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PREFACE 

Irish waters are internationally important for cetaceans (whales, dolphins and porpoises), with 

24 species recorded to date (Berrow, 2001). These range from the harbour porpoise, the 

smallest species in European waters, to the blue whale, the largest animal to ever have lived on 

Earth. Some species are relatively abundant and widespread while others are extremely rare 

and have never been sighted in Irish waters, only known from carcasses stranded on the Irish 

coast. At least 12 cetacean species are thought to calve within the Irish Exclusive Economic 

Zone (EEZ)1 (Berrow, 2001). Marine mammals, including cetaceans and seals, represent almost 

50% of the Irish native mammal fauna, and thus Ireland has a significant conservation obligation 

towards them and their habitats. In 1991 the Irish government recognised the importance of 

Ireland for cetaceans by declaring all Irish waters within the EEZ a whale and dolphin sanctuary 

(Rogan and Berrow, 1995). 

 

This diversity of cetacean species in Ireland reflects the range of marine habitats, which extend 

to 200 nautical miles (nmls) (370km) offshore and comprise an area of 453,000km2. This is a 

little over six times the area of the land of Ireland. These habitats range from shallow 

continental shelf waters to shelf slopes, deep-water canyons, offshore banks, carbonate 

mounds and associated deep water reef systems and abyssal waters.   

 

Legal Framework 

All cetaceans and their habitats are protected under Irish and international law. The Wildlife 

Act2 and Wildlife (Amendment) Act3 entitle all cetaceans and their habitats up to 12nmls from 

the coast to full protection, including from disturbance and wilful interference. All cetacean 

species occur on Annex IV of the EU Habitats Directive4, and are thus entitled to strict 

protection, including prevention of deliberate capture or killing, prevention of deliberate 

disturbance, prevention of deterioration of breeding or resting sites and prevention of capture 

for sale. There is also a requirement to monitor the incidental capture or killing of these 

species. Two species, the harbour porpoise and bottlenose dolphin, are on Annex II, which 

requires the designation of Special Areas of Conservation (SACs) to protect a representative 

range of their habitats. To date, two candidate SACs have been designated for the harbour 

porpoise - Roaringwater Bay, Co Cork, and the Blasket Islands, Co Kerry - and one for the 

bottlenose dolphin - the Lower River Shannon. The European Court of Justice (ECJ) ruled in 

                                                
1 EEZ: a seazone in which a state has special rights over the exploration and use of marine resources. 
2 Wildlife Act (1976) 
3 Wildlife (Amendment) Act (2000) 
4 Council Directive 92/43/EEC on the Conservation of Natural Habitats and of Wild Fauna and Flora 
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February 2009 that the Irish government had failed to ‘put in place a comprehensive, adequate, 

ongoing monitoring programme for cetaceans that could enable a system of strict protection 

for those species to be devised’.   

 

Under Article 17 of the Habitats Directive, each member state must report on the status of all 

species and habitats listed under the Habitats Directive which occur within the state. The first 

reporting round was completed in 2007 and covered the period 2000‒ 2007. A conservation 

assessment requires information on range, habitat, population, and future prospects. The 

conservation assessments for cetacean species were considered very inadequate due to a 

significant lack of data on range, habitat, and population estimates for nearly all cetacean 

species in Irish waters. The next reporting round will be completed in 2013, and the National 

Parks and Wildlife Service (NPWS) must ensure that available data are adequate to make a 

proper conservation assessment, at least for the most abundant and widespread species.   

 

In December 2009, the National Parks and Wildlife Service (NPWS) published its 

Conservation Plan for Cetaceans in Irish Waters5. This plan lists 41 actions. These include 

conducting further research to determine the distribution, relative abundance, and habitat 

preferences of cetaceans (Action 1); identifying breeding ecology, movements, and migration 

routes (Action 2); devising a programme to effectively monitor cetaceans inside and outside 

designated areas (Action 3); encouraging the development of passive acoustic monitoring 

(Action 4); exploring the possibility of using static acoustic monitoring to provide data for 

monitoring cetaceans (Action 9); including cetacean surveys on fisheries cruises to collect 

information on the possible relationships between fish and cetacean abundance (Action 18); 

and carrying out spatial monitoring using GIS to explore the relationship between cetacean 

distribution and fisheries (Action 19).  

 

The Irish government also has legal obligations to protect cetaceans and other marine 

megafauna, and their habitats, under a range of other legislation. These include the Convention 

on the Conservation of Migratory Species6 (Bern Convention) and the Convention on the 

Conservation of European Wildlife and Natural Habitats7 (Bonn Convention). Under the 

OSPAR Convention8, Ireland is obliged to address recommendations on the protection and 

conservation of species, habitats, and ecosystems that make it not only relevant to marine 

mammals and turtles but also to basking sharks.  

                                                
5 Conservation Plan for Cetaceans in Irish Waters (2009). Department of Environment, Heritage and Local 
Government. 
6 Convention on the Conservation of Migratory Species of Wild Animals (1979) 
7 Convention on the Conservation of European Wildlife and Natural Habitats (1979) 
8 Convention for the Protection of the Marine Environment of the North-East Atlantic (1992) 

http://www.ospar.org/html_documents/ospar/html/OSPAR_Convention_e_updated_text_2007.pdf
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The National Biodiversity Data Centre recently established a marine mammal database. The 

data collected during this project will be used for this database in order to make the data 

available for a range of assessments, including Environmental Impact Assessments, Strategic 

Environmental Assessments and Appropriate Assessments.  

 

Amendments to the EU Common Fisheries Policy require an Ecosystem Approach to Fisheries 

Management (EAFM). This requires data on the predators as well as the fish prey, and the 

drivers linking the different ecological systems. This presents a great challenge and member 

states are exploring how such an approach can be implemented.  

 

The development of a sustainable marine tourism industry has been identified as a national 

priority by both the Marine Institute and Fáilte Ireland. While marine wildlife tourism has great 

potential as a high spend product for peripheral coastal regions, the species targeted are 

usually protected and populations often depleted through over-exploitation. Information on 

the distribution, abundance, and status of these species is essential for responsible 

development of this resource.   

 

Marine Mammals and Megafauna in Irish Waters – Behaviour, 

Distribution and Habitat Use 

The research termed Marine Mammals and Megafauna in Irish Waters – behaviour, distribution 

and habitat use attempted to address some of these issues. The project was delivered under six 

Work Packages. Work Package 1 attempted to increase coverage of offshore waters using 

platforms of opportunity (both ship and aircraft) to map the distribution and relative 

abundance of marine megafauna within the EEZ,  and to provide recommendations on how 

best to meet monitoring obligations for these species. Work Package 2 attempts to develop 

static and passive acoustic monitoring techniques in order to use these techniques to monitor 

Annex II species within SACs. Under Work Package 3, we intended to develop experience and 

capacity in the biotelemetry of marine megafauna through satellite tracking of fin whales 

(Balaenoptera physalus). In Work Package 4, results from eight years of cetacean and other 

marine megafauna surveys concurrent with the Celtic Sea Herring Survey organised by the 

Marine Institute were used to create a GIS in order to explore ecosystem links.  

 

Thus, the deliverables under this project will provide data which could be used to address a 

wide range of issues, and will contribute to developing policy advice on meeting Ireland’s 

statutory obligations.  
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EXECUTIVE SUMMARY 

The present study was aimed at assessing acoustic monitoring techniques as a means of 

addressing statutory monitoring obligations under the EU Habitats Directive for Annex II 

species (harbour porpoise and bottlenose dolphin). In addition, a protocol of best practice for 

Static Acoustic Monitoring (SAM) was developed. Three commercially available SAM devices 

were compared and assessed for their suitability in long-term SAM programmes. Passive 

Acoustic Monitoring (PAM) was carried out from Platforms of Opportunity (POPs) and this method 

was also assessed for its suitability in detecting cetaceans. An appropriate best practice 

protocol was developed. Furthermore, a long-term deployment of a Deep C-POD was carried 

out offshore, from the M6 weather buoy, at a depth of 500m.  

 

All SAM equipment was calibrated in the field and detection ranges generated for harbour 

porpoise (441m) and bottlenose dolphin (797m). Long-term deployments of up to two years 

took place at three locations along the west coast of Ireland: in Galway Bay, the Blasket Islands 

and the Shannon Estuary. The Blasket Islands is designated as a candidate Special Area of 

Conservation (cSAC) for harbour porpoises and the Shannon Estuary, a cSAC (Lower River 

Shannon cSAC) for bottlenose dolphins. Galway Bay was chosen as it is a site with both 

harbour porpoise and bottlenose dolphin present and it was the site of a previous long-term 

SAM study. 

 

All SAM data were further explored across temporal trends in order to identify peak times of 

presence for the target species. Temporal trends, such as season, diel and tidal influences, 

were investigated. To identify sites of significant habitat importance for specific behaviours, 

click train data from all sites were analysed. Deep C-POD deployments resulted in the longest 

data acquisition from a single deployment of 211 days. The M6 mooring buoy proved a 

successful means to deploy units at depth. PAM from platforms of opportunity also served as a 

successful mean of data collection and can supplement visual observations, especially by 

acquiring data during the night-time hours and in adverse weather. To conclude, a detailed 

protocol of best practice for inshore SAM as a monitoring method was generated.  
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1. DEVELOPING ACOUSTIC MONITORING 

TECHNIQUES 

1.1. Introduction 

Cetaceans live in an acoustic world and increasingly attempts have been used to develop 

acoustic monitoring techniques rather than using visual methods, whose efficiency is hugely 

dependent on light weather conditions and sea-state, especially for species such as the elusive 

harbour porpoise or deep diving species such as Ziiphids. Increasingly, acoustic monitoring is 

being carried out in tandem with or as an alternative to visual surveys. Several areas have been 

the target of seasonal acoustic monitoring on the west, south and east coasts of Ireland 

(O’Cadhla et al, 2003; Ingram et al, 2004; Englund et al, 2006; Coleman et al, 2008; Berrow et 

al, 2008; Berrow et al, 2009a), but only a few studies have focused on an area for more than 

six consecutive months. These include O’Brien (2009), who focused on a single site in both 

Galway Bay and Clew Bay, and Anderwald et al (2011), who have been continuously 

monitoring Broadhaven Bay in Co Mayo since 2009. Acoustic monitoring can be carried out in 

a passive (PAM, e.g. towed hydrophone) or static (SAM, e.g. C-PODs, and AQUAclicks) mode. 

PAM was carried out during the present project from Platforms of Opportunity (POPs) when 

appropriate (Chapter 7), while SAM was carried out in shallow coastal waters using C-PODs, 

T-PODs and AQUAclicks (Chapter 5). Some of the first deployments in the offshore waters of 

Ireland’s EEZ also took place using a Deep C-POD, capable of withstanding increased 

pressures at depth (Chapter 8). 

 

Echolocation is the ability to emit high intensity signals of short duration with exponentially 

decaying pulses (Au, 1997), and odontocetes can do this with varying degrees of complexity 

and composition. Most cetacean clicks are produced in trains. Therefore, the ability to record 

or recognise a click train can enable us to monitor their presence and identify species. Click 

trains can come from many sources in the sea and the C-POD.exe software will categorise 

them into the five categories based on mathematical computations of the detected sounds. For 

example, harbour porpoise clicks are characterised as being narrowband, high frequency, while 

dolphin clicks trains are usually broadband and at mid frequency. Boat sonar and other sources 

of noise can produce click trains but are of different cycles, duration, frequency and source 

level.  

The Timed Porpoise Detector (T-POD) has been used during a number of studies for various 

purposes, including environmental impact assessments (EIAs) (Carstensen et al, 2006), 
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interactions between cetaceans and fisheries (Cox et al, 2001; Leeney et al, 2007; Berrow et al, 

2009b), monitoring population trends (Verfuß et al, 2007; Berrow et al, 2009a), and behaviour 

including diel and tidal trends in vocal activity (Carlström, 2005). Initially the POD or porpoise 

detector, designed and manufactured by Chelonia Ltd (www.chelonia.co.uk) in the UK, was 

intended specifically to detect harbour porpoises, while more recent versions (T-PODs) were 

designed to detect both harbour porpoises and dolphins. 

 

The latest digital version of the C-POD (Figure 1.1) is a fully automated, static, passive acoustic 

monitoring system which can detect porpoises, dolphins and other toothed whales by 

recognising the trains of echolocation clicks these species make in order to detect their prey, 

orientate themselves and interact with one another. These units are designed and 

manufactured by Chelonia Ltd and they are the only commercially available instruments, 

accompanied by click train recognition software which produce fully automated, accurate data 

on the behaviour and identification of cetacean species (see www.chelonia.co.uk). SAM can be 

carried out independently of weather conditions once deployed and, thus, ensures high quality 

data is collected, but only at a small spatial scale. At present, however, it cannot reliably 

distinguish between dolphin species, but the application is constantly evolving. The AQUAclick 

100 (Figure 1.2) is a porpoise click logger (PCL), which can detect high frequency harbour 

porpoise echolocation clicks. It is designed and manufactured by Aquatec Group Limited, 

based in Hampshire in the UK.  

 

In order to evaluate the importance of an area, it is fundamental that the presence of small 

cetaceans at a site is fully understood and this requires monitoring over time scales of at least 

years. An evaluation of a site must be underpinned through scientific research from dedicated 

survey effort. Visual monitoring of cetaceans can provide numbers for density and abundance 

estimation but will be biased due to factors such as observer effect and unfavourable sea 

conditions. Therefore, a complete dataset cannot be gathered, necessitating the requirement 

of Static Acoustic Monitoring (SAM). Through SAM, informative datasets, robust enough to 

detect distinctive trends in presence across a range of factors, can be achieved much more 

rapidly than visual means. This could contribute towards meeting EU obligations economically.  

 

The aim of this study was to assess the efficacy of various SAM devices and to develop a 

protocol of best practice. SAM was reviewed under various headings to fully evaluate this 

technique. A cost estimate for 12 months SAM to fulfil statutory requirements was generated 

and compared with the cost of carrying out visual methods over the same timescales. This 

project was funded under the Sea Change Initiative, in which the government aimed to drive 

http://www.chelonia.co.uk/
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the development of marine resources in Ireland in a manner that contributes to the knowledge 

economy.  

1.2. Materials and Methods 

1.2.1. T-PODs 

T-PODs are no longer in production but are still used to monitor cetaceans in the wild. The 

echolocation characteristics of porpoises and dolphins differ, but an overlap in frequencies can 

make the discrimination between species difficult. When using T-PODs where porpoises and 

dolphins co-exist, using filter settings of 50kHz with a reference of 70 or 90kHz will eliminate 

detections of porpoises in those channels. Echolocation clicks are projected from an 

odontocete’s head in a highly directional beam. Intensity decreases with increasing angular 

distance off centre. The beam width is commonly expressed as the angle within which the level 

is within 3dB of that at the centre of the beam. For example, a bottlenose dolphin has a 3dB 

beam width and is 10-11.7° at an angle 5° above the body axis (Au, 1993). Directionality causes 

problems when detecting animals in the wild as it can only be recorded when the beam is 

directed at the recording equipment. Therefore, all SAM devices are subjected to this 

constraint. One study using T-PODs showed that porpoises were detected at any orientation 

at a range of about 20m (Chelonia pers comms.).  

 

A dolphin’s ability to echolocate across a wide range of frequencies (200Hz to 150kHz, Evans, 

1973) requires setting a lower click bandwidth (for example, four) to reduce the number of 

dolphin clicks in the porpoise categories (Tregenza pers comms.). The use of such settings 

makes the automated detection and discrimination between porpoise and dolphin species by 

the T-POD achievable (Table 1.1). However, it is not possible to discriminate between dolphin 

species using POD data. As a monitoring tool, the T-POD essentially provides information on 

the presence of animals and gives a measure of vocalization activity and behaviour. However, 

these data are non-quantitative in relation to showing how the number of clicks detected by a 

unit relates to the number of animals present (Ingram et al, 2004). A study by Tougaard et al 

(2006) generated a measure of absolute density by assuming that sampling an area n times 

through SAM is equivalent to sampling n sub-areas, for example, during an aerial survey, and 

found that the estimate they generated from acoustic data was similar to that determined as 

part of an international SCANS (Small Cetacean Abundance in the North Sea) project survey 

conducted in July 1994. However, this method of analysis is novel and has not been widely 

adopted.  
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The T-POD is equipped with a hydrophone element which is connected to two band pass 

filters, a comparator/detector circuit and a microprocessor which has memory capability to 

store information logged from the target species (Kyhn, 2006). All electronics are contained 

within a waterproof PVC housing (Figure 3.0). The dedicated software T-POD.exe is used to 

download the data from the logger, which identifies and classifies click trains of cetacean origin. 

A T-POD runs six successive scans each of 9.3 seconds duration, and selects only tonal clicks 

and logs the time and duration of each click. However, sensitivities between units differ and 

tank calibration tests are recommended prior to their deployment. These tests should 

determine the detection threshold of each unit as this is directly related to detection range 

(Kyhn et al, 2008). In addition, field calibrations are also recommended prior to employment of 

the devices in monitoring programmes in order to facilitate comparisons between datasets 

collected in different areas using multiple loggers (Dähne et al, 2006). A detection distance of 

over 1,000m for T-PODs and bottlenose dolphins was generated in the Shannon Estuary by 

Philpott et al (2007) using version three T-PODs, but it is likely that this may differ with more 

recent versions. Detection distances for the harbour porpoise using T-PODs were generated 

by Tougaard et al (2006) (200m) and Villadsgaard et al (2007) (300m to 500m).  

 
Table 1.1: Generic settings for T-PODs as recommended by Chelonia Ltd 

T-POD generic settings  

SCAN  1 2 3 4 5 6 

A filter (kHz) 50  130 50  130 50  130 

B filter (kHz) 70 92 70 92 70 92 

Click bandwidth 5 4 5 4 5 4 

Noise adaptation ++ ++ ++ ++ ++ ++ 

Sensitivity 6 6 6 6 6 6 

Scan limit 240 240 240 240 240 240 
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Figure 1.1: T-POD, version 5 unit by Chelonia Ltd 

 
1.2.2. C-PODs  

Once deployed at sea, the C-POD operates in a passive mode and is constantly listening for 

tonal clicks within a frequency range of 20 to 160 kHz. When a tonal click is detected, the C-

POD records the time of occurrence, centre frequency, intensity, duration, bandwidth and 

frequency of the click (Chelonia Ltd). Internally, the C-POD is equipped with a Secure Digital 

(SD) flash card, and all data are stored on this card. Dedicated software, CPOD.exe, provided 

by the manufacturer, is used to process the data from the SD card when connected to a PC 

via a card-reader. This allows for the extraction of data files under pre-determined parameters, 

as set by the user. Additionally, the C-POD also records temperature over its deployment 

duration. It must be noted that the C-POD does not record actual sound files, only 

information about the tonal clicks it detects. The C-POD detector is a sound pressure level 

detector with a threshold of 1Pa peak to peak at 130 kHz, with the frequency response shown 

below:  
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Figure 1.2: Threshold for detection across various frequency bands between 20 and 200 kHz for the 
C-POD (note 1Pa p-p is the SI unit for pressure and correctly represents the threshold) © Chelonia 

Ltd 
 

Calibration of equipment is important in order to compare results across units. Chelonia Ltd 

calibrates all units to a standard prior to dispatch. These calibrations are carried out in the lab 

under controlled conditions and thus Chelonia highly recommends that further calibrations are 

carried out in the field prior to their employment in monitoring programmes instead of further 

tank tests (Nick Tregenza pers comms). 

 

 
Figure 1.3: C-POD unit by Chelonia Ltd 

 

1.2.3. Deep C-POD 

The deep C-POD works on the same principals as the C-POD. The only difference between 

the two is that housing structure of the Deep C-POD is composed of a heavy anodised 

aluminum, allowing it to be deployed to depths of over 3,000m, and thus making the unit 

negatively buoyant. This has implications for deployment, and moorings are usually designed so 

Hydrophone 

element 

Screw top end 

and safety line 

attached to 

middle 
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that the hydrophone element faces the sea floor, the opposite to the C-POD used in inshore 

monitoring. 

 

 

Figure 1.4: Deep C-POD unit by Chelonia Ltd 

 

1.2.4. AQUAclick 100 

The AQUAclick 100 (Figure 1.5) is a porpoise click logger (PCL) which can detect high 

frequency harbour porpoise echolocation clicks and is designed and manufactured by Aquatec 

Group Ltd, based in Hampshire in the UK. The unit comprises tough delryn housing, and the 

electronics are housed inside the unit. The battery consists of 4 C-cell nickel metal hydride 

batteries, which require recharging approximately every 12 to 14 days. Acoustic signals are 

detected through a high sensitivity transducer, and the device filters signals to remove 

unwanted noise. Further analogue and digital signal processing occur, and Aquatec’s 

AQUAlogger technology is used to log the click events in non-volatile storage. The parameters 

stored are click occurrence time, click duration, and click sound level. After deployment the 

logged data can be uploaded via high speed USB, allowing it to be analysed by the ClickView 

software provided by the manufacturer. Generic settings as recommended by the 

manufacturer were used (Table 1.2). More recent versions of the AQUAgclick have longer 

battery durations. However, the conversion of older models to increase battery life is costly - 

in the region of £700 - and, hence, was outside the scope of this project. 

 

 
Figure 1.5: AQUAclick unit by Aquatec 
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Table 1.2: Recommended settings for AQUAclicks by Aquatec Ltd. Settings used during all 
deployments 

AQUAclick settings  

SETTING  VALUE 

Variable gain 
 

6dB 

Threshold level 3 

Automatic threshold Turned off 

Trigger (for use on porpoises) 130kHz filter 

Minimum click length 30µ seconds 

Maximum click length 1000µ seconds 

Minimum inter-click-interval 2 milliseconds 

Maximum inter-click-interval 500 milliseconds 

Do not log clicks outside click length Turned on 

Do not log clicks outside filter ratio Turned on 

Do not log clicks with invalid inter-click ratios Turned off 

Format prior to deployment Yes 

 

1.2.5. Towed Hydrophone 

A towed hydrophone array was also deployed as part of the present study (Figure 1.6). This 

array consists of a 200m cable with two hydrophone elements (HP-03) situated 25cm apart in 

a fluid-filled tube towards the end of the cable. The hydrophone connects to a MAGREC HP-

27 buffer box which runs through a laptop computer. This is connected to a National 

Instrument DAQ-6255 USB soundcard. This allows for the detection of sounds outside the 

capability of the computers soundcard (i.e. harbour porpoise high frequency echolocation 

clicks). Detection software used during all surveys includes PAMGUARD (freely available at 

www.pamguard.org) and IFAW’s Logger and Rainbowclick (freely available at www.ifaw.org). 

The acoustic survey track line is recorded via an external GPS receiver linked to the Logger 

software. PAMGUARD is a fusion of the IFAW suite and Ishmael and, therefore, has 

applications such as click detectors, tonal whistle detectors, capability to calculate bearings on 

maps, record a track log, spectrogram viewer, and detection energy display. It also has built-in 

filters. The collection of acoustic data during visual surveys adds an extra dimension to the 

monitoring dataset. Acoustic monitoring can also potentially detect cetaceans which are 

beyond the visual observers’ view and can be carried out during darkness and increasing sea 

state, thereby increasing the capacity of the survey.  
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Figure 1.6: Towed hydrophone deployment and real time monitoring 

1.3. Software 

1.3.1. T-POD.exe (www.chelonia.co.uk) 

The T-POD.exe software is required for setting and downloading T-PODs, either through the 

use of a printer port cable or more recently, USB. The T-POD trains used to process .pdc files 

for trains and the filter is based on an algorithm that uses a 38% increase or decrease in an 

interval as the constraint. The true value for small odontocete trains is occasionally much 

higher but cannot be implemented in practice without very complex processing and/or a high 

level of false positive trains (Chelonia Ltd). Train selection is categorised by the probability of a 

train being of cetacean origin. Data can be exported under various parameters and displayed 

on text or .csv files (Figure 1.7). 

 

 
Figure 1.7: Screen grab of T-POD.exe 
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1.3.2. C-POD.exe (www.chelonia.co.uk) 

Through the C-POD.exe software, data can be viewed, analysed and exported. Additionally, 

the software can be used to change settings of individual SD cards. The software includes 

automatic click train detection, which is continually evolving as Chelonia Ltd receives more 

feedback from their clients. The C-POD.exe software is very similar to the T-POD.exe but has 

capabilities beyond its predecessor. C-POD.exe can be run on any version of Windows and 

requires an external USB card reader, which reads the SD card into the directory. Version 

2.013 (June 2011) was used for all analyses. CP1 files are generated when the data is read from 

the SD card, while CP.3 files are generated when the CP.1 file is processed via the button on 

the “Trains” page (Figure 1.8. A typical file size for a three-month deployment is approx. 

100MB). C-POD.exe software allows the user to extract click trains under five classification 

parameters: 

 

i) porpoise-like 

ii) dolphins 

iii) other train sources 

iv) unclassed 

v) boat sonars. 

 

Harbour porpoise detections are the easiest cetacean species to recognise within an acoustic 

dataset due to the click characteristics. However, problems can be encountered when trying 

to decipher between dolphin species and in many instances may not be attainable. Experienced 

C-POD users should be able to pick out definite species characteristics within a dataset and 

therefore be able to make more accurate assertions about species presence within an area. C-

POD.exe is also used for viewing, analysing and extracting the Deep C-POD data.    
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Figure 1.8: Screen grab of C-POD.exe, showing a harbour porpoise click train 

 

1.3.3. AQUAtalk and AQUAview 

The AQUAtalk.exe software is used to set up the unit prior to deployment but also to 

download data upon retrieval through USB connection. An additional piece of software called 

AQUAview is used to visualise and analyse the data (Figure 1.9). The settings the software 

uses to classify clicks are stored in a .ini file. The data can be compiled into a report within the 

software to determine the amount of propose activity over the duration. 
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Figure 1.9: Screen grab of AQUAview.exe software ©AQUATEC Group 

 

1.3.4. PAMGUARD (www.pamguard.org) 

PAMGUARD is currently funded by the OGP E&P Sound and Marine Life Joint Industry 

Programme, and has been established to address the fundamental limitations of existing 

cetacean passive acoustic monitoring (PAM) software capabilities. PAMGUARD seeks to 

provide open-source PAM software based on a platform-independent (e.g. Windows or Linux), 

flexible, modular architecture. The open-source aspect of software development is facilitated 

through the project’s presence on SourceForge, where a community of altruistic developers 

provide extra resources. This community currently includes developers with proven PAM 

experience from both the UK and the USA. Open development means that the software is 

free and access to the code is easy and assured. It also allows the code’s copyright to be 

protected in perpetuity so that it cannot readily be closed and commercialised to the 

detriment of its users. It ultimately means that more people have access for development. This 

generally speeds up innovations and improves the performance and maintainability of the code 

(Figure 1.10). 
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Figure 1.10: Screen grab of PAMGUARD showing cetacean click detections  

 

PAM data can be post processed back in the lab. Data analyses should include the visual 

inspection of all sound files on spectrograms, using IFAW’s whistle detector and porpoise 

detector or Adobe Audition (latest version CS5.5), (e.g. Figure 1.11, clicks and whistles). All 

characteristics associated with detections, including inter-click interval of click trains, as well as 

frequency, shape and outline of whistles can be taken into account when identifying detections 

to species level. The track of all acoustic monitoring effort can be mapped, with acoustic 

detections classed as “sightings”, and these can be overlain on a track similar to that from 

visual surveys.   

 

  
Figure 1.11 Screen grab of spectrogram showing clicks and whistles in Adobe Audition  
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Dolphin 
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1.3.5. Cyclops Tracker 

Cyclops tracker (freely available from http://civilweb.newcastle.edu.au/cyclops/) is a marine 

mammal positioning system designed to accurately record and locate marine mammals from a 

known location. It was designed by Dr Eric Kniest from the University of Newcastle, New 

South Wales. This software has as simple graphical user interface (GUI) designed to run on a 

Windows operating system. It has been specifically designed for efficient use in the field, 

accepting data directly from electronic theodolites, compass binoculars, electronic compass, 

GPS and digital cameras. Data can be manually entered using the keyboard and can also be 

entered as a .csv file (Figure 1.12). Cyclops tracker requires the horizontal and vertical angles 

for theodolite tracking. The horizontal angle indicates the direction of the observed animal in 

relation to magnetic north, while the vertical angle is used to calculate the distance from a 

known location. The system can be used from a land station, vessel or aircraft. The instrument 

station must have a high observation point overlooking the ocean. Accurate measurements of 

station height and location are required prior to data entry. The instrument station needs to 

be coordinated and the direction to a suitable reference object may need to be determined. 

Corrections for earth curvature, refraction and tides are applied. Additional tidal information 

can be input to Cyclops tracker to increase accuracy and precision.  

 

 
Figure 1.12 Example Excel.csv file formatted for input into Cyclops Tracker 
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Data is processed in real time and the cetacean’s position is calculated and plotted on the 

screen. The pod’s (e.g. porpoise or dolphin group) identification label is automatically 

determined, with different pods shown in different colours. Track lines are fitted between 

cetacean group location fixes (Figure 1.13). Predictions of a group can be made at any time to 

help locate its next position. The predicted location is displayed on the screen as well as the 

likely horizontal and vertical angles to the group for that time. The position of the coastline is 

displayed, with the instrument’s location highlighted. Additional instruments such as SAM 

devices can also be displayed. An observation can then be highlighted to show the point’s 

identification, time of observation, bearing and distance from any instrument. Observation 

information can be edited at any time and additional information such as visibility and swell can 

be inputted.  

 

 
Figure 1.13: Screen grab of Cyclops Tracker PReCAST project in the Shannon estuary cSAC 

 

A complete re-write of Cyclops tracker was conducted and VADAR (Visual Detection and 

Ranging at sea) was released in late 2011 (http://cyclops-tracker.com/). VADAR has a 

completely different data file structure to those of previous versions of Cyclops tracker. Raw 

data and calculated positions can be exported in a text format for input into a Geographic 

Information System (GIS). The ability to use Cyclops tracker and VADAR in the field has 

http://cyclops-tracker.com/
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several benefits. Downloading observations directly into a computer speeds up the data input 

process and reduces data logging errors. Having a group’s position calculated in real time helps 

to check for any observational errors at the beginning of the data collection stage. Displaying 

group positions also helps keep track of current positions, direction and speed for more 

successful tracking. 

 

1.3.6. Statistical Package ‒ R 

R is a language and environment for statistical computing and graphics. It is free software, 

available at http://www.r-project.org/index.html. The software compiles and runs on a wide 

range of UNIX platforms, Windows and MacOS. R provides a wide variety of linear and 

nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering and 

graphical techniques (R Development Core Team, 2011). R is designed around a true 

computer language, similar to the S language (see Appendix for full R scripts used). The 

effective programming language includes conditionals, loops, user-defined recursive functions 

and input and output facilities (Figure 1.14).  

 

 
Figure 1.14 Screen grab of R GUI 

 

http://www.r-project.org/index.html
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R can be extended via packages. Packages are available through the CRAN family of Internet 

sites. This project employed the use of the following packages for specialist statistical analysis 

and graphical representation: 

 

gtools 2.6.2 

This package includes various R programming tools. The function ‘combinations’ was used 

during calibration analysis. The function enumerates the possible combinations of a specified 

size from the elements of a vector, required to generate all the possible C-POD pairs for 

comparison on inter unit variability. 

