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Abstract 17 

Documenting establishment and spread of invasive species requires extensive co-18 

ordinated sampling programmes. Identifying the factors promoting or inhibiting local 19 

establishment of an invasive species can improve capacity to predict further spread and 20 

underpin strategies to limit spread. Here, a structured sampling programme was used to 21 

assess the current distribution of feral populations of Pacific oysters, Crassostrea gigas, 22 

in Ireland. Sixty-nine sites were sampled using a standardised protocol combining semi-23 

quantitative and quantitative approaches. Sites were chosen to represent variation in 24 

proximity to aquaculture and a range of environmental variables. Oyster populations 25 

were found at 18 locations, with densities ranging from single individuals to nine 26 

individuals per m2. The broad size range of oysters found is indicative of more than one 27 

recruitment event. Logistic regression indicated that feral oysters were positively 28 

associated with the presence of hard substrata or biogenic reef, long residence times of 29 

embayments and large intertidal areas. There was also a tendency for oysters to occur 30 

disproportionately in bays with aquaculture, but > 500 m from it. Small-scale analysis 31 

within sites showed that oysters were almost exclusively attached to hard substrata and 32 

mussels. The approach taken here provides a rigorous repeatable methodology for 33 

future monitoring and a detailed basis for the prediction of further spread.   34 

 35 

Keywords: logistic regression, environmental variables, Crassostrea gigas, aquaculture  36 

  37 
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Introduction 38 

Improving our knowledge of distributions of non-native species assists predictions of 39 

spread and allows strategic targeting of management actions for their control (Anderson 40 

et al. 2003; Gormley et al. 2011; Simberloff and Rejmánek 2011). Species’ distributions 41 

are not easy to predict because they are controlled by many factors acting upon different 42 

life stages, e.g. hydrodynamics and tides can influence the delivery of spat (Roughgarden 43 

et al. 1988; Gaines and Bertness 1992; Dunstan and Bax 2007) whereas habitat 44 

availability is important for settlement (Travis and Dytham 1999; Kinlan and Gaines 45 

2003) and post-settlement mortality can strongly affect recruitment (Minchinton and 46 

Scheibling 1993; Hunt and Scheibling 1997; Jenkins et al. 2009). Furthermore, propagule 47 

pressure plays a major role in the early stages of an invasion (Lockwood et al. 2005; 48 

Johnston et al. 2009). 49 

 50 

Distributions of invasive species are often documented in a rather fragmented and 51 

descriptive way and data are often collated from a number of sources and can be of 52 

mixed quality and resolution (Ruiz et al. 2000; Zaniewski et al. 2002; Elith et al. 2006; 53 

Hulme and Weser 2011). Interpreting such data requires synthesis and meta-analysis 54 

and does not yield unequivocal tests of hypotheses about factors associated with 55 

colonisation by the species. It is recommended to use well-designed survey data and 56 

analyse functionally relevant predictors (Elith and Leathwick 2009; J Elith unpublished). 57 

Thus, extensive coordinated surveys and monitoring and assessment programmes using 58 

carefully standardised protocols and well thought-out designs are preferable as they 59 

avoid survey bias and result in balanced comprehensive datasets. When a set of sites has 60 

been surveyed and presence/absence or abundance has been recorded, generalised 61 

linear models encompassing logistic regression are especially useful as additive 62 

combinations of predictors and manually selected interaction terms representing 63 
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interactions between predictors can be included (Elith and Leathwick 2009; Franklin 64 

2009). 65 

 66 

Species distribution models (SDM) estimate the relationship between species and spatial 67 

and/or environmental characteristics and are widely used to estimate current and 68 

potential distributions of species (Elith et al. 2006; Franklin 2009). They have been 69 

widely used in terrestrial ecosystems but applications for distribution of species in 70 

marine habitats are sparse (Kelly et al. 2001; Garza-Pérez et al. 2004; Beger and 71 

Possingham 2008; Robinson et al. 2011). Additionally, including measures of 72 

introduction effort is important for assessing on-going biological invasions or for 73 

identifying areas that are susceptible to invasion (Herborg et al. 2007; Therriault and 74 

Herborg 2008). 75 

 76 

Since the 1980’s, world aquaculture production has grown steadily by an average of 9% 77 

per year (FAO 2012a).  It now produces almost half of the fish and shellfish consumed by 78 

humans and will continue to expand in the future (Duarte et al. 2009; FAO 2012a). The 79 

expansion of aquaculture also brings with it an increased risk of establishment of wild 80 

populations of non-indigenous species.  81 

 82 

The Pacific oyster (Crassostrea gigas, Thunberg 1793) has been introduced for 83 

aquaculture to many parts of the world and has become one of the world’s main 84 

aquaculture species (FAO 2012b). In many locations, wild oyster populations became 85 

established soon after oyster farming had commenced (Diederich et al. 2005; Brandt et 86 

al. 2008; Melo et al. 2010; Troost 2010), often in shallow, enclosed bays, where larval 87 

retention might be high. Invasive populations can now be found worldwide in a range of 88 

habitats, from coastal sheltered soft-sediment environments to exposed rocky shores 89 
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(Reise 1998; Diederich 2005; Ruesink et al. 2005; Nehls et al. 2006; Troost 2010). They 90 

can have substantial impacts, including saturation of the carrying capacity of estuaries, 91 

alterations of habitats and changes in benthic and pelagic communities, food webs and 92 

ecosystem processes (Ruesink et al. 2005; Cognie et al. 2006; Troost 2010; Eschweiler 93 

and Christensen 2011; Green et al. 2012). Given its rate of spread, there is an urgent 94 

need to characterise its pattern of establishment at an early stage and determine which 95 

factors are associated with its presence or absence and spread. 96 

 97 

Increasing temperatures have been associated with the spread of Pacific oysters in 98 

