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Abstract

Nonclinical in vivo animal studies have to be completed before starting clin-
ical studies of the pharmacokinetic behavior of a drug in humans. The drug
exposure in animal studies is often measured by the area under the concentra-
tion time curve (AUC). The classical complete data design where each animal
is sampled for analysis once per time point is usually only applicable for large
animals. In the case of rats and mice, where blood sampling is restricted, the
batch design or the serial sacrifice design need to be considered. In batch de-
signs samples are taken more than once from each animal, but not at all time
points. In serial sacrifice designs only one sample is taken from each animal.
This paper presents an estimator for AUC from 0 to infinity in serial sacrifice
designs, the corresponding variance and its asymptotic distribution.
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Introduction

Techniques to construct confidence intervals for the AUC from 0 to the last
observed time point tJ (AUC0−tJ

) for the serial sacrifice design were presented
in [1] and [2]. A method to construct confidence intervals for AUC0−tJ

for the
batch design can be found in [3]. Formulas for confidence intervals for AUC0−tJ

which are applicable to all three types of designs are presented in [4].
In single bolus administrations it is desirable to construct a confidence inter-

val for the AUC from 0 to infinity (AUC0−∞). Yuan [5] presented a method to
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construct confidence intervals for AUC0−∞ for the serial sacrifice design under
the assumption of a single exponential course of the elimination phase and that
the elimination rate is a known fixed and inalterable value identical for all an-
imals. This paper also addresses the assumption of a single exponential course
of the elimination phase and that an estimate and its variance of the elimina-
tion rate are known from a different independent study. However, in practical
medical research, these assumptions are hardly fulfilled.

Here, we present an estimator and its variance for AUC0−∞ in the serial
sacrifice design in which the elimination rate does not need to be known in
advance. We assume only a single exponential course of the elimination phase.

Area Estimation

In a serial sacrifice design, measurements are taken at J time points tj (1 ≤ j ≤ J)
and at each time point tj , blood is sampled from nj animals. Let xij (1 ≤ i ≤ nj)
be the measured drug concentration from the ith animal at time tj . Let E[xij ] =
µxj and V [xij ] = σ2

xj
be the population mean and population variance at time

point tj . To be physiological meaningful it is assumed that µxj is so large
compared with σ2

xj
that the range of xij is effectively positive. The theoretical

AUC0−∞ can be defined as

AUC0−∞ =
K∑

j=1

wjµxj +
µxK

µbλ (K < J) (1)

where K is a fixed integer and µbλ is the elimination rate constant representing
the slope of a single exponential function [6]. Using the linear trapezoidal rule,
the weights wj equal

w1 = 1
2 (t2 − t1)

wj = 1
2 (tj+1 − tj−1) (2 ≤ j ≤ K − 1) (2)

wK = 1
2 (tK − tK−1).

This AUC0−∞ can be estimated by

̂AUC0−∞ =
K∑

j=1

wjxj +
xK

λ̂
− β (3)

=
K−1∑
j=1

wjxj + xK

(
wK +

1

λ̂

)
− β

where β represent a constant for bias correction discussed later and xj is the
arithmetic mean at time point tj with E[xj ] = E[xij ] = µxj and V [xj ] = σ2

xj
=

σ2
xj

n−1
j . In addition, let λ̂ be the estimate of the elimination rate constant
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which is assessed on the last J − K time points and is therefore independent
from ̂AUC0−tK

.
Our representation of the theoretical AUC0−∞ ensures the stochastically in-

dependence between
∑K

j=1 wjxj and λ̂ which enables the straightforward deriva-

tion of the variance for ̂AUC0−∞.
This variance for ̂AUC0−∞ can be used to construct a bootstrap-t confidence

interval. Bootstrap-t confidence intervals work well on location parameter [7]
and provide better coverage properties than bootstrap percentile confidence in-
tervals for small sample sizes [8]. Furthermore, the bootstrap percentile method
is only first-order accurate whereas the bootstrap-t method is second order ac-
curate [9].

