
 

 

 

THE DIATOM PSEUDO-NITZSCHIA (PERAGALLO) IN IRISH 

WATERS. 
 

Volume 1 (of 2) 

 

A thesis submitted to the National University of Ireland for the degree of 

Doctor of Philosophy 
 

by 

 

Caroline K. Cusack B.MrSc. 
 

 

Marine Microbiology Laboratory, 

The Martin Ryan Institute, 

National University of Ireland, 

Galway 

 

September 2002 



 

 

 

 

 

 

Head of Department 

 

Professor Emer Colleran, 

Department of Microbiology, 

National University of Ireland, Galway, 

Ireland. 

 

 

Research Supervisors 

 

Doctor John W. Patching & Doctor Robin Raine, 

Marine Microbiology Section, 

The Martin Ryan Science Institute, 

National University of Ireland, Galway, 

Ireland. 
 



TABLE OF CONTENTS 

i 

 

 

 

 

  CONTENTS                                                                                                     PAGE 
    

  Table of contents���������������������. i 

  Acknowledgemets�������������������.�.. xi 

  Objectives������������������������ xiii 

CHAPTER 1  General Introduction�������������������... 1 

CHAPTER 2  Species of the diatom Pseudo-nitzschia Peragallo in Irish 

waters�������������������������.. 

 

55 

CHAPTER 3 Hydrographic conditions relating to the distribution of the diatom 

Pseudo-nitzschia in Irish waters.��������������� 

 

88 

CHAPTER 4 Confirmation of Domoic Acid production by Pseudo-nitzschia 

australis (Bacillariophyceae) isolated from Irish waters������ 

 

152 

CHAPTER 5 Identification of Pseudo-nitzschia cultured isolates using Molecular 

Techniques����������������������..� 

 

176 

 Conclusions.����������������������� 209 

 

 



TABLE OF CONTENTS 

ii 

 

  TABLES                                                                                               PAGE 
CHAPTER 1 Table 1 Nomenclature of the "Pseudo-nitzschia seriata" group���.� 5 

 Table 2 Nomenclature of the "Pseudo-nitzschia delicatissima" group...� 6 

 Table 3 Distinct features visible in vegetative cells of Pseudo-nitzschia 

in water mounts.������������������� 

 

11 

 Table 4 Siliceous features that can be observed in water mounts of acid 

cleaned Pseudo-nitzschia valves viewed under a light 

microscope ��������������������� 

 

12 

 Table 5 Additional siliceous structures that can be observed in acid 

cleaned Pseudo-nitzschia valves mounted in a medium of high 

refractive index and viewed under a light microscope����.. 

 

 

13 

 Table 6 Morphological structures required for species identification that 

may not be resolved or are difficult to discern during light 

microscopy investigations��������������.� 

 

 

13 

 Table 7 Features of acid cleaned valves and girdle bands that are clearly 

visible when observed under an Electron Microscope ���.� 

 

15 

 Table 8 Global distribution of species from the diatom Pseudo-

nitzschia����������������������. 

 

23-24 

 Table 9 Organisms that produce domoic acid in culture������� 30 

CHAPTER 2 Table 1 Morphometric data recorded under the SEM for Pseudo-

nitzschia species observed in Irish waters��������.� 

 

62 

 Table 2 Morphometric data recorded under the SEM of field specimens 

(single valves) taken from Irish waters. The identity of these 

Pseudo-nitzschia species requires confirmation������� 

 

 

62 

 Table 3 Number of stations where individual Pseudo-nitzschia species 

were recorded from phytoplankton net material collected off the 

south, southwest and west coasts of Ireland (1993-1997)��.� 

 

 

79 

CHAPTER 3 Table 1 Ranges in the surface and bottom temperature and salinity 

values, together with surface to bottom differences of these 

parameters for Pseudo-nitzschia species recorded in Irish waters 

 

 

127 

CHAPTER 4  Table 1 Morphometric data for Pseudo-nitzschia australis, recorded 

using electron microscopy������������...��.. 

 

159 

CHAPTER 5 Table 1 Pseudo-nitzschia species isolated from net material collected off 

the Irish coast�����������������.��� 

 

180 

    

    



TABLE OF CONTENTS 

iii 

 

 
 TABLES                                                                                               PAGE 

CHAPTER 5 Table 2 Oligonucleotide primers and amplification profiles used in 

PCR amplification and sequencing reactions of rDNA from 

Pseudo-nitzschia delicatissima (1913, 1917), P fraudulenta 

(W2) and P pungens (WW3)������������...� 

 

 

 

183 

 Table 3 LSU rRNA�targeted oligonucleotide probes and their target 

species.����������..����������...� 

 

185 

 Table 4 Percentage similarity of the 18S SSU rDNA between Pseudo-

nitzschia isolates calculated using the uncorrected-pairwise 

distance method�������������...����� 

 

 

193 

 Table 5 Reactivity of whole cell hybridization gene probe trials on 

Pseudo-nitzschia cultures��������������� 

 

197 

  



TABLE OF CONTENTS 

iv 

 

  FIGURES                                                                                             PAGE 
 

CHAPTER 1  Figure 1 Frustule structure.������������������ 2 

 Figure 2 Axis and planes of symmetry of Pseudo-nitzschia ����� 3 

 Figure 3 Diagram showing the "P seriata" and "P delicatissima" groups 

along with the terminology used to describe some of the 

siliceous morphological structures������..����� 

 

 

9 

 Figure 4 A simple diagram displaying the geometric extensions of the 

valve and girdle outline.�����������...���� 

 

10 

 Figure 5 Diagram showing morphological features of girdle bands and 

the valve mantles���������������..��� 

 

17 

 Figure 6 Schematic layout of the nuclear ribosomal genes (rDNA).�.� 19 

 Figure 7 Chemical structure of domoic acid.�����������. 31 

CHAPTER 2 Figure 1 Map of study area showing the location of stations sampled off 

the coast of Ireland (1993-1997)������������.. 

 

60 

 Figure 2 Spatial distribution of P australis, P fraudulenta, P pungens 

and P multiseries�����������������..� 

 

77 

 Figure 3 Spatial distribution of P delicatissima, P pseudodelicatissima, 

P cf seriata and P cf subpacifica������������. 

 

78 

CHAPTER 3 Figure 1 Location of stations sampled off the southwest coast of Ireland, 

between August 8th-18th 1993������������...� 

 

93 

 Figure 2 Location of stations sampled off the southeast, south and 

southwest coasts of Ireland between July 20th-25th 1996��.� 

 

93 

 Figure 3 Location of stations sampled off the southwest coast of Ireland 

between September 3rd-8th 1996�����������...� 

 

94 

 Figure 4 Location of stations sampled off the northwest coast of Ireland 

between May 1st-5th 1997.��������������� 

 

94 

 Figure 5 Location of stations sampled off the south coast of Ireland, 

between October 7th-12th 1997������������.� 

 

95 

 Figure 6 Plot of stations against water column depth, h, and water 

column stability expressed as the stratification parameter, Φ, 

off the south and southwest coasts of Ireland between August 

8th-18th 1993.�������������������.� 

 

 

 

99 

    

    

    



TABLE OF CONTENTS 

v 

  FIGURES                                                                                             PAGE 
 

CHAPTER 3 Figure 7 Distributions of temperature (°C), salinity and chlorophyll 

(mgm-3) at stations 1301-1305 and 1312-1313 off the southwest 

coast of Ireland, southwest of Bantry Bay sampled between 

August 15th-16th 1993����������������... 

 

 

 

102 

 Figure 8 Distributions of temperature (°C), salinity and relative 

chlorophyll fluorescence along a station transect (1324-1330) 

off the south coast of Ireland from Sherkin Island to south of 

Cork sampled on August 18th 1993�����������.. 

 

 

 

103 

 Figure 9 Distributions of temperature (°C), salinity and relative 

chlorophyll fluorescence along a station transect (1315-1320) 

from inside Long Island Bay to out past Fastnet Rock sampled 

on August 17th 1993�����������������. 

 

 

 

104 

 Figure 10 Plot of stations against mean integrated Pseudo-nitzschia 

concentrations (>10 cellsmL-1) and water column stability 

expressed as the stratification parameter, Φ, off the south and 

southwest coasts of Ireland between August 8th-18th 1993.��. 

 

 

 

105 

 Figure 11 Plot of stations against water column depth, h, and water 

column stability expressed as the stratification parameter, Φ, 

off the southeast, south and southwest coasts of Ireland 

between July 20th-25th 1996.�������������� 

 

 

 

106 

 Figure 12 Plot of stations against mean integrated Pseudo-nitzschia 

concentrations (>10 cellsmL-1) and water column stability 

expressed as the stratification parameter, Φ, off the southeast, 

south and southwest coasts of Ireland between July 20th-25th 

1996.�����������������������. 

 

 

 

 

107 

 Figure 13 Vertical profiles of temperature (°C), salinity and relative 

chlorophyll fluorescence recorded at stations 1808-1809 (south 

of Long Island Bay) and 1810 (south of Sherkin Island) 

sampled between July 21st-22nd 1996����������... 

 

 

 

109 

 Figure 14 Vertical profiles of temperature (°C), salinity and relative 

chlorophyll fluorescence recorded at stations 1820 and 1821 

sampled on July 24th 1996 (southwest to southeast of Rosslare 

on either side of the Celtic Sea Front).����������. 

 

 

 

111 

    

    



TABLE OF CONTENTS 

vi 

  FIGURES                                                                                              PAGE 
 

CHAPTER 3 Figure 15 Plot of stations against water column depth, h, and water 

column stability expressed as the stratification parameter, Φ, 

off the south and southwest coasts of Ireland between 

September 3rd-8th, 1996.���������������... 

 

 

 

112 

 Figure 16 Plot of stations against integrated Pseudo-nitzschia 

concentrations (>10 cellsmL-1) and water column stability 

expressed as the stratification parameter, Φ, off the south and 

southwest coasts of Ireland between September 3rd-8th 1996�.. 

 

 

 

113 

 Figure 17 Distributions of temperature (°C), salinity and in situ 

fluorescence (units are relative fluorescence) along a station 

transect (1903-1906) running in an east west direction, outside 

Dingle Bay sampled on September 4th 1996..�������.. 

 

 

 

114 

 Figure 18 Vertical profiles of temperature (°C), salinity and relative 

fluorescence recorded at station 1902 (north of Dingle Bay at 

52º 250� N, 10º 250� W).���������������.. 

 

 

115 

 Figure 19 Underway surface distribution of temperature (thin line) and 

salinity (dark line) along transects sampled off the west coast 

of Ireland between May 1st-5th 1997.����������... 

 

 

117 

 Figure 20 Plot of stations against water column depth, h, and water 

column stability expressed as the stratification parameter, Φ, 

off the west coast of Ireland between May 1st-5th 1997���... 

 

 

118 

 Figure 21 Plot of stations against integrated Pseudo-nitzschia 

concentrations (>10 cellsmL-1) and water column stability 

expressed as the stratification parameter, Φ, off the west coast 

of Ireland between May 1st-5th 1997����������� 

 

 

 

118 

 Figure 22 Temperature (°C) distributions off the west coast of Ireland 

May 1st-5th 1997  Included in the temperature plot are the total 

cell densities of Pseudo-nitzschia recorded at discrete depths 

(ie the sum of �P seriata� + �P delicatissima� groups are shown 

as cellsmL-1, 0 = not detected)�������������. 

 

 

 

 

119 

 Figure 23 Vertical profiles of temperature (°C), salinity, relative 

fluorescence and �P delicatissima� cell concentrations (�P 

delicatissima� cellsmL-1, 0 = not detected) recorded at discrete 

depths at stations 2006 and 2011 sampled on May 3rd 1997�� 

 

 

 

120 

    



TABLE OF CONTENTS 

vii 

  FIGURES                                                                                              PAGE 
 

CHAPTER 3 Figure 24 Plot of stations against water column depth, h, and water 

column stability expressed as the stratification parameter, Φ, 

off the south coast of Ireland between October 6th-10th 1997�.. 

 

 

121 

 Figure 25 Plot of stations against integrated Pseudo-nitzschia 

concentrations (>10 cellsmL-1) and water column stability 

expressed as the stratification parameter, Φ, off the south coast 

of Ireland between October 6th-10th 1997��������� 

 

 

 

122 

 Figure 26 Distributions of temperature (°C), salinity and in situ 

fluorescence (units are relative fluorescence) along a station 

transect (2206, 2201-2204) running in a northeast direction 

between Cork and Waterford sampled between 7th-11th October 

1997�����������������������.. 

 

 

 

 

124 

 Figure 27 Distributions of temperature (°C), salinity and in situ 

fluorescence (units are relative fluorescence) along a station 

transect (2205-2208) south of Cork sampled on the 11th 

October 1997�������������������� 

 

 

 

125 

 Figure 28 Mean abundance of Pseudo-nitzschia cell numbers (74 

stations) plotted against the stratification parameter, Φ, and the 

dimensionless optical depth (λh) for stations sampled off the 

south, southwest and west coast of Ireland, between 1993-

1997�����������������������.. 

 

 

 

 

128 

 Figure 29 Predominant Pseudo-nitzschia species present in vertical 

phytoplankton net hauls (34 stations) plotted against the 

stratification parameter, Φ, and the dimensionless optical depth 

(λh) for stations sampled off the south, southwest and west 

coasts of Ireland, between 1993-1997����������.. 

 

 

 

 

128 

 Figure 30 Areas of a plot of stratification (Φ) and the dimensionless 

optical depth (λh) considered to be occupied by dominant 

diatom or dinoflagellate communities����������.. 

 

 

129 

 Figure 31 Scatter plots of nitrate, phosphate, silicate and chlorophyll 

against the �P. seriata� and �P delicatissima� groups in 

cells.mL-1�������������������.��. 

 

 

130 

 Figure 32 Cell numbers of the �P seriata� and �P delicatissima� groups 

plotted against temperature and salinity���������... 

 

131 

    



TABLE OF CONTENTS 

viii 

  FIGURES                                                                                                                 PAGE 
 

CHAPTER 3 Figure 33 Pseudo-nitzschia cell numbers plotted against inorganic 

nutrients (nitrate, phosphate and silicate) ��������... 

 

131 

 Figure 34 Cell numbers of the �P seriata� and �P delicatissima� groups 

plotted against temperature and inorganic nutrients (nitrate, 

phosphate and silicate)����������������. 

 

 

132 

CHAPTER 4 Figure 1 Average cell growth (!) and domoic acid content in Cultures 

1-4 of Pseudo-nitzschia australis strain WW4, grown at an 

irradiance of ~12 µmol photonsm-2s-1 (16:8 h L:D 

cycle)����������������������� 

 

 

 

163 

 Figure 2 Average cell growth (!) and domoic acid content in Cultures 5 

and 6 of Pseudo-nitzschia australis strain WW4, grown at an 

irradiance of ~115 µmol photons.m-2.s-1 (12:12 h L:D 

cycle)����������������������� 

 

 

 

164 

 Figure 3 LC-MS analysis of Culture 5 (day 30; 1,000 cellsmL-1) for 

domoic acid (DA)������������������. 

 

165 

CHAPTER 5 Figure 1 Multiple DNA sequence alignment of the 18S SSU (1745 bp), 

ITS1 (286 bp) and 58S (44 bp) rDNA of 4 Irish Pseudo-

nitzschia isolates������������������.. 

 

 

190-193 

 Figure 2 Phylogenetic representation of eighteen diatom specimens 

including Pseudo-nitzschia based on sequence comparisons of 

the SSU rDNA sequences (1732 characters used) The tree was 

constructed using Maximum-Likelihood method������ 

 

 

 

194 

 Figure 3 Phylogenetic representation of eighteen diatom specimens 

including Pseudo-nitzschia based on sequence comparisons of 

the SSU rDNA sequences (1732 characters used) The tree was 

constructed using LogDet/paralinear distances������� 

 

 

 

195 

 Figure 4 Phylogenetic representation of eighteen diatom specimens 

including Pseudo-nitzschia based on sequence comparisons of 

the SSU rDNA sequences (1732 characters used) The tree was 

constructed using a Maximum Parsimony method�����.. 

 

 

 

196 

    

    

    

    

 



TABLE OF CONTENTS 

ix 

  PLATES                                                                                               PAGE 
 

CHAPTER 2 Plate 1 Pseudo-nitzschia pungens (Grunow ex Cleve) Hasle���..� 63-64 

 Plate 2 Pseudo-nitzschia multiseries (Hasle) Hasle��������. 65 

 Plate 3 Pseudo-nitzschia australis Frenguelli����������.. 66 

 Plate 4 Pseudo-nitzschia fraudulenta (Cleve) Hasle�������� 67-68 

 Plate 5 Pseudo-nitzschia delicatissima (Cleve) Heiden������... 69-70 

 Plate 6 Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle����.. 71-72 

 Plate 7 Pseudo-nitzschia cf seriata (Cleve) H Peragallo������. 73-74 

 Plate 8 Pseudo-nitzschia cf seriata (Cleve) H Peragallo������. 75 

CHAPTER 4 Plate 1 Pseudo-nitzschia australis strain WW4���������� 162 

CHAPTER 5 Plate 1 Scanning electron micrographs electron micrographs of 

Pseudo-nitzschia species selected for molecular analysis��... 

 

189 

 Plate 2 Photomicrographs of Pseudo-nitzschia cultures hybridized with 

fluorescent oligonucleotide probes (negative:UniR, 

positive:UniC and species specific: PuD1, FrD1, AuD1, MuD1, 

MuD2 and DeD1)������������������. 

 

 

 

198 

     

 

 

 



TABLE OF CONTENTS 

x 

 

 

  APPENDICES                                                                                                                       PAGE 

   

APPENDIX I Terminology used to describe the morphological features of the 

siliceous frustule in the diatom Pseudo-nitzschia �������� 

 

215 

APPENDIX II Morphological descriptions of Pseudo-nitzschia species recorded from 

Irish waters ���������������������� 

 

220 

APPENDIX III Micrographs of several Pseudo-nitzschia species observed in samples 

collected from Irish waters ����������������� 

 

240 

APPENDIX IV A list of the oxidation (cleaning) methods used during the study to 

remove the organic material from the siliceous frustule of the diatom 

Pseudo-nitzschia��������������������� 

 

 

311 

APPENDIX V Short description of the Phylogenetic methods used in this study 

Multiple DNA sequence alignment of the 18S SSU (1745 bp) rDNA 

of several Pseudo-nitzschia isolates Multiple rDNA alignments of 

character positions of the SSU considered unambiguous and analysed 

using Maximum-Likelihood, distance (Logdet transformation) and 

Maximum Parsimony methods���������������� 

 

 

 

 

 

322 

APPENDIX VI Raw data of the morphometric analysis of Pseudo-nitzschia species 

recorded under the scanning electron microscope�������� 

 

342 

APPENDIX VII Data on station positions, depth, temperature, salinity, chlorophyll, 

inorganic nutrients, Pseudo-nitzschia cell concentrations ("P seriata" 

and "P delicatissima" groups), Pseudo-nitzschia identification, secchi 

depth, the vertical attenuation coefficient, λ, the dimensionless optical 

depth (λ h), stratification parameter, Φ, and surface to bottom water 

temperature difference, Delta-t, along transects sampled during 

separate cruises off the west coast of Ireland in May 1997, and the 

south and southwest coasts of Ireland in August 1993, July 1996, early 

September 1996 and October 1997��������������  

 

 

 

 

 

 

 

 

359 

 

 

 



ACKNOWLEDGMENTS 

xi 

ACKNOWLEDGMENTS 

 

I would like to thank Prof. Emer Colleran, Prof. James A. Houghton and the late Prof. 

Kieran L. Dunican for allowing this work to be carried out in the department of Marine 

Microbiology, NUI, Galway. 

 

I am very grateful to Dr. John W. Patching and Dr. Robin Raine, my supervisors for 

their assistance and guidance. 

 

Thanks are also due to all the other members of the lab in the marine 

microbiology section, Siobhan, Shane, Donal, Mike, Eric, the two Joes, Helen, 

Benny and Georgina.  

 

I am grateful to Nicolas Donoghue, EM Unit, for his expert technical contribution 

throughout this work and also a big thanks to the technicians Maurice, Justin, Seamus, 

Mike, Anne and Bernie.  A special thanks to the skipper and crew of the R.V. "Lough 

Belra" and R.V. "Celtic Voyager".  Thanks also to the Central Marine Service Unit, for 

carrying out salinity and nutrient analyses.  To Prof. Mike Guiry of the Botany Dept., I 

extend thanks for the use of the culture facilities.  Thank you, to all in the Botany Dept. 

for the use of the equipment and also to Gene, Bob and Martin in the Zoology Dept.  

Thanks are also due to Samantha Clarke of the Galway Mayo Institute of Technology 

for the use of their electron microscopy facilities.  

 

I am grateful to Marion Gilman, Stephen Bates and Michael Quilliam who provided 

help with the domoic acid analysis and would like to thank Christopher Scholin and 

John Tyrell for their help with the fluorescent probes. I would like to thank Stephen 

Bates, Greta Hasle, Greta Fryxell, Nina Lundholm, Joe Silke and Cillian Roden for their 

helpful comments, assistance and guidance.   

 

I am grateful for the financial assistance provided by Bord Iascaigh Mhara, the 

Marine Institute and Mayo County Council.  



ACKNOWLEDGMENTS 
 

xii 

I would like to sincerely thank Siobhan, Donal, Shane, Mairead, Julie, Mary, Anita, 

Noreen, Nuala, Eimear, Mandy and Paula for their invaluable friendships.  Special 

thanks to my parents and family for all the encouragement and support throughout my 

Ph.D.  

 

Finally, thanks to my husband Declan who sacrificed more for this thesis than was fair 

to ask. 

 



OBJECTIVES 

xiii 

OBJECTIVES OF THIS STUDY 

 

 

1. Determine which Pseudo-nitzschia species are present in Irish waters using light 

microscopy, scanning and transmission electron microscopy.  

 

2. Investigate the hydrographic conditions that relate to the distribution of the genus 

Pseudo-nitzschia.  

 

3. Determine which species are capable of producing domoic acid in unialgal cultures. 

 

4. Compare SSU and ITS1 and part of the 5.8S ribosomal DNA sequences of Irish 

Pseudo-nitzschia isolates with available sequences of Pseudo-nitzschia isolates 

from other geographic regions. 

 

5. Examine the efficacy of existing oligonucleotide probes to aid identification of 

Pseudo-nitzschia strains in Irish waters. 



 

 

 
 

CHAPTER 1 
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GENERAL INTRODUCTION 

 

This project is concerned specifically with Pseudo-nitzschia, a genus of the marine 

diatoms, class Bacillariophyceae (Haeckel 1878 as cited in Skov et al. 1999).  Pseudo-

nitzschia is cosmopolitan having a worldwide distribution (Cupp 1943; Hasle 1965, 1972, 

Hasle et al.1996; Villac et al. 1993; Hallegraeff 1994; Fryxell et al. 1997) and has 

become an attractive choice for research by many scientists in recent years, for the simple 

reason that some species within the genus can produce a toxin (domoic acid) responsible 

for Amnesic Shellfish Poisoning in humans.   

 

More than ten classes of unicellular algae contribute to marine phytoplankton.   Of 

these, the diatoms (Bacillariophyceae) are one of the most common, representing a large 

component of the microalgal flora, with approximately 1,500 planktonic (drifting) diatom 

species in the sea (Sournia et al. 1991).  Diatoms can assume either solitary or colonial 

forms and typical photosynthetic pigments include chlorophyll a, c, ß–carotene, 

fucoxanthin, diatoxanthin and diadinoxanthin.  

 

Diatoms characteristically have a rigid cell wall that is chiefly composed of silica 

(silicon dioxide).  It is the symmetry of this heavy siliceous exoskeleton, referred to as 

the frustule that divides diatoms into the Centrales (Centric diatoms) and the Pennales 

(pennate diatoms) following Karsten (1928).  Pennate diatoms are further separated into 

two subgroups, the araphid pennate diatoms that possess a sternum, and the raphid 

pennate diatoms in which both a sternum and raphe† are present.  Pseudo-nitzschia is 

placed within the pennate diatoms (elongated rod shaped diatoms).  As a diatom, the 

frustule of Pseudo-nitzschia consists of two morphologically composite units (opposing 

surfaces) called valves, each connected by adjoining structures referred to as girdle 

elements.  The older valve with its girdle elements (epitheca) fits over the younger valve 

(hypotheca), comparable to the way a “pill box” fits together (Figure 1a).  Under 

inspection Pseudo-nitzschia can present two views, the vale view or the girdle view, and 

its symmetry is based around a central line (Figure 1b).  The three planes of symmetry of 

                                                 
† A glossary of all terms used may be found in Appendix 1.  
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the Pseudo-nitzschia frustule are portrayed in Figure 2.   

 

Figure 1.  Frustule structure where a.) is a diagrammatic drawing showing the frustule 

components in diatoms (after Hasle and Syvertsen 1997, Fig. 4) and b.) is a diagrammatic 

drawing of Pseudo-nitzschia in valve and girdle view (after Hasle and Syvertsen 1997, 

Fig. 9). 
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Figure 2. Axis and planes of symmetry of Pseudo-nitzschia (after Barber and Haworth 

1981, Fig. 3)  

 
 

1. THE GENUS PSEUDO-NITZSCHIA 

 

1.1 NOMENCLATURE 

 

Class: Diatomophyceae (*Rabenhorst 1864) / Bacillariophyceae (*Haeckel 1878)

Order: Bacillariales Hendy 1937 / Pennales *Karsten 1928 (pennates) 

Family: Bacillariaceae *Ehrenberg 1831 

Genus: Pseudo-nitzschia H. Peragallo 1900 

Lectotype: Pseudo-nitzschia seriata (Cleve) H. Peragallo (in H. and M. Peragallo 

1897–1908) 
* Cited in Skov et al. (1999) 

 

The nomenclature history of the diatom Pseudo-nitzschia begins with the erection of the 

genus for the planktonic diatoms Nitzschia seriata Cleve, N. fraudulenta Cleve and N. 
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sicula Castracane (Peragallo, H. and Peragallo, M. 1897-1908).  This decision was based 

on the fact that the cells of at least N. seriata and N. fraudulenta were associated in long 

filaments (cellules associées en long filaments, Peragallo, H. and Peragallo, M. 1897-

1908, p. 300).  Pseudo-nitzschia was later reduced to a section of the large genus 

Nitzschia (Hassall) by Hustedt (1958) based on the limited reduction of the raphe, as. 

some motility of cells must be required to form the step-like colony formation.  Finally, 

Professor Grethe Hasle (1994) clarified its position by reinstating it to the rank of genus 

after carrying out detailed morphological investigations.  Douglas and his colleagues 

(1994) have supported her decision based on molecular work they carried out on the 

small subunit rRNA gene of Pseudo-nitzschia, Nitzschia and other diatoms. 

 

Today the genus Pseudo-nitzschia includes 22 described species, 1 forma and 2 

varieties (Tables 1–2). 
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Table 1.  Nomenclature of the "Pseudo-nitzschia seriata" group (valve width 3 µm or 

more, sensu Hasle 1965).  Pseudo-nitzschia H. Peragallo in Peragallo and Peragallo 1900, 

emend. Hasle 1993. 

 

 "P. seriata" group Basionym Synonym 

1a P. seriata (Cleve) H. Peragallo in 

Peragallo and Peragallo1900 

N. seriata Cleve 1883  

1b P. seriata f. obtusa (Hasle) Hasle 

1993  

N. seriata f. obtusa Hasle 1974  

2 P. australis Frenguelli 1939  N. pseudoseriata Hasle 

1965 

3a P. pungens (Grunow ex Cleve) 

Hasle 1993 

N. pungens Grunow ex Cleve 

1897 

 

3b P. pungens var. cingulata Villac 

and Fryxell 1998 

  

4 P. multiseries (Hasle) Hasle 1995 N. pungens f. multiseries Hasle 

1974 

P. pungens f. multiseries 

(Hasle) Hasle 1993 

5 P. pungiformis (Hasle) Hasle 1993 N. pungiformis Hasle 1971  

6 P. fraudulenta (Cleve) Hasle 1993  N. fraudulenta Cleve 1897 P. seriata var. 

fraudulenta (Cleve) 

Peragallo in Peragallo 

and Peragallo 1900. 

7 P. subfraudulenta (Hasle) Hasle 

1993 

N. subfraudulenta Hasle 1974  

8 P. heimii Manguin 1957 N. heimii (Manguin) Hasle 1965  N. pacifica Cupp 1943 

sensu Hustedt 1958 

"nomen confusum" 

9 P. subpacifica (Hasle) Hasle 1993 N. subpacifica Hasle 1974   

10 P. sinica nom. Prov.? Qi (1994)    

11 P. antarctica Manguin 1957   

12 P. multistriata (Takano) Takano 

1993 

N. multistriata Takano 1993  
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Table 2.  Nomenclature of the "Pseudo-nitzschia delicatissima" group (valve width of 3 

µm or less, sensu Hasle 1965).  Pseudo-nitzschia H. Peragallo in Peragallo and Peragallo 

1900, emend. Hasle, 1993. 

 

 "P. delicatissima" group Basionym Synonym 

13 P. delicatissima (Cleve) Heiden 

in Heiden and Kolbe 1928 

N. delicatissima Cleve 1897 N. actydrophila Hasle 

1965 

14 P. lineola (Cleve) Hasle 1993 N. lineola Cleve 1897 N. barkleyi Hustedt 1952 

15 P. prolongatoides (Hasle) Hasle 

1993 

N. prolongatoides Hasle 1965 N. prolongata Manguin 

1957 non Nitzschia 

prolongata Hustedt 1938 

16 P. turgidula (Hustedt) Hasle 

1993 

N. turgidula Hustedt 1958  

17 P. turgiduloides (Hasle) Hasle 

1995 

N. turgiduloides Hasle 1965 P. barkleyi var. obtusa 

Manguin 1960 

18 P. cuspidata (Hasle) Hasle 1993 N. cuspidata Hasle 1974  

19 P. inflatula (Hasle) Hasle 1993 N. inflatula Hasle 1974  

20 P. pseudodelicatissima (Hasle) 

Hasle 1993 

N. pseudodelicatissima Hasle 

1976 

N. delicatula Hasle 1965 

non N. delicatula 

Skvortzow 1946 

21a P. granii (Hasle) Hasle 1993 N. granii Hasle 1974  

21b P. granii var. curvata Hasle 1993 N. granii var. curvata Hasle 

1974 

 

22 P. subcurvata (Hasle) Fryxell in 

Fryxell et al. 1991 

N. subcurvata Hasle 1974  
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1.2 TAXONOMY  

 
1.2.1 MORPHOLOGY  

 
The genus Pseudo-nitzschia is recognised by the unique formation of its colonies, 

which appear in step-like chains formed by the overlapping of cell ends.  Members of this 

genus are characterised by the 'spindle-shaped', pointed fusiform valves.  The 

arrangement of two chloroplasts per cell, situated on either side of the centrally placed 

nucleus, is evident in water mounts observed under a light microscope (LM).   

 

Successful identification of Pseudo-nitzschia requires examination of the shape and 

structure of the silica frustule.  Conventional brightfield light microscopy can provide a 

guide in discriminating between Pseudo-nitzschia species.  It cannot however, reveal all 

of the morphological structures needed to positively identify Pseudo-nitzschia to species 

level.  Therefore this technique must be combined with the use of electron microscopy.  

Scientific literature on phytoplankton distribution based on LM studies in the past have 

rarely differentiated between Pseudo-nitzschia species.   

 

Pseudo-nitzschia may be assigned to one of two groups (see Figure 3) the "P. seriata" 

group (Table 1) representing wide cells (valve width 3µ or more) and the "P. 

delicatissima" group  (Table 2), the narrow cells (valve width 3µ or less).  In many earlier 

studies these were listed as “Nitzschia seriata” and “Nitzschia delicatissima” respectively 

(Hasle 1965).  Detailed historical reports of the distribution of Pseudo-nitzschia species 

are thus rare. 

 

The most reliable keys for the identification of Pseudo-nitzschia are those of Hasle et 

al. (1996) and Hasle and Syvertsen (1997).   

 

The morphological features of the diatom Pseudo-nitzschia Peragallo visible using 

light microscopy (LM), scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM) are outlined below.  By and large these follow the criteria of Hasle 

(1965, 1995), Mann (1978), Hasle and Fryxell (1995), Hasle et al. (1996) and Hasle and 
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Syvertsen (1997).  The terminology used here to describe the siliceous structures of the 

diatom frustule follows Anonymous (1975), Ross et al. (1979) and Barber & Haworth 

(1981).  A table explaining the terminology used can be found in Appendix 1.  

Appendix 2 describes the Pseudo-nitzschia species occurring in Irish waters during the 

present study.  This follows the standardised descriptions of Hasle (1965, 1972, 1995), 

Hasle & Fryxell (1995), Hasle et al. (1996) and Hasle and Syvertsen (1997).  Appendix 

3 displays a large number of micrographs taken of Pseudo-nitzschia species observed 

under a light, scanning electron and transmission electron microscopes. 

 

The features of the diatom Pseudo-nitzschia that are initially apparent to the observer 

are firstly the size of the cell in question (large or small) and secondly the shape and 

symmetry of the cell.  Figure 4 shows a simple diagram displaying different shapes seen 

in Pseudo-nitzschia.  Morphological features and characteristics of Pseudo-nitzschia 

cells using light and electron microscopy are outlined in Tables 3 – 7 below. 
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Figure 3. Diagram showing the "P. seriata" and "P. delicatissima" groups along with the 

terminology used to describe some of the siliceous morphological structures. 
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Figure 4.  A simple diagram displaying the geometric extensions of the valve and girdle 

outline, redrawn from Barber & Haworth (1981, Fig. 4; Fig. 5, Fig. 7). 

 
Barber & Haworth (1981, Fig. 4) Barber & Haworth (1981 Fig. 5)  Barber & Haworth (Fig. 7) 
   
27: Linear 6: Lanceolate, narrow 8: Ends broadly rounded 
28: Linear 7: Lanceolate, fusiform 18:Ends rostrate 
29: Linear   
32: Acicular (or spindle shaped)   
33: Fusiform   
34: Lanceolate   

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Water samples containing Pseudo-nitzschia cells are initially counted using the cell 

size group differentiation based on the width of the valve (Hasle 1965), a drop of sample 

is then mounted onto a glass slide and further examination of the raw material is carried 

out.  Pseudo-nitzschia colonies more often than not appear in the girdle view where the 

typical generic characteristics are clearly visible, however accurate species identification 

is not possible for many Pseudo-nitzschia species at this stage of the investigation. 
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Table 3. Distinct features visible in vegetative cells of Pseudo-nitzschia in water mounts 

(phase contrast, light microscopy). 

 
DISTINCT FEATURES OF VEGETATIVE PSEUDO-NITZSCHIA CELLS. 

 

VALVE OUTLINE: MARGINS  

Curved, straight or one margin curved the other straight. 

VALVE SYMMETRY:  BILATERAL SYMMETRY ABOUT THE APICAL PLANE 

Symmetrical with respect to the apical plane  

= transapical axis isopolar. 

Asymmetrical with respect to the apical plane  

= transapical axis heteropolar. 

DIMENSIONS: PROPORTION BETWEEN LENGTH AND WIDTH OF CELL 

Length of the apical (diameter) axis. 

Length of the transapical axis (width). 

CHLOROPLAST ARRANGEMENT: PSEUDO-NITZSCHIA CELLS CONTAIN 2 PLATE–LIKE 

CHROMATOPHORES 

These are positioned symmetrically about the median transapical 

plane. 

COLONY FORMATION: The "STEP-LIKE" chains characteristic of Pseudo-nitzschia colonies 

can be observed in the girdle view.  These colonies are formed by 

the overlapping of cell ends that attach over a short distance on the 

valve face.  The length of overlap seems to be consistent within 

each species but differs between species. 

 

Since the organic contents of vegetative cells complicate the image of the valve and its 

processes, it is imperative that this is removed to allow further morphological analysis 

of the silica structure.  The siliceous elements of the frustule often break apart during the 

cleaning treatment separating the girdle elements (bands) and the valves.  Several 

cleaning methods exist in the literature and some of these are discussed in Appendix 4.  

Cleaned specimens are mounted onto glass slides and viewed under the light 

microscope. 
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Table 4. Siliceous features that can be observed in watermounts of acid cleaned Pseudo-

nitzschia valves viewed under a light microscope (oil immersion LM; phase contrast or 

darkfield illumination). 

