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Abstract: The weSPOT project aims at propagating scientific inquiry as the approach for science learning and teaching 
in combination with today’s curricula and teaching practices The project focuses on inquiry-based learning with a 
theoretically sound and technology supported personal inquiry approach and it contains three main development 
aspects: (a) define a reference model for inquiry-based learning skills, (b) create a diagnostic instrument for measuring 
inquiry skills, and (c) implement a working environment that allows the easy linking of inquiry activities with school 
curricula and legacy systems. The current work outlines the pedagogical and diagnostic frameworks for scientific 
inquiry. The pedagogical framework is aimed at supporting informal, self-regulated learning settings as well as the 
embedding in a formal learning context. The scientific exploration process can take place independently, or in 
collaboration with others. The diagnostic framework focuses on the pedagogical diagnosis, which will be tailored to the 
ambitious aim of inferring students' inquiry and meta-cognitive skills as well as domain-specific knowledge from 
observational data tracked within the weSPOT environment. Pilot studies planned to be conducted in 16 test-beds across 
6 EU countries will test the reference model and make use of the diagnostic instrument. 
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Introduction 

nquiry-based learning (IBL) is a pedagogic and teaching approach based on the 
instructional method. It has to do with the constructive approach to teaching, which 
advocates that each learner follows his/her own route to build and organize personal 

knowledge. It is an active approach towards learning and teaching that places learners and 
students at the centre of the learning process and involves self-direction. Learners develop 
knowledge and understanding of scientific ideas, as well as an understanding of how 
scientists study the natural world (Anderson 2002). The nature of inquiry-based learning is 
contested and even the term itself is not in widespread use throughout the educational 
literature. Many terms are used for learning through inquiry, including ‘enquiry-based 
learning’, ‘guided-inquiry’, ‘problem-based learning’, ‘undergraduate research’ and 
‘research-based teaching’ (Spronken-Smith and Walker 2010). 

The call for inquiry learning is based on the certainty that science learning is not about 
memorisation of scientific facts and information, but rather about understanding and applying 
scientific concepts and methods (Bell et al. 2010). This emphasis on methods can be traced back 
up to the work of Dewey (1933; 1938), where he argued that scientific knowledge develops as a 
product of inquiry. According to a concise definition for the domain of science learning, inquiry 
is  

“the process of posing questions and investigating them with empirical data, either 
through direct manipulation of variables via experiments or by constructing comparisons 
using existing data sets” (Quintana et al. 2004, 341). 
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In a more student-centre approach, inquiry 
“refers to the activities of students in which they develop knowledge and understandings 
of scientific ideas, as well as an understanding of how scientists study the natural world” 
(NRC 1996, 23).  

When conducting inquiries, students act like real scientists: they study and investigate the 
natural world, make their own observations, collect and analyse their own data, and propose 
explanations based on the evidence of their own work.  

Since inquiry encompasses the application of scientific methods into studying and 
investigating problems, topics and areas of interest, an IBL model should demonstrate “good” 
scientific inquiry, basing on “good” scientific research and therefore “good” scientific methods. 
Which are the attributes, though, of “good” scientific research and “good” scientific methods, 
which determine in turn “good” scientific inquiry? Answers to these questions are prominent in 
any effort to construct an IBL model, if it is to mirror “good” scientific inquiry. Yet, a review of 
related literature reveals the complexity of the field and uncovers the inherent difficulties and 
challenges in the development of a concise and elaborate IBL model.  

Indeed, scientific investigation is seldom simple. Each field of knowledge has its special 
problems, and investigators must always adjust their methods to the peculiarities of the situation 
they are dealing with. The basic procedures of the scientific investigation are as important in 
social science as in physical science. Social scientists must observe carefully, classify and 
analyse their facts, make generalizations, and attempt to develop and test hypotheses to explain 
their generalizations  (Hunt and Colander 2010). Although there is no ideal structure, a realistic 
way to approach a research question in social science is the following: observe, define the 
problem, review the literature, observe some more, develop a theoretical framework and 
formulate a hypothesis, choose the research design, collect the necessary data, analyse the results, 
and draw conclusions (Hunt and Colander 2010). These steps differ slightly from those used by a 
natural scientist—the primary difference comes in testing a hypothesis. In some natural sciences, 
it is possible to conduct controlled experiments in which the same experiment can be repeated 
again and again under highly regulated conditions. Nonetheless, the process of formulating 
hypotheses, testing and analysing the results, and formulating new hypotheses, seems to be 
acceptable by the scientific community. 