 

MethComp 1.3 

MethComp is a package designed for functions for analysis of method comparison studies. This 

package includes the function ‘Deming’, a form of regression of y on x, and assumes that both x 

and y are measured with error. The function was used to conduct the orthogonal regression 

comparing C-POD pairs during calibration analysis.  

 

plotrix 3.2-3 

The plotrix package contains various plot, labelling, axis and colour-scaling functions for 

graphical representation. The function ‘draw.circle’ draws a circle or multiple circles on an 

existing plot. This was used to create the 20% error margin along the orthogonal regression 

comparing C-POD pairs during calibration analysis.  

 

lme4 0.999375-41 

lme4 is designed to fit linear and generalised linear mixed-effect models. Analysis on the long-

term SAM dataset included a generalised linear mixed-effect model which required POD.ID to 

be entered as a random variable. The function ‘glmer’ was employed to run these models. 

 

aod 1.2 

The aod package provides a set of functions to analyse over dispersed counts or proportions. 

The functions should be considered as complements to more sophisticated methods, such as 

generalized estimating equations (GEE) or generalized linear mixed effect models (GLMM). The 

function ‘predict’ was used to obtain predicted proportions of detection-positive hours/minutes 

for the long-term SAM GLMM and the species and habitat assessment GLMM. The function 

‘wald.test’ was used to obtain chi-squared wald statistics for each of the variables within the 

GLMM models. 
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HH 2.1-30 

HH is a package for statistical analysis and graphical display. This project used the ‘antilogit’ 

function to back-transform predicted proportions of detection positive hours/minutes in the 

long-term SAM GLMM and the species and habitat assessment GLMM for graphical display. 

 



NDP Marine Research Sub-Programme 2007-2013 

    

 19 

 

2. EVALUATION OF SAM DEVICES USED 

Inshore Static Acoustic Monitoring (SAM) was carried out over the duration of the project 

using three acoustic devices, C-PODs, T-PODs and AQUAclicks. PODs are produced and 

manufactured by Chelonia Ltd, and AQUAclicks are produced and manufactured by Aquatec in 

the UK. Both companies commercially supplied these loggers as well as software and support. 

All three devices were deployed over the duration, and performances were evaluated 

according to ease of physical handling of equipment, deployment, retrieval and downloading of 

data on retrieval. Additionally, mooring type and construction were evaluated according to 

longevity, cost and ease of use. 

2.1. Handling 

The use of SAM devices encompasses a range of issues such as physical handling of equipment, 

deployment, retrieval, downloading, mooring type and construction, and of these, deployment 

method can be the most problematic. Over the duration of the project, more C-POD units 

were available than any other unit type. T-PODs are no longer manufactured and therefore 

were used during the present project in order to assess transition between the two devices. 

AQUAclicks are only commercially available since 2006, and since they are the only other SAM 

device on the market, it was necessary to assess their performance. However, the AQUAclick 

units used over the duration were only equipped with re-chargeable batteries, which lead to a 

short deployment life in comparison with PODs. An upgrade is now available for AQUAclick 

units in order to extend battery life and to increase the sensitivity to allow for detection of 

dolphin clicks.  Devices were not upgraded over the duration of the project due to the 

financial cost of this latest development.  

 

A number of deployment methods were undertaken over the course of this project, including 

the utilisation of navigation marker buoys, jetties, acoustic releases and construction of both 

light weight (40kg) and heavy weight independent moorings (1,000kg). A number of problems 

were encountered over the duration of the project, resulting in equipment loss or malfunction, 

including interference, acoustic release malfunction, mooring malfunction and adverse weather 

conditions. As the cost of mooring construction is often critical to a project, it is advised to 

budget for such and a suitable means chosen to fit the project.  

 

As recommended by Chelonia Ltd, preliminary tests should be carried out at deployment 

locations in order to assess, for example, the level of background noise at a site as this can 

have a profound impact on battery and memory consumption. In this study, the maximum 
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working duration recorded for a C-POD was 159 days (Table 2.1 and 2.2), 14 days for an 

AQUAclick and 93 days for a T-POD. Each deployment duration varied due to a number of 

factors such as weather, ease of access to site and a boat, and availability of people to retrieve 

the devices. Deployment duration of C-PODs can also be influenced by the capacity of the SD 

card, but this was not found to be an issue at any of the sites monitored, while neither was the 

memory capacity of the T-POD. The manufacturers recommend avoiding long deployments 

where possible in order to avoid data loss of large timescales.  

 

C-PODs have a depth limit of 100m but a deep-water version is available and has been used in 

the offshore environment (Chelonia Ltd), with a depth limit of 2,000+m. A Deep C-POD was 

deployed in this study at a depth of 500m. A C-POD containing ten alkaline cells has a positive 

buoyancy of approximately 0.7 kg. It was aimed to deploy all equipment at mid water, as both 

dolphins and porpoises were the target species, but also to avoid excess noise detection from 

surface or bottom biological and environmental processes.   

 

Table 2.1: Deployment details from the Shannon Estuary, average file size per day/deployment 

Shannon Estuary  

Deployment 
number 

No. of days File size 
(cp.1) 
(Mb) 

File size 
(cp.3) 
(Mb) 

1 41 40.9 4.2 

2 31 47 4.7 

3 30 62.4 4.38 

4 79 127 7.29 

5 80 171 8.3 

7 30 43.8 3.0 

8 91 312.8 19.8 

9 76 68.5 11.4 

10 26 84.0 8.6 

11 159 137 32.5 

 643 (total) 109.44 (mean) 10.4 (mean) 
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Table 2.2: Deployment details from Spiddal in Galway Bay, average file size per day/deployment 
(Mean file size is equal to the total file size divided by the number of deployment days). 

Spiddal, Galway Bay  

Deployment 
number 

No. of days File size 
(cp.1) 
(Mb) 

File size 
(cp.3) 
(Mb) 

1 115 111 20.9 

2 80 149 22 

3 131 118 62 

4 125 93 25 

5 153 84 31 

 604 (Total) 0.92 (mean 
per day) 

0.2 (mean per 
day) 

 

 

 

 

 

 

     

  

 

 

 

C-PODs have a number of advantages over their predecessor, the T-POD, including: 

• A large reduction in the false positive rate, i.e. detecting clicks that were not of 

cetacean origin  

• C-POD can log the broadband clicks of dolphins without flooding the POD memory 

• C-POD can log odontocete clicks continuously at a frequency range of 20-160 kHz 

• A removable Secure Digital (SD) memory card allows large volumes of data to be 

collected and eliminates the need for connection with a PC in order to set and 

download units after deployment. This makes handling and downloading easier and 

safer.  

All C-PODs have an address (www.phonehome.org) embossed on the cap of the screw-top 

lid (Figure 2.1). This has proved to be most successful in locating lost units. Additionally, 

contact information was written onto units with indelible marker, with the name and phone 

number provided to further ensure the safe return of lost or dislodged equipment.  

 

Figure 2.1: Address embossed on 
the lid of a C-POD 

http://www.phonehome.org/
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2.2. Battery Duration  

Due to their low power requirements, C-PODs can run for between four to five months on 

eight to ten alkaline D-cells batteries (depending on version 0 or 1 units). The longest 

deployment recorded during the project was 159 days. The battery brand “Duracell” was used 

during all deployments. T-PODs have a shorter running time, on average three months, while 

AQUAclicks only last 14 days and, therefore, have a very poor data return in comparison with 

PODs.   

2.3. Deployment Methods 

Five mooring types have used during the study: i) light weight moorings (LWM), ii) heavy 

weight moorings (HWM), iii) bottom-mounted acoustic release (AR) arrays, and iv) existing 

structures such as jetties (ES-J), a wave platform device (ES-WP) and navigational buoys (ES-

NB).   

 

2.3.1. Light weight moorings 

Light weight moorings were constructed using polypropylene rope and mooring blocks 

weighting 20kg each. A maximum of 60kg was used per mooring depending on the site. A 

single line ran from the mooring blocks to two surface buoys. A single loop was made on the 

main line three quarters of the way down and all monitoring units were shackled into that loop 

(Figure 2.2). The loop was lined with a metal thimble to prevent abrasions and wearing of the 

rope. A second safety line was threaded through the lid of the C-POD and also shackled onto 

the main line. The main aim of this was to serve as a safety line for the C-POD unit. This light 

weight mooring worked successfully at all sites but on occasion, in rough weather conditions, 

the surface buoys did come loose and a diver was required to retrieve the main line and the 

units from the bottom. The main problem with this method has been disturbance and 

interference, even though deployment location was outside trawling lines. This method served 

its purpose successfully and with regular maintenance and replacement of weakened lines, 

should last year round in sheltered inshore environments, where fishing intensity is low or 

non-existent.  
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Figure 2.2: Light weight moorings as erected in Galway Bay 

 

2.3.2. Heavy weight moorings 

Heavy weight moorings were established at two locations in the Blasket Islands cSAC. Mooring 

type was intensified at this location due to fishing activity and the exposure of the site, which is 

susceptible to strong gales and heavy seas. Moorings consisted of one tonne of clumped chain 

acting as a mooring block (Figure 2.3). An additional 20m of chain lead off from this mooring 

block onto at least 20m of 30mm polypropylene rope, depending on depth. Surface moorings 

buoys were specified to requirements by the Commissioner of Irish Lights under statutory 

sanction. Surface markers were 1.2m in focal height with a 2nm light (Figure 2.4). These 

moorings were deployed in February, and equipment was due to be serviced in May. But when 

attempted, the pulley system design had snagged. Divers were brought on site to retrieve gear, 

but all equipment was missing from both moorings. A single empty shackle was left on each 

mooring at the point where equipment was attached but other smaller shackles were missing. 

The sum total of equipment missing from mooring was valued in excess of €10,000. All 

equipment was insured and a successful claim was filed on this occasion.  

SAM unit 
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Figure 2.3: Heavy duty mooring erected in the Blasket Island cSAC 

 

 

 
Figure 2.4: Heavy duty mooring erected in the Blasket Island cSAC 

 

2.3.3. Bottom Mounted Acoustic Release Arrays (AR arrays) 

After the failed attempt of the heavy weight mooring in the Blaskets, an alternative method 

was trialled. This consisted of a bottom-mounted Acoustic Release array. Therefore, it lacked 

surface markers. This served to reduce drag on the array and not highlight the array’s position 

(Figure 2.5 and 2.6). C-PODs were shackled to an AR device and the release was, in turn, 

shackled to a sacrificial mooring block (40kg). A number of benthos buoys (pressure tested at 

depth) were used to give buoyancy and take the array to the surface once the acoustic release 

was triggered. A command box was used to send signals to the release upon retrieval and units 

were on the surface within 20 seconds. On one occasion the AR came loose and floated away 
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from the deployment site into Galway Bay. A member of the public walking on a local beach 

found and reported the equipment as contact details were clearly visible along the side of the 

unit. Both the release and C-POD were still attached and data was successfully retrieved from 

the POD. It was most likely that the equipment came loose in heavy sea conditions, rather 

than due to interference. The success of this method depends on the type of release unit used 

and battery life. Where battery life is short, pressure is imposed to service gear more 

regularly, which can be a problem during winter months, especially at exposed sites. If gear is 

not retrieved on time, it can result in loss of equipment. Two types of release systems have 

been used over the project’s duration. These included an AR transponder model from Marine 

Electronics Ltd, based in Guernsey in the Channel Islands, and an LRT 7896 release model with 

roped canister from Sonardyne in the UK.  

 

 
Figure 2.5: Acoustic release equipment as supplied by Sonardyne 
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Figure 2.6: Acoustic release equipment as supplied by Sonardyne© 

 

2.3.4. Existing structures, e.g. jetties, wave platform and navigational buoys 

The use of a wave platform as a deployment structure proved most successful as well as the 

use of more permanent structures such as jetties (Figure 2.7). Deployment from these 

structures was simple, requiring just a robust rope or a single metal line. Equipment was hung 

freely from these structures, with a 20kg weight used to anchor the line. Permission was 

granted from the Marine Institute to deploy PODs from the Mid-Bay buoy as part of the 

Smartbay system. This provided another method of deployment but was the least successful, as 

these buoys are smaller and subject to spinning in running tides and heavy seas. The mooring 

method consisted of a chain hanging from the side of the buoy where the POD and salmon 

floats served as buoyancy to pull away from the main line (Figure 2.8).  
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Figure 2.7: Existing structures used as moorings during long-term SAM deployments 

 

 
Figure 2.8: Mooring design used for deployment of units from the Smart Bay Buoy network 

 

2.3.5. An assessment of potential effect of mooring type on cetacean detections 

As harbour porpoises were detected frequently at the wave energy platform off Spiddal, it 

afforded an opportunity to test the potential effect of mooring type on the presence of 

cetaceans. SAM was carried out on a continuous basis at the wave platform, so it was decided 
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to assess if there was a difference in detection at two additional sites, 1,000m east of the 

device and 500m west of the device. Light weight moorings were established at each of these 

additional sites and a single C-POD was deployed. The presence of the wave platform, which is 

of substantial size (28 tonne), may have a positive or negative effect on the occurrence of 

harbour porpoises in the area:  

• The presence of such a structure may deter animals. They may not be able to 

sufficiently forage for food as the structure may impact on their echolocation 

ability. This event is highly unlikely at Spiddal given the high percentage of days 

with detections.   

• Or the platform itself may act as a cover for many fish species and, therefore, 

attract fish to the area and, in turn, feeding porpoises. International studies 

have found that wave buoys can serve as artificial reefs and attract fish and 

other marine life. In fact, in some parts of the world, conventional buoys are 

deployed to serve as "Fish Attracting Devices" (FADs) (Nelson, 2003).  

Results from this short deployment failed to show a significant difference in detections 

between sites (P=0.001), suggesting the structure does not influence harbour porpoise 

presence (Figure 2.9). The effect of depth was not determined as units were deployed at mid-

water across sites.    

 

Figure 2.9: Results from C-POD deployments from LWMs and ES-WP 
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2.4. Retrieval of SAM devices 

Mooring type chosen will influence the mode of retrieval for SAM equipment. Where AR 

systems, existing structures and light weight mooring are used, a rigid inflatable boat (RIB) can 

be used to retrieve equipment easily and successfully. However, where a heavy duty system is 

used, it might be envisaged that a RIB can be used for intermittent retrievals but the entire 

mooring will have to be lifted at least once a year to remove fouling and to ensure no aspect 

of the system is damaged. The heavy duty mooring in the Blasket Islands was originally 

designed with a pulley system for ease of retrieval. However, after a period of heavy weather 

conditions, the system failed due to entanglement of the main line and, therefore, required the 

assistance of a diver. The most successful mooring types used during the present project were 

existing structures and, in their absence, the use of AR systems. 

2.5. Downloading of SAM devices 

Where servicing of equipment had to take place at sea, C-PODs proved to be most successful 

as only an SD card and battery re-fit had to take place. With T-PODs, a PC was required, 

which added to the time spent in the field. In addition, communication problems (between T-

POD and PC) were occasionally encountered (comms port) when trying to download the 

data. Servicing is restricted by weather conditions, especially if doing so from a RIB as the 

internal components of the units are exposed when changing batteries or SD cards, or 

connecting to a PC. This problem does not arise if the servicing is done from a larger vessel 

with a sheltered deck. Where servicing involves the exchange of already set units, the time in 

the field was greatly reduced and vessel type was not an issue.  

2.6. Inventory of Units 

If multiple units are involved in a monitoring programme, it is good practice to keep an 

accurate record of their deployment history. This should include information on location, 

deployment duration, depth, accompanying units if deployed, average file size from 

deployment. It is also necessary to keep good records from field calibrations. Such records will 

serve to highlight problematic units but will also be required as a factor to take into account 

when statistically analysing data at the end of a project.  
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3. CALIBRATION OF STATIC ACOUSTIC MONITORING 

DEVICES 

3.1. Introduction 

Variation in sensitivity between units is known to exist and can have significant effects on a 

dataset, especially if the variation is large. Therefore the calibration of units is recommended 

prior to their employment in long-term monitoring programmes, both in the field and in a 

controlled environment (Kyhn et al, 2008; Dähne et al, 2006; Berrow et al, 2009a). The 

manufacturers of the C-POD, Chelonia Ltd, calibrate all units to a standard prior to dispatch 

and, therefore, do not endorse the need for further tank tests when using units to collect 

presence-absence data (Tregenza pers comms.). However, they do recommend field trials to 

assess the performance of the units prior to their deployment in monitoring programmes. 

Failures or inconsistencies in C-POD detection is mainly due to transducer failure or faults on 

the circuit board.  Small shifts in performance are much less likely for C-PODs than T-PODs 

(Tregenza pers comms). Incidents such as ship strikes have failed to destroy the transducers of 

C-POD, highlighting the robustness of these devices. International researchers are 

commercially operating tank calibrations testing of equipment and make recommendations in 

the literature for the absolute necessity to carry out such tests (e.g. MEER Germany). 

However, this method is not feasible for all research groups and, furthermore, is only required 

if using the data for density estimates. The purpose of tank calibration is to derive a precise 

detection function for each individual unit by calculating absolute threshold levels (Dähne et al, 

2006). This is required when attempting to estimate density using SAM data, but also in areas 

where detection rates are low. In Ireland, the detection rate at study sites is relatively high, 

with animals being detected on a daily basis, and we do not attempt to estimate density from 

SAM data.  

 

We carried out a number of field calibration trials over the project duration in order to assess 

differences in POD sensitivity prior to their deployment in a long-term monitoring 

programme. This was done to ensure that all units were performing similarly and, therefore, 

allow for comparison of data from different sites. In all, a total of nine trials were completed 

using a total of 27 C-POD units. Trials were carried out in Galway Bay and the Shannon 

Estuary, where densities of harbour porpoises and bottlenose dolphins are known to be high. 

Some units were purchased as part of the present project and some were auxiliary to this, but 

all results are presented as they are relevant to the end result and the process of generating a 
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protocol of best practice for SAM. Additionally, an inventory of each unit’s history was 

constantly recorded and updated over the project duration.  

3.2. Materials and Methods 

3.2.1. Controlled calibration  

Controlled field calibrations were carried out under licence from the NPWS, with two C-POD 

units being deployed from Moneypoint jetty (C-950, C-169) in the Shannon Estuary, Co Clare. 

A synthetic clicker, Teledyne Benthos APL-365 model, was used. SAM equipment to be tested 

was deployed from a jetty off Moneypoint when no dolphins were recorded visually in the 

vicinity. It was necessary that these trials were carried out in the absence of dolphins so their 

echolocation clicks did not interfere with the detection of the synthetic clicker. A RIB 

equipped with GPS and VHF radio was used to deploy the clicker at varying distances from the 

jetty to a depth of 2m below the surface. The boat engine was switched off when the clicker 

was deployed. Time between the GPS and SAM equipment was synchronised and, therefore, 

accurate comparisons could be made between the distances from the equipment and matched 

detections when SAM equipment was retrieved. The clicker device had an acoustic output of 

162dB re µPa @ 1m and was set to pulse at twice per second at 40 kHz. This was the highest 

repetition rate the device could be set to and, hence, limited the amount of data analyses when 

analysing POD results. Only C-POD CP.1 files could be analysed as click train characteristics 

extracted during train processing and the generation of a CP.3 file by C-POD.exe would result 

in the loss of data. These trials proved inconclusive due to background noise and the difficulty 

in finding the slow repetition clicks in the clutter. These trials would prove useful in the field as 

source level is known but a clicker with a faster click repetition is required and should be 

carried out in a quiet location.  

 

 
Figure 3.1: Teledyne Benthos clicker APL-365 model used during controlled field trials ©Teledyne 

Benthos 
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3.2.2. Field calibration 

Two sites were used to carry out the field calibration of C-PODs, the Wave Energy Test Site 

off Spiddal, Co Galway, and Moneypoint jetty in the Shannon Estuary, Co Clare. The need to 

establish a mooring system at both sites was avoided as existing structures were used. In 

Galway Bay, permission was sought and granted from Ocean Energy (a Cork based company) 

who own and operate the wave energy device, The Seilean, located to the east of Spiddal. This 

wave energy prototype offered a large platform from which to hang units. Depth at the site 

was approximately 22m. Hence, a length of 20mm diameter wire with an eye spliced at either 

end, was used to deploy gear at mid-water. The top end of the wire was shackled to a bracket 

on the side of the wave platform while the bottom end was attached to a 20kg weight, and the 

units were shackled securely. Additional buoyancy was applied to the units in the form of 

salmon floats to ensure they stayed upright in strong currents.  

 

In the Shannon Estuary, a fixed mooring point was established from a small causeway between 

a main jetty and small landing point at Moneypoint Power Station. This causeway is located 

approximately 8m above MHWL. A primary roped line, secured in place by two secondary 

bridle lines, was used to deploy units to a depth of 15m (mid-water). The line was kept at 

depth through the use of a chain and a weight on the main line. The mooring design was 

intended to facilitate ease of retrieval from land or by boat. Again, a number of salmon floats 

were attached to the PODs to ensure they remained in an upright position as currents are 

quite strong at this site (e.g. 7 knots in mid ebb tide). A small number of T-POD and 

AQUAclick units were also tested to compare the three types of SAM devices. T-PODs were 

configured to detect clicks from dolphins and porpoises on alternate channels, 1-6, while C-

PODs were set to log tonal clicks within bands of frequencies ranging between 20 and 160 

kHz. Dolphin acoustic detections registered on T-PODs consist of clicks within the 50 to 70 

kHz channels, and for porpoises, between 92 and 130 kHz channels, following the 

manufacturer’s guidelines. C-PODs will register click trains into two categories of cetaceans: 1) 

NBHF (Narrow Band High Frequency) and 2) Other (dolphin species, which include all other 

odontocetes except sperm whales). C-PODs and T-PODs cannot distinguish between dolphin 

species but as the trials were carried out within the Shannon Estuary, no other dolphin species 

were recorded. Only acoustic detections under the class “Cet All”, which included both high 

and moderate probability cetacean detections, were used in the analysis.  

 

A summary table of all calibration trials is presented below (Table 5.0). Some units were 

calibrated more often than others and this was due to some units already being in the field 

when trials were carried out and only available units could be incorporated into trials. The 
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most detailed trials were carried out at the start and end of the study (November 2008 and 

March 2011). The end of study calibration trial was composed of a number of sub-trials 

because of the large number of units (16 units).   

 

Table 3.1: Information on individual calibration trials conducted throughout the PReCAST project 

Calibration Trials      

Trial 

Sub-

trial Study Site Start date End date 

Duration 
(Days) Depth PODs tested 

GB_Cal_001 

1 Spiddal 04/11/2008 18/11/2008  

14 

15m 

C-164, C-167, C-169, 

C-170, C-171, C-172, 

C-174, C-176, C-177, 

T-651 

GB_Cal_002 2 Spiddal 19/05/2009  19/06/2009  30 15m C-169, C-173, T-651 

MP_Cal_003 
3 Moneypoint 22/06/2009  16/07/2009  

24 
12m 

C-164, C-167, C-546, 

C-547, C-548, C-549 

MP_Cal_004 4 Moneypoint 02/10/2009  14/10/2009  12 12m C-173, C-547, C-549 

MP_Cal_005 5 Moneypoint 14/10/2009  04/12/2009  51 12m C-173, C-794, C-795 

MP_Cal_006 6 Moneypoint 11/03/2010  07/04/2010  27 12m C-172, C-384, C-953 

MP_Cal_006 7 Moneypoint 11/03/2010  07/04/2010  28 12m C-949, C-951, C-952 

MP_Cal_006 8 Moneypoint 11/03/2010  07/04/2010  27 12m C-947, C-950 

MP_Cal_007 9 Moneypoint 23/07/2010  19/08/2010  27 12m C-171, C-1095, C-1147 

MP_Cal_008 
10 Moneypoint 08/03/2011  31/03/2011  23 12m 

C-173, C-547, C-548, 

C-1147 

MP_Cal_008 
11 Moneypoint 08/03/2011  31/03/2011  23 12m 

C-171, C-795, C-950, 

C-952 

MP_Cal_008 
12 Moneypoint 08/03/2011  31/03/2011  23 12m 

C-796, C-487, C-1524, 

C-1525 

MP_Cal_008 13 Moneypoint 08/03/2011  31/03/2011  23 12m C-947, C-951 

MP_Cal_008 14 Moneypoint 08/03/2011  31/03/2011  23 12m C-169, C-488 

 

3.2.3. Data analysis 

Over the duration of the project, a total of nine field calibration trials were carried out to 

determine if intra-variability between C-PODs was evident (between 04/11/08 and 31/03/11; 

Table 3.1) between the two sites in the Shannon Estuary and Galway Bay (Figure 3.2).  
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Figure 3.2: Maps of locations where calibrations trials took place: Moneypoint in the Shannon Estuary 

and Spiddal in Galway Bay  

 

Prior to the project commencement of long-term SAM, all units available (n=12) were 

deployed in Galway Bay at the Wave Energy Site off Spiddal for a total of 50 days and were 

also used to compare the three types of SAM devices: C-PODs, T-PODs and AQUAquicks. All 

unit types were set using the manufacturers’ generic settings. Further trials investigated 

variability between C-POD units only. The mean trial duration across all trials was 26 days. All 

data were extracted under two categories: 1) Narrow Band High Frequency (NBHF) (porpoise 

band), and 2) “Other” i.e. the dolphin band using the C-POD.exe software (Version 2.013, 

June 2011). These data were extracted to Excel.xlsx files using C.POD.exe software and 

analysed as detection positive minutes across hours (DPM). Where a trial involved the 

grouping of multiple units in bundles during deployment, these bundles were analysed 

separately, allowing for analysis of 14 sub-trials.  

 

All statistical analyses were carried out using the program R (R Development Core Team, 

2011). Packages gtools, MethComp and plotrix developed for use in R were used to carry out 

the analyses. A null model, assuming there was no variation in C-POD performance, a = 0 and 

b = 1, was compared for each combination of C-POD pairs against an orthogonal regression 

model to assess C-POD performance. Orthogonal regression was chosen as this takes into 

account the error on both axes. An error margin of ±20% was plotted along the null model to 

distinguish between the acceptable variation in C-POD performance and problematic variation 

due to faulty or highly sensitive units (Tregenza pers comm.). These graphs were then used to 

determine successful (regression line within the 20% error margin) or unsuccessful (regression 

line outside of the 20% error margin) POD combinations. The mean intercept and gradient 

values of the orthogonal model for each C-POD pair were extracted and used to create 

centipede plots where deviation from the red dotted lines, 0 on the intercept plot and 1 on 

the gradient plot indicate how POD comparisons deviate from the null model. This can be 
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clearly identified if only one or two POD combinations were unsuccessful and also whether 

the difference between the null model and the regression could be mainly attributed to 

difference in the intercept or the gradient. This was necessary for the next step in data 

interpretation. Box-plots of mean gradient values from the orthogonal regression (±std) were 

created to identify poor performing units or very sensitive units, if they existed. Deviation 

from the red line, 1 on the horizontal axis, indicates any outlying units. Gradient values were 

chosen for this analysis based on results from the centipede plots, which indicated that for 

most comparisons the gradient had the greatest deviance from the null model.  

3.3. Results 

Results from the first calibration in Galway Bay showed all C-PODs performed very similar, 

while there was some deviation in the T-POD data. The AQUAclick data had no reflection of 

either the C-POD or T-POD data (Figure 5.2). Additionally, AQUAclick data extraction had to 

be done by eye so extraction parameters could not be generated to facilitate a comparison 

with C-PODs. Furthermore, they performed poorly throughout the project duration, and only 

have a battery life of approximately 14 days, whereas a C-POD can last for 150 days and more. 

Therfore, it was impossible to carry out an accurate comparison between PODs and 

AQUAclicks, and for this reason, AQUAclicks were not included in the dataset (Figure 3.3).  

 

 
Figure 3.3: Results from GB Cal 001 (sub trial 1) in Galway Bay, including all C-POD, AQUAclicks 

and T-PODs 
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Further investigation into C-POD variability (sub trial 1) comfirmed that all nine C-POD units 

performed within the 20% error margin (Figure 3.4). No units were deemed outliers and 

although it was uneccessary, centipede plots of intercept and gradient values of the orthogonal 

regression were created (Figure 3.5). It was accepted that the error between units was mostly 

evident on the gradient plot. A box plot of the mean gradient values for each unit was created 

and clearly illustrates the similariity between unit performance (Figure 3.6).  
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 s C.177  s C.177  s C.177  s C.177  s C.177  s C.177  s C.177  s C.177  s C.177

 s C.172  s C.172  s C.172  s C.172  s C.172  s C.172  s C.172  s C.172  s C.172

 s C.164  s C.164  s C.164  s C.164  s C.164  s C.164  s C.164  s C.164  s C.164

 s C.167  s C.167  s C.167  s C.167  s C.167  s C.167  s C.167  s C.167  s C.167

 s C.169  s C.169  s C.169  s C.169  s C.169  s C.169  s C.169  s C.169  s C.169

 s C.170  s C.170  s C.170  s C.170  s C.170  s C.170  s C.170  s C.170  s C.170

 s C.171  s C.171  s C.171  s C.171  s C.171  s C.171  s C.171  s C.171  s C.171
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 s C.176  s C.176  s C.176  s C.176  s C.176  s C.176  s C.176  s C.176  s C.176

Figure 3.4: Orthogonal regression plot of C-POD comparisons in calibration trial G Cal B001 (sub trial 1), in blue, with a null model where each unit 

performs exactly the same in black ,and an acceptable error margin of ±20% in grey 
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Figure 3.5: Centipede plot of the intercept and slope values (±std) of the orthogonal regression plots for 
each pod performance comparison in calibration trial GB Cal 001 (Sub trial 1). Deviation from the red 

dotted lines, 0 on the intercept plot and 1 on the gradient plot, indicates deviation from the null model that 
both pods are performing the same 
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Figure 3.6: Box plot of the mean slope values (±std), of the orthogonal regression plots, for each pod in 

calibration trial GB Cal 001 (Sub trial 1). Outliers indicate poor performers and pods with high sensitivity 
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Table 3.2: Results of all calibration sub-trials to determine successful (regression line within the 20% error 
margin) or unsuccessful (regression line outside of the 20% error margin) POD combinations 

Calibration Trials  

Sub 
trial 

Successful combination Unsuccessful 
combination 

1 177&172, 177&164, 177&167, 177&169, 177&170, 177&171, 
177&174, 177&176, 172&164, 172&167, 172&169, 172&170, 
172&171, 172&174, 172&176, 164&167, 164&169, 164&170, 
164&171, 164&174, 164&176, 167&169, 167&170, 167&171, 
167&174, 167&176, 169&170, 169&171, 169&174, 169&176, 
170&171, 170&174, 170&176, 171&174, 171&176, 174&176 

 

2  169&173 

3 548&547, 549&546, 167&546, 546&164 546&547, 549&547, 
167&547, 164&547, 
548&546, 549&548, 
548&167, 548&164 

4  549&547, 173&547, 
173&549 

5 795&794 173&794, 173&795  

6  384&172, 953&172, 
953&384 

7 951&949, 952&949, 952&951  

8  950&947 

9 1147&171, 1095&171, 1095&1147  

10 547&173, 548&173, 1147&173, 548&547, 1147&547, 1147&548  

11 950&795 795&171, 950&171, 
952&171, 952&795, 
952&950 

12 1524&796, 1525&1524, 1525&796 487&796, 
1524&487, 
1525&487 

13 951&947  

14  488&169 

 

Investigations into all calibration trials (Table 3.2) revealed differences in C-POD performance but 

throughout the study period, the majority of units performed within an acceptable error margin of 

20%. All C-POD units tested in sub-trials 1, 7, 9 and 10, and 13 performed within the acceptable 

error margin (See Appendix for all sub-trial regression plots). Of the 27 C-PODs tested over all 

trials, 10 units were found to be inconsistent during one or more sub trials and were further 

investigated (Figures 3.7 to 3.45). For sub-trials containing only two units, it was impossible to 

identify which unit was different or the outlier. In these cases, both units were considered for 

further investigation where previous calibration results and personal knowledge of the units was also 

used for interpretation of results. Loss of sensitivity over time was found for units C-169, C-171 and 

C 952. C-POD 171 performed within the acceptable 20% error margin in the first sub trial (4/11/08-

18/11/08) and again over 20 months later in the ninth sub trial (23/07/10-19/08/10) but nearly seven 
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months later (08/03/11-31/03/11), this unit was highlighted as inconsistent with results from other 

units. Additionally, units C-384, C-487, C-488 and C-953 were considered outliers after one trial. 