 
DISCERNABLE FEATURES OF ACID CLEANED PSEUDO-NITZSCHIA VALVES IN WATER MOUNTS 

 

FIBULAE, INTERSTRIAE AND 

CENTRAL LARGER INTERSPACE: 

Visibility of the FIBULAE, INTERSTRIAE and CENTRAL LARGER 

INTERSPACE (if present). 

THE RAPHE:  In all Pseudo-nitzschia species the RAPHE is strongly eccentric 

(marginal raphe) and is not raised above the general level of the 

valve (flush with the valve). 

 

Since the organic matter has been removed from the cell, the chloroplast arrangement 

cannot be seen.  Colony formation cannot be observed if the frustule elements have 

come apart.  Some Pseudo-nitzschia species have a more coarsely structured valve then 

others.  Consequently, resolution of finite structures such as the striae and fibulae are 

more discernible in the robust valves then in the more delicately formed ones when 

examined in watermounts.  However, it is always much easier for the observer to view 

the heavily silicified structures when the diatom material is embedded in a permanent 

mount.  In cleaned water mounts there is very little contrast between the diatom and it's 

surrounding medium to allow recognition of structural detail.  This is because the 

refractive index (RI) of the silica wall (~1.15) is similar to that of water (~1.3).  To 

resolve this and increase the contrast the specimens are embedded in a medium of a 

higher refractive index (such as Naphrax, RI = 1.72). 
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Table 5. Additional siliceous structures that can be observed in acid cleaned Pseudo-

nitzschia valves mounted in a medium of high refractive index and viewed under a light 

microscope (oil immersion LM). 

 
ADDITIONAL FEATURES OF ACID CLEANED VALVES THAT BECOME VISIBLE WHEN THE PSEUDO-NITZSCHIA 

SPECIMENS ARE EMBEDDED IN A MEDIUM OF HIGH REFRACTIVE INDEX (OIL IMMERSION LM) 

 

FIBULAE AND INTERSTRIAE: The LINEAR DENSITY of the interstriae and fibulae (theses structures 

may not be visible in all Pseudo-nitzschia species examined under 

these conditions). 

POROIDS:  SHAPE AND NUMBER OF ROWS OF POROIDS PER STRIA / striae 

structure.  This is only seen in Pseudo-nitzschia pungens where the 

two rows of poroids of the striae are sometimes visible. This is one 

of the few Pseudo-nitzschia species that can be clearly identified in 

the valve view under a LM. 

GIRDLE STRUCTURE: The CINGULUM has a varied number of perforated bands (ribbed), 

generally three with some unperforated bands.  The girdle bands are 

open, one apices of a band can be seen to form a loop while at the 

other apices the band splits to form two pointed ends.  The bands 

are thicker in the midpoint of the cell and they progressively taper 

towards the poles (Figure 5a). 

 

Table 6. Morphological structures required for species identification that may not be 

resolved or are difficult to discern during light microscopy investigations. 

 
FEATURES OF ACID CLEANED VALVES THAT MAY OR MAY NOT BE DISCERNABLE WHEN THE PSEUDO-

NITZSCHIA SPECIMENS ARE EMBEDDED IN A MEDIUM OF HIGH REFRACTIVE INDEX (OIL IMMERSION LM) 

 

FIBULAE AND INTERSTRIAE: The LINEAR DENSITY of the interstriae and fibulae (discernible in 

some species). 

STRIAE STRUCTURE:  STRIAE STRUCTURE of the valve face and the girdle bands. 

CENTRAL LARGER INTERSPACE: GREATER DISTANCE (IN STRIAE) BETWEEN THE TWO MEDIAN 

FIBULAE, the central nodule and central raphe endings when 

present. 
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When identifying Pseudo-nitzschia to species level, electron microscopy provides 

additional information to the structures distinguished under the LM.  The taxonomic 

features (ornamentation of the valve) that are difficult or impossible to discern using a 

LM can be observed and described in detail using an electron microscope.  A distinction 

can be made between species with similar valve outlines such as P. pungens and P. 

multiseries, P. delicatissima and P. pseudodelicatissima or P. seriata and P. australis 

(smaller forms).  However, valve outlines should be examined as this feature helps to 

discriminate between species with matching characteristics such as the striae structure 

found in P. multiseries and P. seriata.  Morphometric numerical data (e.g. number of 

fibulae or striae in 10µm) can often be of significant value when comparing between 

species that have similar morphological features (P. subpacifica and P. heimii).  Electron 

microscopy† is essential as an additional tool to LM to identify Pseudo-nitzschia to species.   

                                                 
† SEM gives a 3d image (shows the curvature of the valve).  TEM gives a 2d image (valve looks flattened) 
with high resolution. 
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Table 7. Features of acid cleaned valves and girdle bands that are clearly visible when 

observed under an Electron Microscope (SEM and TEM).  Ultrastructural study of the 

diatom frustule. 

 
VISIBLE FEATURES OF ACID CLEANED FRUSTULES WHEN VIEWED UNDER AN ELECTRON MICROSCOPE 

 

FIBULAE: DENSITY OF FIBULAE in 10µm. 

INTERSTRIAE: DENSITY OF STRIAE in 10µm. 

The exterior valve face is smooth, the striae are therefore level with the 

interstriae on the valve exterior in all Pseudo-nitzschia species. 

STRIAE STRUCTURE:  STRUCTURE OF THE STRIAE (axial and central area), NUMBER OF ROWS OF 

POROIDS PER STRIAE.  Vela are close to the valve exterior in all Pseudo-

nitzschia species. 

AREOLATION: SHAPE of the areolae/poroids. LINEAR DENSITY OF POROIDS in 1µm, 

measured transapically at the center region of the valve face (across the 

width of the valve). 

CENTRAL RAPHE ENDINGS: PRESENCE OR ABSENCE of central raphe endings.  In some Pseudo-

nitzschia species the raphe consists of an unbroken longitudinal slit 

extending the length of the valve.  While in other species the raphe is 

made up of two longitudinal slits.  At the mid–region of the valve this 

"broken" raphe produces two central raphe endings, one on either side of 

the central nodule (together contained in the central larger interspace).  

The raphe is not raised above the general level of the valve and the raphe 

canal walls do not exhibit poroids in any Pseudo-nitzschia species. 

CENTRAL LARGER 

INTERSPACE: 

NUMBER OF STRIAE per central larger interspace. 

GIRDLE BANDS: NUMBER OF STRIATED GIRDLE BANDS in a fully developed cingulm.  The 

MORPHOLOGICAL STRUCTURE (perforation/striation) of girdle bands.  The 

striae structure decreases in size abvalvarly see Figure 5(b). 
MANTLE STRUCTURE: Figure 5(c).  The distal mantle is similar to the valve face in striae 

structure and alignment and there is a strip of nonperforated silica 

between this structure and the valve face in all Pseudo-nitzschia species.  

The proximal mantle is nearly always similar to the valve face in striae 

structure and can be aligned with the fibulae, the interspaces or the valve 
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Electron photomicrographs of specimens are used to record morphological 

measurements such as the number of fibulae in 10µm.  Errors can arise if acid cleaning 

does not remove all the organic matter thereby obscuring valve structures, specimens are 

fragmented or an aberrant form of a species is present.  The main disadvantage resulting 

from electron microscopy studies is that quantitative methods are not applicable. 

 

Pseudo-nitzschia cultures can at times exhibit unusual growth tendencies.  The cell 

structure often undergoes morphological changes during the vegetative growth stage 

resulting in the formation of aberrant cells displaying unusual characteristics such as 

swellings along the valve margin ("lobed" cells) or an undulation of the frustule.  The 

resulting modifications to the silica frustule structure become a permanent trait in some 

clones (Fryxell unpublished, Subba Rao and Wohlgeschaffen 1990, Garrison et al. 1992, 

pers. obser.).  This type of observation is common in diatom cultures and may be a 

result of chance plasmolysis as suggested by Round et al (1990) or perhaps because of 

the malformation of delicately silicified cells during cell division (Garrison et al. 1992).  

Hasle (1965, Plate 2, Fig. 9) shows an example of lobed valve margins in a sickly 

culture of P. cuspidata.  The formation of aberrant cells is not however selective to a 

particular species, anomalous cells of P. multiseries (Subba Rao and Wohlgeschaffen 

1990), P. pungens (Takano and Kikuchi 1985) and P. australis (Garrison et al. 1992, 

pers. obser.) have also been documented.  Deformities are not unique to Pseudo-

nitzschia cultures, they have also been observed in natural populations of Pseudo-

nitzschia in oligotrophic waters and during bloom conditions (Takano and Kikuchi 

1985, Subba Rao and Wohlgeschaffen 1990).  Although, such anomalies in the structure 

of the silica frustule may add to difficulties in the identification of affected Pseudo-

nitzschia cells, verification of the species identity should not be completely retarded if 

other typical and distinct morphological features are persevered (Hasle and Syvertsen 

1997). 
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Figure 5. Diagram showing morphological features of girdle bands (a and b) and the 

valve mantles (c). 
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1.2.2 MOLECULAR BIOLOGY 

 

For centuries the taxonomy and systematics of diatoms have relied heavily on 

morphological criteria.  However, comparative morphological studies can, at times, be 

difficult, particularly when strains or ecotypes of a particular species differ only in size 

range and other minor morphological details from the designated "type strain"†.  The 

classification and phylogeny (evolutionary history and relationships) of diatoms have 

been based on comparisons of shared morphological characters of fossil and extant 

species together with life cycle experiments, biochemical research and cytological 

studies (Sorhannus et al. 1995).   

 

Recent advances in molecular biology (Polymerase Chain Reaction (PCR), cloning, 

sequencing etc.) have complimented the classical techniques used in the study of 

diatoms including Pseudo-nitzschia (Manhart et al. 1995, Douglas et al. 1994, Scholin et 

al 1994).  

 

The molecular approach involves the study of genetic information, stored in biological 

macromolecules, nucleic acids and proteins, to understand the systematics and 

evolutionary history of organisms.  Ribosomal DNA (rDNA) is a molecule that 

scientists working on Pseudo-nitzschia have focused their attention on to determine 

phylogenetic relationship between its species and with other diatoms (Douglas et al. 

1994, Scholin et al 1994).  Ribosomal DNA encodes for ribosomal RNA (rRNA) and so 

it plays an important role in the production of proteins essential for the structure, 

function and regulation of the cells, tissues, and organs in all living organisms (Woese 

1987).  One of the main reasons this molecule is used in phylogentic studies is because 

large databases (e.g. Ribosomal Database Project) exist that contain thousands of rDNA 

sequences for multiple organisms and these can be used to compare results.  Ribosomal 

DNA is also present in the nucleus of all living things and organelles.  The molecule has 

functional consistency and certain regions of the genes are universally conserved while 

                                                 
† "Type strain" or "Reference strain": This is usually the first strain of a species to be studied.  The 
specimen is well characterised and deposited in an international publicly accessible collection. 
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other domains are highly variable and unique to a given species which in principle 

makes it suitable for analyses of evolutionary relationships (Gerbi 1985).  Ribosomal 

DNA nucleotide sequences are also sufficiently long enough to provide statistically 

meaningful comparisons between organisms (Woese 1987).  

 

In diatoms the rDNA operon (Figure 7) typically contains an external transcribed 

spacer (ETS), the 18S small subunit (SSU) rDNA, internal transcribed spacers (ITS1 

and ITS2) found on either side of the 5.8S rDNA.  The large subunit (LSU) rDNA 

contains two moieties, the 28S rDNA and the 5.8S rDNA (Gerbi 1985).   

 

Figure 7.  Schematic layout of the nuclear ribosomal genes (rDNA) based on Gerbi 

(1985).  The rDNA operon includes the 18S, 5.8S and 28S ribosomal genes.  These are 

separated by the internal transcribed spacers (ITS1 and ITS2).  The rDNA tandem 

repeats are separated by the intergenic spacer (IGS) that is composed of a non–

transcribed spacer (NTS) and an external transcribed space (ETS). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Studies on Pseudo-nitzschia have used rDNA nucleotide sequences to distinguish 

between morphologically similar species such as P. multiseries and P. pungens 
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(Manhart et al. 1995, Douglas et al. 1994, Scholin et al. 1994) by using PCR and 

restriction fragment length polymorphism (RFLP).   

 

Phylogenetic analysis of sequences can be carried out using a variety of different 

methods (See Appendix 5 for background information on methods relating to this 

project).  Scholin et al. (1994) and Douglas et al. (1994) have used distance and/or 

parsimony based methods to discern the genetic relatedness of Pseudo-nitzschia species 

with each other and with other diatoms including Nitzschia species on the basis of SSU 

and LSU rDNA sequences.  These results have reinforced morphological data that 

separated the genus Pseudo-nitzschia from Nitzschia (Douglas et al. 1994).   

 

The work described above has led to the development of fluorescently labelled 

oligonucleotide probes designed from variable regions of the LSU rDNA to discriminate 

between Pseudo-nitzschia species (Miller and Scholin 1996).  Oligonucleotide probes are 

short nucleic acid strands designed to anneal to a complementing unique sequence in a 

target organism.  A label (e.g. fluorescent, radioactive tracer molecules) is attached to the 

probe to allow for its detection.  The development and application of in situ methods using 

rRNA targeted nucleic acid probes have been used successfully in the past to discriminate 

between bacterial populations in the wild (see reviews by Amann and Kühl 1998, Amann 

and Ludwig 2000).  Such methods offer an alternative research tool for studies of harmful 

algae.  For example Scholin (1998) describes in detail how to develop and apply probe 

technology for use in monitoring harmful microalgae including Pseudo-nitzschia.  Many of 

these techniques are still at the fine-tuning stages of their development but within the next 

decade or so, some, at least, will become be an integrated part of monitoring programs for 

harmful algae.  Ribosomal RNA targeted species-specific gene probes for Pseudo-nitzschia 

designed by Chris Scholin and his co-workers have proven to be very useful in the harmful 

phytoplankton surveillance programme operating in New Zealand (Rhodes et al. 1998).  

Scholin et al. are currently carrying out field trials using a novel tool called the 

Environmental Sample Processor (ESP) designed to process environmental samples in situ.  

The prototype can process and analyse water samples using species-specific molecular 

probes in addition to collecting and preserving phytoplankton samples for examination 
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using more conventional methods such as light and electron microscopy (Chris Scholin 

pers. commun.).  The system can also collect and process other environmental data and 

samples (e.g. toxins) required for a particular study.  

 

When using probes it should be remembered that small differences within Pseudo-

nitzschia species are possible at the nucleotide sequence level and that these variations 

may not be apparent when identifying the species using morphological methods 

(Scholin et al. 1994).  It is also possible that the nucleotide sequences of other marine 

aquatic microalgae that have not yet been documented may have a similar genetic code 

to the probes.  This may lead to unsuccessful applications of the species-specific 

oligonucleotide probes or unwanted cross reactions with non-target organisms.  Species-

specific probes must be tested against a number of cultures of microalgae including 

different clones of the target species, preferably from different biogeographic regions, 

and fine tuned to eliminate any cross reactivity that may be encountered.  Field testing is 

also essential to determine if cross reactivity exists between the probe and non-target 

organisms in the wild.  

 

1.3 PSEUDO-NITZSCHIA GLOBAL DISTRIBUTION 

 

Since phytoplankton play a significant role in marine ecosystems, accurate 

identification of individual species is therefore important for the various types of studies 

carried out.  Such investigations can range from the study of the structure and 

distribution of phytoplankton communities in time and space, through to toxic algal 

monitoring programmes. 
 

In the past there have been relatively few publications with detailed speciation of the 

diatom Pseudo-nitzschia.  However, this is rapidly changing with the discovery that 

some Pseudo-nitzschia species can produce the toxin domoic acid.  Its widespread 

distribution threatens the aquaculture industry worldwide.  Along with the intensive 

studies of Grethe Hasle on this genus, Greta Fryxell, Celia Villac and many others have 
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contributed largely to the increasing records on the global distribution of Pseudo-

nitzschia species (Table 8).   

 

Information on the distribution of P. delicatissima, P. fraudulenta, P. heimii 

(particularly abundant in the sub Antarctic), P. inflatula, P. lineola, P. multiseries, P. 

pseudodelicatissima, P. pungens and P. turgidula from the literature demonstrate that 

these species are relatively cosmopolitan.  However, P. delicatissima is a species that 

appears to show a variety of morphotypes and it is expected that a taxonomic revision of 

this species will be carried out presently (Nina Lundholm pers. commun.).  When this is 

completed, it is highly likely that the geographic distribution of this species will be 

altered slightly.  Southern cold water species include P. prolongatoides, P. subcurvata 

and P. turgiduloides while P. seriata f. obtusa is a more northern cold water species 

(Hasle and Syvertsen 1997).  The record of P. seriata tentatively identified from 

Chilean waters (South east Pacific) by Rivera et al. (1985) needs to be confirmed.  It is 

likely that the specimens of P. seriata forma obtusa observed were P. australis.  

Pseudo-nitzschia pungiformis thus far can be found in warm waters, Fryxell et al. 

(1997) reported this species in warm to temperate waters off the west coast of America.  

At present, information on the distribution of P. multistriata is relatively scarce and is 

restricted to Chinese waters.  This is because P. multistriata has only been recently 

defined (Takano 1993). 

 

Pseudo-nitzschia australis (recently recorded from waters in the North Pacific and 

North Atlantic), P. subfraudulenta, P. subpacifica, and P. cuspidata show a warm to 

temperate water distribution (Hasle and Syvertsen 1997).  Records of P. pungens var. 

cingulata (warm to temperate waters) are limited to the West coast of the United States 

(Fryxell et al. 1997), but reports will probably increase as more detailed studies using 

electron microscopy are carried out worldwide.  Finally, P. seriata f. seriata and P. 

granii seem to be more northern cold to temperate water species (Hasle and Syvertsen 

1997).   
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Table 8. Global distribution of species from the diatom Pseudo-nitzschia.  
(? = tentative identification) 

 

DISTRIBUTION SPECIES REFERENCE 
   
North America (east coast)   
Canada (Bay of Fundy, New Brunswick; 
Prince Edward island) 

P. delicatissima?; P. multiseries; P. pungens; 
P. pseudodelicatissima 

Bates et al. 1989; Martin et 
al. 1990; Smith et al. 1990 

Greenland P. delicatissima Skov et al.1999 
   
North America (west coast)   
Canada (British Columbia) P. australis; P. multiseries; P. pungens;  

P. seriata f. seriata 
Bates et al. 1989; Forbes & 
Denman 1991; Taylor & 
Haigh 1996  

USA (California) P. australis; P. cuspidata; P. delicatissima; 
 P. fraudulenta; P. heimii; P. inflatula?; 
P. lineola; P. multiseries; P. pungens;  
P. pungens var. cingulata; P. pungiformis?;  
P. pseudodelicatissima; P. seriata f. seriata?; 
P. subfraudulenta; P. subpacifica;  

Fryxell et al. 1997 

USA (Oregon) P. australis; P. fraudulenta; P. heimii;  
P. pungens; P. pungens var. cingulata;  
P. multiseries; P. pseudodelicatissima 

Fryxell et al. 1997 

USA (Washington) P. australis; P. pungens; P. multiseries;  
P. pseudodelicatissima;  

Fryxell et al. 1997 

   
Central America   
Gulf of Mexico  P. pseudodelicatissima Dortch et al. 1997 
Mexico (Pacific) P. pungens Hernández–Becerril 1998 
   
South America   
Argentina (Atlantic) P. australis; P. multiseries; P. pungens; 

 P. pseudodelicatissima 
Hasle 1965; Ferrario et al. 
1999  

Brazil (Atlantic) P. delicatissima; P. heimii; P. multiseries?;  
P. pungens; P. pseudodelicatissima;  
P. subfraudulenta? 

Villac & Tenenbaum 2000 

Chile (Pacific) P. cuspidata; P. delicatissima; P. fraudulenta; 
P. inflatula; P. pungens; P. 
pseudodelicatissima; P. seriata f. seriata?;  
P. seriata f.obtusa?; P. subpacifica;  

Rivera 1985 

Uruguay (Atlantic) P. multiseries Hasle 1965 
   
Africa   
Northwest Africa (Atlantic) P. subpacifica; P. delicatissima Hasle, 1965; Hasle et al. 

1996 
   
Mediterranean   
Algeria (Algiers) P. multiseries Skov et al. 1999 
Turkey (Gulf of Annaba) P. multiseries Skov et al. 1999 
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Table 8 cnt. Global distribution of species from the diatom Pseudo-nitzschia. 
 (? = tentative identification) 
 
DISTRIBUTION SPECIES REFERENCE 

Europe   
Spain P. australis; P. cuspidata; P. delicatissima; 

P. fraudulenta; P. multiseries; 
P. pseudodelicatissima; P. pungens; 
P. subpacifica 

Fraga et al. 1998 

Portuguese waters P. subpacifica Hasle et al. 1996 
   
Northern Europe    
Denmark P. delicatissima; P. fraudulenta;  

P. multiseries; P. pungens;  
P. pseudodelicatissima; P. seriata f. seriata 

Lundholm et al. 1994; 
Lundholm et al. 1997; 
Lundholm pers. commun;  

Skagerrak P. delicatissima; P. fraudulenta; P. heimii; 
 P. multiseries; P. pseudodelicatissima;  
P. pungens; P. seriata f. seriata;  

Hasle et al. 1996 

South coast of Norway P. heimii; P. multiseries Hasle 1965; Hasle et al. 
1996 

West coast of Norway and northwards P. seriata f. obtusa Hasle et al. 1996 
Russia east coast P. multiseries; P. pungens; P. 

pseudodelicatissima 
Orlova et al. 2000 

Scotland east coast (off Shetland) P. heimii Hasle 1965 
Scotland west coast P. australis; P. delicatissima; P. fraudulenta; 

P. multiseries; P. pungens; P. seriata f. 
seriata 

Gallacher et al. 2000 

   
Australasia   
Australia P. cuspidata; P. delicatissima; P. heimii;  

P. subfraudulenta 
Lapworth et al. 2000 

North and north west Australia  
(Gulf of Capentaria, Arafura sea) 

P. lineola Hallegraeff 1994; 
Hallegraeff 1995;  

North east Australia (Coral sea) P. lineola; P. turgidula Hallegraeff 1994 
East, southeast Australia 
(Victoria, New South Wales, Tasmania) 

P. australis; P. fraudulenta; P. multiseries;  
P. pungens; P. pseudodelicatissima;  
P. subpacifica; P. turgidula 

Hallegraeff 1994; 
Lapworth et al. 2000 

Indonesian waters P. pungens Sidabutar et al. 2000 
Japan P. delicatissima?; P. fraudulenta;  

P. multiseries; P. pungens;  
P. pseudodelicatissima; P. subfraudulenta;  
P. turgidula? 

Takano & Kuroki 1977; 
Takano & Kikuchi 1985; 
Kotaki et al. 1999 

New Zealand P. australis; P. delicatissima; P. fraudulenta; 
P. heimii; P. multiseries; P. pungens;  
P. pseudodelicatissima; P. turgidula 

Rhodes 1998 

   
Asia   
China (South China sea) P. delicatissima; P. multistriata;  

P. multiseries; P. pungens;  
P. pseudodelicatissima; P. subfraudulenta;  
P. subpacifica; P. turgidula; 

Yang pers. commun.; 
Takano, 1993; Dickman & 
Glenwright 1997; Weijian 
2000 

South Korea (East China sea) P. multiseries; P. pungens Lee 1994; Lee & Baik 1997 
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1.4 DOMOIC ACID AND TOXIC INCIDENTS OF AMNESIC SHELLFISH POISONING (ASP) 

 

Coastal areas in all parts of the world often experience periodic phytoplankton blooms.  

The term "red tide" is often applied to describe such events since water discolouration is 

frequently visible.  This natural proliferation of algae, where cell concentrations can 

reach millions of cells per litre is, more often than not, harmless.  Nonetheless, extensive 

blooms can sometimes be noxious, indiscriminately killing marine life forms when 

anoxic conditions arise as the bloom subsides and decomposition begins.  

 

Other harmful algal events (HAE†) can arise when phytoplankton present have the 

ability to produce potent chemical toxins.  The toxin can accumulate and concentrate in 

the tissues of bivalves through filter–feeding, and transfer through the food chain to 

humans, generating a public health risk to consumers.  Some phytoplankton species can 

produce toxic effects at low cell concentrations.   

 

The occurrence of red tides and toxic species are of major concern worldwide since 

such events can have large impacts on seafood quality (cultured and wild fisheries), 

aquaculture markets and tourism.  It is difficult if not impossible to prevent the 

development of a harmful algal event (HAE).  However, a toxic event that poses a threat 

to public health through the consumption of contaminated seafood can be avoided if 

early warning systems are set up.  Effective methods to ensure seafood safety such as 

the regular monitoring of the flesh of fish/shellfish for the presence of toxins through 

chemical analysis and bioassays, coupled with the monitoring of the water column for 

potentially toxic phytoplankton producers (non-chemical means) are now common place 

in locations where aquaculture operations exist. 

 

Up until the late 1980’s, species from the class Pyrrophyceae, the dinoflagellates, were 

considered to be the main cause of red tides and toxic events.  It should be noted that a 

                                                 
† HAB vs. HAE: The term HAE is used here preferentially to the more commonly applied HAB (Harmful 
algal bloom).  This is due to confusion that can sometimes arise regarding the term "bloom".  This 
literally means a proliferation of cells and such a proliferation need not always occur during a HAE. 
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red tide (not always strictly red) is linked to the colour expression from the 

chromatophores in the causative organisms, in this instance a red pigment called 

peridinin hence the name "red tide".  The most common illnesses in humans resulting 

from the consumption of seafood products contaminated with toxin are Paralytic 

Shellfish Poisoning (PSP), Diarrhetic Shellfish Poisoning (DSP), Neurotoxic Shellfish 

Poisoning (NSP) and Ciguatera Fish Poisoning (CFP).  The causative organisms include 

species from the genera Alexandrium, Gymnodinium and Pyrodinium (PSP), Dinophysis 

and Porocentrum (DSP), Ptychodiscus (NSP) and Gambierdiscus (CFP) respectively.  

These along with numerous other nuisance algae are well documented in the literature 

(Shumway 1990, Wright 1995, UNESCO 1995).  

 

A new type of seafood poisoning associated with the consumption of shellfish was 

encountered in Canada during November 1987.  People became ill after ingesting 

cultured blue mussels (Mytilus edulis) harvested from Prince Edward Island, Eastern 

Canada.  Over 100 cases of poisoning including 3 deaths were linked to the incident 

(Perl et al. 1990, Todd 1993).  The toxicological symptoms ranged from mild – 

gastrointestinal (nausea, vomiting, anorexia, diarrhoea, abdominal cramps and 

headaches) to severe – excessive bronchial secretions, difficulty in breathing, loss of 

balance/disorientation, seizures, coma, and sometimes death (Perl et al. 1990, Todd 

1993).  Some of the afflicted individuals suffered permanent short-term memory loss.  

As a result, the illness became known as Amnesic Shellfish Poisoning (ASP).  A toxin 

extracted from the contaminated mussel tissue was identified as domoic acid (Bird et al. 

1988, Wright et al. 1989).  This was not the first documentation of this natural toxin.  It 

had previously been isolated from a red macro alga, Chondria armata (Kütz) Okamura, 

by researchers in Japan (Takemoto and Daigo 1958).  The Japanese name for this plant 

is "Hanayanagi" or "Domoi" hence the name "domoic acid".  In the past the Japanese 

used this alga as a natural remedy for treating and expelling stomach worms.  Takemoto 

and Daigo (1958) found that small doses of domoic acid (20 mg) extracted from the 

plant had such an antihelminthic result. Iverson and Truelove (1994) stated that persons 

who ingested infected mussel containing low levels of domoic acid (~20 mg) during the 

crisis in Prince Edward Island did not suffer the clinical symptoms of ASP.  Although 
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domoic acid (DA) was known to be a neuroexcitant, at the time of the shellfish 

poisoning there had been no previous reports of human toxicity of this kind.  Further 

investigations revealed that the pennate diatom Pseudo-nitzschia multiseries was the 

source of the toxin.  A phytoplankton bloom at the time of the outbreak was primarily 

made up of this organism.  Cultures isolated from the area showed that P. multiseries 

had the ability to produce DA (Bates et al. 1988).  This was the first time a diatom was 

shown to produce a harmful toxin.  Other DA producers present at the time of the 

incident, but in low cell concentrations, were P. delicatissima and a benthic diatom 

Amphora coeffaeformis (Bates et al. 1988).   

 

Since the genus Pseudo-nitzschia is a cosmopolitan genus, the discovery of its toxic 

potential led to concerns that a similar outbreak to that experienced in Prince Edward 

Island might recur either locally or abroad.  A comprehensive monitoring programme 

was set up in Canada to provide an early warning system that would prevent a 

reoccurrence of ASP.  The following year (1988) P. pseudodelicatissima was recorded 

in high cell densities in plankton samples in the Bay of Fundy, eastern Canada (Martin 

et al. 1990).  Commercial blue mussels and soft-shell clams were found to be unfit for 

human consumption as they were tainted with DA.  Phytoplankton samples tested gave 

a positive DA result.  Cultures of P. pseudodelicatissima later isolated from the area 

also produced this toxin (Martin et al. 1990). 

 

Since 1987, there have been numerous reports of ASP in other parts of the world.  In 

September 1991 an ASP event arose for the first time in the United States.  Along the 

Californian coast many of the local seabirds: brown pelicans (Pelecanus occidentalis) 

and brant cormorants (Phalacrocorax penicillatus) fell ill or died after feeding on the 

herbivorous fishes, anchovies (Engraulis mordax) (Work et al. 1993).  After analysing 

the stomach contents of these fishes it was discovered that DA was present in high 

concentrations.  Analysis of their digestive system also revealed that the diatom P. 

australis was their main food source.  A bloom of this phytoplankton species was also 

evident from analysis of water samples taken at the time of the outbreak (Fritz et al. 

1992). 
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Amnesic Shellfish Poisoning reports north of Monterey Bay, California, were 

documented in November 1991.  A number of people showed minor symptoms of ASP 

after the consumption of softshell razor clams (Mya arenaria) (Horner and Postel 1993, 

Todd 1993).  Investigators discovered DA in the clams and also in Dungeness crabs 

(Cancer magister) in California and Washington.  It is not known what the source of the 

toxin was, but P. australis was suspected. 

 

In Europe, DA was first detected in October 1994 in mussels harvested in Galicia, 

northwest Spain.  This episode followed a bloom of Pseudo-nitzschia australis (Míguez 

et al. 1996).  To establish if any Pseudo-nitzschia species observed in Spanish waters 

had the ability to produce DA, strains of P. australis, P. fraudulenta, P. cuspidata, P. 

pungens and P. delicatissima were isolated and the cultures tested for DA.  Screening 

studies revealed that P. australis could indeed produce the toxin (Fraga et al. 1998).  

 

More recently in 1999, an ASP event was experienced off the west coast of Scotland, 

though no cases of human toxicity were reported.  The scallop (Pecten maximus) 

fisheries were forced to close with consequential large financial losses (Gallacher et al. 

2000).  The causative organism remains uncertain, although potential DA producing 

Pseudo-nitzschia species such as P. pungens, P. multiseries, P. seriata, P. australis and 

P. delicatissima have been identified in water samples from inshore areas where DA 

was not detected (Gallacher et al. 2000).  

 

The phenomenon can now be referred to as Domoic Acid Poisoning (DAP) since 

mammals other than humans have shown to be affected by this potent marine 

neurotoxin including birds and sea lions.  The toxin can also be transferred through the 

food–web by vectors other than shellfish (Work et al. 1993, Scholin et al. 2000).  Other 

mammals that have tested positive for symptoms of acute DA poisoning in the 

laboratory include rats and monkeys (Tryphonas et al. 1990). 

 

Since the first DAP incident in eastern Canada, global investigations have reported that 

several Pseudo-nitzschia species are potential DA producers.  Presently we know of 
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seven Pseudo-nitzschia species that can produce DA.  These along with other DA 

producers are listed in Table 9.  Additional toxigenic species will probably be 

encountered since research on this diatom is still ongoing.  Stephen Bates (1998) 

reported that the level of toxicity can be variable in each species (having the same 

external morphology) in cultures from different global localities and also within the 

same geographical region.  Culture studies carried out in the last decade testify that 

some Pseudo-nitzschia species, for example P. multiseries, significantly produce DA 

when under physiological stress resulting from nutrient limitation, such as silicate and 

phosphate (Bates 1998).   
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Table 9. Organisms that produce domoic acid in culture, some strains of the species 

indicated by a * have been found to be non-toxigenic in other culture studies (Bates et 

al. 1998 modified). PEI = Prince Edward Island, BF = Bay of Fundy, CA = California, 

MB = Monterey Bay NA = Narranagansett Bay CB = Coos Bay, RI = Rhode Island, OB 

= Ofunato Bay, GB = Galveston Bay, TX = Texas, M = Massachusetts Bay.  

 
Pseudo-nitzschia species  Biogeographical area Reference 

*P. multiseries Canada (PEI) 
 
USA (GB, TX) 
USA west coast (MB, CA) 
USA west coast (CA) 
USA (NA, RI) 
Japan (OB) 
Southern Korea 
*USA (M) 

Subba Rao et al. 1988; Bates et al. 1989; 1991; 1993; 
1995; 1996 
Fryxell et al. 1990 
Villac et al. 1993 
Fritz et al. 1992 
Hargraves et al. 1993 
Kotaki, et al. 1999 
Lee and Baik 1997 
*Villareal et al. 1993 

*P. pungens New Zealand 
* Canada east coast 
*USA (GB, TX) 
*Gulf of Mexico 
*USA (NA, RI) 
*Denmark 
*New Zealand 

Rhodes et al. 1996 
*Smith et al. 1990 
*Fryxell et al. 1990 
*Villac et al. 1993 
*Hargraves et al. 1993 
*Lundholm et al. 1994 
*Mackenzie et al. 1993 

*P. australis 
 

USA west coast (MB, CA) 
USA west coast (CB, CA) 
USA west coast (Iwaco CA,) 
New Zealand 
Spain 

Garrison et al. 1992; Buck et al. 1992; Villac et al. 1993 
Villac et al. 1993; *Villac et al. 1993 
Villac et al. 1993; Dickey et al. 1992; Fritz et al. 1992 
Rhodes et al. 1996 
Míguez et al. 1996 

*P. seriata Denmark 
*Canada east coast (PEI) 

Lundholm et al. 1994 
Bates et al. 1989 

*P. fraudulenta New Zealand 
*USA (NB, RI) 
*USA west coast (MB, CA) 

Rhodes et al. 1998 
*Hargraves et al. 1993 
*Villac et al. 1993 

*P. delicatissima Canada (east coast) 
New Zealand 
Denmark 
*USA west coast (MB, CA) 

Smith et al. 1990  
Rhodes et al. 1998 
Lundholm et al. 1997; *Lundholm et al. 1997 
*Villac et al. 1993 

*P. pseudodelicatissima Eastern Canada (BF) 
Denmark 
*Denmark 
*USA (GB, TX) 
*USA (M) 
*Australia 
*USA (MB) 

Martin et al. 1990 
Lundholm et al. 1997 
Lundholm et al. 1997 
*Reap 1991;  
*Villareal et al. 1993 
*Hallegraeff 1994 
*Walz et al. 1994; Villac et al. 1993 

P. turgidula New Zealand Rhodes et al. 1996 
Other diatoms:  
*Amphora coeffaeformis  
 
Nitzschia navis-varingica  

 
Canada (PEI) 
*Canada (PEI) 
Vietnam (shrimp-culture pond)  

 
Shimizu et al. 1989; Maranda et al. 1990 
*Bates et al. 1989 
Kotaki et al. 2000 

Red algae family Rhodomelaceae  
Chondria armata  Japan Takemoto and Daigo 1958 
Chondria baileyana  Canada (Southern Nova Scotia and PEI) Bird et al. 1988; Laycock et al. 1989 
Alsidium corallinum  Mediterranean (Sicily) Impellizzeri et al.1975 
Amansia glomerata  Sato et al. 1996 
Digenea simplex  Sato et al. 1996 
Vidalia obtusiloba  Sato et al. 1996 
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1.4.1 DOMOIC ACID  

 

Domoic acid (DA) is a naturally occurring crystalline water–soluble amino acid 

(Figure 6).  This heat stable biotoxin belongs to the kanoid group of compounds and is 

similar in structure to kainate.  More detailed information of its chemical and physical 

properties are given by Takemoto and Daigo (1958, 1960) and Wright (1989).  Domoic 

acid is considered to be a restricted form of glutamic acid, and can serve as a competitor 

to glutamate (neurotransmitter) in the brain and central nervous system if ingested in 

large amounts.  It binds to the kainate receptor proteins present in the central nervous 

system where the neurons are stimulated continuously until they are impaired; damage 

of the neurons in the hyppocampal region of the brain follows (Quilliam and Wright, 

1989). 

