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Abstract. An analysis is given of ∗-representations of rank 2
single vertex graphs. We develop dilation theory for the non-
selfadjoint algebras Aθ and Au which are associated with the com-
mutation relation permutation θ of a 2 graph and, more generally,
with commutation relations determined by a unitary matrix u in
Mm(C)⊗Mn(C). We show that a defect free row contractive repre-
sentation has a unique minimal dilation to a ∗-representation and
we provide a new simpler proof of Solel’s row isometric dilation of
two u-commuting row contractions. Furthermore it is shown that
the C*-envelope of Au is the generalised Cuntz algebra OXu for
the product system Xu of u; that for m ≥ 2 and n ≥ 2 contrac-
tive representations of Aθ need not be completely contractive; and
that the universal tensor algebra T+(Xu) need not be isometrically
isomorphic to Au.

1. Introduction

Kumjian and Pask [19] have introduced a family of C*-algebras as-
sociated with higher rank graphs. In [18], Kribs and Power examined
the corresponding non-selfadjoint operator algebras and recently Power
[25] has presented a detailed analysis of the single vertex case, with
particular emphasis on rank 2 graphs. Already this case contains many
new and intriguing algebras. In this paper, we continue this investiga-
tion by beginning a study of the representation and dilation theory of
these algebras as well as more general algebras determined by unitary
commutation relations.

In the 2-graph case the C*-algebras are the universal C*-algebras
of unital discrete semigroups which are given concretely in terms of a
finite set of generators and relations of a special type. Given a per-
mutation θ of m × n, form a unital semigroup F+

θ with generators
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e1, . . . , em, f1, . . . , fn which is free in the ei’s and free in the fj’s, and
has the commutation relations eifj = fj′ei′ where θ(i, j) = (i′, j′) for
1 ≤ i ≤ m and 1 ≤ j ≤ n. This is a cancellative semigroup with unique
factorization [19, 25].

Consider the left regular representation λ of these relations on `2(F+
θ )

given by λ(w)ξx = ξwx. The norm closed unital operator algebra gen-
erated by these operators is denoted by Aθ. In line with Arveson’s
approach pioneered in [1], we are interested in understanding the com-
pletely contractive representations of this algebra. The message of two
recent papers on the Shilov boundary of a unital operator algebra,
Dritschel and McCullough [11] and Arveson [2], is that a representa-
tion should be dilated to a maximal dilation; and these maximal dila-
tions extend uniquely to ∗-representations of the generated C*-algebra
that factor through the C*-envelope. Thus a complete description of
maximal dilations will lead to the determination of the C*-envelope.

Kumjian and Pask define a ∗-representation of the semigroup F+
θ to

be a representation π of F+
θ as isometries with the following property

which we call the defect free property:

m∑
i=1

π(ei)π(ei)
∗ = I =

n∑
j=1

π(fj)π(fj)
∗.

The universal C*-algebra determined by this family of representations
is denoted C∗(F+

θ ). We shall show that every completely contractive
representation of Aθ dilates to a ∗-representation. This allows us in
particular to deduce that the C*-envelope of Aθ is C∗(F+

θ ). This iden-
tification is due to Katsoulis and Kribs [17] who show, more generally,
that the universal C*-algebra of a higher rank graph (Λ, d) is the en-
veloping C*-algebra of the associated left regular representation algebra
AΛ.

The left regular representation of F+
θ is not a ∗-representation. It is

important though that it dilates (in many ways) to a ∗-representation.
A significant class of representations which play a key role in our

analysis are the atomic ∗-representations. These row isometric repre-
sentations have an orthonormal basis which is permuted, up to unimod-
ular scalars, by each of the generators. They have a rather interesting
structure, and in a sequel to this paper [8], we shall completely classify
them in terms of families of explicit partially isometric representations.
In this paper, we see the precursors of that analysis. The dilation the-
ory for partial isometry representations that we develop will be crucial
to our later analysis.
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These atomic representations also allow us to describe the C*-algebra
C∗(F+

θ ). Such a description relies on an understanding of the Kumjian–
Pask aperiodicity condition. The periodic case is characterized in [9],
leading to the structure of C∗(F+

θ ).
An important tool for us will be Solel’s generalisation of Ando’s

dilation theorem to the case of a pair of row contractions [A1 . . . Am],
[B1 . . . Bn] that satisfy the commutation relations

AiBj =
m∑

i′=1

n∑

j′=1

u(i,j),(i′,j′)Bj′Ai′

where u = u(i,j),(i′,j′) is a unitary matrix in Mmn(C). Solel obtained
this result as part of his analysis of the representation theory for the
tensor algebra T+(X) associated with a product system of correspon-
dences X. We obtain a new simple proof which is based on the Frahzo-
Bunce-Popescu dilation theory of row contractions and the uniqueness
of minimal dilations.

The relevant tensor algebra, as defined in [29], arises as a universal
algebra associated with a product system of correspondences,

Xu = {Ek,l = (Cm)⊗k ⊗ (Cn)⊗l : k, l ∈ Z+},
where the composition maps

Ek,l ⊗ Er,s → Ek+r,l+s

are unitary equivalences determined naturally by u. An equivalent
formulation which fits well with our perspectives is to view T+(Xu) as
the universal operator algebra for a certain class of representations (row
contractive ones) of the norm closed operator algebra Au generated by
creation operators λ(ei), λ(fj) on the Fock space of Xu. These unitary
relation algebras generalise the 2-graph algebras Aθ. While the atomic
representation theory of these algebras remains to be exposed we can
analyse C*-envelopes, C*-algebra structure and dilation theory in this
wider generality and so we do so. Also we prove, as one of the main
results, that a defect free row contractive representation of Au has a
unique minimal row isometric defect free representation.

Prior to Solel’s study [29], the operator algebra theory of product
systems centered on C*-algebra considerations. In particular Fowler
[12], [13] has defined and analyzed the Cuntz algebras OX associated
with a discrete product systems X of finite dimensional Hilbert spaces.
Such an algebra is the universal C*-algebra for certain ∗-representations
satisfying the defect free property. We shall prove that the C*-algebra
envelope of Au is OXu .
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The atomic representations of the 2-graph semigroups F+
θ give many

insights to the general theory. For example we note contrasts with the
representation theory for the bidisc algebra, namely that row contrac-
tive representations of Au need not be contractive, and that contractive
representations of Au need not be completely contractive.

We remark that the structure of automorphisms of the algebras Au

and a classification up to isometric isomorphism has been given in
[26]. In fact we make use of such automorphisms and the failure of
contractivity of row contractive representations to show that T+(Xu)
and Au may fail to be isometrically isomorphic.

2. Two-graphs, semigroups and representations

Let θ ∈ Sm×n be a permutation of m × n. The semigroup F+
θ is

generated by e1, . . . , em and f1, . . . , fn. The identity is denoted as ∅.
There are no relations among the e’s, so they generate a copy of the free
semigroup on m letters, F+

m; and there are no relations on the f ’s, so
they generate a copy of F+

n . There are commutation relations between
the e’s and f ’s given by

eifj = fj′ei′ where θ(i, j) = (i′, j′).

A word w ∈ F+
θ has a fixed number of e’s and f ’s regardless of

the factorization; and the degree of w is (k, l) if there are k e’s and l
f ’s. The length of w is |w| = k + l. The commutation relations allow
any word w ∈ F+

θ to be written with all e’s first, or with all f ’s first,
say w = eufv = fv′eu′ . Indeed, one can factor w with any prescribed
pattern of e’s and f ’s as long as the degree is (k, l). It is straightforward
to see that the factorization is uniquely determined by the pattern and
that F+

θ has the unique factorization property. See also [19, 18, 25].
We do not need the notion of a k-graph (Λ, d), in which Λ is a

countable small category with functor d : Λ → Zk
+ satisfying a unique

factorisation property. However, in the single object (i.e. single vertex)
rank 2 case, with d−1(1, 0), d−1(0, 1) finite, the small category Λ, viewed
as a semigroup, is isomorphic to F+

θ for some θ and d is equal to the
degree map.