But as they were only tested once, it is unclear whether this was due to an anomaly during the trial, 

degradation over time or a fault within the unit. For example, C-488 was highlighted during the 

analysis but was only compared against one other unit, C-169, which was found to be inconsistent 

with units in previous trials. It is possible that C-488 was functioning correctly but was highlighted 

because of inconsistencies with C-169. C-548 was highlighted with a variation of more than 20% but 

in a later trial was found to perform within this error limit. This pattern was also seen for C-173 and 

C-547. 

 

C.173 vs C.173 C.169 vs C.173

C.173 vs C.169 C.169 vs C.169

 
Figure 3.7: Orthogonal regression plot of C-POD comparisons in calibration GB Cal 002 (sub trial 2), in 
blue, with a null model where each unit performs exactly the same, in black, and an acceptable error 

margin of ±20%, in grey  
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Figure 3.8: Centipede plot of the intercept and slope values (±std) of the orthogonal regression plots for 
each pod performance comparison in calibration trial GB Cal 002 (Sub trial 2). Deviation from the red 

dotted lines, 0 on the intercept plot and 1 on the gradient plot, indicates deviation from the null model that 
both pods are performing the same 

C.169 C.173

-5
0

0
50

GB002

 

Figure 3.9: Box plot of the mean slope values (±std), of the orthogonal regression plots, for each pod in 
calibration trial GB Cal 002 (Sub trial 2). Outliers indicate poor performers and pods with high sensitivity 
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C.547 vs C.547 C.546 vs C.547 C.548 vs C.547 C.549 vs C.547 C.167 vs C.547 C.164 vs C.547

C.547 vs C.546 C.546 vs C.546 C.548 vs C.546 C.549 vs C.546 C.167 vs C.546 C.164 vs C.546

C.547 vs C.548 C.546 vs C.548 C.548 vs C.548 C.549 vs C.548 C.167 vs C.548 C.164 vs C.548

C.547 vs C.549 C.546 vs C.549 C.548 vs C.549 C.549 vs C.549 C.167 vs C.549 C.164 vs C.549

C.547 vs C.167 C.546 vs C.167 C.548 vs C.167 C.549 vs C.167 C.167 vs C.167 C.164 vs C.167

C.547 vs C.164 C.546 vs C.164 C.548 vs C.164 C.549 vs C.164 C.167 vs C.164 C.164 vs C.164

 
Figure 3.10: Orthogonal regression plot of C-POD comparisons in calibration MP Cal 003 (sub trial 3), in 

blue, with a null model where each unit performs exactly the same, in black, and an acceptable error 
margin of ±20%, in grey  
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Figure 3.11: Centipede plot of the intercept and slope values (±std) of the orthogonal regression plots for 

each pod performance comparison in calibration trial MP Cal 003 (Sub trial 3). Deviation from the red 
dotted lines, 0 on the intercept plot and 1 on the gradient plot, indicates deviation from the null model that 

both pods are performing the same 
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Figure 3.12: Box plot of the mean slope values (±std) of the orthogonal regression plots for each pod in 

calibration trial MP Cal 003 (Sub trial 3). Outliers indicate poor performers and pods with high sensitivity 
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Figure 3.13: Orthogonal regression plot of C-POD comparisons in calibration MP Cal 004 (sub trial 4), in 

blue, with a null model where each unit performs exactly the same, in black, and an acceptable error 
margin of ±20%, in grey  
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Figure 3.14: Centipede plot of the intercept and slope values (±std), of the orthogonal regression plots, for 
each pod performance comparison in calibration trial MP Cal 004 (Sub trial 4). Deviation from the red 

dotted lines, 0 on the intercept plot and 1 on the gradient plot, indicates deviation from the null model that 
both pods are performing the same 
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Figure 3.15: Box plot of the mean slope values (±std) of the orthogonal regression plots for each pod in 
calibration trial MP Cal 004 (Sub trial 4). Outliers indicate poor performers and pods with high sensitivity 



NDP Marine Research Sub-Programme 2007-2013 

    

 46 

 

C.794 vs C.794 C.795 vs C.794 C.173 vs C.794

C.794 vs C.795 C.795 vs C.795 C.173 vs C.795

C.794 vs C.173 C.795 vs C.173 C.173 vs C.173

 
Figure 3.16: Orthogonal regression plot of C-POD comparisons in calibration MP Cal 005 (sub trial 5), in 

blue, with a null model where each unit performs exactly the same, in black, and an acceptable error 
margin of ±20%, in grey  
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Figure 3.17: Centipede plot of the intercept and slope values (±std), of the orthogonal regression plots, for 
each pod performance comparison in calibration trial MP Cal 005 (Sub trial 5). Deviation from the red 

dotted lines, 0 on the intercept plot and 1 on the gradient plot, indicates deviation from the null model that 
both pods are performing the same 
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Figure 3.18: Box plot of the mean slope values (±std), of the orthogonal regression plots, for each pod in 
calibration trial MP Cal 005 (Sub trial 5). Outliers indicate poor performers and pods with high sensitivity 
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Figure 3.19: Orthogonal regression plot of C-POD comparisons in calibration MP Cal 006 (sub trial 6), in 
blue, with a null model where each unit performs exactly the same, in black, and an acceptable error 

margin of ±20%, in grey  
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Figure 3.20: Centipede plot of the intercept and slope values (±std), of the orthogonal regression plots, for 
each pod performance comparison in calibration trial MP Cal 006 (Sub trial 6). Deviation from the red 

dotted lines, 0 on the intercept plot and 1 on the gradient plot, indicates deviation from the null model that 
both pods are performing the same 
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Figure 3.21: Box plot of the mean slope values (±std), of the orthogonal regression plots, for each pod in 
calibration trial MP Cal 006 (Sub trial 6). Outliers indicate poor performers and pods with high sensitivity 
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Figure 3.22: Orthogonal regression plot of C-POD comparisons in calibration MP Cal 006 (sub trial 7), in 

blue, with a null model where each unit performs exactly the same, in black, and an acceptable error 
margin of ±20%, in grey  
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Figure 3.23: Centipede plot of the intercept and slope values (±std) of the orthogonal regression plots for 
each pod performance comparison in calibration trial MP Cal 006 (Sub trial 7). Deviation from the red 

dotted lines, 0 on the intercept plot and 1 on the gradient plot, indicates deviation from the null model that 
both pods are performing the same 
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Figure 3.24: Box plot of the mean slope values (±std) of the orthogonal regression plots for each pod in 
calibration trial MP Cal 006 (Sub trial 7). Outliers indicate poor performers and pods with high sensitivity 
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Figure 3.25: Orthogonal regression plot of C-POD comparisons in calibration MP Cal 006 (sub trial 8), in 
blue, with a null model where each unit performs exactly the same, in black, and an acceptable error 

margin of ±20%, in grey  
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Figure 3.26: Centipede plot of the intercept and slope values (±std) of the orthogonal regression plots for 
each pod performance comparison in calibration trial MP Cal 006 (Sub trial 8). Deviation from the red 

dotted lines, 0 on the intercept plot and 1 on the gradient plot, indicates deviation from the null model that 
both pods are performing the same 
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Figure 3.27: Box plot of the mean slope values (±std) of the orthogonal regression plots for each pod in 
calibration trial MP Cal 006 (Sub trial 8). Outliers indicate poor performers and pods with high sensitivity 
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Figure 3.28: Orthogonal regression plot of C-POD comparisons in calibration MP Cal 007 (sub trial 9), in 

blue, with a null model where each unit performs exactly the same, in black, and an acceptable error 
margin of ±20%, in grey  
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Figure 3.29: Centipede plot of the intercept and slope values (±std) of the orthogonal regression plots for 
each pod performance comparison in calibration trial MP Cal 007 (Sub trial 9). Deviation from the red 

dotted lines, 0 on the intercept plot and 1 on the gradient plot, indicates deviation from the null model that 
both pods are performing the same 
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Figure 3.30: Box plot of the mean slope values (±std) of the orthogonal regression plots for each pod in 
calibration trial MP Cal 007 (Sub trial 9). Outliers indicate poor performers and pods with high sensitivity 
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Figure 3.31: Orthogonal regression plot of C-POD comparisons in calibration MP Cal 008 (sub trial 10), in 

blue, with a null model where each unit performs exactly the same, in black, and an acceptable error 
margin of ±20%, in grey  
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Figure 3.32: Centipede plot of the intercept and slope values (±std) of the orthogonal regression plots for 
each pod performance comparison in calibration trial MP Cal 008 (Sub trial 10). Deviation from the red 

dotted lines, 0 on the intercept plot and 1 on the gradient plot, indicates deviation from the null model that 
both pods are performing the same 
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Figure 3.33: Box plot of the mean slope values (±std) of the orthogonal regression plots for each pod in 
calibration trial MP Cal 008 (Sub trial 10). Outliers indicate poor performers and pods with high sensitivity 
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Figure 3.34: Orthogonal regression plot of C-POD comparisons in calibration MP Cal 008 (sub trial 11), in 

blue, with a null model where each unit performs exactly the same, in black, and an acceptable error 
margin of ±20%, in grey  
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Figure 3.35: Centipede plot of the intercept and slope values (±std) of the orthogonal regression plots for 
each pod performance comparison in calibration trial MP Cal 008 (Sub trial 11). Deviation from the red 

dotted lines, 0 on the intercept plot and 1 on the gradient plot, indicates deviation from the null model that 
both pods are performing the same 
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Figure 3.36: Box plot of the mean slope values (±std) of the orthogonal regression plots for each pod in 
calibration trial MP Cal 008 (Sub trial 11). Outliers indicate poor performers and pods with high sensitivity 
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Figure 3.37: Orthogonal regression plot of C-POD comparisons in calibration MP Cal 008 (sub trial 12), in 

blue, with a null model where each unit performs exactly the same, in black, and an acceptable error 
margin of ±20%, in grey  
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Figure 3.38: Centipede plot of the intercept and slope values (±std) of the orthogonal regression plots for 
each pod performance comparison in calibration trial MP Cal 008 (Sub trial 12). Deviation from the red 

dotted lines, 0 on the intercept plot and 1 on the gradient plot, indicates deviation from the null model that 
both pods are performing the same 
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Figure 3.39: Box plot of the mean slope values (±std) of the orthogonal regression plots for each pod in 
calibration trial MP Cal 008 (Sub trial 12). Outliers indicate poor performers and pods with high sensitivity 
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Figure 3.40: Orthogonal regression plot of C-POD comparisons in calibration MP Cal 008 (sub trial 13), in 

blue, with a null model where each unit performs exactly the same, in black, and an acceptable error 
margin of ±20%, in grey  
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Figure 3.41: Centipede plot of the intercept and slope values (±std) of the orthogonal regression plots for 
each pod performance comparison in calibration trial MP Cal 008 (Sub trial 13). Deviation from the red 

dotted lines, 0 on the intercept plot and 1 on the gradient plot, indicates deviation from the null model that 
both pods are performing the same 
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Figure 3.42: Box plot of the mean slope values (±std) of the orthogonal regression plots for each pod in 
calibration trial MP Cal 008 (Sub trial 13). Outliers indicate poor performers and pods with high sensitivity 
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Figure 3.43: Orthogonal regression plot of C-POD comparisons in calibration MP Cal 008 (sub trial 14), in 
blue, with a null model where each unit performs exactly the same, in black, and an acceptable error 

margin of ±20%, in grey  
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Figure 3.44: Centipede plot of the intercept and slope values (±std) of the orthogonal regression plots for 
each pod performance comparison in calibration trial MP Cal 008 (Sub trial 14). Deviation from the red 

dotted lines, 0 on the intercept plot and 1 on the gradient plot, indicates deviation from the null model that 
both pods are performing the same 
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Figure 3.45: Box plot of the mean slope values (±std), of the orthogonal regression plots, for each pod in 
calibration trial MP Cal 008 (Sub trial 15). Outliers indicate poor performers and pods with high sensitivity 

 

3.4. Discussion 

From the dataset, it is recommended that field trials such as those carried out are sufficient to 

monitor C-POD performance and to identify outliers that need to be re-calibrated by the 
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manufacturer. It is probable that C-PODs over time may lose sensitivity due to various reasons 

(rough handling, accidental drops, exposure of internal components when servicing) and unit to unit 

variation will increase. Conducting field calibration is necessary when introducing new units to an 

existing study and should also be carried out annually to determine any possible degradation over 

time. This analytical technique of POD performance relies on unit to unit comparisons and three 

diagnostic tools to identify error and potential outliers. In this analysis 10 units were highlighted for 

further investigation but four of these were found in later trials to perform within the acceptable 

20% error margin. A further two units, C-488 and C-947, may have been functioning correctly. But 

due to comparisons against only one other unit, it is impossible to determine which unit was 

responsible for the variation. It is, therefore, recommended that C-PODs should be sent back to the 

manufacturer for re-calibration only when field calibration trials highlight a unit as problematic after 

more than one trial. It is also advised that field trials should test three units or more at a time to aid 

more informed data interpretation.  

 

Units that were thought to have decreased in sensitivity over time gave an average timeline of 17-24 

months, based on all possible scenarios. Informed evaluations were made throughout the study to 

determine whether units were highlighted perhaps due to an anomaly associated with the trial or 

whether the units required re-calibration. No units were continually highlighted as problematic 

during the calibration study and therefore all C-POD data were used in the project analysis. This 

project employed three methods to account for variation in C-POD units: Field calibration tests 

were used to identify any faulty or degrading units; units were randomly assigned to sites by re-

placing PODs with a different unit when they were retrieved and, thirdly, POD ID was inserted as a 

random factor during statistical analyses. In the event that a unit is continually highlighted as 

inconsistent, it is also possible to apply a correction factor to the data. Correction factors are 

generated where a reference unit is kept solely for calibration purposes and is used from which to 

compare all other units. A reference unit is identified during an initial trial as being the most sensitive 

unit. A correction factor (CF) can be calculated by using the following equation, where the mean 

number of Detection Positive Minutes (DPM) per hour recorded by the reference unit (the most 

sensitive unit) is divided by the mean number of DPM of the least sensitive unit:  

 

 

 

 

 

This is only necessary in cases of substantial variability (>20%) or when the methods to account for 

variation described above have not been carried out. This method was not employed during the 

present study. 

CF= DPM/h (reference unit)       

 DPM/h (pod to be calibrated) 

 



NDP Marine Research Sub-Programme 2007-2013 

    

 62 

 

The use of controlled experiments carried out in tanks is only necessary where measurements are 

required on absolute thresholds of individual units for the estimation of density from SAM data. 

When studies only require presence/absence data for the exploration of habitat use and behaviour, 

field calibrations are sufficient and allow comparison of data between sites (Tregenza pers comms.). 

The method of rotating units between sites and the inclusion of POD ID during statistical analyses 

incorporates levels of variation between units and has not previously been carried out. Therefore, 

this study can serve to inform future SAM programmes. The use of clicker devices of known sources 

and frequency proved useful in the exploration of detection range for PODs and can also be applied 

to other SAM and PAM devices.   

 

The deployment location of units should also be taken into account as deployments in noisy areas, 

with a lot of background noise from shipping, break waters, strong tidal currents or other 

environmental conditions, will use the battery and data storage at a greater rate than in an area 

where there is little background noise. This may lead to units having to be retrieved and serviced 

more often than recommended to avoid gaps in the dataset. Additionally, high levels of background 

noise can interfere with the detection ability of units to record echolocation clicks and, therefore, 

can bias a dataset. Trials should be carried out to assess the effect of depth on unit performance 

where units are to be deployed in deep water, i.e. greater than 50m. All deployments during the 

present study were within 37m; therefore, the effect of depth could not be sufficiently determined. It 

is recommended that deployments for multiple species be carried out systematically with a 

standardised depth used across locations. Alternatively, where species specific sites are monitored, 

units should be deployed at the depth those animals are most active (i.e. PODs deployed close to 

the bottom in locations where porpoises are solely monitored and mid water for dolphin 

monitoring). Where dolphins and porpoises occur, deploying units at mid water allow for the 

successful monitoring of both species.  
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4. DETECTION RANGE OF SAM 

4.1. Introduction 

If SAM is to be used to monitor the distribution and habitat use of cetacean species and to inform 

conservation management, it is essential to determine the detection range of the acoustic equipment 

(Akamatsu et al, 2001, Akamatsu et al, 2008). Therefore, it is important to know over what distance 

the acoustic device effectively detects the target species and to decide on the number of units 

required to effectively monitor an area. A number of studies using T-PODs have looked at detection 

distance for various cetaceans, including harbour porpoises (Tougaard et al, 2006), bottlenose 

dolphins (Philpott et al, 2007; Bailey et al, 2010) and Hector’s dolphins (Cephalorhynchus hectori), 

(Rayment et al, 2009b). Corresponding theodolite and T-POD data resulted in an effective detection 

radius of 107m for harbour porpoises, with detection probability decreasing rapidly at greater 

distances (Tougaard et al, 2006).  

 

Philpott et al (2007) calculated the distance between the closest bottlenose dolphin in a school and a 

T-POD (v3) through land-based theodolite tracking. Simultaneous visual and acoustic detections of 

dolphin schools were used to measure acoustic detection distance of the T-POD. Echolocation 

encounters logged during land-based observation periods were used to match up visual and acoustic 

data. The nearest observed distance for each school was used in order to determine a conservative 

estimate of T-POD detection range. They reported a range of over 1,200m for a single school. 

However, the author was unable to exclude the possibility that the detection might have been 

caused by an unobserved group at closer distance, especially since the author was the only observer 

during the field trials. Rayment et al (2009b) also used the theodolite tracking technique to match 

acoustic detections of Hector’s dolphins with the precise times of theodolite readings, taking 

measurements from the centre of a dolphin group. They had two observers on site, one for 

theodolite operation while the other person recorded group position and group size. They defined 

the maximum detection distance as the maximum distance between a focal dolphin group and the T-

POD (v3), corresponding to an acoustic detection on a T-POD within 10 seconds of the theodolite 

reading. They found a maximum detection distance of 431m between a Hector’s dolphin group and 

the T-POD. They also estimated the effective detection radius (EDR), which is the range at which all 

dolphin groups are expected to be detected. This was estimated at between 198m and 239m 

depending on the clicks used in determining detection. 
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4.2. Material and Methods 

During the present study, trials were carried out at two locations to determine the detection range 

of two acoustic devices, C-PODs and T-PODs, for both harbour porpoises and bottlenose dolphins. 

As bottlenose dolphins are resident in the Shannon Estuary, the site at Moneypoint was chosen for 

simultaneous deployments with land-based theodolite tracking. Trials were carried out from Black 

Head in Galway Bay as harbour porpoises are regularly recorded close to shore at this location.  

 

T-PODs were configured to detect clicks from dolphins and porpoises on alternate channels, 1-6, 

while C-PODs were set to log tonal clicks within frequency bands ranging between 20 and 160 kHz. 

Dolphin acoustic detections registered on T-PODs consist of clicks within the 50 to 70 kHz 

channels, and porpoises between 92 and 130 kHz channels, following the manufacturer’s guidelines. 

C-PODs will register click trains into two categories of cetaceans: 1) NBHF (Narrow Band High 

Frequency) and 2) Other (dolphin species which include all other odontocetes, except sperm 

whales). C-PODs and T-PODs cannot distinguish between dolphin species but as the trials were 

carried out within the Shannon Estuary, no other dolphin species were recorded. Only acoustic 

detections under the class “Cet All”, which included both high and moderate probability cetacean 

detections, were used in the analysis.  

 

Land-based theodolite tracking was carried out using a Leica T100 Electronic Theodolite. The 

theodolite was set up on top of a cliff at a disused quarry (at an elevation of 17.54m) adjacent to 

Moneypoint power station, whereas acoustic equipment was statically moored from a jetty (Figure 

4.1). In Galway Bay, the theodolite was set up adjacent to Black Head Lighthouse, at a height of 

13.5m. The acoustic equipment was deployed 183m offshore on a light weight mooring. The method 

used during observations at both sites consisted of two observers positioned on land, where one 

person operated the theodolite and the other observed and followed the group of cetaceans (Figure 

4.2). The second person ensured that only one group was within the field of view. Once cetaceans 

entered the observation area, the tracker focused the theodolite on the group, taking horizontal and 

vertical angle readings at least every 30 seconds if possible. Tracking was focussed on the nearest 

animal to the SAM gear, giving a minimum distance to the group assuming that the nearest animal 

was more likely to be detected by the SAM equipment. The surveyor kept scanning, giving 

information about group composition and behaviour, and also searching for other groups, which 

might confound the results. For every tracking event, the following information was noted: group 

formation (tight, loose and dispersed), surface mode (peppy, quiet, surface rush, occasional races), 

direction, speed (normal, fast, and slow), and behaviour (travelling, socializing, and feeding), (modified 

from Leeney et al, 2007). A group was defined as individuals moving in the same direction within 

100m of each other and exhibiting the same behaviour (Shane, 1990). Cetaceans were tracked until 
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they left the area or the tracker lost sight of the group. All observations were made during daylight 

hours in Beaufort sea state ≤ 2. 

 

  
Figure 4.1 and 4.2: Theodolite set up with the reference point in the background (jetty at Moneypoint 

Power Station) and observer-based tracking 

  

4.2.1. Data Analysis 

Theodolite readings were entered into an Excel.csv file at the lab and were then imported into the 

marine mammal positioning system Cyclops Tracker (http://cyclops-tracker.com/). This programme 

has been designed to accurately record and locate marine mammals from a known location. Cyclops 

tracker requires the horizontal and vertical angles for theodolite tracking: the horizontal angle 

indicates the direction of the observed animal in relation to magnetic north while the vertical angle is 

used to calculate the distance from a known location. As tide height can alter the vertical angle 

reading and, therefore, the distance estimation, tidal parameters spanning the whole time period of 

the land-based study were input into Cyclops prior to data analyses.  

 

Two methods were employed to determine an accurate detection range. For the first method, an 

acoustic match was defined as an acoustic detection on the C-POD/T-POD, which corresponded to 

a visual observation of the focal group within the timeframe of that sighting (Bailey et al, 2009; 

Philpott et al, 2007). As this was a coarse match for the precise theodolite fixes, only the minimum 

distance recorded from each matched focal group to the acoustic equipment was used for analysis. 

This was used to determine a conservative estimate for the detection range.  

 

A second approach described by Rayment et al (2009b) was applied to determine a more accurate 

detection range of the acoustic equipment. Using this approach, a successful match was defined as an 

acoustic detection on the C-POD/T-POD which corresponded to a visual detection within the same 

ten-second period. This method takes into account swimming speeds, which for bottlenose dolphin 

and harbour porpoise have been recorded at rates of 6.09m/s and 4.2m/s respectively for high speed 
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swimming, giving error values of 61m and 42m (Fish, 1993, Otani et al, 2001). Detection distances 

were calculated for each acoustic match and used as independent observations as there was no 

evidence to suggest that detection distances from the same group were less variable than those from 

different groups (Rayment et al, 2009b). Where more than one visual detection corresponded to an 

acoustic detection, the most conservative distance was recorded.   

 

4.3. Results 

Detection distance trials were carried out at Black Head for harbour porpoise and in the Shannon 

Estuary for Bottlenose dolphins (Table 4.1). Mooring types varied as did deployment period.  

 

Table 4.1: Summary of deployment details where land-based theodolite tracking was carried out (ES-J = 
Existing structure-Jetty, LWM=Light weight mooring) 

Summary of trial deployments     

Study site Start date End date 
Depth (m) Mooring  Total 

hrs 
Units 

Moneypoint 02/07/2009 15/07/2009 12 ES-J 312 9 (8 C-PODs) 

Black Head 01/06/2010 04/06/2010 10 LWM 72 3 (2 C-PODs) 

 

4.3.1. Harbour porpoise trials at Black Head 

During 39 hours of land-based visual monitoring, 36 harbour porpoise groups were visually detected, 

with distances ranging from 19.9m to 1,951.8m from the SAM equipment (e.g. Figure 4.3). Of these 

36 groups, 81% were detected on the C-POD and 50% were detected on the T-POD (Figure 4.4). 

Using the first approach, the minimum distances calculated from each acoustically matched group to 

the C-POD ranged from 19.9m to 430.6m, with 97% of groups detected at less than 400m. The T-

POD detection distances ranged from 109.4m to 453.5m, with 83% of groups detected at less than 

400m (Figure 4.5). No acoustic detections were recorded within the band 0-99m for the T-POD. 

This is most likely due to a difference in the sensitivity of the hydrophone element as the T-POD 

was deployed alongside the C-POD.  
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Figure 4.3: Example of a harbour porpoise track from Blackhead, Co Clare, 03/06/2010. The theodolite 
tracking station is shown in as ‘Station 1’ and the position of the SAM equipment is indicated by a white 
circle. The distance range of this track was calculated as 209.3m to 344.2m from the SAM equipment 

 

 

 
Figure 4.4: Number of harbour porpoise groups detected, both visually and acoustically, and the total 

number of groups visually detected with distances from the SAM equipment 

 

The second technique to investigate detection range of C-PODs and T-PODs resulted in 50 harbour 

porpoise acoustic matches with the C-POD and 27 matches with the T-POD. The furthest distance 

that a visual observation corresponded to an acoustic detection was 441m ±42m (92% <400m) for 

the C-POD and 534.3m ±42m (59 % < 400m) for the T-POD, allowing for a slightly higher estimate 

of detection range (e.g. Figure 4.6 and 4.7) 
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Figure 4.5: C-POD and T-POD detection probability over varying distance categories where probability is 

the number of acoustically matched groups divided by the total number of groups within each distance 
category 
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Figure 4.6: Example of a harbour porpoise track from Blackhead, County Clare, 04/06/2010. The theodolite 

tracking station is shown in as ‘Station 1’ and the position of the SAM equipment is indicated by a white 
circle. The distance range of this track was calculated as 190.2m to 319.8m from the SAM equipment 

 

 
Figure 4.7: Example of a harbour porpoise track from Blackhead, County Clare, 02/06/2010. The theodolite 

tracking station is shown in as ‘Station 1’ and the position of the SAM equipment is indicated by a white 
circle. The distance range of this track was calculated as 109.4m to 279.9m from the SAM equipment 

 
4.3.2. Bottlenose dolphin trials in the Shannon Estuary 

During 47 hours of land-based visual monitoring, a total of 30 bottlenose dolphin groups were 

visually detected at distances ranging from 47.3m to 6,731.6m from the SAM equipment (e.g. Figure 
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4.9 and 4.10). Of these, seven groups (23%) were detected on the C-POD (Figure 4.8). Using the 

first approach, the minimum distances calculated from each acoustically matched group to the C-

POD ranged from 83.1m to 284.0m. 

 

 
Figure 4.8: Number of bottlenose dolphin groups detected (both visually and acoustically) and 
the total number of groups visually detected with distances from the SAM equipment 

 

The second technique used to investigate detection range of C-PODs resulted in 12 bottlenose 

dolphin acoustic matches corresponding with visual data. The furthest distance that a visual 

observation corresponded to an acoustic detection was 797.6m ±61m (75% of groups 

recorded<400m) for the C-POD, allowing for an extensively higher estimate of detection range 

(Table 4.2).  
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Table 4.2: Acoustically matched bottlenose dolphin tracks with distance of dolphin group from C-
POD calculated in meters 

Matched Bottlenose dolphin tracks  

Date Track ID 
Distance from 
CPOD (m) 

02/07/2009, 
11:08:03 .A 797.6 
02/07/2009, 
11:08:31 .A 727.2 
02/07/2009, 
12:17:00 .C 277.3 
08/07/2009, 
13:21:32 .C2 125.2 
08/07/2009, 
13:21:54 .C2 120.3 
08/07/2009, 
13:23:08 .C2 104.9 
09/07/2009, 
12:15:13 .B3 401.2 
09/07/2009, 
12:30:51 .C3 353.2 
09/07/2009, 
12:31:21 .C3 355.1 

 

 
Figure 4.9: Example of a bottlenose dolphin track from Moneypoint, County Clare, 08/07/2009. The 

theodolite tracking station is shown in as ‘Station 1’ and the position of the SAM equipment is shown as 
‘Dolphin Jetty’. The distance range of this track was calculated as 83.1m to 544.5m from the SAM 

equipment 
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Figure 4.10: Example of a bottlenose dolphin track from Moneypoint, County Clare, 10/07/2009. The 

theodolite tracking station is shown in as ‘Station 1’ and the position of the SAM equipment is shown as 
‘Dolphin Jetty’. The distance range of this track was calculated as 93.7m to 428.9m from the SAM 

equipment 

4.4. Discussion 

As a result of the detection distance trials carried out, a detection range for C-PODs was derived 

for bottlenose dolphins (797.6m) and harbour porpoises (441m). The large difference in detection 

range between both can be attributed to the acoustic characteristics of their echolocation clicks, 

where dolphins are broadband at mid frequency and porpoise being narrowband and high frequency. 

It is these characteristics that affect their click attenuation through the water column and, as a result, 

influence their detectability by a unit. The detection range generated as part of the current study for 

bottlenose dolphins is much less than a previous estimate derived in the same study site but further 

out the estuary by Philpott et al (2007), using v3T-PODs. This difference in results is most likely due 

to difference in the composition of the hydrophone but may also be due to the fact that a single 

observer was used during land-based observations and, therefore, only tracked animals could be 

noted. If another group occurred closer to the SAM gear, then it would be difficult to determine. T-

POD results recorded during the present study fail to reflect C-POD data, where no detections 

were recorded within the 0-99m band. This result could not be explained as the unit was set to 

record dolphins and porpoises and, therefore, may be due to the software extraction and is not as 

sensitive as the new C-POD.exe. Results from porpoise trials are similar to those reported by 

Rayment et al (2009b) for Hector’s dolphins, which have a very similar click structure to harbour 

porpoise (narrow band, high frequency).  
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Land-based theodolite tracking can be a coarse method of range estimation for units but as it takes 

into account free swimming animals in their natural habitat, it gives an accurate reflection of an 

animal’s approach sequence to the equipment. The main sources of error associated with this 

method include observer variability, accuracy of theodolite positioning and estimation of station 

height when carrying out analyses.  

