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Abstract—Harvesting the commercially significant lobster,
Nephrops norvegicus , is a multimillion dollar industry in Europe.
Stock assessment is essential for maintaining this activity but
it is conducted by manually inspecting hours of underwater
surveillance videos. To improve this tedious process, we propose
the use of mosaics for the automated detection of burrows on the
seabed. We present novel approaches for handling the difficult
lighting conditions that cause poor video quality in this kind of
video material. Mosaics are built using 1-10 minutes of footage
and candidate burrows are selected using image segmentation
based on local image contrast. A K-Nearest Neighbour classifier
is then used to select burrows from these candidate regions. Our
final decision accuracy at 93.6% recall and 86.6% precision shows
a corresponding 18% and 14.2% improvement compared with
previous work [1].

I. INTRODUCTION

Nephrops norvegicus , commonly known as the Dublin Bay
prawn, is a slender, pink-orange species of lobster with esti-
mated annual landings of some 60,000 tons [2]. To maintain
this multi-million dollar [3] industry, stock assessment of this
particular lobster is performed yearly throughout Europe. The
assessment is based on the species burrow density distribu-
tion. Marine scientists estimate this by inspecting hours of
underwater surveillance videos manually with mechanical tally
counters. This is therefore tedious, time consuming and prone
to error due to fatigue, which also confuses the repeatability
of the process. To improve this situation and also increase re-
peatability, a system for automatic burrow detection is needed.

To understand the challenge involved, the images in the left
column in Figure 1 show exampleS of frames from typical
underwater surveillance footage. This type of recording is
made by a camera mounted on a sled dragged across the
seabed floor. The burrows are the dark circular holes in the
otherwise smooth seabed floor. As can be seen, the image
quality is poor due to uneven lighting, and the available field
of view is quite narrow as well as geometrically distorted. The
former problem is due to the need for artificial lighting which
causes vignetting, and the latter problem is caused by the lens
type and the orientation of the camera relative to the seabed.

This new area of research has recently been tackled in
the literature by authors Lau et al.[1]. In their approach,
burrow detection is addressed using video, where candidate
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Fig. 1. Original Frames (Left) and corresponding mosaic
generated using 100 frames (Right). More examples found at
www.mee.tcd.ie/∼sigmedia/Misc/OCEANS2013.

regions are segmented, classified (with a decision tree) and
tracked through frames. The challenge of uneven lighting was
addressed by performing object detection in a block-based
manner using local contrast features. Their framework en-
forces temproal consistency on the segmentations of individual
frames to eliminate false alrams. Although acceptable results
are obtained with this approach, its verification still involves
manual inspection of many thousands of video frames.

In our work, the problems of limited field of view and geo-
metric distortions were indirectly resolved by using mosaics
of several video frames. The mosaic generation process is
specifically designed to cope with vignetting and geometric
distortion of underwater footage and was presented previously
in Sooknanan et al [4]. The right column of Figure 1 shows an
example of a mosaic created from four seconds of footage. To
cope with uneven lighting, our method eliminates the influence
of absolute brightness by performing object detection in a
contrast space created by taking the difference of two blurred
versions of the image. The detected objects are segmented
using a classical energy minimisation approach, and lastly are
classified using a K-Nearest Neighbour classification frame-
work.
Three key contributions are made in this paper. First, is the
use of mosaics for this application, which improves visibility,
reduces processing, and simplifies the tedious video inspection
process to browsing of a single image. The second key
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Fig. 2. a) Original, blurred b) lightly, and c) heavily grayscale images, d)
DoG, e) dark entrances (pink) and scrapings (blue), f) Gaussian mixture model
of composite region (red box), with g) component plots showing splitting point
M, and h) separating line (red), and i) Our final segmentation.

contribution is a shape modelling step in our segmentation
procedure for separating composite burrow regions. Lastly, we
introduce a unique feature set for this application, which is
motivated by a scientific description of lobster burrows [5].
As a result, marine biologists can easily relate to it.
In the next section we present a brief summary of the mosaic
generation process and then describe our burrow segmentation,
feature extraction and classification procedures. Comparison
with previous work is shown in section 6, and conclusions in
section 7.

II. MOSAIC GENERATION

The mosaics are created by mapping frames to a common
reference frame, Qr, using the technique developed by Sook-
nanan et al.[4]. This mapping is done on a frame-by-frame
basis where a transformation matrix, Tr,k, relating Qr to
frame k, is calculated as Tr,k = Πk−1

i=1 Ti,i+1. Where Ti,i+1 is
the affine global motion model between consecutive frames,
estimated using a hybrid feature-based and exhaustive search
algorithm.
Overlapping regions among aligned frames are then combined
using a two dimensional Gaussian-like weighting function that
balances uneven lighting in the generated mosaic by selecting
well lit regions from each frame. This key function is estimated
automatically using point correspondences in [4], but for our
application was fixed to select the lower 20% of the screen
as this is the designated analysis zone used by scientists in
the current inspection procedure [5]. This location also had
minimal geometric distortion and was well lit, thus making it
ideal for generating high quality mosaics.

