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We calculate complete quasienergy spectra (rather than partial information thereon) from clas
periodic orbits for the kicked top, throughout the transition from integrability to well-developed cha
The standard error incurred for the quasienergies is a small percentage of their mean spacing,
though the effective Planck constant is not pushed to small values. The price paid is the inclusio
collective contributions of clusters of periodic orbits near bifurcations into Gutzwiller’s trace formu
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Since Gutzwiller’s seminal work [1,2], it is known
that the level density of autonomous hyperbolic syste
can be semiclassically approximated by a sum of in
vidual contributions from periodic orbits. Similarly, the
spectrum of integrable systems may be calculated se
classically by Einstein-Brillouin-Keller (EBK) quantiza-
tion. Gutzwiller’s result was later extended to periodical
driven systems [3,4] whose stroboscopic period-to-peri
evolution is generated by a unitary Floquet operatorF with
unimodular eigenvaluese2iwi . The quasienergieswi are
encoded in the traces trFn, n  1, 2, . . . , which are ap-
proximated as

tr Fn 
period nX

p.o.

n0

j2 2 trMj1y2
exp

µ
i

S
h̄

2 i
p

2
n

∂
(1)

for systems with a single classical degree of freedo
Each period-n orbit provides a summand determined b
its primitive periodn0, the actionS, the Maslov indexn,
and the trace of the linearized mapM.

The Gutzwiller type result (1), as well as its correction
to be discussed presently, can be derived from the integ
representation

tr Fn 
Z dq0dp

2p h̄
jSq0p j1y2eiy h̄fSsq0 ,p;nd2q0pg2ispy2dm (2)

which involves, besides the Morse indexm, the action
Ssq0, p; nd; the latter generates then-step mapsq, pd !

sq0, p0d through Sp  q, Sq0  p0, where indices onS
denote partial derivatives. The stationary-phase appro
mation leading from the integral (2) to the periodic
orbit sum (1) is sensible if all stationary points are we
separated.

Generic systems, however, come with a mixed pha
space, where stability islands reside inside a chaotic s
Upon varying a suitable control parameter, one may o
serve the transition from regular to predominantly chao
behavior. We are here concerned with semiclassica
evaluatingcompletequasienergy spectra (rather than par
or modulations of such) for such a transition, a goal n
previously attained.

The transition in question proceeds as periodic orb
arise, disappear, or coalesce at bifurcations. Meyer
has classified the codimension-one variants of such ca
0031-9007y97y79(6)y1022(4)$10.00
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trophes, i.e., the ones generically encountered upon va
ing a single parameter. The simplest type is the tang
bifurcation at which a pair of periodic orbits is born (o
disappears for the opposite sense of change of the con
parameter). The general cases are period-m bifurcations
where a “central” orbit of periodl coalesces with satel-
lites of m-fold periodn  ml. At the bifurcation thenth
iterate of the linearized mapM is the identity close to the
coalescing orbits and gives, for one degree of freedom,
condition trMn  2. Clearly, a tangent bifurcation may
be seen as the special casem  1.

As a dynamical system is driven through a sequence
bifurcations towards globally chaotic behavior, the simp
Gutzwiller type trace formula (1) ceases to reasonably a
proximate the integral (2), mostly since different period
orbits approach one another so closely as to no lon
yield independent additive stationary-phase contributio
to the integral (2). Right at a bifurcation, individua
contributions to trFn even diverge. To construct a “col-
lective” contribution [6] in the neighborhood of a bifur
cation, one must approximate the action functionS in (2)
by a suitable normal form whose stationary points yie
the cluster of classical periodic points related to the bifu
cation; the ensuing “diffraction catastrophe integral” the
constitutes a cluster contribution to the trace trFn in ques-
tion. For some recent progress with several diffractio
integrals relevant for our present study, refer to Refs. [
10]. Even the breakup of rational tori into chains o
intertwined elliptic and hyperbolic periodic orbits in th
near integrable case entails a collective correction to
trace formula [11]. Applications of diffraction integrals
have previously been restricted to revealing the impact
individual orbit clusters on the quantum propagator, f
instance, by “inverse-̄h spectroscopy” [8,9,11,12], or on
modulations of a (weighted) density of states [10].