 

The SAM equipment located at Moneypoint jetty was surrounded by large metal pylons. It is possible 

that these structures would affect bottlenose dolphin echolocation, potentially reducing the 

detection distance of ‘dolphin’ clicks by the SAM gear, as animals may alter the frequency of their 

clicks in the vicinity of the equipment to prevent being ensonified by returning echoes. During long-

term monitoring at Moneypoint, a total of 235 DPMs were recorded in the NBHF channel using C-

PODs. This accounted for 6% of the total C-POD DPMs at Moneypoint. This result was due to 

bottlenose dolphins increasing their frequency of click production, and this was confirmed from 

visual observations at the site when only dolphins were present.  

 

Results from this study yielded fewer acoustic matches with bottlenose dolphin data than harbour 

porpoise. As the C-POD will only provide information on echolocating animals, silent or non-

echolocating individuals will remain undetected. Studies in Sarasota Bay found that bottlenose 

dolphins can often swim for 10 minutes without echolocating and that their use of echolocation 

varied depending on water clarity (Au, 2000). Therefore, if animals are known to use an area for 

foraging then they will be more likely detected than if just passing through. If a foraging site is used 

for detection trials, then results can be generated more efficiently. A study by Akamatsu et al (2007) 

found that harbour porpoises produce a sonar click train every 12.3 seconds,while 90% of the 

periods with no echolocation lasted only 20 seconds or less. Hence, the authors concluded that 

harbour porpoises seem to continuously echolocate. For this reason, detection range for harbour 

porpoise are more easily derived if a good site is established with a high vantage point.  

 

Tracking of both bottlenose dolphins and harbour porpoises during the present study recorded 

groups of varying sizes and behaviour. During all trials, the animal nearest the SAM equipment was 

the focus of all visual theodolite tracks. Group size or behaviour type of tracked animals was not 

correlated against detection ability for either species during the present study. However, a recent 

study by Nuuttila et al (2012) found that single bottlenose dolphins were more likely to be detected 

using C-PODs in comparison with groups of multiple animals, regardless of behaviour.      

In order to reduce the variability and increase the precision of this method, multiple observers 

should be used to carry out fieldwork. Observers should be tasked with tracking using the 

theodolite, another observer should be on data recording, and an additional observer is required to 
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watch the area in the vicinity of the SAM equipment to verify that the animals being tracked are in 

fact the closest in range. Additionally, the theodolite should be continually monitored to ensure it 

stays in a level position. These trials should be carried out in areas with high densities and where 

animals are known to occur at varying distances from the deployment location. It is also important 

that the area has not got a high level of background noise as this will interfere with a unit’s ability to 

detect echolocation clicks and not give a true representation of their detection capability. The field 

calibration of equipment should be carried out prior to detection distance trials in order to ensure 

that unit performance has been assessed. Where differing sensitivities are observed between units, 

multiple PODs should be deployed. This will also mitigate against wasting field time if units fail to 

operate.  

 

The results derived during the present study will serve to provide baseline information for 

management, planning long-term monitoring programmes for specific species or areas. In order to 

determine the minimum number of units required to effectively monitor an area of known distance, 

then, the detection range of the equipment coupled with the average home range of the target 

species should be taken into account.  
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5. LONG-TERM SAM ON THE WEST COAST OF 

IRELAND 

5.1. Introduction 

Static Acoustic Monitoring (SAM) involves the detection and recording of cetacean vocalizations or 

echolocation clicks and is a very valuable tool for the exploration of fine scale habitat use by the 

various odontocete species. SAM can be carried out with a number of devices including static 

hydrophones (Berrow et al 2006), C-PODs and T-PODs (Carlström, 2005; Verfuß et al, 2007; 

Berrow et al, 2009a), A-Tags (Akamatsu et al, 2008), porpoise click loggers (PCLs/AQUAclick), 

(Roos, 2007), Ecological Acoustic Recorders (EARs), (Lammers et al, 2008), Pop-Ups 

(http://www.birds.cornell.edu/) and sonobuoys (Moore et al, 1989). In comparison with SAM, visual 

observation carries with it many constraints and is influenced by variables such as sea state (Evans 

and Hammond, 2004; Teilmann, 2003; Palka, 1996; Clarke, 1982), observer variability (Young and 

Peace, 1999; O’Brien et al, 2006), optics and height above sea level. Evans and Hammond (2004) 

state that visual surveys should generally not be carried out in sea states above Beaufort scale 2, as 

the probability of detecting animals is markedly reduced above this. SAM is especially useful for 

monitoring small vocal cetaceans since it can be carried out without the interference of the variables 

mentioned above, and, most importantly, does not negatively impact upon the animals. A SAM 

device called a Timed Porpoise Detector (T-POD) has been used during a number of studies for 

various purposes, including environmental impact assessments (EIAs) (Carstensen et al, 2006), 

interactions between cetaceans and fisheries (Cox et al, 2001; Leeney et al, 2007; Berrow et al, 

2009b), monitoring population trends (Verfuß et al, 2007; Berrow et al, 2009a), and behaviour 

including diel and tidal trends in vocal activity (Carlström, 2005). Initially, the POD or porpoise 

detector, designed and manufactured by Chelonia Ltd (www.chelonia.co.uk) in the UK, was intended 

specifically to detect harbour porpoises, while more recent versions (T-PODs and presently C-

PODs) were designed to detect both harbour porpoises and dolphins. The echolocation 

characteristics of porpoises and dolphins differ, but an overlap in frequencies can make the 

discrimination between species difficult.  

 

As a monitoring tool, the POD essentially provides information on the presence of animals and gives 

a measure of vocalization activity and behaviour. However, these data are non-quantitative and give 

no information on absolute abundance of animals in an area. A study by Tougaard et al (2006) 

generated a measure of absolute density by assuming that sampling an area n times through SAM is 

the equivalent to sampling n sub-areas, e.g. during an aerial survey, and found that the estimate they 
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generated from acoustic data was similar to that determined as part of an international SCANS 

project (Small Cetacean Abundance in the North Sea) survey conducted in July 1994. However, this 

method of analysis is novel and has not been widely adapted.  

 

SAM gives an alternative means to monitor cetacean species and data can be acquired continuously if 

the target species are vocalising. The main advantage of SAM is that is can provide information on 

species that can go undetected visually for up to 87.1% of the time (bottlenose dolphins; Mate et al, 

1995) and 95% (harbour porpoise; Read and Westgate, 1995).  

 

The aim of the present study was to acoustically explore the occurrence of small cetaceans at three 

sites (two candidate SACs) on the west coast of Ireland. The efficacy of SAM and its potential as a 

monitoring technique was addressed. Under the EU Habitats Directive (92/43/EC), Ireland is 

required to maintain the total national population of Annex II species (harbour porpoise and 

bottlenose dolphin) at Favourable Conservation Status (FCS) through ensuring that there is a 

sufficiently large habitat of suitable quality available to support the long term survival of these 

species. Criteria necessary to support an area as suitable for SAC designation includes the 

continuous or regular presence of the species, a high density estimate for the area by comparison 

with adjacent areas, and a good adult to calf ratio. If an area can be shown to support the above 

criteria and can be highlighted as an area essential to the life and reproduction of the species, then it 

should be considered for SAC designation (Johnston et al, 2002). An assessment of FCS of a species 

needs to be underpinned with precise scientific knowledge. Although SAM data will only provide 

information to fulfil part of this criteria and needs to be supplemented with visual data for the 

generation of density and absolute abundance, it can record important spatial and temporal trends at 

and between sites which could not be collected by visual means. As part of long-term SAM, it was 

also aimed to explore the feasibility of an acoustic monitoring index of activity at a site. This index 

should serve as a means to monitor an area over time scales of various durations and to highlight 

increases and decreases in activity. The index could be compared across sites to assess acoustic 

activity and to highlight the importance of specific sites.  

5.2. Material and Methods 

During long-term SAM, C-PODs were the main tool used for monitoring as they provided the 

longest battery life and were automated (Table 7.0). C-PODs log tonal clicks within frequency bands 

between 20 and 160 kHz. C-PODs registered click trains into two categories of cetaceans: 1) NBHF 

(Narrow Band High Frequency) and 2) Other (dolphin species which include all other odontocetes, 

except sperm whales). All data were extracted using C.POD.exe and exported to Excel.xlsx files as 

Detection Positive Minutes (DPMs). C-PODs were deployed at a number of locations on the west 
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coast, including Galway Bay, the Shannon Estuary (bottlenose dolphin cSAC), and the Blasket Islands 

(harbour porpoise cSAC) (Figure 5.1).  

 

 
Figure: 5.1 SAM locations on the west coast of Ireland 

 

The first analysis to be carried out was to assess the difference between C-PODs and their 

predecessor, the T-POD. In order to aid the transition from the use of T-PODs to C-PODs and to 

allow the comparison of data between the two devices, simultaneous deployment of C-POD/T-POD 

units was carried out at Moneypoint (bottlenose dolphins) and Galway Bay (harbour porpoise). 

DPMs were extracted per day for each device over the deployment period and an average ratio was 

generated to evaluate the performance of the two devices.  
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Table 5.1: Summary data from all deployments in all locations (mooring type, HWM=Heavy weight mooring, AR=Acoustic release mooring, ES-J=Existing 
structure-Jetty, ES-WP=Existing structure-Wave platform, ES-NB, Existing structure-navigation buoy) 

 Summary data from all deployment and moorings used  
      

Location Site Mooring 

POD 
TYP
E POD ID 

START 
DATE 

END 
DATE 

DAY
S HRS 

DPM 
NBHF 

DPM 
DOL 

Blaskets  The GOB HWM C 170 02/02/2009 
25/03/200
9 52 1213 3015 2 

Blaskets  
Inishtoosker
t AR C 176, 487, 547 29/07/2009 

21/06/201
0 264 6294 3930 181 

Blaskets Wild Bank 
HWM, 
AR C 168, 549, 796 29/07/2009 

13/06/201
0 289 6874 2097 252 

Shannon  Foynes ES-J C 
169, 176, 547, 548, 
1147 19/02/2009 

24/10/201
0 591 

1406
0 69 1158 

Shannon  Moneypoint ES-J C 
164, 167, 173, 176, 
384, 546 10/01/2009 

08/02/201
1 671 

1599
5 1731 3204 

Shannon  Moneypoint ES-J T 324 09/01/2009 
03/05/201
0 245 5670 330 490 

Galway  Spiddal ES-WP C 164 13/01/2009 
09/09/201
0 572 

1366
4 28246 125 

Galway  Spiddal ES-WP T 324 13/01/2009 
09/07/201
0 189 4439 2207 10 

Galway  Mid-bay  ES-NB C 172 11/05/2009 
06/07/200
9 56 1344 375 30 
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5.3. Results 

A total of 2,409 days (57,417 hours) were monitored over the duration of this study, using C-PODs 

across three study sites and including six locations (Table 5.2). 

 

Table 5.2: Results of C-POD deployments from all sites along the west coast between January 2009 and 
February 2011 

C-POD deployments                  
        NBHF NBHF NBHF NBHF Dolphin Dolphin Dolphin Dolphin 

Location Total 
Days 

Total 
Hours 

Total 
Min DPD Total 

DPM % DPD % DPM DPD Total 
DPM % DPD % DPM 

Spiddal 572 13664 819840 541 27902 94.58 3.40 24 125 4.218 0.02 

Inishtooskert 264 6296 377760 236 3930 89.394 1.04 64 181 24.242 0.05 

Wild Bank 289 6874 412440 221 2097 76.471 0.51 46 252 15.917 0.06 

The GOB 52 1213 72780 49 3015 94.231 4.14 2 2 3.846 0.003 

Moneypoint 641 15308 918480 103 235 25.741 0.03 466 4010 72.699 0.44 

Foynes 591 14062 843720 46 69 7.797 0.01 244 1158 41.356 0.14 

 

5.3.1. C-POD T-POD comparison 

A total of 189 days were compared from Spiddal in Galway Bay where, on average, C-PODs detected 

seven times more DPMs that the T-POD (Figure 5.2). A peak in detection in C-POD data around the 

75-day mark was reflected in the T-POD data, but at a lower level due to a difference in sensitivity 

between units. This trend is evident across the deployment period. The peak reflects an increase in 

porpoise detection at the site. 
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Figure 5.2: Detection positive minutes (DPM) recorded in the narrow band high frequency (NBHF) channel for 

both T-POD and C-POD units in Galway Bay  

 

A similar comparison was carried out on the Moneypoint data to assess inter device performance for 

dolphin detections. A total of 154 days were compared at the site, and results showed that on average, 

C-PODs detected four times more DPMs than T-PODs (Figure 5.3). Therefore, it is recommended that 

any archived T-POD data from these sites be multiplied up by the ratios generated, especially when 

comparing monitoring indexes. This method, although rudimentary, will provide a means to compare 

data previously collected.  
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Figure 5.3: Detection positive minutes (DPM) recorded in the Dolphin channel for both T-POD and C-POD 

units at Moneypoint in the Shannon Estuary 

 

Galway Bay 

Long-term SAM commenced in Galway Bay in January 2009 and continued until September 2010 at the 

Wave Energy Platform off Spiddal (Figure 5.4). It was envisaged that SAM would also be carried out from 

a second site at the Marine Institute’s Mid-Bay Buoy, but due to equipment loss, this second site was 

abandoned. Black Head was identified as an ideal site for long-term monitoring as porpoises have been 

recorded at this site consistently over the years (O’Brien, 2009). However, the tidal movements at this 

site proved too big a risk to deploy equipment over the long term and, hence, the site was only used for 

short-term deployments for detection trials in favourable weather conditions. At the Wave Energy 

Platform, a total of 572 days were monitored. A final deployment took place in September 2010, but 

over the winter months, the mooring buoy was reported washed up on the north shore, and thus the 

POD could not be retrieved from a boat. Two attempts by dive teams have failed to locate the unit as 

of July 2011.  

 

Results from the Spiddal deployments show that, on average, harbour porpoises were recorded 

between 92% (T-POD) and 95% (C-POD) of days monitored, while dolphins were rarely recorded (4% 

days, C-POD), (Table 5.3). Over the 572 days monitored by the C-POD, a total of 27,902 Detection 
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Positive Minutes (DPM) were recorded (4,515 Detection Positive Hours; DPH), where, on average, the 

%DPM over the deployment was 3.4 for harbour porpoises.  

 

 
Figure 5.4: SAM locations in Galway Bay 

 

Shannon Estuary cSAC 

Long-term SAM was conducted in the Shannon Estuary cSAC at two sites, Moneypoint, County Clare, 

and Foynes, County Limerick (Figure 5.5). Long-term SAM of bottlenose dolphins commenced at 

Moneypoint Jetty in January 2009 and continued until February 2011. C-POD units monitored for a total 

of 641 days and recorded 4,245 DPMs (4,010 in the Dolphin channel and 235 in the NBHF channel) 

(Table 7.1). Bottlenose dolphins were recorded on 73% of days, with a monitoring index of 0.437 %DPM 

(0.026 in the NBHF channel) (Table 5.3). This study recorded 235 DPM in the NBHF channel using C-

PODs, 6% of the total C-POD DPMs at Moneypoint (Table 5.3). The proportion of NBHF detections 

was highest during spring - 11% of the total DPMs. C-POD units were deployed at the Foynes study site 

for a total of 591 days, between February 2009 and October 2010. Results show that, on average, 

bottlenose dolphins were recorded on 41% (C-POD) of days monitored. During the monitoring period, 

C-POD units recorded 1,227 DPMs (1,158 in the Dolphin channel and 69 in the NBHF channel). The 

average %DPM was calculated as 0.137 for bottlenose dolphins (0.008 in the NBHF channel) (Table 5.3). 
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Of the 69 DPMs recorded within the NBHF, a small percentage of these was associated with a single 

click train also counted in the dolphin category. This was not problematic during the present project as 

the numbers of NBHF DPMs were low, and, additionally, the data were transformed to a binomial 

format.  

 

Figure 5.5: SAM locations in the Shannon Estuary cSAC
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Table 5.3: Total detection positive minutes (DPM) and percentage recorded by C-POD units in NBHF 
and Dolphin channels across four variables - season, diel, tidal phase and tidal cycle - at Moneypoint 

Summary tables - Moneypoint     

Variable Level 
NBHF 
DPM 

Dolphin 
DPM 

Total 
DPM 

% NBHF 
DPM 

% 
Dolphin 
DPM 

Season Spring 70 571 641 10.920 89.080 

  Summer 39 1141 1180 3.305 96.695 

  Autumn 38 618 656 5.793 94.207 

  Winter 88 1680 1768 4.977 95.023 

Diel Morning 17 258 275 6.182 93.818 

  Day 63 1277 1340 4.701 95.299 

  Evening 5 141 146 3.425 96.575 

  Night 150 2334 2484 6.039 93.961 
Tidal 
phase Spring tide 40 809 849 4.711 95.289 

  Neap tide 25 399 424 5.896 94.104 

  Transitional 170 2802 2972 5.720 94.280 
Tidal 
cycle Slack low 89 1300 1389 6.407 93.593 

  Flood 48 805 853 5.627 94.373 

  Slack high 58 688 746 7.775 92.225 

  Ebb 40 1217 1257 3.182 96.818 
 

Blasket Islands cSAC 

Long-term SAM was conducted at the Blasket Islands cSAC at three sites, Inishtooskert, Wild 

Bank and the Gob (Figure 5.6). C-POD units monitored the Inishtooskert site for 264 days, 

between July 2009 and June 2010. During this period, harbour porpoise were recorded on 89% of 

days. C-POD units recorded 3,930 DPMs in the NBHF channel, with very few dolphin detections 

(181 DPM). The monitoring index of %DPM for harbour porpoises at Inishtooskert was 1.040, 

and 0.05 for dolphins. Monitoring at Wild Bank commenced in July 2009 and ran until June 2010. 

A total of 289 days were recorded, with harbour porpoise detections occurring for 76% of the 

days. C-PODs recorded 2,097 DPMs of NBHF (252 DPMs in the Dolphin channel), resulting in a 

monitoring index for harbour porpoise at Wild Bank of 0.508 and 0.06 for dolphins.  C-POD units 

were deployed at the Gob for two months in February and March 2009 for a total of 52 days. 

3,015 DPMs of NBHF were recorded with very few dolphin detections (2 DPM). This resulted in 

a monitoring index of 4.143 for harbour porpoise. For full tables of long-term SAM see the 

Appendix. 
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Figure 5.6: SAM locations in the Blasket Island cSAC 

 

5.3.2.  Long-term SAM model 

Patterns of cetacean presence have been described over seasonal scales (Canning et al, 2008; Bolt 

et al, 2009; Simon et al, 2010; Gilles et al, 2011), diel cycle (Cox and Read, 2004; Carlström, 2005; 

Todd et al, 2009; Phillpot et al, 2007) and tidal patterns (Philpott et al, 2007; Marubini et al, 2009). 

The Shannon Estuary cSAC is a busy shipping area yet remains home to the only known resident 

group of bottlenose dolphins. The bottlenose dolphin and the harbour porpoise are protected 

under Annex II of the EU Habitats Directive. Investigating such patterns of cetacean presence is 

crucial to ensure FCS of harbour porpoises and bottlenose dolphins as required by the directive. 

Initially, all data were extracted as DPM per hour. However, the number of zeros within the 

dataset was vast and it is not recommended to analyse data in this form. In order to overcome 

the zero inflation, the data were transposed into a binomial format of Detection Positive Hours 

(DPH), where 1=detection(s) recorded and 0=no recorded detections. This was also the rationale 

behind the use of the generalized linear mixed-effect model (GLMM) analyses described below. 

Data were categorized into season, diel, tidal phase and tidal cycle. Season was categorized as 

spring (February, March, and April), summer (May, June, July), autumn (August, September, 

October) and winter (November, December, January). Diel cycle was split into four phases 

(morning, day, evening and night), following methods described by Carlström (2005). Morning 
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began at the onset of civil twilight, and the duration was calculated as twice the time between the 

beginning of civil twilight and sunrise. Evening ended at the end of civil twilight and lasted twice 

the duration of the time between sunset and end of civil twilight. Information on sunset and 

sunrise was obtained from the U.S. Naval Observatory 

(http://aa.usno.navy.mil/data/docs/RS_OneDay.php). As data were extracted from the C-POD 

units by hour, times between 12:30 and 13:29 were recorded as 13:00, times between13:30 and 

14:29 were recorded as 14:00 etc. Tidal phase was classified according to the phases of the moon, 

using tidal data (WXTide 32). Spring tide was calculated as 24 hours either side of the highest high 

water and neap tide, lowest low water (O’Brien, 2009). Data were further categorised by tidal 

cycle. One hour before and after high water was termed ‘slack high’, while one hour before and 

after low water was termed ‘slack low’. Hours that fell between slack high and slack low were 

classified as ebbing tide. Similarly hours that fell between slack low and slack high were classified 

as flood.  

 

All statistical analyses of the SAM data were carried out using the programme R. A GLMM was 

fitted to the binomial data using the glmer function in the lme4 package developed for R. C-POD 

ID number was included as a random factor to take into account variability between units. 

Akaike’s information criterion (AIC) and a histogram of fitted residuals were used as diagnostic 

tools for model selection. Wald chi-squared tests were computed for each variable and predicted 

proportions of DPH were extracted across all levels and displayed as box plots using the HH 

package developed for R.  

 

Galway Bay (Spiddal) 

Data were analysed using detections in the NBHF channel. Data were analysed by year, and both 

2009 and 2010 results are presented here. The model including all four variables was chosen for 

this analysis. All four variables were found to significantly affect harbour porpoise presence in 

both years (Figures 5.7 and 5.8).  

 
In the 2009 dataset, season was shown to significantly affect DPH (χ2=58.8, p<0.0001), where a 

peak in harbour porpoise occurrence was observed through autumn and winter. Results from the 

model also highlight diel cycle to contain significant variation (χ2= 26.7, p<0.0001), indicating that 

night and morning phases have a higher level of harbour porpoise detection. A significant variation 

across tidal phase (χ2= 36.1, p<0.0001), shown in Figure 5.7, exists between neap tide and spring 

tide with a rise in DPH during neap tide. Results suggest the significance of tidal cycle (χ2=39.6, 

p<0.0001), which can be most likely attributed to the predicted drop in detections during slack 

low tide.  

http://aa.usno.navy.mil/data/docs/RS_OneDay.php
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Figure 5.7: Predicted proportion of detection positive hours, in the narrow band high frequency channel 

at Spiddal (Galway Bay) 2009 across the four variables of season; diel, where D =day, E= evening, M= 
morning and N = night; tidal phase, where Trans.=transitional phase, NT= neap tide and ST=spring tide; 

and tidal cycle, where E =ebb, L = slack low, F= flood and H=slack high 
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Figure 5.8: Predicted proportion of detection positive hours, in the narrow band high frequency channel 

at Spiddal (Galway Bay) 2010 across the four variables of season; diel, where D =day, E= evening, M= 
morning and N = night; tidal phase, where Trans.=transitional phase, NT= neap tide and ST=spring tide; 

and tidal cycle, where E =ebb, L = slack low, F= flood and H=slack high 

 

Results from 2010 indicate a change in seasonal pattern. Season was shown to significantly affect 

DPH (χ2=113.8, p<0.0001), where a peak in harbour porpoise occurrence was observed during 

winter but, in contrast to results from 2009, autumn contained fewest NBHF detections. Results 

highlight diel cycle to contain significant variation, although in reference to Figure 5.8, a distinct 

diel pattern is unclear and the comparatively low chi-squared value derived for this variable 

reflects this (χ2=25.1, p<0.0001). A significant variation across tidal phase (χ2= 16.7, p=0.0008) 

concurs with 2009 findings, with a rise in detections during neap tide. Results suggest a 

significance of tidal cycle (χ2=23.1, p=0.0001), with a slightly higher level of detections during an 

ebbing tide. 

 
On inspection of the raw dataset at Spiddal, October 2009, was shown to have a much higher 

DPM count than any other month, with 5606 DPMs. There were no data collected for October 

2010. The distinct rise of detections in October 2009 coincides with the last month of autumn, 
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and it is suspected that this is causing the drastic change in seasonal pattern described above. 

Continuing this dataset will allow better assessment of the seasonal pattern.  

 

Moneypoint  

The data were first analysed using detections in the Dolphin channel and, secondly, using both 

NBHF and Dolphin detections. When NBHF detections were included, a similar pattern of 

presence was found. Data could not be analysed by year due to inconsistent sampling across 

years. The model including all the four variables was deemed the best fit. It was decided that the 

model analysing detections in the Dolphin channel only gave the best fit to the dataset and in 

keeping with the analyses from the other study sites, the results of the Dolphin-only model are 

described below.  

 

All four variables were found to significantly affect the presence of bottlenose dolphins at this site. 

The predicted proportions of detection positive hours across all variable levels are given in Figure 

5.9 to illustrate the pattern of bottlenose presence at this site. Results showed that tidal cycle had 

the greatest level of significance (χ2= 427.7, p<0.0001), with the highest proportion of detections 

occurring during an ebbing tide and at slack low tide. Seasonal differences in bottlenose dolphin 

presence were found to be significant (χ2=364.1, p<0.0001), and from the predicted proportion of 

DPH, it is accepted that winter and summer have a higher detection rate than both autumn and 

spring. Significant variance in DPH across diel cycle (χ2=323.1, p<0.0001) can be attributed to a 

higher level of DPH during night and morning. Results also show that significantly more DPH are 

predicted during spring tide in comparison with neap tide (χ2=305.7, p<0.0001). 
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Figure 5.9: Predicted proportion of detection positive hours in the dolphin channel at Moneypoint across 

the four variables of season; diel, where D =day; E= evening, M= morning and N = night; tidal phase, 
where Trans.=transitional phase, NT= neap tide and ST=spring tide; and tidal cycle, where E =ebb, L = 

slack low, F= flood and H=slack high 

 

Foynes  

Data were analysed using detections in the Dolphin channel. Data were first analysed by year. 

Both 2009 and 2010 displayed similar patterns and so a combined model across years is presented 

here. The model including all four variables (season, diel, tidal cycle and tidal phase) was deemed 

the best fit; all four variables were found to significantly affect DPH at this site. Season was shown 

to significantly affect the presence of bottlenose dolphins ( χ2=183.3, p<0.0001), and this can be 

seen in Figure 5.10, with a peak in detections during spring and gradually decreasing throughout 

summer and autumn, with winter showing the lowest predicted detections. Variation across diel 

cycle was found to be significant (χ2= 133.6, p<0.0001), with a pattern of higher detections across 

night and morning, and lower detections in day and evening. Significant variation across tidal phase 

(χ2= 194.9, p<0.0001) in contrast to Moneypoint can be explained by a predicted rise in 

detections during neap tide. Results show that tidal cycle had a significant effect (χ2=179.4, 

p<0.0001), which was most likely due to a decrease in detections during slack high tide.  
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Figure 5.10: Predicted proportion of detection positive hours, in the dolphin channel at Foynes across 
the four variables of season; diel, where D =day, E= evening, M= morning and N = night; tidal phase, 

where Trans.=transitional phase, NT= neap tide and ST=spring tide; and tidal cycle, where E =ebb, L = 
slack low, F= flood and H=slack high 

 
Blasket Islands  

Data were analysed using detections in the NBHF channel and location consisted of three sites: 

the Gob, Wild Bank and Inishtooskert. Data could not be analysed by year as monitoring ran from 

July 2009 to June 2010. Additionally, the data from the Gob could not be analysed by season or 

tidal phase due to lack of replicates. A GLM including diel was deemed the best fit for the Gob 

dataset. Results showed that diel significantly affected harbour porpoise presence and this is likely 

due to a predicted increase in detections during the daytime phase (p<0.0001, Figure 5.11).  
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Figure 5.11: Predicted proportion of detection positive hours, in the narrow band high frequency 

channel at the Gob across the variable of diel, where D =day, E= evening, M= morning and N = night 

 

Results from the Wild Bank indicated that the model assessing the three variables of season, diel 

and tidal phase was the best fit (Figure 5.12). Tidal cycle is, therefore, assumed to have no 

significant effect on presence. Deployments showed a significant seasonal effect on the presence 

of harbour porpoises at this site. This could be attributed to a rise in detections during the 

summer months (χ2= 178.0, p<0.0001). A significant pattern of presence across diel cycle was also 

found, clearly evident in Figure 5.12, with a predicted peak during daylight hours also found at the 

Gob (χ2= 199.9, p<0.0001) = 0.0). Tidal phase was also significant, with predicted detections 

peaking during the neap phase (χ2= 105.8, p<0.0001). 
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Figure 5.12: Predicted proportion of detection positive hours, in the narrow band high frequency 

channel at Wild Bank across the three variables of season; diel, where D =day, E= evening, M= morning 
and N = night; and tidal cycle, where E =ebb, L = slack low, F= flood and H=slack high 

 

Analysis of the Inishtooskert dataset showed a significant pattern in harbour porpoise presence 

according to season (χ2= 13.4,p = 0.0098) and diel (χ2= 20.5, p = 0.00041), while tidal phase and 

tidal cycle were not significant.  



NDP Marine Research Sub-Programme 2007-2013 

    

 93 

 

Spring Summer Autumn Winter

0.
75

0.
80

0.
85

Season

P
re

di
ct

ed
 D

P
H

D E N M

0.
75

0.
80

0.
85

Diel

P
re

di
ct

ed
 D

P
H

 
Figure 5.13: Predicted proportion of detection positive hours in the narrow band high frequency channel 
at Inishtooskert across the two variables of season and diel, where D =day, E= evening, M= morning and 

N = night 

 

5.3.3. Encounter Rate 

The echolocation encounter rate is the total number of echolocation encounters within each 

phase divided by the mean duration of each phase (hours), multiplied by the number of recording 

days for each deployment period. An echolocation encounter was defined as a group of click 

trains that are separated by periods of silence, with a minimum duration of 10 minutes 

(Carlström, 2005; Todd et al, 2009). This was also investigated as an estimate of harbour porpoise 

and bottlenose dolphin occurrence at the study sites. This technique analyses click train data and 

has the ability to reduce the potential bias introduced by a small number of highly vocal 

individuals. The method involves individual encounters, which typically last less than five minutes 

as opposed to detection positive hours analysed in the GLMM model above.  

 

Data were extracted using C-POD.exe and the train detection algorithm was run on the CP.1 

files to produce CP.3 files. All data from CP.3 files were then exported into Excel.xlsx, with rows 

containing information on individual clicks trains. Train detection analysis is based on a probability 

model, using the prevailing rate of arrival of clicks to derive a probability of the absence of a click 

in each successive time slot, as defined by the current inter-click interval (ICI) and train regularity 

(Chelonia Ltd). Only acoustic detections under the train filter “Hi” and “Mod”, which included 

both high and moderate probability cetacean click trains, were used in the analyses. 

 

Encounter rate analyses have been carried out in previous studies and are necessary for 

comparative purposes. However, this analysis is more primitive in that it could not account for 
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the high proportion of 0’s across the dataset or variability between POD units. The encounter 

rate was calculated and analysed for three variables: diel, tidal phase and tidal cycle. The effect of 

season was not investigated as individual SAM units may have only been used during one season 

and, thus, had potential to bias results. As this is a more primitive method of analysis, evening and 

morning phases were excluded. Previous work found these periods to be transitional (Todd et al, 

2009). Data was analysed by non-parametric methods as the data could not be transformed to 

fulfil the critical assumptions of ANOVA.  