Europe (Diederich et al. 2005). The northern boundaries of its distribution are 99 

expanding, with populations becoming established in England and Wales (Couzens 100 

2006), Northern Ireland (Guy and Roberts 2010) and Scandinavia (Wrange et al. 2010). 101 

There have also been reports of individuals in the wild in Ireland, where Pacific oysters 102 

are extensively farmed around the north, the west and south coasts (Browne et al. 2007), 103 

however, the size and distribution of these populations is not yet known.  104 

 105 

In this study, a coordinated national sampling programme was undertaken using a cost-106 

effective, but rigorous and repeatable sampling protocol. It was used at selected sites to 107 

firstly, document the current distribution and abundance of Pacific oysters in Ireland 108 

and, secondly, build a model using the factors that might be asscociated with their 109 

settlement in the wild. Factors considered here were: embayment residence time, 110 

habitat type, wave exposure, distance from aquaculture, latitude and intertidal area. The 111 

approach undertaken here might not only improve prediction of the future spread of 112 

Pacific oysters but will be broadly applicable to other benthic marine invaders with 113 

planktonic larval dispersal.  114 

 115 
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Methods 116 

Sampling programme 117 

A sampling programme was undertaken from May until September 2009 at 69 sites 118 

around the coast of Ireland (coordinates provided in Online Resource 1). The sites were 119 

selected to represent variation in distance from aquaculture, latitude, wave exposure, 120 

embayment residence time, intertidal area (shore width) and habitat type (Table 1 and 121 

Online Resource 1). Sites ranged in area between approximately 3500 m2 (narrow rocky 122 

shores) and 40000 m2 (mussel beds) and salinities ranged between 22.5 and 35 psu.  123 

 124 

Sites were visited and sampled during spring low tides. The sampling methodology was 125 

designed to be flexible, repeatable and efficient. Phase 1 of the methodology involved a 126 

timed semi-quantitative sample of oysters at each site and a simple characterisation of 127 

the habitats available at that site. It could be completed within 40-45 min maximising 128 

the number of sites it was possible to visit in the available time. Phase 2 was only used at 129 

sites where oysters were found. It involved a more detailed quantitative survey of the 130 

area of greatest density of oysters to enable comparisons among sites and between 131 

present and future surveys. In addition, it also provided the basis for analyses of small-132 

scale associations between oysters and features of the biotic and abiotic environment. 133 

Further details of these phases are provided below. 134 

 135 

Phase 1: At each site the first 40-45 min were spent identifying the habitat types in the 136 

lower intertidal, searching for Pacific oysters within those areas and assessing their 137 

abundance using the SACFOR scale (Connor et al. 2004). The abundance categories used 138 

were: Superabundant (100-999/m2), Abundant (10-99/m2), Common (1-9/m2), 139 

Frequent (0.1-0.9/m2), Occasional (0.01-0.09/m2), Rare (< 0.009/m2) and Absent. After 140 

the timed search, each location was classified using a modified EUNIS framework of 141 
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habitat types (Connor et al. 2004) to better describe the types of substratum 142 

encountered in the habitats studied here. The modified categories were:  bedrock; 143 

boulders (25.6 cm – 102.4 cm); cobbles and pebbles (25.6 cm – 1.6 cm); gravel (1.6 cm – 144 

0.4 cm); sand (0.063 mm – 4 mm); mud (< 0.063 mm); mixed sediment; biogenic reef 145 

(mussel beds, Sabellaria reefs); and macroalgae-dominated sediment (from here 146 

onwards referred to as ‘macroalgae’). More than one habitat was noted for a site if the 147 

type of substratum changed significantly (visual estimation) (see Online Resource 1). 148 

Coverage by different types of substratum was expressed in % of the area by visual 149 

estimate, generally in increments of 10%, except in a few cases where increments of 5% 150 

were used.  151 

 152 

Aquaculture was categorised as absent, close (trestles with Pacific oysters were 153 

encountered during the timed search) and far (known to be present in the embayment, 154 

but generally > 500 m from the study site) based on licensing information from Bord 155 

Iascaigh Mhara, the Irish Sea Fisheries Board. Wave fetch was used as an index of wave 156 

exposure; it was defined as the closest distance to the land in 16 angular sectors 157 

(average in km), and calculated after the method developed by Burrows et al. (2008). 158 

Residence time was determined using the formula developed by Hartnett et al. (2011): 159 

. TPR is the tidal prism ratio, which 160 

was derived from the volume of water between low water and high water [m3] divided 161 

by the volume of the embayment at high water [m3]; B0 is the width of the mouth of the 162 

embayment [km]; and L is the length of the embayment along the longitudinal axis [km]. 163 

Each site’s intertidal width was categorized into 1 = 0-50 m, 2 = 51-100 m, 3 = 101-164 

