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Semiclassical Spectra from Periodic-Orbit Clusters in a Mixed Phase Space

Henning Schomerus and Fritz Haake
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We calculate complete quasienergy spectra (rather than partial information thereon) from classical
periodic orbits for the kicked top, throughout the transition from integrability to well-developed chaos.
The standard error incurred for the quasienergies is a small percentage of their mean spacing, even
though the effective Planck constant is not pushed to small values. The price paid is the inclusion of
collective contributions of clusters of periodic orbits near bifurcations into Gutzwiller’s trace formula.
[S0031-9007(97)03790-3]

PACS numbers: 05.45.+b, 03.20.+i, 03.65.Sq

Since Gutzwiller's seminal work [1,2], it is known trophes, i.e., the ones generically encountered upon vary-
that the level density of autonomous hyperbolic systeméng a single parameter. The simplest type is the tangent
can be semiclassically approximated by a sum of indibifurcation at which a pair of periodic orbits is born (or
vidual contributions from periodic orbits. Similarly, the disappears for the opposite sense of change of the control
spectrum of integrable systems may be calculated semparameter). The general cases are pemniodifurcations
classically by Einstein-Brillouin-Keller (EBK) quantiza- where a “central” orbit of period coalesces with satel-
tion. Gutzwiller’s result was later extended to periodically lites of m-fold periodn = ml. At the bifurcation the:th
driven systems [3,4] whose stroboscopic period-to-periodterate of the linearized majd is the identity close to the
evolution is generated by a unitary Floquet oper&tavith  coalescing orbits and gives, for one degree of freedom, the
unimodular eigenvalues ¢:. The quasienergieg; are  condition trM™ = 2. Clearly, a tangent bifurcation may
encoded in the traces &', n = 1,2,..., which are ap- be seen as the special case= 1.
proximated as As a dynamical system is driven through a sequence of

petiod n no S . bifurcations towards globally chaotic behavior, the simple
trF" = Z D= umh2 exp(i e I V) (1)  Gutzwiller type trace formula (1) ceases to reasonably ap-
p-o. 2 - M| 2 proximate the integral (2), mostly since different periodic
for systems with a single classical degree of freedomgrpits approach one another so closely as to no longer
Each periodk orbit provides a summand determined by yie|d independent additive stationary-phase contributions
its primitive periodny, the actionS, the Maslov index’, o the integral (2). Right at a bifurcation, individual
and the trace of the linearized map. contributions to tF" even diverge. To construct a “col-

The Gutzwiller type result (1), as well as its correctionsjective” contribution [6] in the neighborhood of a bifur-
to be discus.sed presently, can be derived from the integr@bﬂon’ one must approxima‘te the action functibim (2)
representation , by a suitable normal form whose stationary points yield

tr F" = f dgdp 1S, |1/2e/ TSt pim=q'p)=ilm/2)p () the cluster of classical periodic points related to the bifur-
2wk 1P cation; the ensuing “diffraction catastrophe integral” then
which involves, besides the Morse index the action constitutes a cluster contribution to the tracg'trin ques-
S(q’, p; n); the latter generates thestep map(q, p) —  tion. For some recent progress with several diffraction
(¢',p') through S, = ¢, S, = p’, where indices oS integrals relevant for our present study, refer to Refs. [7—
denote partial derivatives. The stationary-phase approxit0]. Even the breakup of rational tori into chains of
mation leading from the integral (2) to the periodic- intertwined elliptic and hyperbolic periodic orbits in the
orbit sum (1) is sensible if all stationary points are wellnear integrable case entails a collective correction to the
separated. trace formula [11]. Applications of diffraction integrals

Generic systems, however, come with a mixed phaskave previously been restricted to revealing the impact of
space, where stability islands reside inside a chaotic semdividual orbit clusters on the quantum propagator, for
Upon varying a suitable control parameter, one may obinstance, by “inversér spectroscopy” [8,9,11,12], or on
serve the transition from regular to predominantly chaotianodulations of a (weighted) density of states [10].
behavior. We are here concerned with semiclassically When periodic orbits disappear as a control parameter
evaluatingcompletequasienergy spectra (rather than partspasses through a critical value the nonlinear classical map
or modulations of such) for such a transition, a goal notoses a number of real solutions in favor of complex ones.
previously attained. A complex “ghost” orbit has no classical significance

The transition in question proceeds as periodic orbitbut does yield a saddle-point contribution [12] to the
arise, disappear, or coalesce at bifurcations. Meyer [Shtegral (2). In the immediate neighborhood of the said
has classified the codimension-one variants of such catabifurcation the ghosts again form (part of) a cluster which
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must be treated by an appropriate diffraction integral; (a) k=0 (b) k=1.2 (e)
then one obtains a uniform interpolation between the | : )
asymptotic behaviors on both sides of the bifurcation, due |
to saddles for ghosts on one side and stationary phases| J
for real orbits on the other. The best known such case |
arises for a tangent bifurcation; the diffraction integral
there takes the familiar Airy function form [6,12].