 

Harbour porpoise 

There were no statistically significant differences found for harbour porpoise echolocation 

encounter rate in either Galway Bay or the Blasket Islands (p=0.2248). However, in all three study 

sites in the Blasket Islands, the highest encounter rate occurred during the day (Table 5.4).  

 

Table 5.4: Summary of encounter data across sites for each of the factors of diel, tidal phase and tidal 
cycle 

 Summary of encounter data 
Factor Gob Inishtooskert Wild Bank Spiddal 

Diel 
Day 0.5 0.73 0.6 2.06 
Night 0.29 0.47 0.28 1.79 

Tidal.phase 
Spring 0.03 0.17 0.03 0.14 
Neap 0.03 0.18 0.04 0.14 

Tidal.cycle 
Low 0.63 0.54 0.93 3.5 
Flood 0.77 0.57 0.86 3.88 
High 0.75 0.55 0.77 4.05 
Ebb 0.64 0.68 0.79 3.94 

 

 Bottlenose dolphin 

Significant differences were detected between diel phases for both study sites, Foynes (Kruskal-

Wallis, one-way ANOVA d.f. = 1, p = 0.02497) and Moneypoint (Kruskal-Wallis, one-way 

ANOVA, d.f. = 1, p = 0.01272). Night was found to have a significantly higher echolocation 

encounter rate than day. Significant differences were also detected within the tidal cycle for 

Moneypoint (Kruskal-Wallis, one-way ANOVA d.f. = 3, p = 0.03835). Post-hoc testing revealed this 

difference to exist between flood and low (p = 0.02622) and flood and ebb (p = 0.01748), with a 

significantly lower echolocation encounter rate observed within the flood cycle. There were no 

significant differences found within tidal phase at either study site (Table 5.5). Where long-term 

datasets exist for areas of high density using multiple SAM units, the most appropriate statistical 
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tests include GLMM, as demonstrated during the present study. Where datasets are from low 

density area, then the encounter rate analyses could be more appropriate, although caution must 

be taken when using multiple SAM units. 

 

Table 5.5: Summary of encounter data across sites for each of the factors of diel, tidal phase and tidal 
cycle 

 Summary of encounter data 
Factor Moneypoint Foynes 
Diel     
Day 0.47 0.08 
Night 0.82 0.03 
Tidal.phase     
Spring 0.06 0.01 
Neap 0.04 0.01 
Tidal.cycle     
Low 1.55 0.31 
Flood 0.77 0.25 
High 1.13 0.23 
Ebb 1.58 0.36 

 

5.4. Discussion 

The aim of the present study was to acoustically explore the occurrence of small cetaceans at 

three sites (two already designated candidate SACs) on the west coast of Ireland. The efficacy of 

SAM as a monitoring technique, which could potentially be used to partially fulfil statutory 

monitoring obligations, was also assessed. Under the EU Habitats Directive (92/43/EC), Ireland is 

required to maintain the total national population of Annex II species (harbour porpoise and 

bottlenose dolphin) at FCS through ensuring that there is a sufficiently large habitat of suitable 

quality available to support the long-term survival of these species. Criteria necessary to warrant 

and support an area for cSAC designation include the “continuous or regular presence” of the 

species (subject to seasonal variation), a “good” density estimate for the area, and a good adult-to-

calf ratio in comparison to adjacent areas. If an area can be shown to support the above criteria 

and can be highlighted as an area essential to the life and reproduction of the species, then it 

should be considered for cSAC designation (Johnston et al, 2002). An assessment of FCS of a 

species needs to be underpinned with precise scientific knowledge. SAM data will provide 

information to fulfil part of these criteria but fails to inform on density and absolute abundance. 

SAM does have the power to identify important spatial and temporal trends at and between sites 

which could not be collected through visual means on the same time scales or budgets. 
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SAM data collected during the present project from the Shannon Estuary and from the Blasket 

Islands are the longest datasets collected to date from Irish SACs. The Blasket Islands is an already 

designated cSAC for the harbour porpoise and a long-term dataset from this site will provide a 

comparison for other potentially important sites for this species around the country. The 

Shannon Estuary cSAC dataset provides critical information on the occurrence of bottlenose 

dolphins trends within this relatively highly industrialised area. The continuation of long-term SAM 

at these two sites will serve to inform management on the conservation status of Annex II species 

and help towards meeting our requirements under EU law.  

 
The generation of a density estimate from acoustic data has been attempted by Tougaard et al 

(2006), although this method is not widely adopted and needs to be refined before it can be used 

proficiently. As the C-POD will only provide information on echolocating animals, silent or non-

echolocating individuals will remain undetected. This should be less likely for the harbour 

porpoise, as a study by Akamatsu et al (2007) found that they produce a sonar click train every 

12.3 seconds, while 90% of the periods with no echolocation lasted only 20 seconds or less. 

Hence, the authors concluded that harbour porpoises seem to continuously echolocate. In the 

event of constant echolocation, this should reduce the number of false negatives associated with 

acoustic monitoring of the species as they should not go undetected for longer than 20 seconds if 

in range of the device. Field trials carried out during the present study generated a detection 

range of 441m for harbour porpoises and 797m for bottlenose dolphins. Although C-PODs are 

recognised as a valuable monitoring tool, some researchers have expressed concern as regards 

differing sensitivities between units and, therefore, the comparability of data between POD 

versions, sensitivities and region (Dähne et al, 2006). A study by Kyhn et al (2008), who focused 

on the predecessor of the C-POD (T-POD), found that the more sensitive a POD was in the 

laboratory, the more clicks it recorded in the field. The authors tested the performance of 10 

individual units and found differences between them all. Hence, the authors conclude that 

calibrations are necessary in order to gather comparable results from differing units and across 

locations. Dähne et al (2006) examined the variation between two version 4 T-PODs and found a 

7% variation between the units, which they conclude as being a good performance by comparison 

with the amount of variation associated with visual monitoring. Berrow et al (2009a) carried out 

field calibrations using 9 T-PODs (versions 4 and 5) and found a 6% variation between the most 

and least sensitive units. Results from field calibrations during the present study suggest that an 

acceptable variation between units of 20% DPM across hourly segments will still allow for 

comparison of data between units and locations. This variability can be further taken into account 

during statistical analyses through the use of POD ID as a random factor.   
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Long-term SAM carried out during the present study in Galway Bay and Blasket Islands showed 

that the harbour porpoise was the most frequently detected species. However, as the bottlenose 

dolphins are resident in the Shannon Estuary, no other species were recorded at this site. 

Exploration of the dataset for an effective index of activity across sites and factors was carried 

out. A monitoring index of %DPM was chosen. This index can be generated across various 

temporal scales and, therefore, can be used to compare activity between sites. The highest long-

term index for harbour porpoise (% of Detection Positive Minutes across all minutes monitored) 

was recorded in Galway Bay at the Spiddal site (3.4), while the Blasket Islands was at 1.04 

(Inishtooskert), 0.51 (Wildbank) and 4.14 (The Gob). Caution should be taken when comparing 

these results since the data from The Gob is only across two months in comparison with the 

longer-term datasets from all other sites. For bottlenose dolphins, Moneypoint, at 0.44, had a 

higher overall index than Foynes (0.14). These results highlight the importance of having a detailed 

knowledge of porpoise trends at a site, especially when targeting abundance estimation at certain 

times of the year. If abundance estimation is carried out during the summer months, it may not 

give a true reflection of the overall population and may not indicate the overall importance of an 

area. Further temporal trends were also found to be evident in the long-term harbour porpoise 

acoustic datasets. These data were analysed to determine if diel cycle had a significant effect on 

the presence of the harbour porpoise. Results showed harbour porpoises are more active 

nocturnally at Spiddal, and at Inishtooskert, but the opposite results were found for Wild Bank, 

with a peak evident during the daytime phase. This highlights the difference in site usage by the 

same species across short geographical scales. Previous SAM studies carried out in the Blasket 

Islands, but over a shorter timescale, reflected the findings of this study. Berrow et al (2008) also 

showed localised temporal variation across very short geographical distances (c10km), where 

porpoises were found to be more acoustically active at night at Inishtooskert but were more 

active during daylight hours at the Wild Bank. Cox et al (2001) had similar results to the Spiddal 

and Inishtooskert datasets, where they found porpoise echolocation detection rates were higher 

at night than during the day in the Bay of Fundy. In Newport Bay, on the south-west coast of 

Wales, Pierpoint et al (1999) also found that the levels of harbour porpoise activity were 

consistently higher at night. In Kamon Strait, Japan, Akamatsu et al (2008), using static stereo even 

recorders (A-tags, detection distance of 126m), found finless porpoises were detected only during 

the night, which was opposite to the shipping traffic which occurred during the daytime. Teilmann 

et al, (2007), using satellite-linked dive recorders, found that harbour porpoises dive continuously 

both day and night, with peak activity occurring during daylight hours. This is also true for the 

Wild Bank study site. Since harbour porpoise diel trends on the west coast of Ireland have been 

found to differ geographically, this emphasises the fact that the reliance upon visual monitoring 

alone is a poor measure of their occurrence in an area, especially if they are more active at night. 
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The reasons for increased nocturnal activity are uncertain but could be linked to an increase in 

prey abundance or activity in the absence of light, as suggested by Todd et al (2009). This 

hypothesis was further explored as part of the present study and results are presented in Chapter 

4. Further analyses of the porpoise acoustic dataset from Galway and the Blasket Islands explored 

the incidence of significant temporal trends such as the effect of tidal state and tidal phase. Results 

showed no significant variation in harbour porpoise detections in response to tidal state or cycle 

at the Blasket Island Wild Bank site and a small significance of tidal phase at Inishtooskert, with 

detections peaking during the neap phase. A significant effect of tidal phase and cycle was 

recorded in Spiddal, with a higher level of detections during a neap phase and an ebbing tide 

(2010). This is a similar result to Pierpoint et al (1999), who found greater harbour porpoise 

activity during an ebbing tide. The long-term data set from the Shannon Estuary is the most 

comprehensive knowledge base collected on this resident group of bottlenose dolphins since 

studies commenced on this population in 1993. Dolphins were recorded throughout the year but 

different temporal trends were identified between short geographical distances within the cSAC. 

A significant seasonal effect was determined at Moneypoint, where peaks were recorded in 

activity during the summer and winter months. Data from Foynes showed a different pattern, with 

peaks occurring during the spring and summer. The distance between these two sites, Foynes and 

Moneypoint, is circa 21km, with Foynes located further up the estuary, approximately 60km from 

Loop Head. Elsewhere, in Cardigan Bay cSAC, where another group of resident bottlenose 

dolphins are found, SAM results showed peaks in detection in April which continued into 

December (Simon et al, 2010). Results from the Shannon Estuary fail to show a peak in the 

autumn, as was shown in Cardigan Bay. This decrease in detections during the autumn was 

recorded at both sites and, therefore, would suggest that a dolphins are either moving further 

downriver or leaving the estuary altogether. This could be in association with a change in prey 

type. Further temporal trends were also evident over diel cycle, where more detections were 

recorded during morning and night-time phases. Philpott et al (2007) did not highlight a significant 

diel pattern, but the SAM duration was over a much shorter time scale. Tidal cycle was found to 

be significant at Moneypoint, where more detections were recorded over the ebbing and slack 

low tidal phases. This was in accordance with previous studies carried out in the estuary (Philpott 

et al, 2007). With regard to tidal phase, the two study sites showed opposing patterns, where 

more detections were recorded during the spring phase at Moneypoint and during the neap phase 

at Foynes. An additional concern was highlighted in the Shannon data, where a proportion (6%) of 

the total overall detections was recorded in the NBHF channel. This is of concern as no 

porpoises occur within the Shannon Estuary and especially not circa 60km up river from Loop 

Head. No records of any porpoises have been recorded west of Kilcredaun, and further evidence 

of the misidentification of dolphin detections classified by the C-POD as NBHF were found, 
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where simultaneous visual sightings record bottlenose dolphins in the vicinity of the POD (J 

O’Brien and S Hansen per obs.). These dolphin clicks recorded in the porpoise channel have an 

average frequency of 101 kHz, which is not unusual as bottlenose dolphins have been recorded at 

120 and 130 kHz in Hawaii, where individuals altered their frequency in response to background 

noise (Au, 1993). The characteristics of these misidentified clicks were quite uniform, of a very 

narrow band and of high frequency, which all suggest harbour porpoise. However, these click 

trains are composed of very long clicks and occur in the middle of a dolphin encounter. 

Furthermore, these click trains have no frequency trend throughout and are composed of several 

very similar trains, which occur in close succession, therefore, eliminating the possibility of off axis 

clicks. It is unclear as to why dolphins are changing their click repertoire at these sites, but it may 

be due to the topography of the areas or to metal structures in the vicinity, as both sites take 

advantage of jetties as mooring points. One limitation with the C-POD is the inability to 

differentiate between dolphin species. A low number of dolphin detections was recorded in the 

Blasket Islands sites (0.05% DPM) and in Spiddal (0.015% DPM). As species could not be 

determined and the rate of detection was so low, these data were not statistically analysed. 

However, it is likely that the ability to discriminate dolphin species within the C-POD data 

successfully will progress as its development is ongoing at Chelonia.  

 
In summary, SAM using C-PODs can provide high resolution data in time but has limited spatial 

coverage. This can be overcome with the deployment of many units within an area to achieve a 

more even spatial coverage. If multiple units can be used in a programme, the strategic placing of 

moorings would enable the tracking of movements within an area. Results from the present study 

highlight how seasonal as well as temporal trends, such as diel and tidal influences, can be 

detected through SAM. In fact, the results suggest that seasonal trends can be detected much 

more readily through SAM than through visual methods (O’Brien et al, 2008). Localised temporal 

trends were detected acoustically in all datasets, across season, diel, tidal phase and tidal cycle. 

Fine-scale temporal differences could not be detected through visual methods alone.  

 
Long-term monitoring of sites, both SACs and non SACs, can provide baseline data, especially for 

EIAs if activities such as dredging, pile driving or underwater blasting were to take place in an 

area. It is imperative to build an extensive knowledge base of temporal trends in an area in order 

to predict when animals are least likely to be affected. Temporal variations such as season, diel 

and tidal phase were found to influence both harbour porpoise and bottlenose dolphin presence 

on the west coast of Ireland, and this highlights the need for SAM, as results from visual data 

alone provide poor temporal coverage and do not truly represent the habitat usage by these 

populations. If human activities have an impact on harbour porpoises or dolphins, then visual 



NDP Marine Research Sub-Programme 2007-2013 

    

 100 

 

monitoring alone would be insufficient to mitigate against disturbance as it would not provide 

information on, for example, diel cycles. SAM alone is currently not advanced enough to highlight 

specific areas as SACs (Skov and Thomsen, 2008), but it can contribute to the effective 

conservation of inshore cetacean species by providing data on fine-scale habitat use.  
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6. SPECIES AND HABITAT ASSESSMENTS 

6.1. Introduction 

SAM can be used to effectively assess habitat use of cetacean species and is particularly useful for 

the study of behaviour, such as feeding strategies, approach behaviour and communication. 

Significant effects of diel pattern have been described in the foraging behaviour of harbour 

porpoise (Carlström, 2005; Todd et al, 2009) and bottlenose dolphin (Allen et al, 2001). These 

species are protected under Annex II of the EU Habitats Directive. Therefore, in order to ensure 

the FCS of species and areas of importance, it is imperative to identify habitat usage, e.g. feeding 

and breeding grounds. During species and habitat assessments, SAM devices were set according to 

the manufacturers’ guidelines to detect harbour porpoise and dolphin species, as described in 

Chapter 5. Data were extracted from SD cards using C-POD.exe, and the train detection 

algorithm was run on the CP.1 files to produce CP.3 files. All data from CP.3 files were then 

exported into Excel.xlsx, with rows containing information on individual clicks trains. Train 

detection analysis is based on a probability model, using the prevailing rate of arrival of clicks to 

derive a probability of the absence of a click in each successive time slot, as defined by the current 

inter-click interval (ICI) and train regularity (Chelonia Ltd). Only acoustic detections under the 

train filter “Hi” and “Mod”, which included both high and moderate probability cetacean click 

trains, were used in the analyses (Table 6.1). 

 

Table 6.1: Train values setting used during train analyses 

Train Values  

   Min  Max 

Modal kHz 20 225 

N in train 5 400 

Clicks per second 1 2000 

Mean SPL 1 225 

 

The various species of odontocetes that echolocate have different characteristics associated with 

their click production, such as click duration, inter-click interval ICI, frequency, source level and 

range. The use of biosonar by porpoises and dolphins has been extensively studied (Au, 1993), 

and has shown that porpoise and dolphin sonar characteristics differ greatly from each other, 

making it possible to differentiate between these species. Harbour porpoises use echolocation 

signals for foraging and orientation (Verfuß et al, 2005), and these signals are characterised as 
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being narrow-band, high frequency, between 110 and 150 kHz, with a detection range (for a single 

fish of ingestible size) of up to 30m, while an average click has a duration of 2μs with a mean 

source level of 150dB re 1μPa @ 1m (Møhl and Andersen, 1973; Goodson and Sturtivant, 1996; 

Au et al, 1999; Carlström, 2005; Villadsgaard et al, 2007; Verfuß et al, 2007). Harbour porpoises 

also have a low frequency component to their click (2 kHz), which Møhl and Andersen (1973) 

suggest may have communication value. Boat sonar and echo sounders are the only sounds in the 

sea which are similar to harbour porpoise sonar, as other sounds are more broadband, have 

longer durations and occur at lower frequencies (Kyhn et al, 2008).  

 

Bottlenose dolphins also have a highly developed sonar system for discriminating between, 

recognising and classifying objects (Azzaili et al, 1999; Pack et al, 2002; Branstetter et al, 2003; 

DeLong et al, 2006). Evans (1973) reported that bottlenose dolphin echolocation clicks are 

broadband, of between 200 Hz and 150 kHz, with a peak energy at 30-60 kHz, and with a source 

level of 40-80dB re 1 μbar @ 1m. In contrast, Au (2000) described bottlenose dolphins’ 

echolocation clicks as having peak frequencies of 120 and 130 kHz, with a source level of 220dB 

re 1μPa @ 1m, and duration of 40 to 60μs. More recently, Dos Santos and Almada (2004) 

described bottlenose dolphin clicks as having peak frequencies at 70 kHz, close to the optimum 

hearing frequency of best hearing for bottlenose dolphins. Unlike harbour porpoises, bottlenose 

dolphins do not constantly echolocate. Studies in Sarasota Bay found that bottlenose dolphins can 

often swim for 10 minutes without echolocating and that their use of echolocation varied 

depending on water clarity (Au 2000). Studies have shown that when dolphins were feeding in 

clear water, they rarely echolocate, but when they were feeding over grass flats, echolocation was 

used more often.  

6.2. Material and Methods 

Feeding buzzes and click bursts have been described in many odontocete species. See Leeney et 

al, 2011 (Heaviside’s dolphin); Herzing, 2000 (bottlenose dolphin); Miller et al, 1995 (narwhal, 

Monodon monoceros). Variation in ICI has been used as an indicator of certain behaviours in 

cetaceans (Wahlberg, 2002; Carlström, 2005; Koschinski et al, 2008; Akamastu et al, 2010; and 

Leeney et al, 2011). The minimum ICI (MinICI) has been deemed the most appropriate value as the 

software often splits trains when the ICI is long (Carlström, 2005). This has been employed in 

recent cetacean studies using T-PODs (Todd et al, 2009; and Leeney et al, 2011). Carlström 

(2005) deemed a MinICI of less than 10ms (MinICI<10ms) to be an appropriate identification of 

probable foraging, based on the shape of frequency distribution graphs generated from the mean 

of the distribution of the MinICIs. Verfuβ et al (2008) classified a harbour porpoise feeding buzz as 

the terminal section of the approach phase. The terminal part could be further divided into two 
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sections that differ in click pattern. During the first section, ICIs were reduced from around 50ms 

to below 10ms, sometimes in an oscillating pattern. The second section was characterised by 

relatively constant ICI of around 1.4 to 1.6ms. This usually occurs at distances of less than 1m 

from the target object. Selecting trains with MinICIs of less than 10ms should, therefore, 

encapsulate both phases of the feeding buzz for the harbour porpoise.  

 

Bottlenose dolphins have been described with ICIs of 19-45ms when investigating targets 20 to 

120m away (Au, 1993), and ICIs of 10-25ms when investigating targets at 1m (Richardson et al, 

1995). Zimmer (2011) has also described buzzes or pulse trains in bottlenose dolphins with a 

mean ICI of 1.3ms. Another delphinid species, the spinner dolphin (Stenella longirostris), has been 

found to have a bimodal pattern of ICIs, describing a peak in click trains with ICIs of 1.5 to 10ms 

and another peak with longer and more variable ICIs (Thomas et al, 2003).  

6.3. Results 

During the present study, graphs of MinICI were generated for NBHF trains detected at Spiddal 

and the Blasket Island cSAC sites, including the Gob, Inishtooskert and Wild Bank, as per 

Carlström (2005), (Figures 6.1 - 6.4). These figures were used to confirm the appropriateness of a 

MinICI<10ms categorisation for probable foraging behaviour in the harbour porpoise clicks trains. 

Graphs of MinICI were also generated for dolphin trains detected in the Shannon Estuary cSAC at 

Moneypoint and Foynes (Figure 6.5 and 6.6), displaying a bimodal pattern similar to that described 

by Thomas et al (2003). From these findings, a MinICI<10ms was also chosen to categorise 

probable foraging behaviour in bottlenose dolphins. 
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Figure 6.1: Frequency distribution of minimum inter-click intervals (MinICI) of narrow band high 
frequency (NBHF) trains detected at Spiddal in Galway Bay 
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Figure 6.2: Frequency distribution of minimum inter-click intervals (MinICI) of narrow band high 

frequency (NBHF) trains detected at the Gob, in the Blasket Islands cSAC 
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Figure 6.3: Frequency distribution of minimum inter-click intervals (MinICI) of narrow band high 
frequency (NBHF) trains detected at Insihtooskert, Blasket Island cSAC 
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Figure 6.4: Frequency distribution of minimum inter-click intervals (MinICI) of narrow band high 

frequency (NBHF) trains detected at Wild Bank, Blasket Island cSAC 
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Figure 6.5: Frequency distribution of minimum inter-click intervals (MinICI) of Dolphin trains detected 

at Foynes in the Shannon Estuary 
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Figure 6.6: Frequency distribution of minimum inter-click intervals (MinICI) of Dolphin trains detected 

at Moneypoint in the Shannon Estuary 

 

6.3.1. Click train results 

A total of 144,216 NBHF click trains were recorded at Spiddal using C-PODs over the 

deployment period. The average number of clicks per train was 15, with on average 175.5 clicks 

recorded per second, and with an average frequency of 130.7 kHz across all deployments. Click 

trains were classified into two categories based on the data presented above, where the category 

foraging was applied to trains with MinICI<10ms. All other trains were defined as “Other” as no 

definite behaviour category could be attributed. Results showed 41% (60,386 trains) of the total 

click trains recorded fell under the category foraging, highlighting the site at Spiddal as a very 

important feeding area.  

 

At Moneypoint, a total of 14,169 dolphin click trains were recorded. The average number of clicks 

recorded per train was 14.5, with an average of 37.5 clicks recorded per second at an average 

frequency of 72.6 kHz. These click trains were also classified into two categories based on the 

data above, where the category foraging was applied to trains with MinICI below 10ms, and all 

other click trains were defined as the behavioural category “Other”. Of the total, 1,060 (7% of 

total trains) trains were classified as foraging. Preliminary exploratory analyses showed no peaks 

in foraging trains across season, suggesting Moneypoint as an important feeding site year round. 

As highlighted in Chapter 5, a number of clicks were recorded in the NBHF channel in the 

Shannon Estuary, even though harbour porpoises are not known to occur here. Of these, a total 

of 171 trains (1% of total click trains) were recorded at Moneypoint, where the average number 
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of clicks per click train was 15.6, with an average of 175.8 clicks recorded per second at an 

average frequency of 127.7 kHz.  

 

At Foynes, the dolphin click trains were treated as before. A total of 5,113 click trains were 

recorded over the duration, with 9.4% (483 trains) classified as foraging. The average number of 

clicks per train classified in the dolphin category was 13.2, with an average of 40.4 clicks recorded 

per second at an average frequency of 68 kHz. Preliminary exploratory analyses showed no peaks 

were evident in foraging behaviour across diel or tidal cycle, but autumn showed a substantial 

peak, with a total of 22% of total foraging clicks recorded. A total of 89 NBHF trains were 

recorded at Foynes (2% of overall click trains), where the average number of clicks per click train 

was 14.9, with an average of 68.3 clicks recorded per second at an average frequency of 130 kHz.  

 

In the Blasket Islands, deployments took place at three locations. From Inishtooskert, a total of 

19,438 NBHF click trains were recorded. The average number of clicks per click train was 11.5, 

with on average 133 clicks recorded per second at an average frequency of 129 kHz. Of the total, 

5,572 (27%) trains were classified as foraging. From data at Wild Bank, a total of 7,328 NBHF click 

trains were recorded. The average number of clicks per click train was 9.4, with on average 84 

clicks recorded per second at an average frequency of 129 kHz. Of the total, 1,717 (23%) trains 

were classified as foraging. From the shorter dataset at the Gob, a total of 11,632 NBHF click 

trains were recorded over a 52-day duration. The average number of clicks per click train was 

14.1, with, on average, 52 clicks recorded per second at an average frequency of 134 kHz. Of the 

total, 926 (8%) trains were classified as foraging.  

 

6.3.2. Long-term SAM model of habitat use 

To investigate the pattern of habitat use at each of the monitoring locations, click train data were 

analysed across the four previously examined variables of season, diel, tidal phase and tidal cycle. 

A MinICI<10ms was used as a proxy for foraging behaviour in both harbor porpoise and 

bottlenose dolphins. All statistical analyses of the data were carried out using the programme R. A 

generalized linear mixed effect model (GLMM) was fitted to the binomial data, using the glmer 

function in the lme4 package developed for R where MinICI<10ms = 1, termed “feeding buzzes” 

(foraging) and >10ms = 0 (not foraging). Akaike’s information criterion (AIC) and a histogram of 

fitted residuals were used as diagnostic tools for model selection. C-POD ID was included in the 

GLMM model as a random factor to take into account intra POD variability over the project 

duration. Wald chi-squared tests were computed for each variable and predicted proportions of 

MinICI<10ms were extracted across all levels and displayed as box plots using the HH package 

developed for R. 
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6.3.3. Galway Bay 

C-PODs were deployed for 572 days at the Spiddal site, from which 144,216 NBHF click trains 

were extracted for analyses. The model containing all four variables was deemed the best fit for 

NBHF click trains in Galway Bay, indicating that season, diel, tidal phase and tidal cycle all 

significantly affect foraging behaviour of harbour porpoise in this area (Figure 6.7). Season was 

found to be the most significant variable (χ2 = 3282.4, P>0.001), with the highest levels of feeding 

buzzes during winter. Within tidal cycle (χ2 = 100.4, P>0.001), the highest level of feeding buzzes 

was found during an ebbing tide (Figure 8.6), and results also show that the diel category “night” 

contains the highest predicted proportion of feeding buzzes (χ2 = 1053.4, P>0.001). Tidal phase 

was found to be the least significant predictor of feeding buzzes (χ2 = 13.9, P>0.001), and the low 

chi-squared value indicates that this variable may only be highlighted due to the large dataset. 

Large datasets can exhibit mathematically significant patterns even when there is no biological 

significance, but the use of the chi squared value in this instance allows for correct interpretation 

of the data.   
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Figure 6.7: Predicted proportion of NBHF (narrow band high frequency) click trains with minimum 
inter-click intervals of less than 10ms (MinICI<10ms) in Galway Bay across the four variables of season; 

diel, where D =day, E= evening, M= morning and N = night; tidal phase, where Trans.=transitional phase, 
NT= neap tide and ST=spring tide; and tidal cycle, where E =ebb, L = slack low, F= flood and H=slack 

high 
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6.3.4. Moneypoint  

C-PODs were deployed for a total of 641 days at Moneypoint, from which 14,169 Dolphin click 

trains were extracted for analyses. The model that best fitted the dataset at Moneypoint was the 

model containing three variables (diel, tidal phase and tidal cycle), (Figure 6.8). Results of the diel 

cycle gave the highest chi squared value (χ2 = 121.6, P>0.001), indicating this variable has a greater 

effect on feeding buzzes than tidal cycle and phase. Neap tide (χ2 = 100.3, P>0.001) was found to 

contain the lowest proportion of feeding buzzes. Within tidal cycle, a peak in the feeding buzzes 

was clearly seen during a flooding tide (χ2 = 100.9, P>0.001).  
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Figure 6.8: Predicted proportion of Dolphin (detections in the Dolphin channel) click trains with 

minimum inter-click intervals of less than 10ms at Moneypoint in the Shannon Estuary cSAC across the 
three variables of diel, where D =day, E= evening, M= morning and N = night; and tidal cycle, where E 
=ebb, L = slack low, F= flood and H=slack high; and tidal phase, where Trans.=transitional phase, NT= 

neap tide and ST=spring tide  

 

6.3.5. Foynes 

C-PODs were deployed for a total of 591 days at the Foynes study site, from which 5,113 dolphin 

click trains were extracted for analyses. Season, diel and tidal phase were highlighted as significant 

predictors of feeding buzzes (Figure 6.9). Season was shown to be the most significant variable (χ2 

= 195.6, P>0.001), with the highest proportion of feeding buzzes during the winter months (Figure 

8.6). Results from the model suggest that diel (χ2 = 54.2, P>0.001) and tidal phase (χ2 = 43.5, 

P>0.001) have less of an effect on the level of feeding buzzes than season.  
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Figure 6.9: Predicted proportion of dolphin (detections in the dolphin channel) click trains, with 

minimum inter-click intervals of less than 10ms at Foynes in the Shannon Estuary cSAC across the three 
variables of season; diel, where D =day, E= evening, M= morning and N = night; and tidal phase, where 

Trans.=transitional phase, NT= neap tide and ST=spring tide 

 

6.3.6. Blasket Islands 

C-PODs were deployed for 605 days in the Blasket Islands sites, during which 38,398 NBHF click 

trains were extracted for analyses. The data were analysed separately, according to site, in order 

to assess fine scale differences in site usage. Three variables were found to significantly affect the 

level of foraging behaviour of harbour porpoise at Inishtooskert and at Wild Bank (Figure 6.10). 

