, a wide-narrow-wi{tléNW) con-
which is a Schrdinger-like equation in electron-hole space striction was considered. Here, the aim was to study the
(Nambu space Here H(r) is the single-particle Hamil- electron-hole conversion efficiency and the robustness of the
tonian,A(r) is the pairing potential of the superconductér, back-focusing phenomena of the Andreev reflection.
is the excitation energy, anda(r) andv(r) are wave func- One of the properties of the QPC is that most transmission
tions of electronlike and holelike quasiparticles. eigenvalues are either close to zero or unity. For an ideal

The technological possibility of studying the interface be-QPC 2DEG-S interface, the Andreev reflection will therefore
tween a two-dimensional electron g&DEG) in a semicon-  give rise to a factor-of-2 enhancement of the conductance
ductor heterostructure and a superconductor experimentallys compared to the normal state conductar@g,®!®
has provided a playground for investigating the interplay bewhich is quantized in units of&/h.*® However, as pointed
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Il. SCATTERING MATRIX FORMALISM

—~—1]

I||.
I I
ev The scattering approach to coherent dc transport in super-
conducting hybrids follows closely the scattering theory de-
—~ veloped for nonsuperconducting mesoscopic structures, see,
y 2Dj e.g., the text-book by Datfd.For an ideal NS interface, the
+ interface acts as a phase-conjugating mirror within the An-
2

dreev approximationand the rigid boundary condition for
the pairing potential

A(r)=Aqe'*O(x—L), )

; ; — < where A, is the BCS energy gaf), ¢ is the phase of the
0 L, L pairing potential ®(x) is a Heaviside function, and=L,
FIG. 1. Geometry of a WNW 2DEG-S junction with a hard-wall con- +L, is the length of the normal regioisee Fig. 1

-

fining potential and a barrier at the 2DEG-S interface. In the linear-response regime in zero magnet_ic field,
Beenakkel® found that the conductand@=4l/4dV is given
. b
out by van Houten and Beenakk8rdeviations from the y
simple factor-of-2 enhancement should be expected when the 4e2 fah i1
position of the Fermi level does not correspond to a conduc- Gns=— - Tr(tt[21-tt7] )

tance plateau. The presence of impurity scattering in the nor-

mal region and/or interface roughness will also suppress the 262 N T2

doubling of the conductancé. R T — 3
Using anS-matrix approach, we study the linear-response h 7=1(2-T,)?

regime of a phase-coherent ballistic QPC 2DEG-S system,. .

where the QPC is modeled by a WNW constrictions with aWhICh’ in contrast to the Landauer formde,

hard-wall confining potential, see Fig. 1. We report new re- 262 2e2 N

sults for the device studied by De Raettal." which had a GN:TTrttT=T > T, 4

relative width W/W'=1.7 um/(1.6x335 A)=31.72, an n=1

aspect ratiol,/W'=5/1.6, and a relative length,/W’ s a nonlinear function of the transmission eigenval@igs

=20/1.6. Applying theSmatrix formalism instead of the (n=12 ... N) of tt". Heret is theN X N transmission ma-
computationally more complicated time-dependent BdG for+rix of the normal regionN being the number of propagating
malism, we are able to study a larger part of the parametanodes.

space where we also consider a barfigith a normalized Equation(3) holds for an arbitrary disorder potential and
barrier strengthZ) at the NS interface. We focus on the is a multichannel generalization of a conductance formula
regime with only a few propagating modes in the QPC. Infirst obtained by Blonder, Tinkham, and Klapwifkwho

this regime the transmission eigenvalues of the QPC depersbnsidered a delta function potential as a model for the in-
strongly on the actual position of the Fermi level. Even forterface barrier potential. The computational advantage of Eq.
an ideal interface this gives rise to a strong suppression df3) over the time-dependent BdG approach of De Raedt
the conductance for certain positions of the Fermi level agt al!®is that we only need to consider the time-independent
predicted by van Houten and BeenakReand subsequently Schralinger equation with a potential which describes the
seen in the work of Beenakkétn the presence of a barrier disorder in the normal region, so that we can use the tech-
at the interface, the QPC gives rise to an enhanced tunnelingiques developed for quantum transport in normal conduct-
through the barriefcompared to the case without a QP&  ing mesoscopic structures. For more details on, e.g., finite
in the case of reflectionless tunneling effect of diffusivebias and/or temperature, see Lesovik, Faueheand
junctions®®’ Blatter?® Lesovik and Blattef* and the reviews of

In the sequential tunneling limit the conductance can beBeenakkef,and Lambert and Raimondi.
found by considering the QPC and the interface as two
series-connected resistive regions and in the livii-W' 1. MODEL
the enhancement of the conductance compared to the normal
state conductance vanishes even for ideal NS interfaces. This We describe the geometry of Fig. 1 by the Hamiltonian
may be an explanation for the unexpectedly low condulcstance 52
enhancem_ent in the experimental resu!ts_o_f Benls_eaal. (== —V+V4r)+Vdr)— p, (5)
on Ag-Pb interfaces where the current is injected into the Ag 2m
crystal through a point contact.