When periodic orbits disappear as a control parame
passes through a critical value the nonlinear classical m
loses a number of real solutions in favor of complex one
A complex “ghost” orbit has no classical significanc
but does yield a saddle-point contribution [12] to th
integral (2). In the immediate neighborhood of the sa
bifurcation the ghosts again form (part of) a cluster whic
© 1997 The American Physical Society
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must be treated by an appropriate diffraction integr
then one obtains a uniform interpolation between t
asymptotic behaviors on both sides of the bifurcation, d
to saddles for ghosts on one side and stationary pha
for real orbits on the other. The best known such ca
arises for a tangent bifurcation; the diffraction integr
there takes the familiar Airy function form [6,12].

A ghost orbit often makes itself felt surprisingly fa
away from the bifurcation from which it originates
since the imaginary part of its action [which, in prin
ciple, entails exponential suppression through the fac
exps2Im Syh̄d] may decay slowly as one steers the d
namics away from the bifurcation. We, in fact, find th
a ghost frequently loses its weight through another me
anism, i.e., the so-called Stokes transition, after which
corresponding saddle of the integrand in (2) can no lon
be reached by deforming the original contour of integ
tion to one of steepest descent without crossing a singu
ity. The transition is encountered when the real parts
the action are identical for a ghosts2d and another “domi-
nant” orbit in its vicinity s1d, with Im S1 , Im S2. The
phenomenon has been investigated in [13,14], wher
uniform approximation of the suppression factor is give
Incidentally, the Stokes phenomenon also implies t
only ghosts with ImS . 0 are relevant.

Another surprise will be incurred below, in our sear
for reliable semiclassical approximations to the trac
tr Fn: Classically nongeneric bifurcations become im
portant. These have codimension two, i.e., could be
cated only by controlling two parameters. Even thou
we shall be concerned with varying but a single parame
and never actually hit such a bifurcation, we do get su
ciently close for collective treatments of all participatin
orbits to become necessary.

Leaving generalities for the moment we now tu
to pursuing our goal for a periodically kicked angul
momentum, often referred to as kicked top [15,16]. T
angular momentumJ involved has components obeyin
the usual commutation rulesfJx , Jyg  iJz, etc. The
squared angular momentumJ2  js j 1 1d is conserved
and, with the quantum numberj 

1
2 , 1, 3

2 , 2, . . . fixed,
the Hilbert space is assigned the dimension2j 1 1. That
dimension also plays the role of the inverse of Planc
constant such that classical behavior is attained in
limit j ! `. We shall work here with the particular to
whose dynamics is a sequence of rotations by anglespi

alternating with torsions of strengthki as described by the
Floquet operator,

F  exp

µ
2ikz

J2
z

2j 1 1
2 ipzJz

∂
exps2ipyJyd

3 exp

µ
2ikx

J2
x

2j 1 1
2 ipxJx

∂
. (3)

The corresponding classical map may be obtained by w
ing out the stroboscopic dynamics of the rescaled ang
momentum vectorX  Jys j 1 1y2d in the Heisenberg
picture and then, with the limitj ! ` in mind, degrading
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FIG. 1. (a)–(d) phase-space portraits for the kicked top. T
spherical phase space is parametrized by the azimuthal a
w ; q and the Cartesian coordinatez ; p. Varying the
control parameterk from 0 to 5, the system undergoes the
transition from integrability through mixed phase space to we
developed chaos. (e) Bifurcation tree including periodic orb
of period one (thin lines) and two (thick lines). Solid line
are real orbits, dashed lines are ghost solutions with ImS . 0.
Ghost lines end at Stokes transitions, where vertical lin
connect them to the dominant orbit. This is not indicated f
strongly suppressed ghosts with large ImS.

X to ac-number vector. The classical phase space is th
revealed as the unit sphereX2  1. The classical stro-
boscopic map is easily written as the sequence of th
rotations, one about thex axis by the anglepx 1 kxx,
the second bypy about they axis, and the last one by
pz 1 kzz about thez axis.