III. BURROW SEGMENTATION (BS)
The second stage of our application is to detect and segment
candidate burrow regions in the generated mosaic, I . This was
accomplished in four main steps of: i) generating the Differ-
ence of Gaussians (DoG) image, ii) performing segmentation,
iii) Labelling, and iv) Splitting merged regions.

DoG Generation. The DoG image, Id was generated as:
Id = I ∗G1 − I ∗G2, where G1 and G2 are two dimensional
Gaussian functions with taps of 71 and 5, and corresponding
variances of 30 and 2 respectively. Because of the large dif-
ferences in G1 and G2, local minimum regions (i.e. burrows)
appear as local maximum regions in Id, even those in poorly lit
areas, as shown in Figure 2 (a) to (d). To obtain larger maxima
values and hence improve detection, gamma correction was
performed on the original image, I = Iγ , where γ = 1.5 was
used, prior to the generation of Id. Since we are only interested
in these maxima (candidate burrow) regions, Id was further
simplified by setting all negative values to zero.

Segmentation. Burrows have a characteristic dark entrance
region (L(x) = 2) surrounded by a lighter region (L(x) = 1)
created by the animal claw scrapings as it manoeuvres in and
out of the hole. To capture useful features from these regions,
they were each segmented and labelled differently from the
homogenous sandy background regions (L(x) = 0).
Proceeding in a Bayesian fashion we require to maximise
the posterior, po(L(x) = α|Id(x),¬L(x)) w.r.t. Id(x) and
¬L(x), the respective 3 × 3 neighbourhood pixel labels of
image position x. Factorising the posterior using Bayes’ Law,
and dropping the notation x for clarity:

po(L = α|Id,¬L) ∝ pk(Id|L = α)pr(L = α|¬L) (1)

where pk and pr are the likelihood and prior. The likelihood
terms are modelled with gaussians as:

pk(Id|L = α) ∝ exp−
[ (Id − Iα)2

2σ2
α

]
(2)

where α = {0, 1, 2}, and {I0, I1, I2} are the mean values of
the background, scrapings and dark entrace regions respec-
tively, and {σ2

0 , σ
2
1 , σ

2
2} are their corresponding variances. To

enforce spatial smoothness within our segmentations, Gibbs
energy functions [6], with a 3 × 3 pixel neighbourhood, are
used for the priors, pr(.), as:

pr(L(x) = α|¬L) ∝ exp−
[
Λ

7∑
k=0

λk|α− L(xk)|
]

(3)

where λk = 1/||x− xk||, is a weight inversely proportional
to the distance between the current site x and the respective
neighbour xk in a 3 × 3 neighbourhood, and Λ is a global
weighting factor, set as Λ = 1 in our experiments. Initial
estimates for these parameters and labels were obtained using
k-means clustering on Id, with 4 clusters to represent the
different levels of burrow shaddings and the background.
The background and scrapings regions were labelled with
cluster members associated with the first and second smallest
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Fig. 3. a) Original, and segmentation showing extraction of b) Entrance Dark
Area, Claw Marks, c) Burrow Diameter, Rectangularity, and Circularity Fit
features.

centroid values respectively, and the dark entrance regions with
the other two cluster members. The parameters {I0, I1, I2}
were set using the three smallest centroid values, {w1, w2, w3}
as {w1, (w1 +w2)/2, (w2 +w3)/2}, while {σ0, σ1, σ2} were
set as 1.5{(I1+I0), (I1+I0), (I1+I2)}. Minization of po was
performed using the Iterated Conditional Modes [7] scheme,
where a checkerboard scan is utilized until there is no further
change in labels or a maximum of 10 iterations completed.

Candidate Burrow Labelling: The locally connected scrap-
ings and dark entrance regions, L(x) = {1, 2}, of each
candidate burrow are then labelled with unique identification
numbers. The Connected Component Analysis technique by
Sammet et al.[8], with a 3 × 3 neighbourhood, was used to
perform this labelling. In practice however, burrows in close
proximity to each were often segmented together, as illustrated
in the red box in Figure 2 (c). These composite segmentations
are identified as objects with multiple dark entrance regions.

Splitting merged regions: In the last stage of our segmen-
tation algorithm these composite regions are split into their
individual components. This was accomplished in two steps.
First, the shape of the entire region is modelled with a
mixture of Gaussians equal to the number of dark entrance
regions. Then, each component is separated normally from
its neighbour, at the point where their local mixing weights
are equal, along the line joining their respective means. This
procedure is illustrated in Figures 2 d) and e).