Elimination Rate

The estimate λ̂ for the elimination rate constant µbλ can be calculated using
linear regression on the last J − K time points on the natural logarithm-
concentration versus time curve and can be formulated as

λ̂ = (−1)
J∑

j=K+1

ujyj (4)

where

yij = ln(xij) +
1
2

σ2
xj

µ2
xj

(5)

uj = aj

(
J∑

l=K+1

a2
l

)−1

(6)

aj = tj −
1

J −K

J∑
l=K+1

tl. (7)

Note that yij is a bias corrected representation of the log-transformed val-
ues to ensure an unbiased estimation of the elimination rate constant. The
straightforward transformation using the delta method leads to E [ln(xij)] ≈
ln(µxj )− 1

2σ2
xj

µ−2
xj

which underestimates ln(µxj ) by the constant factor 1
2σ2

xj
µ−2

xj
.

The expected value and variance of the bias corrected log-transformed values
are

E

[
ln(xij) +

1
2

σ2
xj

µ2
xj

]
= µyj

≈ ln(µxj
) (8)

V

[
ln(xij) +

1
2

σ2
xj

µ2
xj

]
= V [ln(xij)] = σ2

yj
≈

σ2
xj

µ2
xj

− 1
4

σ4
xj

µ4
xj

. (9)
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The arithmetic mean of the bias corrected log-transformed values at time
point tj is denoted as yj with E[yj ] = E[yij ] = µyj

≈ ln(µxj
) and V [yj ] = σ2

yj
=

σ2
yj

n−1
j . The expected value and the variance of the elimination rate are

E[λ̂] = µbλ = (−1)
J∑

j=K+1

uj ln
(
µxj

)
≈ (−1)

J∑
j=K+1

ujµyj (10)

V [λ̂] = σ2bλ ≈
J∑

j=K+1

u2
j

(
σ2

xj

µ2
xj

− 1
4

σ4
xj

µ4
xj

)
=

J∑
j=K+1

u2
jσ

2
yj

. (11)

Moments of Areas

The expected value and variance for the ̂AUC0−tK−1 equal [2]

E

K−1∑
j=1

wjxj

 =
K−1∑
j=1

wjµxj (12)

V

K−1∑
j=1

wjxj

 =
K−1∑
j=1

w2
j σ2

xj
. (13)

The expected value of the remaining area without the bias correction β
results by using the delta method in

E

[
xK

(
wK +

1

λ̂

)]
≈ wKµxK

+
µxK

µbλ +
µxK

σ2bλ
µ3bλ (14)

showing a overestimation of wKµxK
+µxK

µ−1bλ by the constant factor µxK
σ2bλµ−3bλ .

Therefore we define the bias correction as

β =
µxK

σ2bλ
µ3bλ (15)

leading to

E

[
xK

(
wK +

1

λ̂

)
− β

]
≈ wKµxK

+
µxK

µbλ (16)

V

[
xK

(
wK +

1

λ̂

)
− β

]
≈ µ2

xK

(
σ2bλ
µ4bλ
)

+ σ2
xK

(
σ2bλ
µ4bλ
)

+ (17)

σ2
xK

(
wK +

1
µbλ +

σ2bλ
µ3bλ
)2
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an unbiased estimate of this area. Hence the expected value and the variance
for ̂AUC0−∞ are

E[ ̂AUC0−∞] ≈
K−1∑
j=1

wjµxj
+ µxK

(
wK +

1
µbλ
)

=
K∑

j=1

wjµxj
+

µxK

µbλ (18)

V [ ̂AUC0−∞] ≈
K−1∑
j=1

w2
j σ2

xj
+

(
σ2bλ
µ4bλ
)(

µ2
xK

+ σ2
xK

)
+ (19)

σ2
xK

(
wK +

1
µbλ +

σ2bλ
µ3bλ
)2

.

Variance Estimation

The unknown variance of ̂AUC0−∞ presented in equation 19 can be estimated by

V̂ [ ̂AUC0−∞] =
K−1∑
j=1

w2
j s2

xj
+

∑J
l=K+1 u2

l s
2
yl(∑J

l=K+1 ulyl

)4

(
x2

K + s2
xK

)
(20)

s2
xK

wK − 1∑J
l=K+1 ulyl

−
∑J

l=K+1 u2
l s

2
yl(∑J

l=K+1 ulyl

)3


2

where

xj =
1
nj

nj∑
i=1

xij yj =
1
nj

nj∑
i=1

yij (21)

s2
xj

=
1

(nj − 1)

nj∑
i=1

(xij − xj)
2

s2
yj

=
1

(nj − 1)

nj∑
i=1

(
yij − yj

)2 (22)

s2
xj

=
1
nj

s2
xj

s2
yj

=
1
nj

s2
yj

. (23)

The bias corrections in equations 5 and 15 can also be assessed by using these
estimates for µxj , µyj , σ

2
xj

, σ2
yj

, σ2
xj

and σ2
yj

.