 

Figure 6. Chemical structure of domoic acid (redrawn from Wright and Quilliam 1995). 

METHODS OF DOMOIC ACID DETECTION 

The most characteristic indication displayed by mice injected with DA is the 

scratching of their shoulders with a hind leg, followed by spasms and occasionally death 

(Tasker et al. 1991).  A mouse bioassay was used during the first outbreak of domoic 

acid poisoning in Canada.  A safety limit of 20 µg.g-1 was recommended by Iverson and 

Truelove (1994) and has subsequently been adopted as the regulatory limit in many 

countries such as the United States, Spain and other EU countries including Ireland.  
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Since the mouse bioassay only shows effects at > 40 µg.g-1 (Wright and Quilliam 1995), 

alternative highly sensitive chemical analytical methods are often preferred.  One such 

testing procedure is the FMOC–HPLC method that detects DA in water samples with a 

detection limit of 0.1 ng DA.mL-1 (Pocklington et al. 1990).  When a new DA biotoxin 

producer is identified, confirmation of DA production is required; this can be 

determined using tandem mass spectrometry (Bates 1998).   

 
1.5 DOMOIC ACID PRODUCTION BY PSEUDO-NITZSCHIA IN CULTURE AND IN THE FIELD. 

 

Ever since the first account of an ASP event and with it the knowledge that P. 

multiseries could produce the marine biotoxin domoic acid (DA), many isolates of the 

diatom Pseudo-nitzschia have been cultured from different geographic regions around 

the world.  Several studies have suggested that various factors (biological, chemical and 

physical) can influence DA production in these organisms (see review by Bates 1998).  

Information on toxic and non-toxic strains has been compiled (Table 9) along with the 

understanding that DA production can vary in clones of the same species growing under 

seemingly similar conditions (Bates et al. 1989).  Various factors have been found to 

influence DA production.  These include bacterial association, nutrients, temperature 

and light.  

 

In a recent review Bates (1998) suggested that bacterial association and/or genetic 

variability between Pseudo-nitzschia isolates could be a possible explanation for the 

differences in the production of DA observed in various studies.  Douglas and Bates 

(1992) discovered that xenic† cultures of P. multiseries can produce DA at the same 

level or up to 20 times greater than axenic cultures.  Bates et al. (1995) have shown that 

several species of bacteria can enhance DA production of P. multiseries by factors of 

between 2 – 115 when added to xenic cultures.  This shows that although bacteria are 

not essential for the production of DA, their presence seems to influence its production 

(Douglas and Bates 1992, Bates et al. 1993).   

                                                 
† xenic cultures = bacterial flora present, axenic cultures = bacteria free 
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One of the first batch culture investigations of P. multiseries carried out by Bates et al. 

(1989) showed that DA was produced during the stationary phase of the growth cycle, 

where silica was the limiting nutrient.  Lundholm et al. (1994) discovered that a small 

amount of DA was produced by 3 isolates of P. seriata (batch culture) during late–

exponential phase, with most of the DA detected during the stationary phase of growth.  

A time–course study on a batch culture of P. australis showed that this species produced 

DA earlier, in mid–exponential phase (Garrison et al.1992).   

 

Further culture studies revealed that P. multiseries could indeed produce DA in mid–

exponential and late–exponential phase.  The DA production began when cell division 

started to decline (resulting from a controlling factor such as silica or phosphate 

limitation), in the presence of extracellular nitrate and an adequate light source (Bates et 

al. 1991; 1993; 1998, Pan et al. 1996).  Silica (Si) and phosphate (P) controlled 

continuous culture studies have also shown that when either of these nutrients are 

limiting, DA is produced by P. multiseries (Bates et al 1996, Bates 1998).  Bates et al. 

(1991) found that P. multiseries would only produce DA when nitrate was present and 

cell division had begun to decline in a nitrate limited batch culture study.  As with all 

amino acids this nutrient is required for DA synthesis.  

 

Lewis et al. (1993) found that P. multiseries was tolerant to a wide temperature range 

(5 ºC to 25 ºC).  During their investigations, DA production was positively correlated 

with increasing temperatures.  In contrast, Lundholm et al. (1994) discovered that P. 

seriata (an organism common in colder waters) isolates in culture produced more DA at 

a temperature of 4 ºC than at the higher temperature of 15 ºC. 

 

Work with P. multiseries batch cultures show that cell division rates decrease with 

decreasing photon flux densities (Bates et al. 1991).  Lewis et al. (1993) found 

similarities in the division rates and DA production of a P. multiseries culture grown at 

80 and 180 µmol.photons.m-2.s-1.  Bates and Léger (1992) found that DA continued to 

increase up to a light intensity of 100 µmol. m-2.s-1, but below 35 µmol.m-2.s-1 DA 

production decreased dramatically.  Hargraves et al. (1993) carried out an experiment 
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that tested the affects of UV exposure to three Pseudo-nitzschia species namely P. 

fraudulenta, P. pungens and P. multiseries.  The results showed that P. multiseries did 

not show any obvious affects from exposure to UV light.  However, the growth rates of 

P. fraudulenta seriously declined while the cell division rates of P. pungens were 

initially inhibited by UV exposure. 

 

An important physiological observation in Pseudo-nitzschia cell culture studies to date 

has been the production of domoic acid (in the presence of nitrogen) when division rates 

begins to decline as a result of some form of environmental stress (for e.g. a decrease in 

the availability of an essential nutrient required for growth). 

 

Although culture work may not exactly replicate in situ environmental conditions, it 

has been a very useful technique for studying DA production.  It has helped to elucidate 

various physiological conditions favouring growth of different Pseudo-nitzschia species 

along with confirming DA production of some species.  When optimum conditions for 

growth are elucidated and the ranges or tolerances to temperature, salinity, light and 

various nutrients are recorded for each species then results can be compared to 

observations noted in the field.  However, it is important to note that observations of 

environmental factors in unialgal cultures have their limitations and may not always 

reflect in situ observations.  For example the tolerances a microalgal culture exhibits to 

changes in salinity, temperature, light and other environmental factors are more 

generally wider in range than those recorded in the wild, therefore interpretations of 

experimental culture work must be considered carefully.  Unialgal cultures have been 

useful when molecular studies of Pseudo-nitzschia are carried out to determine 

phylogenetic relationships between species and strains of the same species. 

 

Most field studies concerning the diatom Pseudo-nitzschia have concentrated on either 

localised areas hit by domoic acid outbreaks or waters in the vicinity of Universities or 

marine research laboratories.  Concerns about public health, and the negative effect an 

ASP outbreak can have on the aquaculture industry has led to many studies 

investigating the factors responsible for the development of Pseudo-nitzschia blooms.  
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Initially, a lot of research, both culture and field studies concentrated on P. multiseries, 

since this species was the first of many Pseudo-nitzschia species found to be capable of 

producing domoic acid.  

 

In the main, the theme of field and culture investigations has been the study of 

variation and interrelationships between the physical (temperature, salinity, run–off, 

upwelling, stratification, seasonal circulation patterns, meteorological events, water 

transparency) and chemical (macronutrients, nutrient supply, oxygen) environments on 

bloom formation and DA production.  However, to date no single causative stimulus has 

been identified.   

 

Field studies have tended to focus on the influence of nutrient supply, in particular a 

change in the nutrient environment caused by  

a) Variations in nutrient input  

b) Upwelling, particularly after extended periods of nutrient depletion 

c) Natural variation resulting from the spring bloom 

d) Meteorology 

 

Meteorological events may modify the physical and chemical properties of the water 

column thus leading to more favourable conditions for growth of certain phytoplankton 

species.  Attempts have been made to correlate Pseudo-nitzschia bloom events with 

periodic cycles of weather and meteorology.  For example, in 1987 the P. multiseries 

bloom implicated in the first ASP outbreak in the estuaries of Cardigan Bay (Prince 

Edward Island, eastern Canada), occurred after a long and dry summer followed by 

periods of heavy rain in the autumn (Smith et al. 1990).  Smith et al. (1990) suggested 

that sufficient concentrations of a limiting nutrient from fresh water runoff contributed 

to this bloom as Pseudo-nitzschia cell concentrations were positively correlated with 

pulses in nitrate.  In 1988, the region again experienced a dry summer but with less 

rainfall in the autumn then the previous year.  A toxic bloom of P. multiseries was 

evident at this time but the size of the bloom was less intense.  Smith (1993) reported 
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that turbulent storms experienced in Prince Edward Island in 1990 had a direct effect on 

a P. multiseries bloom as it was carried offshore and dispersed. 

 

Lange et al. (1994) carried out a preliminary study on the occurrence and abundance of 

Pseudo-nitzschia species in waters off Southern California. High numbers of P. 

australis occurred sporadically between February and August although no DA outbreaks 

were reported.  Proliferation of this organism was associated with a drop in water 

temperature and an increase in nutrients.  It was thought that the change in the water 

column structure might have been a result of upwelling.  In Monterey Bay (California) 

blooms of P. australis accompanied by the presence of DA, are associated with the end 

of the upwelling season.  On these occasions, the water column is thermally stratified 

and nutrients in the surface layer are limiting.  During the spring when coastal upwelling 

is evident Pseudo-nitzschia blooms seemed to be less developed and shorter in their 

duration (Buck et al. 1992; Walz et al. 1994).  The complex oceanography of Monterey 

Bay is discussed by Garrison et al. (1992).  Some shallow parts of the Bay have long 

water residency times.  In these areas phytoplankton blooms and high concentrations of 

ammonia are often recorded, and may be due to local regeneration processes.   

 

It should be noted that other studies have found no obvious relationship associated 

with nutrients and Pseudo-nitzschia bloom formation.  Pseudo-nitzschia 

pseudodelicatissima dominated the phytoplankton assemblage in the Bay of Fundy in 

the autumn of 1987 when DA was detected in commercial shellfish.  There was no 

obvious correlation between nutrient concentrations and P. pseudodelicatissima cell 

numbers in the water column.  However, observations did show an elevation of water 

temperature at the time of the bloom (Martin et al. 1993).   
 

Investigations into the preferences of Pseudo-nitzschia species for different 

environmental parameters may be an important factor in understanding its synecology.  

Fryxell et al. (1990) noted that although P. multiseries and P. pungens sometimes co-

occur in the phytoplankton population in the Gulf of St. Lawrence (Galveston, Texas), 
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P. multiseries was more abundant in well mixed waters, with P. pungens in high cell 

densities in stratified waters.  

 

Investigations are needed to elucidate the chemical, physical and biological factors 

responsible for the collapse of a Pseudo-nitzschia bloom.  It was speculated that the 

decline of P. multiseries in the estuaries of Cardigan Bay (eastern Canada) during 1992 

was the result of parasitic chytrid fungi (see review by Bates et al. 1998).  Since 

pathogenic fungi/viruses may influence the Pseudo-nitzschia community structure, 

studies of these types of associations in cultures would provide valuable information. 

 

Most warning systems in place today rely primarily on the detection of DA in 

commercial shellfish tissue.  However, the 1991 Monterey Bay domoic acid incident, 

affecting brant cormorants and brown pelicans, has shown that DA outbreaks are not 

exclusive to commercial shellfish products (Buck et al. 1992; Fritz et al. 1992; Work et 

al. 1993).  Therefore more intense experimental and field studies are needed to 

understand the hydrography, ecology, and oceanographic conditions controlling 

population dynamics of potentially toxic Pseudo-nitzschia blooms and the introduction 

of DA into the marine foodweb.  Further investigations (both culture and field) will 

probably provide a better understanding of the bloom dynamics and the conditions 

required for DA production by Pseudo-nitzschia species.   

 

The work presented in this thesis set about to undertake such an approach in studying 

the distribution of the diatom Pseudo-nitzschia in Irish waters and to test the ability of 

cultured isolates to produce DA.   



INTRODUCTION 

38 

REFERENCES  

 

Amann, R. and Kühl, M. 1998. In situ methods for assessment of microorganisms and 

their activities. Current Opinion in Microbiology 1: 352-358. 

 

Amann, R and Ludwig, W. 2000. Ribosomal RNA-targeted nucleic acid probes for 

studies in microbial ecology. FEMS Microbiology Reviews 24: 555-565. 

 

Anonymous. 1975. Proposals for standardization of diatom terminology and diagnoses. 

Nova Hedwigia Beihefte 53: 323-354. 

 

Barber, H.G. and Haworth, E.Y. 1981. A guide to the morphology of the diatom frustule. 

Freshwater Biological association, Scientific publication No. 44, Titus Wilson and Son 

Ltd., Kendal, pp 113. 

 

Bates, S.S., Bird, C.J., Boyd, R.K., de Freitas, A.S.W., Falk, M., Foxall, R.A., Jamieson, 

W.D., McCulloch, A.W., Odense, P., Quilliam, M.A., Sim, P.G., Thibault, P., Walter, 

J.A. and Wright, J.L.C. 1988. Investigations on the source of domoic acid responsible 

for the outbreak of amnesic shellfish poisoning (ASP) in eastern Prince Edward Island. 

Atlantic Research Laboratory Technical Report 57. 

 

Bates, S.S., Bird, C.J., de Freitas, A.S.W., Foxall, R., Gilgan, M., Hanic, L.A., Johnson, 

G.R., McCulloch, A.W., Odense, P., Pocklington, R., Quilliam, M.A., Sim, P.G., Smith, 

J.C., Subba Rao, D.V., Todd, E.C.D., Walter, J.A. and Wright, J.L.C. 1989. Pennate 

diatom Nitzschia pungens as the primary source of domoic acid, a toxin in shellfish from 

eastern Prince Edward Island, Canada. Canadian Journal of Fisheries and Aquatic 

Sciences 46:1203-1215. 

 

Bates, S.S., de Freitas, A.S.W., Milley, J.E., Pocklington, R., Quilliam, M.A., Smith, 

J.C. and Worms, J. 1991. Controls on domoic acid production by the diatom Nitzschia 



INTRODUCTION 

39 

pungens f. multiseries in culture: nutrients and irradiance. Canadian Journal of 

Fisheries and Aquatic Sciences 48:1136-1144. 

 

Bates, S.S. and Léger, C. 1992. Response of Nitzschia pungens f. multiseries to 

irradiance; growth and domoic acid production. In Therriault, J.C. and Levasseur, M. 

[Eds.] Proceedings of the Third Canadian Workshop on Harmful Marine Algae. 

Canadian Technical Report of Fisheries and Aquatic Sciences 1893, pp. 9-10 (abstract). 

 

Bates, S.S., Worms, J. and Smith, J.C. 1993. Effects of ammonium and nitrate on 

domoic acid production by Pseudonitzschia pungens in batch culture. Canadian Journal 

of Fisheries and Aquatic Sciences 50: 1248-1254. 

 

Bates, S.S., Douglas, D.J., Doucette, G.J. and Léger, C. 1995. Effects of reintroducing 

bacteria on domoic acid production by axenic cultures of the diatom Pseudonitzschia 

pungens f. multiseries. In Lassus, P., Arzul, G., Erard, E., Gentien, P. and Marcaillou-Le 

Baut, C. [Eds.]. Harmful marine algal blooms. Lavoisier Science Publications, Paris, pp. 

401-406 

 

Bates, S.S., Douglas, D.J., Doucette, G.J. and Léger, C. 1995. Enhancement of domoic 

acid production by reintroducing bacteria to axenic cultures of the diatom Pseudo-

nitzschia multiseries. Natural Toxins 3: 429-435. 

 

Bates, S.S., Léger, C. and Smith, K.M. 1996. Domoic acid production by the diatom 

Pseudo-nitzschia multiseries as a function of division rate in silicate-limited chemostat 

culture. In Yasumoto, T., Oshima, Y. and Fukuyo Y. [Eds.]  Harmful and Toxic Algal 

Blooms. Intergovernmental Oceanographic Commission, UNESCO, Paris, pp. 163-166. 

 

Bates, S.S. 1998. Ecophysiology and Metabolism of ASP Toxin Production. In 

Anderson, D.M., Cembella, A.D. and Hallegraeff, G.M. [Eds.]  Physiological ecology of 

harmful algal blooms. Springer-Verlag, Heidelberg, pp. 405-426. 

 



INTRODUCTION 

40 

Bates, S.S., Garrison, D.L. and Horner, R.A. 1998. Bloom dynamics and physiology of 

domoic-acid-producing Pseudo-nitzschia species. In Anderson, D.M., Cembella, A.D. 

and Hallegraeff, G.M. [Eds.] Physiological ecology of harmful algal blooms. Springer-

Verlag, Heidelberg, pp. 267-292. 

 

Bird, C.J., Boyd, R.K., Brewer, D., Craft, C.A., de Freitas, A.S.W., Dyer, E.W., Embree, 

D.J., Falk, M., Flack, M.G., Foxall, R.A., Gillis, C., Greenwell, M., Hardstaff, W.R., 

Jamieson, W.D., Laycock, M.V., Leblanc, P., Lewis, N.I., McCulloch, A.W., McCully, 

G.K., McInerney-Northcott, M., McInnes, A.G., McLachlan, J.L., Odense, P., O'Neil, 

D., Pathak, V., Quilliam, M.A., Ragan, M.A., Seto, P.F., Sim, P.G., Tappen, D., 

Thibault, P., Walter, J.A. and Wright, J.L.C. 1988. Identification of domoic acid as the 

toxic agent responsible for the P.E.I. contaminated mussel incident. Atlantic Research 

Laboratory Technical Report 56. 

 

Buck, K.R., Uttal-Cooke, L., Pilskaln, C.H., Roelke, D.L., Villac, M.C., Fryxell, G.A., 

Cifuentes, L. and Chavez, F.P. 1992. Autecology of the diatom Pseudo-nitzschia 

australis Frenguelli, a domoic acid producer, from Monterey Bay, California. Marine 

Ecology Progress Series 84:293-302. 

 

Cleve, P.T. 1883. Diatoms collected during the expedition of the Vega. Vega-Exped. 

Iakttagelser 3: 455-517. 

 

Cleve, P.T. 1897. Report on the phytoplankton collected on the expedition of H.M.S. 

"Research" 1896. Fifteenth annual Report of the Fishery Board for Scotland 3:296-304. 

 

Cupp, E.E. 1943. Marine planktonic diatoms of the west coast of North America. 

Bulletin Scripps Institute of Oceanography 5:1-238. 

 

Dickey, R.W., Fryxell, G.A., Grande, H.R. and Roelke, D. 1992. Detection of the 

marine toxins okadaic acid and domoic acid in shellfish and phytoplankton in the Gulf 

of Mexico. Toxicon 30: 355-359. 



INTRODUCTION 

41 

 

Dickman, M. and Glenwright, T. 1997. A comparison of marine planktonic and 

sediment core diatoms in Hong Kong with emphasis on Pseudo-nitzschia. 

Hydrobiologia 352: 149-358. 

 

Dortch, Q., Robichaux, R., Poos, S., Milsted, D., Mire, G., Rabalais, N.N., Soniat, T.M., 

Fryxell, G.A., Turner, R.E. and Parsons, M.L. 1997. Abundance and vertical flux of 

Pseudo-nitzschia in the northern Gulf of Mexico. Marine Ecology Progress Series 146: 

249-264. 

 

Douglas, D.J. and Bates, S.S. 1992. Production of domoic acid, a neurotoxic amino acid, 

by an axenic culture of the marine diatom Nitzschia pungens f. multiseries Hasle. 

Canadian Journal of Fisheries and Aquatic Sciences 49: 85-90. 

 

Douglas, D.J., Landry, D. and Douglas, S.E. 1994. Genetic relatedness of two toxic and 

non-toxic isolates of the marine pennate diatom Pseudonitzschia (Bacillariophyceae): 

phytogenetic analysis of 18S rRNA sequences. Natural Toxins 2: 166-174. 

 

Fraga, S., Alverez, M.J., Míguez, Á., Fernández, M.L., Costas, E. and López-Rodas, V. 

1998. Pseudo-nitzschia species isolated from Galician waters: toxicity, DNA content 

and lectin binding assay. In Reguera, B., Blanco, J., Fernández, M.L., Wyatt, T. [Eds.]  

Harmful microalgae. Xunta de Galicia and the IOC of UNESCO, Santiago de 

Compostela, pp. 270-273. 

 

Ferrario, M.E., Scar, E.A., Castanos, C. and Hinz, F. 1999. Potentially toxic species of 

the diatom genus Pseudo-nitzschia in Argentinian coastal waters. Nova Hedwigia 

Beihefte 68: 131-147. 

 

Forbes, J.R. and Denman, K.L. 1991. Distribution of Nitzschia pungens in coastal waters 

of British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 48: 960-967. 

 



INTRODUCTION 

42 

Frenguelli, J. 1939. Diatomeas del Golfo de San Matias. Rev. Mus. Plata 2:201-226 

 

Fritz, L., Quilliam, M.A., Wright, J.L.C., Beale, A. and Work, T.M. 1992. An outbreak 

of domoic acid poisoning attributed to the pennate diatom Pseudonitzschia australis. 

Journal of Phycology 28:439- 442. 

 

Fryxell, G.A., Reap, M.E. and Valencic, D.L. 1990. Nitzschia pungens Grunow f. 

multiseries Hasle: observations of a known neurotoxic diatom. Nova Hedwigia Beihefte  

100:171-188. 

 

Fryxell, G.A., Garza, S.A. and Roelke, D.L. 1991. Auxospore formation in an Antarctic 

clone of Nitzschia subcurvata Hasle. Diatom Research 6: 235-245. 

 

Fryxell, G.A., Villac, M.C and Shapiro, L.P. 1997. The occurrence of the toxic diatom 

 genus Pseudo-nitzschia (Bacillariophyceae) on the West Coast of the USA, 1920-1996: 

a review. Phycologia 36: 419-437. 

 

Gallacher, S., Gillibrand, P.A., Heath, M.R., Hess, P., Howard, F.G., Kelly, M.C., 

MacDonald E.M. and Turrell, W.R. 2000 The occurrence of Amnesic Shellfish Poisons 

in Scottish waters. Abstracted In IX International Conference on Harmful Algal Blooms, 

Tasmania, Australia, February 2000.  p.17 

 

Garrison, D.L., Conrad, S.M., Eilers, P.P. and Waldron, E.M. 1992. Confirmation of 

domoic acid production by Pseudonitzschia australis (Bacillariophyceae) cultures. 

Journal of Phycology  28: 604-607. 

 

Gerbi, S.A. 1985. Evolution of ribosomal DNA. In MacIntyre, R.J. [Ed.] Molecular 

Evolutionary Genetics. Plenum Press, New York, pp 419-517. 

 

Hallegraeff, G.M. 1994. Species of the diatom genus Pseudonitzschia in Australian 

waters. Botanica Marina 37: 397-411. 



INTRODUCTION 

43 

 

Hallegraeff, G.M.  Anderson, D.M. and Cembella, A.D. [Eds.]. UNESCO 1995. Vol. 1. 

HAB Publication Series. IOC manual on harmful marine algae, IOC Manuals and 

Guides, No. 33.  UNESCO, Paris. 

 

Hargraves, P.E., Wang, R., Zhang, J. and Shimizu, Y. 1993. Growth characteristics of 

the diatoms Pseudonitzschia pungens and P. fraudulenta exposed to ultraviolet 

radiation. Hydrobiologia 269: 207-212. 

 

Hasle, G.R. 1965. Nitzschia and Fragilariopsis species studied in the light and electron 

microscopes. II. The group Pseudonitzschia. Skrifterutgitt av Det Norske Videnskaps-

Akademii Oslo I. Matematisk-Naturvidenskapelig Klasse Ny Series 18:1-45. 

 

Hasle, G.R. 1971. Nitzschia pungiformis (Bacillariophyceae), a new species of the 

Nitzschia seriata group. Norwegian Journal of Botany. 18: 139-144. 

 

Hasle, G.R. 1972. The distribution of Nitzschia seriata Cleve and allied species. Nova 

Hedwigia Beihefte   39: 171-190. 

  

Hasle, G.R. 1974. Validation of the names of some marine planktonic species of 

Nitzschia (Bacillariophyceae). Taxon 23: 425-428. 

 

Hasle, G.R. 1976. Examination of diatom type material: Nitzschia delicatissima Cleve, 

Thalassiosira minuscula Krasske and Cyclotella nana Hustedt. British Phycological 

Journal 11:101-110. 

 

Hasle, G.R. 1993. Nomenclatural notes on marine planktonic diatoms. The family 

Bacillariaceae.  Nova Hedwigia Beihefte  106: 315-321. 

 

Hasle, G.R. 1994. Pseudo-nitzschia as a genus distinct from Nitzschia 

(Bacillariophyceae). Journal of Phycology  30: 1036-1039. 



INTRODUCTION 

44 

 

Hasle, G.R. 1995. Pseudo-nitzschia pungens and P. multiseries (Bacillariophyceae): 

nomenclatural history, morphology and distribution. Journal of Phycology  31: 428-435. 

 

Hasle, G.R. and Fryxell, G.A. 1995. Taxonomy of diatoms. In Hallegraeff, G.M. 

Anderson, D.M. and Cembella, A.D. [Eds.]  IOC manual on harmful marine 

microalgae, IOC manuals and guides 33. UNESCO, Paris, pp. 341-366. 

 

Hasle, G.R., Lange, C.B. and Syvertsen, E.E. 1996. A review of Pseudo-nitzschia, with 

special reference to the Skagerrak, North Atlantic and adjacent waters. Helgoländer 

Merres 50:131-175. 

 

Hasle, G.R. and Syvertsen, E.E. 1997. Marine diatoms. In Tomas, C.R. [Ed.] Identifying 

marine phytoplankton. Academic Press, San Diego, pp. 5-385. 

 

Heiden, H. and Kolbe, R.W. 1928. Die marinen Diatomeen der Deutschen Südpolar-

Expedition 1901-1903. Deutsche Südpolar-Expedition 8:447-715.  

 

Hernández-Becerril, D.U. 1998. Species of the planktonic diatom genus Pseudo-

nitzschia of the Pacific coast of Mexico. Hydrobiologia 379: 77-84. 

 

Horner, R.A. and Postel, J.R.. 1993. Toxic diatoms in western Washington waters (U.S. 

west coast). Hydrobiologia 269: 197-205. 

 

Hustedt, F. 1952. Diatomeen aus der Lebensgemeinschaft des Buckelwals (Megaptera 

nodosa Bonn.). Archives Hydrobiologia 46:286-298. 

 

Hustedt, F. 1958. Diatomeen aus der Antarktis und dem Südatlantik. 1938-1939. 

Deutsche Antarktische Expedition 2:103-191. 

 



INTRODUCTION 

45 

Impellizzeri, G., Mangiafico, S., Oriente, G., Piattelli, M., Sciuto, S., Fattorusso, E., 

Magno, S., Santacroce, C. and Sica, D. 1975. Amino acids and low-molecular-weight 

carbohydrates of some marine red algae. Phytochemistry 14: 1549-1557. 

 

Iverson, F. and Truelove, J. 1994. Toxicology and seafood toxins: domoic acid. Natural 

Toxins 2: 334-339. 

 

Karsten, G. 1928. Abteilung Bacillariophyta (Diatomeae). In Engler, A.  und Prantl, K.  

[Eds.] Die natürlichen Pflanzenfamilien 2, Peridineae (Dinoflagellatae), Diatomeae 

(Bacillariophyta), Myxomycetes. Leipzig: Wilhelm Engelmann pp. 105-345. 

 

Kotaki, Y., Koike, K., Sato, S., Ogata, T., Fukuyo, Y. and Kodama, M. 1999. 

Confirmation of domoic acid production of Pseudonitzschia multiseries isolated from 

Ofunato Bay, Japan. Toxicon 37: 677-682. 

 

Kotaki, Y., Koike, K., Yoshida, M., Thuoc, C.V., Huyen, N.T.M., Hoi, N.C., Fukuyo, Y. 

and Kodama, M. 2000. Domoic acid production in Nitzschia isolated from a shrimp-

culture pond in Do Son, Vietnam. Journal of Phycology  36: 1057-1060. 

 

Lange, C.B., Reid, F.M.H. and Vernet, M.. 1994. Temporal distribution of the 

potentially toxic diatom Pseudonitzschia australis at a coastal site in southern 

California. Marine Ecology Progress Series 104: 309-312. 

 

Lapworth, C.J., Hallegraeff, G.M. and Ajani, P.A. 2000. Identification of domoic-acid 

producing Pseudo-nitzschia species in Australian waters. Abstracted In IX International 

Conference on Harmful Algal Blooms, Tasmania, Australia, February 2000. p.159. 

 

Laycock, M.V., de Freitas, A.S.W. and Wright J.L.C. 1989. Glutamate agonists from 

marine algae. Journal of Applied Phycology   1: 113-122. 

 



INTRODUCTION 

46 

Lee, J.H. 1994. Neurotoxin-producing diatom, Pseudonitzschia pungens Grunow f. 

multiseries Hasle, off the coastal waters of southern Korea. I. Morphological features. 

Korean Journal of Phycology  9: 125-134. 

 

Lee, J.H. and Baik, J.H. 1997. Neurotoxin-producing Pseudonitzchia multiseries (Hasle) 

Hasle, in the Coastal Waters of Southern Korea. II. Production of domoic acid. Algae 

12: 31-38. 

 

Lewis, N.I., Bates, S.S., McLachlan, J.L. and Smith, J.C.. 1993. Temperature effects on 

growth, domoic acid production, and morphology of the diatom Nitzschia pungens f. 

multiseries. In T.J. Smayda and Y. Shimizu [Eds.] Toxic phytoplankton blooms in the 

sea. Elsevier Science Publishing B.V., Amsterdam pp. 601-606. 

 

Lundholm, N., Skov, J., Pocklington, R. and Moestrup, Ø. 1994. Domoic acid, the toxic 

amino acid responsible for amnesic shellfish poisoning, now in Pseudonitzschia seriata 

(Bacillariophyceae) in Europe. Phycologia 33:475-478. 

 

Lundholm, N., Skov, J., Pocklington, R. and Moestrup, Ø. 1997. Studies on the marine 

planktonic diatom Pseudo-nitzschia. 2. Autecology of P. pseudodelicatissima based on 

isolates from Danish coastal waters. Phycologia 36: 381-388. 

 

Manhart, J.R., Fryxell, G.A., Villac, C. and Segura, L.Y. 1995. Pseudo-nitzschia 

pungens and P. multiseries (Bacillariophyceae): nuclear ribosomal DNAs and species 

differences. Journal of Phycology  31: 421-427. 

 

Manguin, E. 1957. Premier inventaire des Diatomées de la Terre Adélie Antarctique. 

Espèces nouvelles. Rev. Algol. N.S. 3:111-134. 

 

Manguin, E. 1960. Les diatomées de la Terre Adélie. Campagne du "Commandant 

Charcot" 1949-1950. Annales des Sciences Naturelles Botanique 12:223-363. 

 



INTRODUCTION 

47 

Mann, D. G. 1978. Studies in the family Nitzschiaceae (Bacillariophyceae). Ph.D. 

Dissertation. University of Bristol. pp. 386. 

 

Martin, J.L., Haya, K., Burridge, L.E. and Wildish, D.J. 1990. Nitzschia 

pseudodelicatissimaa source of domoic acid in the Bay of Fundy, eastern Canada. 

Marine Ecology Progress Series 67:177-182. 

 

Martin, J.L., Haya, K. and Wildish, D.J. 1993. Distribution and domoic acid content of 

Nitzschia pseudodelicatissima in the Bay of Fundy. In Smayda, T.J. and Shimizu, Y. 

[Eds.] Toxic phytoplankton blooms in the sea. Elsevier Science Publishing B.V., 

Amsterdam. pp. 613-618. 

 

MacKenzie, A., White, D.A., Sim, P.G. and Holland, A.J. 1993. Domoic acid and the 

New Zealand Greenshell mussel (Perna canaliculus). In Smayda, T.J. and Shimizu, Y. 

[Eds.]  Toxic phytoplankton blooms in the sea. Elsevier Science Publishing B.V., 

Amsterdam, pp. 607-612. 

 

Maranda, L., Wang, R., Musauda, K. and Shimizu, Y. 1990. Investigation of the source 

of domoic acid in mussels. In Granéli, E., Sundström, B., Edler, L. anderson, D.M. 

[Eds.]  Toxic marine phytoplankton. Elsevier Science Publishing Company 

Incorporated, New York, pp. 300-304. 

 

Míguez, Á., Fernández, M.L. and Fraga, S. 1996. First detection of domoic acid in 

Galicia (NW of Spain). In Yasumoto, T., Oshima, Y. and Fukuyo, Y. [Eds.]  Harmful 

and Toxic Algal Blooms. Intergovernmental Oceanographic Commission, UNESCO, 

Paris, pp. 143-145. 

 

Miller, P.E. and Scholin, C.A.. 1996. Identification of cultured Pseudo-nitzschia 

(Bacillariophyceae) using species-specific LSU rRNA-targeted fluorescent probes. 

Journal of Phycology 32: 646-655. 

 



INTRODUCTION 

48 

Orlva, T.Y., Stonik, I.V. and Zhukova, N.V. 2000. Pseudo-nitzschia species in the far 

eastern seas of Russia. Abstracted In IX International Conference on Harmful Algal 

Blooms, Tasmania, Australia, February 2000, p.189. 

 

Pan, Y., Subba Rao, D.V., Mann, K.H. Brown, R.G. and Pocklington, R. 1996. Effects 

of silicate limitation on production of domoic acid, a neurotoxin, by the diatom 

Pseudonitzschia pungens f. multiseries (Hasle). I. Batch culture studies. Marine Ecology 

Progress Series 131: 225-233. 

 

Peragallo, H. and Peragallo, M. (1897-1908). In Tempère, MJ. [Ed.] Diatomées Marines 

de France et des Districts Maritimes Voisins. Grez-sur-Loing (S. et M.) Texte, 493 pp., 

Atlas, 137 planches. 

 

Peragallo, H. & Peragallo, M. 1900. In Tempère, MJ. [Ed.] Diatomées marines des 

France. Micrographe-Éditeur, Grez-sur-Loing, 2, 492 pp. 

 

Perl, T.M., Bédard, L., Kosatsky, T., Hockin, J.C., Todd, E. and Remis, R.S. 1990. An 

outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic 

acid. New England Journal of Medicine 322: 1775-1780. 

 

Pocklington, R., Milley, J.E., Bates, S.S., Bird, C.J., de Freitas, A.S.W. and Quilliam, 

M.A. 1990. Trace determination of domoic acid in seawater and phytoplankton by high-

performance liquid chromatography of the fluorenylmethoxycarbonyl (FMOC) 

derivative. International Journal of Environmental and Analytical Chemistry 38: 351-

368. 

 

Qi, Y. 1994. Proceedings of IOC-westpac. Third international Scientific symposium 

Bali, Indonesia, pp. 88-95. 

 

Quilliam, M.A. and Wright, J.L.C. 1989. The amnesic shellfish poisoning mystery. 

Analtical Chemistry 61:1053-1060. 



INTRODUCTION 

49 

 

Reap, M.E. 1991. Nitzschia pungens Grunow f. multiseries Hasle: growth phases and 

toxicity of clonal cultures isolated from Galveston Bay, Texas. M.Sc. Thesis, Texas 

A&M University. 78 p. 

 

Rhodes, L.L., White, D., Syhre, M. and Atkinson, M. 1996. Pseudo-nitzschia species 

isolated from New Zealand coastal waters: domoic acid production in vitro and links 

with shellfish toxicity. In Yasumoto, T., Oshima, Y. and Fukuyo, Y. [Eds.]  Harmful 

and Toxic Algal Blooms. Intergovernmental Oceanographic Commission, UNESCO, 

Paris, pp. 155-158. 

 

Rhodes, L.L. 1998. Identification of potentially toxic Pseudo-nitzschia 

(Bacillariophyceae) in New Zealand coastal waters, using lectins. New Zealand Journal 

of Marine and Freshwater Research 32: 537-544. 