150 m, 4 = > 151 m, based upon measurements from high water line to the lowest water 165 

line. Each site was classified according to each of the variables described above with up 166 

to three habitats per site (see Table 1 and Online Resource 1 for details).  167 
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 168 

Phase 2: When oysters were present at overall densities greater than 0.1 individuals/m2 169 

(i.e. abundance category Frequent or above), two transects of 30 m x 1 m were randomly 170 

placed in the habitat of greatest oyster density. In each transect, the numbers of oysters, 171 

the sizes of oysters to the nearest mm (Vernier callipers) and substrata to which they 172 

were attached were recorded. If more than 100 oysters were found in the first transect, 173 

only counts and attachments to substrata but no further size measurements were 174 

recorded in the second transect. On mussel beds, 17 random quadrats of 1 m x 1 m were 175 

taken in each transect as densities were too high to account for every single oyster 176 

within a transect line. Conversely, in the Shannon Estuary, extended transects were run 177 

on two rocky shores to ensure that sufficient length measurements were collected for 178 

size frequency analysis. 179 

 180 

To estimate substratum availability, substrata were recorded quantitatively along two 181 

10 m tapes placed haphazardly in the habitat where oysters occurred. The distances 182 

along the tape at which the substratum changed from one type to another were 183 

recorded, and these distances were converted into estimates of the percentage area 184 

covered by different substrata. These data were used in conjunction with the data 185 

collected on oysters and the substratum they were attached to. This enabled tests of 186 

small-scale associations between oysters and biotic and abiotic features of habitat.  187 

 188 

Teams of researchers from the different institutions were trained in the use of the 189 

protocols by the coordinator of the project, who also accompanied each team on its first 190 

sampling trip to ensure consistency of methodology. Each team was assigned a number 191 

of specific sites to survey in a sequence that ensured minimal temporal and observer 192 

bias with respect to the site variables described above. Each team surveyed a maximum 193 
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of two sites on each day, with pairs of sites selected to be in close proximity to each 194 

other. Each site visit was timed such that the low shore could be visited within 20 195 

minutes of a spring low tide. In any given day, a Phase 1 survey was initiated one hour 196 

before predicted low water, with the timed search gradually progressing down the shore 197 

in step with the receding tide. If oysters were found at that site, the Phase 2 survey was 198 

completed during the incoming tide. If no oysters were found, the team moved on to the 199 

second site for the day and completed a Phase 1 survey during the incoming tide.  200 

 201 

Data Analysis 202 

Logistic regression allows multiple explanatory variables, and their interactions to be 203 

included in a single model (Vittinghoff et al. 2005). Here, logistic regression was used to 204 

find a set of environmental variables that could be used to predict oyster 205 

presence/absence. In the 69 sites visited during the sampling programme, 127 habitats 206 

were identified (Phase 1) and classified for presence/absence of oysters and the 207 

environmental conditions encountered, including proximity of aquaculture (see Online 208 

Resource 1). Our model was based on this set of 127 observations.  209 

 210 

Prior to running the model, Spearman rank correlations (ρ) were calculated among all 211 

pairs of environmental variables. When a Spearman rank correlation exceeded an 212 

absolute value of 0.35, one of the pair of variables was omitted from the model to avoid 213 

co-linearity (Dormann et al. 2012). The following pairs of variables had |ρ|> 0.35: 214 

Macroalgae with Rest (ρ = - 0.63), Latitude with Residence (ρ = 0.46), Rest with Width 215 

(ρ = 0.46) and Macroalgae with Hardreef (ρ = -0.35), where ‘Rest’ refers to the EUNIS 216 

categories sand, gravel, mixed sediment and mud, ‘Hardreef’ refers to bedrock, cobble, 217 

pebble and biogenic reef, ‘Residence’ refers to residence time and ‘Width’ refers to shore 218 

width. Latitude, Rest and Macroalgae were therefore omitted from the model. The 219 
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variables used in the full model were % cover of bedrock, cobble, pebble and biogenic 220 

reef (called Hardreef), proximity to aquaculture (called Aquaculture with levels: absent, 221 

far and close), residence time (called Residence), wave fetch (called Fetch) and shore 222 

width (called Width with levels < 50 m and  50 m)(see also Table 1).  223 

 224 

The full logistic model used a logit link function and a model equation  225 

Oysters~1+Width+Fetch+Aquaculture+Residence+Hardreef+Hardreef:(Fetch+Width+ 226 

Residence+Aquaculture)+Fetch:Width 227 

 228 

The variable Oysters is 1 if oysters are present and zero otherwise, the other variables 229 

are explained in Table 1 and ‘:’ indicates an interaction between two variables. All 230 

interactions between Hardreef and the other variables are included in this full model 231 

because oysters attach almost exclusively on hard substrata. Additionally, an interaction 232 

between Fetch and Width was included because the extent of the shore is not considered 233 

in the calculation of wave fetch and can be important when shores are wider than 100 m 234 

(see Burrows 2008). Starting from this full model, backward stepwise selection was used 235 

with Akaike’s Information Criterion (Akaike 1974) to arrive at a ‘best fit’ model. The 236 

performance of the ‘best fit’ model to correctly classify oyster presence/absence at a 237 

habitat unit was quantified using ROC curves and their AUC values (Fielding and Bell 238 