Asymptotic Distribution

Lemma 1 Let {tj} ∈ R+
0 be a strictly monotone increasing sequence of fixed

time points with 1 ≤ j ≤ J . Let nj = n and let the range of the xij be effectively
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positive. When the Lindeberg-Levy conditions hold at every time point tj, then

√
n

 K∑
j=1

wjxj +
xK

λ̂
−

 K∑
j=1

wjµxj +
µxK

µbλ
 d→ N

(
0, ξ2

)
(K < J) (24)

where

ξ2 =
K−1∑
j=1

w2
j σ2

xj
+ σ2

xK

(
wK +

1
µbλ
)2

+
µ2

xK

µ4bλ
J∑

j=K+1

u2
jσ

2
yj

. (25)

Proof. Let T n = (x1, . . . , xK , yK+1, . . . , yJ) with pairwise independent ele-
ments, and let E[T n] =µ =

(
µx1 , . . . , µxK

, ln
(
µxK+1

)
, . . . , ln (µxJ

)
)
and V [T n] =

1
nΣ. By the multivariate central limit theorem the sequence

√
n (T n − µ) con-

verges in distribution to N (0,Σ). Let φ : RJ → R1 be defined as

φ
(
x1, ..., xK , yK+1, ..., yJ

)
=

K−1∑
j=1

wjxj + xK

(
wK +

1

λ̂

)
(26)

=
K−1∑
j=1

wjxj + xK

wK −

 J∑
j=K+1

ujyj

−1


with the partial derivatives at µ

φ′µ =

(
w1, . . . , wK−1, wK +

1
µbλ ,

µxK
uK+1

µ2bλ , . . . ,
µxK

uJ

µ2bλ
)

. (27)

Since {tj} is strictly monotone increasing and µxj
> 0 results in µbλ > 0. All ele-

ments of φ′µ are therefore continuous at µ and the sequence Zn =
√

n (φ (T n)− φ (µ))

converges in distribution to N
(
0, φ′µΣ

(
φ′µ
)t) by the multivariate delta method

which is a consequence of Taylor’s theorem and Slutky’s theorems [10] with

φ′µΣ
(
φ′µ
)t =

K−1∑
j=1

w2
j σ2

xj
+ σ2

xK

(
wK +

1
µbλ
)2

+
µ2

xK

µ4bλ
J∑

j=K+1

u2
jσ

2
yj

. (28)

Note that under the Lindeberg-Levy conditions

lim
n→∞

β = lim
n→∞

µxK

µ3bλ
J∑

j=K+1

u2
j

σ2
yj

n
= 0 (29)

and
∑K

j=1 wjxj + xK λ̂−1 is therefore an asymptotically unbiased estimator for∑K
j=1 wjµxj + µxK

µ−1bλ as shown in the Lemma.
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Confidence Intervals

A large sample approximation of the 1 − α confidence interval for AUC0−∞
equals [

̂AUC0−∞ − z1−α
2

ξ√
n

; ̂AUC0−∞ + z1−α
2

ξ√
n

]
(30)

where z1−α
2

is the 1 − α
2 quantile of a standard normal distribution. This

confidence interval depends on the unknown parameter ξ which can be regarded
as a function of µxj , µyj , σ

2
xj

and σ2
yj

. In practice, this unknown variance can be
assessed by using the corresponding estimates presented in equations 21 and 22.

Using the variance estimator presented in equation 20 leads to a bootstrap-t
confidence interval without using the inefficient nested bootstrap. The following
bootstrap-t confidence interval at level 1−α is suggested for small sample sizes

[
̂AUC0−∞ − t∗1−α

2

√
V̂ [ ̂AUC0−∞]; ̂AUC0−∞ − t∗α

2

√
V̂ [ ̂AUC0−∞]

]
(31)

where t∗α
2

and t∗1−α
2

are the corresponding quantiles of the bootstrap distribution
of the pivot statistic. It is clear that stratified bootstrapping has to be performed
using the different time points as strata variables.

