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Abstract: Evolving Takagi-Sugeno (eTS) fuzzy models are used to build a computational 
model for the WasteWater Treatment Plant (WWTP) in a paper mill. The fuzzy rule base 
is constructed on-line from data using a recursive fuzzy clustering algorithm that 
develops the model structure and parameters. In order to avoid some redundancy in the 
fuzzy rule base mechanisms for merging membership functions and simplifying fuzzy 
rules are introduced. The rule base simplification is done by replacement allowing the 
preservation of the rule (cluster) centres as data points belonging to the original data set. 
Results for the WWTP show that it is possible to build less complex models and preserve 
a good balance between accuracy and transparency. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
The transformation of data into useful information is 
probably the most important challenge for 
information engineers nowadays (Kruse, et al., 1999). 
This information can be used for a better decision by 
humans or for better automatic control by (intelligent) 
controllers. 
Computational Intelligence techniques, particularly 
fuzzy systems and neural networks, provide methods 
and tools for data analysis. Fuzzy systems can be used 
to create accurate predictive models from data. 
Interpretability of the models is decisive for the 
human decision process (Setnes, 2001). 
The WasteWater Treatment Plant is a nonlinear 
process, time-varying, with a large number of 
variables. It is practically impossible to build a first-
principles model. Fuzzy modelling, and particularly 
Takagi-Sugeno (TS) fuzzy models, provide a 

powerful tool for modelling complex nonlinear 
systems (Yen, et al., 1998) and by this way they seem 
to be the most appropriate approach because of its 
representational power and the possibility of using 
learning algorithms to identify its parameters; 
moreover they allow to gain insights into the local 
behaviour of the sub-models and they may have good 
interpretability properties. 
The determination of the structure and parameters of 
TS fuzzy models (i.e., the learning problem) has been 
and is the subject of extensive research. Fuzzy systems 
have evolved from a seminal knowledge-driven 
approach, where expert knowledge plays an essential 
role, towards a data-driven approach, where expert 
knowledge plays a minor role (Angelov, 2002). The 
huge amount of data available in all sectors of human 
activities (industry, services, finance, etc.) demands a 
new kind of on-line learning algorithms in order to 
extract knowledge in a quick and efficient way. 
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In order to simplify the fuzzy model of the 
WasteWater Treatment Plant, and particularly of the 
effluent neutralisation process, a hierarchical structure 
is proposed to take advantage of the lower dimensions 
of the subsystems (Setnes, 2001). Since the process is 
time varying, on-line learning algorithms are needed. 
Evolving Takagi-Sugeno (eTS) models are used in for 
the effluent neutralisation process. The input-output 
space is partitioned by recursive fuzzy clustering for 
learning the antecedent parameters of the fuzzy 
model. The Evolving Clustering method (Kasabov 
and Song, 2002), based on an objective function, and 
the recursive version of the subtractive clustering 
(Angelov and Filev, 2004), based on the notion of the 
informative potential, are the most known at present 
times. For learning the consequent parameters in eTS 
fuzzy models the modified Recursive Least Squares 
(w)RLS estimation algorithm is used because it is 
assumed that the rule base will gradually evolve in 
number of rules (and by consequence in number of 
parameters). 
The paper is organised in five sections. In section 2 
the effluent neutralization process is described and 
several aspects related with its modelling are 
described, namely the hierarchical structure proposed 
for complexity reduction and the input selection 
mechanism. Section 3 briefly introduces the basic 
notions of the applied fuzzy modelling technique, eTS 
fuzzy models for on-line learning. Experimental 
results obtained for the second stage of the process 
are shown in section 4 and section 5 presents the 
conclusions. 
 
 

2. EFFLUENT NEUTRALIZATION PROCESS 
 
Three different stages compose the mill effluent 
treatment plant: primary, secondary and tertiary stage. 
The primary treatment consists in the effluent 
neutralisation and suspended solids removal. It is 
carried on the foam tower, the neutralisation basin 
and the primary clarifiers. The secondary or 
biological treatment uses activated sludge for the 
degradation of dissolved organic matter. It is carried 
out on the cooling tower, the selector, the aerator 
basins and the secondary clarifiers. The tertiary 
treatment consists in colour removal and effluent 
equalization, regarding to quality and temperature. It 
is carried on the equalization lagoon. 
In this work we focus on the primary treatment, more 
particularly on the study of the effluent neutralisation 
process. The obtained models will be very important 
for control, fault diagnosis and process supervision. 
 
