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ABSTRACT

Underwater survey videos of the seafloor are usually plagued with heavy vignetting (radial falloff) outside of
the light source beam footprint on the seabed. In this paper we propose a novel multi-frame approach for
removing this vignetting phenomenon which involves estimating the light source footprint on the seafloor, and
the parameters for our proposed vignetting model. This estimation is accomplished in a bayesian framework with
an iterative SVD-based optimization. Within the footprint, we leave the image contents as is, whereas outside
this region, we perform vignetting correction. Our approach does not require images with different exposure
values or recovery of the camera response function, and is entirely based on the attenuation experienced by
point correspondences accross multiple frames. We verify our algorithm with both synthetic and real data, and
then compare it with an existing technique. Results obtained show significant improvement in the fidelity of the
restored images.

1. INTRODUCTION

Underwater exploration of the seafloor is used for various scientific reasons such as assessing the biological
environment,1,2 archaeological analysis,3 and taking population census2 etc. Analysis is typically performed on
video recorded from sledges that move along the seabed.2 The elements involved in image capture are shown in
Figure 1. As can been seen from the example captured image, high intensity light sources are usually employed
due to the poor visibility underwater. These light sources usually leave a distinctive footprint of their beam on
the seafloor (see figure 1). Within this footprint the illumination remains relatively constant, but beyond its
boundary, it fades away. Multiple factors impact on the severity of this phenomenon, such as the illumination
distribution of the light source, the natural vignetting due to the camera lens, and the radiometric response
function of the camera. These components are shown in figure 1.

This non-uniformity of the brightness, as shown in figure 1, makes analysis of the seafloor (even manual
inspection) difficult since the useful field of view is restricted. In this paper we propose a technique for improving
the brightness of the scene by correcting for the various light degradation contributions from the light source,
lens and CCD. The goal is therefore to generate a video sequence which is much easier to use and facilitates
further automated analysis e.g. seabed classification1 and marine life inventory.2 An example of the result of
our technique is shown in Figure 1.

In detail, we estimate the lighting footprint and the vignetting functions, which describe the illumination
distribution of a light source, using multiple video frames captured with the same exposure setting. Previous
work has addressed vignetting in consumer applications, mainly due to the lens and CCD, but certainly not the
light source itself. Here we address a much more extreme form of vignetting (in effect), and the key novelties are
i) the use of a more general vignetting model that uses an elliptical radial fall-off function, which ii) does not
restrict its center to the image center, and ii) is robust to variations in scene depth.

The rest of this paper is organized as follows: in Section 2, we present previous work in this general area.
Afterwards, we derive our overall light degradation model in Section 3, followed by the details of our technique
in Section 4. An evaluation of our alorithm using both synthetic and real data is then presented in Section 5,
along with comparisons with a state of the art technique for vignetting removal. Lastly, we conclude with a
disscussion in Section 6.
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Figure 1. (a) Image formation process. The light source creates the scene radiance L(X), which the vignetting from the
camera lens transforms to image irradiance E(x), which is then transformed into image brightness I(x), by the camera
response function f(), (b) Corrected Image

2. PREVIOUS WORK

There are two bodies of relevant literature. The first body of work improves underwater visibility based on
physical models of light propogation underwater. Hence the colour degradation of an object underwater is
modelled as a function of its distance from the camera, z. These methods usually require special equipment
and/or user input. For example, in order to estimate lighting model parameters, Schechner and Korpel3 employed
a special polarizer lens together with user selected areas in the image where there was only background. Sedlazeck
et al.4 used user identified objects (limestone) and depth estimates to model colour degradation from a-priori
knowledge of object colour. In our case the objects are at approximately the same depth, and we seek an
automated solution to the problem.

The other body of work addresses the problem of vignetting directly, but not in our underwater case and
certainly not for the extreme types of lighting degradations as we observe. These techniques employ models of
the distortion function that is made up of a vignetting function and the camera response. The vignetting is
typically assumed to be continuous, circular in shape, centered at the image centre, and is approximately the
same in all frames. The parameters for these models can be estimated using either single or multiple images.
Zheng et al.,5 utilized the gradient along the radial direction from a single image for their vignetting parameter
estimation, whereas the camera response, was assumed to be known. Kim et al.6 developed a robust method to
estimate the vignetting and response functions independently and linearly based on the attenuations experienced
among point correspondences between image pairs. In this method, the attenuations experienced at different
radii were used to recover the vignetting, whereas for the response, attenuations at the same radii, taken at
different exposures, were utilized. We have incorporated this methodology of using attenuations among point
correspondences for estimating our vignetting function, because of the inherent independence to texture in the
technique. In addition, we limit the vignetting correction to the region outside of the lighting footprint, as within
this region the visibility of the image is good.