Example 2.1. With n = m = 2 we note that the relations

e1f1 = f2e1, e1f2 = f1e2

e2f1 = f1e1, e2f2 = f2e2.

are those arising from the permutation θ in S4 which is the 3-cycle
((1, 1), (1, 2), (2, 1)). We refer to F+

θ as the forward 3-cycle semigroup.
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The reverse 3-cycle semigroup is the one arising from the 3-cycle
((1, 1), (2, 1), (1, 2)).

It can be shown that the 24 permutations of S4 give rise to 9 iso-
morphism classes of semigroups F+

θ , where we allow isomorphisms to
exchange the ei’s for fj’s. The forward and reverse 3-cycles give non-
isomorphic semigroups [25].

Example 2.2. With n = m = 2 the relations

e1f1 = f1e1, e1f2 = f1e2

e2f1 = f2e1, e2f2 = f2e2.

are those arising from the 2-cycle permutation ((1, 2), (2, 1)). We refer
F+

θ in this case as the flip semigroup and Aθ as the flip algebra. The
generated C*-algebra is identified in Example 3.7 and an illuminating
atomic representation is given in Example 4.1.

Consider the left regular representation λ of these relations. This
is defined on `2(F+

θ ) with the orthonormal basis {ξx : x ∈ F+
θ } by

λ(w)ξx = ξwx. The norm closed unital operator algebra generated by
these operators is denoted by Aθ.

Definition 2.3. A representation of F+
θ is a semigroup homomorphism

σ : F+
θ → B(H). If it extends to a continuous representation of the

algebra Aθ, then it is said to be contractive or completely contractive
if the extension to Aθ has this property.

A representation of F+
θ is partially isometric if the range consists of

partial isometries on the Hilbert space H and is isometric if the range
consists of isometries.

A partially isometric representation is atomic if there is an orthonor-
mal basis which is permuted, up to scalars, by each partial isometry.
That is, π is atomic if there is a basis {ξk : k ≥ 1} so that for each
w ∈ F+

θ , π(w)ξk = αξl for some l and some α ∈ T ∪ {0}.
A representation σ is row contractive if [σ(e1) . . . σ(em)] and

[σ(f1) . . . σ(fn)] are row contractions, and is row isometric if these row
operators are isometries. A row contractive representation is defect free
if

m∑
i=1

σ(ei)σ(ei)
∗ = I =

n∑
j=1

σ(fj)σ(fj)
∗.

A row isometric defect free representation is called a ∗-representation of
F+

θ . We reserve the term defect free for row contractive representations.

The row isometric condition is equivalent to saying that the σ(ei)’s
are isometries with pairwise orthogonal range; and the same is true
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for the σ(fj)’s. In a defect free, isometric representation, the σ(ei)’s
generate a copy of the Cuntz algebra Om (respectively the σ(fj)’s gen-
erate On) rather than a copy of the Cuntz–Toeplitz algebra Em (resp.
En) as is the case for the left regular representation. The left regular
representation λ is row isometric, but is not defect free.

There is a universal C*-algebra C∗(F+
θ ) which can be described by

taking a direct sum πu of all ∗-representations on a fixed separable
Hilbert space, and forming the C*-algebra generated by πu(F+

θ ). It is
the unique C*-algebra generated by a ∗-representation of F+

θ with the
property that given any ∗-representation σ, there is a ∗-homomorphism
π : C∗(F+

θ ) → C∗(σ(F+
θ )) so that σ = ππu. This C*-algebra is a higher

rank graph C*-algebra in the sense of Kumjian and Pask [19] for the
rank two single vertex graph determined by θ.

Example 2.4. Type 3a representations. We now define an impor-
tant family of atomic ∗-representations of F+

θ . The name refers to the
classification obtained in [8].

Start with an arbitrary infinite word or tail τ = ei0fj0ei1fj1 . . . . Let
Gs = G := F+

θ , for s = 0, 1, 2, . . . , viewed as a discrete set on which the
generators of F+

θ act as injective maps by right multiplication, namely,

ρ(w)g = gw for all g ∈ G.

Consider ρs = ρ(eisfjs) as a map from Gs into Gs+1. Define Gτ to be
the injective limit set

Gτ = lim
→

(Gs, ρs);

and let ιs denote the injections of Gs into Gτ . Thus Gτ may be viewed
as the union of G0,G1, . . . with respect to these inclusions.

The left regular action λ of F+
θ on itself induces corresponding maps

on Gs by λs(w)g = wg. Observe that ρsλs(w) = λs+1(w)ρs . The
injective limit of these actions is an action λτ of F+

θ on Gτ . Let λτ

also denote the corresponding representation of F+
θ on `2(Gτ ). Let

{ξg : g ∈ Gτ} denote the basis. A moment’s reflection shows that
this provides a defect free, isometric representation of F+

θ ; i.e. it is a
∗-representation.

Davidson and Pitts [7] classified the atomic ∗-representations of F+
m

and showed that the irreducibles fall into two types, known as ring
representations and infinite tail representations. The 2-graph situation
analysed in [8] turns out to be considerably more complicated and in
particular it is shown that the irreducible atomic ∗-representations of
F+

θ fall into six types.
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We now define the more general unitary relation algebras Au which
are associated with a unitary matrix u = (u(i,j),(k,l)) in Mmn(C). Also
we define the (universal) tensor algebra T+(Xu) considered by Solel [29]
and the generalised Cuntz algebra O(Xu), both of which are associated
with a product system Xu for u.

Let e1, . . . , em and f1, . . . , fn be viewed as bases for the vector spaces
E = Cm and F = Cn respectively. Then u provides an identification
u : E ⊗ F → F ⊗ E such that

ei ⊗ fj =
m∑

i′=1

n∑

j′=1

u(i,j),(i′,j′)fj′ ⊗ ei′

or, equivalently,

fl ⊗ ek =
m∑

i=1

n∑
j=1

ū(i,j),(k,l)ei ⊗ fj.

Moreover, for each pair (k, l) in Z2
+ with k + l = r, u determines an

unambiguous identification G1 ⊗ · · · ⊗Gr → H1 ⊗ · · · ⊗Hr, whenever
each Gi and Hi is equal to E or F and is such that the multiplicity of
E and F in each product is k and l respectively. Thus these different
patterns of multiple tensor products of E and F are identified with
E⊗k⊗F⊗l. The family Xu = {E⊗k⊗F⊗l} together with the associative
multiplication ⊗ induced by u, as above, is an example of a product
system over Z2

+, consisting of finite dimensional Hilbert spaces.
Let Hu be the Z2

+-graded Fock space
∑∞

k=0

∑∞
l=0⊕(E⊗k⊗F⊗l) with

the convention E⊗0 = F⊗0 = C. The left creation operators Lei
, Lfj

are defined on Hu in the usual way. Thus

Lfi
(ei1⊗· · ·⊗eik ⊗fj1⊗· · ·⊗fjl

) = fi⊗ (ei1⊗· · ·⊗eik ⊗fj1⊗· · ·⊗fjl
).