2.1 Description of the neutralization process. 
 
The acid effluent, the north alkaline effluent and the 
south alkaline effluent compose the plant effluent. 
Before the acid effluent enters in the WWTP it is 
partially neutralised in two stages. The first stage 
consists in the addition of dust collected by the 
electro filter of the limekiln. The second stage 
consists in the addition of hydrated lime. During the 

normal functioning of the mill the industrial effluent 
is mainly acid but in certain situations, such as during 
maintenance, the effluent can be alkaline and in this 
case the neutralisation is made with the dosing of 
sulphuric acid at the end of the neutralisation basin. 
Fig. 1 gives a perspective of the effluent 
neutralisation process plant. 

 
Fig. 1. Plant of the effluent neutralisation process. 
 
The second stage has a much higher neutralisation 
capacity than the first stage, though with associated 
cost, since hydrated lime has to be bought, and the 
addition of the limekiln dust has no cost. While the 
effect of the first stage in the pH value of the acid 
effluent is very small, the effect of the second stage 
can be considerable. The correct neutralisation of the 
industrial effluent is vital for the functionality of the 
secondary or biological treatment and the quality of 
the final effluent. The goal is to achieve at the end of 
the primary treatment a pH in the interval [6.0; 8.0] 
and simultaneously minimizing the consumption of 
neutralisation materials, which are quite expensive. 
 
2.2 Process modelling. 
 
Hierarchical structure.  One of the difficulties of the 
effluent neutralisation process modelling is the large 
number of variables that influence the values of pH. 
In order to deal with this problem a hierarchical 
structure is proposed. The initial model gives origin 
to five sub models: first stage, second stage, foam 
tower, neutralisation basin and primary clarifier. The 
hierarchical structure was created based on a priori 
knowledge obtained from process engineers and 
operators. With this knowledge the variables choice 
for each sub model was easier, since process 
engineers have a good perception about the 
importance of each process variable. Some variables 
were not considered relevant in this initial phase, 
since in normal conditions they are not significant. 
The two first sub models are related with the 
neutralisation of the acid effluent. In the foam tower 
the acid and alkaline effluents are combined resulting 
in the raw effluent. The uniformisation of the raw 
effluent starts on the neutralisation basin where the 
filtrates are added. The chemical reaction between the 
effluent and the neutralization materials continues on 
the primary clarifier in order to guarantee an efficient 
pH effluent uniformisation. Fig. 2 represents the input 
and output variables for the different models. 



 
 
Fig.2. Hierarchical structure of the effluent 

neutralisation process. 
 
Structure of the models. In the definition of the 
models structure one of the requisites is the selection 
of the variables and respective regressions to be 
included in the model. As stated before, one of the 
goals of this work is to construct fuzzy models that 
are interpretable, simple and applicable. In order to 
achieve this goal, each sub model will be a first-order 
model with time delay, according to Bröida 
definition, i.e., the output ky  will depend only on one 

past value of each of the inputs, p
Tk pd

u − , and one past 

value of the output, 1−ky , as (1) 
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Input selection.  In order to obtain dynamic models it 
is necessary to determine the order and time transport 
delay for each one of the input variables. The order is 
already defined. To determine the time transport 
delay for each variable, information given by process 
engineers was precious, however this information 
must be completed by experimental data since some 
of the process inputs present a time-varying transport 
delay. ANFIS (Adaptive Network-based Fuzzy 
Inference System) was used as a straightforward way 
to determine the time transport delay (Jang, 1993; 
Jang, 1996). It employs an efficient hybrid learning 
method that combines gradient descent and least-
squares method. The performance measure used was 
the MSE (Mean Square Error). 
In input selection only one epoch of training is used 
for each ANFIS model. The number of possibilities 
tested and the amount of time spent in the 
determination for the time transport delay was 
considerably reduced, since the available a priori 
knowledge was used in the search. 
 
 

3. eTS FUZZY MODELS 
 
eTS fuzzy models have been recently introduced by 
Angelov and Filev and the approach is based on an 
on-line learning algorithm that recursively develops 
the model structure and parameters (Angelov and 
Filev, 2004). Structure identification includes 
estimation of the antecedent parameters by recursive 
fuzzy clustering and the consequent parameters are 
obtained by applying the modified (w)RLS estimation 

algorithm. In the following the basics of the algorithm 
are briefly recalled, for more details see references 
(Angelov and Filev, 2004; Angelov, et al., 2004). 
 