These mixture parameters are optimized using the Expectation
Maximization algorithm [9]. In this algorithm, the mean, µ,
and variance, σ2, of each component are initialized as µ =∑

xIn(x)/
∑

x, and σ2 =
∑

(x− µ)In(x). Where In(x) is
the normalized intensity of the corresponding dark entrance
area region component, Ig , at image position x, given by:
In(x) = Ig(x)/

∑
Ig(x). This separation was performed on

the DoG image, as in this domain the intensity profile of the
holes are Gaussian-like i.e. their intensity profile decreases
from the center, whereas in the raw image it is the opposite
(see figure 2 b).

IV. FEATURE EXTRACTION

In practice a large percentage of the segmented regions ob-
tained were not burrows. To reject these false alarms, a unique
feature set for distinguishing burrows was developed. This set
was based on the characteristic burrow features which marine
scientists use in the current identification process. Extraction
of some of these features is shown in Figure 3, and can be
explained as follows:

1) Entrance Dark Area (a): Burrows with caved-in entrances
are deemed inactive and consequently not counted. Their key
distinguishing characteristic is the absence of their entrance
dark core region. This feature was extracted as the number
of pixels in the entrance dark region, a (obtained from
our segmentation step). However, surveys are recorded with
different cameras, so to maintain consistency, this feature is
scaled using the calibrated distance (80cm) between two laser
dots present in these videos, to range typically between 0 and
1.
2) Burrow Diameter (d): The diameter of a burrow is defined as
the largest diagonal along its opening [10], and helps scientists
to identify the species of the occupant [5]. It was extracted as
the maximum distance between any two pixels in the core
dark region, and then converted to metric form (cm) using the
same scheme as for a.

3) Claw marks (s): Displaced sediment due to species activity
is commonly present in burrows. It manifests as a brigher
region surrounding the entrance. This feature was extracted as
the percentage of the region area outside the dark core region.

4) Entrance Dark Region Shape (r,M, e, c): Burrows of var-
ious species have characteristic shapes. Thus we propose
four shape features for the classifier, which were extracted
from the dark core region. First, the rectangularity, r, which
was the ratio of region area and the area of its minimum
bounding rectangle. Second, was the seven moments, M =
{m1,m2,m3,m4,m5,m6,m7}, as detailed in [11]. Third was
the eccentricity, e, describes how elliptical in shape the region
is, with a value of 0 representing a perfect circle and 1
corresponding to a line segment respectively. It was obtained
by fitting the region to an ellipse, as detailed in [12]. Lastly,
the circularity fit, c, was the percentage of region area within
a circle of radius, r2 = a/π, positioned at the region center
of mass (see Figure 3).

V. CLASSIFICATION

After the features are extracted, each segmented region is
classified using a K-Nearest-Neighbour (KNN) classifer [13].
This classifier works by assigning query objects to the class
of objects that occur most frequent among their respective k-
nearest neighbours. The search metric used is the Euclidean
distance, z, among the n features between the query object,
q, and each object from the training data set, t, given by:
z2 =

∑
n (qn − tn)2.

Training data for the two KNN classes used, burrows and
non-burrows, were obtained from two mosaics, each generated
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Fig. 4. Recall (red) and Precision (blue) results from training mosaic-2 for
a) All Feature combinations, b) different k values

from a 2,300 frame (576×712) sequence of actual underwater
surveillance video. Each mosaic had approximately 750 bur-
rows and 1000 non-burrows, which were labelled manually by
a trained expert. One of these mosaics was used asa training
data for the KNN, while the other was used to obtain the
optimal feature set and neighbourhood value. The optimal
feature set was found by analysing the performance of the
classifier with all 127 combinations of the seven features. This
evaluation was performed using a Neighbourhood value of
k =
√
nb = 27 (as recommended by Duda et al.[13]), where

nb = 750, is the number of objects of interest (i.e. burrows)
in the training set.

The recall and precision values obtained from this feature
analysis is shown in Figure 4 (a). As seen, these results
fluctuated narrowly around average recall and precision val-
ues of 96.1% and 86.4% respectively. As these fluctuations
were so small, to aid in this analysis, results obtained were
ranked in order of their recall and precision values averaged,
Ar = (recall+precision)/2. Table I lists the results obtained
from the individual features, along the three worst and ten best
performing combinations, based on this ranking system.