As in [26] we define the unitary relation algebra Au to be the norm
closed algebra generated by these shift operators. Note that for F+

θ

we have Aθ = Au where the unitary is the permutation matrix u with
u(i,j),(i′,j′) = 1 if θ(i, j) = (i′, j′) and u(i,j),(i′,j′) = 0 otherwise. In
consistency with the notation for the left regular representation of F+

θ

we shall write ξeufv for the basis element ei1 ⊗ · · · ⊗ eik ⊗ fj1 ⊗ · · · ⊗ fjl

where (with tolerable notation ambiguity) u = i1 . . . ik and v = j1 . . . jl.
We define F+

u to be the semigroup generated by the left creation
operators. Moreover we are concerned with representations of this
semigroup that satisfy the unitary commutation relations, that is, with
representations that extend to the complex algebra C[F+

u ] generated by
the creation operators. This will be an implicit assumption henceforth.
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Thus a unital representation σ of F+
u is determined by two row oper-

ators A = [A1 . . . Am], B = [B1 . . . Bn] that satisfy the commutation
relations

AiBj =
m∑

i′=1

n∑

j′=1

u(i,j),(i′,j′)Bj′Ai′ .

The terms row contractive, row isometric, and partially isometric are
defined as before, and we say that σ is contractive or completely con-
tractive if the extension of σ to Au exists with this property.

In [29], Solel defines the universal non-selfadjoint tensor algebra
T+(X) of a general product system X of correspondences. In the
present context it is readily identifiable with the universal operator
algebra for the family of row contractive representations πA,B and we
take this as the definition of the tensor algebra T+(Xu).

On the C*-algebra side the generalised Cuntz algebra OX associated
with a product system X is the universal algebra for a natural family
∗-representation of X. See [12], [13], [14]. In the present context this
C*-algebra is the same as the universal operator algebra for the family
of defect free row isometric representations πS,T and we take this as the
definition of OXu .

We shall not need the general framework of correspondences, for
which the associated C*-algebras are the Cuntz-Pimsner algebras. See
[27] for an overview of this. However, let us remark that the direct sys-
tem Xu is a direct system of correspondences over C. The universality
in [29] entails that T+(Xu) is the completion of C[F+

u ] with respect to
representations πA,B for which each restriction πA,B|E⊗k ⊗F⊗l is com-
pletely contractive with respect to the matricial norm structure arising
from the left regular inclusions E⊗k ⊗ F⊗l ⊆ Au. These matricial
spaces are row Hilbert spaces and so, taking (k, l) = (1, 0) and (0, 1)
we see that A and B are necessarily row contractions. This necessary
condition is also sufficient. Indeed, each restriction πA,B|E⊗k ⊗ F⊗l is
determined by a single row contraction [T1 . . . TN ] (which is a tensor
power of A and B) and these maps, which are of the form

(α1, . . . , αN) → [α1T1, . . . , αNTN ],

are completely contractive.

Example 2.5. We now show that as in the case of the permutation al-
gebras Aθ, the algebra Au has a defect free row isometry representation
λτ associated with each infinite tail τ . In particular there are nontrivial
∗-representations (Cuntz representations) for the product system Xu

and OXu is nontrivial.
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Consider, once again, an infinite word or tail τ = ei0fj0ei1fj1 . . . .
Let Ht = Hu, for t = 0, 1, 2, . . . , and for s = 0, 1, . . . , define isometric
Hilbert space injections ρs : Hs → Hs+1 with ρs(ξ) = ξ⊗eisfjs for each
ξ ∈ E⊗k ⊗ F⊗l and all k, l. Let Hτ be the Hilbert space lim

→
Hs, with

each Hs identified as a closed subspace and let λτ denote the induced
isometric representation of F+

u on Hτ .
It follows readily that λτ is a row isometric representation. Moreover,

it is a ∗-representation of F+
u , that is, λτ has the defect free property.

To see this, let ξs
eufv

denote the basis element of H equal to ξeufv in Hs

where eu and fv are words as before with lengths |u| = k ≥ 0, |v| =
l ≥ 0. Then ξs

eufv
= ξs+1

eufveisfjs
. The commutation relations show that

this vector lies both in the subspace of Hs+1 spanned by the spaces
λτ (ei)E

k ⊗ F l+1, i = 1, . . . , m, and in the subspace spanned by the
spaces λτ (fj)E

k+1 ⊗ F l, j = 1, . . . , n. It follows that the range pro-
jections of the isometries λτ (ei), and also those of λτ (fj), sum to the
identity.

3. C∗(Au) and the C*-envelope

There are three natural C*-algebras associated with Au namely the
generated C*-algebra C∗(Au), the universal C*-algebra OXu , and the
C*-envelope C∗

env(Au). By its universal property the latter algebra is
the smallest C*-algebra containing Au completely isometrically. In the
case of Aθ the generated C*-algebra is simply the C*-algebra generated
by the left regular representation of the semigroup F+

θ .
In this section we show that C∗

env(Aθ) = C∗(F+
θ ) and more generally

that C∗
env(Au) = OXu . Also we analyse ideals and show how this algebra

is a quotient of C∗(Au).

Lemma 3.1. Let λτ be any type 3a representation of F+
θ . Then the

imbedding of Aθ into C∗(λτ (F+
θ )) is a complete isometry. Also, if λτ is

a tail representation of Au then the imbedding of Au into C∗(λτ (Au))
is a complete isometry.

Proof. Let A be the norm closed subalgebra of C∗(λτ (F+
θ )) generated

by λτ (F+
θ ). We showed in Example 2.4 that λτ is an inductive limit

of copies of λ. That is, `2(Gτ ) is the closure of an increasing union of
subspaces `2(Gs), each is invariant under A, and the restriction of λτ to
`2(Gs) is unitarily equivalent to λ. The norm of any matrix polynomial
is thus determined by its restrictions to these subspaces, and the norm
on each one is precisely the norm in Aθ. It follows that A is completely
isometrically isomorphic to Aθ. The same argument applies to a tail
representation of the unitary relation algebra Au.
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Corollary 3.2. There is a canonical quotient map from C∗(F+
θ ) onto

C∗(λτ (F+
θ )) and, more generally, from OXu onto C∗(λτ (Au)). Also

there is a canonical quotient map from C∗(λτ (Au)) onto C∗
env(Au).

Proof. That there are canonical quotient maps from the universal
C*-algebras C∗(F+

θ ) and OXu follows from the fact that λτ is a ∗-
representation.

By Lemma 3.1, Au imbeds completely isometrically in C∗(λτ (Au)).
Hence there is a canonical quotient map of C∗(λτ (Au)) onto C∗

env(Au)
which is the identity on Au.

3.3. Gauge automorphisms. First we consider the graph C*-algebra
C∗(F+

θ ). It will be convenient in this subsection to consider a faithful
representation π, or equivalently a ∗-representation π of F+

θ , so that
C∗(F+

θ ) = C∗(π(F+
θ )). The universal property of C∗(F+

θ ) yields a family
of gauge automorphisms γα,β for α, β ∈ T determined by

γα,β(π(ei)) = απ(ei) and γα,β(π(fj)) = βπ(fj).

Integration around the 2-torus yields a faithful expectation

Φ(X) =

∫

T2

γα,β(X) dα dβ.

It is easy to check on monomials that the range is spanned by words
of degree (0, 0) (where π(ei)

∗ and π(fj)
∗ count as degree (−1, 0) and

(0,−1) respectively).
Kumjian and Pask identify this range as an AF C*-algebra. In our

case, the analysis is simplified. To recap, the first observation is that
any monomial in e’s, f ’s and their adjoints can be written with all of
the adjoints on the right. Clearly the row isometric condition means
that

π(fi)
∗π(fj) = δij = π(ei)

∗π(ej).