3. DEGRADATION MODEL

As shown in figure 1, the overall brightness of the captured scene is degraded along three stages of the image
formation process, on the seabed, the camera lens and CCD. In the first stage, the radial fall off, ML(x),
in the scene radiance, L(x), can be primarly attributed to the light source illumination distribution on the
seabed. Secondly, as L(x) passes through the camera lens, it undergoes further degradation, which is commonly
referred to as vignetting, Mo(x). It has been shown in7 and,8 that these reductions in L(x), can be modeled
as ML(x) = cos3 αL(x) and Mo(x) = cos4 αo(x). Where αL(x) and αo(x) are the angles between the normal
to the surface at the center of the respective degradation function, and the point x under consideration. Then
in the final stage of the image formation process, the captured L(x) on the image plane, commonly reffered to
as irradiance, E(x), undergoes further adjustments in intensity and range by the camera exposure setting, k,
and radiometric response function, f(). These adjustments result in a nonlinear mapping between E(x) and the
recorded image intensity, G(x), which can be mathematically modelled together with ML(x) and Mo(x) as:

G(x) = f(kE(x)) = f(kL(x)ML(x)Mo(x)) = f(kL(x) cos3 αL(x) cos4 αo(x)) (1)



Given the fact that we are interested in the overall effect of light attenuation through the system and not
all of the image formation details, we have derived an effective degradation model, B(x) as follows: Firstly, we
generalize f() as a gamma function, γ. Secondly, we assume αL(x) = αo(x) = α(x), which is resonable as ML(x)
is the dominant attenuation in this case. Next, the ratio of G(x)/I(x), where I(x) = f(kL(x)), is the notional
unattenuated intensity of the image feature, is then taken to give:

G(x)/I(x) = B(x) = (kL(x) cos3 α(x) cos4 α(x))γ/(kL(x))γ = cos7γ α(x) (2)

Afterwards, the expression cosα(x) = h/
√
r(x)2 + h2, obtained from figure 1, is substituted into eq. 2, along

with taking natural logarithms on either side to yield:

ln(G(x)/I(x)) = ln
(

h√
r(x)2 + h2

)7γ

= ln
(

1√
1 + (r(x)/h)2

)7γ

= −7γ
2

ln
(

1 + (r(x)/h)2
)

(3)

where r(x) = [x− c]TV[x− c] is the radius from image point x on the contour of an ellipse to its c = [cx, cy]T ,
with covariance matrix V = [v1, v2; v2, v3] capturing the shape of the respective isophotes. In the next step of
this simplification process, we substitute the Taylor series expansion of ln(1 + x) = x+

∑∞
n=2 an(xn) for |x| � 1

as:

ln(G(x)/I(x)) =
−7γ

2
ln(1 + (r(x)/h)2) =

−7γ(r(x)/h)2

2
+
∞∑
n=2

an((r(x)/h)2)n (4)

Then ignoring higher order terms by assuming |r(x)| � 1, as is the case due to the elements of V are all being
typically very small (i.e. abs(v1, v2, v3) � 1). This assumption was enforced by normalizing r(x), rn(x), with
the image dimentions i.e. rn(x) = r(x)/

√
width2 + height2. With this approximation, and incorporating γ and

h into rx, (i.e. r′(x) = rn(x)
√
γ/h), the effective degradation function, B(x) can be expressed as:

G(x)/I(x) = B(x) ≈ exp−(7r′(x)2/2) (5)

Note the following uniqueness of our degradation model compared to those utilized in the literature6,3,4.
Firstly, we do not estimate k, but instead leave the images at the respective exposure setting utilized, as we
assume this remained constant throughout the sequence. Secondly, h was assumed to be aproximately constant
over several frames, and hence there was no need its estimation nor γ, as they were both accounted for by the
V parameters.