3.1 On-line estimation of the antecedent parameters. 
 
The recursive fuzzy clustering algorithm uses the 
notion of informative potential (accumulated spatial 
proximity measure), introduced in the mountain 
clustering algorithm (Yager and Filev, 1993) and then 
refined in the subtractive clustering algorithm (Chiu, 
1994), to compute the potential of each new data 
point in order to select the cluster centres (focals). 
The algorithm starts with the first data point 
established as the focal point of the first cluster. Its 
coordinates are used to form the antecedent part of 
the fuzzy rule using Gaussian membership functions 
and its potential is assumed equal to 1. Starting from 
the next data point onwards the potential of the new 
data points is calculated recursively. In contrast with 
the subtractive clustering algorithm there is not a 
specific amount subtracted from the highest potential, 
but update of all the potentials after a new data point 
is available on-line. The potential of the new data 
sample kz is recursively calculated as follows (2), 
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Parameters kϑ  and kv  are calculated from the 

current data point kz , while j
kβ  and kσ  are 

recursively updated by (3). 
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After the new data are available they influence also 
the potentials of the centres of the clusters 

),,1,( * Rlzl K= , which are respective to the focal 

points of the existing clusters ),,1,( * Rlxl K= . The 

reason is that by definition the potential depends on 
the distance to all data points, including the new ones. 
The potential of the focal points of the existing 
clusters is recursively updated by (4), 
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where )( *

lk zP  is the potential of the cluster *
lz  at 

time k, which is a prototype of the lth rule, 



j
k
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j
kk zzd 1)1( −− −= , denotes the projection of the 

distance between two data points, j
kz  and j

kz 1− , on the 

axis jz  ( jx  for nj ,,2,1 K=  and on the axis y for 
1+= nj ). 

If the potential of the new data point is higher than 
the maximum potential of the existing centres or 
lower than the minimum then the new data point is 
accepted as a new centre (Angelov et al., 2004) (5), 
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If in addition to the previous condition the new data 
point is close to an old centre then the new data point 
replaces this centre, instead of being accepted as a 
new one. 
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j is the index of the replaced centre (closest cluster 
centre to the new data point). 
 
3.2 On-line estimation of the consequent parameters. 
 
The problem of increasing size of the training data is 
handled by the RLS algorithm for the globally 
optimal case and by the weighted RLS algorithm for 
the locally optimal case. 
In eTS fuzzy models, however, the rule base is 
assumed to be gradually evolving. Therefore, the 
number of rules as well as the parameters of the 
antecedent part will vary. Because of this evolution, 
the normalized firing strengths of the rules will 
change. Since this affects all the data (including the 
data collected before time of the change) the 
straightforward application of the RLS or wRLS 
algorithm is not correct. A proper resetting of the 
covariance matrices and parameters initialization of 
the algorithms is needed at each time a rule is added 
to and/or removed from the rule base. The modified 
RLS algorithm for global and local parameter 
estimation is described in reference (Angelov and 
Filev, 2004). 
 

4. EXPERIMENTS 
 
This section describes the experiments done in the 
second stage of the effluent neutralisation process. In 
the second stage, the input variables are the pH of the 
acid effluent (pH1347) and the addition of hydrated 
lime (ulime). The output variable is the pH of the acid 
effluent (pH1407). 

The modelling approach described in the previous 
section is applied to predict the pH values for the 
second stage of the process. 
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Fig. 3. Training data set for the second stage of the 

effluent neutralisation process. 
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Fig. 4. Validation data set for the second stage of the 

effluent neutralisation process. 
 
In the experiments, two plant data sets from 
consecutive days are used, the first one, Fig. 3 for 
training, and the second one, Fig. 4, to determine the 
generalisation capability of the fuzzy models. Each 
data set has 2880 samples, sampling interval was 
T=30 seconds, and the data is normalized into de 
domain [0, 1], to avoid negative influence in 
clustering results from variations in the numerical 
ranges of the different features (Babuska, 1998). 
 
4.1 On-line learning. 
 
The eTS fuzzy model approach is applied for on-line 
learning. The value for the constant radii was 5.0=r  
and the initialization parameter for RLS was 

750=Ω . Fig. 6 shows the evolution of the process 
output and model output for the validation data set. 
Table 1 presents the parameters of the eTS fuzzy 
model at the end of the learning process. 
For validation the structure and parameters of the eTS 
fuzzy model are initialised with those obtained at the 
end of the training. 



The number of rules at the end of the training was 8, 
and it remains the same after validation, but some 
fuzzy rules were replaced and the parameters of the 
model were constantly updated. In practice what 
happens is that at every instant, with the arriving of a 
new data point, a new model is constructed and even 
though the structure does not change the model 
parameters are varying. 
 

Table 1 eTS fuzzy model parameters for on-line 
learning. 