Also, observe that if fjek = ek′fjk
, for 1 ≤ k ≤ m, then

π(ei)
∗π(fj) = π(ei)

∗π(fj)(
∑

k

π(ek)π(ek)
∗)

=
∑

k

π(ei)
∗π(ek′)π(fjk

)π(ek)
∗ =

∑

k

δik′π(fjk
)π(ek)

∗.

So, in the universal representation, every word in the generators and
their adjoints can be expressed as a sum of words of the form xy∗ for
x, y ∈ F+

θ .
Next, observe that for each integer s ≥ 1, the words Ws of degree

(s, s) determine a family of degree (0, 0) words, namely
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{π(x)π(y)∗ : x, y ∈ Ws}. It is clear that

π(x1)π(y1)
∗π(x2)π(y2)

∗ = δy1,x2π(x1)π(y2)
∗.

Thus these operators form a family of matrix units that generate a uni-
tal copy Fs of the matrix algebra M(mn)s(C). Moreover, these algebras
are nested because the identity

π(x)π(y)∗ = π(x)
∑

i

π(ei)π(ei)
∗ ∑

j

π(fj)π(fj)
∗ π(y)∗

allows one to write elements of Fs in terms of the basis for Fs+1.
It follows that the range of the expectation Φ is the (mn)∞-UHF

algebra F =
⋃

s≥1 Fs. This is a simple C*-algebra.
An almost identical argument is available for the C*-algebra OXu .

(See also [12, Proposition 2.1].) As above there is an abelian group of
gauge automorphisms γα,β and the map Φ : OXu → OXu is a faithful
expectation onto its range. Moreover the range is equal to the fixed
point algebra, Oγ

Xu
, of the automorphism group and this can be iden-

tified with a UHF C*-algebra, FXu say. To see this, note that in the
universal representation, we have

e∗i fj = e∗i fj(
∑

k

eke
∗
k)

=
∑

k

m∑

i′=1

n∑

j′=1

ū(i′,j′),(k,j)e
∗
i ei′fj′e

∗
k

=
∑

k

n∑

j′=1

ū(i,j′),(k,j)fj′e
∗
k.

This, as before, leads to the fact that the operators π(x)π(y∗), for
x, y ∈ Xu, span a dense ∗-algebra in OXu . Moreover, the span of

{π(x)π(y∗) : x, y ∈ E⊗s ⊗ F⊗t, (s, t) ∈ Z2
+}

has closure equal to the range of Φ and, as before, this is a UHF C*-
algebra.

Lemma 3.4. Let λτ be a tail representation of Au. Then the C*-
algebras C∗(λτ (Au)) and C∗

env(Au) carry gauge automorphisms which
commute with the natural quotient maps

OXu → C∗(λτ (Au)) → C∗
env(Au)

In the case of C∗(λτ (Au)), the gauge automorphisms are unitarily im-
plemented.
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Proof. We use the notation of Example 2.5. Thus ξs+1
weisfjs

= ξs
w and

ξs
eufv

= ξs+k
w = ξs+k

eu′fv′
,

where

w = eufveisfjs . . . eis+k−1fjs+k−1 = eu′fv′ ;

moreover |u′| = |u|+ k and |v′| = |v|+ k.
Thus we may define a well-defined diagonal unitary Uα,β on Hτ such

that, for s ≥ 0,

Uα,βξs
eufv

= α|u|−sβ|v|−sξs
eufv

.

Now

Uα,βλτ (ei)U
∗
α,βξs

eufv
= αξs

eieufv
= αλτ (ei)ξ

s
eufv

and

Uα,βλτ (fj)U
∗
α,βξs

eufv
= βξs

fjeufv
= βλτ (fj)ξ

s
eufv

.

It follows that Ad Uα,β determines an automorphism of λτ (Au), denoted
also by γα,β in view of the gauge action.

These automorphisms are completely isometric, since they are re-
strictions of ∗-automorphisms. So by the universal property of the
C*-envelope, each automorphism has a unique completely positive ex-
tension to C∗

env(Au) and the extension is a ∗-isomorphism. In this way
a gauge action is determined on C∗

env(Au). That the maps commute
with the quotients is evident.

The next lemma follows a standard technique in graph C*-algebra.
See [19, Theorem 3.4] for example.

Lemma 3.5. Let π : OXu → B be a homomorphism of C*-algebras
and let δ : T2 → Aut(B) be an action such that π ◦ γα,β = δα,β ◦ π for
all (α, β) in T2. Suppose that π is nonzero on the UHF subalgebra FXu.
Then π is faithful.

Proof. As before let Φ be the expectation map on OXu , and let Φδ the
expectation on B induced by δ. If π(x) = 0, then

0 = Φδ(π(x∗x)) = π(Φ(x∗x)).

Since FXu is simple and the restriction of π to it is non zero by as-
sumption it follows that the restriction is faithful. Thus Φ(x∗x) = 0
and now the faithfulness of Φ implies x = 0.

Theorem 3.6. The C*-envelope of the unitary relation algebra Au is
the generalised Cuntz algebra OXu of the product system Xu for the
unitary matrix u. In particular the C*-envelope of Aθ is C∗(F+

θ ). Also
each tail representation λτ extends to a faithful representation of OXu.
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Proof. This is immediate from the lemma in view of the fact that there
is a quotient map q of OXu onto C∗

env(Au) which commutes with gauge
automorphisms on both algebras.

Example 3.7. Consider the flip graph semigroup F+
θ of Example 2.2.

Kumjian and Pask observed that C∗(F+
θ ) ' O2 ⊗ C(T). To see this in

an elementary way, consider the relations

eifj = fiej for all 1 ≤ i, j ≤ 2.

Suppose that σ(ei) = Ei and σ(fj) = Fj is a ∗-representation. Then Ei

and Fi have the same range for i = 1, 2. Therefore there are unitaries
Ui so that Fi = EiUi. Then the commutation relations show that

E2
1U1 = E1U1E1 E1E2U2 = E1U1E2

E2E1U1 = E2U2E1 E2
2U2 = E2U2E2.

Therefore

E1U1 = U1E1 = U2E1 and E2U2 = U2E2 = U1E2.

It follows that U1 = U2 =: U on Ran E1 + Ran E2 = H; and that U
commutes with C∗(E1, E2) ' O2.

Consequently an irreducible ∗-representation π of C∗(F+
θ ) sends U to

a scalar tI, and the restriction of π to C∗(e1, e2) is a ∗-representation
of O2. All representations of O2 are ∗-equivalent because O2 is simple.
Therefore, π(fi) = tπ(ei) and C∗(π(F+

θ )) ' O2. It is now easy to see
that

C∗(F+
θ ) ' O2 ⊗ C(T) ' C(T,O2).

By Theorem 3.6, this is also the C*-envelope C∗
env(Aθ). The structure

of C∗(Aθ) is will now follow from Lemmas 3.10 and 3.11.

We can use Theorem 3.6 and the theory of C*-envelopes and maxi-
mal dilations to identify the completely contractive representations of
Au with those that have dilations to defect free isometric representa-
tions, that is, to ∗-representations. As we note in the next section, the
contractive representations of Au form a wider class. First we recap
the significance of maximal dilations.

Recall that a representation π of an algebra A, or semigroup, on a
Hilbert space K is a dilation of a representation σ on a Hilbert space H
if there is an injection J ofH into K so that JH is a semi-invariant sub-
space for π(A) (i.e. there is a π(A)-invariant subspace M orthogonal
to JH so that M⊕ JH is also invariant) so that J∗π(·)J = σ(·).