1997). Additionally, we selected a probability threshold that gave a classifier that 239 

weighed omission errors (false negatives, where oysters are incorrectly predicted to be 240 

absent) more than commission errors (false positives, where oysters are incorrectly 241 

predicted to be present) as this type of classifier is mostly desirable for invasive species 242 

(Gormley et al. 2011).  243 

 244 

2 analysis (goodness-of-fit test) was used to test hypotheses about small-scale 245 
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associations between oysters and different types of substratum (using data obtained 246 

during Phase 2).  247 

 248 

Logistic model calculations were performed with R, using the MASS and pROC packages 249 

(R Development Core Team 2011). For calculations of residence time and wave fetch, 250 

detailed descriptions can be found in the original papers (Burrows et al. 2008; Hartnett 251 

et al. 2011).  252 

 253 

Results 254 

Distribution, densities and sizes of feral Pacific oysters 255 

Pacific oysters occurred at 18 of the 69 sites (Figure 1). No oysters were found at sites in 256 

the south. Most oysters were found in the large estuaries of Lough Swilly, Lough Foyle 257 

and the Shannon, with many sites scored Common or Frequent for the abundance of 258 

oysters. Oysters were Occasional or Rare at five sites in Galway Bay and single 259 

individuals of oysters were found at one site in Tralee Bay and another site in Ballynakill 260 

Harbour, which therefore scored Rare on the SACFOR scale.  261 

 262 

Oyster densities in the different habitats varied from single individuals to 8.5 ind./m2 263 

(Table 2). Sites in Lough Swilly and Lough Foyle had the highest densities whereas sites 264 

in the Shannon Estuary, Galway Bay, Tralee Bay and Ballynakill Harbour oysters were 265 

found in lower densities (Table 2). Pacific oysters were mostly found in the lower 266 

intertidal. During an exceptionally low spring tide, a subtidal mussel bed could be 267 

accessed at Rathmelton in Lough Swilly, where densities were estimated at 12.5 ind./m2.  268 

 269 

At all of the sites with oysters > 0.1 ind./m2, the range of sizes of oysters found exceeded 270 

120 mm (Figure 2). In Lough Swilly, oyster sizes ranged from 13.8 mm – 125.7 mm on a 271 
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mussel bed (n =  147) and from 25.3 mm – 135.0 mm on a rocky shore (n = 182). Similar 272 

sizes of oysters from 23.0 mm – 135.5 mm (n = 182) were also measured on a mussel 273 

bed in Lough Foyle. In the Shannon Estuary slightly larger oysters were found, with the 274 

smallest and largest oyster measuring 43.4 mm and 146.2 mm (n = 125) respectively at 275 

Loghill. At Glin, oyster sizes ranged from 40.4 mm – 123.0 mm (n = 101). 276 

 277 

Associations between oysters and environmental variables at the scale of sites (Phase 1) 278 

127 different habitats were identified at the 69 sites of which there were 27 with oysters 279 

present and 100 where no oysters were found (Figure 3). Four variables (Aquaculture, 280 

Width, Hardreef and Residence) and no interactions were retained in the best-fit logistic 281 

regression model (Table 3). Comparing the best-fit model’s predictions against the 282 

oyster presence/absence data gave an AUC of 0.9. Applying a classification probability 283 

threshold of 0.1 to this model (corresponding to the threshold that maximised the sum 284 

of specificity and sensitivity) gave 25 true positives, 71 true negatives, 29 false positives 285 

and two false negatives for our oyster presence/absence data. Another approach to 286 

estimate model performance is Cohen’s kappa (Cohen 1960). Cohen’s kappa is 287 

maximised for our model at a threshold of 0.48. However, classification performance 288 

with this threshold had less true positives and more false negatives and was therefore 289 

not considered as the best classifier. Oyster presence was positively associated with 290 

Hardreef (bedrock, boulders, cobbles, pebbles or biogenic reef), Residence and Width 291 

≥ 50 m. ‘Aquaculture far’ was also positively associated with oyster presence (p = 0.035, 292 

Table 3). Removing ‘Aquaculture absent’ from the model did not affect the other 293 

coefficients, indicated by a high standard error on the regression coefficient (Table 3). It 294 

is important to note that Latitude, Rest and Macroalgae, which were omitted from the 295 

full model due to co-linearity, could equally well underlie the same associations as the 296 
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terms that were left in the model in their place (i.e. Residence, Width and Hardreef 297 

respectively). Thus, Latitude might equally be positively associated with oyster presence 298 

whereas Macroalgae or a low % cover of Rest might be negatively associated with oyster 299 

presence. Fetch was in the full model but was not kept in the best-fit model owing to its 300 

low explanatory power.  301 

 302 

Small-scale associations between oysters and habitat within sites (Phase 2) 303 

Oysters were disproportionately associated with hard substrata (boulders, cobbles, 304 

pebbles and mussels) given their availability relative to that of macroalgae, sand, 305 

Sabellaria tubes and mud (Table 4). Oysters were never found attached to macroalgae 306 