A ghost orbit often makes itself felt surprisingly far
away from the bifurcation from which it originates,
since the imaginary part of its action [which, in prin-
ciple, entails exponential suppression through the factor &
exp(—Im S/h)] may decay slowly as one steers the dy- (c) k=25 9 9 (d) k=5 Kk
namics away from the bifurcation. We, in fact, find that . | (a)—(d) phase-space portraits for the kicked top. The

a QhOSt_ frequently loses its weight thrpygh anOther,meChépherical phase space is parametrized by the azimuthal angle
anism, i.e., the so-called Stokes transition, after which thg, = ; and the Cartesian coordinate= p. Varying the

corresponding saddle of the integrand in (2) can no longecontrol parametei from 0 to 5, the system undergoes the
be reached by deforming the original contour of integra{ransition from integrability through mixed phase space to well-
tion to one of steepest descent without crossing a Singulap_eveloped chaos. (e) Bifurcation tree including periodic orbits

. o f period one (thin lines) and two (thick lines). Solid lines
ity. The transition is encountered when the real parts Ogre real orbits, dashed lines are ghost solutions witl§ tm 0.

the action are identical for a ghast) and another “domi-  Ghost lines end at Stokes transitions, where vertical lines
nant” orbit in its vicinity (+), with ImS+ < ImS_. The connect them to the dominant orbit. This is not indicated for

phenomenon has been investigated in [13,14], where grongly suppressed ghosts with largedm
uniform approximation of the suppression factor is given.
Incidentally, the Stokes phenomenon also implies thaX to ac-number vector. The classical phase space is thus
only ghosts with In§ > 0 are relevant. revealed as the unit sphe’’ = 1. The classical stro-
Another surprise will be incurred below, in our searchboscopic map is easily written as the sequence of three
for reliable semiclassical approximations to the tracesotations, one about the axis by the anglep, + k,x,
tr F*:  Classically nongeneric bifurcations become im-the second byp, about they axis, and the last one by
portant. These have codimension two, i.e., could be lop, + k,z about thez axis.
cated only by controlling two parameters. Even though We perform a one-parameter study of the top, hold-
we shall be concerned with varying but a single parameteing the p; fixed (p, = 0.3, p, = 1.0, p, = 0.8) while
and never actually hit such a bifurcation, we do get suffiwvarying the control parametér= k, = 10k, in the range
ciently close for collective treatments of all participating0 = k < 10. For k = 0 we incur a pure linear rotation,
orbits to become necessary. and thus classical integrability. Only two primitive peri-
Leaving generalities for the moment we now turnodic orbits then arise, i.e., fixed points located at the in-
to pursuing our goal for a periodically kicked angulartersections of the rotation axis with the unit sphere. For
momentum, often referred to as kicked top [15,16]. Thek = 5 the phase-space portrait in Fig. 1 displays well-
angular momentund involved has components obeying developed chaos.
the usual commutation rulef/,,J,] = iJ;, etc. The Bifurcations are found numerically by solving the
squared angular momentudd = j(j + 1) is conserved equationtr M™ = 2 simultaneously withp = p’, ¢ = ¢’
and, with the quantum numbgr= %,1, %2 fixed, for the triple(q, p, k). All periodic orbits can be picked
the Hilbert space is assigned the dimenslgrt- 1. That up by going through the sequence of bifurcations as
dimension also plays the role of the inverse of Planck’st is swept up from zero to its current value. Figure
constant such that classical behavior is attained in thé(e) displays the bifurcation tree thus obtained, showing
limit j — . We shall work here with the particular top twenty orbits of length one and two subsequently used in
whose dynamics is a sequence of rotations by angjes the evaluation of tF* for 0 = k < 10.
alternating with torsions of strengt as described by the ~ The divergence of individual contributions at bifur-

Floquet operator, cations is illustrated in Fig. 2(a), which displays the
i J? . ) quantum-mechanically exact&f(k) for j = 3 together
F= eXF(‘”‘z A1 leJz>eXp(_’Pny) with the sum of individual contributions from real pe-
72 riodic orbits and ghosts, Eqg. (1). Stokes transitions are
X exp(—ikx X iprx>- (3) taken into account for those ghosts that are not sufficiently
2j + 1 suppressed by having a large imaginary part of the action.

The corresponding classical map may be obtained by writ- We proceed further to include collective contributions
ing out the stroboscopic dynamics of the rescaled angulaegularizing the behavior close to bifurcations. The
momentum vectoX = J/(j + 1/2) in the Heisenberg broken line in Fig. 2(b) results when one groups the
picture and then, with the limjt — o in mind, degrading orbits according to the codimension-one bifurcations in
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which they participate (tangent bifurcations of orbitswith o = *=1. This describes three orbits, two of which
with primitive period one and two, and period-doubling bifurcate ate = 0. A uniform approximation is obtained
bifurcations of orbits with period one) and employs theby introducing S into the exponent of Eq. (2) and
closed formulas from [8]. expanding|S,,|'"/> = 1 + Aq’ + Bq">. HereA and B