The text is organized as follows. In Sec. Il tBamatrix
formalism is introduced, in Sec. Il we formulate our model,
in Sec. IV the scattering scheme of the considered geometry Vy(r)=Ha&(x—L), (6)
is presented, and in Sec. V we present results of several
applications of our scattering scheme. Finally, in Sec. Vland the transverse motion is limited by a hard-wall confining
discussion and conclusions are given. potential

where u is the chemical potential. The barrier potential is
given by a Dirac delta function potential with strengl??
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+ — + — + — bt at
asl asl a52 asz asg as, Sy _ g Sy )
s o o (s R
e the narrow region of length, by the propagation-matrig™
—I- —I— —
bsl bsl b82 bSQ bS3 bS3 _ _
ag, | bs,
FIG. 2. Scattering scheme appropriate for the normal region of at = b (10
the geometry shown in Fig. 1. S S
the NW constriction by th&matrix SNW
("= 0, |yl<wx)/2, @ bgz agz
e lylEwmr, o | =S ) (11)
where the width/\(x) defines the WNW constriction and is > >
given by the wide region of lengtt., by the propagation-matrix)V
< _ _
W(x)={ W', 0=xsL,, (8) at =U bt (12
W, x>L;. > > 5
The scattering states can be constructed as linear comblnand the delta function barrier by tigmatrix S
tions of the eigenstates of the Sctiimger equation. b§3 ags
Jl=s . 13
IV. SCATTERING SCHEME st ass (13

In the following subsections, we consider tBenatrices
of a system with the Hamiltonian in E¢5) relevant for the
geometry shown in Fig. 1. Th&matrix S of a scattering
region relates the incident current amplitudgsto the out-
going current amplitudebg . For a scattering region with

To apply Egs.(3) and (4) we need to calculate the com-
posite transmission matribx S,4 which is a submatrix of the
composite Smatrix S=S"NeUNe SWeUY®S? relating
the outgoing current amplitudes to the incoming current am-

two leads, S is a 2X2 block-matrix with submatrices plitudes

S11,512,S,1, andS,,, where the diagonal and off-diagonal b as ,

submatrices are reflection and transmission matrices, respec- 51 -5 S S= (r t ) (14)
tively. The appropriate scattering scheme for three scattering b§3 agl t or')’

regions(the WN and the NW constrictions, and the interface

barrier potential, respectivelgonnected by ballistic conduc- The meaning of the symbab is found by eliminating the

tors is shown in Fig. 2. internal current amplitude'S. As a final result we find the
The WN constriction is described by tigematrix SN transmission matrix

=S5 1-UZ{ S+ Sy [1- UnSp2 UsSin'] Ui S UnsSi HUTSSH]

xUpSh[1- U535 USi' - tubish. (15
|
A. Quantum point contact o ( r'/\lw tNW) .
We consider a QPC which we model by a WNW constric- taw  Mnw

tion defined by a hard-wall confining potential, see Fig. 1. .
This geometry has been considered by Szafer and Stone o xN
and Weisshaar, Lary, Goodnick, and Trip&tin the context uN= N 17
of conductance quantization of the QPC in a 2DEG, and 0
recently by Kassubek, Stafford, and Grabein the context .
of conducting and mechanical properties of ideal two and W _ "nw o Taw (19)
three-dimensional metallic nanowires. We follow Kassubek taw Taw/

et al?” and calculate the composi®matrix SVNW=gWN
@UN® SN, In zero magnetic field, where é#matrices sat- where Xnn, Snn €Xp (K,L;) describes the narrow region
isfy S=ST, the individualS-matrices are given by with free propagation of propagating modes and an exponen-
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tial decay of evanescent ~modes. Herek, raw=(1+00") X1-p0"), (22)