(with one single exception (J Kochmann, pers. obs.). 307 

 308 

Discussion 309 

The structured framework and sampling protocol here was used in cooperation with 310 

relevant state agencies in Ireland and allowed rigorous analysis of the extent of spread 311 

and factors influencing the distribution of Pacific oysters. Its cost-effectiveness and 312 

repeatability make it valuable and widely applicable for future assessments and also 313 

relevant for other marine benthic species with similar life-history traits.  314 

 315 

Unlike the situation in many other European countries, no dense intertidal reefs of Pacific 316 

oysters are established yet in Ireland, despite extensive aquaculture. Pacific oysters were 317 

found at 18 of 69 sites. Densities at those sites ranged from single individuals to 8.5 ind./m
2 
in 318 

the intertidal; they were also observed at higher densities in the shallow subtidal in Lough 319 

Swilly (J Kochmann, pers. obs.) and are known to occur in subtidal areas in Loughs Foyle and 320 

Swilly (McGonigle et al. 2011; Marine Institute and BIM 2012).  Comparably low densities 321 

of 0.01-42.44 ind./m2 were found, e.g. in Sweden and Denmark (Wrange et al. 2010), the 322 



Biological Invasions DOI 10.1007/s10530-013-0452-9 

 

 14 

Wadden Sea (Reise 1998; Wehrmann et al. 2000; Diederich et al. 2005) or Argentina 323 

(Orensanz et al. 2002) in the early stages of invasion. Guy and Roberts (2010) found 324 

densities of one individual per m
2 

in Northern Ireland with the largest oysters reaching lengths 325 

of 155 mm. Based on their analysis of age-size relationships in Strangford Lough (Northern 326 

Ireland), we would estimate that the largest oysters found in our study were approximately 6 327 

years old. However, age-size relationships of C. gigas can vary among sites (references in 328 

Diederich 2006), so this inference is tentative. In the Wadden Sea, Pacific oysters usually 329 

reach 20-50 mm in the first year and 30-80 mm in the second year on mussel beds (Reise 330 

1998; Schmidt et al. 2008; Fey et al. 2010) which are the lower size ranges also found in this 331 

study. Little evidence of recruitment was found in 2008 at the sites where transects were 332 

sampled, with few individuals found < 50 mm. New recruitment (oysters < 15 mm 333 

length) has since been observed in the intertidal in 2011 (J Kochmann, pers. obs). The 334 

range in sizes observed at individual sites (> 100 mm in four of the sites sampled, e.g. 335 

from 25.3 mm to 135.0 mm mm at Lough Swilly) is greater than would have arisen in a 336 

single cohort and is indicative of successful recruitment of Pacific oysters in more than 337 

one year in several bays in Ireland. 338 

 339 

Colonization of sessile benthic invertebrates often starts with a few individuals settling 340 

onto pieces of hard substratum and is widely known for oysters (Reise 1998; Escapa et 341 

al. 2004; Diederich 2005; Nehls et al. 2006). Similarly, in the current study oysters were 342 

always found attached to bare boulders, cobbles, pebbles or biogenic reef (live or dead 343 

material) and were very rarely found under macroalgae. Due to the co-linearity of 344 

Macroalgae and Hardreef, the positive association of Hardreef with oyster presence 345 

could also be a negative association with the % cover of macroalgae. However, when 346 

both factors were kept in the full model, Hardreef was kept in the ‘best-fit’ model 347 

indicating it as a better predictor than Macroalgae. Field studies with barnacle larvae 348 
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have shown that algal fronds can inhibit settlement on their surfaces by exuding 349 

metabolites (Brock et al. 2007) and that macrophyte canopies could prevent larvae from 350 

settling on rocks underneath them because they sweep the surface and limit access to 351 

the substratum (Jenkins et al. 1999). These effects might also play a role in the 352 

settlement patterns of oysters affecting recruitment and mortality (Thomsen and 353 

McGlathery 2006) and interfering with filter-feeding apparatus (Cadée 2004). The 354 

positive correlation of Width with Rest might be an indication of the characteristics of 355 

the larger intertidal areas surveyed; they were often extensive intertidal mud- or 356 

sandflats. Consequently, as intertidal shore width (> 50 m) was positively associated 357 

with oyster presence, the model also captured the likelihood of oysters being found on 358 

extensive, intertidal sedimentary shores.  359 

 360 

For marine species with planktonic life-stages, the duration of the larval stage 361 

determines the length of time that the larvae are subject to movement by currents and 362 

exposed to sources of mortality (Pechenik 1999; Pineda et al. 2007). High reproductive 363 

rates, spawning in multiple seasons or years and short development times can facilitate 364 

retention (Byers and Pringle 2006). Even if larvae do not necessarily behave as passive 365 

particles (e.g. Knights et al. 2006), flushing characteristics of coastal waterbodies such as 366 

residence times can help in the identification of areas likely to retain larvae (see Dyer 367 

and Orth 1994). Indeed, limitations in larval supply resulting from the interactions 368 

between spawning location and local hydrodynamics may impede the proliferation of 369 

introduced species (Dunstan and Bax 2007; Brandt et al. 2008; Rigal et al. 2010). The 370 

dynamics of retention will not only differ between bays but also between species and 371 

will influence their range expansion.  For example, the larval duration of the invasive 372 

seastar Asterias amurensis (Lütken, 1871) can take 120 days (Dunstan and Bax 2007), 373 

whereas spores of the Asian kelp Undaria pinnatifida (Harvey) Suringar might last only 374 
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several hours in the watercolumn (Hay and Luckens 1987). The planktonic larvae of 375 