Scientific methods, on the other hand, refer to a body of techniques for 
investigating phenomena, acquiring new knowledge, or correcting and integrating previous 
knowledge (Goldhaber and Nieto 2010). To be termed scientific, methods of inquiry must be 
based on empirical and measurable evidence subject to specific principles of reasoning (Cohen 
and Whitman 1999). The steps of the scientific method have been reviewed and outlined by 
Crawford and Stucki (1990) and can be summarised as follows: define a question, gather 
information and resources (observe); form an explanatory hypothesis; test the hypothesis by 
performing an experiment and collecting data in a reproducible manner; analyse the data; 
interpret the data and draw conclusions that serve as a starting point for new hypothesis; publish 
result; retest (frequently done by other scientists). Each of the above elements is subject to peer 
review for possible mistakes (Moulton and Schifferes 1960). 

From the above it becomes evident that scientific inquiry is more complex than popular 
conceptions would have it: it is a more subtle and demanding process than the naive idea of 
making a great many careful observations and then organizing them; it is far more flexible than 
the rigid sequence of steps commonly depicted in textbooks as ‘the scientific method’ (AAAS 
2009). In addition, scientific inquiry is possible only in an environment in which certain attitudes 
are developed or tolerated. Successful scientific investigation requires from the investigator 
certain mental attitudes such as, curiosity, which makes people ask why and how; scepticism, 
which makes people re-examine past explanations and re-evaluate past evidence; and objectivity, 



which enables them to seek impartially for the truth, to avoid personal preconceptions, 
prejudices, or influence the interpretation of those facts (Hunt and Colander 2010). 

As such, an IBL model – if it is to mirror “good” scientific inquiry- should encompass the 
main steps regarding scientific methods described above, but in the same time it should offer 
flexibility to the learners and their coaches to conduct their own inquiries, rather than follow a 
pre-determined series of steps. In addition, it should allow the development of attitudes to the 
learners, such as curiosity and scepticism. Other inquiry models in a cyclical fashion – that have 
been proposed so far- can be an effective initial model that enables students to develop the 
capabilities of inquiry and understand its basic processes (White and Frederiksen 1998, 2005a, 
2005b; White, Frederiksen, and Collins 2009). However, most of them lack in offering the 
complete scientific inquiry process, as well as the needed flexibility for learners to conduct their 
own inquiries.  Therefore another approach that places the scientific processes of inquiry at its 
centre is needed. The weSPOT inquiry-based learning model strives to respond to these 
challenges and is described in detail below. 

weSPOT Inquiry-Based Learning Model 

The weSPOT model moves on from simplistic cyclical models as it aims to model the complete 
scientific inquiry process. It is based on the steps required for good research (Crawford and 
Stucki 1990; Hunt and Colander 2010) such as data collection, data analysis, hypothesis forming, 
communication and dissemination of findings etc. It shares many of the phases described by 
Mulholland et al. (2012), but it is more elaborate regarding the sub-phases providing a detailed 
description of things that teachers and students should consider when doing inquiry. 

Description of the model  

The weSPOT IBL model, presented in Figure 1, consists of six phases, each one involving a 
number of activities. The main characteristics of each phase are described below.  

Question/hypothesis   

In this phase of the weSPOT inquiry-based model students/learners decide on a topic or area of 
interest and try to formulate the questions or hypotheses that would like to pursue. The topic/area 
under consideration can either come from students direct natural observations or from a 
theoretical foundation.   

The question can refer to the explanation of a specific observation in nature, as in "Why is the 
sea blue?", but can also be open-ended, as in "Does light travel faster in air than in water?"  This 
stage also involves reviewing and evaluating previous evidence from other scientists. If the 
answer is already known, a different question that builds on the previous evidence can be raised. 
When applying the scientific method to scientific research, determining a good question can be 
very difficult and affects the final outcome of the investigation (Schuster and Powers 2005). 

A hypothesis is an assumption, based on the knowledge obtained while formulating the 
question, which may explain the observed behaviour of a part of our world or our universe. The 
hypothesis might be very specific, or it might be broad. A scientific hypothesis must 
be falsifiable, meaning that one can identify a possible outcome of an experiment that conflicts 
with predictions deduced from the hypothesis; otherwise, it cannot be meaningfully tested (Miller 
1985). 

The “question/hypothesis” phase consists of 8 components or tasks: empirical meaning, 
embedding, existing knowledge, mental representation, language/definition, field of research, 
context and reflection. 