Simulations

We use the following very simple and artificial concentration data model

x = f (t) =
{

c−1at t ≤ c
a exp (−b (t− c)) t ≥ c

(32)

which leads to

AUC0−∞ =
a

c

∫ c

0

tdt + a

∫ ∞

c

exp (−b (t− c)) dt. (33)

To take care of the bias of the linear trapezoidal rule to approximate the
integral, the true AUC0−∞ was defined by equation 1 on µxj = f (t/t = tj)
specified at baseline and at 10 fixed time points which is a typical number of
time points in a serial sacrifice design.

Empirical coverage probabilities of the asymptotic and bootstrap-t confi-
dence intervals were assessed by simulations. Within each simulation run, n
random samples were drawn from the different time points using normal and
log-normal distributed errors. We used a per time point variability of 20%
for normal distributed errors and 5% for log-normal distributed errors (on the
log-scale).

For the bootstrap-t confidence intervals, 1000 bootstrap replications were
used. The empirical coverage probability are based on 5000 simulation runs
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and a nominal coverage probability of 1 − α = 0.95. The elimination rate was
calculated based on the last 3 time points. Source code in R [11] for calculation
of bootstrap-t and asymptotic confidence intervals can be obtained from the
authors.

Results

Table 1: Empirical Coverage Using a Nominal Coverage Probability of 95%
Error distribution Sample size Type of confidence Interval

per time point Asymptotic Bootstrap-t
Normal 3 0.782 0.862

5 0.841 0.893
100 0.952 0.936

Log-normal 3 0.859 0.913
5 0.895 0.911

100 0.942 0.948

Simulations using sample size of 3 and 5 per time point which are typical
sample sizes for this type of studies indicate better coverage probabilities using
bootstrap-t confidence intervals for normal and log-normal distributed errors.
Asymptotic confidence intervals based on the normal distribution are therefore
not recommended for such small sample size due to the substantial lack of
coverage. Using a theoretical sample size of 100 animals per time point, both the
asymptotic and the bootstrap-t confidence intervals indicate sufficient coverage.

For asymmetrically distributed statistics like ̂AUC0−∞ the bootstrap-t some-
times performs poorly [12]. However, the bootstrap-t confidence interval indi-
cate better coverage than the confidence interval based on the asymptotic normal
distribution for a small sample size per time point.

Example

The female mice data [5] are used to calculate a 95% bootstrap-t confidence
interval for AUC0−∞ using 1000 bootstrap replications per time point. The
elimination rate is calculated using data from the last three time points. The
estimates for different AUCs in µgxhxmL−1 are ̂AUC0−18h = 782, ̂AUC0−32h =
959 and ̂AUC0−∞ = 1030 where β̂ = 6.27 and V̂ [ ̂AUC0−∞] = 72.12. Finally,
the 95% bootstrap-t confidence interval for AUC0−∞ ranges from 832 to 1233
µgxhxmL−1 whereas the 95% confidence interval using the asymptotic normal
distribution ranges from 890 to 1171 µgxhxmL−1.
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Discussion

The presented estimator and its variance depend heavily on the values observed
at time point tK . The time point tK and the subsequent time points used
to calculate the elimination rate should be therefore chosen with care. We
suggest to chose tK to be greater than the minimum time to reach the maximum
concentration (Tmax).

Assuming identical variability at specific time points, the variance of the
elimination rate decrease as the sum

∑J
l=K+1 u2

l decrease. To minimize the
variance of the elimination rate σ2bλ the time points on which these parameter is
estimated should be a long way away from each other.

In this article, we made no assumption on the error distribution and from
the theoretical point of view both confidence intervals presented are only asymp-
totically of level 1−α. It would therefore be desirable to develop the exact dis-
tribution of the presented estimate under assumption of normal and log-normal
distributed errors. However, the bootstrap-t confidence interval indicate better
coverage probabilities for small sample sizes than the confidence interval based
on the asymptotic normal distribution.

We assume that the availability of the covariance of ̂AUC0−tJ
and the elim-

ination rate leads to an improved estimate and variance of AUC0−∞, because
data points can be used twice. This covariance is subject to further research.
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