Pacific oyster can spend three to four weeks in the water column before they reach 376 

competence to settle (Quayle 1988). Thus, enhanced oyster settlement could be 377 

expected to occur in bays exceeding the residence time of 21 days as larvae may be 378 

entrained for the duration of their planktonic phase. Except for two bays, Ballynakill and 379 

Tralee Bay, where single individuals of oysters were found, oysters were present in bays 380 

with residence times of more than 21 days.  381 

 382 

Although not explicitly considered here, temperature also plays and important role for 383 

the timing and magnitude of population growth through its influence on reproduction, 384 

survival of planktonic stages and on dispersal distances (Gillooly et al. 2002; O’Connor et 385 

al. 2007). It is widely assumed that large recruitment events of introduced species have 386 

been favoured by increasing summer temperatures and led to an increase in population 387 

growth, e.g. in the Australian barnacle Austrominius modestus (Darwin, 1854) (Witte et 388 

al. 2010) and the slipper limpet Crepidula fornicata (Linnaeus, 1785) (Thieltges et al. 389 

2003). Similarly, there is considerable evidence in support of this contention for Pacific 390 

oysters (Diederich et al. 2005) and temperature has been used to predict its potential 391 

geographic range (Carrasco and Barón 2010). If latitude were considered a broad proxy 392 

for temperature, our finding of greater densities of feral Pacific oysters in northern sites 393 

than southern sites might be considered surprising. In fact, local temperatures and 394 

biogeographic patterns cannot simply be predicted by latitude (Helmuth et al. 2002; 395 

Dutertre et al. 2010) and temperature data from the Irish Environmental Protection 396 

Agency (EPA), which was available for some bays, suggests that averages of maximum 397 

summer temperatures cannot be simply characterized by latitude but vary between 398 

bays. Thus, the high correlation of residence time and latitude suggests that any 399 

influence of latitude in the current study might be more related to bay features than to 400 
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temperature. Certainly, bay features can also be related to temperature and part of the 401 

reason for a positive association between residence time and oyster occurrence in the 402 

current study may be that extensive shallow bays tend to be warmer at certain times 403 

than smaller deeper ones. Generally, even if temperature regimes might be favourable 404 

and spawning could be initiated, planktonic larvae might be carried away before they 405 

attain competence to settle. Thus, residence time, which takes different bay features into 406 

account, should be considered more relevant as a predictor for the presence of benthic 407 

species with planktonic larval stages than average depth of a bay or a physiological 408 

temperature threshold only. 409 

 410 

Another hydrodynamic factor that can influence intertidal communities and abundance 411 

patterns of introduced species is exposure to wave action (e.g. Andrew and Viejo 1998; 412 

Branch et al. 2008). Although abundance patterns of Pacific oysters on rocky shorelines 413 

can differ between sites of different exposure (Ruesink 2007), in this study, wave 414 

exposure (quantified by wave fetch) played no role in our selected model of oyster 415 

presence. It could be argued that wave exposure indices based on wave fetch alone might 416 

not prove to be as powerful as including other aspects of wave climate, e.g. variations 417 

due to wind climate (Davies and Johnson 2006). However, this would involve more 418 

complex physical models and until those can be widely applied, wave fetch indices 419 

remain useful for ecologists (Burrows et al. 2008). As shown by Burrows et al. (2008), 420 

the extent of the shore is not considered in the calculation of wave fetch and can be 421 

important when shores extend > 100 m. This might be especially important when 422 

extensive intertidal areas offer some kind of hard substratum for attachment. Thus, 423 

intertidal width was additionally used as a proxy for settlement area and the model 424 

selection showed that intertidal width was a better predictor of oyster presence than 425 

wave fetch with a shore width smaller than 50 m being negatively associated with oyster 426 
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presence.  427 

 428 

Although aquaculture provides considerable economic and social benefit, the use of non-429 

native species in aquaculture increases the risk of unintentional escapes into ecosystems 430 

(Carlton 1996; Naylor et al. 2001). A wide range of non-indigenous species are already 431 

cultivated (FAO 2012a) and many additional species are being trialled for aquaculture in 432 

countries outside their native range (see review Cook et al. 2008). Improved 433 

understanding of the risks of escapes from aquaculture is clearly needed. Although more 434 

oysters were expected in close proximity to oyster racks and aquaculture sites, a 435 

tendency of oysters to be present more frequently far from aquaculture was found 436 

(p = 0.035, Table 3). Cognie et al. (2006) suggested that farmers’ upkeep activities might 437 

explain the low biomass of oysters on used racks and might have also played a role in 438 

our observations with a negative association of close proximity to aquaculture and 439 

oyster presence. In this study, most of the sites visited (62 of 69) were located in bays 440 

where aquaculture of Pacific oysters was present and only one single individual of Pacific 441 

oyster was found in a bay without aquaculture. It will be important to sample more bays 442 

where aquaculture is absent to draw more detailed and robust conclusions about 443 

associations of aquaculture and Pacific oysters in the wild. However, the fate of 444 

established non-native populations may not depend on reproduction success of farmed 445 

counterparts (e.g. Kochmann et al. 2012); the overall significance of aquaculture might 446 

be high in the initial establishment phase but less in subsequent spread. Therefore, 447 

monitoring environmental factors that are related to recruitment success and 448 

incorporating distances to sites where establishment has occurred might be more 449 

important to follow spread than focusing only on potential initial introduction sources.  450 