 
Rule Antecedent Parameters Consequent Parameters 
1 [0.0795 0.0 0.0264] [-0.0049 0.2919 0.0167 0.4528] 
2 [0.5232 0.0 0.0433] [0.0671 0.1509 1.2825 0.5386] 
3 [0.8962 0.0 0.1145] [-0.1382 0.0567 -2.9062 3.3540] 
4 [0.9545 0.0 0.3133] [-1.2997 1.1059 1.3470 1.7750] 
5 [0.9809 0.0 0.8124] [-0.2618 0.1350 0.0157 1.1675] 
6 [0.0635 0.7486 0.1169] [0.1195 0.2846 -0.1058 0.7601] 
7 [0.0922 0.4961 0.1261] [0.1316 0.9858 -0.3922 0.6218] 
8 [0.9933 0.9956 0.8806] [0.5024 0.1006 -0.2010 0.5228] 
 

 
Fig. 6. Process and model output for on-line learning. 
 
With on-line learning even if the training data is not 
representative of all the operating points of the 
process it is possible to achieve satisfactory results 
since the approach can evolve the structure and 
parameters of the fuzzy model according with the 
current dynamics of the process. 
The performance of the eTS fuzzy model is 
satisfactory but the complexity and interpretability is 
poor since there are a lot of similar membership 
functions, particularly for the first and third input 
variables, Fig. 7 and Table 1. 
 

 
Fig. 7. Membership functions of the first input variable. 

4.2 On-line learning with rule-base simplification. 
 
In order to reduce the redundancy in fuzzy models 
obtained from data rule base simplification and 
reduction methods must be combined with the data-
driven modelling tools, resulting in a more 
transparent fuzzy modelling scheme (Setnes, et al., 
1988). The concept of on-line transparent modelling 
was recently introduced and results from the 
integration of rule base simplification and reduction 
procedures in the on-line learning process (Victor 
Ramos and Dourado, 2004). 
First similarity between fuzzy sets, along each input 
dimension, is performed by the application of the 
similarity measure (7), 
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where ic  is the centre and iσ is the width of the 
Gaussian membership functions. If the similarity 
between two fuzzy sets is greater than a predefined 
threshold ( ]1,0∈λ  the fuzzy set of the rule with 
higher frequency (measure of importance of a rule) is 
kept. This avoids the creation of artificial centres 
preserving as cluster centres only original data points. 
After merging of fuzzy sets the rule base may contain 
irrelevant fuzzy sets and merging of fuzzy rules is 
likely to happen. If the premise parts of two or more 
rules become equal these rules can be removed and 
replaced by one general rule with the same 
antecedents, as the rules which it replaces, and the 
consequents computed as the average of the 
consequents of all the replaced rules, (9). 
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Fig. 8 shows the evolution of the process output and 
model output for the validation data set with rule-base 
simplification. Table 2 presents the parameters of the 
eTS fuzzy model at the end of the learning process. 
 

 
Fig. 8. Process and model output for on-line learning 

with rule-base simplification. 



Table 2 eTS fuzzy model parameters with rule-base 
simplification. 

 
Rule Antecedent Parameters Consequent Parameters 
1 [0.1495 0.0366 0.1260] [0.0049 0.2368 0.0821 0.8332] 
2 [0.5210 0.0366 0.1260] [-0.2649 0.9459 -0.2676 0.5395] 
3 [0.9351 0.0366 0.1260] [-1.1623 1.4106 1.1576 1.2917] 
4 [0.9351 0.0366 0.7700] [-0.9432 0.8751 0.5706 0.8614] 
5 [0.1495 0.5124 0.1260] [-0.1254 0.2742 0.1541 0.8202] 
 
The interpretability of the model improved 
considerably since now only three linguistic terms 
(Low, Medium and High) are necessary to describe 
the first input variable and two linguistic terms (Low 
and High) to describe the second and third input 
variables. 
Fig. 9 presents the membership functions for the first 
input variable (pH1347) at the end of the on-line 
learning process when rule-base simplification is 
applied. 
 

 
 

Fig. 9. Membership functions of the first input variable 
with rule-base simplification. 
 
 

5. CONCLUSIONS 
 
The on-line learning (eTS) and the rule-base 
simplification techniques presented in this paper have 
a great potential for building computational 
intelligence systems for monitoring and controlling 
industrial plants. This work presented the application 
of these techniques to a wastewater plant of a pulp 
and paper mill allowing the construction of partially 
interpretable models with reasonable accuracy. The 
conditions for new rule creation need tuning and 
further work to develop formal methods for rule 
simplification in the general case is under 
investigation. 
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