At Inishtooskert, diel was shown to be the most significant variable (χ2 = 598, P>0.001), with a 

peak in feeding buzzes during the day and morning phases. Tidal cycle also significantly affected the 

level of feeding buzzes (χ2= 157.9, P>0.001), with a predicted rise in foraging click trains during a 

flooding tide. Seasonal peaks in foraging were also observed during the autumn (χ2 = 38.7, 

P>0.001). 
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Figure 6.10: Predicted proportion of NBHF (narrow band high frequency) click trains with minimum 
inter-click intervals of less than 10ms in the Blasket Islands cSAC at Inishtooskert across the three 

variables of season; diel, where D =day, E= evening, M= morning and N = night; and tidal cycle, where E 
=ebb, L = slack low, F= flood and H=slack high 
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At Wild Bank, both seasonal and diel were the most significant variables (χ2 = 132.8, P>0.001, χ2 

= 129.8, P>0.001), with a peak in predicted feeding buzzes during the summer, evening and night-

time phases. Tidal cycle also significantly affected the level of feeding buzzes (χ2= 63.9, P>0.001), 

with a predicted rise in foraging click trains during flooding and ebbing tides.  
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Figure 6.11: Predicted proportion of NBHF (narrow band high frequency) click trains with minimum 

inter-click intervals of less than 10ms in the Blasket Islands cSAC at Wild Bank across the three 
variables of season; diel, where D =day, E= evening, M= morning and N = night; and tidal cycle, where E 

=ebb, L = slack low, F= flood and H=slack high 

 

The dataset from The Gob was over a short duration (N=52 days) and, therefore, seasonal and 

tidal phase effects could not be analysed. Also, only a single unit was deployed, eliminating the 

need for the GLMM with POD ID as a random factor. A GLM was carried out. Diel was the most 

significant variable, with a predicted peak in feeding buzzes during the night-time phase (P>0.001).  
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Figure 6.12: Predicted proportion of NBHF (narrow band high frequency) click trains with minimum 

inter-click intervals of less than 10ms in the Blasket Islands cSAC at The Gob across the two variables of 
diel, where D =day, E= evening, M= morning and N = night, and tidal cycle, where E =ebb, L = slack low, 

F= flood and H=slack high 
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6.4. Discussion 

Results show that click train analyses can be used to highlight important areas by identifying 

specific behaviours which describe how animals use a site. For example, the Spiddal dataset 

highlights the area as an important feeding site (44%) for harbour porpoise year round, with a 

distinctive peak during the winter months. Additionally, at the Blasket Islands cSAC, patterns in 

habitat use could be identified over small geographical distances (c10km) as multiple sites were 

monitored. This was also found by Berrow et al (2009a), who carried out short–term monitoring 

(June to Sept) at both of these sites (Wild Bank and Inishtooskert) using T-PODs. The data from 

the present study is not directly comparable with Berrow et al (2009a) as behaviour analyses deal 

with individual click trains and not presence absence as determined from DPMs. However, results 

do show that the use of both methods (presence/absence or behaviour) allows the depiction of 

small fine scale differences across small geographical areas.   

 

Results from the present study are limited in that only a single behaviour was identified. This was 

due to time constraints, and because it was not possible to carry out a full investigation similarly 

to Koshchinski et al (2008) using T-POD data. It would be extremely valuable to establish a 

method for quick identification of, for example, alarm and dominance calls within a dataset, and 

this would serve to highlight and reinforce the importance of specific areas. The ability to identify 

behaviour types from acoustic dataset provides an invaluable insight into how animals use a site. 

This has implications for the conservation of habitat and of the species.      
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7. TOWED ACOUSTIC SURVEYS ON PLATFORMS OF 

OPPORTUNITY 

7.1. Introduction 

Monitoring cetaceans through Passive Acoustic Monitoring surveys (PAM) can be done using 

Platforms of Opportunity (POPs) or dedicated survey platforms (Evans and Hammond, 2004). 

POPs surveys are preferable because they provide very low cost platforms and may cover large 

areas over extended periods where the high cost of hiring vessels is not incurred. However, a 

major constraint is the lack of an a priori survey route design. Furthermore, the speed of the 

vessel cannot be controlled (Evans and Hammond, 2004). Ferry companies crossing the Irish and 

Celtic Seas have provided space for researchers for many years, resulting in a better 

understanding of the distribution of cetaceans along these routes (Brereton et al, 2001). Also, the 

two national research vessels, R.V. Celtic Voyager and R.V. Celtic Explorer, have been used as POPs 

for cetacean surveys several times (Wall et al, 2006). Cetaceans live in an acoustic world and 

attempts have increasingly been made to develop PAM techniques. PAM is a method to determine 

the presence and distribution of cetacean species by listening for their sounds. These studies can 

be done using towed hydrophone arrays or static equipment, including fixed hydrophones 

(Berrow et al, 2006). 

 

The use of PAM in cetacean conservation identifies two main components for its application, 

“detection” and “classification”. Detection is the individualisation of acoustic signals, while 

classification refers to species-specific acoustic identification of these signals (Yack et al, 2009). 

Traditionally, acoustic surveys have been conducted using observer-based methods of analyses, 

usually by eye, of acoustic files, which is time consuming and requires a highly trained technician. 

Therefore, automated detection and classification methods are being developed (Yack et al, 2009). 

 

PAM greatly improves the detection rate for odontocetes (Gordon et al, 1999), and in recent 

years, it has become increasingly widespread for cetacean observations (Moore et al, 2006). The 

combination of both visual and acoustic methods can improve the efficiency of cetacean surveys 

(Weir et al, 2001). Therefore, many studies incorporate both visual and acoustic techniques in 

order to complement the data of the research. 

 

There are potential disadvantages to using PAM. Firstly, towing a hydrophone is often not feasible 

on vessels that are already towing gear that can include fishing nets or acoustic arrays. Vessels 
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generate noise as they move through the water. This noise can mask the vocalizations and affect 

the range capability of the acoustic gear. Therefore, quiet vessels are ideal platforms for this kind 

of study (Gordon et al, 1999). Furthermore, cetaceans are not always vocalizing (Evans and 

Hammond, 2004) and this implies no detection or false negatives. From an economic point of 

view, passive acoustic techniques require highly qualified PAM operators and expensive equipment 

but can contribute to an offshore data by making data acquisition possible during the night-time 

hours and in adverse weather conditions. Ship time is expensive and, therefore, the amount of 

data collected should be maximised at all times, and PAM facilitates this.  

7.2. Materials and Methods 

For the present study, PAM was carried out on board the Irish national research vessel R.V. Celtic 

Explorer, a 65.5m vessel travelling at an average speed of 7-10 Knots. PAM surveys were, where 

possible, carried out concurrently to visual surveys while on dedicated and opportunistic cruises. 

PAM took place 24 hours a day, where possible, depending on weather conditions and what 

activity the ship was engaging in (i.e. CTDs, fishing, etc. Table 7.1). The R.V. Celtic Explorer 

complies with the noise requirements of ICES CRR Report 209 and is acoustically silent, providing 

an ideal platform for the collection of high quality acoustic data with minimal interference from 

vessel engine noise. In total, six PAM surveys were carried out, two of which were on dedicated 

cetacean cruises.  

 

During surveys, a towed hydrophone array was deployed from the R.V. Celtic Explorer. This 

consisted of a 200m array having two hydrophone elements (HP-03) situated 25cm apart in a 

fluid-filled tube towards the end of the cable. The hydrophone was connected to the vessel with a 

bungee cord to avoid tension on the main line. The cable and array is designed to be negatively 

buoyant by the weight of the cable in order to tow it under the surface at a depth of between 

two to five metres, depending on the speed of the vessel. The 200m cable contains wires that 

conduct power from the battery attached at the dry end (MAGREC Ltd HP-27st buffer box) and 

carries it to the preamplifiers in the fluid-filled tube at the wet end of the array. The buffer box is 

attached to a laptop computer and a National Instruments DAQ-6255 USB soundcard is 

connected to the output of the buffer-box and, through USB, into the laptop. This sound card 

allows for the detection of sounds outside the capability of the computer soundcard. Two 

channels were sampled at 192 kHz, re-coding acoustic events with a 2-96 kHz frequency range. A 

dedicated laptop was installed with PAMGUARD (ver.1.5.01) Beta software for data acquisition. A 

2TB external hard drive provided additional storage and a backup facility for the data collected. 

Raw recordings were stored on the laptop and backed up to the hard drive daily. The software 

PAMGUARD (www.pamguard.org; Gillespie et al, 2008) was used on board. PAMGUARD allowed 

http://www.pamguard.org/
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for the collection of real-time acoustic data while the hydrophone was deployed, storing the data 

as wav. files on the computer along with GPS data and user-input information in an access 

database.  

 

During some surveys, where at least two MMOs were on board, the PAM computer was 

monitored and the observer made notes of any detections using the user input facility on 

PAMGUARD. Information was directly stored in the main access database. During night-time 

transects, the PAM computer was either monitored or left to run unsupervised, with raw 

recordings being stored to the laptop and backed up to hard drive for later analysis. The 

hydrophone system (MAGREC HP-03) did not allow the detection of baleen whales as their 

vocalizations were outside the frequency capabilities of hydrophone.  

 

Table 7.1: Name of the acoustic surveys carried out, and their respective dates. Abbreviations will be 
used from now on in the analysis 

 PAM Surveys  

 
Survey name  Abbreviation Date 

1. 
Cetaceans on the Frontier CFS 1 18-31 Aug 2009 

2. 
NPWS Habitat Mapping NPWS 3-21 Sept 2009 

3. 
FSS Deep-water DEEP 2-15 Dec 2009 

4. Oceanographic and Climate 
Change CLIMATE 5-17 Feb 2010 

5. 
Cetaceans on the Frontier II CFS 2 18 Feb-1 Mar 2010 

6. 
OSS Oceanographic OSS 16-22  May 2010 

 

 

7.2.1. The aims of PAM during the present study were: 

Species identification and evaluation of data analyses 

-  To identify vocalizations to species level using the observer-based method of analyses 

(manual).  

- To group vocalizations into acoustic encounters. 

-  Where identification of vocalizations to species level is not possible, simultaneous visual 

data (if available) is used to classify detections. 

 

 Mapping cetaceans distribution and abundance 

- To map acoustic encounters identified and to highlight important areas of species 

distribution and abundance through PAM. 

 



NDP Marine Research Sub-Programme 2007-2013 

    

 116 

 

Testing the efficacy of PAMGUARD in identifying vocalizations 

- To test the efficacy of the automated method of analyses carried out using PAMGUARD 

to identify odontocetes vocalizations (clicks and whistles) through the comparison with the 

results obtained using the observer-based method of analyses. To evaluate advantages and 

disadvantages in using the automated method of analyses. 

 

7.2.2. Acoustic data analyses 

Prior to analysing the data, a reference library was generated using all available literature and to 

compile a reference database of species-specific vocalization and echolocation characteristics for 

odontocetes species in Irish waters (see Pierini, 2011). This database served as a reference library 

for which to refer when identifying vocalizations to species level in the absence of visual 

confirmation. The reference library was compiled by trawling through an extensive literature 

collection and compiling relevant acoustic information. When classifying the vocalizations to 

species level, the characteristics of the vocalizations had to fit within the values of frequencies 

described in the reference databases created. If not, then the detection was downgraded to the 

category “unidentified dolphin” or “unidentified cetacean”. The software Adobe Audition was 

used to look at spectrograms of all acoustic files. An excel spread sheet was compiled and 

information about detections identified in the .wav file were recorded. 

  

Three categories were created in order to classify detections within all acoustic files: 

-  Vocalization: each single sound (click, whistle, moan, buzz, or burst pulse sound) detected. 

- Acoustic detection: each group (each sighting of odontocete species was classified as an 

individual group) of animals recorded by the hydrophone. 

- Acoustic encounter: Different acoustic detections were grouped together into the category 

acoustic encounter when the delay between the end time of one and the start time of the next 

acoustic detection was less than ten minutes. If the time frame between encounters did not 

exceed ten minutes then it was not considered as a new acoustic encounter. 

 

Whistle identification to species level, took into account the following parameters: 

- Start Frequency: frequency at which the whistle starts (Hz). 

- End Frequency: frequency at which the whistle ends (Hz). 

- Minimum Frequency: frequency at the lowest point of the whistle (Hz) 

- Maximum Frequency: frequency at the highest point of the whistle (Hz). 

- Frequency Range: the range of frequencies (Hz) spanned by the whistle calculated as: 

maximum frequency – minimum frequency. 
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Click identification to species level also followed parameters found in the reference library: 

- Frequency Range: the range of frequencies (Hz) spanned by the click calculated as: 

maximum frequency – minimum frequency. 

- Maximum Frequency: frequency at the highest point of the click (Hz). 

- Minimum inter-click interval (ms): minimum elapsed time between two consecutive clicks. 

- Maximum inter-click interval (ms): maximum elapsed time between two consecutive 

clicks. 

- Average inter-click interval (ms): average elapsed time between two consecutive clicks. 

 

Where possible, visual datasets, which were collected concurrently with PAM surveys, were used 

to facilitate identification to species level. If a detection could not confidently be identified to 

species level, the acoustic encounter was downgraded to “unidentified dolphin” or “unidentified 

cetacean”. Up to 300 visual sightings were collected by the visual observers of which 51matched 

with PAM recordings.  

 

7.2.3. Mapping cetaceans distribution and abundance 

All acoustic encounters involving acoustic effort were mapped using ArcGIS 9.3. This allowed for 

additional data for offshore surveys where species distribution could also be plotted from PAM. 

50x50km squares were generated to identify the total area covered by the towed hydrophone 

and to calculate the relative abundance of acoustic encounters for each square by dividing total 

number of acoustic encounters in each square by the total acoustic effort (km) in each square. 

Surveys were carried out in the offshore environment and covered various habitat types (Figure 

7.1). 
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Figure 7.1: Map of Irish waters including offshore habitats © www.marine.ie 

 

7.3. Results 

Out of 79 days at sea with PAM equipment, it was only possible to deploy the array on 55 days. It 

was not possible to deploy the towed hydrophone 24 hours a day on all surveys due to the ships’ 

main survey objectives, such as fishing and CTDs, and due to bad weather conditions. A total of 

533 hours of acoustic effort was collected over the 55 days and the data analysed (Figure 7.2).  

 

http://www.marine.ie/
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Figure 7.2: Map showing the total PAM effort carried from the R.V Celtic Explorer 

 

A total of 422 acoustic encounters were identified. The number of acoustic encounters, divided 

into different species categories, where possible, is shown in Table 7.2. Acoustic encounters were 

grouped into five categories. It was not possible to identify 323 acoustic encounters to species 

level. These unidentified acoustic encounters were, therefore, downgraded to the two categories 

of “unidentified dolphin” and “unidentified cetacean”. The remaining 99 acoustic encounters were 

identified to species level, identifying three species: sperm whale, harbour porpoise and long 

finned pilot whale. 
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Table 7.2: Total number of acoustic encounters identified to species level when possible using the 
observer-based method of analyses in Adobe Audition 1.0. Unidentified acoustic encounters are showed 
as the two categories “unidentified dolphin” and “unidentified cetacean” 

Acoustic Encounters  

Species detected  Abbreviation PAM 
confirmation 

Sperm whale 
 

SP 73 

Pilot whale PW 24 

Harbour porpoise HP 2 

Unidentified 
dolphin 

UID 309 

Unidentified 
cetacean 

UIC 14 

 

Not all of the 323 acoustic encounters previously identified as “unidentified dolphin” (309 

encounters) and “unidentified cetacean” (14 encounters) were successively matched to the visual 

data (sightings) acquired concurrent to while the hydrophone was recording. A total of 41 

unidentified dolphin acoustic encounters were visually identified as common dolphin (36 

encounters), long finned pilot whale (1 encounter) and bottlenose dolphin (4 encounters). A total 

of 8 unidentified cetacean acoustic encounters were identified as long finned pilot whale (6 

encounters), sperm whale (1 encounter) and northern bottlenose whale (1 encounter) (Figure 

7.3). 
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Figure 7.3: Number of acoustic encounters for each species detected. In blue is the total number of 

acoustic encounters identified using the observer-based method. In red is the number of unidentified 
acoustic encounters (unidentified dolphin encounters and unidentified whale encounters) confirmed to 
species level after correlating with the visual sightings database. In green is the final number of acoustic 

encounters including both acoustic encounters identified with the observer-based method and those 
identified after correlating the unidentified encounters with the visual database. Abbreviations: SP 
(sperm whale), PW (long finned pilot whale), HP (harbour porpoise), CD (common dolphin), BND 

(bottlenose dolphin), NBW (northern bottlenose whale) 

 

For the remaining 268 unidentified dolphin acoustic encounters and 6 unidentified cetacean 

acoustic encounters, it was not possible to confirm the species because these acoustic encounters 

happened at night in the absence of visual surveys. Therefore, visual sightings data were not 

available for the species confirmation of these unidentified acoustic encounters (Figure 7.4). 

Unidentified dolphin acoustic encounters and unidentified cetacean acoustic encounters not 

confirmed by sightings were left classified as unidentified dolphins or unidentified cetaceans 

acoustic encounters. 
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Figure 7.4: Overview of unidentified dolphin and unidentified cetacean acoustic encounters. The amount 

of unidentified dolphin and unidentified cetacean acoustic encounters is shown before (blue) and after 
(green) the correlation with visual sightings data. The number of acoustic encounters identified to 

species level after the correlation with the visual sightings data is shown in red 

 

7.3.1. Survey effort and geographic coverage 

Sperm whales were mainly detected along the shelf slope. A high number of acoustic encounters 

were detected over the Porcupine Bank slope, but few acoustic encounters were recorded over 

the southern edge of Rockall Bank and over the deep waters of the Rockall Trough. One acoustic 

encounter was recorded on the shelf over the Porcupine Seabight (Figure 7.5). The highest 

number of sperm whales detections was recorded over the Porcupine Bank slope, the deep 

waters of the Rockall Trough and the Porcupine Bank slope (Figure 7.6). 
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Figure 7.5: Distribution of acoustic encounters of sperm whale 

 

 
Figure 7.6: Sperm whale acoustic encounters per km 

 

Long-finned pilot whales were mainly detected along the shelf slope, with a few noted over the 

southern edge of Rockall Bank and over the Rockall Trough. Furthermore, pilot whales were 

detected in the south west Irish EZZ waters, over the Goban Spur (Figure 7.7). High detection 

rates for pilot whales were encountered on the shelf of the Goban Spur (Figure 7.8). 
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Figure 7.7: Distribution of acoustic encounters of long finned pilot whale 

 

 
Figure 7.8: Long finned pilot whale acoustic encounters per km 

 

Only two acoustic encounters of harbour porpoise were detected and were located near shore 

along the Irish north-west coast (Figure 7.9). The relative detection per km was low (Figure 7.10). 
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Figure 7.9: Distribution of acoustic encounters of harbour porpoise 

 

 
Figure 7.10: Harbour porpoise acoustic encounters per km 

A single acoustic encounter of the northern bottlenose whale was recorded on the Porcupine 

Bank shelf edge (Figure 7.11). 
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Figure 7.11: Distribution of acoustic encounters of northern bottlenose whale 

 

 
Figure 7.12: Northern bottlenose whale acoustic encounters per km 

 

Acoustic encounters of common dolphins were widespread. A significant number of detections 

were recorded over the shelf slope and the Goban Spur, but also over the Porcupine Seabight 

shelf and closer inshore. Only one encounter was detected in the waters of the Rockall Trough 

next to the Rockall Bank slope (Figure 7.13). The distribution of common dolphin was detected 

over Goban Spur and over the Porcupine Bank shelf (Figure 7.14). 
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Figure 7.13: Distribution of acoustic encounters of common dolphin 

 
Figure 7.14: Common dolphin acoustic encounters per km 

Bottlenose dolphins were recorded along the Porcupine Bank shelf. Detection duration was 

longest over the Porcupine Seabight shelf (Figure 7.15). 
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Figure 7.15: Distribution of acoustic encounters of bottlenose dolphin 

 

 
Figure 7.16: Bottlenose dolphin acoustic encounters per km 

 

Unidentified dolphin acoustic encounters had a wide distribution and were recorded both 

offshore and inshore close to the Irish coast (Figure 7.17). 
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Figure 7.17: Distribution of acoustic encounters of unidentified dolphin 

 

 
Figure 7.18: Unidentified dolphin acoustic encounters per km 

 

Unidentified cetacean acoustic encounters were few, and were recorded on the shelf edge. One 

was recorded over the Goban Spur and one closer inshore (Figure 7.19). 
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Figure 7.19: Distribution of acoustic encounters of unidentified cetaceans 

 

 
Figure 7.20: Distribution of Unidentified cetacean acoustic encounters per km 

 

7.3.2. Testing the efficacy of PAMGUARD in identifying vocalizations 

PAMGUARD was tested as an automated method of analysing the acoustic dataset. It was run to 

detect and identify odontocetes’ vocalizations (clicks and whistles) within a file and to extract such 

information to an access database. A cross comparison of methods was carried out whereby 

PAMGUARD was set as an automated method, and an observer analysed the same data by eye 

and extracted information under the same parameters. The observer-based method was the most 
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accurate method of extraction. The total number of vocalizations detected with both methods of 

analyses is shown in Figure 7.21. 
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Figure 7.21: Number of whistles for each survey counted with both the observer-based method and the 

automated method of analyses 

 

The number of whistles and clicks detected with the automated method was always higher than 

the number of whistles detected using the observer-based method, although this surplus of 

detections varied between surveys 
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Figure 7.22: Number of clicks for each survey counted with both the observer-based method and the 

automated method of analyses 

 

Figure 7.23: Number of clicks for each survey counted with the observer-based method and the 
automated method of analyses 

 

The number of whistles detected with the automated method in comparison with the observer 

based method was always greater. In order to statistically analyse them, a “proportion” value was 

generated by dividing the total number from the observer-based method with the count from the 

automated method in order to represent the probability of success. Results showed the 
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proportion value generated as the observed probabilities of success were always <1. Therefore, 

the null hypothesis of equal detection power of the two methods of analyses (proportion=1) was 

rejected (Table 7.3). A graphic representation of the exact binomial test results is shown in Figure 

7.24 (two-sided exact binomial test) and Figure 7.25 (one-side exact binomial test). 

 

Table 7.3 Counts of clicks and whistles from the observer-based method (human) and automated 
method (software PAMGUARD) of analyses, proportion and p- value. Counts are divided by survey 
name and detection type. The p-value comes from an exact binomial test with null hypothesis 
proportion=1.Proportion comes from dividing the number of detections collected with the observer-
based method per number of detections collected with the automated method 

 

Survey Detection Observer Count Proportion p-value
CFS1 W Human 3235
CFS1 W Software 7410
CFS1 C Human 33779
CFS1 C Software 179491
NPWS W Human 9840
NPWS W Software 13089
NPWS C Human 76715
NPWS C Software 220298
DEEP W Human 4850
DEEP W Software 6099
DEEP C Human 113969
DEEP C Software 165715
CLIMATE W Human 960
CLIMATE W Software 14780
CLIMATE C Human 37192
CLIMATE C Software 38693
CFS2 W Human 16925
CFS2 W Software 30731
CFS2 C Human 103114
CFS2 C Software 209449
OSS W Human 12867
OSS W Software 14360
OSS C Human 46618
OSS C Software 88827

0.89 <2.2e-16

0.52 <2.2e-16

0.55 <2.2e-16

0.49 <2.2e-16

0.06 <2.2e-16

0.96 <2.2e-16

0.79 <2.2e-16

0.68 <2.2e-16

0.75 <2.2e-16

0.34 <2.2e-16

0.43 <2.2e-16

0.18 <2.2e-16
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Figure 7.24: Graphic representation of the results from the exact binomial test (two-sided). The graphic 

shows the estimated proportion and 95% confidence intervals on the estimated proportion from the 
two-sided exact binomial test. Whistles detections are in blue. Clicks detections are in red. Estimated 
proportion is evidenced by a circle. All values analysed were significantly less than one. Any proportion 

within the confidence interval is statistically not different to the estimated proportion 

 

 
Figure 7.25: Graphic representations of the results from the exact binomial test (one-side). The graphic 
shows the estimated proportion and 95% confidence intervals on the estimated proportion from the one 

side exact binomial test. Whistles detections are in blue. Clicks detections are in red. Estimated 
proportion is evidenced by a circle. All values analysed were significantly less than one. Any proportion 

within the confidence interval is statistically not different to the estimated proportion 

 

The sperm whale was the most detected cetacean using the observer-based method of analyses of 

the audio files. Sperm whale sounds are highly distinctive (Sparks et al, 1993), and are broadband 
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clicks with a welldefined click train (Morrissey et al, 2006) and inter clicks intervals (Figure 7.26). 

These characteristics make sperm whales the most amenable to acoustic detection methods 

(Barlow and Taylor, 2005). The high number of acoustic encounters of sperm whales during the 

present study reflects the fact that their vocalizations can be heard at very long distances from the 

vessel. Sperm whale clicks have, in fact, been recorded by a towed linear array at a distance of 18 

km from the boat (Sparks et al, 1993).  

 

 
Figure 7.26: Low frequency sperm whale clicks, with defined inter click intervals detected with the 

observer-based method using the spectrogram view in Adobe Audition 1.0 

 

Identification of long finned pilot whale vocalizations was possible through the use of whistle 

characteristics. Pilot whales emit distinctive low frequency whistles at frequencies between 4 and 

7 kHz (Tarusky, 1979; Busnel and Dziedzi, 1966), which allow differentiation of their whistles 

from those of common and bottlenose dolphin species. However, it was often noted during 

analysis that low frequency whistles of pilot whales could be masked by vessel noise and water 

flow over the hydrophone element in adverse weather (Figure 7.27). Therefore, it was necessary 

to have the visual sightings data in order to confirm these pilot whale acoustic encounters. 

 

 
Figure 7.27: Low frequency pilot whale whistles, sometimes masked from background noise, 

detected with the observer-based method using the spectrogram view in Adobe Audition 1.0 
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Although harbour porpoise clicks are extremely diagnostic, due to frequency and ICI (Figure 7.28), 

only two acoustic encounters were identified.  

 

Figure 7.28: Harbour porpoise high frequencies clicks detected with the observer-based method using the 
spectrogram view in Adobe Audition 1.0 

 

It was not possible to identify dolphin vocalizations to species level in the absence of visual 

confirmation. This was due to large overlaps in acoustic characteristics between species. The 

identification to species level of a northern bottlenose whale was possible due to simultaneous visual 

confirmation. Identification of their vocalizations to species level is very difficult because their known 

frequency ranges between 3 and 16 kHz for whistles (Winn et al, 1970) and between 0.5 and 22 kHz 

(Winn et al, 1970; Hooker et al, 2002), overlapping with dolphin ranges.  

 

7.4. Discussion 

From a first overview of acoustic results, it is evident that information can be gathered on habitat 

preference for specific species. As with visual data, acoustic detections can be plotted as a means for 

evaluating species distribution. This is a valuable asset to a survey, as it can be carried out during the 

night and in adverse weather conditions. However, there are limitations, in that species identification 

can prove difficult and a lack of information on abundance can bias datasets. Additionally, it is 

recommended than an observer or PAM operator is always assigned to acoustic collection. This 

facilitates ease of identification of detections within a dataset but also allows for ease of identification 

and analyses after a survey has been completed. It is also recommended that PAM analyses be 

carried out by a trained observer, as results from the automated setting of the PAMGUARD 

software give a very different account of results and have a very high false positive rate, especially for 

whistle detection (Pierini, 2011). PAM should be used as an accompaniment to visual observations to 

maximize the data return for a survey, especially during adverse weather and night-time hours, but 

should not be relied solely as a survey technique.  
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Sperm whale was the most frequently detected cetacean species using the observer-based method 

of analyses of the audio files. Sperm whale sounds are highly distinctive (Sparks et al, 1993), 

consisting of broadband clicks with a well-defined click train (Morrissey et al, 2006) and inter-click 

intervals. These characteristics make sperm whales the most amenable to acoustic detection 

methods (Barlow and Taylor, 2005). The high number of acoustic encounters of sperm whales in this 

study could reflect the fact that their vocalizations can be heard at very long distances from the 

vessel. Sperm whale clicks have in fact been recorded by a towed linear array at a distance of 18 km 

from the boat (Sparks et al, 1993). 

 

Identification of long finned pilot whale vocalizations was also possible from the analyses of whistle 

characteristics. Pilot whales emit distinctive low frequency whistles at frequencies between 4 and 7 

kHz (Tarusky, 1979; Busnel and Dziedzi, 1966), which allow differentiation of their whistles from 

those of common and bottlenose dolphin species.  

 

Although harbour porpoise clicks are strongly diagnostic because of their high frequencies and ICI, 

only two acoustic encounters were identified. This is most likely due to harbour porpoises having a 

distribution close to land (Wilson and Berrow, 2006) and most of these surveys were carried out 

offshore. Furthermore, harbour porpoises are elusive and tend to avoid new sounds in the 

environment (Cox and Reid, 2004). Therefore, an approaching vessel will influence porpoise 

behaviour and they could exhibit avoidance behaviour and disappear quickly. The limited detection 

range of the acoustic equipment for harbour porpoise, which is estimated at around 200m to 300m 

due to their high frequency clicks, could also influence detection probability.  

 

It was impossible to identify dolphin vocalizations to species level in the absence of visual 

confirmation. This is due to an overlap in frequency use. The identification to species level of the 

acoustic encounter of the northern bottlenose whale was possible only because at the same time 

there was a sighting next to the vessel. Identification of their vocalizations to species level is very 

difficult because their known frequency ranges, between 3 and 16 kHz for whistles (Winn et al, 

1970) and between 0.5 and 22 kHz (Winn et al, 1970; Hooker et al, 2002), makes their recorded 

vocalizations easy to confuse with dolphin vocalizations.  

 

From the mapping results of acoustic detections, it is evident that the different species encountered 

have different habitat preferences from the shallow waters of the continental shelf (<200m) to the 

deep water (>2,000m) offshore, including the shelf edge which seems to be an important habitat for 

most of the species encountered. Sperm whales show preference for deep waters (Rice, 1989), as 

found from acoustic detections (all in waters >1,000m). Sperm whales feed primarily on cephalopods 
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(Kawakami, 1980; Jaquet and Gendron, 2001), which are available at great depth. Therefore, their 

habitat use is thought to be linked to their prey habitat. Sperm whales were recorded mostly off the 

edge of the continental shelf along the shelf slope, with high abundance over the Porcupine Bank 

slope. Long-finned pilot whale acoustic encounters were predominantly recorded in waters 

exceeding 1,000m depth. Their distribution is thought to be related to the occurrence of their prey 

(Bloch et al, 2003), mostly composed of pelagic cephalopods (Cañadas and Sagarminaga, 2000).  

 

Common dolphins were recorded in both inshore and offshore waters reflecting their already 

known distribution along the west coast of Ireland (Gordon et al, 1999). Their high abundance in 

Irish waters is underlined by the fact that this species is one of the most commonly stranded 

cetaceans around the Irish coast (Berrow and Rogan, 1997).  

 
Bottlenose dolphin encounters were recorded offshore along the Irish shelf edge. Although this 

species tends to be distributed primarily next to the coast, it can also be found in offshore waters 

(Wells and Scott, 1999). While the importance of coastal waters for bottlenose dolphins is known 

(Berrow et al, 1996), little is known about the presence of this species in offshore Irish waters. The 

Irish shelf edge seems to be an important habitat for offshore bottlenose dolphins. Further studies 

need to be carried out in order to better understand their distribution along this critical habitat. 