=kF\/1—(n77/kFW’)2 is the longitudinal wave vector of

moden in the narrow region. Th&matrices of the WN and R

NW constrictions are related through an exchange of leads. taw=20T(1+pe" %, (23
By elimination of the internal current amplitudes we find

the composite transmission matrix

ruw=(eTe+1) eTe-1), (24)
SuNw_ ( I whw tWNW) 19
twaw  Twaw/ where the elements of the matrix can be written ag,,
where = VKw/Kn(#n| @), Where (én|®y)=[Z..dydn(y) Puly)
is an overlap between transverse wave functions of mmode
rWNW:r[,\|W+tNW[1_(XNrNW)z]_lerNWXNt-II\-IW' in the narrow region and mode in the wide region. Here

200 Kw=Key1—(wm/7keW')? is the longitudinal wave vector
of modew in the wide region andy=W/W' is the relative
tynw=tawl 2= XN o) 21 XN - (21)  width of the constriction.
The overlap can be calculated analytically since its ele-
The Smatrix of the NW constriction can be found from a ments consist of overlaps between transverse wave functions
matching of scattering states which are eigenstates of thé, andd,, which are either two sine or two cosine functions
Schralinger equation with the Hamiltonian in E() where  (the overlap between a sine function and a cosine function or
we only consider the part of the potential which sets up thevice versa is zero due to the odd and even character of the
NW constriction. From a matching of scattering states wetwo functiong. From the overlap-matrix we get the follow-

find that ing elements of the matrix:
|
r 312 i
Ann ' sinwm/2n)
Spny,a(— 1) (22 > o NFW,
5 o\ U4 m(N°7n°—Ww*)
0 =5 ((ka’/w) —(n/7) ) y anm®2cogwl2y) 25
nw— 9P(n), P(w) , _ 7 mTen
(kFW /77)2_n2 573(n)171(_1)(n 1)/2>< 2 2 .2 y n7]7EW,
m(N7°—w*)
L 7771/2, nyp=w,

where the parityP(j) of j is P(j)=1 if j is even andP(j) Within this approximation, there is no mode mixing arnd
=-1 if j is odd. becomes diagonal with the transmission eigenvalues along
In the numerical evaluation of Eq$22)—(24) and Egs. the diagonal. This approximation was found to capture the
(20) and(21) it is crucial to let the number of modes in the results of an exact numerical calculatforvhen used with
narrow and wide regions extend over both propagatinghe Landauer formula, Edq4), which is linear in the trans-
modes and evanescent modes. After all matrix inversions an@ission eigenvalue$,. However, for an NS interface, the
performed, the reflection and transmission matrices are prazonductance formula, E@3), is nonlinear inT,, which also
jected onto the propagating modes. In practice, numericahakes off-diagonal componentstiri important. As we shall
convergence of the reflection and transmission matrices isee(in Fig. 3), the mean-field approximation cannot repro-
found for a finite cutoff in the number of evanescent modesduce the results of an exact numerical calculatioBf in
For the considered device, the number of evanescent modéise same nice way as f@y.
is roughly ten times the number of propagating modes in the
wide region corresponding to 108000 matrices. ) .
In the limit W>W’, Szafer and Store employed a B. Wide region
mean-field approximation for the overldg,|®,,) in which The wide regionL,<x<L is described similarly to the
mode n of the narrow region couples uniformly to only a narrow region by
band of modegwith the same parity as mod®g in the wide

regiqn within one level spacing so that the elements ofgthe 5 XW
matrix take the form W_
U={ w 5 (27)
(KeW'/ )2 = (ni )2\ ™
2 nw™ Op(n), P(w) 2 2 W .
(keW'/7r)—n whereX,.» = d,w €XpK,L,) describes both the free propa-

gating modes and the exponential decay of the evanescent
(26) modes. Her&K,, is the introduced longitudinal wave vector

7 % (n—1p=w<(n+1)7,
of modew in the wide region.

0, otherwise.
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V. RESULTS

A. Phase-coherent junction with ideal interface

For the case of coherent transport through an ideal
2DEG-S interface with a WNW constriction in the normal
region, see lower inset of Fig. 3, the conducta;g and
the normal state conductan@g, can be found from Eq3)
and (4) with the transmission matrik=tyy. Fig. 3 shows
the conductance as a functionlgiV’/ 7 based on a numeri-
cal calculation ofty\w (full lines) and the mean-field ap-
proximation (dashed ling for a WNW constriction with an
aspect ratid_;/W'=1 and a relative widtitW/W'=31.72.