 

Figure 1: weSPOT Inquiry-Based Learning Model 

Operationalisation 

Operationalisation refers to the realisation of an idea with an aim to measure. It is the process of 
defining a concept, so as to make it clearly distinguishable from other concepts and measurable 
in terms of empirical observations. It attempts to define concepts in terms of specified operations 
or procedures of observation and measurement (Britannica 2013). 

Operationalisation is an integral part of the empirical research process. When there is a 
complex empirical research question, the conceptual framework that organizes the response to 
the question must be operationalised before the data collection can begin. If scholars construct a 
questionnaire based on a conceptual framework, they have operationalised the framework. Most 
serious empirical research should involve operationalisation that is transparent and linked to a 
conceptual framework (Shields and Tajalli 2006). 

The phase of the operationalisation consists of 6 different components: indicators, 
predictions, resources, methodology, ethics and reflection. 



Data collection 

The data collection phase refers to testing a hypothesis and seeing whether the real world 
behaves as predicted by the hypothesis. Scientists test hypotheses by conducting experiments, 
which determine whether observations of the real world agree with the predictions derived from 
a hypothesis. If they agree, confidence in the hypothesis increases; otherwise, the hypothesis is 
rejected. 

This phase starts with the design of the research and determining ways and 
procedures of gathering data. Data collection can take place through a survey, an 
experiment, an observational study, a secondary analysis of existing sources or a 
combination of these methods. The research conclusions will be only as good as the gathered 
data, so collecting should be done in a very rigours manner and recording the data is essential.  

The phase of data collection contains 10 components: information foraging, systematic 
observation, experimentation, tools, simulation, data storage, data security, documentation and 
reflection. 

Data analysis 

Analysis of data is a process of inspecting, cleaning, transforming and modelling data with the 
goal of highlighting useful information, suggesting conclusions and supporting decision making. 
Data analysis has multiple facets and approaches, encompassing diverse techniques under a 
variety of names, in different business, science, and social science domains.  

In cases where an experiment has been performed, a statistical analysis is required. In 
hypothesis testing for example, a null hypothesis (referring to a general or default position that 
there is no relationship between two measured phenomena) is contrasted with an alternative 
hypothesis (the initial hypothesis in the inquiry process) and these are decided between on the 
basis of data, with certain error rates. 

The phase of analysis consists of 6 components: qualitative analysis, quantitative analysis, 
tools, visualisation, noise reduction and reflection. 

Interpretation/discussion 

This phase of the weSPOT inquiry model focuses on the discussion and interpretation of the 
results. This is an important part of a research inquiry, as it describes the relevance of 
the results in relation to the question or hypothesis. 

This phase starts with a summary of the steps one has already taken. It includes an overview 
and a discussion of the findings. The discussion should relate the obtained conclusions to the 
existing body of research, suggest where current assumptions may be modified because of new 
evidence, and possibly identify unanswered questions for further study. 

The phase consists of 7 components: embedding, confirmation/falsification, exhaustion, 
threshold, relevance, significance and reflection. 

Communication 

Research is not complete until it is written up and its results shared, not only with other scientists 
or fellow inquiry participants, who may build upon it to further advance the science, but also 
with those who may benefit from it, who may use it, and who have a stake in it. 



Scientific communication takes place in many ways, including archival publication in 
scholarly journals and informal communication among groups of scientists, conferences etc. 

The communication phase consists of 8 components: strategy, audience, tools, writing, 
dissemination, discussion, feedback and reflection. 

Innovative elements of the model 

The weSPOT IBL model is not only elaborate in terms of the specific tasks that learners do when 
conducting inquiry, by providing a meticulous description of the whole inquiry process. It also 
shows a number of innovative characteristics that aim at helping learners when conducting their 
own inquiries.  

Context 

All the IBL model phases are placed in the “Context” (see Figure 1) where the different phases of 
inquiry can take place. The context refers to the physical or theoretical settings of the whole 
inquiry process, from the initial hypothesis and data collection to the analysis and the 
dissemination. As such, the context groups together all the phases, emphasising the background 
that the inquiry will take place. The question under consideration can come from direct 
observation of the natural environment or from theoretical discussion/sources during the learning 
process. Although, the context is particularly important during the phases of data collection and 
data analysis, it influences the overall inquiry process and affects the result of the empirical 
studies.  