A typical codimension-one cluster is that of the two are determined by requiring that the resulting contribution,
period-one orbits that come into existence via the tan-
gent bifurcation atk = 2.44. One of the orbits is un- cleluster) —
stable while the other, initially stable, becomes unstable Vamh
in a period-doubling bifurcation a = 4.30; as it does, i 3 4
a staFl))Ie period—twogorbit shows up as a satellite. Close % ex;{E( e bx")
to this bifurcation one has thus another cluster, formed 7T< U)}

fdx(l + Ax + Bx?)

by the satellite and the period-one orbit that changes its - i? um o+ 2 (5)
stability. Somewhere in between these two bifurcations
one clearly has to rearrange the clusters. Unfortunatehhas the right stationary-phase limit &s— 0, which gives
the regrouping allows for ambiguities when an orbit is in-three individual contributions of the type encountered
volved in several subsequent bifurcations. Whenever aren Eq. (1). The integral can be expressed by Pearcey’s
grouping is found necessary we choose its location alonfunction and its derivatives [17]. It turns out that this
k so as to minimize the discontinuity in the approximatedexpression also correctly treats the Stokes transition of the
trace, taken as a function & In most cases, as in the complex saddles.
example under discussion, the remaining discontinuity is Upon treating the codimension-two event as discussed,
tiny. In three situations, however, we have to avoid suctwe obtain the dotted line in Fig. 2(b) for the second trace,
patchwork and to enlarge our clusters to include orbitdr F2. This ultimate level of approximation reproduces the
that are involved in subsequent bifurcations. In two casesxact result quite nicely.
the clusters stem from bifurcations of codimension two, The other codimension-two case encountered is that
where one would have to control two parameters to let albf a tripling bifurcation close to a tangent bifurcation
participating orbits coalesce. of the satellite period-three orbit. This involves another
In one of the codimension-two situations, endangeringatellite of period three that can be taken into account
the semiclassical approximation offtf aroundk =~ 8, a by an extended normal form, as is discussed in greater
third orbit of equal length is found in close neighborhooddetail in [9], where a uniform approximation is given. It
to a pair of orbits that participate in a tangent bifurcationbecomes relevant in the evaluation offr, as does also
atk = 8.12, and the Stokes transition rendering the ghosthe third scenario of higher codimension, where a tangent
orbits irrelevant occurs at = 7.98. This type of cluster bifurcation of period-three orbits takes place on a broken
formed by three orbits of equal period is also frequentlytorus formed by another pair of period-three orbits. The
encountered for tF3. It can be described by the normal result for trF3 is considerably improved by treating all

form, four orbits collectively, using the contribution
(o 21
S(l)(q/ P) = qlp - 8(*], - an - qu - _PZ (4) (cluster) de
’ ’ C = A+ Bcodep + + C cos2

2 0 \/m( iﬁo QDO) QD)

T T T T " T T T T i

4 b TR exact — 4 4r exact — X eXF{E(a code + ¢1) + bCos2p)
i ' codimension 1 -----
| codimension 2 - - o
‘ —i—{p+ =),
2 <“ 2 ﬂ

where all coefficients are determined to yield the correct
stationary-phase limit.

With the help of these collective contributions, the
traces tF and trF3 come out with a quality comparable
to that of trF>.

In general, the Floquet operatér acts as arv X N

FIG. 2. The real part of the quantum mechanically exactmatrlx with N = 2j + 1 whose eigenvalues™'¢' are

tr F2(k) for j = 3 is compared with various levels of semi- determined by the set of traces with, for integral
classical approximations. In (a), individual contributions fromn = 1,...,j. For j = 3 the first three traces thus pro-
all real orbits and ghosts are summed up and Stokes transitiongde sufficient information to retrieve all seven quasiener-
taken into account. In (b), collective contributions of orbit gies. Indeed, from these traces one obtains the first half of

clusters are used to regularize the behavior close to bifurc - . . N
tions. Clusters connected to codimension-one bifurcations a%f, coefficients in the secular pol){nomlal det—z) =
w—0dn—n(—2)" = 0 using Newton’s formulas [18]; the

found to be insufficient at = 8. Enlarging the clusters further on c !
gives an accurate approximation. second half follows from the unitarity df which entails
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(@) ~ exact — classical orbits, provided one improves in several ways
semiclassically ----- (

upon the trace formula for hyperbolic systems, Eq. (1):
Contributions from isolated periodic orbits must be com-
plemented by accounting for isolated ghosts as well as
12 - clusters of orbits associated with bifurcations of codimen-
10 sionl,2,.... New questions are opened up, for classical
A and quantum dynamics: Will the case improve for inde-
\ pendent periodic orbits as the effective Planck constant
N 1/ is diminished? Or will the exponential proliferation
/ \/\ of periodic orbits (and thus bifurcations) overrun the im-
N J b proving phase-space resolutionl /j)?
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FIG. 3. (a) Exact and semiclassical level curves as a functio
of k. (b) Relative errorﬁ‘jﬂ) of the quasienergies.
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