A dilation π of σ is minimal if the smallest reducing subspace con-
taining JH is all of K. This minimal dilation is called unique if for any
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two minimal dilations πi on Ki, there is a unitary operator U from K1

to K2 such that J2 = UJ1 and π2 = Ad Uπ1.
Generally we are interested in dilations within the same class, such as

row contractive representations of semigroups which are generated by
two free families, or completely contractive representations of algebras.
A representation σ within a certain class of representations is called
maximal if every dilation π of σ has the form π ' σ⊕π′, or equivalently
JH always reduces π. It is possible for a dilation to be both minimal
and maximal.

In his seminal paper [1], Arveson showed how to understand non-
selfadjoint operator algebras in terms of dilation theory. He defined
the C*-envelope of an operator algebra A to be the unique C*-algebra
C∗

env(A) containing a completely isometrically isomorphic copy of A
which generates it, but any proper quotient is no longer completely
isometric on A. He was not able to show that this object always exists,
but that was later established by Hamana [16]. For background on
C*-envelopes, see Paulsen [22].

A completely contractive unital representation of an operator al-
gebra A ⊂ C∗(A) has the unique extension property if there is a
unique completely positive extension to C∗(A) and this extension is
a ∗-representation. If this ∗-representation is irreducible, it is called a
boundary representation.

There is a new proof of the existence of the C*-envelope. Dritschel
and McCullough [11] showed that the C*-envelope can be constructed
by exhibiting sufficiently many representations with the unique exten-
sion property. Arveson [2] completed his original program by then
showing that it suffices to use irreducible representations.

The insight of Dritschel and McCullough, based on ideas of Agler,
was that the maximal completely contractive dilations coincide with
dilations with the unique extension property. Therefore maximal di-
lations factor through the C*-envelope. In particular, a maximal rep-
resentation σ which is completely isometric yields the C*-envelope:
C∗

env(A) = C∗(σ(A)).
From a different point of view, this was also observed by Muhly and

Solel [20]. They show that a completely contractive unital represen-
tation factors through the C*-envelope if and only if it is orthogonally
injective and orthogonally projective. While we do not define these no-
tions here, we point out that it is easy to see that these two properties
together are equivalent to being a maximal representation.

The upshot of the theory of C*-envelopes and maximal dilations is
the following consequence. Recall that a ∗-representation of F+

u is a
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representation satisfying the unitary commutation relations which is
isometric and defect free.

Theorem 3.8. Let σ be a unital representation F+
u satisfying the uni-

tary commutation relations. Then the following are equivalent:

(1) σ dilates to a ∗-representation of F+
u .

(2) σ is completely contractive, that is, σ extends to a completely
contractive representation of Au.

In particular a unital representation of the semigroup F+
θ dilates to a

∗-representation if and only if it is completely contractive.

Proof. Suppose that σ dilates to a ∗-dilation π. By the definition
of OXu , π extends to a ∗-representation of OXu . By Theorem 3.6,
Au sits inside OXu completely isometrically. As ∗-representations are
completely contractive, it follows that π restricts to a completely con-
tractive representation of Au. By compression to the original space,
we see that σ is also completely contractive on Au.

Conversely, any completely contractive representation σ of Au has a
maximal dilation π. Thus it has the unique extension property, and so
extends to a ∗-representation of C∗

env(Au). By Theorem 3.6, C∗
env(Au) =

OXu . Therefore π restricts to a ∗-representation of F+
u .

3.9. Ideals of the C*-algebra C∗(Au). We shall show that OXu is a
quotient of C∗(Au). Indeed, there are several ideals that are evident:

K :=
〈(

I −
∑

i

λ(ei)λ(ei)
∗)(I −

∑
j

λ(fj)λ(fj)
∗)〉

I :=
〈(

I −
∑

i

λ(ei)λ(ei)
∗)〉

J :=
〈(

I −
∑

j

λ(fj)λ(fj)
∗)〉

I + J =
〈(

I −
∑

i

λ(ei)λ(ei)
∗), (I −

∑
j

λ(fj)λ(fj)
∗)〉.

Note that the projections

P = (I −
∑

i

λ(ei)λ(ei)
∗) and Q = (I −

∑
j

λ(fj)λ(fj)
∗)

are the projections onto the subspaces

∞∑

l=0

C⊗ F⊗l and
∞∑

k=0

E⊗k ⊗ C
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and that PQ = QP is the rank one projection ξ?ξ∗?. Note that
λ(eufv))ξ?ξ∗?λ(esft)

∗ is the rank one operator ξeufvξ
∗
esft

mapping ba-
sis element ξesft to basis element ξeufv . Thus a complete set of matrix
units for L(Hu) is available in K, and so K = K, the ideal of compact
operators.

The projection P generates a copy of K in C∗({ei}) ' Em, where the
matrix units permute the subspaces

ξeu ⊗ (
∞∑

l=0

C⊗ F⊗l) = span{ξeufv : fv ∈ F+
n }.

Also it is clear that PAuP is a copy of An, the noncommutative disk
algebra generated by f1, . . . , fn and so it generates a copy of the Cuntz–
Toeplitz algebra En acting on PHu. It is now easy to see that I is
∗-isomorphic to K⊗ En.

Similarly, J is isomorphic to Em ⊗ K. The intersection of these two
ideals is I ∩J = K; and K is isomorphic to K⊗K sitting inside both I
and J . Then I + J is also an ideal by elementary C*-algebra theory.

Lemma 3.10. The quotient C∗(Au)/(I+J ) is isomorphic to OXu.

Proof. The quotient C∗(Au)/(I+J ) yields a representation of F+
u as

isometries. It is defect free by construction, and thus C∗(Au)/(I+J )
is a quotient of OXu . It is easy to see that the gauge automorphisms
leave I, J and K invariant; and so C∗(Au)/(I+J ) has a compatible
family of gauge automorphisms. Thus the quotient is again isomorphic
to C∗(F+

u ) as in the proof of Theorem 3.6. In particular, this quotient
is completely isometric on Au.

Lemma 3.11. The only proper ideals of I + J are I, J and K.

Proof. It is a standard result that if a C*-algebra of operators acting
on a Hilbert space contains K, then K is the unique minimal ideal. So
K is the unique minimal ideal of C∗(Au).

Suppose that M is an ideal of I + J properly containing K. Then
M/K is an ideal of

(I+J )/K ' Om ⊗ K⊕ K⊗On.

The two ideals I/K ' Om ⊗ K and J /K ' K ⊗ On are mutually
orthogonal and simple. So the ideal M/K either contains one or the
other or both.

Kumjian and Pask define a notion called the aperiodicity condition
for higher rank graphs. In our context, for the algebra Aθ it means
that there is an irreducible representation of type 3a. They show [19,
Proposition 4.8] that aperiodicity implies the simplicity of C∗(F+

θ ). The
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converse is established by Robertson and Sims [28]. In [9], this is
examined carefully. Aperiodicity seems to be typical, but there are
periodic 2-graphs such as the flip algebra of Example 2.2.

When C∗(F+
θ ) is simple, we have described the complete ideal struc-

ture of C∗(Aθ). For the general case, see [9].

4. Row Contractive Dilations

Now we turn to dilation theory. We saw in Theorem 3.8 that max-
imal completely contractive representations of Au correspond to the
∗-representations of F+

u . In the next section, we will show that defect
free contractive representations of F+

u are completely contractive, and
therefore dilate to ∗-representations. Here we consider row contractive
representations and give a simple proof of Solel’s result that they di-
late to row isometric representations. Despite such favourable dilation
we give examples of contractive representations that contrast signifi-
cantly with the defect free case. In particular we show that contractive
representations of F+

θ need not be completely contractive.

Example 4.1. Consider the flip graph of Examples 2.2 and 3.7. Define
the representation of Aθ on a basis ξ0, ξ1, ξ2, ζ1, ζ2 given by

π(ei) = ζiξ
∗
1 π(f1) = ζ1ξ

∗
0 and π(f2) = ζ2ξ

∗
2 .