 

Yack et al, 2009 carried out an evaluation of the efficacy of PAMGUARD in identifying and counting 

cetacean vocalizations (whistles and clicks) within wav files. Results from the present study, where a 

manual observer method was used to extract data in comparison with the PAMGUARD programme, 

showed large discrepancies between the two methods. A large discrepancy in click detections was 

also reported by Yack et al (2009) when using the same software. Both automated “click detector” 

and “whistle detector” applications in PAMGUARD were configured in order to collect vocalizations 

in a wide range of frequencies. An intermediate detection threshold was decided on for 

PAMGUARD in an effort to equalize the number of missed detections to the number of false 

detections collected. If the objective of this research had been more species specific, a more specific 

whistle and click detector within PAMGUARD should have been created.  

 

PAMGUARD almost never missed “true clicks”. However, PAMGUARD stored a lot of false click 

detections. Since the number of “true clicks “ missed detections from PAMGUARD was very low, 

the use of this automated software should be considered in order to save time with the analyses of 

the acoustic data. It should be used at the beginning of the analyses to identify the periods of clicking 

along the audio files (obviously, it will collect both “true clicks” and “false clicks”), avoiding re-

analysing the spectrogram where nothing was detected. However, once PAMGUARD has analysed 
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the files, periods of click detections within the audio files should always be re-analysed with the 

observer-based method of analysis in order to eliminate false detections (“false clicks”). False click 

detections can be recognized easily with the observer-based method. In this way, it will be possible 

to reduce the time spent on the analyses because it will not be necessary to go manually through 

those audio files where PAMGUARD did not detect clicks. 

 

PAMGUARD missed numerous “true whistles” present in the audio files. Entire files with whistles 

were ignored by the automated analyses. PAMGUARD cannot be considered useful software for the 

detection of whistles. For the detection of whistles, therefore, the observer-based method of 

analyses should be considered, at this time, as the best option to use. It is recommended that 

PAMGUARD click detector should be used in order to automatically detect clicks and save time. 

However, the observer-based method should be always used a postori in order to re-analyse periods 

of clicks collected by PAMGUARD in order to delete PAMGUARD false detections. PAMGUARD 

should not be used to analyse sound files for the presence of odontocete whistles. Whistles should 

be detected using the observer-based method of analysis.  
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8. DEEP SAM 

8.1. Introduction 

Little is known of the distribution and ecology of deep diving cetacean species within the Irish EEZ. 

This is primarily due to their offshore distribution and the fact that some deep-diving cetacean 

species spend up to 95% of their lives beneath the surface (Watwood et al, 2006; Barlow and 

Gisiner, 2006). These species include sperm whale (Physeter macrocephalus), pygmy sperm whale 

(Kogia breviceps), pilot whale (Globicephala melas) and the five species of beaked whale recorded in 

Irish waters - northern bottlenose whale (Hyperoodon ampullatus), Cuvier’s beaked whale (Ziphius 

cavirostris), Sowerby’s beaked whale (Mesoplodon bidens), True’s beaked whale (Mesoplodon mirus) and 

Gervais’ beaked whale (Mesoplodon europaeus).  

 

The conservation status of all deep-diving cetacean species in Irish waters was listed as ‘unknown’ in 

the last report on the ‘Status of EU protected habitats and species in Ireland’ (NPWS, 2008). Under 

the IUCN Red List 2011 (IUCN, 2011) sperm whales are listed as ‘vulnerable’ and Cuvier’s beaked 

whale is listed as ‘least concern’. All other deep diving cetacean species occurring in Irish waters are 

listed as ‘data deficient’. 

 

Though it is known which species of beaked whale occur off the Irish coast, the extent of their 

occurrence, whether they are resident or migratory or the extent to which they rely on specific 

habitat types such as subsea canyons are all unknown. The existing evidence, based on modelling and 

sightings data, suggests that beaked whales have a distribution that is restricted by habitat 

requirements. These data also suggest that beaked whale distribution is more habitat-specific than 

that of other deep diving species such as sperm whales or pilot whales (NPWS, 2008).  

 

Surveys conducted under EU and national research programmes in recent years have led to a better 

understanding of our unique offshore habitats and the species that live within them (Weaver et al, 

2004; INFOMAR, 2011). Distribution data from both acoustic and visual cetacean surveys indicate 

that subsea canyon systems represent a high value habitat for many species of cetaceans, including 

dolphins, beaked whales and sperm whales (Wall et al, 2009, 2010; Wall and O’Brien. 2009). 

 

Ecological modelling has suggested that canyon systems lying along the continental shelf slopes to the 

west of Ireland represent important habitat for beaked whale species.10 There is evidence to support 

this in surveys conducted by the IWDG from 2006 to 2008 over canyon systems on the north 

slopes of the Porcupine Bank, where a high number of sightings of breaching beaked whales were 
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recorded (Wall et al, 2009, 2010). The extent of canyon habitat within Irish waters is significant 

within a European context (Weaver et al, 2004), placing an onus on Ireland to identify key habitats 

for beaked whales and to monitor and protect them.  

 

Current visual and towed passive acoustic monitoring (PAM) survey methods are almost completely 

ineffective for beaked whales (Barlow and Gisiner, 2006). More recently, there has been a focus on 

the development of static PAM devices that can be deployed at the depths at which beaked whales 

forage and vocalize with positive results (McDonald et al, 2009). During PReCAST initial trial, 

deployments of a deep-water version of the C-POD, which is rated to depths of 2,000m+, were 

conducted to assess its suitability for long-term monitoring of deep diving odontocetes, such as 

beaked whales and pilot whales. 

8.2. Materials and Methods 

A Deep C-POD was deployed on the mooring for the M6 Weather Buoy during the first Cetaceans 

on the Frontier Survey conducted on board the R.V. Celtic Explorer in August 2009. The M6 weather 

buoy was located at 53.07482°N 5.88135°W in 3,200m water depth (Figure 8.1). The Deep C-Pod 

was attached to the buoy’s cable at 500m, with the hydrophone element facing down to the ocean 

floor (Figure 8.2).  

 

An additional deep C-POD was deployed on bottom mooring within a canyon system on the north 

slope of the Porcupine Bank during the same research cruise. This second Deep C-POD was 

recovered in December 2009. However, the C-POD was found to have an engineering defect which 

caused it to malfunction and, thus, no data was recovered from it. 
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Figure 8.1: Location of M6 weather buoy 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2: M6 mooring design with Deep C-POD attached at 500m 

 

The Deep C-POD was recovered in May 2011, when the M6 Weather Buoy was renewed, and was 

replaced with another Deep C-POD to enable ongoing data collection.  
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8.3. Results 

8.3.1. Logged Data 

The Deep C-POD logged click, temperature and angle data for a continuous 211 days. This is the 

longest continuous recording period achieved by any C-POD to date (Table 8.1).  

 

Table 8.1: Deployment period (dates), logging period (days logged by pod), total detection positive minutes 
and number of detection events (clusters of click trains separated by periods of ten minutes or more) 
logged by the Deep C-POD placed on the M6 Buoy in 2009 

Mooring 
 

Deployment period logging period 

days 

DPM 

No. 
detection  

no. Pod ID 
logged 
a events 

M6  439 
28.08.2009 - 
14.05.2011 

28.08.2009 - 
26.03.2010 211 5780 1621 

              

a - Discounting deployment and recovery days 

 

8.3.2. Environmental data 

Hourly values for water temperature and POD angle, which equates to the level of current 

experienced by the mooring, were derived from the data. Water temperature was relatively 

constant from August 30th 2009 to January 22nd 2010, fluctuating by 1.4oC (Figure 8.3), between 

9.2oC and 10.6oC, with no evident temporal pattern (Figure 8.4). Between January 23rd 2010 and 

March 25th 2010, water temperatures dropped, to a minimum of 6.8oC on February 26th, before 

rising again. Temperatures during this period fluctuated by 3.7oC (figure 8.4), between 6.8oC and 

10.5oC, again with no evident temporal pattern. No correlation was found between hour and 

temperature. 
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Figure 8.3: Hourly water temperature readings recorded at the M6 Buoy from 30.08.2009 – 25.03.2010 

 

 

 

 

 

 

 

 

Figure 8.4: Hourly water temperature readings recorded at the M6 Buoy from 30.09.2009 – 05.10.2009 

 

POD angle readings fluctuated by a maximum of 36 degrees during the deployment, indicating the 

strength of current encountered by the POD. No regular temporal spacing was evident in POD 

angle readings and no correlation was found between hour and POD angle (Figures 8.5 and 8.6). It 

should be noted that, unlike in the bottom set mooring at the study site, movement of the POD at 

M6 was affected by the movement of the mooring’s surface buoy and, therefore, POD angle was 

affected by surface current, sea state and wind. A positive correlation was found between 

temperature and POD angle (r = 0.327, n = 4992, p = 0.01). 
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Figure 5. Hourly water POD angle readings recorded at the M6 Buoy from 30.08.2009 – 25.03.2010. 

 

Figure 8.5: Hourly water POD angle readings recorded at the M6 Buoy from 30.08.2009 and 25.03.2010 

 

 

 

 

 

 

 

Figure 6. Hourly water POD angle readings recorded at the M6 Buoy from 30.09 – 05.10.2009. 

 

Figure 8.6: Hourly water POD angle readings recorded at the M6 Buoy from 30.09 – 05.10.2009 

 

Temporal Variation in Cetacean Activity 

Due to the generally clean nature of the dataset and the need to target beaked whale clicks, which 

have some characteristics similar to sonar noise (e.g. slow click rates and constant inter-click 

intervals (Frantiz et al, 2002; Baumann-Pickering et al, 2010), click train filters in CPOD.exe were set 

to ‘Q-All’ (all quality of click trains) for the analysis (Table 8.2). The data was examined visually for 

sonar detections but none was found. As the POD was located at 500m water depth, it was within 

the diving depth range of pilot whales and some oceanic dolphins (Klatsky et al, 2007). 
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Table 8.2: C-POD.exe filter settings for analysis of DPM for the deployment on the M6 buoy 

Train Filter Settings   

Train Filters Setting 

  
Click 
Filters Setting 

Quality All Q   kHz 0-255 

Modal kHz 20-255 
  Click 

cycles 0-9999 

N in Train 5 
  Raw 

SPL 0-9999 
Click/s Jan-00       

Mean SPL 1-255       

Species All       

 

Cetacean activity (DPM/day) fluctuated at the M6 Buoy throughout the period of the deployment. 

An average of 196.5 DPM/day were recorded from August 30th 2009 to December 24th 2009, before 

falling to an average of 99.1 DPM/day from December 24th 2009 to March 25th 2010 (Figure 8.7).  

 

nData with high SPL values were selected to target animals which were close to the Deep C-POD 

and, therefore, more likely to be deep diving species such as beaked whales. High SPL values in Deep 

C-POD data equate to louder received signals which typically come from on-axis clicks and animals 

in closer proximity to the hydrophone element (Møhl et al, 2000; Johnson et al, 2004). Click trains with 

an average SPL value of 60 or greater, representing the top 20% of avSPL values in the data (Table 

8.3), were used to re-assess temporal variation in activity. 

Table 8.3: C-POD.exe filter settings for analysis of High SPL DPM for the deployment on the M6 buoy 

Train Filter Settings   

Train Filters Setting 

  
Click 
Filters Setting 

Quality All Q   kHz 0-255 

Modal kHz 20-255 
  Click 

cycles 0-9999 

N in Train 5 
  Raw 

SPL 0-9999 
Click/s Jan-00       

Mean SPL 1-255       

Species All 
      

 

 

All data with SPL High data from the M6 Buoy showed little difference in temporal variation in 

activity (DPM/day). The selection of High SPL data yielded daily activity (DPM/day) values on average 

66% lower than SPL-All values. The data showed higher cetacean activity in the first four months of 
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the deployment, followed by a decline in activity punctuated by brief periods of high activity (Table 

8.4 and Figure 8.7). 

 

Table 8.4: Average DPM/day values from SPL-All verses High SPL data 

Train Filter Settings   

Period SPL 
Class 

 Average 
DPM/day 

Ratio –  
av. DPM/day (period) :  
av. DPM/day (deployment) 

30.08.2009 – 
24.12.2009 

SPL-
All 

 
196.5 

1.27 

 

High 
SPL 

 
67.4 

1.30 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7: Temporal variation in activity (DPM/day) using SPL-All (green line) versus High SPL (red line) 
data at the M6 Buoy from 30.08.2009 to 25.03.2010 (data from deployment and retrieval days were 

excluded) 

 

Clicks were recorded on all days of the deployment. The peak in cetacean activity (487 DPM/day) 

was recorded on the February 4th 2010 and the least active day (15 DPM/day) was recorded on 

January 24th 2010. 

 

To assess diurnal and tidal patterns in the data, a sub sample of SPL-All data collected from 

September 20th 2009 to September 26th 2009 was examined. Fluctuations in activity (DPM/hour) 

presumably reflected the diving patterns of individuals or groups of cetaceans and/or the movement 

of cetaceans in and out of the detection range of the Deep C-POD. A total of 21 peaks in DPM 

were recorded in the sub sample. Detection encounters at the M6 Buoy (defined as periods of click 

detections separated by intervals of five minutes or more) ranged from 1 to 402 minutes in duration. 
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70% of encounters lasted nine minutes or less and 90% lasted 29 minutes or less (Figure 8.8). 14 of 

the encounters lasted longer than two hours. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.8: Hourly DPM values at the M6 Buoy from 20.09.2009 to 26.09.2009, showing fluctuations in 
cetacean activity detected by the Deep C-POD 

 

All data set for the M6 Buoy showed a significant correlation between activity (DPM/hour) and time 

of day (r = -0.065, n = 4992, p = 0.01), with strong diel variation in cetacean activity (DPM/hour) 

evident (Figure 8.9).  



NDP Marine Research Sub-Programme 2007-2013 

    

 150 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.9: Average DPM/hr recorded for each hour of the day at the M6 Buoy from 30.08.2009 to 
25.03.2010 

 

A correlation was also found between activity (DPM/hour) and temperature (r = 0.135, n = 4992, p 

= 0.01), with cetacean activity increasing with temperature (Figure 8.10). 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.10: Average DPM/hr recorded for temperatures ranging from 7.2o to 10.6 oC at the M6 Buoy from 
30.08.2009 to 25.03.2010 

 

Species Present 

The distribution of modal frequencies of SPL High data showed click trains with modal frequencies in 

the 25-40 kHz range, with a peak at 32-37 kHz. These frequencies cover the peak frequencies 

reported for a number of dolphin species and some beaked whale species. The presence of a strong 

diel variation in the data may indicate the presence of dolphin species, including pilot whale, at this 

location as diel variation has not been commonly reported for beaked whales (Tyack et al, 2006; 

Baird et al, 2008; Hooker and Baird 2009) but has been reported in a number of dolphin species 
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(Goold 2000; Soldevilla et al, 2010; Klatsky et al, 2007), including long-finned pilot whales (Baird et al, 

2002; Baird et al, 2003).  

 

 

 

 

 

 

 

 

Figure 8.11: Histogram of modal frequency of SPL High encounters recorded during the deployment at the 
M6 Buoy 

 

8.4. Discussion 

The C-POD is a powerful tool for studying temporal variation in cetacean presence within selected 

marine habitats. Such data is very difficult to obtain in offshore marine habitats using visual 

techniques. Normal hydrophone data requires labour intensive analysis that results in a large degree 

of data sub sampling. The concurrent recording of temperature and angle data by the C-POD 

enables some degree of interpolation of cetacean activity data in relation to environmental variables. 

 

Species discrimination techniques are still being developed for C-PODs and for acoustic sampling 

techniques in general. The further ability to discriminate species in C-POD data will require a wider 

availability of comparison C-POD data sets from known species encounters and perhaps the 

concurrent collection of real-audio data to enable click waveforms and spectrographs for individual 

clicks to be examined. The next generation of C-POD under development in 2012 will run some 

train detection on board and choose sample clicks to save in detail, thus helping in this area. 

 

The C-POD data collected during PReCAST will be used in a wider analysis of deep water C-POD 

data under the DeepPAM project being conducted by the IWDG on behalf of the Department of 

Communications, Energy and Natural Resources. The DeepPAM project will use C-PODs and a 

deep water hydrophone system to assess the potential of static PAM systems for long-term 

monitoring of beaked whales in offshore habitats within the Irish EEZ. 
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9. STATIC ACOUSTIC MONITORING PROTOCOL 

9.1. Units Required to Effectively Monitor an Area 

If SAM is to be used as a means to fulfil monitoring obligations under the EU Habitats Directive and 

to contribute to reporting on FCS of a species, then a number of factors need to be considered. 

Firstly, the target species in an area needs to be identified and the appropriate type of SAM 

equipment chosen accordingly. The following is a recommended protocol for C-POD monitoring 

using existing knowledge built up over the duration of the present study: 

 

1.  C-PODs are most sensitive for detecting bottlenose dolphins and harbour porpoises within 

a 400-metre radius (Figure 9.2).  

2. The size of the total area to be monitored should be calculated and stratified into defined 

geographical grids during the planning stage. 

3.  Depending on the target species, the study site should be divided into defined geographical 

coordinates, e.g. for harbour porpoise 10 X 10km grids (Figure 9.1) based on known home 

ranges for the species - a home range of 10kms per hour for harbour porpoise was 

calculated by Teilmann (2000). This will allow for a restricted stratified random sampling 

design and can be altered according to the number of PODs available to a study.  

4. Four should be the minimum number of units deployed in small inshore study areas to 

ensure that statistically robust data can be collected. The number of PODs required should 

reflect the parameters or factors to be tested (e.g. fine scale diel or larger scales such as 

seasonal trends). Using an even number design for replication purposes can allow for 

parameters such as inshore and offshore trends to be explored in larger areas. The more 

units that can be deployed in an area, the more an informed evaluation of a site and 

successful monitoring indices will be generated. 

5. When designing a project and taking into account equipment and mooring techniques, it is 

advised that at an absolute minimum of four units should be deployed in a defined area. This 

number is based upon the home range of target species and the detection range of the C-

PODs. Additionally, it is advised to purchase double the number of units that are to be 

deployed at any one time. This has several advantages, such as eliminating replacement of 

batteries in the field, which serves to increase the longevity of units but also to reduce the 

cost of boat hire and eliminate the need for larger vessels.   

6. If budget is a severe constraint, then it is advised to reduce the number of monitoring 

locations and to invest in secure moorings. It is responsible planning to choose a mooring 

design that is secure and appropriate for the study area as this will facilitate successful data 
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collection at the target site. It will also prevent gaps occurring in a dataset due to loss, 

interference or other problems that could be encountered. Where a long-term data set is 

collected, a gap in data acquisition can have detrimental effects on interpretation. It is better 

to get a complete cycle of monitoring at fewer sites than several interrupted sequences in 

acquisition from many sites.  

 

The set-up plan presented below could be used across all types of monitoring sites for all species, as 

the more units deployed in an area, the more rapidly and more accurate a dataset can be generated 

and maintained. A minimum baseline number of four units was derived using the restricted stratified 

random sampling grid system (Figure 9.1). An even number of units is required in order to conform 

to this method. However, where only two units are used, the likelihood of loss and thus site 

replication is high. Additionally, where a site extends from the inshore to the offshore environment, 

a minimum of four units will allow for replication of this factor. Studies are currently ongoing in 

Wales on determining the minimum number of units needed to effectively monitor an area of 

defined size (Chelonia Ltd).    

 

    

    

    

    

   

 

 

Figure 9.1: Defined geographical grid (10 X 10km) in order to assign POD position randomly, taking into 
account average hourly home range for a species. The figure shows the maximising of coverage of an area 

of 1600km2 where only four units are available to a study 



NDP Marine Research Sub-Programme 2007-2013 

    

 155 

 

 

 

 

 
 

 

 

 

Figure 9.2: Detection ranges for the C-POD for bottlenose dolphins and harbour porpoises 

 

9.2. Calibration of Equipment (C-PODs) 

Chelonia Ltd, a UK based company and the sole manufacturers of C-PODs, calibrates all units to a 

standard prior to dispatch. However, these calibrations are carried out in test tanks, and, thus, 

Chelonia highly recommends that further calibrations are carried out in the field. Field calibrations 

aim to assess differences in sensitivity between newly acquired units and the annual testing of all 

equipment. This provides a means to identify problematic units and allows for a detailed inventory of 

a units history to be maintained. This is especially important where projects employ several units 

aimed at comparing detections across a number of sites. If units of differing sensitivities are used, 

then these data do not truly reflect the activity at a site. For example, a low detection rate may be 

attributed to a less sensitive pod with a lower detection threshold, which, in turn, leads to a lower 

detection range, while the opposite holds for a very sensitive unit. It is fundamental that differences 

between units are determined prior to their deployment as part of any project. Field trials are 

recommended to be carried out in high density areas so to ensure enough data is gathered over a 

short time scale (max. four weeks) in order to evaluate individual units. This reduces the amount of 

time units needed to be in the field for calibration and reduces the need to have multiple units 

deployed from the same mooring, which increases the chances of multiple losses. The field 

calibration of new units should be carried out in conjunction with a reference C-POD, where this 

unit is used solely for calibrations and, thus, deemed a reference. This allows for the incidence 

441m 
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range for HP 

797m 
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where new units are acquired over a project’s duration at different intervals, to be calibrated with 

the reference POD, eliminating the need to deploy all units together. Field trials should be 

conducted when introducing new units and also every 12 months as standard to determine any 

degradation over time in POD sensitivity. A minimum of three units should be tested during a field 

trial to aid more informed data interpretation. When outlying units are continually highlighted, these 

units should be returned to the manufacturer for re-calibration when identified. 

9.3. Deployment 

The deployment of C-PODs can be carried out in many different ways, and mooring designs vary 

between research groups to suit their respective areas. Our past experience with bottom moorings 

and surface markers suggests these methods should be avoided if possible as they are vulnerable to 

interference. This influenced our decision to employ AR systems as a means to moor equipment, 

eliminating the need for surface markers and heavy mooring designs and, more importantly, giving no 

indication where SAM units are positioned. Various AR systems are available, and a number of 

companies design release units to suit specific projects. Lighter-weight models are more suitable for 

inshore waters as these models are functional to 500m. The battery life of a release unit can be a 

limiting factor but some models offer between 6 and 36-month options. The battery life of the 

acoustic release should ideally be longer than that of the SAM gear it is deployed with (four months 

for C-PODs). A recommended alternative to AR mooring arrays is to utilise already existing 

structures such as piers and jetties so to reduce the cost of mooring arrays and to facilitate ease of 

deployment and recovery. This was achieved very successfully in the Shannon Estuary cSAC (jetties) 

and in Galway Bay (Seilean wave energy device) over the duration of the project and without 

complications. Attempts were made to use the mid-bay buoy as a means of deployment but this 

resulted in the loss of equipment on two occasions and was, therefore, abandoned. The buoy was a 

very high energy site and, therefore, even the use of marine chain did not prevent losses.   

9.4. Recovery 

The battery life of a C-POD is expected to a maximum of four months, but this may vary across 

sites due to the level of background and ambient noise. In quiet areas, where noise levels are low, 

the battery may last longer. If the battery of an AR release lasts for six months, then the recovery of 

units would have to take place every 16 to 20 weeks. Recovery of equipment could be done from a 

RIB, as the use of AR systems eliminates the need for a larger boat with a winch to haul gear.  

9.5. Data Handling 

A strict routine should be adhered to when setting and downloading PODs, and note taking of any 

difficulties is greatly advised. When setting units, the time and date must be recorded as this 
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information is required when downloading the data from the SD card after retrieval. Upon retrieval, 

all units are opened to retrieve an SD card. This Secure Digital card stores all files in a specific 

format which requires the dedicated software C-POD.exe. When the data is extracted from the SD 

card, a CP.1 file is then stored on the computer (a typical file size for a three-month deployment is 

approximately 100MB). This CP.1 file must be processed using CPOD.exe in order to find click 

trains, and this reduces the file size and produces a CP.3 file.  

9.6. Preliminary Analyses  

The CP.1 and CP.3 files can be opened simultaneously and viewed in the same window using 

CPOD.exe. It is recommended that the data are viewed from the start to the end of each file to 

make sure it has read and processed okay. Furthermore, a brief analysis of the CP.3 file should be 

carried out to determine whether the data is as it should be. For example, extracting DPM/day per 

species, should give a good indication. If unexpected data are recorded, then this may highlight a 

problematic unit and it may need to be deployed on a field calibration for further assessment.  

9.7. Data Storage 

As mentioned previously, a typical file size (CP.1 file) of 100MB is normal for a three-month 

deployment. The size of this file can vary between sites due to the amount of cetacean activity, as 

well as background or ambient noise. Quieter areas will show smaller files sizes, while deeper 

deployments away from the surface will also reduce the amount of noise the unit detects. The 

software CPOD.exe processes these CP.1 files and a smaller CP.3 file is produced which extracts all 

cetacean click trains from all the other noise stored on the CP.1. It is recommended that a 2TB or 

greater external hard-drive be used to store all CP.1 and CP.3 files, while further back-ups are made 

on CD after every recovery.  

9.8. Equipment Maintenance    

Chelonia Ltd, recommends having double the number of acoustic units needed to carry out a survey. 

This eliminates the need for data downloading and battery changes in the field and protects the 

longevity of the equipment. By downloading the equipment in the field, the internal components of 

the units are exposed to more moisture than if done in a lab. We recommend having some spare 

units which can be deployed at sites when retrieving gear. This would cut down on the amount of 

time in the field, and would also alleviate problems associated with equipment loss or failure over 

the duration of a project. 

 

The storage of C-PODs and acoustic release units in the lab should be given consideration. All units 

should be cleaned, removing any fouling and drying out external ropes before storing. When not in 
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use, units should be stored without batteries, with their lids firmly secured, and a silica bag inside to 

absorb any moisture build up from when the unit was open.  

9.9. Data Archiving 

All data archiving should take place in raw format, with a copy of the software version used to 

analyse the data. C-POD data and all raw data, i.e. CP.1 files, should be stored on an external hard 

drive, with a backup copy made for safe keeping. A copy of the software version available at the time 

for analysis should also be stored with the raw files, as well meta-data, with details of deployment 

location, latitude and longitude, deployment technique, depth, and any other information that is 

associated with the deployment. With regard to PAM data, raw wav. files should be stored on 

external hard drives, with a backup copy for safe keeping. A meta-database should be setup in order 

to identify data files under each folder. Additionally, a Microsoft Access database should also 

accompany the raw wav files, with GPS coordinates of the track covered as well as any user 

information collected over the survey. A copy of the software version used to collect or analyse the 

data, such as PAMGUARD, should also be archived, or, at the least, details of the version should be 

recorded on the meta-database. To ensure secure data archiving and to contribute to the repository 

of cetacean data in Ireland, copies of all CP.1 files should be sent to the National Biodiversity Data 

Centre (NBDC), located at Waterford Institute of Technology. A copy of the software used to 

export and process files at that time should also be archived at this repository.   

9.10. Assessment of the Performance of Three Devices for Use in 

Acoustic Monitoring Programmes 

The initial field calibration in Galway Bay proved the most comprehensive dataset from which to 

compare SAM devices. Both C-PODs and T-PODs functioned throughout the calibration period, but 

the AQUAclick only worked for 14 days. The reason for incorporating SAM into the monitoring 

programmed is for the ease of acquiring long-term datasets while reducing number of hours in the 

field. The use of AQUAclicks would require servicing every 14 days, adding additional cost to a 

project and increasing the likelihood of gaps in a dataset due to adverse weather preventing 

servicing. It was for this reason that the units are not assessed in the detail that the C-PODs were.  

 

The battery life of a C-POD is long at approximately five months, as determined over the duration 

of this study. T-PODs lasted, on average, three months, proving the C-PODs to be superior. The 

units are also robust, as incidents such as ship strikes have failed to destroy the transducers of C-

POD. Over the duration of the spring and summer months, all units were prone to fouling by algae 

and other marine growth. However, as additional buoyancy was added to the units in the form of 

salmon floats, this did not have an impact during deployment. It did, however, put extra stress on 
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mooring lines, such as the light weight moorings used in Galway Bay, and probably attributed to the 

weakening of the line which resulted in the loss of the surface mooring in adverse weather 

conditions. The return of lost units through www.phonehome.org, a web-based reporting facility 

provided by the manufacturer, was successful on two occasions when units were found washed up 

on a beach. It is also recommended to write contact detail on the side of units and on mooring 

buoys with indelible marker to ensure their return if they become loose. On one occasion, a 

mooring buoy was washed up in Galway Bay and was reported due to legible contact details.  

The biggest gap in long-term SAM due to equipment failure was recorded in the Shannon Estuary, 

where on two successive deployments, the data failed to read to the SD card and had, in fact, 

retained the data from a previous deployment. The setup instructions had been followed and the 

flashes of the LED light had indicated the successful setting of the unit. However, when retrieved and 

an attempt made to write data to the SD card, a problem was encountered. This was the main and 

only problem encountered with C-POD failure over the duration. However, T-PODs did 

malfunction on a number of occasions and due to “comms port” errors, data could not be 

successfully downloaded despite numerous attempts with altered setting of both the POD and the 

computer. All T-POD communication was carried out using USB boxes instead of the printer port 

cable which was more problematic.  

 

C-POD and T-POD deployments were carried out simultaneously in the Moneypoint and Spiddal to 

assess differences between devices. Graphs are presented below to show that C-PODs are, by far, 

superior units for monitoring both species (Figure 9.3 and 9.4). Results during the present study 

showed that, on average, C-PODs detected seven times more DPM than T-PODs for harbour 

porpoises and four times more for dolphins. The results would suggest that previous datasets 

collected at these sites using T-PODs would need to be converted if they were to be compared with 

C-POD data. Therefore, we would recommend that Dolphin DPMs be multiplied by ratios when 

comparing T-POD with C-POD data. Where T-POD data has been collected at other sites, we 

would recommend that a trial simultaneous deployment of both devices be carried out to assess the 

differences between the two for specific sites and species.  

http://www.phonehome.org/
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Figure 9.3: C-POD and T-POD comparison from Spiddal, Galway Bay. The red line represents T-POD data 
and the blue line represents C-POD data  
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Figure 9.4: C-POD and T-POD comparison from Moneypoint. The red line represents T-POD data and the 

blue line represents C-POD data 
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9.11. Analysis Tools 

9.11.1. T-POD.exe, C-POD.exe and Aquaview.exe 

Although not extensively used during the present study, Aquaview.exe was required to set and 

download AQUAclicks after retrieval. This software had limited application in comparison with C-

POD.exe. The AQUAview does not run a train detection algorithm and therefore an observer was 

required to run through the raw data to highlight trains. A large volume of work is required with the 

AQUAclick data in order to transform it into a comparable format with POD data. As T-PODs are 

now obsolete, C-POD.exe is the main software used for data analyses. If analyses are to take place 

on T-POD data, then a version of T-POD.exe is required, as C-POD.exe uses completely different 

file formats. Therefore, we recommend that T-POD.exe is archived in order to be able to extract or 

analyse T-POD data in later years. Additionally, C-POD.exe is under constant revision, and, 

therefore, we recommend that an annual list of changes to the software is stored with the metadata 

in order to facilitate data reviews in the future. All problems should be reported to the 

manufacturer as they will incorporate all comments and feedback where possible. It also serves to 

inform the manufacturers of potential problems they might not yet have encountered. 