The continuous relation of the inquiry process to the context is one of the innovative 
elements of the weSPOT IBL model, as it makes explicit the role of the outside word during 
scientific inquiries. Dewey (1989) has also pointed out in his work of “Context and Thought” the 
importance of context in conducting empirical work. Being members of a specific culture, 
researchers are placed within the contexts of their time, their societies, and their individual 
relationships. He argues that it is never only the close and direct research field which is 
concerned in scientific examinations, but also the context it is placed in. 

Flexibility 

The different phases of the weSPOT IBL model are interconnected. Students/learners and 
teachers can start their scientific inquiry at any phase depending on their educational goals. For 
example, if the focus of the subject at hand is the data analysis, the teacher can provide the 
students with the data set and request from the students to proceed with the analysis identifying 
and using the appropriate methods and tools. The inquiry process then will only deal with the 
sub-phases of the data analysis phase, without expanding to the other phases.  

Thus, the weSPOT pedagogic model offers the flexibility for tailored and adapted scientific 
inquiry, depending on the needs of the curriculum and the expertise and knowledge of the 
learners. Students and teachers can move from one phase to the next depending on their needs 
and their focus without following a pre-determined series of steps. 

Reflection  

The weSPOT inquiry-based learning model places reflection at the centre of each inquiry phase, 
sees it as an integrated process throughout the inquiry activity and not as an independent phase 
that comes at the end of the process. The reason is that reflection is vital at every stage even at 
the very beginning when students need to develop a question or a hypothesis. Students need to 
reflect upon the question, and evaluate it before they decide to proceed. They also need to reflect 
while deciding what kind of data they need to collect, how to proceed to data analysis, how to 
communicate their results.  



To highlight the importance of reflection at each stage of the inquiry process and not only at 
the end is essential for successful scientific inquiries. Indeed, as mentioned earlier, successful 
scientific investigations require from the investigator certain mental attitudes such as, curiosity, 
scepticism, and objectivity (Hunt and Colander 2010), which are more likely to be developed 
when students reflect at every step of their inquiries.  

weSPOT Diagnostic Framework 

Apart from defining a reference model for inquiry-based learning skills, another developmental 
aspect within weSPOT project is the creation of a diagnostic instrument for measuring inquiry 
skills. The diagnostic framework for the pedagogical diagnosis –that will be presented below- 
will be tailored to the ambitious aim of inferring students' inquiry and meta-cognitive skills as 
well as domain-specific knowledge from observational data tracked within the weSPOT 
environment. 

General Approach 

In recent years, several research groups, both in the field of computer science (Lockyer and 
Dawson 2011; Duval 2011; Dyckhoff et al. 2012) and cognitive science (Anderson et al. 2010; 
Augustin et al. 2011; Heller et al. 2007; Lindstaedt et al. 2009), have made progress in 
developing approaches towards the automatic measurement of latent constructs based on user-
interaction data. The framework proposed here integrates measurement/inference algorithms 
built upon bottom-up approaches as well as top-down, i.e. theory-driven approaches. The general 
research question to be addressed is "What tells us the behavior in [virtual environments] about 
psychological constructs..." (Schönbrodt and Asendorpf 2011, 8). By successfully addressing this 
question a huge potential for pedagogical and psychological research can be expected. First, 
while the observation of human behaviour is usually the most time-consuming and expensive 
part of empirical studies, within a learning environment, such as weSPOT, gathering a huge 
amount of empirical data can be realized automatically. Second, the application and evaluation of 
measurement algorithms that are built upon formal psychological models allow for testing the 
external validity of these models in a natural setting.  

Defining the relationship between latent constructs (inquiry skills) and manifest user-
interaction data 

Top-Down Approach: Applying the Formal Concept Analysis 

In a first step, we draw on the Formal Concept Analysis (Ganter, Stumme, and Wille 2005) to 
define relationships between objects and attributes, which – in the context of weSPOT – 
correspond to inquiry skills and observable tasks performed by the students, respectively. To this 
end, skill × task-tables (number 1 in Figure 2) will be given to experts (i.e., pedagogues). They 
will be asked to set a cross in a particular cell whenever they assume that the corresponding 
attribute/task (e.g. conducting simulations) belongs to the given object/skill (e.g. quantitative 
skills). In this way a structure of the domain emerges, which is called formal context. By means 
of FCA-algorithms, the consistency of different formal contexts defined by different experts can 
be examined and sub-superconcept relations can be derived (see number 2 in Figure 2). Finally, 
the identified mapping of tasks on skills is a prerequisite for conducting a non-invasive 
measurement within the weSPOT environment (number 3): In case of valid and reliable 
mappings that can be tested in the course of evaluation studies, observing a student's tasks allows 
for inferring a first set of potential skills. 