4. UNDERWATER VIGNETTING CORRECTION

Our goal is to estimate the parameters c and V, so as to ultimately recover the original intensity I(x). To do this
we decouple the parameter estimation problem from the correction process in eq.5, and take a ratio of intensities
of point correspondences, A(x) in consecutive frames G1, G2 to yield

ln(A(x)) = ln
(

G2(x)
G1(x + w(x))

)
=
−7
2

(r22(x)− r21(x + w(x))) (6)

where r1(x+w(x)), r2(x), and w(x) are the corresponding positions and motion flow of image point x in frames
G1, G2 respectively. Parameters c and V are then estimated in a Bayesian fashion. Hence the major steps, of
our algorithm, in sequential order are: obtaining point correspondences, parameter estimation and correction.

4.1 Correspondence

Because of the inevitable inaccurances associated with the poor visibility conditions experienced in the under-
water domain, as outlined in section 1, the full set of correspondences, based on the global motion flow, w(x)
(i.e.G2(x) = G1(x + w(x))), was initially obtained. The technique developed by Spindler and Bouthemy,9 for
obtaining the dominant 2D motion from underwater video sequences with respect to the sea-bottom area, was
employed for estimating w(x), where the affine motion model was utilized.



Once the full set of corresponding points was obtained, we now selected a robust set for use in our vignetting
estimation. This pre-selection process was based on the following criteria: intensity, edges, motion vectors, and
attenuations values respectively. Underexposed and saturated points were removed by limiting the intensity range
(25 to 235). Only points that had undergone significant motion (> 2 pixels), and attenuation (|1−A(x)| > 0.03),
were selected. Lastly, to minimize the errors introduced as a result of the interpolating G1(x + w(x)) values
for fractional values of w(x), points that were located on edges, of either frame, were not used. A canny edge
detector was used for obtaining the respective edges.

4.2 Parameter Estimation
There are two sets of parameters to be estimated that would then yield intensity correction i) the center, c of the
light distribution, and ii) shape matrix, V describing the shape of the light footprint in some sense. Proceeding
in a Bayesian fashion, we require to maximise p(c, V|G1, G2) w.r.t the paremeters θ = [cx, cy, v1, v2, v3]. Hence

p(θ|G1, G2) ∝ pl(G1, G2|θ)pθ(θ) (7)

The likelihood pl(·) is derived directly from eq.(6), while gaussian priors, pθ(·) were used for each parameter as:

pl(G1, G2|θ) ∝ exp−
[

(ln(G2/G1) + 3.5(r′22 − r′
2
1))2

2σ2
e

]
; pθ(θ) ∝ exp−

[∑
x(θ − θ0)2

2σ2
θ

]
(8)

The parameters θ0 were estimated based on the predominantly illuminated region, Am(x) = {0, 1}, in the
respective frame. We assume within this region corresponding points would experience the least (i.e. below
average, µa) attenuations, and thus was roughly estimated as Am(x) = |1 − A(x)| < µa. Hence θ0 were were
computed as:

c0 =
∑

x xAm(x)∑
xAm(x)

; V−1
0 =

∑
x(x− c0)(x− c0)TAm(x)∑

xAm(x)
(9)

The actual values for c and V, were assumed not to be vastly different from these initial estimates, hence the
individual components of σ2

θ were set as follows: For the center, σ2
x and σ2

y were set to 25% the respective image
width and height. While for the shape, σ2

v1, σ2
v2, and σ2

v3, were all set to 50% of their corresponding θ0 value.
Then lastly, σ2

e was set to the actual variance obtained from the set of corresponding ln(A(x)) points.

4.2.1 Optimisation Strategy

Given the functions of likelihood and prior, the posterior expression for p(c, V|G1, G2) in equation 7 is non-linear
in the parameters. To simplify the process of maximization we choose to estimate the variables alternately using
the well known Besag Iterated Conditional Modes (ICM) algorithm.10 Hence, we estimate V by maximising
p(V|G1,G2, c), holding c at its current estimate, then estimate c by maximisation of p(c|G1,G2,V), holding V
at its current estimate. This process was accomplished in three main steps. Firstly, we obtain the conditionals,
which after examination of the posterior, eq. 8, also took Gaussian forms as follows:

p(c|G1, G2,V) ∝ pl(G1, G2, |c,V)pc(c); p(V|G1, G2, c) ∝ pl(G1, G2|c,V)pv(V) (10)

These conditionals were then differentiated w.r.t. its relevant unknown, set to zero, and solved, using the robust
method of Singular Value Decomposition (SVD).11 Then lastly, estimates for ĉ and V̂ were iteratively optimized
as:

ˆcn+1 = arg max
c
p(c|G1, G2,Vn); ˆVn+1 = arg max

v
p(V|G1, G2, cn+1) (11)

This optimization was performed until the percentage change between (n + 1)th and nth estimates for for
each parameter in ĉ and V̂, was less than 5%.