Note that π is row contractive.

ξ0
?>=<89:;

1
¸À

44
44

44

44
44

44
ξ1
?>=<89:;

1
¦¦




2
¼¼4

44
44

4
ξ2
?>=<89:;

2
¢ª 








ζ1
?>=<89:; ζ2

?>=<89:;

However π does not dilate to a defect free isometric representation.
To see this, suppose that π has a dilation σ that is isometric and defect
free. The path from ξ0 to ξ2 is given by π(f ∗2 e2e

∗
1f1). However in any

defect free dilation,

σ(f ∗2 e2e
∗
1f1) = σ(f ∗2 e2e

∗
1f1)σ(e1e

∗
1 + e2e

∗
2)

= σ(f ∗2 e2e
∗
1(e1f1e

∗
1 + e1f2e

∗
2))

= σ(f ∗2 e2(f1e
∗
1 + f2e

∗
2))

= σ(f ∗2 f2(e1e
∗
1 + e2e

∗
2))

= σ(1) = I.

Hence ξ2 = σ(f ∗2 e2e
∗
1f1)ξ0 = ξ0, contrary to fact.
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Next we show that π is contractive on Aθ. We need to show that
‖π(x)‖ ≤ ‖λ(x)‖ for x ∈ Aθ. Let

x = a + b1e1 + b2e2 + c1f1 + c2f2 + higher order terms.

Then

π(x) =




a 0 0 0 0
0 a 0 0 0
0 0 a 0 0
c1 b1 0 a 0
0 b2 c2 0 a




=

[
aI3 0
X aI2

]
.

Now the 5× 5 corner of λ(x) on span{ξ?, ξe1 , ξe2 , ξf1 , ξf2} has the form



a 0 0 0 0
b1 a 0 0 0
b2 0 a 0 0
c1 0 0 a 0
c2 0 0 0 a




=

[
a 0
y aI4

]

Note that ‖X‖ ≤ ‖X‖2 = ‖y‖2. So

‖π(x)‖ ≤
∥∥∥∥
[ |a| 0
‖X‖ |a|

]∥∥∥∥ ≤
∥∥∥∥
[ |a| 0
‖y‖ |a|

]∥∥∥∥ ≤ ‖λ(x)‖.

Nevertheless, we show that π is not completely contractive. Let
B1 = B2 =

[
1 0

]
and C1 = −C2 =

[
0 1

]
; and consider the ma-

trix polynomial X = B1e1 + B2e2 + C1f1 + C2f2. Then

‖π(X)‖ =

∥∥∥∥
[

0 1 1 0 0 0
0 0 1 0 0 −1

]∥∥∥∥ =

∥∥∥∥
[
1 1 0
0 1 1

]∥∥∥∥ =
√

3.

By Example 3.7, the C*-envelope of Aθ is O2 ⊗ C(T). As shown
there, an irreducible representation σ is determined by its restric-
tion to C∗(e1, e2) and a scalar t ∈ T so that σ(fi) = tσ(ei). Since
C∗(e1, e2) ' O2 is simple, it does not matter which representation is
used, as all are faithful. Let Si = σ(ei) be Cuntz isometries. Then
the norm λ(X) is determined as the supremum over t ∈ T of these
representations.

‖λ(X)‖ = sup
t∈T

‖(B1 + tC1)⊗ S1 + (B2 + tC2)⊗ S2‖

= sup
t∈T

∥∥∥∥
[
B1 + tC1

B2 + tC2

]∥∥∥∥ = sup
t∈T

∥∥∥∥
[

1 t
1 −t

]∥∥∥∥ =
√

2.

An alternative proof is obtained by noting that by Theorem 3.8, if
π were completely contractive on Aθ, then one could dilate it to a
∗-representation of F+

θ , which was already shown to be impossible.
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A related example shows that a row contractive representation may
not even be contractive.

Example 4.2. Take any F+
θ for which there are indices i0 and j0 so that

there is no solution to ei0fj = fj0ei. The flip graph is such an example,
with i0 = 1 and j0 = 2. Consider the two dimensional representation
π of F+

θ on C2 with basis {ξ1, ξ2} given by

π(ei0) = π(fj0) = ξ2ξ
∗
1 and π(ei) = π(fj) = 0 otherwise.

The product π(eifj) = 0 for all i, j; so this is a representation. Evi-
dently it is row contractive.

ξ1
?>=<89:;

i0
ºº

j0
¤®

ξ2
?>=<89:;

However π(ei0 +fj0) = 2ξ2ξ
∗
1 has norm 2. The hypothesis guarantees

that no word beginning with ei0 coincides with any word beginning
with fj0 . Thus in the left regular representation, λ(ei0) and λ(fj0) are

isometries with orthogonal ranges. Hence ‖λ(ei0 + fj0)‖ =
√

2.
So this row contractive representation does not extend to a contrac-

tive representation of Aθ.

Another problem with dilating row contractive representations is
that the minimal row isometric dilation need not be unique. Consider
the following illustrations.

Example 4.3. Let π be the 2-dimensional trivial representation of F+
θ ,

π(∅) = I2 and π(w) = 0 for w 6= ∅. Evidently this dilates to the row
isometric representation λ⊕ λ; and this is clearly minimal.

Now pick any i, j and factor eifj = fj′ei′ . Inside of the left regular
representation, identify C2 with M0 := span{ξei′ , ξfj

}. Note that the
compression of λ to M0 is unitarily equivalent to π. The invariant
subspace that M0 determines is M = Aθξei′ +Aθξfj

. The restriction
σ of λ toM is therefore a minimal row isometric dilation of π. However

σ(ei)ξfj
= ξeifj

= ξfj′ei′ = σ(fj′)ξei′ .

For any non-zero vector ζ = aξei′ + bξfj
in M0, either σ(ei)

∗σ(fj′)ζ =
aξfj

or ζ itself is a non-zero multiple of ξfj
; and similarly ξei′ belongs

to the reducing subspace containing ζ. Therefore σ is irreducible.
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ξe′i
?>=<89:;

j′
¹Á

66
66

66
6

66
66

66
6

ξfj
GFED@ABC

i
¥¥©©

©©
©©

©

ξeifj
ONMLHIJK

So these two minimal row isometric dilations are not unitarily equiv-
alent.

Example 4.4. Here is another example where the original representa-
tion is irreducible. Consider F+

θ where m = 2, n = 3 and the permuta-
tion θ has cycles

(
(1, 2), (2, 1)

)
and

(
(2, 2), (2, 3), (1, 3)

)
.

Let π be the representation on C3 with basis ζ1, ζ2, ζ3 given by

π(e1) = ζ3ζ
∗
1 and π(f1) = ζ3ζ

∗
2

and all other generators are sent to 0. We show that this may be dilated
to a subrepresentation of λ in two different ways.

First identify ζ1 with ξf1 , ζ2 with ξe1 and ζ3 with ξe1f1 = ξf1e1 . Then a
minimal row isometric dilation is obtained by σ1 = λ|M1 where M1 =
Aθξe1 +Aθξf1 . A second dilation is obtained from the identification of
ζ1 with ξf2 , ζ2 with ξe2 and ζ3 with ξe1f2 = ξf1e2 . Then σ2 = λ|M2 where

M2 = Aθξe2 +Aθξf2 .
These two dilations are different because

σ1(e2)ξf1 = ξe2f1 = ξf2e1 = σ1(f2)ξe1

while

σ2(e2)ξf2 = ξe2f2 6= ξf2e2 = σ2(f2)ξe2 .