 

Rhodes, L. Scholin, C. and Garthwaite, I. 1998. Pseudo-nitzschia in New Zealand and 

the role of DNA probes and immunoassays in refining marine biotoxin monitoring 

programmes. Natural Toxins 6: 105-111. 

 

Rivera, P. 1985. Las especias  del género Nitzchia Hassal, sección Pseudonitchia 

(Bacillariophyceae)  en  las aguas   marinas  chileñas. Gayana Botanica 42: 9-39. 

 

Ross, R., Cox, E.J., Karayeva, N.I., Mann, D.G., Paddock, T.B.B., Simonsen, R. and 

Sims, P.A. 1979. An amended terminology for the siliceous components of the diatom 

cell. Nova Hedwigia Beihefte 64: 513-533. 

 

Sato, M., Nakano, T., Takeuchi, M., Kanno, N., Nagahisa, E. and Sato, Y. 1996. 

Distribution of neuroexcitatory amino acids in marine algae. Phytochemistry 42: 1595-

1597. 

 



INTRODUCTION 

50 

Scholin, C.A., Villac, M.C.  Buck, K.R.  Krupp, K.M.  Powers, D.A.  Fryxell, G.A. and 

Chavez, F.P. 1994. Ribosomal DNA sequences discriminate among toxic and non-toxic 

Pseudonitzschia species. Natural Toxins 2: 152-165. 

 

Scholin, C.A. 1998. Development of nucleic acid probe-based diagnostics for 

identifying and enumerating harmful algal bloom species. In Anderson, D.M., 

Cembella, A.D. and Hallegraeff, G.M. [Eds.]. Physiological ecology of harmful algal 

blooms. Springer-Verlag, Heidelberg. pp. 337-349. 

 

Scholin, C.A., Gulland, F., Doucette, G.J., Benson, S., Busman, M., Chavez, F.P., 

Cordaro, J., DeLong, R., De Vogelaere, A., Harvey, J., Haulena, M., Lefebvre, K., 

Lipscomb, T., Loscutoff, S., Lowenstine, L.J., Martin, R.I., Miller, P.E., McLellan, 

W.A., Moeller, P.D.R., Powell, C.L., Rowles, T., Silvagnl, P., Silver, M., Spraker, T. 

and Van Dolah, F.M. 2000. Mortality of sea lions along the central coast linked to a 

toxic diatom bloom. Nature 403: 80-84. 

 

Shimizu, Y., Gupta, S., Masuda, K., Maranda, L., Walker, C.K. and Wang, R. 1989. 

Dinoflagellate and other microalgal toxins: chemistry and biochemistry. Pure and 

Applied Chemistry 61: 513-516. 

 

Shumway, S.E. 1990. A review of the effects of algal blooms on shellfish aquaculture. 

Journal of the World Aquaculture Society 21: 65-104. 

 

Sidabutar, T., Parseno, D.P. and Fukuyo, Y. 2000. Status of harmful algal blooms in 

Indonesian waters. Abstracted In IX International Conference on Harmful Algal 

Blooms, Tasmania, Australia, February 2000, p. 220. 

 

Skov, J., Lundholm, N., Moestrup, Ø. and Larsen, J. 1999. Potentially toxic 

phytoplankton. 4. The diatom genus Pseudo-nitzschia  (Diatomophyceae/ 

Bacillariophyceae). In Lindley, J.A. [Ed.] ICES Identification Leaflets for 



INTRODUCTION 

51 

Phytoplankton, Leaflet No. 185. International Council for the Exploration of the Sea, 

Copenhagen, pp. 1-23.  

 

Skvortzow, B.V. 1946. Species novae et minus cognitae algarum, Flagellatarum et 

Phycomicetarum. Proceedings of the Harbin Society of Natural History and 

Ethnography 2:1-34 

 

Smith, J.C., Cormier, R., Worms, J., Bird, C.J., Quilliam, M.A., Pocklington, R., Angus, 

R. and Hanic, L. 1990.  Toxic blooms of the domoic acid containing diatom Nitzschia 

pungens in the Cardigan River, Prince Edward Island. In Granéli, E., Sundström, B., 

Edler, L. anderson, D.M. [Eds.]  Toxic marine phytoplankton. Elsevier Science 

Publishing Company Incorporated, New York, pp. 227-232. 

 

Smith, J.C. 1993. Toxicity and Pseudo-nitzschia pungens in Prince Edward Island, 

1987-1992. Harmful Algae News, No. 6 pp. 1 and 8. 

 

Sorhannus, U., Gasse, F., Perasso, R. and Tourancheau, A.B. 1995. A preliminary 

phylogeny of diatoms on 28S ribosomal RNA sequence data. Phycologia 34:65-73. 

 

Sournia, A., Chrétiennot-Dinet, M.-J. and Ricard, M. 1991. Marine phytoplankton: how 

many species in the world? Journal of Plankton Research 13: 1093-1099. 

 

Subba Rao, D.V., Quilliam, M.A. and Pocklington, R. 1988. Domoic acida neurotoxic 

amino acid produced by the marine diatom Nitzschia pungens in culture. Canadian 

Journal of Fisheries and Aquatic Sciences 45: 2076-2079. 

 

Subba Rao, D.V. and Wohlgeschaffen, G. 1990. Morphological variants of Nitzschia 

pungens Grunow f. multiseries Hasle. Botanica Marina 33: 545-550. 

 



INTRODUCTION 

52 

Takano, H. and Kuroki, K. 1977. Some diatoms in the Section Pseudonitzschia found in 

coastal waters of Japan. Bulletin of Tokai Regional Fisheries Research Laboratory 91: 

41-51.  

 
Takano, H. and Kikuchi, K. 1985. Anomalous cells of Nitzschia pungens Grunow found 

in eutrophic marine waters. Diatom 1: 18-20. 

 

Takano, H. 1993. Marine Diatom Nitzschia multistriata sp. Nov. Common at Inlets of 

the Southern Ocean. Diatom 8: 39-41. 

 

Takemoto, T. and Daigo, K. 1958. Constituents of Chondria armata. Chemical and 

Pharmaceutical Bulletin 6: 578-580. 

 

Takemoto, T. and Daigo, K. 1958. Über die Inhaltsstoffe von Chondria armata und ihre 

pharmakologische Wirkung. Arch. Pharm. 293: 627-633. 

 

Tasker, R.A.R., Connell, B.J. and Strain, S.M. 1991. Pharmacology of systemically 

administered domoic acid in mice. Canadian Journal of Physiology and Pharmacology 

69: 378-382. 

 

Taylor, F.J.R. and Haigh, R. 1996. Spatial and temporal distributions of microplankton 

during the summers of 1992-1993 in Barkely Sound, British Columbia, with emphasis 

on harmful species. Canadian Journal of Fisheries and Aquatic Sciences 53:2310-2322. 

 

Todd, E.C.D. 1993. Amnesic shellfish poisoninga review. Journal of Food Protection 

56: 69-83. 

 

Tryphonas, L., Truelove, J., Nera, E. and Iverson, F. 1990. Acute neurotoxicity of 

domoic acid in the rat. Toxicologic Pathology 18: 1-9. 

 



INTRODUCTION 

53 

Tryphonas, L., Truelove, J. and Iverson, F. 1990. Acute parenteral neurotoxicity of 

domoic acid in cynomolgus monkeys (M. fascicularis). Toxicologic Pathology 18: 297-

303. 

 

Villac, M.C., Roelke, D.L., Villareal, T.A. and Fryxell, G.A. 1993. Comparison of two 

domoic acid-producing diatomsa review. Hydrobiologia 269: 213-224. 

 

Villac, M.C., Roelke, D.L., Chavez, F.P., Cifuentes, L.A. and Fryxell, G.A. 1993. 

Pseudonitzschia australis and related species from the west coast of the U.S.A.: 

occurrence and domoic acid production. Journal of Plankton Research. 12: 457-465. 

 

Villac, M.C. and Fryxell, G.A. 1998. Pseudo-nitzschia pungens var. cingulata var. nov. 

(Bacillariophyceae) based on field and culture observations. Phycologia 37: 269-274. 

 

Villac, M.C. and Tenenbaum, D.R. 2000. The coastal Pseudo-nitzschia from the state of 

Rio de Janeiro, Brasil. Abstracted In IX International Conference on Harmful Algal 

Blooms, Tasmania, Australia, February 2000, p.241. 

 

Villareal, T.A., Roelke, D.L. and Fryxell, G.A. 1993. Occurrence of the toxic diatom 

Nitzschia pungens f. multiseries in Massachusetts Bay, Massachusetts, U.S.A. Marine 

Environmental Research 37: 417-423. 

 

Walz, P.M., Garrison, D.L., Graham, W.M., Cattey, M.A., Tjeerdema, R.S. and Silver, 

M.W. 1994. Domoic acid-producing diatom blooms in the Monterey Bay, California: 

1991-1993. Natural Toxins 2: 271-279. 

 

Weijian, H. 2000. Identification of mechanism model on the trends of population density 

of Pseudo-nitzschia pungens in Dapeng Bay, South China Sea. Abstracted In IX 

International Conference on Harmful Algal Blooms, Tasmania, Australia, February 

2000, p. 245. 

 



INTRODUCTION 

54 

Woese, C.R. 1987. Bacterial evolution. Microbiological Reviews 51:221-271 

 

Work, T.M., Barr, B., Beale, A.M., Fritz, L., Quilliam, M.A. and Wright, J.L.C. 1993. 

Epidemiology of domoic acid poisoning in brown pelicans (Pelecanus occidentalis) and 

Brandt's cormorants (Phalacrocorax penicillatus) in California. Journal of Zoo and 

Wildlife Medicine 24: 54-62. 

 

Work, T.M., Beale, A.M., Fritz, L., Quilliam, M.A., Silver, M., Buck, K. and Wright, 

J.L.C. 1993. Domoic acid intoxication of brown pelicans and cormorants in Santa Cruz, 

California. In Smayda, T.J.  and Shimizu, Y.  [Eds.]  Toxic Phytoplankton Blooms in the 

Sea. Elsevier Science Publication B.V., Amsterdam, p. 643-650. 

 

Wright, J.L.C., Boyd, R.K., de Freitas, A.S.W., Falk, M., Foxall, R.A., Jamieson, W.D., 

Laycock, M. V., McCulloch, A.W., McInnes, A.G., Odense, P., Pathak, V., Quilliam, 

M.A., Ragan, M.A., Sim, P.G., Thibault, P., Walter, J.A., Gilgan, M., Richard, D.J.A. 

and Dewar, D. 1989. Identification of domoic acid, a neuroexcitatory amino acid, in 

toxic mussels from eastern Prince Edward Island. Canadian Journal of Chemistry 67: 

481-490. 

 

Wright, J.L.C. 1995. Dealing with seafood toxins: present approaches and future 

options. Food Research International 28: 347-358. 

 

Wright, J.L.C. and Quilliam, M.A. 1995. Methods for domoic acid, the amnesic 

shellfish poisons. In Hallegraeff, G.M. Anderson, D.M. and Cembella, A.D. [Eds.]  IOC 

manual on harmful marine algae, IOC manuals and guides 33. UNESCO, Paris, pp. 97-

113. 

 

 



 

 

 
 

CHAPTER 2 



CHAPTER 2 

55 

SPECIES OF THE DIATOM PSEUDO-NITZSCHIA PERAGALLO IN IRISH WATERS. 

 

Caroline Cusack 

Marine Institute Phytoplankton Laboratory, Martin Ryan Institute, National University 

of Ireland, Galway, Ireland 

 

Robin Raine and John W. Patching  

Martin Ryan Institute, Marine Microbiology Department, National University of 

Ireland, Galway, Ireland 

 

 



CHAPTER 2 

56 

ABSTRACT 

 

The presence of the potentially toxic diatom Pseudo-nitzschia was investigated using net 

material acquired during several research cruises carried out off the south, southwest and 

west coasts of Ireland between 1993 and 1997.  Examination of phytoplankton net 

samples showed that P. pungens, P. multiseries, P. fraudulenta, P. australis, P. 

delicatissima and P. pseudodelicatissima were regularly present.  Two other Pseudo-

nitzschia species provisionally identified as P. seriata (P. seriata cf. seriata and P. 

seriata cf. obtusa) and P. subpacifica were also observed though less frequently.   

 

Key index words: Pseudo-nitzschia, Irish waters, spatial and temporal distribution. 
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INTRODUCTION 

 

Pseudo-nitzschia (Peragallo) is a widely distributed marine planktonic diatom (Hasle 

1965, 1972, Hallegraeff 1994, Fryxell et al. 1997).  The step-like colony formation and 

the spindle shape of the pennate frustule readily identify this genus.  At present, there are 

no detailed records of Pseudo-nitzschia in Irish coastal waters, because of the difficulty in 

discriminating among species using the light microscope.  Existing records of Pseudo-

nitzschia in Irish waters are limited to identification at the generic size-group level; a 

distinction based on the width of the cell valve (Hasle 1965).  Reported instances have 

referred to either “Nitzschia seriata” (= “P. seriata”) or “Nitzschia delicatissima” (= “P. 

delicatissima”) (Roden et al. 1981, Raine et al. 1990).  Identification of individual 

Pseudo-nitzschia species requires examination of the fine structural detail of the valve 

features under an electron microscope.   

 

The importance in discriminating between Pseudo-nitzschia species is emphasised by 

the fact that some species have the ability to produce the potent neurotoxin domoic acid.  

Contamination of shellfish with this toxin has caused serious illness or even death in 

humans and certain marine birds (see review by Bates et al. 1998), with the syndrome 

referred to as Amnesic Shellfish Poisoning (ASP) or Domoic Acid Poisoning (DAP).   

 

This paper presents results of the taxonomic and morphological identification of 

Pseudo-nitzschia spp. sampled around the Irish coast. 

 

MATERIALS AND METHODS 

 

The study area encompassed shelf and coastal waters off the south, southwest and west 

coasts of Ireland (Fig. 1).  Samples were collected on board the Irish national research 

vessels Lough Beltra until June 1997 or the Celtic Voyager after this date.  Samples were 

also obtained on board the Heinke.  Sampling stations generally ranged from within a few 

kilometers of the coastline out as far as ca. 75 kilometers offshore.  Bottom depths ranged 

from 40 meters at the coastal stations to up to 230 meters at stations located further 
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offshore.  Occasional samples were taken from estuaries such as Waterford Harbour, 

where the stations were shallower with water depths of between 25-30 m, or the Kinsale 

estuary (11 m).   

 

Material used in this study was selected from phytoplankton net samples collected 

during research cruises that took place between 1993 and 1997.  These cruises were 

designed to investigate phytoplankton ecology in relation to the physical and chemical 

oceanographic features of the region.  Samples were for the most part collected during the 

summer and autumn months.  Further material from the sample archive within the 

Microbiology Department, National University of Ireland, Galway, was also used for 

morphological examination.   

 

Qualitative phytoplankton samples were taken at each sampling location using a 35 µm 

mesh plankton net hauled vertically from depths of up to 100 m to the surface.  Lugol's 

iodine or neutralised formalin were added to preserve the phytoplankton samples.  On 

occasion, samples were preserved with acidic iodine or acidic formaldehyde (Hasle and 

Syvertsen 1997).  Where possible samples were stored in the dark at 4°C, otherwise they 

were stored in the dark at room temperature until analysis.  Lugol's iodine was 

replenished when necessary in samples stored in plastic bottles.   

 

At stations where Pseudo-nitzschia was found to be one of the dominant taxa, 5 mL of 

net sample was rinsed three times with distilled water to remove preservatives and salt.  

The organic matter of the cells was then removed by acid cleaning.  Concentrated nitric 

acid was added and the samples were heated in a water bath at 80˚C for 30 minutes (cf. 

Boyle et al. 1984).  The cleaned samples were then rinsed with distilled water and stored 

in absolute alcohol until further use.  Prior to the examination of specimens under the 

electron microscope, water and strewn permanent mounts were observed under a Nikon 

Optiphot-2 oil immersion, phase contrast light microscope.  Black and white light 

micrographs were taken with a Nikon Microflex UFX-DX camera and Ilford 100 ASA, 

150 ASA or 400 ASA film.  Samples examined under the scanning electron microscope 

(SEM) were mounted in triplicate.  The SEM stub surface was wiped with acetone and a 
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drop of colloidal silver was used to cement a clean coverslip onto the stub and allowed to 

air dry.  A drop of sample was pipetted onto the coverslip and left to dry overnight.  

Alternatively, the sample was filtered onto 1-3 µm Nucleopore filters, air dried and 

mounted onto metal stubs.  Specimens were examined under a Leica S430 scanning 

electron microscope with an accelerating voltage of 15 kV or under a Hitachi S-570 

scanning electron microscope with an accelerating voltage of 20 kV.  Black and white 

scanning electron micrographs were taken with a Mamiya camera (Tokyo, Japan) and 

Kodak 100 ASA film.  Where possible, thirty valves from each stub were randomly 

selected and morphometric measurements were recorded for each one.  In addition to 

SEM analysis transmission electron microscopy (TEM) analysis was carried out on the 

phytoplankton net material.  A drop of cleaned net material was pipetted onto a formvar 

carbon-coated 50 or 75-mesh (hexagonal lines per inch) TEM copper grid (Agar 

Scientific).  A minimum of 3 grids were used per sample.  The grids were left to air dry 

and then checked under a LM before being viewed under a Hitachi-7000 transmission 

electron microscope at an accelerating voltage of 75 kV.  Black and white transmission 

electron micrographs were taken with a Mamiya camera (Tokyo, Japan) and Kodak 100 

ASA film. 

 

Some of the photomicrographs taken were examined by Professor G.R. Hasle 

(Department of Biology, Marine Botany Section, University of Oslo, Oslo, Norway) in 

order to confirm the Pseudo-nitzschia species identity.  Nomenclature is in accordance 

with Hasle (1974, 1993), Hasle et al. (1996), Hasle and Syvertsen (1997), Fryxell et al. 

(1997). 
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Figure 1.  Map of study area showing the location of stations sampled off the coast of 

Ireland (1993-1997). 
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RESULTS  

 

Morphological analysis  

Over the course of these surveys six Pseudo-nitzschia species were unambiguously 

identified. These were P. pungens, P. multiseries, P. australis, P. fraudulenta, P. 

delicatissima and P. pseudodelicatissima (Table 1, Plates 1-6, Appendices 3 and 6).  

Detailed species descriptions have already been discussed in Hasle (1965, 1972, 1995), 

Hasle & Fryxell (1995), Hasle et al. (1996) and Hasle and Syvertsen (1997) (Appendix 

2).  Tentative identification was made of a further two species (P. subpacifica and 2 

forms of P. seriata) based on valve shape and morphometric data recorded under the 

SEM.  Only a small number of valves (<4) of the provisionally identified species were 

examined (Table 2, Plates 7-8, Appendices 3 and 6).  Pseudo-nitzschia species labelled 

A-D are tentatively identified as P. seriata f. seriata, E-F as P. seriata f. obtusa and G-

H are provisionally identified as P. subpacifica (Table 2).  Recent data from Hasle et al. 

(1996) and Hasle and Syvertsen (1997) were used for comparative purposes and it is 

evident that nearly all of the measurements are extremely close to published 

morphometric records.  In general only the valve structure was examined as girdle 

elements became dissociated from the frustule during the acid cleaning procedure.  

Good quality micrographs of Pseudo-nitzschia valves tentatively identified as P. seriata 

f. seriata (4 valves observed) and P. seriata f. obtusa (2 valves observed) were not 

obtained, as the specimens were either not completely cleaned of their organic matter or 

silica dissolution was apparent after acid cleaning.  The tentatively identified P. seriata 

valves had more or less rounded valve ends, showed asymmetry with respect to the 

apical axis (Plate 7) and exhibited a pattern of striae (the number of rows of poroids per 

stria) similar to that reported for this species in the literature.  The provisionally 

identified P. seriata f. seriata valves had 3-4 rows of poroids per stria while only 2 rows 

of poroids per stria were apparent in valves identified as P. seriata f. obtusa. 
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Table 1. Morphometric data recorded under the SEM for Pseudo-nitzschia species observed in 

Irish waters. n = number of valves measured.  Figures in brackets refer to data in Hasle et al. 

(1996) and Hasle and Syvertsen (1997) and are added for comparative purposes.  

 
Species Length 

(µm) 

Width 

(µm) 

Fibulae 

(in 10 µm) 

Striae 

(in 10 µm) 

Poroids 

(in 1 µm) 

No. of striae per 

central nodule 

 

P. pungens 

n=97 

 

(74–142) 

61–156 

 

(2.9–4.5) 

2.2–5.4 

 

(9–15) 

10–16 

 

(9–15) 

10–16 

 

(3–4) 

2–4 

 

 

– 

P. multiseries 

n=17 

(68–140) 

80–128 

(3.4–5.0) 

2.8–4.6 

(10–15) 

12–16 

(10–15) 

12–16 

(4–6) 

6–7 

 

– 

P. australis 

n=130 

(75–144) 

63–143 

(6.5–8.0) 

5.3–8.0 

(12–18) 

15–19 

(12–18) 

15–19 

(4–5) 

3.5–6 

 

– 

P. fraudulenta 

n=152 

(64–117) 

65–164 

(4.5–6.5) 

4.0–8.0 

(12–24) 

21–25 

(18–24) 

21–25 

(4–5) 

4.5–7 

(3–4) 

2.5–4 

P. delicatissima 

n=79 

(40–76) 

24–64 

(1.0–ca. 2) 

1.2–2.4 

(19–25) 

20–26 

(36–40) 

39–44 

(10–12) 

9–13 

(3–3.5) 

3–4 

P. pseudodelicatissima 

n=37 

(59–140) 

27–85 

(1.3–2.5) 

1.0–1.9 

(16–26) 

22–26 

(30–46[?]) 

39–44 

(4–5) 

4–6 

(4 ) 

3–4.5 

 

Table 2. Morphometric data recorded under the SEM of field specimens (single valves) taken 

from Irish waters.  The identity of these Pseudo-nitzschia species requires confirmation.  Figures 

in brackets refer to data in Hasle et al. (1996), Hasle and Syvertsen (1997) and are added for 

comparative purposes. 
 
Species Tentatively 

identified as 

Length  

(µm) 

Width 

(µm) 

Fibulae 

(in 10 µm)

Striae 

(in 10 µm)

Poroids 

(in 1 µm) 

No. of striae per central 

nodule 

 

P. seriata f. seriata 

P. species A 

P. species B 

P. species C 

P. species D 

 

 

P. ser f. seriata 

P. ser f. seriata 

P. ser f. seriata 

P. ser f. seriata 

 

(91–160) 

131 

108 

113 

153 

 

(5.5–8.0) 

6.2 

6.0 

5.8 

5.5 

 

(14–18) 

15 

20 

20 

20 

 

(14–18) 

17 

20 

20 

20 

 

(7–8) 

8 

7 

8 

8 

 

– 

– 

– 

– 

– 

   
P. seriata f. obtusa  (61–100) (4.5–5.5) (15–20) (15–20) (7–8) – 

P. species E 

P. species F 

P. ser f.obtusa 

P. ser f.obtusa 

126 

65 

5.7 

5.5 

18 

19 

18 

18 

6 

8 

– 

– 

   
P. subpacifica  (33–70) (5.0–7.0) (15–20) (28–32) (9–10)  

P. heimii  (50–120) (4.0–6.0) (11–18) (19–28) (7–8) (4–5) 

P. species G 

P. species H 

P. subpacifica 

P. subpacifica 

62.5 

63 

4.5 

4.9 

18–19 

18 

30–31 

27 

9.5 

9 

3 

3 

 



CHAPTER 2 

63 

Plate 1.   Pseudo-nitzschia pungens (Grunow ex Cleve) Hasle. 

 

1a-c LM.  

Clonal culture, strain WW3 isolated from Waterford Harbour, 8th October 1997.  1a. 

Chain of cells in girdle view: overlap of cell ends ca. 1/4 of total cell length.  1b. Acid-

cleaned frustule mounted in Naphrax; coarsely structured valve with pointed cell ends. 

Valve margins are symmetrical.  1c. Acid-cleaned valve mounted in Naphrax; note that 

the two rows of poroids per stria are just visible.    

 

1d-i TEM.  

1d-g. Specimens in net material collected in Bantry Bay between the 20-21st July, 1996.  

1d. Part of the valve with raphe and proximal mantle.  The fibulae and striae are present 

in equal number.  Poroids of the valve face and proximal mantle are hymenate (see 

enlargement).  The striae are perforated with two rows of poroids, sometimes with a 

single poroid or extra partial row of poroids between the rows.  1e. Valve face; note 

irregular shaped poroids.  1f-g.  Two cell ends from the same valve taken from the wild.  

1h-i. Clonal culture, strain SL isolated from Clifden Bay, west coast of Ireland, 7th 

August 1997.  Two ends of one valve from a clonal culture: note the overall shape of cell 

ends.  

 

Scale bars 10 µm (1a, 1b); 1 µm (1c, 1e, 1f, 1g, 1h); 0.5 µm (1d) 
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Plate 1.  Pseudo-nitzschia pungens (Grunow ex Cleve) Hasle. 
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Plate 2.   Pseudo-nitzschia multiseries (Hasle) Hasle. 

 

2a-b TEM.   

Specimens in net material collected southwest of Long Island Bay, 23rd July 1996.  2a.  

Close-up of valve showing the hymenate velae of the poroids: 4 rows of poroids are 

evident per stria.  2b. Pointed valve end showing branching of the interstriae towards the 

tip. 

 

Scale bars 1 µm (2b); 0.5 µm (2a) 
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Plate 3.   Pseudo-nitzschia australis Frenguelli. 

 

3a LM.  

Clonal culture, strain WW4 isolated from Waterford Harbour, 8th October 1997.  Colony in 

girdle view: overlap of cell ends ca. 1/4 of total cell length.   

 

3b SEM.   

Specimen in net material collected west of the Shannon Estuary, 3rd September 1996.  Acid-

cleaned valve showing the fibulae and interstriae. Valve symmetrical with respect to the 

apical axis; margins are parallel at the middle part of the valve.   

 

3c-e TEM.   

Specimen in net material collected west of the Shannon Estuary, 3rd September 1996.  3c. 

Part of valve showing two rows of hymenate poroids (see enlargement) with a third poroid 

sometimes present between these two rows towards the valve margin. 3d-e. Rounded cell 

apices of the same valve with one end bearing branched-like interstriae. 

 

Scale bars 10 µm (3a, 3b); 1 µm (3d, 3e); 0.5 µm (3c). 
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Plate 4.   Pseudo-nitzschia fraudulenta (Cleve) Hasle. 

 

4a-b LM.  

Clonal culture, strain 2011 isolated from a station off Erris Head, west coast, 3rd May 

1997.  4a. Vegetative cells in girdle view: overlap is ca. 1/8 of total cell length.  4b. Acid-

cleaned valve mounted in Naphrax: the central nodule and fibulae are more discernable 

than the interstriae.  Valve symmetrical with respect to the apical axis with pointed ends; 

valve margins curved.    

 

4c-f TEM.   

4c-d.  Specimens in net material collected south of Cork, 6th October 1997.  4c. Part of 

the valve showing the raphe and central interspace. Fibulae and striae are found in equal 

numbers.  4d. Close-up of the poroid structure, which is divided into sections with 

hymenate velae.  Note also that sometimes there is a third row or partial row between the 

two rows of poroids.  4e. Specimen in net material collected south of Waterford, 7th 

October 1997.  4e. Two valve ends of the same frustule; one valve end has one or two 

oblique rows of poroids that are not present on the other.  4f. Clonal culture, strain 2011 

isolated from a station off Erris Head, west coast, 3rd May 1997.  4f. Part of a valve of an 

aberrant cell from a clonal culture. 

 

Scale bars 10 µm (4a, 4b); 5 µm (4c); 1 µm (4e, 4f); 0.5 µm (4d) 
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Plate 4.   Pseudo-nitzschia fraudulenta (Cleve) Hasle. 
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Plate 5.   Pseudo-nitzschia delicatissima (Cleve) Heiden. 

 

5a-e TEM.    

5a. Specimen in net material collected southwest of Bantry Bay, 15th August 1993.  5a. Part 

of valve showing the raphe and the central larger interspace.  There are an uneven 

number of fibulae to striae.  5b. Specimen in net material collected southwest of Bantry 

Bay, 22nd July 1996.  5b. Close-up of the valve face showing 3 rows of striae per central 

larger interspace.  Note the two rows of triangular to hexagonal hymenate poroids per 

stria.  5c-e. Specimens in net material collected in Galway Bay, 6th May 1996. 5c-d. 

Rounded cell apices from the same valve with no difference in structure.  5e. Girdle 

showing 3 areolated and 1 non-areolated bands. 

 

Scale bars 1 µm (5a, 5e); 0.5 µm (5b, 5c, 5d) 
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Plate 5.   Pseudo-nitzschia delicatissima (Cleve) Heiden. 
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Plate 6.   Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle. 

 

6a-d SEM.    

Specimens in net material collected southwest of Dunmanus Bay, 21st July 1996.  6a. Whole 

valve with pointed valve ends.  6b. Part of the valve face showing the central larger 

interspace, the central nodule (in the upper part of the micrograph) and the striae with a 

single row of poroids.  There are an uneven number of fibulae to striae.  6c-d. Two ends 

of the same valve, similar in structure.    

 

6e-f TEM.  

Specimens in net material collected south of Kinsale, 22nd July 1996.  6e. Valve face 

showing the proximal and distal mantle, the central larger interspace with central raphe 

endings.  Note the squarish structure of the valve face poroids.  6f. The poroid structure 

consists of divided sectors with hymenate velae (see enlargement).  There are 4 rows of 

striae per central larger interspace. 

 

Scale bars 1 µm (6b, 6c, 6d, 6e, 6f); 3 µm (6a) 
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Plate 6.   Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle. 
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Plate 7.  Pseudo-nitzschia cf. seriata (Cleve) H. Peragallo (species A, Table 2). 

 

7a-c SEM.    

Specimen in net material collected southwest of Dunmanus Bay, 21st July 1996.  7a. Whole 

valve with one visible pointed end.  There are slightly more striae than fibulae (see Table 

2).  7b. Close-up of part of the valve face towards one of the cell ends; note that the 

sample is not completely cleaned of its organic material.  Enlargement shows some of the 

striae where the valve is more visible; there are 3 rows of circular poroids per striae.  7c. 

One of the valve ends. 

 

Scale bars 10 µm (7a); 1 µm (7b, 7c) 
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Plate 7.  Pseudo-nitzschia cf. seriata (Cleve) H. Peragallo (species A). 
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Plate 8.  Pseudo-nitzschia cf. subpacifica (Hasle) Hasle (species G and H, Table 2). 

 

8a-e SEM.    

8a. Specimen in net material collected southwest of Long Island Bay, 21st July 1996.  8a. 

Pseudo-nitzschia species G.  Whole valve showing asymmetry of the two valve margins: 

lower margin curved, upper margin straight towards the centre.  Valve ends are pointed.  

Fibulae and striae found in unequal numbers.  8b-e. Specimen present in net material 

collected south of Cork, 10th October 1997. 8b-e. Pseudo-nitzschia species H.  8b-c. 

Centre of the valve showing the central larger interspace with raphe endings and a central 

nodule.  The striae have 2 rows of minute poroids.  8d-e. Ends of the same valve, similar 

in structure. 

 

Scale bars 3 µm (8a); 1 µm (8b, 8d, 8e); 0.2 µm (8c)   
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Spatial and Temporal distribution of Pseudo-nitzschia 

Maps were plotted to summarise the spatial distribution of Pseudo-nitzschia species 

described (Figs. 2-3).  Even though most of the sampling stations were located around the 

south and southwest coast of Ireland, the following distributional patterns can be 

tentatively suggested.  Pseudo-nitzschia fraudulenta, P. delicatissima and P. 

pseudodelicatissima appeared at the more northerly stations whereas other species did not 

(Fig. 2).  Pseudo-nitzschia cf. seriata and P. cf. subpacifica appeared to be confined to 

waters off the southwest coast (Fig. 3). 
 

An overview of the presence of the different Pseudo-nitzschia species found in 

phytoplankton net material during each cruise is presented in Table 3.  From the results 

on species presence or absence on an individual station basis the most commonly 

occurring species recorded were P. pungens, present in 82% of the samples examined, P. 

fraudulenta (76%), P. australis (67%), P. delicatissima and P. pseudodelicatissima 

(49%), and P. multiseries in 41% of the samples.  The species least often observed were 

P. seriata (12%) and P. cf. subpacifica (4%). 

 

Pseudo-nitzschia pungens and P. multiseries were present in net material in June, July, 

August, September and October, P. australis in June, July, August, September and 

October, P. fraudulenta in May, June, July, August, September and October, P. 

delicatissima in May, June, July, August and September, P. pseudodelicatissima in May, 

July, August, September and October, while P. cf. seriata was evident in samples 

examined in July and August and P. cf. subpacifica in July and October. 
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Figure 2. Spatial distribution of P. australis, P. fraudulenta, P. pungens and P. 

multiseries.  Red dots indicate stations where species were recorded from net haul 

samples taken off the south, southwest and west coast of Ireland (1993-1997). 
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Figure 3. Spatial distribution of P. delicatissima, P. pseudodelicatissima, P. cf. seriata 

and P. cf. subpacifica.  Red dots indicate stations where species were recorded from net 

haul samples taken off the south, southwest and west coast of Ireland (1993-1997). 
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Table 3.  Number of stations where individual Pseudo-nitzschia species were recorded 

from phytoplankton net material collected off the south, southwest and west coasts of 

Ireland (1993-1997).  n= number of stations where samples were examined using 

electron microscopy. 

 
Date 

 

No. of stations 

examined 

P. 

pungens 

P.  

multiseries

P. cf. 

 seriata

P. 

 australis

P. 

fraudulenta

P. cf.  

subpacifica 

P. 

delicatissima 

P. pseudo- 

delicatissima 

Surveys with  >3 stations examined 

Aug 1993 n=10 10 3 1 3 6 0 3 2 

July 1996 n=15 13 9 5(?) 12 11 1 11 13 

Sept 1996 n=8 6 2 0 5 5 0 8 4 

Oct. 1997 n=12 10 5 0 12 12 1 0 3 

Surveys with  <3 stations examined 

June 1995 n=1 1 1 0 1 1 0 1 0 

May 1996 n=1 0 0 0 0 0 0 1 1 

May 1997 n=2 0 0 0 0 2 0 0 1 

Total 

occurrence 
n=49 40 20 6 33 37 2 24 24 

 

DISCUSSION 

 

Morphological analysis 

Ultrastructural examination of samples collected during the course of this investigation 

provided the first identification records of the diatom Pseudo-nitzschia down to species 

level in Irish waters.  At least six Pseudo-nitzschia species were abundant during certain 

times of the year in waters off the south, southwest and west coasts of Ireland.  These 

included P. pungens, P. multiseries, P. fraudulenta, P. australis, P. delicatissima and P. 

pseudodelicatissima.  The morphometric data recorded for these species also complies 

with well known taxonomic guides for Pseudo-nitzschia (Hasle et al. 1996, Hasle and 

Syvertsen 1997).  During the morphological investigations a small number of Pseudo-

nitzschia valves examined showed similarities to P. seriata (P. cf. seriata and P. cf. 

obtusa) and P. subpacifica.  Confirmation of the identity of these uncommon species 

requires further investigation because it is very difficult to unambiguously verify their 

presence based on observations of less than 4 valves per species.  This is especially true 
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if the specimens examined like the P. cf. seriata valves in this study are not completely 

stripped of the organic components of the cell wall or if silica dissolution is apparent.  

However, the morphometric measurements of the P. cf. seriata valves observed (see 

Table 2) appear to be in keeping with the literature. Although very similar in structure, 

the most obvious feature distinguishing the two forms of P. seriata is the number of 

rows of poroids per stria.  Pseudo-nitzschia seriata f. seriata has 3-4 rows of poroids 

while P. seriata f. obtusa has only 2.  Other structural differences which distinguish P. 

seriata f. obtusa from the nominate form include the fact that its valve ends are more 

rounded and the interstriae of the valve face are placed closer together (Hasle et al. 