We perform a one-parameter study of the top, hol
ing the pi fixed (px  0.3, py  1.0, pz  0.8) while
varying the control parameterk ; kz  10kx in the range
0 # k & 10. For k  0 we incur a pure linear rotation,
and thus classical integrability. Only two primitive peri
odic orbits then arise, i.e., fixed points located at the
tersections of the rotation axis with the unit sphere. F
k  5 the phase-space portrait in Fig. 1 displays we
developed chaos.

Bifurcations are found numerically by solving th
equationtr Mm  2 simultaneously withp  p0, q  q0

for the triple sq, p, kd. All periodic orbits can be picked
up by going through the sequence of bifurcations
k is swept up from zero to its current value. Figur
1(e) displays the bifurcation tree thus obtained, showi
twenty orbits of length one and two subsequently used
the evaluation of trF2 for 0 # k , 10.

The divergence of individual contributions at bifur
cations is illustrated in Fig. 2(a), which displays th
quantum-mechanically exact trF2skd for j  3 together
with the sum of individual contributions from real pe
riodic orbits and ghosts, Eq. (1). Stokes transitions a
taken into account for those ghosts that are not sufficien
suppressed by having a large imaginary part of the acti

We proceed further to include collective contribution
regularizing the behavior close to bifurcations. Th
broken line in Fig. 2(b) results when one groups th
orbits according to the codimension-one bifurcations
1023
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which they participate (tangent bifurcations of orbi
with primitive period one and two, and period-doublin
bifurcations of orbits with period one) and employs th
closed formulas from [8].

A typical codimension-one cluster is that of the tw
period-one orbits that come into existence via the ta
gent bifurcation atk  2.44. One of the orbits is un-
stable while the other, initially stable, becomes unstab
in a period-doubling bifurcation atk  4.30; as it does,
a stable period-two orbit shows up as a satellite. Clo
to this bifurcation one has thus another cluster, form
by the satellite and the period-one orbit that changes
stability. Somewhere in between these two bifurcatio
one clearly has to rearrange the clusters. Unfortunate
the regrouping allows for ambiguities when an orbit is in
volved in several subsequent bifurcations. Whenever a
grouping is found necessary we choose its location alo
k so as to minimize the discontinuity in the approximate
trace, taken as a function ofk. In most cases, as in the
example under discussion, the remaining discontinuity
tiny. In three situations, however, we have to avoid su
patchwork and to enlarge our clusters to include orb
that are involved in subsequent bifurcations. In two cas
the clusters stem from bifurcations of codimension tw
where one would have to control two parameters to let
participating orbits coalesce.

In one of the codimension-two situations, endangeri
the semiclassical approximation of trF2 aroundk ø 8, a
third orbit of equal length is found in close neighborhoo
to a pair of orbits that participate in a tangent bifurcatio
at k  8.12, and the Stokes transition rendering the gho
orbits irrelevant occurs atk  7.98. This type of cluster
formed by three orbits of equal period is also frequen
encountered for trF3. It can be described by the norma
form,

Ss1dsq0, pd  q0p 2 ´q0 2 aq03 2 bq04 2
s

2
p2, (4)

FIG. 2. The real part of the quantum mechanically exa
tr F2skd for j  3 is compared with various levels of semi
classical approximations. In (a), individual contributions from
all real orbits and ghosts are summed up and Stokes transit
taken into account. In (b), collective contributions of orb
clusters are used to regularize the behavior close to bifur
tions. Clusters connected to codimension-one bifurcations
found to be insufficient atk ø 8. Enlarging the clusters further
gives an accurate approximation.
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with s  61. This describes three orbits, two of which
bifurcate at́  0. A uniform approximation is obtained
by introducing Ss1d into the exponent of Eq. (2) and
expandingjSq0pj1y2  1 1 Aq0 1 Bq02. Here A and B
are determined by requiring that the resulting contributio

Csclusterd 
1

p
2p h̄

Z
dxs1 1 Ax 1 Bx2d

3 exp

∑
i
h̄

s2´x 2 ax3 2 bx4d

2 i
p

2

µ
m 1

s

2

∂∏
, (5)

has the right stationary-phase limit ash̄ ! 0, which gives
three individual contributions of the type encountere
in Eq. (1). The integral can be expressed by Pearcey
function and its derivatives [17]. It turns out that this
expression also correctly treats the Stokes transition of t
complex saddles.

