
VOLUME 84, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 24 APRIL 2000

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints
Search for Two-Scale Localization in Disordered Wires in a Magnetic Field
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A recent paper [A. V. Kolesnikov and K. B. Efetov, Phys. Rev. Lett. 83, 3689 (1999)] predicts a
two-scale behavior of wave function decay in disordered wires in the crossover regime from preserved
to broken time-reversal symmetry. We have tested this prediction by a transmission approach, relying on
the Borland conjecture that relates the decay length of the transmittance to the decay length of the wave
functions. Our numerical simulations show no indication of two-scale behavior.

PACS numbers: 72.15.Rn, 05.60.Gg, 73.20.Fz
In a remarkable paper [1], Kolesnikov and Efetov have
predicted that the decay of wave functions in disordered
wires is characterized by two localization lengths, if time-
reversal symmetry is partially broken by a weak mag-
netic field. Using the supersymmetry technique [2], it
was demonstrated that the far tail of the wave functions
decays with the length j2 characteristic for completely
broken time-reversal symmetry—even if the flux through
a localized area is much smaller than a flux quantum.
At shorter distances the decay length is j1 � 1

2 j2. It was
suspected that previous studies by Pichard et al. [3] found
single-scale decay because of the misguiding theoretical
expectation of such behavior. This expectation was also the
basis for the interpretation of the experiments by Khavin,
Gershenson, and Bogdanov [4] on submicron-wide wires.

The prediction of Kolesnikov and Efetov calls for a test
by means of a dedicated experiment or computer simu-
lation. It is the purpose of this work to provide the latter.
We target the key feature of the two-scale localization phe-
nomenon, which is the doubling of the asymptotic decay
length at infinitesimally weak magnetic fields.

Our numerical simulations are based on a transmission
approach. We rely on the Borland conjecture [5] (believed
to be true generally [6]) that relates the asymptotic de-
cay of the transmittance T with increasing wire length L
to the asymptotic decay of the wave function c�L�. Ac-
cording to the Borland conjecture, the Lyapunov expo-
nent a � 2 limL!`

1
2 L21 lnT is identical to the inverse

localization length j21 � 2 limL!` L21 ln jc�L�j. More-
over, j and a are self-averaging, meaning that the statis-
tical fluctuations become smaller and smaller as L ! `.
Our numerical simulations show that the crossover from
j � j1 to j � j2 does not occur until the flux Fj through
a wire segment of length j1 is of the order of a flux
quantum F0 � h�e. For our longest wires (L * 150j1),
the crossover according to Ref. [1] should have occurred
at Fj�F0 � exp�2L�8j1� � 1028. We consider various
possible reasons for the disagreement, and suggest that the
quantity considered in Ref. [1] is dominated by anoma-
lously localized states.

Our first set of results is obtained from the numerical
calculation (by the technique of recursive Green functions
0031-9007�00�84(17)�3927(3)$15.00
[7]) of the transmission matrix t for a two-dimensional
Anderson Hamiltonian with on-site disorder. In units of the
lattice constant a � 1, the width of the wire is W � 13
and the wavelength of the electrons is l � 5.1, resulting in
N � 5 propagating modes through the wire. The localiza-
tion lengths j1 � �N 1 1�l and j2 � 2Nl are determined
by the scaling parameter l of quasi-one-dimensional local-
ization theory, which differs from the transport mean-free
path by a coefficient of order unity [8]. The average of the
transmittance T � tr tty in the metallic regime, fitted to
�T � � N�1 1 L�l�21, yields l � 65. This gives a local-
ization length j1 � 390 for preserved time-reversal sym-
metry (symmetry index b � 1) and a localization length
j2 � 650 for broken time-reversal symmetry (b � 2).

Figure 1 shows the ensemble-averaged logarithm of the
transmittance �lnT � as a function of wire length L for vari-
ous values of the magnetic field B (or flux Fj � Wj1B).
We find a smooth transition between the theoretical ex-
pectations for preserved and broken time-reversal sym-
metry. Most importantly, we find an asymptotic slope
s�B� � limL!` L21�lnT � that interpolates smoothly be-
tween the values s � 22�j1 for B � 0 and s � 22�j2
for large B. There is no indication of a crossover to
the slope s � 22�j2 for smaller values of B, even for
very long wires (L * 150j1). According to the theory
of Ref. [1], the crossover should occur at a length Lcross
given by

Lcross�j1 � 8 ln�
p

12 F0�4pFj� 1 O �1� , (1)

which is well within the range of our simulations (Lcross �
14j1 for Fj � 0.05F0). The absence of two-scale behav-
ior in the transmittance of an individual, arbitrarily cho-
sen realization is demonstrated in the inset of Fig. 1, for
Fj �

1
2 F0. The self-averaging property of the Lyapunov

exponent is evident.
The asymptotic decay length j�B� � 22�s�B� is plot-

ted versus magnetic field in Fig. 2, together with the weak-
localization correction dT � T �B � `� 2 T �B� at L �
j1. For both quantities, breaking of time-reversal symme-
try sets in when Fj is comparable to F0. The transition
from b � 1 to b � 2 is completed for Fj � 100F0.
© 2000 The American Physical Society 3927
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FIG. 1. Average logarithmic transmittance �lnT� as a function
of wire length L for the Anderson model with N � 5 propagat-
ing modes. The two dashed lines have the slopes predicted for
preserved (b � 1) and broken (b � 2) time-reversal symmetry.
From bottom to top the data correspond to fluxes Fj�F0 � 0,
0.0005, 0.005, 0.05 (four indistinguishable solid curves), 0.5, 1,
2.5, 5, 10, 15, 20, 25, 40, 50, 75, 125 (two indistinguishable
solid curves). The inset shows lnT for an individual realization
with Fj �

1
2 F0 (solid curve) and the slope of the ensemble-

averaged result (dashed line). The statistical error is of the order
of the wiggles of the curves.