The analysis of these results yielded three interesting points.
First, from the individual feature analysis, the dark entrance
area feature performed the best (Ar = 91.9), and the cir-
culatity fit feature was the worst (Ar = 90.0). Secondly,
when the circularity fit feature was however combined with
dark entrance area feature, it performed the best (Ar = 91.9)
among the 127 combinations, whereas the eccentricity and
moments combination produced the worst (Ar = 89.8) results.
Lastly, the dark entrance area feature seemed to be the most
valuable from the entire set, as it appeared in each of the top
seven combinations; and its performance was only 0.5 less

Analysis Rank Features Recall Precision Ar

Individual

110 a 96.1 87.7 91.9
4 s 96.2 84.1 90.2

24 d 95.9 86.5 91.2
11 e 97.4 83.4 90.4
2 c 97.2 82.7 90.0

18 r 95.0 86.9 90.1
7 M 98.4 82.0 90.2

Worst
1 e,M 96.3 83.3 89.8
2 c 97.2 82.7 90.0
3 c,M 98.0 82.4 90.2

Best

118 a,s,d,e,c,r 95.3 88.7 92.0
119 d,e 95.6 88.4 92.0
120 a,s,d,e,c,r,M 95.4 88.7 92.1
121 a,d,e,c,r,M 95.8 88.3 92.1
122 a,d,e,r,M 95.7 88.4 92.1
123 a,d,M 95.2 88.9 92.1
124 a,d,c,M 95.2 89.0 92.1
125 a,s,c 94.6 90.0 92.3
126 a,M 94.8 89.7 92.3
127 a,c 93.3 91.4 92.4

TABLE I
THE PERFORMANCE OF I) INDIVIDUAL FEATURES, ALONG WITH II) 3

WORST, AND 10 BEST COMBINATIONS FROM 4 (A).

in Ar value to the best combination. For our experiments,
the combination, {a, c}, was used, as apart from having the
highest Ar value, it also gave the best precision results, which
is crucial in this application, as it usually has about 200%
more non-burrow objects than burrows.
Using the best combination of (a, c), the optimal best neigh-
bourhood value, k was then obtained by analysing the perfor-
mance of the KNN classifier with k values ranging from 1 to
100. Figure 4 (b) illustrates these results. For our experiments,
k was set as 26, for two reasons. First, it gave both high recall
and precision values of 88.2% respectively. Secondly, smaller
values resulted in a sharp drop in recall, whereas larger values
gave a sharp drop in precision.

VI. RESULTS

We evaluated the performance of our algorithm with eight
1500-3000 frame (576×712) sequences of real underwater
surveillance video. Each sequence was labelled manually in
the corresponding mosaic by a trained expert. During this
process the original frames were visually inspected to ensure
the integrity of each mosaic, which proved to be accurate in
all cases. Applying our technique to this test data (see table
II), high recall and precision results were obtained, averaging
93.6% and 86.6% respectively, as illustrated in Figure 5. The
small drop in recall values in the first three test sequences
was obtained due to the significant amount of undetected
blurry small burrows in these cases. These results show our
application can detect burrows using mosaics with a high
degree of accuracy.

TS 1 2 3 4 5 6 7 8
GT 524 712 632 715 954 1013 842 578

TABLE II
TEST SEQUENCES (TS) GROUND TRUTH (GT) BURROW NOS.



Fig. 5. Recall (Left) and Precision (Right) vs test mosaic number using our
method (red), Lau[1] with video (green), and Lau[1] with mosaics (blue).

We compared results with the video-based technique proposed
by Lau et al.[1] using: i) video and ii) mosaics. The video
comparison was performed by cross referencing the detected
burrows in each frame of the video with our ground truth
mosaics. To perform the second comparison, we used the
first stage of their algorithm applied directly to mosaics (the
temporal constancy (i.e. 2nd) stage is not applicable in this
case). Sample results obtained from test mosaic 1, are shown
in Figure 6, while the recall and precision values obtained
from each case are illustrated in Figure 5.
Analysis of these results show our method outperforming
this previous technique in each case. For the video test, Lau
et al.[1] obtained average values of 75.6% and 72.4% for
recall and precision. For the mosaic tests, our modification of
their technique obtained average recall and precision values
of 80.75% and 33.1%. This drastic drop in precision values
obtained in the mosaic tests with their algorithm highlights
its high dependency on temporal information. In contrast our
techique obtained high precision and recall values across all
sequences tested.

VII. CONCLUSION

We have presented a novel tecnnique for burrow detection in
video using mosaics that improves substantially on previous
work. In addition, we have introduced an optimal segmentation
technique and a novel feature set for this application and
shown that it can achieve improved results without explicit
temporal information. Our process also estimates diameter of
burrows, which marine biologists agree is a useful tool for
identifying [5], and analysing the size distribution of various
species [10]. With initial detection rates as good as these ob-
tained, this algorithm has the potential to significantly reduce
the lengthy manual inspection time spent by the experts. In
future work we would like to incorporate this method into a
larger project geared towards identifying Nephrops burrows
and their corresponding clusters [2].
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(a) (b) (c)
Fig. 6. a) Mosaic generated from 360 Frames, and objects detected as burrows (blue) using b) our method, and c) Lau et al. [1] method.