/ The conductanc&,s is seen to be approximately quantized
95 7 15 5 25 3 35 4 in units of 4e%/h which is twice the unit of conductance for
keW' /7 the normal state conductan@s,. However, just above the
C o

FIG. 3. Conductanc&ys and normal state conductanGg of a threshoIFis KeW' /= 1’2’.3 )y OSCIIIaUOnS. due to reso-
coherent WNW 2DEG-S junction as a function kefw'/. The nances in the narrow region of the constriction are observed_.
constriction has an aspect ratio /W' =1 and a relative width In the normal state result, these resonances are small but in
W/W' =31.72. The full lines are for a numerical calculation of COntrast to the Landauer formul&ys is not linear in the
twaw and the dotted lines are results within the mean-field approxifransmission eigenvalues and this makes the resonances
mation of Szafer and Ston@ef. 25. The upper inset shows the much more pronounced compared to those in the normal

conductance (2¢2/h)

normalized conductanag= Gys/Gy also as function okgW'/r. state conductance. Another signature of the nonlinearity of
Gps and the importance of off-diagonal transmission, is that
C. Interface barrier potential the mean-field approximation is in good agreement with the

We consider an NS interface of widMV with a barrier numerical calculation foiGy whereas it has difficulties in

which we model by a Dirac delta function potential, follow- 2c¢0unting foiGys. The sharpness of the resonances is to a
ing Blonder, Tinkham, and Klapwij& The Smatrix ele- _certaln extent (_1ue to the Wlde-n_arrOV\/_-Wlde con_strlctlon, an_d
ments for the delta-function potential is found from a match-IS Suppressed in experiments with split-gate-defined constric-
ing of scattering states which are eigenstates of th&ions. However, as shown by the simulations of Maag, Zo-
Schralinger equation with the Hamiltonian in E€F) where  zulenko, and Haug® resonance effects do persist even for
we only consider the part of the potential consisting of themore smooth connections of the narrow region to the 2DEG
barrier at the interface. In zero magnetic field one finds thé€servoirs.
symmetric result The normalized conductange=Gys/Gy, shown in the
upper insert, is two on the conductance plateaus but for cer-
R tain “mode fillings” of the constriction it is strongly sup-
55:< ° ’3) , (28)  pressed and fokeW'/7~2 (two propagating modgsve get
ts Is g~1.5. This effect, which occurs at the onset of new modes,
was also seen in the calculations of BeenakRehs the
with number of modes increases, these dips vanish and the nor-
malized conductance approaches its ideal value of 2. The
1 reason is simple: suppose the constriction Hggopagating
W 1T 17/ cost. (29 modes, t.hen thé&—1 of them will have a trans'mlssmn of
w order unity and only a single modegorresponding to the
mode with the highest transverse engrgjll have transmis-
—iZ/cosé,, sion different from unity. AsN increases, the effect of the
(' )ww = dww 777 7cosa." (300 single mode with transmission different from unity becomes
v negligible for the normalized conductance and from Egs.
and(4) it follows that lim _g=2.

(ts)ww = Ow

where the normalized barrier strength is given By
=H/#ve and cog,=K,,/kg=1— (wa/keW)Z. The results Since the quasiparticle propagation is coherent and the
differ from those of a one-dimensional calculafibsince we ~ Andreev scattering is the only back-scattering mechanism,
have taken the parallel degree of freedom into account. Howthe phase conjugation between electronlike and holelike qua-
ever, if we introduce an angle dependent effective barriesiparticles makes the conductanGgs independent of the
strengthZ .¢( 6,,) = Z/cosé,,,*®*°the transmission and reflec- separatiori_, of the constriction and the interface. If evanes-
tion amplitudes can formally be written in the one- cent modes in this region were also taken into account the
dimensional form of Ref. 22. The transmission eigenvaluesesults would depend weakly dn, as it was found in the

of t,t} are given byT=[1+Z%(6,)] * in contrast to the simulations of De Raedét al'® and our results should be
mode-independent resuItva=(1+Zz)‘1 of a one- compared with their results in the largg limit. As we shall
dimensional calculatiof? see below, interfaces with a finite barri@nd thereby nor-
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FIG. 4. Normalized conductancg=G \s/Gy of a coherent FIG. 5. Normalized conductancg=G /Gy of a coherent