1996).  However, P. australis can be easily confused with P. seriata f. obtusa (see 

morphological data in Tables 1 and 2) as it is quite common to see valves from smaller 

cells of P. australis with an asymmetrical outline.  Both species have two rows of 

hymenate poroids per stria.  Pseudo-nitzschia seriata f. obtusa however, has more 

poroids (7-8) in 1 µm than P. australis (4-5).  In this study 6 out of 127 valves identified 

as P. australis had 6 poroids in 1 µm.  It is therefore possible that the tentatively 

identified P. cf. seriata f. obtusa valve, species E, in Table 2 was an asymmetrically 

shaped P. australis valve as its length, 126 µm is more in keeping with records for P. 

australis then P. seriata f. obtusa.  One of the best ways to differentiate between these 

two species is by observing the girdle bands.  The band striae of P. australis normally 

have more rows of poroids then those found in P. seriata (Hasle et al. 1996).  However, 

this type of confirmation can be very difficult when working with field samples 

containing a mixture of Pseudo-nitzschia species since the girdle elements can break 

apart after acid cleaning and this information is lost.  In this study the band structure was 

not observed for any of the tentatively identified Pseudo-nitzschia species. What is 

known is that the presence of P. seriata in Irish waters is questionable and needs to be 

confirmed. 

 

The morphological data recorded for the two tentatively identified P. subpacifica valves 

from net material collected in July 1996 and October 1997 are in keeping with previously 

published data, with the exception of the valve width (see Table 2).  This raises 

uncertainty concerning its identification.  Distinguishing between P. subpacifica and P. 
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heimii can be somewhat problematic and identification can be easily confused as they are 

very similar in structure (Hasle 1972).  Both species are asymmetrical with respect to the 

apical axis, they possess a central interspace and have an unequal density of interstriae to 

fibulae.  Differences are very subtle; P. subpacifica is not as heavily silicified, can have a 

different number of fibulae and striae in 10 µm and the valves are shorter while the width 

is wider than reported for P. heimii (Hasle et al. 1996).  Hasle (1972) reported that some 

specimens that were examined from the Gulf of California off San Diego and in the North 

Pacific showed similarities to both P. subpacifica and P. heimii.  Her observations of P. 

heimii from the North Pacific differed in the shape of the valve from specimens of the 

subantarctic and Antarctic.  Future studies combining morphological and molecular 

biological data might help resolve why different morphotypes are recorded.   

 

Temporal and Spatial Distribution 

The seasonal patterns displayed by Pseudo-nitzschia species in Irish waters correspond 

well with other studies in European temperate waters (Hasle et al. 1996, Míguez et al. 

1996, Campbell et al. 2001). 

 

Pseudo-nitzschia pungens, a cosmopolitan species present in coastal waters worldwide 

(Hasle and Fryxell 1995) is often present throughout the year and is found in high cell 

densities during autumn in northern European waters (Hasle et al. 1996).  This species 

was especially abundant in the Pseudo-nitzschia flora off the south and southwest coasts 

of Ireland during July (1996) and August (1993).  Pseudo-nitzschia pungens was also 

present, though less abundant, in June (1995) September (1996) and October (1997).  

This species and P. multiseries regularly co-occurred in the net samples although P. 

multiseries was observed only as a minor component of the Pseudo-nitzschia population.  

This type of co-occurrence has been reported in other studies where P. pungens is the 

more predominant of the two species in summer and autumn when thermal stratification 

is evident and is replaced by P. multiseries during colder times of the year from late 

autumn to spring (Fryxell et al. 1990, Dickey et al. 1992, Hasle et al. 1996).  As most of 

the sampling in this study was carried out during the summer and autumn months when 

thermal stratification was particularly evident offshore, the predominance of P. pungens 
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over P. multiseries lends further support to this view.  The sparse occurrence of P. 

multiseries is most likely due to the fact that none of the sampling cruises were carried 

out in the colder months (November to March) of the year.  Since P. multiseries blooms 

have the potential to produce high concentrations of domoic acid and this species was the 

causative organism in toxic outbreaks of Amnesic Shellfish Poisoning during the winter 

months off the east coast of Canada (Bates et al. 1989), it is imperative that further 

investigations into its distribution off the Irish coast are carried out, particularly during 

the winter and spring. 

 

Off the south and southwest coasts of Ireland P. australis was regularly abundant 

especially in autumn (September and October) when the thermocline was well 

developed.  In Europe, blooms of P. australis have been recorded during September 

(1994) along the Iberian Shelf in the North Atlantic (Míguez et al. 1996) and it was 

observed in net material during August and October 1999 in northwestern Scottish 

waters (Campbell et al. 2001).  In the North Pacific, this species is a regular component 

of the marine flora off the west coast of America during spring and autumn (Buck et al. 

1992, Villac et al. 1993).  The observation of P. australis around Ireland is significant 

and its occurrence is important as this species is potentially very toxic and has been 

implicated as the source of domoic acid in shellfish from other European countries 

including Spain and Scotland (Míguez et al. 1996, Campbell et al. 2001).  Blooms of 

this diatom have also been responsible for poisoning sea lions and marine birds off the 

coast of California at times when relaxed periods of upwelling are evident (Scholin et al. 

2000).   

 

Pseudo-nitzschia fraudulenta was frequently observed in net material off the Irish coast 

from spring to autumn but was especially predominant in October 1997.  It is thought that 

this species has no particular seasonal pattern (Hasle 1972).  Hasle et al. (1996) recorded 

this species as a smaller component of the Pseudo-nitzschia population from samples 

examined over 13 years, from 1980 to 1993, in north European waters. High cell 

concentrations were however observed during November 1989.  It has also been recorded 

from Scottish waters in August and October (Campbell et al. 2001).  Pseudo-nitzschia 
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fraudulenta has at times been shown to be the predominant Pseudo-nitzschia species 

present in high concentrations off the west coast of America, after P. australis blooms in 

autumn (Fryxell et al. 1997).  Although most investigations of this species in culture have 

shown that P. fraudulenta does not produce domoic acid above the levels of detection, a 

culture study of an isolate from New Zealand confirmed that this species could produce 

low levels of the toxin (Rhodes 1998).  

 

The smaller species, P. pseudodelicatissima and P. delicatissima, were the only 

representatives from the “P. delicatissima” group found in Irish waters.  In northern 

European waters P. delicatissima displays a winter-spring temporal distribution while P. 

pseudodelicatissima frequently occurs throughout the year from June to December (Hasle 

et al. 1996).  Results from this study show that both species are regular components of the 

phytoplankton community from May to October, and were predominant in July 1996.  

Pseudo-nitzschia delicatissima was also abundant in May and September of this year.  

Although these species do not have a large cell biovolume, blooms of toxic P. 

pseudodelicatissima lasting 2 months in well mixed waters have caused DA build-up in 

shellfish in Canada (Martin et al. 1990). 

 

Pseudo-nitzschia seriata f. seriata is characteristic of winter and spring in northern 

European waters although it has also been recorded in the Skagerrak during autumn 

(Hasle et al. 1996).  The presence of this cold water to temperate species in Irish waters 

needs to be confirmed since cultures of P. seriata f. seriata isolated from Danish waters 

have shown to produce domoic acid at similar levels to those recorded for P. multiseries 

cultures from Canada (Lundholm et al. 1994).  Neither P. seriata f. obtusa, nor P. 

subpacifica were recorded in the extensive records of Hasle et al. (1996) for the 

Skagerrak, North Atlantic and adjacent waters.  Pseudo-nitzschia seriata f. obtusa is 

regarded by Hasle and Syvertsen (1997) as a northern cold water species.  Pseudo-

nitzschia subpacifica is apparently an important element of the plankton of the Atlantic 

south of 50˚N with a northern most limit of 51˚N (Hasle 1972).  Several dinoflagellates 

that have a warm temperate to sub-tropical distribution are frequently recorded off 

southwestern Ireland.  These are common on the outer side of the Irish shelf front, but 
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can be mixed across the front into coastal water (Roden 1984, Raine and Joyce 1996).  It 

has been proposed that the presence of these dinoflagellate species is wholly or in part 

due to transport with the northward slope current (Raine, White and Dodge in press).  

The presence of P. subpacifica off Ireland could also be due to a similar transport 

mechanism.   
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ABSTRACT 

 

The presence and abundance of the potentially toxic diatom Pseudo-nitzschia was 

investigated in relation to physical and chemical oceanographic features off the Irish 

coast using data collected from research cruises carried out between 1993-1997.  Pseudo-

nitzschia populations were found to be most abundant in moderate to well stratified 

waters off the south and southwest coasts with cell densities in the order of 103 cells.mL-1 

recorded during August 1993, July 1996 and October 1997.  These blooms were only 

evident on the coastal side of the Irish Shelf Front positioned off the southwest coast of 

Ireland although in May 1997 low concentrations (18 cells.mL-1) of Pseudo-nitzschia 

were recorded on the oceanic side of this thermohaline front.  An exceptional bloom of P. 

delicatissima occurred in the surface brackish waters of Galway Bay off the West coast in 

May 1996.  In general, no obvious relationship between nutrients, temperature or salinity 

and the presence of Pseudo-nitzschia was observed, most likely due to the fact that an 

array of species were often present in the water column at any one time.  Two distinct 

groups of Pseudo-nitzschia species were recorded on either side of the tidally driven 

Celtic Sea Front off the southeast coast of Ireland.  Overall, Pseudo-nitzschia species 

were found in warm nutrient depleted waters with the �P. delicatissima� group observed 

over a wider range of salinity and temperature than the �P. seriata� group.  In general, the 

appearance of large populations of Pseudo-nitzschia spp. in Irish waters occur when 

environmental conditions reflect the interlude between the well mixed waters associated 

during the spring bloom period and the deep seasonal stratification that materialises in 

summer. 

 

Key words: Pseudo-nitzschia, distribution, Ireland, coastal waters 
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INTRODUCTION 

 

Numerous surveys have attempted to investigate the biogeography and abundance of 

Pseudo-nitzschia spp. (see reviews by Hallegraeff 1994, Hasle et al.1996, Skov et al. 

1999).  These investigations in the main have resulted from the increased interest in this 

genus since P. multiseries was found to produce the amnesic shellfish toxin domoic acid 

(DA) during the late 1980s.  Only a few studies have, however, tried to relate local 

hydrographic and environmental factors to the temporal and spatial variability of Pseudo-

nitzschia (Buck et al. 1992, Zou et al. 1993, Fryxell et al. 1997, Dortch et al. 1997, 

Scholin et al. 2000).   

 

It is now thought that water column stability and nutrient availability play important 

roles in promoting the growth of Pseudo-nitzschia.  Dortch et al. (1997) found that 

Pseudo-nitzschia was more abundant in warm weak to moderately stratified shelf waters 

of the Gulf of Mexico than in the adjacent Terrebonne Bay estuary.  Highest cell densities 

were recorded in the spring with smaller blooms evident in the autumn.  Upwelling 

events and rough weather conditions in the Gulf were thought to be important processes 

in influencing the onset of Pseudo-nitzschia blooms, since these events result in the 

destabilisation of the water column allowing nutrient entrainment from deeper waters 

below the pycnocline (Dortch et al. 1997).  Taylor et al. (1994) found that P. pungens 

was the predominant Pseudo-nitzschia species during summer in the Sechelt Inlet, 

Western Canada and its presence was associated with stratified waters depleted in 

ammonia and nitrate.  

 

In Monterey Bay, USA Pseudo-nitzschia blooms were found during the spring, a time 

when advection of water offshore results in large scale upwelling in the region (Buck et 

al. 1992, Walz et al. 1994).  Persistent blooms dominated by P. australis have been 

reported here in late summer and autumn when nutrient concentrations are indicative of 

post-upwelling events, surface waters are warm (>13.0°C) with low salinity (33.3-33.5 

ppt) and the water column is moderately stratified (Buck et al. 1992, Walz et al. 1994).     
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In the Bay of Fundy (E. Canada) P. pseudodelicatissima is present all year round with 

blooms peaking in late summer when the surface water temperature averages at 

approximately 10.0°C.  In autumn smaller blooms occur when the surface temperature 

increases up to 18.0°C  (Martin et al. 1993).  Here, high tidal velocities result in short 

flushing times of the bay and it is thought that nutrients are not a limiting factor for 

phytoplankton growth.  

 

Riverine input has also been suggested as one of many possible conditions that govern 

the seasonal changes of Pseudo-nitzschia abundance at inshore stations in the Gulf of 

Mexico, but since neritic environments are very complex, often a result of local 

hydrography and tidal influences, this alone could not explain the seasonal differences 

observed (Dortch et al. 1997).   Nutrient loading (NO3 and PO4) from rivers has been 

shown to enhance the biomass of Pseudo-nitzschia species (P. multiseries) in other parts 

of the world (Zou et al. 1993).  In Canada, dense populations of P. multiseries have been 

recorded when nitrate pulses were associated with heavy rainfall after very dry summers 

(Bates et al. 1998).  During 1998 in early summer, Scholin et al. (2000) observed the 

development of a P. australis bloom in Monterey Bay and thought it might have been 

linked with a water body that had increased levels of silicate suggestive of freshwater 

runoff.   

 

The present study examined the distribution of the diatom Pseudo-nitzschia in relation 

to local oceanographic conditions in Irish waters.  The sampling cruises extended over a 

relatively large area covering both shelf and coastal environments.  As discussed by 

Raine and McMahon (1998) and McMahon et al. (1995), the oceanography off the Irish 

coast is complex.  A weak clockwise coastal current, the Irish Coastal Current (ICC) 

flows around the south, southwest and western coasts and phytoplankton distribution in 

these areas is chiefly governed by advective processes.  Phytoplankton populations are 

often advected into the bays along the route, caused by entrainment via wind driven 

mechanisms (Raine and McMahon 1998).  Off the west and southwest coasts a �surface-

to-bottom� salinity driven thermohaline front (a type I front as described by Hill and 

Simpson 1989) separates this coastal water from water of more oceanic character (salinity 
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>35.30), lying approximately 30 km away from the coastline.  Seasonal thermal 

stratification develops over the entire region in summer, with the exception of a narrow 

band of mixed water, ca. 2 km wide, formed by coastal mixing.  Diatom populations are 

common both in the mixed coastal water and following upwelling events off the 

southwest coast when nutrients are replenished from the deeper oceanic waters (Raine 

and Joyce 1996).  Off the southeast coast of Ireland the dominant hydrographic feature is 

the Celtic Sea Front (CSF), a tidal front (a type II front as described by Hill and Simpson 

1989) that separates Celtic Sea water from the Irish Sea.  Biological investigations in this 

region have shown that diatom populations are typical of the microflora on the Irish Sea 

side of the front.  When the water column of the Celtic sea is well stratified during the 

summer, the phytoplankton is typically characterised by dinoflagellate communities 

(Raine and McMahon 1998).   

 

As a thriving shellfish industry exists along the south, southwest and west coasts of 

Ireland (McMahon et al. 1998) the work presented here also intended to assess the 

possible implications of potentially toxic blooms of Pseudo-nitzschia for the aquaculture 

industry. 

 

MATERIALS AND METHODS 

 

Data was collected from several research cruises that took place off the coast of Ireland 

between 1993-1997.  Figures 1-5 present the locations of stations sampled during each 

cruise.  Additional samples were taken off the southwest coast of Ireland (June 1995) and 

in Galway Bay (May 1996). 
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Figure 1.  Location of stations sampled off the southwest coast of Ireland, between 

August 8th-18th 1993.  Station details can be found in Appendix 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Location of stations sampled off the southeast, south and southwest coasts of 

Ireland between July 20th-25th 1996.  Station details can be found in Appendix 7. 
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Figure 3.  Location of stations sampled off the southwest coast of Ireland between 

September 3rd-8th 1996.  Station details can be found in Appendix 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Location of stations sampled off the northwest coast of Ireland between May 

1st-5th 1997.  Station details can be found in Appendix 7. 
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Figure 5.  Location of stations sampled off the south coast of Ireland, between October 

7th-12th 1997.  Station details can be found in Appendix 7. 

 

During each cruise, surface parameters such as chlorophyll fluorescence (Turner-

Design Model 10 fluorometer) and salinity (Sea-Bird SBE 20 Thermosalinograph) were 

measured continuously on water pumped from a depth of 2 meters.  Temperature was 

measured by a sensor (Furuno) located in the ship�s hull. Output signals from the 

instruments were interfaced with the Data Acquisition System (DAS) on board the 

research vessel.  The records of date, time, position (GPS) and depth were included in 

the logged data files.  Vertical profiles of temperature and salinity were made at each 

station using a Sea-Bird SBE-19 CTD deployed off a hydrographic winch.  Attached to 

the CTD was an in situ fluorometer (Sea Tech, Oregon) providing chlorophyll 

fluorescence data.  Both instruments were multiplexed to a host microcomputer giving 

real-time displays.  Temperature readings were calibrated using reversing thermometers 

attached to 2.5 L Hydro-Bios (Kiel, Germany) water sampling bottles.  Salinity readings 

were calibrated against discrete water samples, whose salinity was measured using a 

high precision salinometer (Guildline Autosal Salinometer Model 8400B) at the Central 

Marine Services Unit, National University of Ireland, Galway.  Salinities were 
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determined on the practical salinity scale, UNESCO 1978 (UNESCO. 1981) and are 

hereafter quoted without units.  The samples were collected using 200 mL plastic screw-

cap borosilicate glass bottles with plastic seal inserts.  The bottles were rinsed 3 times 

with seawater from the sample bottle before being filled to the neck.  To prevent salt 

crystal build-up on the plastic insert and screw cap lid these were wiped with damp 

tissue paper before closing the bottle. 

 

Discrete depths were chosen from the CTD and fluorescence profiles for sampling with 

water bottles.  Typically these were:  

a) The surface 

b) The mixed layer above the pycnocline 

c) The sub-surface chlorophyll a maximum 

d) The bottom mixed layer 

 

Extra depths were included at stations depending on water column depth and the detail 

in the CTD output.  Surface water samples were collected using a clean plastic bucket.  

Subsurface samples were taken using the water bottles, from which sub-samples were 

taken for analysis of salinity, nutrients, chlorophyll and phytoplankton cell counts.  Water 

samples for nutrient analysis were filtered through Whatman GF/C filters (0.45 µm pore 

diameter) to remove particulate matter.  The filtrates were transferred into acid-washed 

500 mL plastic bottles and stored at �20.0ºC.  The frozen water samples were thawed and 

analysed for nitrate, phosphate and silicate using the methods described by Grasshoff 

(1976).  250 mL aliquots of seawater for chlorophyll a analysis were filtered through 

Whatman GF/F glass fibre filters (nominal 0.22 µm pore diameter).  The filters were 

immediately stored in 15 mL plastic centrifuge tubes (Sarstedt, Germany) in the dark at �

20.0ºC to prevent photodegradation of the pigments.  Chlorophyll a was determined 

fluorometrically after pigment extraction with 90% acetone following the procedure in 

Tett (1987).  The fluorescence signal was measured using a Turner Designs Model 10 

fluorometer, calibrated with a stock chlorophyll solution of known (HPLC-derived) 

concentration.  Secchi depth was recorded at all stations sampled during daylight.   
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Quantitative phytoplankton counts were carried out within 3 to 4 weeks of sampling.  

Phytoplankton samples were allowed to settle overnight in 60 mL tissue culture bottles 

(Sterilin, U.K.) or 25 mL sedimentation chambers (Hydro-Bios, Kiel).  Pseudo-nitzschia 

cell numbers (cells with intact chloroplasts) were counted using a modified version of 

Utermöhl�s method (Hasle 1978).  This was carried out under phase contrast light 

microscopy (LM) using a Nikon Diaphot or Nikon TMS inverted LM with a 20x dry 

phase contrast (numerical aperture, NA 0.4) objective lens.  Pseudo-nitzschia cell 

concentrations were divided into two groups, �P. seriata� (width >3 µm) and �P. 

delicatissima� (width <3 µm) following Hasle (1965).  Net samples containing high cell 

concentrations of Pseudo-nitzschia were acid cleaned (cf. Boyle et al. 1984) and 

examined under a scanning electron microscope (Leica S430; accelerating voltage 15 kV 

or Hitachi S-570; accelerating voltage 20 kV) and a transmission electron microscopy 

(Hitachi-7000, accelerating voltage 75 kV). 

 

The potential energy anomaly, phi (Φ) an index of bulk water column stratification was 

calculated using the equation (1) after Simpson et al. (1982): 

 

zdzg
h h

.)(1 = 
0

ρρ −Φ ∫
−

∫
−

01 =:
h

dz
h

ρρ
 

 

where h is the water column depth (m), ρ  is the mean seawater density (Kg.m-3) 

between 0 and h metres, ρ  is the water density at depth z metres and g is the 

acceleration due to gravity (m.s-2).  Values of Φ <10 J.m-3 indicate that the water 

column is well mixed, Φ = 10-30 J.m-3 indicate that the water column is transitionally 

(weakly-moderately) stratified and Φ > 30 J.m-3 indicate that the water column is well 

stratified.  Water clarity scaled with depth was expressed by λ.h, where λ is the diffuse 

attenuation coefficient for downwelling irradiance.  Attenuation coefficients, λ, were 

calculated from 1.7/secchi depth (Parsons et al., 1984).  Where stations were deeper 

than 100 m, the 100 m value has been used as the water column depth. 

 

(1) 
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RESULTS  

 

Distribution of Pseudo-nitzschia in relation to local Hydrographic conditions 

Summaries of local hydrographic features and Pseudo-nitzschia distribution derived 

from each research cruise are presented below.  For ease of interpretation these are 

presented in consecutive order.  The first set of samples used in this study were taken in 

August 1993 and a series of surveys followed up until October 1997.  

 

Full Station data, Secchi depth readings, temperature, salinity, inorganic nutrients, 

chlorophyll, Pseudo-nitzschia cell concentrations at discrete depths, Pseudo-nitzschia 

species identification, calculated values for phi, (Φ) and Delta-t are presented in tables in 

Appendix 7.  Figures showing the vertical profiles of nutrients, chlorophyll and Pseudo-

nitzschia cell concentrations are also included in Appendix 7.  Pseudo-nitzschia species 

recorded from net material at a number of stations are also presented in Appendix 7. 

 

August 1993 

A phytoplankton and hydrographic survey in shelf waters off the south and southwest 

coast of Ireland took place between August 13th-22nd 1993.  Temperatures at all stations 

(1301-1330, Figure 1) ranged from a maximum of 16.1-16.2°C at the surface of stations 

1308 off the southwest coast and 1330 positioned south of Cork to 9.3°C at a depth of 91 

m at station 1330.  The overall range in salinity was from 34.7 at the surface of station 

1330 to 35.4 at depth (>54 m) at station 1315.  Thermal stratification was evident 

throughout the survey region but was more pronounced at stations away from the coast 

with temperature differences of up to 4.0°C across the thermocline situated between 20-

35 m.  At some of the coastal stations (1320-1321) stratification was less well developed 

as a result of increased tidal stirring associated with the shallower stations (Figure 6).   
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Figure 6.  Plot of stations against water column depth, h, and water column stability 

expressed as the stratification parameter, Φ, off the south and southwest coasts of Ireland 

between August 8th-18th 1993.  Station positions are shown in Figure 1. 

 

The distribution of temperature and salinity from this survey has already been 

described in detail by Raine and McMahon (1998).  In summary the Irish Shelf Front, a 

surface to bottom salinity front separating NE Atlantic water from Irish coastal water 

was represented by the position of the 35.3 isohaline (Figure 7).  Its surface expression 

was just inshore of station 1305 at 11º 05�W.  The front takes on an S-shape 

configuration in summer and its bottom boundary was found close to the coast at station 

1301.  The bottom boundary was also evident off the south coast beneath the 

thermocline where the water body was more saline (>35.3) and warmer (>10.0°C) to the 

west than to the east where salinity values were <35.1 and temperature was <9.5°C 

(Figure 8).  The latter water body, referred to by Raine and McMahon (1998) as 

Northern Celtic Sea Water (NCSW) circulates to a greater or lesser extent clockwise 

around southwest Ireland.  This feature was observable as a mid-water jet from the TS 

record at 50 m at station 1316 (Figure 9).  This circulation pattern could be the reason 

why the thermocline was so shallow (20-25 m depth) southwest of Fastnet Rock, which 

may have resulted in the uplift in the thermocline outside Bantry Bay (station 1301). 
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Nitrate, phosphate and silicate concentrations were relatively depleted in the surface 

layer at nearly all stations while concentrations increased below the thermocline. At 

stations 1301, 1312, 1313 and 1314 however, surface nutrient concentrations were 

moderate to high.  Nitrate concentrations ranged from below the limit of detection at the 

surface of stations 1325 and 1328 up to 10.2 µM at 50 m at station 1325.  Similarly 

phosphate ranged from 0.08-0.89 µM and silicate from 0.6-8.8 µM.  Chlorophyll data 

(Appendix 7) showed subsurface maxima associated with the thermocline, the highest 

being recorded at station 1313 with a value of 12.2 mg.m-3 chlorophyll a.  Surface waters 

showed low chlorophyll concentrations ranging from 0.5-1.5 mg.m-3 while in bottom 

waters >60 m levels were low with typical concentrations of 0.01 mg.m-3. 

 

In general, diatoms including Pseudo-nitzschia spp. (Figure 10) were widely distributed 

throughout the area sampled.  Pseudo-nitzschia were numerically dominant at stations 

1312 and 1314 within the subsurface chlorophyll maxima where chlorophyll levels were 

9.6 mg.m-3 at 18 m (1312) and 11.5 mg.m-3 at 15 m (1314).  Rhizosolenia hebetata was 

however, the dominant phytoplankton in terms of biomass (up to 75%) at these two 

stations.  This diatom was numerically dominant at stations 1313, 1301 and 1315.  Off 

the south coast, along stations 1326-1330, Leptocylindrus danicus predominated.  It is 

likely that the diatom dominance resulted from previous coastal upwelling.  

 

Pseudo-nitzschia cell numbers in relation to temperature, salinity and chlorophyll are 

also shown in Figures 7-9.  Pseudo-nitzschia was not detected at stations 1304, 1303 and 

1302 (no phytoplankton data are available from station 1305).  Cells were however, 

recorded at the surface and in the pycnocline at stations 1301, 1313 and 1312. 

 

The upper mixed layer at station 1301 showed 1.5-60 cells.mL-1 of �P. seriata� (P. 

pungens, P. australis and P. fraudulenta�) and 0.2-6.3 cells.mL-1 of �P. delicatissima� (P. 

delicatissima).  The high cell numbers of Pseudo-nitzschia in the top 20 m was associated 

with a rise in the position of the 12.0°C isotherm (Figure 7).  Concentrations of nitrate 

(5.4 µM), phosphate (0.45 µM) and silicate (4.4 µM) at this depth were high.  At station 

                                                           
� The Pseudo-nitzschia species referred to were those observed in net material. 
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1313 (12m), �P. seriata� (P. pungens) was recorded at cell densities of 135 cells.mL-1 and 

�P. delicatissima� (P. pseudodelicatissima) at 5 cells.mL-1.  High chlorophyll levels (12.2 

mg.m-3) were recorded at the thermocline (20 m, 12.0°C isotherm) at station 1313 where 

�P. seriata� (P. pungens) and �P. delicatissima� (P. pseudodelicatissima) cell densities 

were 95 cells.mL-1 and 2 cells.mL-1, respectively.  At station 1312, 400 cells.mL-1 of �P. 

seriata� (P. pungens and P. fraudulenta) were found within the subsurface chlorophyll 

maximum (18 m depth).  �Pseudo-nitzschia delicatissima� was also recorded at this depth 

(330 cells.mL-1) but was not observed in the net material. 

 

Station 1314 (data not shown), southwest of Dunmanus Bay, was thermally stratified 

with a surface to bottom temperature difference of 4.0°C.  The thermocline was shallow 

(15-20 m) and a sample taken from 15 m was high in nutrients and chlorophyll.  Highest 

cell densities of Pseudo-nitzschia were also found here with 300 cells.mL-1 of �P. seriata� 

(P. pungens, P. multiseries, P. fraudulenta and P. australis) and 400 cells.mL-1 of �P. 

delicatissima� (P. delicatissima).   

 

Pseudo-nitzschia cell numbers increased in a westward direction (1330-1324) with the 

exception of a sample taken at the subsurface fluorescence maximum (25 m) at station 

1326 where the NE Atlantic seawater and NCSW met (Figure 8).  Here, cell densities of 

up to 180 cells.mL-1 of �P. delicatissima� and 360 cells.mL-1 of �P. seriata� were found.  

Pseudo-nitzschia pungens was the only species identified from net samples.   At stations 

1324 and 1325, at a depth of between 10-20 m, 20-40 cells.mL-1 of both the �P. seriata� 

(P. pungens, P. fraudulenta, P. multiseries and P. cf. seriata) and �P. delicatissima� 

(species not observed in net samples) groups were recorded.   

 

High cell concentrations of Pseudo-nitzschia were recorded above the thermocline at 

stations 1315-1319 (Figure 9; no phytoplankton data are available for station 1320) where 

chlorophyll levels ranged from 0.5-1.5 mg.m-3.  Light microscopy examination of the 

surface samples showed cell concentrations of 31-413 cells.mL-1 of the �P. seriata� 

group.  Ultrastructural examination of net samples taken at stations 1315 and 1317 

showed that P. pungens, P. fraudulenta, P. multiseries and P. delicatissima were present.  
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Representatives from the �P. delicatissima� group were only observed at the outer station 

(1315) with levels of 11 cells.mL-1 recorded at the surface although P. pungens was the 

only species observed in the net material examined at this station.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Distributions of temperature (°C), salinity and chlorophyll (mg.m-3) at stations 

1301-1305 and 1312-1313 off the southwest coast of Ireland, southwest of Bantry Bay 

sampled between August 15th-16th 1993 (modified from Raine and McMahon 1998).  

Station positions are shown in Figure 1.  Included in the temperature plot are the total cell 

densities of Pseudo-nitzschia recorded at discrete depths (i.e. the sum of �P. seriata� + �P. 

delicatissima� shown as cells.mL-1, 0 = not detected).   
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Figure 8. Distributions of temperature (°C), salinity and relative chlorophyll fluorescence 

along a station transect (1324-1330) off the south coast of Ireland from Sherkin Island to 

south of Cork sampled on August 18th 1993 (modified from Raine and McMahon 1998).  

Station positions are shown in Figure 1.  Included in the temperature plot are the total cell 

densities of Pseudo-nitzschia recorded at discrete depths (i.e. the sum of �P. seriata� + �P. 

delicatissima� shown as cells.mL-1, 0 = not detected).  
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Figure 9. Distributions of temperature (°C), salinity and relative chlorophyll fluorescence 

along a station transect (1315-1320) from inside Long Island Bay to out past Fastnet 

Rock sampled on August 17th 1993 (modified from Raine and McMahon 1998). Station 

positions are shown in Figure 1.  Included in the temperature plot are the total cell 

densities of Pseudo-nitzschia recorded at discrete depths (i.e. the sum of �P. seriata� + �P. 

delicatissima� shown as cells.mL-1).  
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Figure 10.  Plot of stations against mean integrated Pseudo-nitzschia concentrations (>10 

cells.mL-1) and water column stability expressed as the stratification parameter, Φ, off the 

south and southwest coasts of Ireland between August 8th-18th 1993.   

 

June 1995 

During the course of a grid survey of 30 stations on the southwestern continental shelf 

carried out between 49û 30' N and 51û 30' N and extending from 9û 00' W to 13û 00' W 

between June 2nd-8th 1995, Pseudo-nitzschia cells dominated the net flora at only one 

station close to the coast at 51û 10' N, 9û 55' W.  No quantitative samples were taken but 

the net sample examined comprised mainly of P. pungens, with lesser amounts of P. 

delicatissima, P. fraudulenta, P. australis and P. multiseries. 

 

May 1996 

An exceptional bloom of Pseudo-nitzschia occurred between May 6th-8th 1996 in 

Galway Bay (west coast of Ireland), when biomass levels in the top meter were high 

enough to cause water discolouration.  Salinity and temperature at the water surface was 

<16.0 and 10.5°C.  Salinity increased markedly with depth, at 2.5 m a salinity value of 

32.9 was recorded.  Secchi disc readings within the bloom were 3.5 m to 4.5 m.  Again, 

no quantitative samples were taken, but examination of net material revealed that the 

bloom comprised primarily of P. delicatissima, although P. pseudodelicatissima was also 

present.   
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July 1996  

Between the 20th-25th July 1996, hydrographic conditions around southwest Ireland 

were similar to those observed in August 1993.  Most stations examined were moderate 

to well stratified (Figure 11).  Offshore, the water column was thermally stratified with 

temperature differences of up to 5.0°C across the thermocline.  The minimum sea surface 

temperature (15.4°C) was recorded at station 1801 southwest of Bantry Bay and a 

maximum surface temperature of 17.0°C was observed at the inshore station 1813 in the 

Kinsale estuary.  Otherwise surface values (13.7-16.7°C) along the southwest averaged at 

15.7°C.  The lowest temperature, 9.5°C, was recorded at station 1811 (40 m) off the south 

coast.  Off the southeast coast, stations 1820-1822 straddled the Celtic Sea Front, a tidal 

front separating tidally mixed (1821) and thermally stratified water (1820).  

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Plot of stations against water column depth, h, and water column stability 

expressed as the stratification parameter, Φ, off the southeast, south and southwest coasts 

of Ireland between July 20th-25th 1996.  Station positions are shown in Figure 2. 

 

Inorganic nutrients distributions in July 1996 were not as high as those recorded in 

August 1993.  Depleted concentrations in the surface mixed layers as a consequence of 

phytoplankton activity were apparent and concentrations increased markedly with depth 

at stations located further offshore (e.g. 1801, 1802, 1805, 1810 and 1811).  Nitrate 

values ranged from below the limit of detection (e.g. 1802-1804, 1806, 1809 and 1811) 
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up to a maximum of 7.4 µM at stations 1810 and 1811.  Similarly phosphate values 

ranged from 0.02 µM (10-15 m at stations 1806 and 1803) to 0.58 µM (40 m at station 

1811) and silicate from 0.2 µM (11-13 m, stations 1816 and 1820) to 2.8 µM at station 

1811 (40 m). 

 

Pseudo-nitzschia spp. concentrations within the euphotic zone ranged from below the 

limit of detection to very high cell densities >100 cells.ml-1 in the discrete water samples 

examined (Figure 12).  When present, cell concentrations of between 3-140 cells.mL-1 of 

the �P. seriata� group were recorded.  Cell densities of the �P. delicatissima� group were 

higher, with cell counts of up to 850 cells.mL
-1

 recorded at station 1810.   

 

 

 

 

 

 

 

 

 

 

Figure 12.  Plot of stations against mean integrated Pseudo-nitzschia concentrations (>10 

cells.mL-1) and water column stability expressed as the stratification parameter, Φ, off the 

southeast, south and southwest coasts of Ireland between July 20th-25th 1996. 

 

Highest cell concentrations of Pseudo-nitzschia species were recorded at stations 1806, 

1808, 1809 and 1810  (Figure 13).  Vertical profiles of temperature, salinity and relative 

chlorophyll fluorescence show that the water column was well mixed at inshore shallow 

stations 1808 and 1809.  The water column was however, thermally stratified at station 

1810 further offshore (Figure 13).  Water clarity recorded by Secchi depth was 10 m at 

station 1808, 10.5 m at station 1809 and 11.5 m at station 1810.  Subsurface chlorophyll a 
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values ranged from 2.6 mg.m-3 (35 m) at station 1808 to 2.3 mg.m-3 (35 m) at station 

1810.  

 

Phytoplankton net material examined from station 1808 was predominated by P. 

pseudodelicatissima but P. fraudulenta, P. pungens, P. delicatissima, P. australis, P. 

multiseries, P. seriata cf. seriata were also present.  A tentatively identified P. 

subpacifica valve was also noted in this sample.  Water samples collected at 15 m and 35 

m at this station showed cell densities of up to 240 cells.mL-1 of the �P. delicatissima� 

group.  The �P. seriata� group was found at cell densities ranging from non-detectable to 

10 cells.mL-1 at these depths.  Pseudo-nitzschia pseudodelicatissima predominated the 

net material of stations 1809 and 1810.  Other Pseudo-nitzschia species present at these 

stations included P. fraudulenta, P. australis, P. pungens and P. delicatissima.  Cell 

concentrations of Pseudo-nitzschia (�P. seriata� and �P. delicatissima� groups) recorded 

at discrete depths of stations 1808-1810 ranged from 5-850 cells.mL-1 (Figure 13).  