 



 

Figure 2: Procedure of applying FCA in weSPOT 

Bottom-up Approach: Shaping Skill-Probabilities by means of Knowledge Indicating 
Events 

Referring to Lindstaedt et al. (2009), a user model only based on predefined tasks performed 
does not exploit all available information. Rather, so-called Knowledge Indicating Events (KIE) 
that are user interactions carried out during the performance of predefined tasks (such as 
browsing, searching topics, contacting others, etc.) can help to implicitly develop a more 
comprehensive user model. The general assumption is that all behaviour is to some extend 
related to internal knowledge states and by considering additional data that are not explicitly 
represented in a theoretical model a more accurate user model emerges. Therefore, we suggest 
making use of this bottom-up approach that tries to merge as much interaction data as possible to 
further refine the assessment of a student based on the theory-driven top-down approach (see 
section above). 

Figure 3 depicts a draft of an interplay between the top-down approach (FCA), yielding a first 
distribution of probabilities across the students' skills (that we call ‘Low-Fidelity Student 
Model’), and the bottom-up approach (processing KIE), further shaping the distribution towards 
specific, identified skills (the High-Fidelity Student Model). First, the student's tasks performed 
are fed into the formal context of IBL (elicited by the FCA): skills (e.g. skill 4) that have been 
found to be associated with the performed tasks (e.g. e.g. Task 1) are assigned higher 
probabilities (e.g. 0.43) than skills associated with unperformed tasks (e.g. Task 3). The result is 
a preliminary, Low Fidelity Student Model (LoFi-SM) that defines a distribution of probabilities 
over all skills s, P(s), within the formal context (see number 2 in Figure 3). Then, to further 
refine and shape this distribution (number 3), the KIE (additional learning activities, e.g. 
browsing or tagging, not covered by the formal context) are taken into account (number 4). The 
subsequent step 5 consists of computing the aposteriori probability p(si|KIE), i.e., the probability 
of a skill si (identified by the FCA) given a particular pattern of observed KIE. This conditional 
probability can be calculated by applying the Bayes' theorem, which yields the skill's probability 
if further evidence (i.e., the KIE) had been considered. To put it more formally, equation (1) 
expresses the mathematical problem to be solved (see also number 5 in Figure 3), 



     Equation (1). 

While p(si) is the result of the precedent FCA-computations (number 1), the conditional 
parameter p(KIE|si), i.e. the strength of association between a particular pattern of KIE and the 
skill si, is unknown. At this point, data mining techniques of computer science come into play to 
gather estimates of the unknown parameter. Machine learning algorithms that automatically learn 
classifications and associations (e.g. of the Weka toolkit, http://www.cs.waikato.ac.nz/ml/weka/) 
within a dataset should be well suited to extract the association between KIE-patterns (tracked 
within the weSPOT-environment) and skills that will be measured by questionnaires during 
evaluation studies.   

 

Figure 3: Shaping the probability distribution over skills by KIE-patterns 

Testing 

Pilot studies planned to be conducted during the 2013-14 Autumn-Winter period across 6 EU 
countries within the weSPOT project will test the reference model and make use of the 
diagnostic instrument described above.  

In specific, during pilot testing, the weSPOT project plans to implement a working 
environment that allows the easy linking of inquiry activities with school curricula and legacy 
systems. The working environment will be based on technological products developed within 
the project:  

• smart support tools for orchestrating inquiry workflows including mobile apps, 
learning analytics support, and social collaboration on scientific inquiry, 

 

p(si | KIE) =
p(KIE | si)⋅ p(si)
p(KIE | s j )⋅ p(s j )

j
∑



• social media integration and viral marketing of scientific inquiry linked to school 
legacy systems and an open badge system.  

The working environment will also be based on the theoretical framework described in this 
paper, with an ambitious aim to integrate pedagogical advances to technological innovation.  