4.3 Correction
Given the parameters V and c estimated from the previous section, we can now correct the image. In practice
however we find that it is more sensible to leave the already well-lit central region, Lf , untouched. Therefore we
first estimate the extent of this region, and then boost the light intensity of the surrounding area. This practical
procedure was achieved with the creation of a gain field, C(x), which allowed us to control the apparent loss of
contrast in the central area when performing correction. The estimation of Lf and the creation of C(x) and are
illustrated in figure 2 (g) - (i), and are explained as follows:



4.3.1 Footprint Location:

We estimate the extent of Lf as the elliptical isophote radius, rf , where a large percentage of image features
had undergone a sudden significant (i.e. above average, µa) increase in attenuation. This feature was identified
as follows: Firstly, using the global attenuation field, A(x) (eq. 6), all corresponding points which experienced
above average attenuations, Al(x), was obtained:-

A(x) =
G2(x)

G1(x + w(x))
; Al(x) =

{
1 |1−A(x)| > µa

0 otherwise
; (12)

Then using the estimated parameters, c and V, Al(x) was then segmented into a number (y = 20) of concentric
bands, where rf was set as the boundary of the band where the largest percentage increase in Al points occured.
These steps are illustrated in figure 2 (h).

4.3.2 Gain Field Creation:

A gain field, C(x), was now created to correct the uneven illumination at each image location, x, where within
rf , C(x) was set to 1, so as to leave this region untouched, whereas outside it was set to 1/B(x), to correct the
apparent vignetting effect. In practice however, there were a few image points, d(x), outside Lf that did not
follow our degradation model B(x), and were driven into saturation after C(x) was initially applied. In most
cases, these minor anomalies were due to suspended particles located much closer to the light source than the
seafloor. To cater for this problem, C(x) was set to 1 at these locations. Then lastly, to remove the discontinuity
in the gain matrix at the footprint boundary, C(x) was smoothed with a gaussian filter, gσ (σ = 10), as shown
in figure 2 (i). The creation steps just described, can be mathematically summarized, in numerical order, as:

C(x) =

{
1 r(x) ≤ rf
1/B(x) r(x) > rf

; d(x) =

{
1 G(x)C(x) > 255
0 otherwise

; C(x) =

{
1 d(x)
C(x) 6= d(x)

; C(x) = C(x) ∗ gσ;

(13)
With the gain field now created, the unattenuated image, I(x), was now recovered as I(x) = G(x)C(x). However,
throughout the survey, changes undergone in light source such as its intensity, depth, and orientation w.r.t. the
seafloor alter the vignetting parameters. Hence, to correct all of the frames in the sequence, we re-estimated these
parameters at each consecutive image pair. To cater for erronous global montion flow estimates, the change in
these parameters were monitored over a 5 frame period, and hence was only updated if cummulative percentage
difference was significant (> 5%), in at least 3 out of 5 consectutive frames.

5. RESULTS

In this section we evaluate the performance of our algorithm in estimating the shape, center and light footprint
of various degradation functions, using synthetic and real data. The results obtained are also compared with the
technique proposed by Kim et. al.,6 noting that their work was directed at still and not moving images.