 451 

Recently, surface seawater and atmospheric temperature records were used to predict 452 
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the potential geographic range of the Pacific oyster in South America (Carrasco and 453 

Barón 2010). However, the authors averaged monthly near-coast temperatures over 454 

several years and acknowledged that in some locations, especially in estuaries and tidal 455 

flats, their predictions of oyster occurrence did not match the real situation, most likely 456 

because of a mismatch between local and near-coastal temperature regimes. Predictor 457 

variables such as embayment characteristics and habitat availability might increase the 458 

effectiveness for spatial predictions, particularly to discriminate among sites with 459 

similar temperature regimes. On the basis of the current study, we would anticipate that 460 

the sites most likely to develop populations of oysters would (a) be in embayments with 461 

aquaculture and with temperature regimes allowing for oyster spawning and larval 462 

development and with long residence times, (b) have hard substrata, e.g. mussel beds 463 

and rocky shores, (c) not have extensive cover of macroalgae and d) be intertidal areas 464 

> 50 m wide. The predictive performance of the model could be tested easily elsewhere 465 

as oyster populations have been found in places worldwide outside their native range for 466 

at least 40 years (Ruesink et al. 2005; Carrasco and Barón 2010). 467 

 468 

Our sampling methodology differs from other approaches in marine bioinvasions, such 469 

as passive sampling methods that use settlement plates, or rapid assessments that 470 

record only presence or absence and do not quantify densities (see Campbell et al. 471 

2007). Furthermore, when species-environment relationships are studied the scale of 472 

analysis should match the scale of a species’ response to its environment (De Knegt et al. 473 

2009). Our methodology incorporated factors that correspond to the spatial scale 474 

relevant for the different life-stages of invertebrates, such as larval supply, settlement 475 

and recruitment. Rather than using only fixed levels of environmental factors, our 476 

approach also allowed inclusion of continuous covariates (substratum, wave fetch and 477 

residence time). This resulted in more degrees of freedom in the model as only the slope 478 
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for a continuous variable and not a coefficient for each level had to be calculated. The 479 

AUC of 0.9 and also the individual classification threshold indicate a high discriminatory 480 

ability of our model (Fielding and Bell 1997). However, the same data were used to fit 481 

the model and to calculate model performance, which is not an independent validation 482 

of the model. Several sites were sampled within individual embayments, and several 483 

habitats were sometimes sampled within sites, thus, sampling locations were spatially 484 

clustered and could lack independence. This might have led to spatial autocorrelation, 485 

which can cause Type I error. However, initial results from mixed-model logistic 486 

regression that correct for spatial autocorrelation with a random effect of site on the 487 

intercept did not change results, i.e. estimated coefficients remained qualitatively the 488 

same as in the logistic model, which justified the use of a non-spatial model. Seeing the 489 

same qualitative outcome in the mixed-model suggests that oyster presence is affected 490 

by local differences in habitat (within site), and makes sampling of more than one 491 

habitat per site important.  492 

 493 

The presence of non-native species and also their abundances at sites cannot be 494 

explained exclusively by single factors. Beside sources of introduction, a comprehension 495 

of the early stages of spread requires a broad understanding of abiotic and biotic factors. 496 

Large-scale dynamics affect pelagic larvae and benthic juveniles, and biological, small 497 

scale interactions affect their survival and recruitment to the benthos. Statistical and 498 

process-based models are valuable tools for estimating the relative importance of 499 

multiple factors and combining them into 505 future invasion scenario predictions. 500 

Foremost, investigations of population dynamics at an early stage of marine bioinvasion 501 

are extremely valuable to allow early action to reduce the risk of invasion (Simberloff et 502 
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al. 2013). Carefully designed sampling programmes using cost-effective methodologies 503 

and coordinated over large areas to encompass variation in a range of predictor 504 

variables, could make valuable contributions to such investigations. Furthermore, these 505 

programmes should provide for robust outputs that can be easily communicated to 506 

stakeholders and managers so that any subsequent management measures that target  507 

relevant risk factors are suitably informed and justified.  508 

 509 
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Table1 Categories of environmental variables and aquaculture. The number of habitats with oysters 777 
present and absent is only shown for categorical variables. Note that categories for Width with the same 778 
superscript letters were combined for the logistic regression. Latitude was not included in the model and 779 
Hardreef was the only Substratum cover used in the full model.  More details of the variables are provided 780 
in the text 781 
 782 

Variable Category Oysters 
present 

Oysters 
absent 

    Latitude low: N51°- N52.3° 1 41 
 medium: N52.3°- N54° 12 38 
 high: N55° 14 21 

Aquaculture absent 1 12 
 close  5 52 
 far 21 36 
Width 0-50 m a 5 28 

 51-100 mb 10 31 

 101-150 mb 5 12 

 >151 mb 7 29 

Fetch log10(km) 
transformation, 
continuous 

  

Substratum cover 
(Hardreef) 

%, arcsine 
transformation, 
continuous 

  

Residence  days, continuous     

  783 
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Table2 Density of Pacific oysters estimated by transects (2 x 30 m2) or random quadrats (2 x 17 x 1 m2 on 784 
mussel beds) in intertidal areas with the highest density of oysters at each site at which oysters were 785 
found. The locations of sites can be seen in Figure 1. At sites scored rare or occasional on the SACFOR scale 786 
(see methods), no transects were used as densities were too low. In those cases, the SACFOR values are 787 
given in the table as Occasional = 0.01-0.09/m2 or Rare = < 0.009/m2 788 
 789 
 790 