So the two dilations are not equivalent.
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ξf2
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With these examples as a caveat, we provide a simple proof of Solel’s
result [29, Corollary 4.5]. Our proof is based on the much more ele-
mentary result of Frahzo [15], Bunce [3] and Popescu [23] that every
contractive n-tuple has a unique minimal dilation to a row isometry.

First we recall some details of Bunce’s proof. Consider a row con-
traction A =

[
A1 . . . Am

]
. Following Schaeffer’s proof of Sz. Nagy’s

isometric dilation theorem, let DA = (ICm⊗H − A∗A)1/2. Observe

that

[
A
DA

]
is an isometry. Hence the columns

[
Ai

D
(i)
A

]
are isometries

with pairwise orthogonal ranges in B(H,H ⊕ V ⊗ H) where V = Cm.
Now consider K = V ⊗ H ⊗ `2(F+

m) where we identify V ⊗ H with
V ⊗ H ⊗ Cξ? inside K. Let λ be the left regular representation of
F+

m on `2(F+
m), and set Li = λ(ei). Define isometries on H ⊕ K by

Si =




Ai 0[
D

(i)
A

0

]
IV⊗H ⊗ Li


. These isometries have the desired proper-

ties except minimality. One can then restrict to the invariant subspace
M generated byH. Popescu establishes the uniqueness of this minimal
dilation in much the same way as for the classical case.

Lemma 4.5. Let S =
[
S1 . . . Sm

]
be a row isometry, where each

Si ∈ B(H ⊕ K) is an isometry that leaves K invariant. Suppose that
there is a Hilbert space W so that K ' W⊗ `2(F+

m) and Si|K ' IW⊗Li

for 1 ≤ i ≤ m. Let M be the smallest invariant subspace for {Si}
containing H. Then M reduces {Si} and there is a subspace W0 ⊂ W
so that M⊥ ' W0 ⊗ `2(F+

m).

Proof. Clearly M =
∨

w∈F+
m

SwH. For any non-trivial word w = iw′

in F+
m, S∗j SwH = δijSw′H; and S∗jH ⊂ H because K = H⊥ is invariant

for Sj. So M reduces each Sj.
Thus M⊥ ⊂ K ' W ⊗ `2(F+

m) reduces each Si|K ' IW ⊗ Li.
But W ∗(L1, . . . , Lm) = B(`2(F+

m)) because C∗(L1, . . . , Lm) contains the
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compact operators. Hence W ∗({Si|K}) ' CIW ⊗B(`2(F+
m)). Therefore

a reducing subspace is equivalent to one of the form W0 ⊗ `2(F+
m).

Theorem 4.6 (Solel). Let σ be a row contractive representation of F+
u

on H. Then σ has a dilation to a row isometric representation π on a
Hilbert space H⊕K.

Proof. Start with a Hilbert space W = V⊗H, where V is a separable,
infinite dimensional Hilbert space, and set K = W⊗Hu. Let λ denote
the left regular representation of F+

u on Hu. Note that the restriction
to F+

m = 〈e1, . . . , em〉 yields a multiple of the left regular representation
of F+

m.
Following Bunce’s argument, set Ai = σ(ei) and define isometries

on H ⊕ K by Si =




Ai 0[
D

(i)
A

0

]
IV⊗H ⊗ λ(ei)


. However, note that the

increased size of V means that the m element column D
(i)
A must be

extended by zeros even within the subspace W ⊗ Cξ?. Thus there is
always a subspace orthogonal to the minimal invariant subspace M
containing H on which Si acts like a multiple of the left regular repre-
sentation with multiplicity at least max{ℵ0, dimH}.

Similarly, set Bj = σ(fj) for 1 ≤ j ≤ n, and define the defect
operator DB = (ICn⊗H−B∗B)1/2. Then define isometries on H⊕K by

Tj =




Bj 0[
D

(j)
B

0

]
IV⊗H ⊗ λ(fj)


 .

Now notice that in C[F+
u ] the semigroup generated by e1f1, . . . , emfn

is the free semigroup F+
mn. Indeed, if eifjw = ekflw

′, then by cancel-
lation, it follows that i = k, j = l and w = w′. So, with successive
cancellation, the alternating products eifjw, ekflw

′ are equal in C[F+
u ]

only if they are identical.
We will consider two row isometric representations of F+

mn:

π1(eifj) = SiTj and π2(eifj) =
m∑

i′=1

n∑

j′=1

u(i,j),(i′,j′)Tj′Si′

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. The reason that π2 has the desired
properties is that a p-tuple of isometries with orthogonal ranges spans
a subspace isometric to a Hilbert space consisting of scalar multiples
of isometries. So the fact that u is a unitary matrix ensures that the
mn operators π2(eifj) are indeed isometries with orthogonal ranges.
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Since σ is a representation of F+
u , we see that π1 and π2 both com-

press to σ on H. So both are dilations of the same row contractive
representation of F+

mn. By Lemma 4.5, for both k = 1, 2, we have
πk(eifj) ' µ(eifj)⊕IWk

⊗λ(eifj) where µ is the minimal row isometric
dilation of σ|F+

mn and dimWk = max{ℵ0, dimH}. The two minimal
dilations are unitarily equivalent via a unitary which is the identity on
H, and the multiples of the left regular representation are also unitar-
ily equivalent. So π1 and π2 are unitarily equivalent on H ⊕ K via a
unitary W which fixes H, i.e.

π2(eifj) = Wπ1(eifj)W
∗ for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Now set

π(ei) = SiW and π(fj) = W ∗Tj for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

This provides a row isometric dilation of
[
e1 . . . em

]
and

[
f1 . . . fn

]
.

Moreover,

π(ei)π(fj) = SiWW ∗Tj = SiTj = π1(eifj)

= W ∗π2(eifj)W =
m∑

i′=1

n∑

j′=1

u(i,j),(i′,j′)W
∗Tj′Si′W

=
m∑

i′=1

n∑

j′=1

u(i,j),(i′,j′)π(fj′)π(ei′).

So π yields a representation of F+
u .

We remark that the case n = 1 of Solel’s theorem was obtained
earlier by Popescu [24]; and the special case of this for commutant
lifting is due to Muhly and Solel [21].

Our discussion of the flip algebra in Examples 4.1 and 4.2 show
that a row contractive representation of the algebra Au need not be
contractive. As a consequence, the natural map T+(Xu) → Au from
the tensor algebra is not isometric.

In fact in this case, using results from [26], we can show that there
is no map which is an isometric isomorphism. Firstly, note that the
explicit unitary automorphisms of Au given there may be readily de-
fined on the tensor algebra. Secondly, the character space M(Au) of
Au and its core subset (which is definable in terms of nest representa-
tions) identify with the character space and core of T+(Xu). Suppose
now that Γ : Au → T+(Xu) is a isometric isomorphism. Composing
with an appropriate automorphism of T+(Xu), we may assume that
the induced character space map γ maps the origin to the origin (in
the realisation of M(Au) in Cn+m [18]). By the generalized Schwarz
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inequality in [26], it follows that the biholomorphic map γ is simply a
rotation automorphism, defined by a pair of unitaries A ∈ Mm(C) and
B ∈ Mn(C). Composing Γ with the inverse of the associated gauge
automorphism πA,B of T+(Xu), we may assume that γ is the identity
map. Since Γ is isometric it follows, as in [26], that Γ is the natural
map, which is a contradiction.