5.1 Synthetic Experiments

For our synthetic experiments, two 900 frame (235x380) sequences were created by translating multiple over-
lapping regions of a single image with known motion. For the first experiment, shown in figure 3, we examined
the robustness of our algorithm with an elliptically shaped vignetting function, V = [85, 0; 0, 45], centered at
c = [165, 107] (which was not the image center). The average Mean Absolute Error (MAE) of the degraded
images was 84.7. Applying our algorithm, the recovered average values for the shape and center parameters
were V = [88.9, 0; 0, 48.1], and c = [171, 103] (with standard deviations Vstd = [4.9, 0; 0, 3.1], and cstd = [4, 6]),
which yielded an average MAE of 9.7 after correction. These results show our algorithm can estimate elliptically
shaped degradation functions that are not centered at the image center with a fair degree of accuracy. In com-
parison, Kim et. al.6 technique initially performed poorly giving an average MAE of 84.6 (as the vignetting was
assumed to be circular and centered at the image center), but after our estimated radii parameters of c and V
were incorporated into their process, good results were obtained, giving an average MAE of 10.3. This drastic
improvement emphasises the need for good c and V estimates to perform vignetting removal efficiently.
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Figure 2. (a) Original (b) Artifically Vignetted, MSE=70.3, with simulated (blue) and recovered (red) footprint (c) Kim et.
al.6 result, MSE=10.6 (d) Our result without footprint estimation, MSE=25.1 (e) Our Result with footprint estimation,
MAE=8.7 (f) Recovered degradation curves (g) Corresponding points intensity Ratios, A(x) (h) Large A(x) points,
Al(x) (white), segmented into bands (blue), with footprint (red) identified where largest % increase in Al(x) occured (i)
Combining (via gaussian filtering) unity gain footprint (blue) region with degradation function (green) to create inverted
gain field (red).

(a) (b) (c)

(d) (e)
Figure 3. (a) Original (b) Artificially Vignetted, MSE=84.7 (c) Kim et al.6 Original Result, MSE=84.6 (d) Our Result,
MSE=9.7 (e) Result after incorporating our radii estimates of c and V into Kim et al.6 procedure, MSE=10.3



In our second experiment, shown in figure 2, we degraded the images outside a central region, rf = 0.4, with
a circular vignetting function, V = [75, 0; 0, 75], centered at the image center, c = [190, 117]. The average MAE
of the degraded images was 70.3. Applying our algorithm, we recovered average values for the shape, center,
and footprint parameters of V = [88.9, 0; 0, 48.1], c = [171, 103] and rf = 0.3692 (with standard deviations
Vstd = [5.1, 0; 0, 7.9], cstd = [4, 6], and rstd = 0.05), which yielded an average MAE of 8.7 after correction. These
results show our algorithm can estimate degradation functions which contain a centrally unattenuated region,
with a fair degree of accuracy. Good results were also obtained from Kim et. al.6 (average MAE value of 10.6),
the only issue being the wave-like appearance, as shown in figure 2 (c).

5.2 Real Data
For the real data, we used 400 frames from 5 sequences of video from real seabed surveys. Sample images of the
results obtained are shown in figure 4, and full sequences can be seen at www.sigmedia.tv/Misc/SPIE2012. As
can be seen, our algorithm (with the footprint estimation incorporated), improved the lighting profile significantly,
in comparison with Kim et. al.,6 which initially performed poorly, but after our estimated radii parameters c
and V were incorporated into their process, gave similar results to ours. It should be noted that in some cases,
some image features were dirived into saturation after correction with Kim et. al.6 method, as seen in the last
row in figure 2. These saturated regions were considered anomalies in our method, and were taken into account
via our gain field creation step (see eq. 13), where their respective gains were set to unity.

Figure 4. (Row 1) Original Degraded Images with estimated footprint superimposed in blue. (Row 2) Our Result. (Row 3)
Kim et al.6 original result. (Row 4) Result after incorporating our radii estimates of c and V into Kim et al.6 procedure.



6. CONCLUSION

This work has shown that it is possible to correct degraded video sequences from seabed surveys using ideas
from the vignetting literature. We have introduced a new paramterisation of the problem and shown that it
can achieve comparable/improved results to a well adopted model in the literature. The key ideas are firstly
to estimate radii parameters, V and c, based on the intensity ratios of point correspondences, and secondly
to correct the distortion outside of the well lit region using an approximate gaussian function. The resulting
sequences lighting profiles are improved significantly, which would aid in the seabed analysis, along with other
visual applications such as mosaic creation etc.

In this paper, because of the uneven degradations in colours experienced in the underwater domain4,3 the
value channel from the HSV colour model was used to perform our estimation, which was subsequently corrected
and then recombined with the original Hue and Saturation channels. In future work we would like to extend
our method to deal with the attenuations experienced in each colour channel independently. Also, not to limit
our degradation estimation to a gaussian shape, we would like to incorporate the flexibility of the polynomial
vignetting model utilized in Kim et. al.6 into our correction process. However to avoid the wave-like effects
encountered with this model, as seen in figure 2 (c), we would have to ensure its estimated function is monotonic.
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