Material examined from 15 stations using electron microscopy showed that P. 

pseudodelicatissima predominated at six sites (stations 1807-1810, 1815 and 1821); P. 

pungens predominated at six locations (stations 1801, 1802, 1806 and 1818-1820) and P. 

delicatissima at a further three (stations 1811-1812).  Other species noted were P. 

australis, P. fraudulenta, P. multiseries, P. cf. subpacifica, P. cf. seriata f. seriata and a 

tentatively identified P. seriata f. obtusa. 
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Figure 13. Vertical profiles of temperature (°C), salinity and relative chlorophyll 

fluorescence recorded at stations 1808-1809 (south of Long Island Bay) and 1810 (south 

of Sherkin Island) sampled between July 21st-22nd 1996.  Station positions are shown in 

Figure 2.  Results from salinity and chlorophyll measurements from discrete samples only 

are shown as the output from the CTD was faulty and an in situ fluorometer was not used.  

Included in the plot are the cell densities of the two groups of Pseudo-nitzschia recorded 

at discrete depths (s = �P. seriata� and d = �P. delicatissima� shown as cells.mL-1, 0 = not 

detected). 

 

Off the east coast of Ireland temperature records clearly showed that stations 1820 

(14.8°C) and 1821 (13.8°C) were located on either side of the Celtic Sea Front (Figure 

14).  On the stratified side of the CSF, Pseudo-nitzschia cells were in found in low 

numbers (3 cells.ml-1, 15 m) at station 1820, south of Kilmore Quay although a large 

number of species were observed in the phytoplankton net material.  Pseudo-nitzschia 

pungens was the predominant Pseudo-nitzschia species with P. multiseries, P. australis, 

P. fraudulenta and P. seriata cf. seriata also present.  In spite of the fact that 
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phytoplankton cell counts were not determined for station 1821, electron microscopy 

analysis of the net sample showed that the Pseudo-nitzschia population present composed 

of P. pseudodelicatissima and P. delicatissima.  Representatives from the �P. seriata� 

group were not present in the net haul sample at this station.  The vertical distribution of 

temperature, salinity and relative chlorophyll fluorescence at these stations showed that 

the water column of station 1820 was weakly stratified with a temperature difference of 

1.5°C across the thermocline (surface to bottom temperature difference of 2.2°C).  The 

water column at station 1821 was well mixed with a surface to bottom temperature and 

salinity difference of 0.6°C and 0.03 respectively (Figure 14).  Chlorophyll a 

concentrations of 1.3 mg.m-3 were recorded at the surface of both stations and water 

clarity measured using secchi depth was 13 m and 15 m for station 1820 and 1821 

respectively.  Nutrient concentrations at station 1820 increased with depth.  
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Figure 14. Vertical profiles of temperature (°C), salinity and relative chlorophyll 

fluorescence recorded at stations 1820 and 1821 sampled on July 24th 1996 (southwest to 

southeast of Rosslare on either side of the Celtic Sea Front).  Results from chlorophyll 

measurements from discrete samples only are shown, as an in situ fluorometer was not 

used. �Pseudo-nitzschia seriata� cell concentrations recorded at 15m are presented for 

station 1820 (s = �P. seriata� in cells.mL-1).  The  �P. delicatissima� group was not 

detected in the discrete sample examined using light microscopy.  Station positions are 

shown in Figure 2. 

 

September 1996 

Hydrographic conditions off south and southwest coast of Ireland between 3rd-8th, 1996 

showed a similar structure as in previous summer cruises with the water column at some 

stations sampled close to the coast being well mixed (1901, 1913) to moderately stratified 

(1909 and 1914).  At stations positioned further offshore stratification was well 

developed (Figure 15).  Sea surface temperature ranged from 14.0°C at station 1907 

southwest of Kenmare Bay to 17.1°C off the south coast (station 1922).  At stations 1901 

(93m), 1920 (100m) and 1922 (97m) the lowest bottom temperature value (9.5°C) was 
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recorded while the maximum surface to bottom temperature difference of 7.5°C was 

recorded at station 1922.  A representative section of the TS distributions is shown in 

Figure 17. The overall range in salinity was from 34.9 at the surface at station 1907 to 

35.5 (40 m) at the outer most station (1903) west of Dingle bay.  At the stratified stations 

a nutrient depleted surface layer and nutrient rich bottom was evident.  Inorganic 

nutrients at the thermocline varied in concentration with nitrate values of between 0.2-2.7 

µM, phosphate between 0.10-0.47 µM, and silicate from 0.6 µM to 1.2 µM.  Lowest 

values for nitrate and phosphate were found at station 1906 but inorganic silicate at this 

station was higher then at the other stations.  Nutrients increased with depth at this 

station.  Highest values of nitrate, phosphate and silicate below the thermocline (80 m) at 

station 1906 were 2.8 µM, 0.42 µM and 4.6 µM respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Plot of stations against water column depth, h, and water column stability 

expressed as the stratification parameter, Φ, off the south and southwest coasts of Ireland 

between September 3rd-8th, 1996.  Station positions are shown in Figure 3. 

 

Pseudo-nitzschia was observed in much lower cell densities then those found in 

previous surveys (Figure 16). Species were however present at 50% of the stations (1901-

1924) sampled.  The �P. seriata� group was found at concentrations of <1 cells.mL
-1

 at all 

stations with the exception of station 1902 where 92 cells.mL
-1

 was recorded at 15 m.  
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The �P. delicatissima� group was more abundant and recorded at 10 stations (1906-1910, 

1914-1915, 1922-1923 and 1924) with cell concentrations of between 1-78 cells.mL
-1

.   

 

 

 

 

 

 

 

 

 

 

Figure 16.  Plot of stations against integrated Pseudo-nitzschia concentrations (>10 

cells.mL-1) and water column stability expressed as the stratification parameter, Φ, off the 

south and southwest coasts of Ireland between September 3rd-8th 1996. 

 

Light microscopy examination of samples showed that Pseudo-nitzschia was not 

detected at stations 1903, 1904 and 1905 in samples taken at the subsurface chlorophyll 

maximum (between 20-60 m).  Pseudo-nitzschia cell counts were observed however at 

station 1906 (20 m) with 25 cells.mL-1 of the �P. delicatissima� group.  No cells from the 

�P. seriata� group were recorded.  Net haul material at this station showed that P. 

delicatissima predominated the sample.  Representatives from the �P. seriata� group were 

also present and included P. australis, P. fraudulenta and P. pungens.  Chlorophyll a 

concentrations along the Dingle transect were not exceptionally high (<1.8 mg.m-3).   

 

Figure 18 shows the vertical temperature and salinity profile at station 1902 positioned 

north of Dingle Bay (52° 25.0� W; 10° 25.0� N).  Subsurface phytoplankton samples 

taken at this station from 15 m contained 92 cells.mL-1 of �P. seriata� (P. australis, P. 

pungens and P. fraudulenta) and the chlorophyll a measurement at this depth was 0.5 

mg.m-3.  Other Pseudo-nitzschia species present in the net material examined were P. 

delicatissima and P. pseudodelicatissima.  However, the �P. delicatissima� group was not 
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observed in the phytoplankton sample taken at a depth of 15m.  In the surface mixed 

layer nutrient concentrations were exhausted, probably as a result of biological uptake.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Distributions of temperature (°C), salinity and in situ fluorescence (units are 

relative fluorescence) along a station transect (1903-1906) running in an east west 

direction, outside Dingle Bay sampled on September 4th 1996.  Station positions are 

shown in Figure 3.  Included in the temperature plot are the total cell densities of Pseudo-

nitzschia recorded at discrete depths (i.e. the sum of �P. seriata� + �P. delicatissima� 

groups are shown as cells.mL-1, 0 = not detected).  The surface position of the Irish Shelf 

Front can be seen between stations 1904 and 1905. 
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Figure 18. Vertical profiles of temperature (°C), salinity and relative fluorescence 

recorded at station 1902 (north of Dingle Bay at 52º 25.0� N, 10º 25.0� W).  Results from 

chlorophyll measurements from discrete samples only are shown as an in situ fluorometer 

was not used.  Included in the plot are the total cell densities of Pseudo-nitzschia 

recorded at 15m (s = �P. seriata�).  The  �P. delicatissima� group was not detected in the 

discrete sample at this depth.  Station position is shown in Figure 3. 

 

May 1997 

During a survey in shelf waters off the west coast of Ireland carried out between May 

1st-5th 1997, temperatures at all stations (2001-2011) ranged from a maximum of 13.7°C 

at the surface off Erris Head (station 2008) to 9.1°C at a depth of 80 m off Inishbofin 

Island (station 2001).  The overall range in salinity was from 34.9 at the surface of station 

2006 (inshore station off Achill Island) to 35.5 (200 m depth) at station 2011 (furthest 

station offshore).  In general both temperature and salinity increased due west, offshore.  

The low salinity values recorded at the inshore stations (2001, 2006 and 2007), was 

probably a result of freshwater runoff.  Near surface thermosalinograph data (Figure 19) 

revealed that the surface signature of the ISF was most pronounced along the Erris Head 
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transect and positioned close to the coast (~15 km offshore) at station 2008 (54° 21.1' N 

10° 15.0' W).  Stations 2003, 2004 and 2009-2011 were situated on the oceanic side of 

the ISF front.  Fluctuating values of temperature and salinity towards the coast along the 

Inishboffin and Achill Island transects may be a results of the presence of eddies inshore 

of the ISF.  Water depths ranged from 97 m at the coastal stations to ~ 229 m at the 

stations further offshore. The water column was weakly stratified at stations 2002, 2203, 

2005-2208 and 2010, off Inishboffin, Achill Island and Erris Head (Figure 20).  The 

remaining stations were either well stratified (2001, 2009, 2011) or vertically mixed 

(2004).   

 

Nutrient concentrations at the surface were depressed at all stations except the 

outermost stations of the Erris head transect (2010 and 2011) where nitrate concentrations 

were >4.5 µM and phosphate values were 0.38 µM.  Silicate in the surface water ranged 

between 0.6 µM at 2201 to 2.6 µM at station. 2010.  Chlorophyll levels were highest in 

the surface water of the outermost station (1.8 mg m-3) along the Inishbofin transect, at 

station 2005  (3.3 mg m-3) along the Achill Island transect and the innermost station (2.4 

mg m-3) of the Erris Head transect.  Pseudo-nitzschia was not present in very high cell 

densities at any of the stations sampled (Figure 21).  Highest cell densities of Pseudo-

nitzschia (19 cells.mL-1 of the �P. delicatissima� group) were recorded at 30 m depth at 

the outermost station (2011) west of Achill Island (Figure 22).  At this station Pseudo-

nitzschia co-dominated with the diatom Thalassionema frauenfeldii.  At all other stations 

�P. delicatissima� cell densities ranged from 0.08-14 cells.mL-1.  The �P. seriata� group 

was only present in very low cell numbers (<1 cells.mL
-1

) at only 3 (2201, 2204 and 

2205) out of the 11 stations sampled.  Two net samples (station 2006 and 2011) were 

selected and the Pseudo-nitzschia component was examined using electron microscopy.  

Pseudo-nitzschia fraudulenta predominated both samples with P. pseudodelicatissima 

also present at station 2011.  Vertical profiles of salinity, temperature and chlorophyll for 

stations 2006 and 2011 showed that at the inshore station 2006, a layer of fresher water 

was present above water with more saline characteristics, probably as a result of 

freshwater runoff.  Station 2011 positioned further offshore was more saline and 

thermally stratified (Figure 23).   
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Figure 19. Underway surface distribution of temperature (thin line) and salinity (dark 

line) along transects sampled off the west coast of Ireland between May 1st-5th 1997. 

Inishboffin transect 

Achill Island transect 
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Figure 20. Plot of stations against water column depth, h, and water column stability 

expressed as the stratification parameter, Φ, off the west coast of Ireland between May 

1st-5th 1997.  Station positions are shown in Figure 4. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Plot of stations against integrated Pseudo-nitzschia concentrations (>10 

cells.mL-1) and water column stability expressed as the stratification parameter, Φ, off the 

west coast of Ireland between May 1st-5th 1997. 
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Figure 22. Temperature (°C) distributions off the west coast of Ireland May 1st-5th 1997.  

Included in the temperature plot are the total cell densities of Pseudo-nitzschia recorded 

at discrete depths (i.e. the sum of �P. seriata� + �P. delicatissima� groups are shown as 

cells.mL-1, 0 = not detected).  Station positions are shown in Figure 4. 
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Figure 23. Vertical profiles of temperature (°C), salinity, relative fluorescence and �P. 

delicatissima� cell concentrations (�P. delicatissima� cells.mL-1, 0 = not detected) 

recorded at discrete depths at stations 2006 and 2011 sampled on May 3rd 1997.  The  �P. 

seriata� group was not detected in discrete samples examined using light microscopy.  

Station positions are shown in Figure 4. 

 

October 1997 

During a survey carried out off the south coast of Ireland between October 6th-10th 1997 

temperature ranged from a maximum of 15.7°C at the surface of station 2201 to 9.7°C at 

70 m at station 2208.  Overall range in salinity was 35.1 at the surface to 35.3 at depth  

(m) at stations 2205 and 2206 respectively.  Thermal stratification was more pronounced 

at the offshore stations then at those nearer the coast.   Water depths ranged from 55 m at 

the coastal stations to ~ 95 m at the more stratified stations further offshore (Figure 24).   
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Figure 24. Plot of stations against water column depth, h, and water column stability 

expressed as the stratification parameter, Φ, off the south coast of Ireland between 

October 6th-10th 1997.  Station positions are shown in Figure 5 

 

Highest abundances of between 1-2,000 cells.mL
-1

 of the �P. seriata� group were 

recorded off the south coast (Figure 25).  The species observed most frequently were P. 

fraudulenta and P. australis, although P. pungens, P. multiseries and P. cf. subpacifica 

were also detected using electron microscopy.  Pseudo-nitzschia pseudodelicatissima was 

the only representative from the �P. delicatissima� group identified at 3 stations (2202, 

2206 and 2208) using electron microscopy.  Levels of between 1-14 cells.mL
-1

 of this 

group were, however, recorded at stations 2201-2206, 2208 and W309-W312 analysed 

using light microscopy.  

 

The vertical profiles of temperature, salinity and in situ fluorescence recorded at several 

stations (2201-2204 and 2206) running parallel to the south coast from Cork to Waterford 

showed that the more western stations (2206 and 2201) were moderately stratified with 

surface to bottom temperature differences of ~3.4-5.0°C (Figure 26).  The depth of the 

upper mixed surface layer was approximately 25m.  Thermal stratification of the water 

column was weak at the more coastal stations (2202-2204) to the east with maximum 

temperature differences of 1.0°C across the thermocline.  However the water temperature 
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at these stations was warm (>15.0°C).  A subsurface chlorophyll maximum was observed 

at about 20 m depth. Chlorophyll a concentrations (Figure 26) increased towards the east 

with a maximum value observed of >5 mg.m-3 at station 2204 (15 m).  Secchi depth 

readings decreased from 13 m at station 2206 to 8.5 m at station 2204 and 8 m recorded 

at station 2203.   

 

 

 

 

 

 

 

 

 

 

Figure 25.  Plot of stations against integrated Pseudo-nitzschia concentrations (>10 

cells.mL-1) and water column stability expressed as the stratification parameter, Φ, off the 

south coast of Ireland between October 6th-10th 1997. 

 

Light microscopy results showed that surface cell concentrations of the �P. seriata� 

group increased from 2 cells.mL-1 at station 2206 to 550 cells.mL-1 at station 2204.  Cell 

densities at the chlorophyll maximum also increased in a similar manner from 65-450 

cells.mL-1.  Highest counts for this group were found at station 2203 (730 cells.mL-1) at 

the surface.  Electron microscopy analysis of net material showed that P. fraudulenta 

predominated the water column at all stations (2206, 2201-2204) except for station 2206 

where it co-occurred with P. australis. Other species recorded were P. pungens (2201, 

2203, 2204 and 2206) and P. multiseries (2201, 2202 and 2206).  Pseudo-nitzschia 

pseudodelicatissima was observed in 2 of the 5 stations (2201 and 2206), although light 

microscopy revealed the �P. delicatissima� group in 4 of the stations (2202, 2203, 2204 

and 2206).  Cell densities ranged from 1-8 cells.mL-1 at the surface and 2-12 cells.mL-1 

at the subsurface chlorophyll maximum.  Nitrate concentrations in the surface mixed 
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layer were low, between 0.1-0.6 µM.  Phosphate values in the surface layer were also 

depleted and ranged from 0.06-0.16µM (2204-2202 respectively).  Silicate 

distributional patterns in the upper water column ranged from 1.1 µM at station 2203 to 

1.4 µM at station 2201.  Nutrient concentrations increased with depth.  Highest levels of 

nitrate were found in the bottom mixed layer at station 2206 (8.9 µM). 

 

A second transect of stations running offshore, south of Cork (stations 2205-2208) was 

examined (Figure 27).  The structure of the water column at these stations was 

moderately stratified at the outer stations (2206-2208) with a 3.0°C surface to bottom 

temperature difference.  At the inshore stations the water column became more weakly 

stratified, probably a result of turbulent mixing.  Chlorophyll a concentrations in the 

upper water column increased from 0.1-0.5 mg.m-3 at the outer stations to between 1.6-

2.5 mg.m-3 at the inner stations.  This was also reflected in Pseudo-nitzschia cell counts 

recorded at these stations.  The presence of Pseudo-nitzschia species at the outer most 

stations (2207 and 2208) was scant with only  �P. delicatissima� recorded at <2 

cells.mL
-1

 at 60 m, 80 m and 85 m.  Weather conditions at the time of sampling this 

station transect may have influenced these results as strong southwesterly winds 

reaching up to force 8 were blowing and this may have resulted in the advection of 

surface water shoreward.   Electron microscopy observations of net material from 

station 2208 (2207 not examined) showed that P. pseudodelicatissima, P. fraudulenta P. 

australis, P. pungens and P. multiseries were present in the water column.  Stations 

2205 and 2206 were rich in �P. seriata� cell numbers in the top 25 m. Cell 

concentrations of 65-120 cells.mL-1 were found at 20-25 m while only 2-8 cells.mL-1 of 

the �P. delicatissima� group were recorded in the samples examined.  Pseudo-nitzschia 

australis predominated the net samples taken at both stations.  Additional species 

observed were P. fraudulenta, P. pungens, P. multiseries (station 2205 and 2206), P. 

pseudodelicatissima (station 2206) and a tentatively identified P. subpacifica (station 

2205).  Nutrient distributions were similar to those described above for the other 

stations. Highest nitrate levels of 0.6 µM were recorded at the surface layer at station 

2205 and 11.1 µM below the thermocline in the bottom water at station 2207.  

Phosphate values ranged from 0.09-0.19 µM (station 2206 and 2205) and silicate values 
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of 0.7-1.6 (station 2207 and 2208) in the surface mixed layer.  Bottom nutrients ranged 

from 5.7-11.1 µM for nitrate, 0.24-0.82 µM for phosphate and 5.1-6.6 µM for silicate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26.  Distributions of temperature (°C), salinity and in situ fluorescence (units are 

relative fluorescence) along a station transect (2206, 2201-2204) running in a northeast 

direction between Cork and Waterford sampled between 7th-11th October 1997.  Station 

positions are shown in Figure 5.  Included in the temperature plot are the total cell 

densities of Pseudo-nitzschia recorded at discrete depths (i.e. the sum of  �P. seriata� + 

�P. delicatissima� shown as cells.mL-1, 0 = not detected). 
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Figure 27. Distributions of temperature (°C), salinity and in situ fluorescence (units are 

relative fluorescence) along a station transect (2205-2208) south of Cork sampled on the 

11th October 1997.  Station positions are shown in Figure 5.  Included in the temperature 

plot are the total cell densities of Pseudo-nitzschia recorded at discrete depths (i.e. the 

sum of �P. seriata� + �P. delicatissima� shown as cells.mL-1, 0 = not detected). 
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Presence of Pseudo-nitzschia in relation to environmental data 

In an effort to relate the presence of Pseudo-nitzschia species to environmental 

variables, their occurrence was firstly compared with the temperature and salinity 

distribution, as well as the degree of stratification, represented by differences between the 

surface and bottom (or 100 m depth) TS values (Table 1).  With the exception of P. 

delicatissima and P. pseudodelicatissima occurring at stations with lower salinities no 

other relationships between Pseudo-nitzschia species and these environmental factors 

were evident.  Stations with lower salinities were sampled in Galway Bay (May 1996) 

and the Kinsale Estuary (July 1996).   

 

The relationship between Pseudo-nitzschia, water column stability (stratification) and 

water clarity scaled with depth was also investigated.  Water column stability was 

expressed by means of the potential energy anomaly, phi (Φ), which represents the 

amount of energy in J.m-3, required per unit volume to completely mix the water column 

and is directly proportional to the strength of stratification (Simpson et al. 1982).   

 

The ordination of Pseudo-nitzschia cell numbers in the quantitative samples and the 

predominant species in the net hauls were plotted on a 2-dimensional graph of the 

stratification parameter (Φ) against the optical depth (λ.h).  The distribution of Pseudo-

nitzschia, for both cell numbers and dominant species, falls on areas of the graph that 

have been shown to be occupied by diatom and dinoflagellate communities (Figures 28-

30, Jones and Gowen 1990).  
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Table 1. Ranges in the surface and bottom temperature and salinity values, together with 

surface to bottom differences of these parameters for Pseudo-nitzschia species recorded 

in Irish waters (n = 46 stations). If stations were deeper than 100 m, the 100 m value has 

been used. 
 P. pungens P. multiseries P. fraudulenta P. australis P. delicatissima P. pseudodelicatissima
       
Surface T (ºC)       
average 15.2 15.2 15.0 15.3 15.5 15.3 
range 13.5-16.8 14.0-16.5 11.1-16.8 13.5-16.7 13.5-17.0 11.6-17.0 
median 15.2 15.3 15.2 15.3 15.5 15.4 
s.d 0.8 0.6 1.2 0.7 1.1 1.2 
       
T (ºC) at depth       
average 11.5 11.7 11.8 12.0 11.4 11.6 
range 9.5-15.2 9.5-15.2 9.5-15.2 9.5-15.0 9.5-16.0 9.5-16.0 
median 11.0 11.7 11.3 11.8 11.0 11.2 
s.d 1.7 1.5 1.8 1.7 1.7 1.8 
       
Surface S       
average 35.0 35.0 34.9 35.0 34.9 34.9 
range 34.1-35.4 34.1-35.4 34.1-35.3 34.1-35.4 *33.7-35.3 *33.7-35.3 
median 35.0 35.0 35.0 35.0 35.0 35.0 
s.d 0.2 0.3 0.2 0.3 0.3 0.3 
       
S at depth       
average 35.2 35.2 35.2 35.2 35.1 35.1 
range 34.8-35.5 34.8-35.5 34.6-35.5 34.6-35.5 34.3-35.5 34.3-35.5 
median 35.2 35.3 35.2 35.2 35.2 35.2 
s.d 0.2 0.2 0.2 0.2 0.3 0.3 
       
Delta T (ºC)       
average 3.7 3.6 3.2 3.3 4.1 3.7 
range 0.2-7.2 0.7-5.9 0.0-7.2 0.0-7.2 0.6-7.5 0.6-7.2 
median 3.8 3.8 3.4 3.4 4.2 3.8 
s.d 1.9 1.5 2.0 2.0 2.1 2.1 
       
Delta S       
average 0.2 0.2 0.2 0.2 0.2 0.2 
range 0.0-0.8 0.0-0.8 0.0-0.9 0.0-0.8 0.0-0.6 0.0-0.8 
median 0.2 0.2 0.2 0.2 0.2 0.2 
s.d 0.2 0.2 0.2 0.2 0.2 0.2 
       
 

* surface salinity measurements at a station in Galway Bay May 1996 had a salinity value of  <16. 
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Figure 28.  Mean abundance of Pseudo-nitzschia cell numbers (74 stations) plotted 

against the stratification parameter, Φ, and the dimensionless optical depth (λ.h) for 

stations sampled off the south, southwest and west coast of Ireland, between 1993-1997.  

Size of bubble markers reflects Pseudo-nitzschia cell concentrations, which ranged from 

0.1 cells.mL-1 to 728 cells.mL-1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29.  Predominant Pseudo-nitzschia species present in vertical phytoplankt

hauls (34 stations) plotted against the stratification parameter, Φ, and the dimensi

optical depth (λ.h) for stations sampled off the south, southwest and west coa

Ireland, between 1993-1997.   
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Figure 30. Areas of a plot of stratification (Φ) and the dimensionless optical depth (λ.h) 

considered to be occupied by dominant diatom or dinoflagellate communities (after Jones 

and Gowen 1990). 

 

When Pseudo-nitzschia cell concentrations were plotted directly against nutrients 

(Figure 31), no obvious relationship was evident between cell numbers and levels of 

nitrate.   Where there was measurable phosphate, the �P. seriata� group was more 

abundant at low (<0.2 µM) phosphate levels.  Not surprisingly, numbers of both groups 

tended to be maximal when silicate was in the range of 1-4 µM.  There was no 

relationship between cell numbers and chlorophyll concentrations measured, due to the 

presence of other phytoplankton (Figure 31).   

 

Quantitative (LM) data was plotted on a temperature-salinity diagram (Figure 32).  It is 

apparent that the �P. delicatissima� group occurred more frequently over a wider range of 

both temperature and salinity than the �P. seriata� group.   The �P. delicatissima� and the 

�P. seriata groups occurred over temperature and salinity values of 9.1-17.0°C, 33.8-35.5 

and 9.6-15.7°C, 34.69-35.3 respectively.  A similar analysis was carried out with 

inorganic nutrients (Figure 33).  The ratio of nitrate (NO3) to phosphate (PO4), and 

silicate (SiO4) to phosphate (PO4) taken from these plots were 14N:1P:7Si with r2 values 

of 0.86 and 0.53 respectively.  The interrelationships of these nutrients are lower then 
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what might be expected for phytoplankton micronutrient requirements (106C:16N:1P by 

atoms) as suggested by the Redfield ratio (Redfield 1963) and the uptake ratio of silicate 

in western N. Atlantic waters (15N:1P:16Si by atoms, Richards 1958).  Most of the 

observations of Pseudo-nitzschia occurred at lower nutrient concentrations, probably as a 

result of biological uptake that would be typical of the euphotic surface layer of stratified 

water.   This is more evident in plots of nutrients against temperature (Figure 34), which 

also suggest that warm (14.0-16.0ºC) stratified water containing measurable nutrients is 

where one tends to find more species from the �P. seriata� group then �P. delicatissima� 

group.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31.  Scatter plots of nitrate, phosphate, silicate and chlorophyll against the �P. 

seriata� and �P. delicatissima� groups in cells.mL-1.  Samples from all depths and times 

throughout the study containing all the above variables were used.
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Figure 32.  Cell numbers of the �P. seriata� and �P. delicatissima� groups plotted against 

temperature and salinity.  Samples from all depths and times throughout the study 

containing all the above variables were used.  Size of bubble markers reflects Pseudo-

nitzschia cell concentrations. The �P. seriata� group ranged from 0.1 cells.mL-1 to 730 

cells.mL-1 and the �P. seriata� group ranged from 0.1 cells.mL-1 to 850 cells.mL-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33.  Pseudo-nitzschia cell numbers plotted against inorganic nutrients (nitrate, 

phosphate and silicate).  Samples from all discrete depths and times throughout the study 

containing the above variables were used.  Size of bubble markers reflects Pseudo-

nitzschia cell concentrations, which ranged from 0.1 cells.mL-1 to 860 cells.mL-1. 
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Figure 34.  Cell numbers of the �P. seriata� and �P. delicatissima� groups plotted against 

temperature and inorganic nutrients (nitrate, phosphate and silicate).  Samples from all 

discrete depths and times throughout the study containing all the above variables were 

used.  Size of bubble markers reflects Pseudo-nitzschia cell concentration.  Size of bubble 

markers reflects Pseudo-nitzschia cell concentrations.  The �P. seriata� group ranged 

from 0.1 cells.mL-1 to 730 cells.mL-1 and the �P. seriata� group ranged from 0.1 cells.mL-

1 to 850 cells.mL-1. 
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DISCUSSION 

 

Pseudo-nitzschia is a regular and abundant component of the phytoplankton in the 

coastal and shelf waters off Ireland.  This is reflected in its presence in 67 of the 86 

samples examined in this study.  The physical environment where Pseudo-nitzschia spp. 

were observed is typical of a temperate zone with surface water temperatures of between 

12.6-17.1°C.  Moreover, the distribution of these species is in broad agreement with 

previously published data on Pseudo-nitzschia from other temperate waters (Hasle and 

Syvertsen 1997). 

 
The earliest account of Pseudo-nitzschia in Irish waters is from data collected at 4 sites 

off the southwest, southeast and northeast coasts in 1904 by Gough (1906).  Although the 

results presented by Gough are qualitative, Pseudo-nitzschia, referred to at the time as N. 

seriata, was present but rare off the southwest coast in the vicinity of Sherkin Island 

during August when surface water temperature recorded was low (12.0-13.0ºC).  Raine et 

al. (1990a) re-examined Gough�s daily records of surface water temperature in August 

1904 and inferred that the area may have been under the influence of a local upwelling 

system.  Gough also documented that N. seriata was present but very rare along the 

southeast coast in March and June and present but rare in August and September off the 

northeast coast of Ireland.  Surface water temperature records were between 7.0-13.0ºC 

and salinity values ranged from 34.1-34.7 ppt.   

 

More recent data on this genus in Irish waters has shown it to be a common component 

of the marine flora in coastal waters to the west of Ireland (Dooley 1973, Roden 1984, 

Roden et al. 1987, Raine et al 1990b, Roden and Raine 1994, Pybus 1996), eastern 

Atlantic shelf waters (McMahon et al. 1995), south western coastal waters (Roden et al. 

1980, Raine et al. 1990a, 1990b, 1993a, Raine and Joyce 1996, Raine and McMahon 

1998) and in the Celtic Sea (Raine and McMahon 1998).   
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Distribution of Pseudo-nitzschia in relation to local hydrographic conditions  

Phytoplankton distributions off the west and southwest of Ireland are governed by the 

physical separation of coastal water and shelf water of more oceanic characteristics 

(Atlantic seawater) by the Irish Shelf Front (ISF) (McMahon et al. 1995, Raine and 

McMahon 1998).  In spring, the seaward side of the ISF supports high levels of 

phytoplankton biomass and chlorophyll compared to the surrounding waters but does 

not at other times of the year (McMahon et al. 1995).  McMahon et al. (1995) noted two 

distinct diatom communities on either side of the western ISF in April 1992.  A 

transition across the front from Pseudo-nitzschia spp. and Thalassiosira spp. in coastal 

waters to Thalassionema frauenfeldii or Chaetoceros decipiens populations offshore 

was evident (McMahon et al. 1995).  In early May 1997, the sampling area in the shelf 

waters off the west coast was well-mixed inshore with the development of thermal 

stratification becoming evident further offshore.  Sea surface temperatures were 

relatively low (11.6-12.1°C) and the position of the ISF was close to the coast (~15 km) 

probably due to the strong to moderate W/SW winds that prevailed prior to the cruise.   

Although Pseudo-nitzschia spp. were only found at relatively low cell concentrations 

(non-detectable to 19 cells.mL-1) throughout the region, the genus was present on either 

side of the ISF.  Pseudo-nitzschia also increased in abundance across the ISF where 

nutrient levels were highest.  At the furthest station offshore along the Erris Head 

transect Pseudo-nitzschia spp. were numerically dominant and co-occurred with the 

oceanic diatom Thalassionema frauenfeldii (O�Boyle 2002).  Ultrastructural 

examination of 2 selected samples from either side of the front showed that while P. 

fraudulenta was present on both sides of the ISF; P. pseudodelicatissima was only 

evident on the oceanic side of the front.   

 

Raine and McMahon (1998) found that the phytoplankton composition off the 

southwest coast changed markedly in relation to the position of the ISF.  Here the 

transition in the type of phytoplankton communities on either side of the ISF was most 

evident during the summer.  Small armoured dinoflagellates (e.g. Heterocapsa 

rotundatum), microflagellates and some summer diatoms (e.g. Leptocylindrus 

mediterraneus) accumulated offshore in water of more oceanic characteristics and a 
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greater diversity and a high standing crop of diatoms persisted on the coastal side of the 

front (Raine and McMahon 1998).  Overall, results observed in this region during 

August 1993, July 1996 and September 1996 showed that Pseudo-nitzschia populations 

were only evident on the coastal side of the ISF.    

 

Another major frontal system, the Celtic Sea Front (CSF), exists at the southern 

approach to the Irish Sea off the southeast coast of Ireland.  The position of the CSF can 

be determined by a strong horizontal gradient in surface temperature (~1.0°C per 

kilometre) during summer.  At this time of year the Celtic Sea, a region of low tidal 

energy, is thermally stratified while tidally generated turbulence in the Irish Sea 

prevents the development of the seasonal thermocline.  Diatoms are the typical flora 

present in the Irish Sea while dinoflagellates are generally more characteristic of the 

Celtic Sea in late summer.  In July 1996, a horizontal transition in the composition of 

Pseudo-nitzschia species was evident across the CSF.  This front seemed to form a 

physical barrier that separated two distinct Pseudo-nitzschia populations.  Pseudo-

nitzschia pseudodelicatissima and P. delicatissima were the only Pseudo-nitzschia 

representatives recorded on the Irish Sea side of the front.  On the thermally stratified 

side of the CSF, an array of Pseudo-nitzschia species from the �P. seriata� group (P. 

pungens, P. multiseries, P. australis, P. fraudulenta and P. cf. seriata) were present.   

 

Off the southwest coast of Ireland strong wind-driven coastal upwelling occurs 

periodically.  The resulting advection of deeper nutrient rich water, coupled with the 

destabilisation of the water column can promote the growth in summer of diatom species 

characteristic of the spring bloom (Raine et al. 1990a). Sea surface temperature can fall 

by up to 5.0°C within 5 days during these periodic events of upwelling, and so these 

events can be physically characterised by low surface water temperatures of <11.0°C 

(Raine et al. 1990a).  In the absence of upwelling events, stratification is more 

pronounced in this region during summer and high-density populations of dinoflagellates 

including the �red-tide� forming dinoflagellate, Karenia mikimotoi (formerly known as 

Gyrodinium aureolum) are found associated with the subsurface chlorophyll maximum 

(Raine et al. 1993a).  In August 1985, Raine et al. (1993a) noted that a pattern in 
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phytoplankton succession was apparent during an upwelling event off the southwest coast 

as one moved seaward.  Diatom species typical of the spring bloom proliferated at the 

cooler well-mixed inshore stations while summer diatoms such as Pseudo-nitzschia (up to 

460 cells.mL-1) became more abundant in the adjacent weakly stratified waters outside 

the mouth of Bantry Bay.  Roden et al. (1981) also referred to a sudden drop in surface 

water temperature from 15.0ºC to 11.0ºC in the vicinity of Fastnet Rock (southwest 

Ireland) in mid July 1979, and noted that the 13.0ºC isotherm provided a good indication 

of the transition zone from stratified to mixed waters.  At this time Pseudo-nitzschia spp. 

predominated the phytoplankton community with cell densities of up to 1,300 cells.mL-1 

on the inshore side of the mixed/stratified zone where surface temperature was 12.6ºC.  

Dinoflagellates became more common after this period and during August 1979, oceanic 

waters containing K. mikimotoi were advected shoreward displacing the established 

populations of Pseudo-nitzschia.  Raine et al (1993a) concluded that the observations 

made by Roden et al. (1981) were probably a result of coastal upwelling rather than a 

tidal front separating inshore and offshore waters.  Weak coastal upwelling activity also 

occurs from time to time around the southwest coast of Ireland in summer.  This physical 

process causes the subsurface seasonal thermocline to shallow, transporting its associated 

phytoplankton population towards the surface to improved irradiance conditions (Raine et 

al. 1990b).  

 

Observations along the Bantry Bay transect in August 1993 reflected similar conditions 

with up to 730 cells.mL-1 of Pseudo-nitzschia (predominately P. pungens) recorded at the 

mouth of the bay where an uplift of the thermocline isotherms was evident.  Surface 

temperature recorded (12.0-13.0ºC) was at least 2.0-3.0ºC cooler then waters inshore and 

the well-stratified shelf water further off the coast.  Pseudo-nitzschia was however, not 

evident in enumerated samples in adjacent shelf waters southwest of Bantry Bay at the 

time, suggesting that the physical environment observed might have reflected a post 

upwelling event.  Local hydrographic conditions involving upwelling of colder nutrient 

rich water seem to play a large role in the distributional patterns of Pseudo-nitzschia 

populations in other parts of the world. (Buck et al. 1992, Walz et al. 1994, Dortch et al. 