Upon treating the codimension-two event as discusse
we obtain the dotted line in Fig. 2(b) for the second trac
tr F2. This ultimate level of approximation reproduces th
exact result quite nicely.

The other codimension-two case encountered is th
of a tripling bifurcation close to a tangent bifurcation
of the satellite period-three orbit. This involves anothe
satellite of period three that can be taken into accou
by an extended normal form, as is discussed in grea
detail in [9], where a uniform approximation is given. It
becomes relevant in the evaluation of trF3, as does also
the third scenario of higher codimension, where a tange
bifurcation of period-three orbits takes place on a broke
torus formed by another pair of period-three orbits. Th
result for trF3 is considerably improved by treating all
four orbits collectively, using the contribution

Csclusterd 
Z 2p

0

dw
p

2p h̄
sssA 1 B cossw 1 w0d 1 C cos2wddd

3 exp

∑
i
h̄

sssa cossw 1 w1d 1 b cos2wddd

2 i
p

2

µ
m 1

s

2

∂∏
,

where all coefficients are determined to yield the corre
stationary-phase limit.

With the help of these collective contributions, the
traces trF and trF3 come out with a quality comparable
to that of trF2.

In general, the Floquet operatorF acts as anN 3 N
matrix with N  2j 1 1 whose eigenvaluese2iwi are
determined by the set of traces with, for integralj,
n  1, . . . , j. For j  3 the first three traces thus pro-
vide sufficient information to retrieve all seven quasiene
gies. Indeed, from these traces one obtains the first half
the coefficients in the secular polynomial detsF 2 zd PN

n0 aN2ns2zdn  0 using Newton’s formulas [18]; the
second half follows from the unitarity ofF which entails
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FIG. 3. (a) Exact and semiclassical level curves as a functi
of k. (b) Relative error Dw

2pys2j11d of the quasienergies.

the so-called self-inversiveness [19,20],aN2n  ap
naN .

We benefit from the fact thataN  detF, needed to ex-
ploit the self-inversiveness of the polynomial, is access
ble semiclassically: For the top, detF factorizes into a
product of determinants of pure rotations and torsion
and each integrable factor can be treated individua
by EBK quantization which even gives the exact resu
detF  expf2 i

3 js j 1 1d skx 1 kzdg.
The quasienergieswiskd from the semiclassically ap-

proximated secular polynomial are plotted together wi
the exact ones in Fig. 3(a). Noteworthy is the coalescen
of two semiclassical phases mimicking a close avoide
crossing of exact ones. The corresponding eigenvalu
cease to be unimodular there. Self-inverse polynomia
are capable of such behavior; to impose unitarity on the
certain additional restrictions have to be fulfilled by th
set of traces which are not automatically respected
the semiclassically approximated ones. As a quantitati
measure of accuracy we employ the standard deviati
between exact and semiclassical quasienergies,

Dw 

vuut 1
2j 1 1

2j11X
i1

swsscd
i 2 w

sqmd
i d2 , (6)

which is shown in Fig. 3(b). The error is a small single
digit percentage of the mean spacing2pys2j 1 1d, a
little higher only in the shortk interval where the two
semiclassical phases mentioned are degenerate.

Similarly small is the error we have incurred forj  2
and evenj  1. Semiclassical behavior of the spectrum
begins to prevail for surprisingly small values ofj indeed,
fortunately so before with increasingj the infamous expo-
nential proliferation of periodic orbits would render semi
classical work cumbersome. Our accuracy is compara
to the one previously found with different semiclassica
strategies that avoid periodic orbits [16].

To summarize, we have demonstrated that comple
spectra for the kicked top can be calculated from period
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classical orbits, provided one improves in several wa
upon the trace formula for hyperbolic systems, Eq. (
Contributions from isolated periodic orbits must be com
plemented by accounting for isolated ghosts as well
clusters of orbits associated with bifurcations of codime
sion 1, 2, . . . . New questions are opened up, for classic
and quantum dynamics: Will the case improve for ind
pendent periodic orbits as the effective Planck const
1yj is diminished? Or will the exponential proliferatio
of periodic orbits (and thus bifurcations) overrun the im
proving phase-space resolutions~1yjd?
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