Location No. of oysters m-2  
(± SD) 

  Lough Foyle  
Muff, mussel bed 5.35 (0.42) 
Longfield 0.38 (0.04) 

Ball's Point 0.38 (0.37) 
Moville rare 
Lough Swilly  
Rathmelton, rocky shore 6.32 (0.31) 
Rathmelton, mussel bed  8.53 (0.17) 
Inch Island 0.76 (0.17) 

Ballybagley 0.85 (0.07) 
Galway Bay  
Ballynacorty rare 
Dunbulcaun rare 
Parkmore rare 

Finvarra occasional 
Ballyvelaghan rare 
Shannon Estuary  
Glin 0.72 (0.49) 
Loghill 0.68 (0.31) 
Tarbert rare 
Tralee Bay  
Black Rock, Spa rare 
Ballynakill Harbour  
Letterfrack rare 
 791 
 792 
 793 
 794 
 795 
 796 
 797 
 798 
 799 
 800 
 801 
 802 
 803 
 804 
 805 
 806 
 807 
  808 



Biological Invasions DOI 10.1007/s10530-013-0452-9 

 

 34 

Table3 Coefficients, Standard Errors and p-values from the ‘best fit’ logistic regression model. The 809 
intercept corresponds to Width ≥ 50 m, Aquaculture close, Residence = 0, Hardreef = 0 810 
 811 

  Estimate Standard Error p-value 

Intercept -4.63 0.86 <0.001 
Width < 50 m -2.28 0.93 0.010 
Aquaculture far 1.41 0.67 0.035 
Aquaculture absent -0.37 1.31 0.780 
Residence 0.06 0.02 0.001 
Hardreef 2.69 0.85 0.002 
 812 
 813 
 814 
 815 
 816 
 817 
 818 
 819 
 820 
 821 
  822 
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Table4 Observed and expected numbers of oysters depending on availability of substrata at sites where 823 
transects or quadrats were sampled (Phase 2 of the protocol). Chi2 goodness-of-fit test was used and p-824 
values were simulated when expected values were smaller than 5 825 
 826 

  
No. of oysters 

  Location Available substratum (%) observed expected Chi2 p 

Shannon Estuary 
     

Glin mud, sand (60%) 0 60.60 171.97 < 0.001 

 
boulders or cobbles (37%) 101 37.37 

  

 
macroalgae (3%) 0 3.03 

  
      Loghill boulder, cobble (80%) 125 100.00 31.25 < 0.001 

 
mud (10%) 0 12.50 

  

 
macroalgae (10%) 0 12.50 

  
Lough Swilly 

     
Rathmelton, mussel bed mussels (47%) 267 126.90 292.11 <0.001 

 
boulder or cobbles (10%) 3 27.00 

  

 
mud (28%) 0 75.60 

  

 
macroalgae (15%) 0 40.50 

  
      Rathmelton, rocky shore boulder, cobbles, pebbles (52%) 373 196.56 330.07 < 0.001 

 
Sabellaria (26%) 5 98.28 

  

 
mud (22%) 0 83.16 

  
      Inch Island mussels (78%) 22 17.16 6.21 < 0.050 

 
mud (22%) 0 4.84 

  
      Ballybagley mussels (35%) 26 17.85 98.28 < 0.001 

 
boulder or cobbles (11%) 25 5.61 

  

 
mud (13%) 0 6.63 

  

 
macroalgae (41%) 0 20.91 

  
Lough Foyle 

     
Muff, mussel bed mussels (90%) 156 140.40 17.33 < 0.001 

 
mud (10%)  0 15.60 

  
      Ball's Point mussels (50%) 8 4.00 8.00 < 0.010 

 
mud(50%) 0 4.00 

  
      Longfield mussels (92%) 13 11.96 1.13 > 0.050 

  sand (8%) 0 1.04     

  827 



Biological Invasions DOI 10.1007/s10530-013-0452-9 

 

 36 

Figures 828 
 829 
Fig.1 Sampling sites and abundance of feral Pacific oysters in Ireland in 2009. Sites are categorised on the 830 
SACFOR scale on the basis of timed searches (see methods) by symbols. Open circle: Absent; grey triangle: 831 
Rare; black triangle: Occasional; black circle: Frequent; grey circle: Common. Names of embayment where 832 
oysters were found are given 833 
 834 
Fig.2 Size-frequencies of Pacific oysters in 5 mm size intervals at different locations, a Lough Swilly, 835 
Rathmelton, rocky shore, b Lough Swilly, Rathmelton, mussel bed, c Shannon Estuary, Loghill, d Shannon 836 
Estuary, Glin, e Lough Foyle, Muff, mussel bed. Measurements were taken from transects (see methods), 837 
n = number of oysters 838 
 839 

Fig.3 Visualized results of estimated types of substratum from all collected habitats with and without 840 
oysters. The number of habitats with and without oysters is given in brackets  841 
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Figure 1. 842 
 843 

 844 
  845 
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Figure 2. 846 

 847 
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Figure 3. 848 
 849 

 850 