 

9.11.2. Statistical software R (R Development Core Team, 2011)  

R provides a wide variety of linear and nonlinear modelling, classical statistical tests, time-series 

analysis, classification, clustering and graphical techniques. R is one of the main statistical packages in 

use on an international scale for cetacean research. It has the ability to facilitate complex analysis 

using multiple factors, which cannot be achieved using some of the other statistical packages 

available. R is constantly updated and, therefore, its capabilities are constantly expanding. It is 

recommended that when using this software, package versions used, via the CRAN website, are 

archived along with extensive R scripts which can be repeated at a later date.  

 

9.11.3. Cyclops 

Cyclops tracker is a marine mammal positioning system that can be easily run in real time in the 

field. A complete re-write of Cyclops tracker was conducted and VADAR (Visual Detection and 

Ranging at sea) will be released in late 2011 (http://cyclops-tracker.com/). VADAR has a completely 

different data file structure to those of previous versions of Cyclops tracker. This software also 

allows for input from research vessels’ GPS position coordinates. Raw data and calculated positions 

can be exported in a text format for input into a Geographic Information System (GIS). If land based 

theodolite tracking is to be carried out, it is advised that Cyclops tracker or VADAR is used for a 

proportion of the tracking at the start of the day. This serves to check for any observation or 

observer errors and reduces personnel time when analysing data. 

http://cyclops-tracker.com/
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9.12. Monitoring Index for Favorable Conservation Status 

The results of the present study supported the selection of %DPMs as a monitoring index over 

various temporal scales, taking into account total deployment time. This index can therefore be used 

to compare data between sites even when the number of samples (hours monitored) from different 

areas are unbalanced. It also serves as a comparison with other short-term studies where time scales 

do not extend beyond a few months, but an index can be generated for, for example, a month and 

compared accordingly. This index will also allow for comparison with past data where T-PODs were 

used. It will simply require the multiplication by a percentage to account for inter-device differences 

after a simultaneous deployment has been carried out at this site. The monitoring index will serve as 

an effective monitoring indicator of changes in the presence of odontocetes in an area over time and 

will serve to inform management if a population is changing. A concise background dataset will have 

to be established for an area, probably in the region of two years, before this monitoring index can 

be used to its full potential or used to evaluate a site on an annual basis.  

9.13. Cost Analyses of SAM  

The following is a cost analysis for the provision of long-term SAM. These costings take into account 

all aspects of deployment and recovery, and, depending on the number of units required for an area, 

the price can be multiplied accordingly. As a final evaluation of SAM compared to visual monitoring 

for an area, a cost analysis compares the financial commitment required to carry out each method as 

a means to monitor an area for a duration of 12 months.  

 

9.13.1. Acquisition of Equipment 

The units included in this cost estimation include C-PODs and AQUAclicks. T-PODs were excluded 

as they are no longer in production. C-PODS are the recommended SAM equipment due to their 

cost, battery life, ease of setting, downloading and analyses of data. The cost of C-POD and 

AQUAclick units are presented. All prices exclude VAT and are converted from a sterling exchange 

rate (Nov, 2011). 
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C-PODs- Chelonia Ltd (www.chelonia.co.uk) 

 

All costs ex VAT 

 

C-POD V1  €3,428.00 
Delivery  €30 

 

Approx. €3,460.00 per unit (as of Nov, 2011) 

 

AQUAclick- Aquatec Ltd (www.aquatecgroup.com) 
 

All costs ex VAT 
 

AQUAclick (incl. starter kit) £2,170 
Ex starter kit   £1,830 

Delivery   £50 

 

Approx. €2,600.00 per unit incl. starter kit, €2,200 

thereafter 

 

9.13.2. Moorings 

The costs of moorings are often greater than the cost of the SAM units themselves. However, 

choice of moorings is one of the most important decisions to be made over a project duration and 

will ensure whether robust datasets are collected or not. If equipment cannot be securely moored in 

the marine environment then there is no assurance that it will be there upon return. As SAM 

equipment can be deployed for long durations (four to five months), large gaps will exist in a dataset 

if units go missing over the duration. A number of mooring designs were tried and tested over the 

project duration, and it is recommended that AR systems be prioritised if possible. Although this 

mooring mechanism can add a substantial cost to a project at the outset, it will provide savings over 

its duration. AR arrays will allow for ease of retrieval and deployment of equipment without the 

need for larger vessels with lifting apparatus. AR arrays can be retrieved and deployed from RIBs, 

and their use avoids the need for maintenance of moorings. It is recommended that the location of 

AR arrays be recorded and, through the use of a diver, that the sacrificial mooring blocks be 

retrieved at least every 12 months to avoid littering the deployment sites. 

 

http://www.chelonia.co.uk/
http://www.aquatecgroup.com/
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Robust/durable moorings (suppliers JFC Marine, SwanNet Grundry) 

 

All costs ex VAT 
 

JFC Marine 

1.2m Navigational Buoy     €1,325.00 

2 nautical mile light         €345.00 

 

SwanNet Grundry 

16mm open link chain (20m)      €300 

Dyneema rope      (30m)     €200 

6.6 ton shackles      (4)       €50 

Flex Swivel                   €30 

Bruce holding anchor (100kg)     €700 

 

Approx. €2,950 for a robust inshore mooring. Additional costs include boat hire 

(approx. €1,000 per day due to weight of mooring). Additional costs after initial 

deployment include servicing of mooring (at least every 12 months) or if a 

problem is encountered. A pulley system is required for this mooring type in 

order to avoid the requirement for a larger boat with lifting apparatus for 

retrieving units. 

 

Marine Electronics (www.marine-electronics.co.uk) 

 

All costs ex VAT 
Model 3480W Acoustic Release Unit   £3,950 

Transponder command unit         £2,950 

Command unit battery charger       £250 

 

Approximately €8,370 for a single unit and command unit. Batteries need to be 

replaced every three months and require six 9V lithium batteries, costing approx. 

€20. 

 

 

 

http://www.marine-electronics.co.uk/
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Sonardyne (www.sonardyne.com) 

 

All costs ex VAT 
Light Weight Transponder (LRT)   £1,748 

Rope canister system            £882 

Command unit-System kit        £4,637 

Re-battering every 12-18 months   £39.00 

 

Approximately €8,500 for a single release unit and command system. Also 

included is a roped canister. If, in the event, the release fails to trigger, the roped 

canister will fire and return to the surface to allow for the sub-bottom array to be 

retrieved. Sonardyne’s units have an internal battery which needs to be changed 

by the manufacturer every 12 to 18 months. This cost is in the region of €46.00 

plus P&P per unit but the turnaround time required for this service can be in the 

region of six to eight weeks, which could be critical to a project looking at seasonal 

effects. 

 

Regardless of AR array type, a sacrificial bottom weight is required in order to moor the arrays in 

place. A company would be contracted to develop concrete moulds and construct concrete mooring 

blocks that can be used as sacrificial anchors. This method of mooring is a cheap alternative to metal, 

which is very expensive at present. These mooring blocks can be constructed in bulk and stored 

until required. Mooring blocks should be retrieved using a commercial diver at least every 12 to 18 

months, where the depth allows it, to avoid littering the marine environment but also to recycle 

materials and reduce the overall cost of the project.  

 

Sacrificial mooring blocks (20 X 20kg blocks). For each additional 20 blocks, cost is increased by 

concrete, shackles and daily rate (approx. €400). This is a small cost when compared with that 

for a heavy duty mooring, where a bruce holding anchor (100kg) costs €700. 

All costs ex VAT 
 

Construction of moulds (timber): €100 

Labour to construct mooring blocks: €400 

Concrete: €100 

Shackle (6 tonne green pins marine) X20: €200 

 

9.13.3. Field calibrations 

All equipment is calibrated to a standard prior to dispatch by Chelonia Ltd. Additional field 

calibrations are required to evaluate the performance of an individual unit in the marine 

http://www.sonardyne.com/
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environment and, additionally, to compare the performance of individual units against each 

other. This evaluation allows for the identification of very sensitive or less sensitive units and 

allows for the comparison of data between sites. The cost of calibration varies and would 

comprise personnel time, batteries and boat hire for deployment and retrieval (Figure 9.5).    

 

 
Figure 9.5 Costs associated with field calibration, recommended prior to the incorporation of any 

equipment into long-term monitoring programmes, and to be carried out at least every 18 months. 

 

9.13.4.  Long-term SAM 

There are a number of areas to address and to cost for when planning a long-term SAM 

programme (Figure 9.6). The cost of monitoring will have slight increases associated with it 

when an area requires multiple units. Therefore, during the planning stage, the number of units 

required for an area should be established using the recommended calculations above.  
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Figure 9.6: Costs associated with long-term SAM programmes 

 

9.13.5. Cost Analyses 

For a statistically robust dataset to be gathered from visual monitoring, a minimum of two dedicated 

surveys would need to be carried out per month. This would ensure that the temporal factors such 

as months had a minimum number of replicates. However, the possibility of achieving a 12-month 

dataset with bi-monthly surveys on the west coast of Ireland is highly unlikely. The cost of gathering 

such a dataset includes the following: 

The following are the estimated cost associated with boat-based surveys 

 

• Boat hire will cost a minimum of €1200 per day incl. VAT and fuel cost 

• Observer daily rate (X4 people @€300 per day per person) 

• Travel (approx. 300 per survey depending on mileage) 

• Overnight stays (4 people at €100 per night) 

• Equipment hire and survey prep. (1 person at €300 per day) 

• Data entry and input after each survey, report prep. (1 person at €300 per 

day, 2 days) 

• Final report prep (5 days, 2 personnel) 

€ 

 

1,200 

1,200 

300 

400 

300 

 

600 

3,000 

Total cost for a single survey 4,000 

Total cost for 12 months at 2 surveys per month €99,000 

 

If SAM was to be carried out at a single site for a 12-month duration, the following would be the 

estimated cost: 
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The following are the estimated costs associated with SAM 

C-POD Units X4, Chelonia Ltd 

AR systems X 4 and control unit (Sonardyne) 

Mooring blocks (prep of 20 moulds) 

Calibration (incl. boat hire, personnel and analyses) 

Equipment servicing (incl. boat hire, personnel, equipment prep data anal and 

travel) 

Final report prep (5 days, 2 personnel) 

 

13,800 

17,500 

800 

3,000 

11,800 

3,000 

Total cost for 12 Months SAM €49,900 

If buying double, the amount required for ease of servicing, protection of 
equipment and provision for losses: 

 
AR releases (X 4) 

C-PODs (X4) 

 

Therefore, an additional €21,112 would be required 

 

€ 

7,400 

13,712 

 

 €71,012 

 

The initial start-up costs for SAM are significant but are reduced each consecutive year after the 

equipment has been acquired. Additionally, the first costing only takes into account the fees 

associated with the purchase of four units. It would be recommended to purchase double the 

amount of equipment required for monitoring a site at the onset of a project. This will ensure that 

equipment does not have to be serviced in the field and, additionally, if losses are encountered, gaps 

in monitoring would not be experienced due to delays associated with equipment purchase and 

calibration. Equipment value will depreciate over time, but it assumed that this investment will cover 

at least three years monitoring, with additional annual costs for personnel and those associated with 

deployment.  

 

SAM can be a cost effective means for monitoring and maintaining FCS, thereby conforming with the 

requirements under the Habitats Directive. A SWOT analysis of the weaknesses and strengths of 

each technique was carried out and presented in Table 9.1. 
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Table 9.1: SWOT analyses of SAM versus visual boat-based surveying 

Type Strength/Opportunities Weakness/Threats 

SAM 

• Continuous data acquisition at four 
sites 

• Independent of weather 
• Independent of darkness 
• Not influenced by observer variability 
• Cheap in comparison to visual vessel 

based surveying 
• Data to assess temporal trends can 

be obtained rapidly 
• Behaviour and thus habitat usage can 

be explored 
• Cost per detection is low 

 

• No information on density or 
absolute abundance 

• Can’t be interfered with, resulting in 
loss of units 

• Exposed to adverse weather 
conditions 

• Losses can result in large gaps in 
dataset 

• Limited detection range 
• Inability to differentiate between 

dolphin species 
 

Visual boat 
based 
surveys 

• Abundance and density estimates can 
be generated 

• Can identify to species level 
• Can estimate seasonal patterns in 

abundance 
• Can measure adult to calf ratios 

 

• Cost per detection is high 
• No temporal datasets will exist for 

night time hours 
• Limited to days of excellent sea 

conditions 
• Can’t assess habitat use during night 

time hours 
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APPENDIX  

 

Figure 1: R-script for calibration analysis 
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Table 1: Results of T-POD deployments in Galway Bay (Spiddal Wave Platform) between January 2009 and July 2010. Total days monitored =189, Total Detection 
Positive Minutes (Total DPM) =2207, Percentage Detection Positive Minutes (%DPM) = 0.829 for Narrow Band High Frequency (NBHF) detections. Total DPM=10, 
%DPM=0.004 for dolphin detections 

Galway Bay - Spiddal           

        NBHF NBHF NBHF NBHF NBHF Dolphin Dolphin Dolphin Dolphin Dolphin 

Month 
Total 
Days 

Total 
Hours 

Total 
Min 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Jan-09 5 101 6060 29 86 100.000 28.713 1.419 0 0 0.000 0.000 0.000 

May-09 13 302 18120 53 135 92.308 17.550 0.745 0 0 0.000 0.000 0.000 

Jun-09 19 444 26640 84 174 100.000 18.919 0.653 0 0 0.000 0.000 0.000 

Aug-09 25 587 35220 125 253 96.000 21.295 0.718 1 1 4.000 0.170 0.003 

Sep-09 27 637 38220 127 396 81.481 19.937 1.036 1 1 3.704 0.157 0.003 

Jan-10 15 355 21300 51 192 66.667 14.366 0.901 0 0 0.000 0.000 0.000 

Apr-10 15 349 20940 94 196 93.333 26.934 0.936 6 7 20.000 1.719 0.033 

May-10 31 744 44640 141 282 96.774 18.952 0.632 1 1 3.226 0.134 0.002 

Jun-10 30 720 43200 232 456 96.667 32.222 1.056 0 0 0.000 0.000 0.000 

Jul-10 9 200 12000 25 37 100.000 12.500 0.308 0 0 0.000 0.000 0.000 
Total 
Monitoring 
Period 

189 4439 266340 961 2207 92.063 21.649 0.829 9 10 3.175 0.203 0.004 

 

 
 

 

 



NDP Marine Research Sub-Programme 2007-2013 

    

 

Table 2: Results of C-POD deployments in Galway Bay (Spiddal Wave Platform) between January 2009 and September 2010. Total days monitored =569, Total 
Detection Positive Minutes (Total DPM) =27902, Percentage Detection Positive Minutes (%DPM) = 3.320 for Narrow Band High Frequency (NBHF) detections. Total 
DPM=125, %DPM = 0.015 for dolphin detections  

Galway Bay - Spiddal           

        NBHF NBHF NBHF NBHF NBHF Dolphin Dolphin Dolphin Dolphin Dolphin 

Month 
Total 
Days 

Total 
Hours 

Total 
Min 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Jan-09 19 456 27360 156 730 100 34.211 2.668 1 3 5.263 0.219 0.011 

Feb-09 28 672 40320 98 465 89.286 14.583 1.153 1 4 3.571 0.149 0.01 

Mar-09 31 744 44640 153 630 100 20.565 1.411 2 12 6.452 0.269 0.027 

Apr-09 30 720 43200 186 614 100 25.833 1.421 1 4 3.333 0.139 0.009 

May-09 20 476 28560 185 1504 100 38.866 5.266 3 4 15 0.63 0.014 

Jun-09 30 720 43200 267 1834 100 37.083 4.2454 0 0 0 0 0 

Jul-09 9 197 11820 54 249 77.778 27.411 2.107 4 4 33.333 2.03 0.034 

Aug-09 25 600 36000 277 1702 100 46.167 4.728 7 48 16 1.167 0.133 

Sep-09 30 720 43200 275 1959 100 38.194 4.535 2 5 3.333 0.278 0.012 

Oct-09 31 744 44640 533 5606 100 71.64 12.558 3 19 6.452 0.403 0.043 

Nov-09 30 720 43200 420 4442 100 58.333 10.282 0 0 0 0 0 

Dec-09 30 720 43200 204 1240 80 18.182 1.842 0 0 0 0 0 

Jan-10 31 744 44640 256 2012 90.323 34.409 4.507 1 1 3.226 0.134 0.002 

Feb-10 28 672 40320 72 293 71.429 10.714 0.727 0 0 0 0 0 

Mar-10 31 744 44640 267 1155 100 35.887 2.587 0 0 0 0 0 

Apr-10 34 804 48240 232 869 88.235 28.856 1.801 0 0 0 0 0 
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May-10 31 744 44640 221 714 96.774 29.704 1.599 0 0 0 0 0 

Jun-10 30 720 43200 295 859 100 40.972 1.988 0 0 0 0 0 

Jul-10 31 744 44640 189 560 100 25.403 1.254 1 2 3.226 0.134 0.004 

Aug-10 31 744 44640 140 332 96.774 18.817 0.744 2 15 12.903 0.269 0.034 

Sep-10 12 259 15540 35 133 77.778 17.327 1.097 3 4 0 1.485 0.033 

Total 

Monitoring 
572 13664 819840 4515 27902 94.728 32.229 3.4 31 125 4.218 0.221 0.015 
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Table 3: Results of T-POD deployments at Moneypoint (Shannon Estuary cSAC) between January 2009 and May 2010. Total days monitored =245, Total Detection 
Positive Minutes (Total DPM) = 375, Percentage Detection Positive Minutes (%DPM) = 0.110 for Narrow Band High Frequency (NBHF) detections. Total DPM=446, 
%DPM = 0.131 for dolphin detections  

Moneypoint - Shannon Estuary cSAC            

        NBHF NBHF NBHF NBHF NBHF Dolphin Dolphin Dolphin Dolphin Dolphin 

Month 
Total 
Days 

Total 
Hours 

Total 
Min 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Jan-09 23 536 32160  0  0 0.000 0.000 0.000 1 1 4.348 0.187 0.003 

Feb-09 14 314 18840 2 6 7.143 0.637 0.032 1 1 7.143 0.318 0.005 

Mar-09 31 744 44640 55 94 74.194 7.392 0.211 41 58 64.516 5.511 0.130 

Apr-09 14 329 19740 9 12 50.000 2.736 0.061 8 10 28.571 2.432 0.051 

May-09 14 322 19320 8 9 35.714 2.484 0.047 7 7 42.857 2.174 0.036 

Jun-09 31 717 43020 10 10 29.032 1.395 0.023 30 38 51.613 4.184 0.088 

Jul-09 20 440 26400 19 21 75.000 4.318 0.08 44 65 80.000 10.000 0.246 

Sep-09 2 35 2100 0 0 0.000 0.000 0.000 0 0 0.000 0.000 0.000 

Oct-09 31 723 43380 4 4 12.903 0.553 0.009 9 9 25.806 1.245 0.021 

Nov-09 7 147 8820 2 3 28.571 1.361 0.034 5 7 57.143 3.401 0.079 

Dec-09 28 658 39480 32 50 64.286 4.863 0.127 90 166 85.714 13.678 0.420 

Jan-10 12 291 17460 20 31 66.667 6.873 0.178 44 83 100.000 15.120 0.475 

Apr-10 15 349 20940 54 127 93.333 15.473 0.606 1 1 6.667 0.287 0.005 

May-10 3 67 4020 6 8 66.667 8.955 0.199 0 0 0.000 0.000 0.000 
Total 
Monitoring 
Period 245 5672 340320 221 375 44.082 3.896 0.110 281 446 46.122 4.954 0.131 

 



NDP Marine Research Sub-Programme 2007-2013 

    

 

Table 4: Results of C-POD deployments at Moneypoint, Co. Clare (Shannon Estuary cSAC), between January 2009 and February 2011. Total days monitored = 641, 
Total Detection Positive Minutes (Total DPM) = 235, Percentage Detection Positive Minutes (%DPM)= 0.026 for Narrow Band High Frequency (NBHF) detections. 
Total DPM=4010, %DPM = 0.437 for dolphin detections 

Moneypoint - Shannon Estuary cSAC           

        NBHF NBHF NBHF NBHF NBHF Dolphin Dolphin Dolphin Dolphin Dolphin 

Month 
Total 
Days 

Total 
Hours 

Total 
Min 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Jan-09 22 528 31680 35 45 72.727 6.629 0.142 32 91 68.182 6.061 0.287 

Feb-09 27 646 38760 17 30 48.148 2.632 0.077 52 132 70.370 8.050 0.341 

Jun-09 15 351 21060 4 6 20.000 1.140 0.028 22 102 73.333 6.268 0.484 

Jul-09 31 723 43380 8 12 25.806 1.107 0.028 94 267 96.774 13.001 0.615 

Aug-09 31 744 44640 6 6 100.000 0.806 0.013 53 144 74.194 7.124 0.323 

Sep-09 29 689 41340 5 5 17.241 0.726 0.012 17 51 34.483 2.467 0.123 

Oct-09 18 421 25260 2 2 11.111 0.475 0.008 37 106 105.556 8.789 0.420 

Nov-09 30 720 43200 2 2 6.667 0.278 0.005 68 553 86.667 9.444 1.280 

Dec-09 31 745 44700 9 9 25.806 1.208 0.020 108 405 100.000 14.497 0.906 

Jan-10 31 744 44640 9 20 29.032 1.210 0.045 87 261 77.419 11.694 0.585 

Feb-10 28 672 40320 9 11 28.571 1.339 0.027 33 70 71.429 4.911 0.174 

Mar-10 31 744 44640 7 12 19.355 0.941 0.027 55 190 77.419 7.392 0.426 

Apr-10 32 743 44580 14 14 31.250 1.884 0.031 73 179 84.375 9.825 0.402 

May-10 31 744 44640 5 5 12.903 0.672 0.011 55 101 87.097 7.392 0.226 

Jun-10 30 720 43200 3 4 10.000 0.417 0.009 66 161 83.333 9.167 0.373 

Jul-10 31 744 44640 11 13 35.484 1.478 0.029 8 510 96.774 17.204 1.142 
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Aug-10 31 744 44640 6 8 19.355 0.806 0.018 79 240 90.323 10.618 0.538 

Sep-10 31 726 43560 4 10 12.903 0.551 0.023 19 42 45.161 2.617 0.096 

Oct-10 31 744 44640 5 9 12.903 0.672 0.020 14 36 32.258 1.882 0.081 

Nov-10 30 720 43200 4 4 13.333 0.556 0.009 62 173 83.333 8.611 0.400 

Dec-10 31 744 44640 5 5 16.129 0.672 0.011 53 139 58.065 7.124 0.311 

Jan-11 31 744 44640 3 3 9.677 0.403 0.007 26 57 32.258 3.495 0.128 

Feb-11 8 191 11460 0 0 0.000 0.000 0.000 0 0 0.000 0.000 0.000 
Total 
Monitoring 
Period 641 15291 917460 173 235 25.741 1.131 0.026 1233 4010 72.699 8.064 0.437 
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Table 5: Results of C-POD deployments at Foynes, Co. Limerick (Shannon Estuary cSAC), between February 2009 and October 2010. Total days monitored =591, 
Total Detection Positive Minutes (Total DPM) = 69, Percentage Detection Positive Minutes (%DPM) = 0.008 for Narrow Band High Frequency (NBHF) detections. 
Total DPM=1158, %DPM= 0.137 for dolphin detections 

Foynes - Shannon Estuary cSAC           

        NBHF NBHF NBHF NBHF NBHF Dolphin Dolphin Dolphin Dolphin Dolphin 

Month 
Total 
Days 

Total 
Hours 

Total 
Min 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Feb-09 10 229 13740 3 4 10.000 1.310 0.029 6 16 50.000 2.620 0.116 

Mar-09 31 744 44640 8 10 22.600 1.075 0.022 26 64 48.387 3.495 0.143 

Apr-09 30 720 43200 5 5 16.667 0.694 0.012 28 65 73.333 3.889 0.150 

May-09 18 423 25380 3 3 16.667 0.709 0.012 19 43 61.111 4.492 0.169 

Jun-09 15 351 21060 6 6 26.667 1.709 0.028 5 10 33.333 1.425 0.047 

Jul-09 31 744 44640 6 11 16.129 0.806 0.025 14 22 38.710 1.882 0.049 

Aug-09 31 744 44640 7 7 16.129 0.941 0.016 18 38 51.613 2.419 0.085 

Sep-09 31 721 43260 1 1 3.226 0.139 0.002 3 5 9.677 0.416 0.012 

Oct-09 31 744 44640 2 3 6.452 0.269 0.007 13 26 32.258 1.747 0.058 

Nov-09 30 720 43200 6 6 16.667 0.833 0.014 11 36 30.000 1.528 0.083 

Dec-09 31 744 44640 0 0 0.000 0.000 0.000 12 39 22.581 1.613 0.087 

Jan-10 33 768 46080 0 0 0.000 0.000 0.000 2 2 6.061 0.260 0.004 

Feb-10 28 672 40320 0 0 0.000 0.000 0.000 33 120 57.143 4.911 0.298 

Mar-10 31 744 44640 0 0 0.000 0.000 0.000 22 63 38.710 2.957 0.141 

Apr-10 32 744 44640 0 0 0.000 0.000 0.000 31 176 59.375 4.167 0.394 

May-10 31 744 44640 0 0 0.000 0.000 0.000 28 127 48.387 3.763 0.284 
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Jun-10 30 720 43200 2 5 6.667 0.278 0.012 33 110 76.667 4.583 0.255 

Jul-10 31 744 44640 0 0 0.000 0.000 0.000 19 56 41.935 2.554 0.125 

Aug-10 31 744 44640 0 0 0.000 0.000 0.000 21 85 45.161 2.823 0.190 

Sep-10 31 727 43620 6 7 16.129 0.825 0.016 12 49 32.258 1.651 0.112 

Oct-10 24 571 34260 1 1 4.167 0.175 0.003 6 6 20.833 1.051 0.018 
Total 
Monitoring 
Period 591 14062 843720 56 69 7.797 0.398 0.008 362 1158 41.356 2.574 0.137 
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Table 6: Results of C-POD deployments at Wild Bank, Co. Kerry (Blasket Islands cSAC), between July 2009 and June 2010. Total days monitored =289, Total 
Detection Positive Minutes (Total DPM) =2097, Percentage Detection Positive Minutes (%DPM) =0.508 for Narrow Band High Frequency (NBHF) detections. Total 
DPM=252, %DPM=0.061 for dolphin detections 

Wild Bank - Blasket Islands cSAC           

        NBHF NBHF NBHF NBHF NBHF Dolphin Dolphin Dolphin Dolphin Dolphin 

Month 
Total 
Days 

Total 
Hours 

Total 
Min 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Jul-09 3 60 3600 3 5 33.333 5.000 0.139 1 1 33.333 1.667 0.028 

Aug-09 31 744 44640 54 87 61.290 7.258 0.195 4 10 12.903 0.538 0.022 

Sep-09 31 726 43560 136 224 93.548 18.733 0.514 11 34 25.806 1.515 0.078 

Oct-09 31 744 44640 147 312 96.774 19.758 0.699 6 7 19.355 0.000 0.016 

Nov-09 30 720 43200 90 184 86.667 12.500 0.426 1 1 3.333 0.833 0.002 

Dec-09 5 113 6780 8 13 60.000 7.080 0.192 0 0 0.000 0.000 0.000 

Jan-10 25 577 34620 58 232 76.000 10.052 0.670 0 0 0.000 0.000 0.000 

Feb-10 28 672 40320 166 756 100.000 24.702 1.875 5 16 14.286 0.744 0.040 

Mar-10 31 744 44640 49 85 80.645 6.586 0.190 13 29 22.581 1.747 0.065 

Apr-10 30 720 43200 36 54 63.333 5.000 0.125 29 137 36.667 4.028 0.317 

May-10 31 744 44640 70 145 70.968 9.409 0.325 5 17 12.903 0.672 0.038 

Jun-10 13 310 18600 0 0 0.000 0.000 0.000 0 0 0.000 0.000 0.000 
Total 
Monitoring 
Period 289 6874 412440 817 2097 76.471 11.885 0.508 75 252 15.917 1.091 0.061 
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Table 7: Results of C-POD deployments at Inishtooskert, Co. Kerry (Blasket Islands cSAC), between July2009 and June 2010. Total days monitored =264, Total 
Detection Positive Minutes (Total DPM) =3930, % Detection Positive Minutes (%DPM) =1.040 for Narrow Band High Frequency (NBHF) detections. Total DPM=181, 
%DPM=0.048 for dolphin detections 

Inishtooskert - Blasket Island cSAC           

        NBHF NBHF NBHF NBHF NBHF Dolphin Dolphin Dolphin Dolphin Dolphin 

Month 
Total 
Days 

Total 
Hours 

Total 
Min 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Jul-09 3 72 4320 7 7 66.667 9.722 0.162 0 0 0.000 0.000 0.000 

Aug-09 31 744 44640 69 130 77.419 9.274 0.291 13 38 25.806 1.747 0.085 

Sep-09 31 725 43500 62 123 80.000 8.552 0.283 21 63 40.000 2.897 0.145 

Oct-09 31 744 44640 99 205 83.871 13.306 0.459 1 1 3.226 0.134 0.002 

Nov-09 4 82 4920 14 37 75.000 17.073 0.752 0 0 0.000 0.000 0.000 

Jan-10 24 563 33780 135 921 100.000 23.979 2.726 3 3 12.500 0.533 0.009 

Feb-10 28 672 40320 139 922 100.000 20.685 2.287 10 13 25.000 1.488 0.032 

Mar-10 31 744 44640 143 869 93.548 19.220 1.947 8 8 25.806 1.075 0.018 

Apr-10 30 720 43200 74 150 86.667 10.278 0.347 8 10 23.333 1.111 0.023 

May-10 31 744 44640 129 286 96.774 17.339 0.641 6 10 19.355 0.806 0.022 

Jun-10 21 486 29160 87 280 95.238 17.901 0.960 22 35 57.143 4.527 0.120 
Total 
Monitoring 
Period 264 6296 377760 958 3930 89.394 15.216 1.040 92 181 24.242 1.461 0.048 
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Table 8: Results of C-POD deployments at GOB, Co. Kerry (Blasket Islands cSAC), between February 2009 and March 2009. Total days monitored =52, 
Total Detection Positive Minutes (Total DPM) =3015, Percentage Detection Positive Minutes (%DPM) =4.143 for Narrow Band High Frequency detections 
(NBHF). Total DPM=2, %DPM=0.003 for dolphin detections 

The Gob - Blasket Island 
cSAC 

          

        NBHF NBHF NBHF NBHF NBHF Dolphin Dolphin Dolphin Dolphin Dolphin 

Month 
Total 
Days 

Total 
Hours 

Total 
Min 

Total 
DPH 

Total 
DPM 

% 
DPD 

% 
DPH 

% 
DPM 

Total 
DPH 

Total 
DPM % DPD % DPH % DPM 

Feb-09 27 633 37980 319 2622 100 50.395 6.904 0 0 0.000 0.000 0.000 

Mar-09 25 580 34800 94 393 88 16.207 1.129 2 2 8 0.345 0.006 

Total 

Monitoring 

Period 52 1213 72780 413 3015 94.231 34.048 4.143 2 2 3.846 0.165 0.003 
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Figure 2: R-script for generalised liner mixed-effects model of long-term SAM data for presence-absence 
analysis 
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Figure 3: R-script for generalised liner mixed-effects model of long-term SAM data for behaviour analysis 
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