The products will be customized and evaluated in 16 test-beds (schools, institutes, 
universities) across 6 European countries (United Kingdom, Netherlands, Greece, Germany, 
Bulgaria, Slovenia). The pilot studies will engage 58 teachers and 1000 students, from 12 to 25 
years old. The working environment will work in 8 domains:   

Food: Examples of plastics contaminating food have been reported with most plastic 
types. Learners involved in this scenario will be acting as chemical engineers and food 
scientists.  
Biodiversity: Biodiversity is increasingly recognized as critical to human life. Species are 
more threatened than ever by human activities like urbanization, climate change, 
deforestation, agricultural expansion, overexploitation of marine ecosystems. Students’ 
inquiry projects could be related to breeding program for endangered species, bird 
populations in a garden, bug populations in a flower bed, fauna in a pond-ecosystem, 
other food webs or succession.  
Earthquake: Students will download and format near real-time and historical earthquake 
data and seismogram displays from various sources (e.g.  FORTH’s seismological 
station). Students will create spreadsheets and graphs to explore earthquake magnitude, 
wave amplitude, energy release, frequency occurrence and location.  
Sea: High school students go on ½ year trip across the Atlantic Ocean, on their journey; 
they have normal class and run the clipper. In addition they explore their environment 
(water, air, physics on board, astronomy…) in personal projects. 
Energy: Using discussion students should identify disadvantages of the current building 
from the energy-efficiency point of view. They should try to predict (providing evidence) 
future energy problems. Forming teams, they will work on developing reasonable ideas 
for future energy-efficient buildings.  
School: The student should provide research on expected changes in the future school. 
Possible directions:dropping and new courses; the future classroom – real or virtual; new 
ICTs in education; the role of the teacher; students relationships; new educational 
approaches; formal-informal learning, the role of lifelong learning etc. 
 Innovation: The students will reflect their learning environment (or other environments) to 
determine some of the most pertinent problems, obstacles, “things they do not like”, etc. 
With the help of a teacher those points will then be contemplated form the view point of 
what out of that could be changed and what (unfortunately) could not be changed. 
Economy: In recent published Economic Complexity Atlas Slovenia is the 10th country with 
high Economic Complexity Index (ECI), and Bosnia is ranked on 8th place as country which 
has large ECI and small GDP (so it is expected that it will develop fast in next period). It 
would be interesting to research how these facts can be used for faster economic and social 
developments. 

During the pilot studies, data will be collected through the diagnostic instrument in regard of 
learners’ inquiry skills, as well as users’ feedback on the applicability of the products and the 
theoretical approach followed. The analysis of the data will elaborate further theoretical work in 
regard of the theoretical orientation , which will be taken into account for the next development 
iteration.  



Acknowledgement  

The research leading to these results has received funding from the European Community’s 
Seventh Framework Programme (FP7/2007-2013) under grant agreement N° 318499 - weSPOT 
project. 

 

 

 





JOURNAL TITLE 

 
 

REFERENCES 

American Association for the Advancement of Science. The Nature of Science  2009 [cited 
20/04/13. Available from 
http://www.project2061.org/publications/bsl/online/index.php?chapter=1. 

Anderson, J. R., S. Betts, J. L. Ferris, and J.M. Fincham. 2010. Neural imaging to track mental 
states while using an intelligent tutoring system. Review of Reviewed Item. 
Proceedings of the National Academy of Sciences 107 (15), 
http://www.pnas.org/content/107/15/7018.full. 

Anderson, R. D. 2002. Reforming science teaching: What research says about inquiry? Journal 
of Science Teacher Education 13 (1):1-12. 

Augustin, T., C. Hockemeyer, M. Kickmeier-Rust, and D. Albert. 2011. Individualized skill 
assessment in digital learning games: Basic definitions and mathematical formalism. 
IEEE Transactions on Learning Technologies 4 (2):138-148. 

Bell, T., D. Urhahne, S. Schanze, and R. Ploetzner. 2010. Collaborative inquiry learning: 
Models, tools, and challenges. International Journal of Science Education 3 (1):349-
377. 

Britannica, Encyclopaedia. Encyclopaedia Britannica  2013 [cited 13/03/13. Available from 
http://www.britannica.com/EBchecked/topic/429927/operationalism. 

Cohen, I. B., and A. Whitman, eds. 1999. Philosophiae Naturalis Principia Mathematica 
(Newton, Isaac, 1687; 1713; 1726). 3rd ed: University of California Press. 

Crawford, S., and L. Stucki. 1990. Peer review and the changing research record. Journal of the 
American Society for Information Science 41 (3):223-228. 

Dewey, J. 1933. How We Think: A Restatement of the Relation of Reflective Thinking to the 
Educative Process. Boston, MA: Heath. 