WNW 2DEG-S junction as a function &W'/ar. The constriction  \yNw 2DEG-S junction with a barrier as a function of the normal-
has an aspect ratldll_/W’=5/1.6 and a relatl_ve W|dtWV/W’ ized barrier strengtl for keW'/7w=3.195(A), keW'/7=3.2 (O),
=31.72. The curve is based on a numerical calculation Ofynqy \W'/7=3.20507). The lower left inset shows the normalized
twnw-  The data-point ©) corresponds to the numerical ¢ongyctancey as a function ok fW'/r for Z=0. The constriction
result keW'/m;g)=(3.2,1.87) of De Raedtetal. (Ref. 15,  pa5 an aspect ratio, /W' =5/1.6, a relative widthAV/W' =31.72,
Table ). and the cavity has a relative length /W’ =20/1.6.

mal scattering at the interfacéead to size quantization and
thereby resonances which will depend lon Fig. 5. The conductanc&ys and the normal state conduc-

The back-focusing phenomenon of the Andreev reflected@nceGy are found from Eqs(3) and(4) with the transmis-
quasiparticles and the lowering of the normalized conducSIon matrix in Eq.(15). . .
tance due to a QPC in the normal region was studied by De In Fig. 5 we present a calculation of the normalized con-
Raedt, Michielsen, and Klapwilk by solving the time- ductanceg as a function of the normalizedlg)arrier strength
dependent BdG equation fully numerically. In their wave for the device considered by De Raedtal™ For the posi-

propagation simulations, the QPC is also modeled by &ion of the Fermi level ©) considered by De Raedit al,
WNW constriction with a relative width w/w’  the normalized conductance is only weakly suppre$seah-

=1.7 um/(1.6x335 A)=31.72, an aspect ratid,/W’ Pared to a system without a QPC, see, e.g., Reff@low
=5/1.6, and a relative length, /W’ =20/1.6. For the par- barrier scatteringZ<1) and only for a very high barrier
ticular “mode filling” keW’/w=3.2, they find a normalized Strength £>2) the normalized conductance approaches the
conductancey=1.87<2, but the dependence on the “mode Crossover from an excess conductange-{) to a deficit
filling” was not studied in detail. conductance d<1). The effect of the barrier foE<1 is
In Fig. 4 we present a calculation gfas a function of Very similar to the reflectionless tunneling behavior in diffu-

keW'/r for this specific geometry. The result of De RaedtSively disordered junctiorid™’ where the net result is as if
et al. (O) is reproduced but in general the normalized con-tunneling through the barrier is reflectionless. In the case of a

ductance is seen to have many resonances caused by the hfgRC instead of a diffusive region there is a weak dependence
aspect ratio of the constriction. In the rangec&W'/z  ©ON the barrier strength and the tunneling is not perfectly re-

<4, the normalized conductance can be anything in thdlectionless. _ _ _

range 1.655:g<2 depending on the position of the Fermi An mterestmg feature is the nonmo_notonlc behaviogof
level and though De Raeet al® found the back-focusing @S @ function oZ. ForZ— o, the normalized conductance of
phenomena of the Andreev reflection to be very robust witfFOUrse vanishes, but in some regions it increases with an
respect to changes of the device parameters, the normalizéifreasing barrier strengfleurve (O)] and forz=1 it has
conductance itself certainly depends strongly on the positiof’€ same value as fat=0. This is purely an effect of size
of the Fermi level. The reason is that only those quasipartiduantization in the cavity between the QPC and the barrier
cles which enter the region between the constriction and th@hich enters the conducting properties because of the fully
interface can be Andreev reflected and thus contribute to theoherent propagation of electrons and holes. However,

conductance enhancement compared to the normal state cdfanging, e.g., the position of the Fermi level slightly
ductance. [curves (\) and ()], changes the quantitative behavior

although the overall suppression ofwith increasingZ is
maintained.
B. Phase-coherent junction with barrier at interface

We next consider coherent transport through an NS inter- C. Incoherent junction

face with a barrier at the interface and a WNW constriction In junctions where the propagation in the cavity between
at a distancd_, from the interface, see lower right inset of the QPC and the NS interface is incoherent, the so-called