Our second set of results is obtained from a computa-
tionally more efficient model of a disordered wire, consist-
ing of a chain of chaotic cavities (or quantum dots) with
two leads attached on each side. This so-called “domino”
model [9] is similar to Efetov’s model of a granulated
metal [2] and to the Iida-Weidenmüller-Zuk model of con-
nected slices [10]. The length L is now measured in units
of cavities, and the mean-free path l � 1. The scatter-
ing matrices of each cavity are randomly drawn from an
ensemble (proposed by Życzkowski and Kuś [11]) that in-
terpolates (by means of a parameter d) between the circu-
lar orthogonal (b � 1, d � 0) and unitary (b � 2, d �
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FIG. 2. Asymptotic decay length (solid circles) and weak-
localization correction dT (open circles) as a function of flux
for the N � 5 Anderson model. The statistical error is of the
order of the size of the circles.
3928
1) ensembles of random-matrix theory. The relationship
between d and Fj�F0 is linear for d ø 1.

We increased the number of propagating modes to N �
50, because it is conceivable that the two-scale localization
becomes manifest only in the large N limit, or that only in
this limit the critical flux Fj for the transition from j1 to
j2 becomes øF0. (In the experiments of Ref. [4] N �
10, so our simulations are in the experimentally relevant
range of N .) Because of the much larger value of N , we
restricted ourselves for larger values of the magnetic flux to
L � 25j1, which should be sufficient to observe the local-
ization length j2 for Fj�F0 * 1022. For smaller values
of the flux, we increased the wire length to L � 100j1.
The data are presented in Fig. 3. It is qualitatively simi-
lar to the results for the N � 5 Anderson model. Instead
of two-scale behavior, we see only a single decay length
which crosses over smoothly from j1 to j2 with increasing
d. Again, the crossover of j coincides with the crossover
of the weak-localization correction, so there is no anoma-
lously small crossover flux for the localization length.

The logarithmic average �lnT � is the experimentally
relevant quantity since it is representative for a single
realization (see Fig. 1, inset). The average transmittance
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FIG. 3. Same quantities as in Figs. 1 and 2, but now for the
N � 50 domino model. In the upper panel, the magnetic flux
parameter d � 0, 0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.005,
0.01, 0.02, 0.05, and 0.1. In the inset, d � 0, 0.000 01, and
0.0001 (indistinguishable curves).



VOLUME 84, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 24 APRIL 2000
-9

-6

-3

0

0 5 10 15 20

ln
 〈T

 〉

L/ξ1

β=1

β=2

FIG. 4. Logarithm of the average transmittance ln�T� as a
function of wire length L for the N � 5 Anderson model at
various values of the magnetic field (solid curves; from bottom
to top, Fj�F0 � 0, 5, 25, 50, 125). The dashed curves are the
theoretical prediction of Refs. [13,14] for zero and large mag-
netic field.

�T � itself is not representative, because it is dominated
by rare occurrences of anomalously localized states [12].
Since Kolesnikov and Efetov [1] studied the average
of wave functions themselves, rather than the average
of logarithms of wave functions, it is conceivable that
their findings are the result of such rare occurrences.
For completely broken or fully preserved time-reversal
symmetry the average transmittance is given by [13]

ln�T � � 2L�2jb 2
3
2 lnL�jb 1 O �1� . (2)

The order 1 terms are also known [13,14] and contribute
significantly for L & 30j1. (This is the numerically ac-
cessible range, because anomalously localized states be-
come exponentially rare with increasing wire length.) We
have plotted the full expressions in Fig. 4 (dashed curves),
together with the numerical data for the N � 5 Ander-
son model. Again we find a smooth crossover between
preserved and broken time-reversal symmetry. There is
no transition with increasing wire length to a behavior
indicative of completely broken time-reversal symmetry,
even though the flux Fj is much larger than required
[according to Eq. (1)] to observe this crossover for the
wave functions.

In conclusion, we have presented a numerical search
for the two-scale localization phenomenon predicted by
Kolesnikov and Efetov [1], with a negative result: The
asymptotic decay length of the transmittance is found to
be given by j1 and not by j2, as long as the flux through
a localization area is small compared to the flux quantum.
How can one reconcile this numerical finding with the re-
sult of the supersymmetry theory? We give three pos-
sibilities: (i) One might abandon the Borland conjecture
and permit the asymptotic decay length of the transmit-
tance (Lyapunov exponent) to differ from the asymptotic
decay length of the wave function (localization length).
Since the Borland conjecture has been the cornerstone of
localization theory for more than three decades, this seems
a too drastic solution. (ii) One could argue that the wires in
the simulation are too narrow or too short—although they
are in the experimentally relevant range of N and L, as well
as in the range of applicability of the theory of Ref. [1].
(iii) One could attribute the two-scale localization phe-
nomenon to anomalously localized states that are almost
fully transmitted but become exponentially rare with in-
creasing length and are irrelevant for a typical wire. This
seems to be the most likely solution. The decay due to
anomalously localized states is solely due to their expo-
nentially decreasing fraction among all states, and is not
directly related to the localization length. For the limit-
ing cases of fully preserved or totally broken time-reversal
symmetry, the decay is by a factor of 4 slower than the
localization length, but a two-scale behavior for partially
broken time-reversal symmetry is conceivable.

A discussion with P. G. Silvestrov motivated us to look
into this problem. We acknowledge helpful correspon-
dence with A. V. Kolesnikov and support by the Dutch
Science Foundation NWO�FOM.
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