1997).  For example, off the west coast of America in Monterey Bay Pseudo-nitzschia 
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spp. have a tendency to increase in cell numbers at times of post upwelling events 

(Fryxell et al. 1997).   

 

On the continental shelf off the south and southwest coasts of Ireland, the typical 

situation in early summer is a thermally stratified water column with a fully developed 

seasonal thermocline located between 35-40 m.  Temperature differences across the 

thermocline of 6.0ºC are typical in these waters during the summer and nutrient 

depletion in the upper mixed layer occurs as a result of biological activity.  Raine and 

McMahon (1998) have shown that the abundance of Pseudo-nitzschia off the south and 

southwest coasts of Ireland can vary in summer from year to year.  For example in this 

region during July 1991, July 1992 and August 1993 cell densities of >5 cells.mL-1 of 

Pseudo-nitzschia spp. were recorded off the south coast of Ireland but it was not 

detected in August 1994 or August 1995 (Raine and McMahon 1998).  In this study, 

Pseudo-nitzschia was abundant with up to 860 cells.mL-1 in thermally stratified shelf 

waters off the south and southwest coasts during summer and autumn.  These 

populations were concentrated in the top 25-40 m of the surface mixed layer during 

August 1993 (predominantly P. pungens), July 1996 (predominantly P. 

pseudodelicatissima) and October 1997 (predominantly P. fraudulenta) while very low 

concentrations of Pseudo-nitzschia spp., (non-detectable to 16 cells.mL-1) were evident 

in September 1996.  

 

Close to the Irish coast, the turbulent kinetic energy resulting from tides is strong 

enough to prevent the development of the thermocline in summer and so the water 

column remains relatively mixed all year round.  Roden and Raine (1994) found that the 

entrainment of subpycnocline nutrient rich water helps sustain phytoplankton growth off 

the Connemara coast, northwest of Galway Bay.  Although present in the spring, 

Pseudo-nitzschia appears to be more abundant and widespread in the bays and inshore 

waters off the west coast during summer and autumn (Roden et al. 1987, Raine et al. 

1990b, Roden and Raine 1994, Pybus 1996).  Highest cell densities of Pseudo-nitzschia 

(�P. delicatissima� group) of up to 567 cells.mL-1 have been reported in this region in 

June (Raine et al. 1990b).  In the present study, a bloom of Pseudo-nitzschia comprising 
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primarily of P. delicatissima was observed in Galway Bay in early May 1996.  This 

seems to be in agreement with Pybus�s account of the seasonal patterns of 

phytoplankton in Galway Bay, where the diatom spring bloom in March/April is 

succeeded by a mixed assemblage of summer diatoms including, at times, large 

populations of Pseudo-nitzschia spp. (Pybus 1996).  

 

The seasonal patterns of phytoplankton community composition in Irish waters are 

strongly linked to water column stability in addition to the availability of light and 

nutrients (Raine et al. 1993b).  Diatoms are typically the first phytoplankton group to 

appear during spring when surface irradiance dramatically increase and vertical 

stratification of the water column as a result of solar heating deepens the critical depth 

for growth below the surface mixed layer.  As the summer season progresses 

dinoflagellate populations tend to dominate the flora as the water column becomes well 

stratified.   It is now known that Pseudo-nitzschia is often present and occasionally 

abundant off the west coast of Ireland during May.  Off the southwest coast of Ireland 

the substantial numbers of Pseudo-nitzschia recorded at coastal stations in autumn 1993 

may have been a consequence of coastal upwelling activity resulting in the elevated 

levels of nutrients especially silicate (>1µM) observed in surface waters.  Such physical 

conditions would be consistent with those expected off the west coast in May when the 

spring bloom has subsided and water column stability increases.   

 

Results observed off the south coast have also shown, however, that Pseudo-nitzschia 

cell densities in excess of  >90 cells.mL-1 can, on occasions, be situated at depths of up 

to 25- 40 m.  For example, in August 1993, large numbers of P. pungens (540 cells.mL-

1) were found at the thermocline (25 m) at a shelf station off the south coast.  Cell 

densities of Pseudo-nitzschia spp. of between 150-860 cells.mL-1 were also observed at 

35-40 m at a couple of stations off the south coast in July 1996.  Nutrient concentrations 

were lower in these warmer nutrient depleted surface waters further off the Irish coast 

and one possible reason for the presence of these Pseudo-nitzschia populations at the 

seasonal thermocline may have been because the environmental conditions (light and 

nutrients) at this depth were well suited to growth.  It is well documented that the 
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thermocline is generally a region where phytoplankton are exposed to sufficient 

irradiance levels from above and to moderate rates of nutrients from below, while cells 

are only gradually removed from this beneficial regime by turbulent diffusion (Tett 

1981).  In a review on the distribution of Pseudo-nitzschia off the west coast of America 

by Fryxell et al. (1997), the authors proposed that the distinctive behaviour of this genus 

in culture might explain the observation of subsurface populations in thermally stratified 

water.  A chain forming planktonic stage was evident when nutrients were abundant, but 

cells became disassociated into singlets or doublets during stationary growth and sank to 

the bottom of the culture chamber.  When additional nutrients were reintroduced into the 

cultures the same growth behaviour recurred.  It remains unclear if these subsurface 

thermocline populations of Pseudo-nitzschia are the result of some form of physical 

accumulation process, In situ growth at these depths, or the settling out of cells from the 

water column until they reach a strong vertical density gradient at the seasonal 

thermocline. 

 

Presence of Pseudo-nitzschia in relation to environmental data 

The current study shows that the genus Pseudo-nitzschia is most abundant in Irish 

waters when thermal stratification is beginning to develop or is well established and 

nutrients are more limiting.  This seems to be especially true for the �P. seriata� group.  

The �P. delicatissima� group was also present in more mixed waters and at times when 

the thermocline was less well developed.  The ordination of Pseudo-nitzschia on plots of 

stratification and water clarity scaled with depth did not conform to the generalised 

pattern of diatoms and dinoflagellates presented by Jones and Gowen (1990).  Instead it 

would appear that Pseudo-nitzschia occupies a transitional zone or ecological niche 

between these two groups. Other diatom species such as the weakly silicified 

Leptocylindrus meditteraneus and Rhizosolenia alata have also shown similar patterns in 

their distributions (Raine and Joyce 1996).  

 

Populations of Pseudo-nitzschia in Irish waters were found over a wide range of 

temperature (9.1-17.0 ºC), salinity (33.8-35.5) and nutrient concentrations.  Overall, the 

�P. delicatissima� group was present over a wider range of salinity then the �P. seriata� 
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group.  The �P. seriata� group was most abundant in warmer waters during July, August 

and October.  Levels of micronutrients ranged from non-detectable to 9.9 µM for nitrate, 

non-detectable to 0.76 µM for phosphate and 0.2 to 8.8 µM for silicate.  Although the 

presence of high cell densities of Pseudo-nitzschia at silicate levels of between 1-2 µM 

reflects a variety of depths within the photic zone this observation requires further 

investigation since most diatoms are thought to grow best at silicate concentrations of >2 

µM (Egge and Aksnes 1992).  It is difficult to make direct relationships between these 

variables when a suite of Pseudo-nitzschia species are considered as a single entity.  

Future studies should concentrate on identifying the species composition at discrete 

depths in order to get a better understanding of the factors that govern the ecology of 

individual Pseudo-nitzschia species.  Competitive culture studies of individual Pseudo-

nitzschia species and other diatoms typical of the spring bloom might also help to 

elucidate what environmental factors, such as the relative concentrations of inorganic 

nutrients, in particular silicate, favour the growth of this diatom during early summer.  

One such culture study carried out by Sommer (1994), using a mixture of 12 

phytoplankton species, showed that the relative abundance of P. multiseries increased 

with increasing silicate:nitrate ratios and it became the dominant species at low light 

irradiance (33 µmol photons.m-2.s-1) and at a silicate:nitrate ratio of 31:1.   

 

Threat posed to the Aquaculture Industry by toxic Pseudo-nitzschia spp. 

Martin et al. (1993) reported P. pseudodelicatissima at cell densities of 1,000 cells.mL-1 

when shellfish were contaminated with domoic acid in the Bay of Fundy in 1988.  Villac 

et al. (1993) subsequently considered harmful bloom concentrations of Pseudo-nitzschia 

to be of this order.  More recently, however, Bates et al. (1998) noted that even 100 

cells.mL
-1

 of a toxic species could contaminate shellfish with domoic acid at levels above 

the permissible concentration (20 µg DA g-1 wet weight of tissue).  The current study 

shows that Pseudo-nitzschia populations off the Irish coast can reach cell densities above 

estimated trigger levels set in other countries for testing shellfish for the presence of 

domoic acid.  These concentrations are comparable to earlier records of Roden et al. 

(1981) and Raine et al. (1990a).  In Ireland, the Marine institute (MI) is the regulatory 

authority responsible for monitoring biotoxins in shellfish.  Although harvesting closures 



CHAPTER 3 

141 

are solely based on the presence of these toxins in shellfish, an estimated number of 50 

cells.mL-1 of Pseudo-nitzschia spp. has been set as a trigger level for flesh testing of 

shellfish (Joe Silke pers. comm.). 

 

In the field, harmful events resulting from domoic acid production have been 

associated with P. multiseries and P. pseudodelicatissima in Eastern Canada (Subba Rao 

et al. 1988, Bates et al. 1989, Martin et al. 1990) and with P. australis along the 

Californian coast and in European waters (Buck et al. 1992, Fritz et al. 1992, Míguez et 

al. 1996, Campbell et al. 2001).  Environmental and physiological conditions resulting 

in these events are still not completely resolved, but there are indications that 

physiological stress such as silica or phosphorus limitation may promote domoic acid 

production, at least in P. multiseries (Bates et al. 1991, 1996, Bates 1998).  Walt et al. 

(1994) suggested that one possible explanation for the detection of domoic acid during 

Spring in shallow areas of Monterey Bay, a time when active upwelling is common, 

might be the result of physiological stress on Pseudo-nitzschia populations due to 

biological induced nutrient depletion as water in these areas are often retained due to the 

local hydrography of the bay.  Culture studies have also been carried out to ascertain if 

other Pseudo-nitzschia species have the ability to produce the amnesic shellfish toxin, 

domoic acid and to investigate the physiological attributes involved in the production of 

the toxin (see Bates 1998).  From these studies we now know that at least 7 Pseudo-

nitzschia species can produce this toxin and that domoic acid is produced at times when 

division begins to decline in the absence of essential nutrients required for growth such 

as silicate and phosphate.  Nitrate, however, is an essential nutrient for the production of 

amino acids such as domoic acid. 

 

Seven out of the eight species observed in this study, including those tentatively 

identified, have been shown to be capable of producing domoic acid in laboratory 

cultures.  These are P. pungens (Rhodes et al. 1996), P. multiseries (Subba Rao et al. 

1988, Bates et al. 1989, Fryxell et al. 1990), P. seriata (Lundholm et al. 1994), P. 

australis (Garrison et al. 1992), P. fraudulenta (Rhodes et al. 1998), P. delicatissima 

(Smith et al. 1990) and P. pseudodelicatissima (Martin et al. 1990, Lundholm et al. 
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1997).  Isolates of P. pungens, P. fraudulenta, P. australis and P. delicatissima from Irish 

waters have also been tested for domoic acid production.  To date, the only isolate from 

Irish waters, P. australis has produced this toxin in culture (see chapter 4).  This is cause 

for concern since this species was very abundant during October 1997 and was also 

present in net hauls taken during other times of the year.  

 

Although the exact mechanisms that promote and control Pseudo-nitzschia blooms in 

Irish coastal waters are still unclear, this study has shown that localized blooms of this 

diatom have been recorded off the west and south coasts.  Given that the Irish coastal 

current plays an important role in the advection of dinoflagellates populations from the 

south coast around to the bays of the southwest in summer it is reasonable to assume 

that Pseudo-nitzschia blooms would be transported in a similar manner (Raine and 

McMahon 1998). 

 

Since the species composition and seasonal succession patterns of phytoplankton off 

the Irish coast can vary greatly from year to year, future research should involve the 

continued collection of biological, physical and chemical information over a time series 

to provide a better insight into the processes that influence Pseudo-nitzschia species 

shifts and distributions off the Irish coast.  The application of species specific probes 

similar to those used in Monterey Bay for Pseudo-nitzschia (Scholin et al.2000) would 

greatly enhance the resolution of Pseudo-nitzschia species present at discrete depths and 

within different water bodies.  The use of these novel techniques in conjunction with a 

time and depth series of environmental data would allow the tracking of Pseudo-

nitzschia populations and the investigation of the relationship between environmental 

conditions that influence the development, maintenance and decline of these blooms.  
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ABSTRACT 

 

A non-axenic isolate of the potentially toxic diatom Pseudo-nitzschia australis 

(Frenguelli) from Irish waters was tested in two separate batch culture experiments.  

When grown under a low irradiance (~12 µmol photons.m-2.s-1; 16:8 h L:D cycle) for up 

to 40 days, the culture produced only trace amounts of the neurotoxin domoic acid (DA) 

during late stationary phase.  Growth at a higher irradiance (~115 µmol photons.m-2.s-1; 

12:12 h L:D cycle) resulted in DA production starting during late exponential phase and 

reaching a maximum concentration of 26 pg DA.cell-1 during late stationary phase.  

Liquid chromatography coupled to mass spectrometry (LC-MS) was used to confirm the 

identity of DA in the culture.  Irradiance and photoperiod could be important factors that 

contribute directly or indirectly to the control of DA production in P. australis.  This is 

the first record of a DA-producing diatom in Irish waters and results indicate that P. 

australis may have been the source of DA that has recently contaminated shellfisheries 

in this area.  

 

Key index words: domoic acid; electron microscopy; irradiance; Irish waters; mass 

spectrometry; Pseudo-nitzschia australis 
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INTRODUCTION 

 

The pennate diatom genus Pseudo-nitzschia Peragallo has attracted much attention in 

recent years because some species within this genus have the potential to produce the 

neurotoxic amino acid, domoic acid (DA).  Domoic acid was identified as the causative 

toxin in an episode of amnesic shellfish poisoning (ASP) in eastern Canada during 

November to December 1987 (Wright et al. 1989).  Three people died and over 100 

became ill after consuming blue mussels (Mytilus edulis Linnaeus) contaminated with 

DA (Todd 1993).  The organism responsible for this toxic event was the pennate diatom 

Pseudo-nitzschia multiseries (Hasle) Hasle, which dominated a phytoplankton bloom at 

the time of the outbreak (Bates et al. 1989).  Subsequently, other investigations have 

reported a total of nine species within the genus Pseudo-nitzschia, and one within the 

genus Nitzschia Hassall, that are potential DA producers (Bates 2000).  These include, 

in decreasing amounts of DA per cell, P. australis (Frenguelli), P. seriata (Cleve) H. 

Peragallo, P. multiseries, Nitzschia navis-varingica Lundholm et Moestrup, P. 

pseudodelicatissima (Hasle) Hasle, P. multistriata Takano (Takano), P. fraudulenta 

(Cleve) Hasle, P. pungens (Grunow ex Cleve) Hasle, P. delicatissima (Cleve) Heiden, 

and P. turgidula (Hustedt) Hasle.  Additional toxigenic species, and even genera, may 

be encountered as more countries establish monitoring programs for routine testing of 

DA in shellfish tissue samples. 

 

The toxicity of Pseudo-nitzschia strains may differ within a given species.  Toxigenic 

and non-toxigenic strains have been described for most of the Pseudo-nitzschia species 

listed above (Bates et al. 1998).  For example, an isolate of P. seriata from Cardigan 

Bay, eastern Canada, did not produce DA (Bates et al. 1989), whereas one from Danish 

waters was toxigenic in culture (Lundholm et al. 1994).  It can be difficult to compare 

toxicity among strains, because cultures are not always grown under the same 

conditions and optimum conditions for DA production are not necessarily known.  

Furthermore, isolates of the same species (e.g. P. multiseries) vary in the concentration 

of DA produced under seemingly similar conditions (Bates et al. 1989). 
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Attention was first drawn to P. australis after it was identified as the source of DA that 

killed Brandt’s cormorants (Phalacrocorax penicillatus Brandt) and brown pelicans 

(Pelecanus occidentalis Ridgway) in Monterey Bay, California in 1991 (Fritz et al. 

1992).  The presence of DA was demonstrated conclusively, using liquid 

chromatography coupled to mass spectrometry (LC-MS), in a plankton tow that 

contained P. australis, in the anchovy vector (Engraulis mordax Girard), and in the 

pelican stomach contents (Fritz et al. 1992, Work et al. 1993).  In 1999, P. australis was 

found to be responsible for the deaths of over 400 California sea lions (Zalophus 

californianus Lesson) (Scholin et al. 2000).  Pseudo-nitzschia australis was also 

suspected to be the source of DA in New Zealand scallops (Pecten novaezealandiae 

Reeve) in 1993 and 1994 (Rhodes et al. 1996).  In European waters, P. australis was 

first suspected as the source of DA in cultured mussels from Spain in 1994 (Míguez et 

al. 1996).  This species was again the suspected source of DA that contaminated 

scallops (Pecten maximus Linnaeus and Chlamys opercularis Linnaeus) in Scottish 

waters in 1999 and 2000, and resulted in a closure of shellfish harvesting sites 

(Gallacher et al. 2001).  In Ireland, DA was first detected in king scallops (P. maximus) 

above the regulatory limit of 20 µg DA.g-1 wet weight in 1999 (Mc Mahon and Silke 

2000).  Testing of mussels (M. edulis), oysters (Crassostrea gigas Thunberg and Ostrea 

edulis Linnaeus), and razor clams (Ensis siliqua Linnaeus) has shown low 

concentrations of DA (J. Silke, Marine Environment & Health Services Division, 

Marine Institute, Abbotstown, Dublin, Ireland, personal communication).  Again, P. 

australis was found among the phytoplankton population in Irish waters (Cusack et al. 

submitted). 

 

The production of DA by a newly suspected source organism should be tested by 

verifying the identity of DA produced by a unialgal culture by some unequivocal 

method, such as mass spectrometry (Bates 2000).  Isolates of P. australis from 

Monterey Bay, New Zealand, Spain and Scotland have been reported to produce DA in 

culture (Garrison et al. 1992, Villac et al. 1993, Rhodes et al. 1996, Fraga et al. 1998, 

Campbell et al. 2001).  However, it seems from these publications that the DA was 

analyzed by HPLC alone, a technique that relies on the coincidence of retention times 



CHAPTER 4 

156 

for the unknown and authentic DA peaks in the HPLC chromatograms.  It is possible 

that other compounds may appear with the same retention time as DA, therefore leaving 

some doubt as to the true identity of the compound. 

 

The aims of the present study were to isolate P. australis from Irish waters and to test 

it for the ability to produce DA in laboratory culture.  Furthermore, the identity of DA 

produced in the P. australis cultures would be confirmed using LC-MS. 

 

MATERIALS AND METHODS 

 

A unialgal non-axenic culture of P. australis (strain WW4) was isolated on 8 October 

1997, from a net sample collected off the south coast of Ireland (52º 04.10' N; 07º 06.10' 

W, in the vicinity of Waterford harbour).  A stock culture was maintained at 15ºC, under 

an irradiance of ~12 µmol photons.m-2.s-1 (16:8 h L:D cycle) in sterile filtered sea water 

(salinity of 35.5), fortified with f/2 nutrients (Guillard and Ryther 1962) and silicon (250 

µM).  Aliquots (10 mL) of a 4-day old (exponential phase) P. australis stock culture 

were inoculated into six 500-mL Erlenmeyer flasks containing 300 mL of f/2 medium 

and silicon (250 µM).  Initial cell densities were ~1,000 cells.mL-1.  Prior to inoculation, 

aliquots of culture medium, sea water and inoculum were shown to contain no 

detectable DA (see below).  A separate sample was analysed for nutrients present in the 

culture medium using standard techniques (Grasshoff and Koroleff 1983).  This gave 

concentrations of 760 µM NO3, 40 µM NO2, 20 µM NH4, 20 µM PO4 and 250 µM 

SiO4.  Four of the flasks containing P. australis (referred to throughout as Cultures 1, 2, 

3 and 4) were incubated under the same conditions as the stock culture (i.e. at 15ºC, 

under an irradiance of ~12 µmol photons.m-2.s-1; 16:8 h L:D cycle).  The remaining two 

flasks (Cultures 5 and 6) were incubated in a different growth chamber at 15ºC under an 

irradiance of ~115 µmol photons.m-2.s-1 (12:12 h L:D cycle).  Irradiance was measured 

with a Li-Cor Quantum Meter (model L1-1000).  Variation in irradiance among the 

cultures in each growth chamber was minimized by alternating the culture positions 

daily; the cultures were also swirled daily. 
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Subsamples were taken from each culture every 1 – 3 days until stationary phase, after 

which the sampling interval was extended to every 4 – 6 days.  Aliquots (15 mL) taken 

from Cultures 1 and 2 were filtered through membrane filters (Nuclepore 1-µm pore 

size).  Filtrate and cells collected on the filter (resuspended in 10 mL of freshly filtered 

DA-free sea water) were stored at -20ºC until analysis for DA.  Aliquots (15 mL) from 

Cultures 3 – 4 and 5 – 6 were used to analyse DA present in the “whole culture” (i.e. 

cells plus medium, cf. Bates et al. 1991).   

 

Prior to DA analysis, Pseudo-nitzschia cells in 5-mL aliquots were sonicated for 1 min 

at 100 W, using a 1-cm diameter probe, to disrupt the cells.  The debris was then 

removed by membrane filtration (Nuclepore 1-µm pore size). 

 

Domoic acid was analyzed using the fluorenylmethoxycarbonyl (FMOC) 

derivatization and HPLC-fluorescence method (Pocklington et al. 1990), with the 

following modifications.  The chromatographic system consisted of a Beckman System 

Gold HPLC (Beckman Coulter Canada Inc., Mississauga, ON, Canada) equipped with a 

126 solvent delivery system, 507 autosampler (injection volume 20 µL) with built-in 

column heater (column temperature 38°C), and a Shimadzu RF-535 fluorometric 

detector (269 nm excitation; 311 nm emission) connected to a Beckman 406 interface 

module.  Separations were performed on a Beckman ODS Ultrasphere column (25 cm x 

4.6 mm i.d., Beckman Coulter Canada Inc., Mississauga, ON, Canada).  Gradient 

elution was programmed linearly from 37.5% to 55% acetonitrile over 15 min, followed 

by an increase to 90% acetonitrile over 6 min, which was maintained for 6 min before 

programming back to initial conditions over 2 min.  Initial conditions were maintained 

for a further 9 min, resulting in a total cycle time of 38 min.  Calibration standards were 

prepared from pure DA obtained from Diagnostic Chemicals Ltd. (Charlottetown, PEI, 

Canada), with final concentrations from 3 ng DA.mL-1 to 380 ng DA.mL-1.  The 

detection limit was 0.5 ng DA.mL-1. 

 

To confirm the identity of DA, culture samples were analysed using LC-MS (Quilliam 

et al. 1989).  Analyses were conducted on an API-165 quadrupole mass spectrometer 
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with nebulizer-assisted electrospray ion source (PE-Sciex, Concorde, Ontario, Canada) 

interfaced with an Agilent (Palo Alto, CA) HP1100 HPLC.  Separations were performed 

on a Keystone Scientific (Bellefonte, PA) column (5 cm x 2 mm i.d.) packed with 3 µm 

Hypersil-BDS C8-silica, using 0.2 mL.min-1 acetonitrile/water (9:1) containing 50 mM 

formic acid and 2 mM ammonium acetate.  Detection was afforded by selected ion 

monitoring of the [M+H]+ ion, m/z 312, and three confirmatory ions, m/z 266, 248 and 

220, using 250 ms dwell times.  The detection limit for DA was 50 ng DA.mL-1.  

Calibration was performed using DACS-1C, a certified reference material provided by 

the NRC Certified Reference Material Program (Halifax, NS, Canada). 

 

Culture aliquots (2 mL) were preserved in Lugol's iodine for direct visual counts of 

vegetative cells, using an improved Neubauer haemocytometer (Labkem Ltd., Dublin).  

The mean of 6 counts was reported.  Only healthy cells (chloroplasts still intact) were 

counted.    Specific growth rates were estimated by linear regression of log-transformed 

cell concentrations determined on 4 occasions in exponential phase. 

 

Ultrastructural examination was carried out after the cells were acid cleaned (70% 

nitric acid; Boyle et al. 1984).  Valves were examined under a Leica S430 scanning 

electron microscope (SEM) and a Hitachi 700 transmission electron microscope (TEM).  

Characterization of the Pseudo-nitzschia species was made according to the criteria of 

Hasle (1965), Hasle et al. (1996), and Hasle and Syvertsen (1996).  Thirty P. australis 

cells from each culture were randomly selected under the LM and morphometric 

measurements of the valve and girdle dimensions recorded.  Estimated cell volume was 

calculated using the equation for Pseudo-nitzschia in Hillebrand et al. (1999).  An 

estimate of the DA cell content in “whole cultures” (i.e. cells plus medium) of Cultures 

3 - 6 was calculated by dividing the concentration of DA recorded in each sample by the 

number of cells present (cf. Bates et al. 1991). 
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RESULTS  

 

Ultrastructural examination revealed the cultured isolate as P. australis (Plate 1). 

Morphometric measurements of P. australis WW4 are presented in Table 1, as well as 

morphological information on P. australis from wild samples taken off the Irish coast 

and data from Hasle et al. (1996) and Hasle and Syvertsen (1996).  The development of 

aberrant (deformed) cells or “lobate” silica frustules was evident.  Such changes in the 

frustule structure of Pseudo-nitzschia have previously been reported to be common in 

cultures, although less so in natural samples (Subba Rao and Wohlgeschaffen 1990, 

Garrison et al. 1992).  The mean cell volume of P. australis WW4 was 750 µm-3 ± 140, 

SD (n = 30, day 0). 

 

Table 1.  Morphometric data for Pseudo-nitzschia australis, recorded using electron 

microscopy.  Measurements are presented as the mean ± SD; the range of measurements 

is shown in parentheses and n = the number of separate valves measured.  Data from 

Hasle et al. (1996) and Hasle and Syvertsen (1996) are included for comparison.  

 

Origin Length 

(µm) 

Width 

(µm) 

Fibulae 

(in 10 µm) 

Striae 

(in 10 µm) 

Poroids 

(in 1 µm)

Field 

samples 

 

95 ± 17 

(63-143) 

n = 124 

6.6 ± 0.5 

(5-8) 

n = 127 

17 ± 1 

(15-19) 

n = 127 

17 ± 1 

(15-19) 

n = 127 

5.0 ± 0.5 

(3.5-6) 

n = 125 

      

Strain WW4 

 

51 ± 3 

(46-55) 

n = 30 

5.9 ± 0.4 

(5-7) 

n = 30 

17 ± 1 

(16-18) 

n = 10 

17 ± 1 

(16-18) 

n = 10 

5.1 ± 0.6 

(4-6) 

n = 8 

      

Literature (75-144) (6.5-8.0) (12-18) (12-18) (4-5) 
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Cultures 1 – 4 (under an irradiance of ~12 µmol photons.m-2.s-1; 16:8 h L:D cycle) 

remained in exponential growth until day 6 (Figure 1).  Highest cell concentrations 

recorded during stationary phase were 183,000 - 200,000 cells.mL-1.  The specific 

growth rates were 0.71, 0.71, 0.90 and 0.82 d-1 for Cultures 1, 2, 3 and 4, respectively.  

Domoic acid was not detected until late stationary phase in these four cultures (Figure 

1).  Extracellular DA was noted in the filtrate of Culture 1 on day 29 (23 ng DA.mL-1).  

The toxin was not detected in the cell fraction until day 40 (0.20 pg DA.cell-1), when ~ 

89% of the total DA present was found in the culture medium (160 ng DA.mL-1).  For 

Culture 2, DA was also first detected in the filtrate on day 40 (16 ng DA.mL-1); the 

toxin was not detected in the cell fraction of this culture during the experiment, 

indicating that intracellular DA may not be retained in the cells for long.  Domoic acid 

was first observed in the “whole culture” (cells plus medium) of Culture 3 on day 40 (20 

ng DA.mL-1, 0.21 pg DA.cell-1) and in Culture 4 on day 29 (26 ng DA.mL-1, 0.17 pg 

DA.cell-1).   At this low irradiance, the highest DA concentration was found in Culture 4 

on day 40 (120 ng DA.mL-1, 0.98 pg DA.cell-1). 

 

Cultures 5 and 6, grown under a higher irradiance (~115 µmol photons.m-2.s-1; 12:12 

L:D cycle), approached stationary phase on day 6 (Figure 2), as did Cultures 1 – 4.  

However, they attained a lower plateau, with a maximum cell density of 73,000 and 

97,000 cells.mL-1, respectively.  Specific growth rates were 0.73 and 0.94 d-1 for 

Cultures 5 and 6, respectively.  Domoic acid in the “whole culture” was first detected 

during the late exponential phase in the cultures grown at the higher irradiance (Figure 

2).  For Culture 5, this was on day 5 (14 ng DA.mL-1, 0.24 pg DA.cell-1).  During early 

stationary phase, the DA concentration remained low until day 10 (36 ng DA.mL-1, 0.65 

pg DA.cell-1), after which it rose to 260 ng DA.mL-1 (26 pg DA.cell-1) on day 30.  

Culture 6 started to produce DA on day 4, during the exponential phase (13 ng DA.mL-1, 

0.63 pg DA.cell-1).  The cellular DA concentration remained relatively constant during 

the early stationary phase, after which it rose steadily from 31 ng DA.mL-1 (1.2 pg 

DA.cell-1) on day 9 to 260 ng DA.mL-1 (4.8 pg DA.cell-1) on day 19.  It is pertinent to 

note that DA production increased dramatically in Cultures 5 and 6 on day 9 when cell 

densities decreased by 60%.  Approximately 50 ng DA.mL-1 was produced per day 
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(0.20-1.87 pg DA.cell-1.day-1) until day 13 when DA production decreased and there 

was a slight increase in cell numbers.  The fact that this was reflected in both cultures 

suggests that a common environmental factor, such as a sharp change in light intensity 

or temperature may have affected the cultures. No changes in environmental conditions 

were however, recorded over this period.  The net result was that much lower cell 

densities were recorded in Cultures 5 and 6 in contrast to Cultures 1 – 4 on day 9 

(Figures 1 and 2).  

 

The identity of DA in the P. australis isolate was confirmed by conducting selected ion 

monitoring LC-MS analyses on several samples that had been analyzed previously by the 

FMOC-HPLC method.  Electrospray ionization in conjunction with a high orifice voltage 

(50 V) afforded four ions:  [M+H]+ at m/z 312, [M+H-HCOOH]+ at m/z 266, [M+H-

HCOOH-H2O]+ at m/z 248, and [M+H-2HCOOH]+ at m/z 220.  Confirmation of DA was 

achieved by the coincident detection of all four ions in the same relative abundance and 

retention time as standard DA.  Although the objective of the LC-MS experiment was 

primarily qualitative, fairly good agreement of quantitative determinations by the HPLC 

and LC-MS methods was also achieved for most samples.  For example, the LC-MS 

determination of DA concentration in one sample (Figure 3) was 230 ng DA.mL-1, 

whereas the HPLC analysis of that same sample gave 260 ng DA.mL-1. 
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Plate 1.  Pseudo-nitzschia australis strain WW4.  Light micrograph (A) showing 

vegetative cells in girdle view; overlap of cell ends ~1/4 of total cell length.  Cell length 

~60 µm and width ~5 µm.  Transmission electron micrograph (B) of an acid-cleaned 

valve; 82 µm in length and 6.5 µm in width.  The valve has an equal number of fibulae 

to interstriae (16 in 10 µm).  Two rows of hymenate poroids are present per stria, with 

five poroids in 1 µm.  Central interspace is absent.  Transmission electron micrographs 

(C and D) showing the rounded valve apices.  Scanning electron micrograph (E) of two 

acid-cleaned valves; lower valve is 50 µm in length and 6 µm in width.  The upper valve 

is aberrant ("lobed" cell); this type of silica structure was frequently observed in the P. 

australis WW4 isolate (see text). 
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Figure 1.  Average cell growth (!) and domoic acid content in Cultures 1 - 4 of Pseudo-

nitzschia australis strain WW4, grown at an irradiance of ~12 µmol photons.m-2.s-1 

(16:8 h L:D cycle).  Domoic acid concentration in the "whole culture" (cells plus 

medium) expressed per mL (black bars). n = 4, ± SE. 
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Figure 2.  Average cell growth (!) and domoic acid content in Cultures 5 and 6 of Pseudo-

nitzschia australis strain WW4, grown at an irradiance of ~115 µmol photons.m-2.s-1 (12:12 h 

L:D cycle).  Domoic acid concentration in the "whole culture" (cells plus medium) 

expressed per mL (black bars).  No samples were available from Culture 6 after day 19. n 

= 2, ± SE.  
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Figure 3.  LC-MS analysis of Culture 5 (day 30; 1,000 cells.mL-1) for domoic acid 

(DA).  Selected ion monitoring was used in conjunction with high orifice voltage, which 

induced fragmentation of the [M+H]+ ion, m/z 312, to three confirmatory ions, m/z 266, 

248 and 220. 
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DISCUSSION 

 

Diatoms of the genus Pseudo-nitzschia are a regular component of the marine 

microflora in Irish waters, with cell concentrations reaching >1,000,000 cells.L-1 (Roden 

et al. 1981).  There is also clear evidence that at least one potentially toxigenic Pseudo-

nitzschia species, P. australis, is present in these waters.  This species is a common 

component of the marine flora during autumn off the south coast of Ireland (Cusack et 

al. submitted) and has also been recorded in waters off the west coast of Scotland 

(Campbell et al. 2001) and further to the south, off north west Spain (Míguez et al. 

1996). These investigations show that the biogeography of P. australis in NE Atlantic 

waters is a lot more extensive than previously thought (Hasle 1972).  In addition to this 

species, a further five potentially toxigenic Pseudo-nitzschia species (P. multiseries, P. 

pseudodelicatissima, P. fraudulenta, P. pungens, and P. delicatissima) have to date been 

identified in field samples collected off the Irish coast (Cusack et al. submitted). 

Although cultured isolates of P. fraudulenta (2 clones), P. pungens (1 clone), and P. 

delicatissima (5 clones) from Irish waters have tested negative for DA production 

(personal observation) 

 

In this study, we have provided solid evidence that an isolate of P. australis from Irish 

waters produces DA.  Furthermore, it is the first recorded verification of DA production 

by a P. australis culture using LC-MS.  Cultures grown at high irradiance, 12:12 h L:D 

cycle (Cultures 5 and 6) contained amounts of DA (up to 26 pg DA.cell-1, whole 

culture) similar to those reported by Garrison et al. (1992) (12 and 37 pg DA.cell-1, 

actual cellular DA) for P. australis.  Cultures grown at low irradiance, 8:16 h L:D cycle 

(Cultures 1 – 4) contained DA at amounts between non-detectable and 0.2 pg DA.cell-1 

(Cultures 1 - 2, actual cellular DA) and non-detectable to 0.98 pg DA.cell-1 (Cultures 3 - 

4, whole culture), comparable to the values measured by Villac et al. (1993) (non-

detectable to 0.4 pg DA.cell-1, actual cellular DA), Rhodes et al. (1996) (2 pg DA.cell-1, 

actual cellular DA), Fraga et al. (1998) (non-detectable to 30 ng DA.mL-1) and 

Campbell et al. (2001) (1.20 to 1.32 pg DA.cell-1, actual cellular DA).  These 

comparisons should, however, be treated with caution in view of the fact that 
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calculations of the DA cell content in Cultures 3 – 6 was estimated from “whole 

cultures”.  In addition to this, samples were taken on different days in batch culture, and 

the culture conditions were not the same across all of the studies.  For example, the 

initial silicate concentration in the medium at the start of the experiment reported here 

was relatively high (250 µM), in contrast to the substantially lower level (39 µM) in the 

culture medium used by Garrison et al. (1992).  Although nutrient measurements were 

only carried out at the beginning of this experiment it would seem likely that either 

phosphate or trace metals were limiting during stationary growth when highest amounts 

of domoic acid were detected in the cultures.  Domoic acid content measured in Cultures 

1 and 2 showed that highest concentrations were present in the media. Although the 

reasons for the release of DA into the surrounding medium remain unclear, Rue et al. 