For n = 1, note that T+(Xu) is the crossed product algebraAm×αZ+,
which is defined as the universal operator algebra for covariant repre-
sentations (ρ, T ), where ρ : Am → B(Hρ) is a contractive representation
determined by a row contraction [S1 . . . Sm] which u-commutes with a
contraction T . Here α is a gauge automorphism of Am determined by
u. Moreover in this case the tensor algebra is isometrically isomorphic
to Au. One way to see this is to note that if [S ′1 . . . S ′m], T ′ is an isomet-
ric dilation, determined by Popescu-Solel dilation, then we may apply
a second such dilation to [(S ′1)

∗ . . . (S ′m)∗], T ′∗ to derive an isometric
dilation of a covariant representation (ρ, T ) of the form (σ, U) with U
unitary. Such representations are completely contractive on Au.

5. Dilation of defect free Representations

We now show the distinctiveness of defect free contractive representa-
tions in that they are completely contractive and have unique minimal
∗-dilations. Moreover, we show that atomic contractive defect free rep-
resentations of F+

θ have unique minimal atomic representations. This
is an essential tool for the representation theory of 2-graph semigroups
developed in [8] because we frequently describe ∗-representations by
their restriction to a cyclic coinvariant subspace.

Theorem 5.1. Let σ be a defect free, row contractive representation
of F+

u . Then σ has a unique minimal ∗-dilation.

The proof follows from Theorem 4.6 and the next two lemmas and
the fact that a defect free row isometric representation is a ∗-dilation.

Lemma 5.2. Let σ be a defect free, row contractive representation.
Then any minimal row isometric dilation is defect free.

Proof. Let π be a minimal row isometric dilation acting on K. Set
M = (I − ∑

i π(ei)π(ei)
∗)K. We first show that M is coinvariant.

Indeed, if x ∈M and y ∈ K, then plainly

〈π(ei)
∗x, π(ek)y〉 = 〈x, π(ei)π(ek)y〉 = 0
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for each i and k, while, using the commutation relations,

〈π(fl)
∗x, π(ek)y〉 = 〈x, π(flek)y〉

=
m∑

i=1

n∑
j=1

u(i,j),(k,l)〈x, π(ei)π(fj)y〉 = 0.

So σ(w)∗x belongs to M =
( ∑

i π(ei)K
)⊥

for any word w.

If we write each π(ei) as a matrix with respect to K = H⊕H⊥, we

have π(ei) =

[
σ(ei) 0
∗ ∗

]
. Therefore

∑
i

π(ei)π(ei)
∗ =

[∑
i σ(ei)σ(ei)

∗ ∗
∗ ∗

]
=

[
IH ∗
∗ ∗

]
.

This is a projection, and thus

∑
i

π(ei)π(ei)
∗ =

[
IH 0
0 ∗

]
≥ PH.

Thus M is orthogonal to H. It now follows that for any x ∈M, h ∈ H
and w ∈ F+

u ,

〈π(w)h, x〉 = 〈h, π(w)∗x〉 = 0

because π(w)∗x ∈M. But the vectors of the form π(w)h span K, and
so M = {0}.

An immediate consequence of this lemma and Theorem 3.8 is:

Corollary 5.3. Every defect free, row contractive representation π of
F+

u extends to a completely contractive representation of Au.

Lemma 5.4. The minimal row isometric dilation of a defect free, row
contractive representation of F+

u is unique up to a unitary equivalence
that fixes the original space.

Proof. Let π be a minimal row isometric dilation of σ on the Hilbert
space K. Let W be the set of words w = eufv in F+

u . By minimality
and the commutation relations, a dense set in K is given by the vectors
of the form

∑
k π(wk)hk where this is a finite sum, each hk ∈ H and

wk ∈ W . We first show that given any two such vectors,
∑

k π(wk)hk

and
∑

l π(w′
l)h

′
l, we may suppose that each wk and w′

k has the same
degree.

To this end, let d(wk) = (mk, nk) and d(w′
l) = (m′

l, n
′
l), and set

m0 = max{mk,m
′
l} and n0 = max{nk, n

′
l}.
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For each wk, let ak = m0 −mk and bk = n0 − nk. Then because π is
defect free by Lemma 5.2,

π(wk)hk = π(wk)
( ∑

d(v)=(ak,bk)

π(v)π(v)∗
)
hk

=
∑

d(v)=(ak,bk)

π(wkv)(σ(v)∗hk).

The second line follows because H is coinvariant for π(F+
u ), and so

π(v)∗hk = σ(v)∗hk belongs to H. Using the commutation relations we
may write the original sum with new terms, each of which has degree
(m0, n0). Combine terms if necessary so that the words wk are distinct.
Then we obtain a sum of the form

∑
d(w)=(m0,n0) π(w)hw. We similarly

rewrite ∑

l

π(w′
l)h

′
l =

∑

d(w)=(m0,n0)

π(w)h′w.

Now the isometries π(w) for distinct words of degree (m0, n0) have
pairwise orthogonal ranges. Therefore we compute

〈 ∑

d(w)=(m0,n0)

π(w)hw,
∑

d(w)=(m0,n0)

π(w)h′w
〉

=
∑

d(w)=(m0,n0)

〈π(w)hw, π(w)h′w〉

=
∑

d(w)=(m0,n0)

〈hw, h′w〉.

Now suppose that π′ is another minimal row isometric dilation of σ
on a Hilbert space K′. The same computation is valid for it. Thus we
may define a map from the dense subspace span{π(F+

u )H} of K to the
dense subspace span{π′(F+

u )H} of K′ by

U
∑

d(w)=(m0,n0)

π(w)hw =
∑

d(w)=(m0,n0)

π′(w)hw.

The calculation of the previous paragraph shows that U preserves inner
products, and thus is well defined and isometric. Hence it extends
by continuity to a unitary operator of K onto K′. Moreover, each
vector in h has the form h = π(∅)h; and thus Uh = h. That is, U
fixes the subspace H. Finally, it is evident from its definition that
π′(w) = Uπ(w)U∗ for all w ∈ F+

u . So π′ is equivalent to π.

For our applications in [8], we need the following refinement for
atomic representations.

Theorem 5.5. If σ is an atomic defect free partially isometric repre-
sentation of F+

θ , then the unique minimal ∗-dilation π is also atomic.
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This follows from the theorem above and the next lemma.

Lemma 5.6. Let σ be an atomic, defect free, partially isometric rep-
resentation of F+

θ . Then any minimal ∗-dilation of σ is atomic.

Proof. Let π be a minimal row isometric dilation of σ acting on K.
Consider the standard basis {ξk : k ≥ 1} for H with respect to which

σ is atomic. Let ξ̇k denote C∗ξ = {αξk : α ∈ C\{0}}. We claim

that the set {π(x)ξ̇k : k ≥ 1, x ∈ F+
θ } forms an orthonormal family of

1-dimensional subsets spanning K, with repetitions. Indeed, H is coin-
variant and cyclic; so these sets span K. It suffices to show that any two
such sets, say π(x1)ξ̇1 and π(x2)ξ̇2, either coincide or are orthogonal.

Let d(xk) = (mk, nk) for k = 1, 2; and set

(m0, n0) = (m1, n1) ∨ (m2, n2) =
(
max{m1, m2}, max{n1, n2}

)
.

Since σ is defect free, there are unique basis vectors ζk and words yk

with d(yk) = (m0 −mk, n0 − nk) so that σ(yk)ζ̇k = ξ̇k. Thus using ζ̇k

and the word xkyk, we may suppose that the two words have the same
degree. For convenience of notation, we suppose that this has already
been done.

Write xk = euk
fvk

. As noted in the proof of Theorem 4.6, two distinct
words of the same degree have pairwise orthogonal ranges. Thus if
x1 6= x2, then π(x1)ξ̇1 and π(x2)ξ̇2 are orthogonal. On the other hand,

if x1 = x2, then if ξ̇1 = ξ̇2, the images are equal; while if ξ̇1 and ξ̇2 are
orthogonal, they remain orthogonal under the action of the isometry
π(x1).
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