———. 1938. Logic: The theory of inquiry. New York: Holt, Rinehart and Winston. 
Dewey, J. 1989. The Later Works 1925-1953. Vol. 1. Carbondale and Edwardsville: Southern 

Illinois University Press. 
Duval, E. 2011. Attention please! learning analytics for visualization and recommendation. Paper 

read at 1st International Conference on Learning Analytics and Knowledge, February 
27-March 1, at Banff, Alberta. 

Dyckhoff, A. L., D. Zielke, M. Bültmann, M. A. Chatti, and U. Schroeder. 2012. Design and 
Implementation of a Learning Analytics Toolkit for Teachers. Journal of Educational 
Technology & Society 15 (3):58-67. 

Ganter, B., G. Stumme, and R. Wille. 2005. Formal Concept Analysis: Foundations and 
Applications. Berlin: Springer. 

Goldhaber, A. S., and M. M.  Nieto. 2010. Photon and graviton mass limits. Reviews of Modern 
Physics 82 (1):939-979. 

Heller, J., M. Levene, K. Keenoy, D. Albert, and C. Hockemeyer. 2007. Cognitive aspects of 
trails. A stochastic model linking navigation behaviour to the learner's cognitive state. In 
Trails in education, edited by J. Schoonenboom, M. Levene, J. Heller, K. Keenoy and 
M. Turcsányi-Szabó. Rotterdam: Sense Publishers. 

Hunt, F. E., and D. C. Colander. 2010. Social Science: An Introduction to the Study of Society. 
International ed. Boston, MA: Pearson Education. 

Lindstaedt, S. N., G. Beham, B. Kump, and T. Ley. 2009. Getting to Know Your User. 
Unobtrusive User Model Maintenance within Work-Integrated Learning Environments. 
Paper read at Learning in the Synergy of Multiple Disciplines: 4th European Conference 
on Technology Enhanced Learning, September 29 - October 2, at Nice, France. 

http://www.project2061.org/publications/bsl/online/index.php?chapter=1�
http://www.pnas.org/content/107/15/7018.full�
http://www.britannica.com/EBchecked/topic/429927/operationalism�


Lockyer, L., and S. Dawson. 2011. Learning designs and learning analytics. Paper read at 1st 
International Conference on Learning Analytics and Knowledge, February 27-March 1, 
at Banff, Alberta. 

Miller, D. 1985. Popper Selections. Princeton: Princeton University Press. 
Moulton, F. R., and J.  J. Schifferes. 1960. The Autobiography of Science. 2nd ed: Doubleday. 
Mulholland, P., S. Anastopoulou, T. Collins, M. Feisst, M. Gaved, L. Kerawalla, M. Paxton, E. 

Scanlon, M. Sharples, and M. Wright. 2012. nQuire: technological support for personal 
inquiry learning. IEEE Transactions on Learning Technologies 5 (2):157–169. 

National Research Council. 1996. National science education standards. Washington, DC: 
National Academic Press. 

Quintana, C., B. J. Reiser, E. A. Davis, J. S. Krajcik, E. Fretz, R. G. Duncan, E. Kyza, D. 
Edelson, and E. Soloway. 2004. A scaffolding design framework for software to support 
science inquiry. Journal of the Learning Sciences 13 (3):337–386. 

Schönbrodt, F. D., and J. B. Asendorpf. 2011. Virtual social environments as a tool for 
psychological assessment: dynamics of interaction with a virtual spouse. Psychological 
Assessment 23 (1):7-17. 

Schuster, J. W., and P. D. Powers. 2005. Translational and Experimental Clinical Research: 
Lippincott Williams and Wilkins. 

Shields, P., and H. Tajalli. 2006. Intermediate Theory: The Missing Link to successful Student 
Scholarship. Journal of Public Affairs Education 12 (3):313-334. 

Spronken-Smith, R., and R. Walker. 2010. Can inquiry-based learning strengthen the links 
between teaching and disciplinary research? Studies in Higher Education 35 (6):723-
740. 

White, B. Y., and J. R. Frederiksen. 1998. Inquiry, Modeling, and Metacognition: Making 
Science Accessible to All Students. Cognition and Instruction 16 (1):3-118. 

———. 2005a. Modeling, developing, and assessing scientific inquiry skills using a computer-
based inquiry support environment. Berkeley: Final Report to the National Science 
Foundation. 

———. 2005b. A theoretical framework and approach for fostering metacognitive development. 
Educational Psychologist 40 (4):211-223. 