13768 MORTENSEN, JAUHO, FLENSBERG, AND SCHOMERUS PRB 60
2 [ 5 T, . ~0.05 K) we expect a crossover from the sequential tunnel-
> Gapc = Z%N, Gy = Z%M Gys = %M ing regime to the phase-coherent regime where the Andreev
§ 18} mediated conductance enhancement should become observ-
53 \ able.
_é’ 6] QPC N|S
= \ eV
S 14y \b el | ““ VI. DISCUSSION AND CONCLUSION
D
AN
% 12l e For an ideal 2DEG-S interface with a QPC in the normal
E Tl o - region, the normalized conductange=Gys/Gy depends
2 1l Ot e-e-e-e- strongly on the position of the Fermi level and only when the
o 5 4 6 3 10 12 Fermi level corresponds to a conductance plateau a doubling
M/N of the conductance is found. The deviations from the factor-

of-2 enhancement, when the Fermi level does not correspond
FIG. 6. Normalized conductange=G opc.ng/Gopen0f aQPC 10 @ plateau, can be significant and for a particular example
NS junction with sequential tunneling through the ideal QPC andof the WNW constriction we find that the normalized con-
the ideal NS interface as a function of the ratidN of propagating  ductance can be suppressedyte1.5 in a system with only
modes in the QPC and at the NS interface. two propagating modes in the constriction. In the presence of
a barrier at the 2DEG-S interface, the normalized conduc-
tance depends strongly on the longitudinal quantization in
sequential tunneling regime, the QPC and the NS interfacge cavity set up by the QPC and the barrier. Depending on
can b(3al considered as ftwo series-connected resistig parrier strength, the length of the cavity and the position
regions.” This means that of the Fermi level, this longitudinal quantization may give
rise to both constructive and destructive inferences in the

GQPC_st(GéFl,CJr Gﬁsl)*l, (31)  transmission and thus also in the conductance. Perhaps sur-
prisingly, the effect of the barrier is very much suppressed
o 1 (compared to a system without a QPC, see, e.g., Red2®
Gopcn=(Gopct Gn') (32) to a very strong back scattering at the return of the quasipar-

ticles to the normal probe. The localization of quasiparticles
in the cavity gives rise to an almost reflectionless tunneling
through the barrier as it is also found in systems with a
diffusive normal regiort>!’ The interferences due to local-
ization in the cavity will be smeared by a finite temperature
and they are also expected to be suppressed by a finite in-
elastic scattering length compared to the length of the
cavity 32

For the sequential tunneling regime we find that the con-

whereGgpcandGy are found from Eq(4) with t=tgpcand
t=t;s, respectively, andyg from Eg. (3) with t=t;. The
normalized conductance can be written as

_ Gaprens_ Gns, Gopct Gy
Gopcn  Gn Gopct Gps'

(33

and for W=>W’ the major contribution to the resistance
comes from the QPC, i.eGgopc<(Gn,Gng). This means ductance enhancement vanishes as the number of modes at
that the enhancement @&ys compared toG \ has a negli- the interface becomes much larger than the number of modes
gible effect on the total conductance so that the normalize¢h the QPC. Our calculations show that tSematrix ap-
conductance approachgs-1. proach provides a powerful alternative to the time-dependent
For an ideal QPC and an ideal interface we h&#sc  Bogoliubov—de Gennes approach of De Ratdl!® in de-
=(2€?/h)N,Gs=(4€’/h)M, and Gy=(2€’/h)M, where tajled studies of the conducting properties of nanoscale
Nis the number of modes in the QPC avids the number of  2pEG-S devices. Even though the back-focusing phenom-
modes at the NS interface. The corresponding normalizégnon of the Andreev reflection is robust against changes in
conductance is shown in Fig. 6. , the geometry? the electron-hole conversion efficiency itself
The sequential tunneling behavior may provide an explajs not. Finally, we stress that for a quantitative comparison to
nation for the unexpectedly small condl%ctance enhancemep{nerimental systems, it is crucial to take different Fermi
seen in the experiments of Benistattal.”” on Ag-Pb inter-  aye vectors and effective masses of the 2DEG and the su-
faces with injection of quasiparticles into an Ag crystal perconductor into accoudt.
through a point contact. The condition for the electronic
transport to be incoherent is that the distance between the
point contact and the NS interface is longer than the corre-
lation lengthL.=Min(/,,Ly), /i, being the inelastic scat-
tering length and_; the Thouless length® For the ballistic
device studied by Benistanetal. L,=Ly=#Avg/kgT We would like to thank C.W.J. Beenakker, M. Brand-
~9 um (atT=1.2 K) which is much shorter than the dis- byge, J.B. Hansen, and H.M. Rgnnow for useful discussions.
tance between the point contact and the NS interface N.A.M. acknowledges financial support by the Nordic Acad-
(~200 wm). Lowering the temperature will increase the emy for Advanced StudyNorFA) and H.S. acknowledges
correlation length and for sufficiently low temperaturds ( support by the European Community.
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