White, B. Y., J. R. Frederiksen, and A. Collins. 2009. The interplay of scientific inquiry and 
metacognition: More than a marriage of convenience. In Handbook of metacognition in 
education, edited by D. Hacker, J. Dunlosky and A. Graesser. New York: Routledge. 

 
 
  



 ABOUT THE AUTHORS 

Aristidis Protopsaltis: Dr Aristidis Protopsaltis is a Senior Researcher at the Institut für Lern-
Innovation at Friedrich-Alexander-Universität, Erlangen-Nürnberg. His background is in 
Cognitive Science, Serious Games, ICT and Education, information processing theory and 
comprehension. He is involved in a number of European projects with focus on education, e-
learning and Serious Games. He has published numerous peer-reviewed conference and journal 
papers, and served as a program committee member and program and general co-chair in several 
conferences. He is also the vice-chair of the ACM SIGDOC European chapter. His research 
interests focus on Serious Games and Education, Information Processing and Serious Games, 
Gamification Human Computer Interaction, Technology and Education, Usability, and Cognition 
and Hypermedia. 

Paul Christian Seitlinger: Paul Christian Seitlinger received his Ph.D. (Dr.rer.nat.) from the 
Karl-Franzens-University of Graz with a thesis on “Imitation in Social Software environments: 
The role of implicit and explicit memory processes” in 2012 and his diploma in psychology also 
from the Karl-Franzens-University in 2009. His research interests include formal models of 
human memory and their application in intelligent Web services as well as collaborative learning 
processes mediated by information technology. Since 2009, he has been researching in EU-FP7 
projects. 

Foteini Haimala: Dr Foteini Chaimala studied Physics at University of Crete in Greece and 
obtained her MA degree in Education. Received her PhD from the University of Southampton, 
UK, in the area of Peer Learning and argumentation by the aid of ICT. She has ten years of 
experience as a secondary and high school physics teacher. In 2007 she worked as the 
coordinator and co-teacher in the course ‘Scientist as a Citizen’, Faculty of Sciences and 
Engineering, University of Crete, Greece. During 2004-2006 she worked as a collaborator and 
student consulter for the course ‘Didactics of Physics in Practice’, Department of Physics, 
University of Crete, Greece. She is currently a post-doc member of IACM group, FORTH, 
Greece. Research interests in teaching and learning in the context of interactive pedagogies, by 
the use of ICT, prospective teachers education and teachers’ professional development in the 
context of scientific argumentation. 

Pavel Boytchev: Pavel Boytchev, PhD, is an Associate Professor at Sofia University, Faculty of 
Mathematics and Informatics (Bulgaria). His main interests and experience are in the areas of 
computer graphics and animation, virtual models, design and implementation of programming 
languages, and development of educational software. His research is applied in the development 
several educational environments at secondary school, undergraduate and graduate levels. He has 
also conducted research in University of Electro-Communication (Tokyo, Japan) and in Stevens 
Institute of Technology (NJ, USA). 

Olga Firssova: Olga Firssova, PhD, is an Assistant Professor at the Open University 
Netherlands. She combines teaching a variety of post-graduate level distance course at the 
Masters’ of Educational Science programme of the Open University with research activities at 
the Centre of Learning Sciences and Technologies (CELSTEC) of the OU. Areas of research 
interest are academic writing, development of academic skills, instructional design and 
curriculum development, competence based curricula.  

Sónia Hetzner: Sónia Hetzner is a Senior Researcher at the Institut für Lern-Innovation at 
Friedrich-Alexander-Universität, Erlangen-Nürnberg, in the field of lifelong learning and 
technology-enhanced learning. Social scientist, pedagogy expert, geographer, senior 
researcher and project manager. Responsible for development, management and 
evaluation of technology enhanced learning and training projects. Research areas: e-
learning, serious games, knowledge management, technology enhanced science 
teaching, evaluation of international cooperation projects.  


	/
	Operationalisation
	Data collection
	Data analysis
	Interpretation/discussion
	Communication
	weSPOT Diagnostic Framework
	General Approach
	Defining the relationship between latent constructs (inquiry skills) and manifest user-interaction data
	Top-Down Approach: Applying the Formal Concept Analysis
	Bottom-up Approach: Shaping Skill-Probabilities by means of Knowledge Indicating Events

	Paul Christian Seitlinger: Paul Christian Seitlinger received his Ph.D. (Dr.rer.nat.) from the Karl-Franzens-University of Graz with a thesis on “Imitation in Social Software environments: The role of implicit and explicit memory processes” in 2012 an...