(2000) have suggested that one possible biochemical function of DA is to assist the 

uptake of trace metals such as iron (Fe).   

 

Irradiance can affect cellular DA levels because photosynthetic energy is required for 

DA production (Bates et al. 1991).  Cultures of P. multiseries produced more DA at 100 

than at 35 µmol photons.m-2.s-1 (Bates 1998).  In this study, cultures produced 

approximately 4 times more DA when grown under higher irradiance, most likely 

because of the greater availability of photosynthetic energy, as has been the case in 

studies on P. multiseries (Bates 1998).  Production of DA was substantially lower and 

delayed until late stationary phase in the low irradiance cultures.  This supports the 

hypothesis that energy for cell growth and maintenance competes with that required for 

DA biosynthesis (Pan et al. 1998).  Different light:dark cycles may also have 

contributed to the amount of DA produced by our P. australis isolate.  Villac et al. 

(1993) reported no detectable DA in clones of P. australis grown under continuous 

light, but DA was produced by the same isolate when the photoperiod was changed to 

12:12 h L:D. 

 

The results presented here emphasize the importance of culture conditions in 

determining when (exponential or stationary phase) DA production is triggered in batch 

culture.  The literature shows some discrepancies in this regard.  For P. multiseries, 
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many studies have shown that DA production begins slowly in late exponential phase 

and continues more rapidly into stationary phase (Bates 1998).  Similar results were 

found for P. seriata (Lundholm et al. 1994) and Nitzschia navis-varingica (Kotaki et al. 

2000).  Recent results for P. pseudodelicatissima are not entirely consistent.  Pan et al. 

(2001) reported DA production during most of the exponential phase and not during 

stationary phase, whereas Adams et al. (2000) showed that DA was produced during the 

late exponential as well as stationary phase.  A similar discrepancy is found for P. 

australis.  Garrison et al. (1992) reported DA production during most of the exponential 

phase and not during stationary phase.  This contrasts with the present study, which 

shows that DA production can begin in late exponential phase and continue into 

stationary phase.  The largest amounts of DA are, however, produced when cell division 

has either stopped or dramatically declined, consistent with P. multiseries (Bates 1988).  

The studies by Villac et al. (1993), Rhodes et al. (1996) and Fraga et al. (1998) did not 

report DA production curves in batch culture, but only single values, which makes 

comparisons dubious.  Our results demonstrate the importance of irradiance level in 

determining when DA production begins in batch culture.  Alternatively, discrepancies 

may be explained by differing physiological behavior among strains or isolates of 

presumably the same species of Pseudo-nitzschia (cf. Bates 2000). 

 

The P. australis isolate WW4 was in culture for almost a year when these growth and 

DA production experiments were carried out.  During that time, the cell apical length, 

and therefore cell volume, had decreased (to 750 µm3 ± 140, SD, as a result of 

vegetative division) relative to recorded morphometric measurements of P. australis in 

field samples (1770 µm3 ± 450, SD; personal observation).  Other field studies have 

estimated the biovolume of P. australis to range from 1834 µm3 (Buck et al. 1992) to 

4084 µm3 (Walz et al. 1994).  The production of DA by P. multiseries has been shown 

to decrease over time in cultures (Bates et al. 1999).  This decrease is greater than can be 

explained simply by a reduction in cell size and volume.  It is not yet known if P. 

australis exhibits this same tendency to decrease its production of DA over time in 

culture (see Villac et al. 1993). 

 



CHAPTER 4 

169 

The cell size of P. australis is larger than many other Pseudo-nitzschia species, 

including P. multiseries.  An estimated size ratio of these two species is ~ 2:1 (Walz et 

al. 1994).  Along with cell concentration, the larger cell volume of P. australis, and 

therefore its greater potential toxicity per cell, is an important consideration for 

determining how rapidly filter-feeding organisms can become toxic. 

 

Results of this study support the supposition that P. australis is a source of DA in 

scallops from Irish waters.  A detailed phytoplankton monitoring program to identify 

Pseudo-nitzschia to species level and to screen more Pseudo-nitzschia species isolates 

for their ability to produce DA is needed to fully elucidate the abundance and number of 

DA-producing organisms in these waters. 
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ABSTRACT 

 
Ribosomal DNA (SSU, ITS1 and a portion of the 5.8S) of three Pseudo-nitzschia 

species from Irish waters were amplified by PCR and the genetic relationship of the 

generated SSU rDNA sequences was evaluated to access their taxonomic position with 

published sequence data of Pseudo-nitzschia and other diatom genera whose sequence 

information was retrieved from the Ribosomal Database Project (RDP).  Percentage 

similarity between the Pseudo-nitzschia SSU rDNA sequences was determined using a 

simple pairwise-distance method (uncorrected-p).  Phylogenetic reconstruction using 

Maximum-Parsimony, LogDet/paralinear distances and Maximum-Likelihood analysis 

generated phylogenetic trees that separated a clade comprising of Pseudo-nitzschia 

species from the other diatom genera investigated. 

 

Species specific LSU rRNA�targeted fluorescent oligonucleotide probes designed for a 

limited set of Pseudo-nitzschia strains isolated off the west coast of America were 

screened against several Pseudo-nitzschia cultures to investigated possible applications 

in the Irish biotoxin monitoring programme. Successful species specific responses were 

recorded for the P. pungens, P. australis, and P. fraudulenta probes.  The P. australis 

isolate exhibited slight labelling reactions with gene probes designed for P. multiseries, 

P. pungens and P. delicatissima.  Slight cross�reactions were observed of the P. 

fraudulenta isolates with the P. pungens specific probe. Pseudo-nitzschia delicatissima 

isolates exhibited no fluorescent signal when hybridized with the probe designed for P. 

delicatissima, but were positively labelled with the probe designed for P. fraudulenta. 

 

Species identity of each Pseudo-nitzschia isolate was confirmed by examination of 

morphological features using the conventional method of electron microscopy. 
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INTRODUCTION 

 

The potentially toxic marine diatom, genus Pseudo-nitzschia is made up of more then 

20 species, all of which are difficult to discriminate between when viewed under a 

conventional light microscope (LM).  Because some species can produce the neurotoxin 

domoic acid (DA), which causes amnesic shellfish poisoning (ASP) in humans (Wright et 

al. 1989, Todd 1993), it is important that an easy detection method is used in biotoxin 

monitoring programmes.  Counting the number of Pseudo-nitzschia cells alone cannot 

determine if a Pseudo-nitzschia bloom is toxic or not and so identification down to 

species level is necessary to detect the presence or absence of toxigenic species.  Because 

this requires some expertise on the morphology of these organisms, several molecular 

based methods have been investigated as alternative approaches to the traditional 

methods used for identification purposes.  These molecular tools seem promising and 

include lectin binding assays (Fritz 1992), immunofluorescence assays (Bates et al. 

1993), and distinctions between species based on differences in ribosomal DNA nucleic 

acid sequences (Scholin et al. 1994, Douglas et al. 1994, Manhart et al. 1995).  

Ribosomal DNA coding regions can also help to infer the phylogenetic relationships with 

other taxa (Douglas et al. 1994, Manhart et al. 1995).  In fact these investigations have 

supported the decision of Hasle (1995) to raise P. pungens f. multiseries to the rank of 

species (P. multiseries) separate to P. pungens based on ultrastructural morphological 

examination.  In order to examine this further, SSU rDNA sequences of 3 Pseudo-

nitzschia species (P. pungens, P. delicatissima and P. fraudulenta) from Irish waters were 

compared with the sequence data of Pseudo-nitzschia in the literature (Manhart et al. 

1995, Douglas et al. 1994). 

 

Short complimentary rRNA-targeted molecular probes can be designed for specific 

target species using variable and conserved evolutionary regions of rDNA sequences.  

Probe specificity to the target organism can then be evaluated with cultures and 

environmental samples.  Work carried out by Scholin et al. (2000) showed that species-

specific rRNA-targeted oligonucleotide probes for Pseudo-nitzschia could be used as an 

alternative rapid quantitative technique in phytoplankton monitoring programmes.  In 
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fact, in New Zealand, the Cawthron Institute uses these gene probe assays in conjunction 

with domoic acid testing to monitor potentially toxic blooms of Pseudo-nitzschia in their 

waters (Rhodes et al. 1998).  The probes have also helped gather evidence linking a P. 

australis bloom to sealion deaths in Monterey Bay, California (Scholin et al. 2000).   

 

Since this reliable and simple approach has proved to be an invaluable and cost-effective 

method in other routine phytoplankton monitoring programmes, a trial was set up to 

evaluate the specificity of LSU rRNA-targeted gene probes, already designed (Miller 

and Scholin 1996), using several cultured Pseudo-nitzschia isolates from Irish waters.  

This study investigated the possible application of these probes in aquaculture 

monitoring programmes in Ireland.   

 

MATERIALS AND METHODS 

 

Cultured Isolates 

Non-xenic unialgal Pseudo-nitzschia cultures were isolated from vertical net haul 

samples collected off the coast of Ireland (Table 1). Cultures were maintained in a 

controlled growth chamber at 15ºC, under a photon flux density of ~12 µE.m-2.s-1 with a 

16:8 h L:D cycle.  Cultures were grown in sterile filtered seawater fortified with f/2 

nutrients (Guillard and Ryther 1962) and silica.  5 mL aliquots of each culture were 

treated using concentrated nitric acid, heated in a water bath at 80ºC for 30 min (cf. Boyle 

et al. 1984).  The cleaned frustules were rinsed with distilled water and stored in absolute 

ethanol until further use.  Acid cleaned valves were examined under a Leica S430 

scanning electron microscope (SEM) with an accelerating voltage of 15 kV or a Hitachi-

700 transmission electron microscope (TEM), accelerating voltage of 75 kV.  

Identification of each culture was determined using the description keys outlined in Hasle 

et al. (1996) and Hasle and Syvertsen (1997). 
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Table 1. Pseudo-nitzschia species isolated from net material collected off the Irish coast. 

The identities of all the isolates were confirmed by examination of silica frustule using 

EM.  +Pseudo-nitzschia isolates screened with LSU rDNA probes, *Pseudo-nitzschia 

isolates from which rDNA was extracted and sequenced. 

 
SPECIES REF. DATE 

ISOLATED 
LATITUDE 

(N) 
LONGITUDE 

(W) 
LOCAL DESCRIPTION 

P. delicatissima*+ 1913 6-Sept 1996 51º 27.50' 09º 32.40' Long Island Bay, SW coast 
P. delicatissima*+ 1917 6-Sept 1996 51º 10.00' 09º 24.00' Off Fastnet rock, SW coast 
P. delicatissima+ 1924-3 7-Sept 1996 51º 23.00' 08º 15.90' Shelf position off Cork, S coast 
P. delicatissima+ 1424-4 7-Sept 1996 51º 23.00' 08º 15.90' Shelf position off Cork, S coast 
P. fraudulenta*+ W2 8-Oct. 1997 52º 04.09' 07º 06.05' Waterford Harbour, S coast 
P. fraudulenta+ 2011 3-May 1997 54û 29.00' 10û 39.90' Off Erris Head, Sligo, W coast 
P. pungens*+ WW3 8-Oct. 1997 52º 04.09' 07º 06.05' Waterford Harbour, S coast 
P. australis+ WW4 8-Oct. 1997 52º 04.10' 07º 06.10' Waterford Harbour, S coast 

 

DNA manipulation 

Double stranded genomic DNA was extracted from P. delicatissima (strains 1913, 

1917), P. fraudulenta (strain W2) and P. pungens (strain WW3) using a modified version 

of the CTAB method of Doyle and Doyle (1987).  The target rDNA was amplified by 

means of the polymerase chain reaction (PCR) technique carried out in a Perkin�Elmer 

480 DNA thermal cycler.  Oligonucleotide primers, PSEUD-1 and PSEUD-2 (Table 2) 

were designed from a published alignment of the 18S SSU, ITS1 and a fragment of the 

5.8S rDNA of P. Pungens and P. multiseries (Manhart et al. 1995).  Each PCR 

amplification reaction contained ~ 10�15 ng of template genomic DNA, 1/10 10x Taq 

buffer (Bioline NH4 buffer (10x): 160 mM (NH4)2SO4, 670 mM Tris�HCl (pH 8.8 at 

25°C), 500 mM KCl, 0.1% Tween-20, 1.5 mM MgCl2 (Bioline), 200 µM dNTPs 

(Bioline), 100ng of each primer, 1.0 U of Taq DNA polymerase (Bioline) in a total 

volume of 100 µL aliquots (profiles of the PCR reaction conditions are present in Table 

2).  All PCR reactions included a negative control where sterile water was used instead of 

template DNA.  The PCR products were assayed by electrophoresis on a 1% agarose gel 

containing 10 µg.mL-1 Ethidium Bromide (Boehringer�Mannheim) and visualised by UV 

excitation.  
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Gel purification of the PCR product, cloning and transformation was carried out using a 

pCR -XL-TOPO  cloning kit (Invitrogen).  Clones were grown overnight in LB broths 

containing 50 µg/ml kanamycin and the plasmid DNA extracted using QIAprep Miniprep 

kits (Qiagen) according to the manufacturers instructions.  To verify that the plasmids 

contained an inserted PCR product, a restriction enzyme, EcoR1, (Boehringer�

Mannheim) digest was carried out.  This was confirmed by PCR amplification of the 

insert directly from the clones using the oligonucleotide primers M13(-20) forward and 

M13 reverse (Table 2) which flank the vector multiple�cloning site.  Plasmid DNA was 

then ethanol precipitated and centrifuged at top speed for 15 minutes.  The resulting pellet 

was air-dried before being sent to the Recombinant DNA group (NUI,Galway) or MWG-

Biotech (Milton Keynes, England) for automated sequencing. Sequencing was carried out 

using an ABI Prism 310 or ABI Prism 377 (Applied Biosystems, California).  Nucleotide 

sequencing was determined using dRhodamine dye terminator cycle sequencing ready 

reaction kits (Perkin Elmer, California) or Bigdye mix version 3 kits (Macherey & Nagel, 

UK) as recommended by the manufacturers instructions. 250 ng of plasmid DNA product 

was used per read in each 20 µL sequencing reaction (NUI,Galway) or 1500 ng of 

plasmid DNA product was used per read in each 3 µL sequencing reaction (MWG-

Biotech).  Sequences were generated in a 5�-3� direction using the M13 sequencing 

primers and sequence specific primers (PSEUD-2 and PSEUD-3 designed from the 

published sequences alignment in Manhart et al. 1995, Table 2) and with a final accuracy 

of 96% (NUI,Galway) to >99% (MWG-Biotech).  

 

Vector specific sequences were removed from both ends of the resultant sequences.  

Partial sequences were linked together in overlapping regions using the manual sequence 

alignment editor, GeneDoc (Nicholas et al. 1997).  To verify the origins of the PCR 

products, a GenBank BLAST search was conducted (Altschul et al. 1990) and showed 

significant sequence homology with other Pseudo-nitzschia rDNA sequences.  Selected 

SSU rDNA sequences of Pseudo-nitzschia pungens (GenBank accession #U18240), P. 

multiseries (#U18241), Nitzschia apiculata (#M87334), Bacillaria paxillifera 

(#M87325), Cylidrotheca closterium (#M87326), Thalassiosira rotula (#X85397), 

Skeletonema costatum (#X85395), Stephanopyxis broschii (#M87330) and Rhizosolenia 
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setigera (#M87329) were retrieved with gaps preserved (showing information on 

secondary structure) from the Ribosomal Database Project (RDP) SSU Eukaryotes Data 

Set using the Hierarchy Browser (Maidak et al. 2001).  The SSU rDNA sequence data of 

P. pungens (strain BRUNDC-X), P. multiseries (strains 13CC, NPARL, POM-X) and P. 

australis (PSEUD-X) published in Douglas et al. (1994) and the SSU rDNA sequenced 

portion of the Irish isolates were manually aligned with these sequences.  Internal 

transcribed spacer 1 fragments and the portion of the 5.8S region sequenced from the 

Irish isolates were excluded during phylogenetic analysis because of alignment 

difficulties with the ITS1 region (sequences were ambiguously aligned) and the lack of 

data on these regions for Pseudo-nitzschia in GenBank. Overall similarities between the 

SSU coding region of the Pseudo-nitzschia species were calculated by converting the 

data into a pairwise-distance matrix (PAUP* ver. 4.0b10) (Swofford 1996) using the 

uncorrected-pairwise difference distance method (all characters and all transformations 

weighted equally).  

 

Phylogenetic analysis 

Phylogenetic reconstruction was performed using PAUP* ver. 4.0b10 (Swofford 1996). 

Phylogenetic trees were inferred and constructed from the aligned sequences with 

Maximum-Parsimony (MP), distance and Maximum-Likelihood (ML) based methods. 

Stephanopyxis broschii (#M87330) and Rhizosolenia setigera (#M87329) were used as 

outgroups to root the derived trees.  The SSU rDNA sequence alignment contained 1762 

characters (including gaps) of which 1633 characters were considered unambiguous and 

used in the analysis (see Appendix 5). Differences in character states in very conserved 

regions and ambiguities observed in the base composition of the SSU within each species 

were omitted during phylogenetic analysis because of the possibility of sequencing errors 

or potential micro-heterogeneity within the 18S rRNA gene. For example, base 

differences observed in P. delicatissima, isolates 1913 and 1917, at character positions 

(Appendix 5) 879 (A↔G), 893 (T↔C), 1016 (G↔A), 1078 (C↔T) and 1484 (A↔C) 

and removed prior to phylogenetic investigation. 
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Maximum-Parsimony trees were generated using heuristic searches based on 1000 

random sequence addition replicates and a branch-swapping algorithm, tree-bisection 

reconnection (TBR).  All characters were treated as unordered (allows the possibility of 

any base to change into another) and with equal weight, gaps were treated as a "fifth 

base".  Branches collapsed (creating polytomies) if maximum branch length was zero.  

Multistate taxa were interpreted as uncertain and starting tree(s) were obtained via 

stepwise addition.   

 

Table 2. Oligonucleotide primers and amplification profiles used in PCR+ amplification 

and sequencing* reactions of rDNA from Pseudo-nitzschia delicatissima (1913, 1917), P. 

fraudulenta (W2) and P. pungens (WW3). 

 

NAME PRIMERS POSITION PCR amplification profile 

    
+PSEUD-1 forward 
+PSEUD-2 reverse 

5�-CAGTAGTCATACGCTCGTCT-3� 

5�-GGATGTCTAGGTTCCCACAA-3� 

1-20 

1913-2064 

25 cycles 

94 ºC for 1 min. (denaturation) 

56 ºC for 1 min. (primer annealing) 

72 ºC for 1 min. (extension) 

final extension step of 72 ºC for 7 min. 

    
+*PSEUD-3 forward 
+*PSEUD-4 reverse 

5�-GTGCCAGCAGCCGCGG-3� 

5�-GTACACACCGCCCGT-3�  

532-547 

1606-1619 

1 cycle 

94 ºC for 5 min. (denaturation) 

25 cycles 

94 ºC for 1 min. (denaturation) 

50 ºC for 1 min. (primer annealing) 

72 ºC for 1 min. (extension) 

final extension step of 72 ºC for 7 min. 

    
+*M13(-20) forward 
+*M13 reverse 

5�-GTTTTCCCAGTCACGAC-3� 

5�-CAGGAAACAGCTATGAC-3� 

 25 cycles 

94 ºC for 30 sec (denaturation)  

52 ºC for 1 min. (primer annealing) 

72 ºC for 1 min. (extension)  

final extension step of 72 ºC for 5 min. 
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Trees generated using the distance-based method followed the optimum criterion of 

minimum evolution (selects the tree that minimises the sums of branch lengths).  Pair-

wise distances were calculated using LogDet/paralinear (Lockhart et al. 1994) and 

neighbor-joining (Saitou and Nei 1987) analysis.   

 

Modeltest ver. 3.06 (Posada and Crandall 1998) was used to determine the DNA 

substitution model with the highest log-likelihood for the dataset. The derived 

parameters were then imputed for the ML searches (see results for details).  

 

Statistical support for phylogenetic groupings on individual taxa was accessed by 

bootstrap analysis. Bootstrap analysis (resampling all characters) was carried out on the 

trees generated from the three methods used, 1000 replicates for parsimony and distance 

trees and 100 replicates for the ML tree.   

 

Application of LSU rRNA-targeted oligonucleotide probes 

Each culture was screened (x3) with large-subunit ribosomal RNA (LSU rRNA) 

targeted oligonucleotide fluorescent probes (Table 3) labelled with fluorescein 

isothiocyanate (FITC) using the whole cell (In situ) hybridization technique outlined in 

Miller and Scholin (1998).  The LSU rRNA target location and sequences of the probes 

can be found in Miller and Scholin (1996).  The relative signal intensity observed on 

stained cells after the hybridization procedure was given a score following Miller and 

Scholin (1996).  A score of -- was given to the negative probe (LSU rRNA-targeted for 

North American strains of Alexandrium tamerense) and ++ to the positive control (small 

subunit rRNA-targeted universally conserved sequence).  Test cells were compared to 

these and scored accordingly.  When the signal intensity was seen to be brighter than the 

negative control but not as bright as the positive control a value of +- was given.  A no 

probe control was used to gauge the extent of the cells natural autofluorescence. 
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Table 3. LSU rRNA�targeted oligonucleotide probes and their target species (Miller and 

Scholin 1996). 

 

Probe Target species 
uniC 
uniR 
muD1 
muD2 
puD1 
auD1 
frD1 
deD1  
heD2-2 
amD1 

positive control (all organisms). 
negative control. 
Pseudo-nitzschia multiseries (++). 
P. multiseries (++), P. pseudodelicatissima (++). 
P. pungens (++). 
P. australis (++). 
P. fraudulenta (++), P. delicatissima (+-), P. heimii (+-). 
P. delicatissima (++). 
P. heimii (++). 
Nitzschia americana (++).  N.  americana is no longer considered to be part 
of the genus Pseudo-nitzschia (Hasle and Syversten 1997) 

 

1 mL of mid-exponential growth cultured cells was gently collected onto 25 mm, 1 µm 

Nucleopore polycarbonate membrane filters in a custom filter manifold.   5 mL of saline 

EtOH (70%) fixative was added to each tube immediately and allowed to fix for 2 hours.  

Samples were then rinsed a second time with the fixative to reduce any autofluorescence 

and washed twice with 1 mL hybridization buffer to prevent any precipitates forming that 

could interfere with the assay.  400 µl of hybridization buffer was then added to each tube 

(to resuspend the cells) after which 12 µL (200 ng.µL-1) of either the positive, negative or 

species specific probe was aliquoted to each filter.  Hybridization was carried out in a 

pre-heated darkened waterbath and maintained at the appropriate hybridization 

temperature (muD1 @ 55ûC, all other probes @ 45ûC) for 2 hours.  Finally each filter 

was washed twice with pre-warmed hybridization buffer (incubated at 45-50ûC) and left 

to stand for 5 minutes to remove excess unbound probe (eliminates any non-specific 

background staining) on the filter.  The filter was mounted on a standard microscope slide 

and 20 µl of Prolong antifade (Molecular Probes, Europe) was added before mounting the 

coverslip.  The slides were protected from bright light and stored at -20ºC to maintain the 

fluorescence stability of the probe. 

 

Samples were viewed under a Nikon Optiphot-2, epifluorescent light microscope. The 

microscope was fitted with a fluorescein filter set containing a narrow band-pass 
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excitation filter  (excitation 470-490nm), a dichroic beam-splitting mirror (≥ 510 nm at 

50% of the maximum transmission), and a long band-pass emission filter (≥ 515 nm).  

The light source used was an ultra high-pressure Short Arc mercury lamp HBO (100 W).  

Colour light micrographs were taken with a Nikon Microflex UFX-DX camera and 

Kodak Gold 400ASA film.  All images were recorded at an exposure time of 32.36s.  The 

printing process was also kept constant to allow comparison of epifluorescent intensity 

ranges on the cells hybridized with fluorescently labelled negative and positive controls 

and the species-specific probes. 

 

RESULTS 

 

Morphology 

Electron microscopy analysis confirmed that the Pseudo-nitzschia species in culture 

were P. delicatissima (1913, 1917, 1924-3, 1924-3), P. fraudulenta (W2, 2011), P. 

pungens (WW3) and P. australis (WW4) (Plate 1).  Morphological identification of the 

cultures to species level was based on the criteria outlined in Hasle and Syvertsen (1996).  

 

Ribosomal DNA analysis 

Ribosomal DNA coding regions 18S SSU, ITS1 and a fragment of the 5.8S of three 

Pseudo-nitzschia species were sequenced and aligned (Figure 1).  A high sequence 

identity of 98.12-99.94% was recorded between characters positions of the SSU coding 

region within the genus Pseudo-nitzschia (the total number of character positions after 

alignment including gaps was 1747, Table 4, Appendix 5).  The two P. delicatissima 

isolates showed significant similarities (99.71%), as did P. multiseries (99.66-99.83%) 

and P. pungens (99.54-99.94%).  The ITS1 region of P. delicatissima (strain 1913, 1917), 

P. fraudulenta (W2), P. pungens (WW3, F310: Manhart et al. 1994) and P. multiseries 

(TKA-2: Manhart et al. 1994) showed high variability in sequence length and base 

composition between species.  The length in nucleotides of the ITS1 of P. delicatissima 

(1913 and 1917) was 249 bp, 286 bp in P. fraudulenta (W2), 259-260 bp in P. pungens 

(F310, WW3) and 227 bp in P. multiseries (TKA-2).  The sequenced portion of the 5.8S 

fragment (43-44 bp) was very conserved between species.  
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Phylogenetic analysis 

Based on the alignment used to infer the phylogenetic relationship of the genus Pseudo-

nitzschia and other diatom genera (Appendix 5), a tree with a comparable overall 

branching topology was found with all the molecular phylogenetic methods examined 

(Figures 2-4).  The Pseudo-nitzschia sequences formed a monophyletic group with a high 

bootstrap support (100%).  Within this group several clusters formed and the branch 

lengths between these ingroups were very short, reflecting the close relationship within 

the genus.  The Pseudo-nitzschia isolates fell into distinct species complexes, but the 

branching order of each clade varied according to the phylogenetic method used to create 

the tree.  Pseudo-nitzschia delicatissima (always clustered together with a bootstrap 

support of 100) and P. fraudulenta formed a monophyletic group that was moderately 

(70-84%) supported.  Pseudo-nitzschia multiseries formed a monophyletic clade well 

supported by bootstrap analysis (86-100%) and all P. pungens isolates grouped together 

in a well-supported clade (94-99%). The branching order of P. australis in relation to 

other Pseudo-nitzschia species however, was not well resolved and the placement of this 

species could not be determined with any confidence.  This taxa formed a polytomy in 

ML analysis indicating that P. australis may be part of a separate lineage to the other 

Pseudo-nitzschia species examined.  The distance and parsimony methods placed P. 

australis as a deep branching lineage of P. pungens although bootstrap support for this 

topology was very low (51-54%) and the australis/pungens cluster formed a collapsed 

branch during bootstrap analysis.  This could have been an effect of taxon sampling, 

since the data set examined contained only one sequence from this species.  Additional 

sequence data of several strains of P. australis is required to investigate this further. 

 

Of the 1633 characters used in the MP analysis, 1321 characters were 

constant/conserved, 159 variable characters were considered uninformative and 153 

characters were considered informative. One parsimonious tree of 456 steps was 

generated.  The generated tree gave a consistency index of 0.829, a retention index of 

0.797 and a rescaled consistency index of 0.661.   
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The total number of rearrangements tried in LogDet/paralinear analysis was 2160 with 

the best tree(s) score of 0.45316. The tree topology was similar to that obtained by MP 

analysis.  

 

The ML tree was obtained by a general time reversible model of DNA substitution with 

the base frequencies (A=0.2757 C=0.1898 G=0.2531 T=0.2812), gamma shape parameter 

(1.077684) and proportion of invariable sites (0.56493) estimated by PAUP.  This model 

of DNA substitution had the highest � log-likelihood using the Modeltest program and 

yielded a tree with a score of 4586.1895.  
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Plate 1.  Scanning electron micrographs electron micrographs of Pseudo-nitzschia species 

selected for molecular analysis. (a) Pseudo-nitzschia delicatissima (isolate 1913: length = 16.5 

µm, width = 2 µm, striae in 10 µm = 40, fibulae in 10 µm = 26, poroids in 1 µm = 8, 2 rows of 

poroids per stria and 4 striae per central interspace). (b) Pseudo-nitzschia fraudulenta (isolate 

2011: length = 65.5 µm, width = ~ 4 µm, striae and fibulae in 10 µm = 22, poroids in 1 µm = 5, 

2 rows of poroids per stria and 3.5 striae per central interspace).  (c) Pseudo-nitzschia pungens 

(isolate WW3: length = 56.4 µm, width = 2.7 µm, striae and fibulae in 10 µm = 11, poroids in 1 

µm = 3 and 2 rows of poroids per stria). (d) Pseudo-nitzschia australis (isolate WW4: length = ~ 

45 µm, width = 5.4 µm, striae in 10 µm = 17, fibulae in 10 µm = 16, poroids in 1 µm = 5-6 and 

2 rows of poroids per stria).  
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Figure 1.  Multiple DNA sequence alignment of the 18S SSU (1745 bp), ITS1 (286 bp) 

and 5.8S (44 bp) rDNA of 4 Irish Pseudo-nitzschia isolates.  The black dots represent 

conserved character positions, hyphens represent insertion/deletion events and the red 

dots represent the primer annealing sites. Taxa abbreviations in the left hand column are 

as follows: 1913 and 1917 = P. delicatissima, W2 = P. fraudulenta and WW3 = P. 

pungens.  
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Figure 1 continued. 



CHAPTER 5 

192 

 
Figure 1 continued.  
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Figure 1 continued. 

1913: Length = 2064 base pairs, G+C content = 45.25%, A+T content = 54.75%, 1917: 

Length = 2064 base pairs, G+C content = 45.20%, A+T content = 54.80%, W2: Length 

= 2101 base pairs, G+C content = 45.60%, A+T content = 54.40%, WW3: Length = 

2074 base pairs, G+C content = 44.74%, A+T content = 55.26%. 

 

Table 4. Percentage similarity of the 18S SSU rDNA between Pseudo-nitzschia isolates 

calculated using the uncorrected-pairwise distance method. 1 = P. delicatissima (1917), 

2 = P. delicatissima (1913), 3 = P. fraudulenta (W2), 4 = P. australis (PSEUD-X), 5 = 

P. multiseries (TKA-2), 6 = P. multiseries (13CC), 7 = P. multiseries (NPARL), 8 = P. 

multiseries (POM-X), 9. P. pungens (WW3), 10. P. pungens (BRUDC-X) and 11. P. 

pungens (F310). 

 

 1 2 3 4 5 6 7 8 9 10 11 
1 -           
2 99.71 -          
3 98.85 98.8 -         
4 98.40 98.34 98.4 -        
5 98.91 98.85 98.8 98.85 -       
6  98.74 98.68 98.62 98.68 99.83 -      
7 98.74 98.68 98.62 98.68 99.83 99.66 -     
8 98.74 98.68 98.62 98.68 99.83 99.66 99.77 -    
9 98.22 98.16 98.11 98.34 98.85 98.68 98.68 98.68 -   
10 98.68 98.62 98.57 98.80 99.26 99.08 99.08 99.08 99.60 -  
11 98.68 98.63 98.45 98.68 99.20 99.03 99.03 99.03 99.54 99.94 - 
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Figure 2. Phylogenetic representation of eighteen diatom specimens including Pseudo-

nitzschia based on sequence comparisons of the SSU rDNA sequences (1732 characters 

used). The tree was constructed using Maximum-Likelihood method. Stephanopyxis 

broschii (#M87330) and Rhizosolenia setigera (#M87329) were used as outgroups. 

Numbers at the internal nodes are the inferred bootstrap values for 100 bootstrap 

resamplings, only bootstrap values above 50 are shown. The scale below the tree 

indicates the branch length corresponding to 0.01 substitutions per site. 
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Figure 3. Phylogenetic representation of eighteen diatom specimens including Pseudo-

nitzschia based on sequence comparisons of the SSU rDNA sequences (1732 characters 

used). The tree was constructed using LogDet/paralinear distances. Stephanopyxis 

broschii (#M87330) and Rhizosolenia setigera (#M87329) were used as outgroups. 

Numbers at the internal nodes are the inferred bootstrap values for 1000 bootstrap 

resamplings, only bootstrap values above 50 are shown. The scale below the tree 

indicates the branch length corresponding to 0.01 substitutions per site. 
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Figure 4. Phylogenetic representation of eighteen diatom specimens including Pseudo-

nitzschia based on sequence comparisons of the SSU rDNA sequences (1732 characters 

used). The tree was constructed using a Maximum Parsimony method (tree probability = 

4586.1895). Stephanopyxis broschii (#M87330) and Rhizosolenia setigera (#M87329) 

were used as outgroups. Numbers at the internal nodes are the inferred bootstrap values 

for 100 bootstrap resamplings, only bootstrap values above 50 are shown. The scale 

below the tree indicates the branch length corresponding to 10 changes per 100 

nucleotide positions. 
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Application of rRNA-targeted oligonucleotide probes 

Labelling intensities varied between the Pseudo-nitzschia isolates screened with LSU 

rRNA targeted probes (Table 5, Plate 2).  Cells hybridized with the positive control probe 

showed bright green fluorescent signals.  No positive signal (i.e. bright green cells) was 

evident in cells labelled with the negative control probe or when no probe was applied.   

 

Successful Pseudo-nitzschia species-specific responses of hybridized cells distinctly 

labelled (++) were recorded for the puD1, auD1 and frD1 fluorescent probes.  The puD1 

probe showed a disparity in its labelling intensity of the P. pungens isolate, ranging from 

a bright signal (++) to a less intense but positive signal (+-) it also exhibited weak cross 

reactions with the P. fraudulenta and P. australis isolates.  The auD1 probe showed slight 

labelling reaction (+-) to one of the P. delicatissima isolates, while the frD1 probe 

labelled all P. delicatissima hybridized cells with an intense signal (++) similar to that 

observed with the positive control.  Other probes that had weak labelling reactions (+-) 

with non�target species were muD1 (P. australis and P. delicatissima) and muD2 (P. 

australis).   The deD1 probe did not label (--) the species-specific target P. delicatissima 

isolates and also exhibited some cross reactivity with the P. pungens and P. australis 

isolates (+-).  

 

Table 5. Reactivity of whole cell hybridization gene probe trials on Pseudo-nitzschia 

cultures. 

 
 Fluorescent oligonucleotide probe 

Species strain uniC uniR No probe muD1 muD2 puD1 auD1 frD1 deD1 he2-2 amD1 

P. delicatissima 1913 ++ - - +- - - +- ++ - - - 

P. delicatissima 1917 ++ - - +- - - - ++ - - - 

P. delicatissima 1924-3 ++ - - - - - - ++ - - - 

P. delicatissima 1924-4 ++ - - - - - - ++ - - - 

P. pungens WW-3 ++ - - - - ++/+- - - +- - - 

P. australis WW-4 ++ - - +- +- +- ++ - +- - - 

P. fraudulenta 2011 ++ - - - - +- - ++ - - - 

P. fraudulenta W-2 ++ - - - - +- - ++ - - - 
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Plate 2. Photomicrographs of Pseudo-nitzschia cultures hybridized with fluorescent 

oligonucleotide probes (negative:UniR, positive:UniC and species specific:PuD1, FrD1, 

AuD1, MuD1, MuD2 and DeD1). Pseudo-nitzschia pungens plate 2(1�6), P. 

fraudulenta plate 2(7�13), P. australis plate 2(14-22) and P. delicatissima plate 2(23�

30).  Hybridized Pseudo-nitzschia cells under transmitted light are difficult to visualise 

when a 1 µm Nucleopore polycarbonate membrane filter is used, plate 2(31). 
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DISCUSSION 

 

Since traditional techniques used to identify Pseudo-nitzschia to species level are 

fraught by enumeration difficulties and are not really appropriate for monitoring 

programmes, molecular technology has great potential to assist in high frequency 

sampling (spatially and temporally) programmes.  Molecular techniques may also help 

us understand how and why a single species can suddenly bloom and result in toxic 

events.  

 

Ribosomal DNA and Phylogenetic analysis 

Pseudo-nitzschia species defined by morphological criterion can also be identified by 

comparison of rDNA sequence information.  Manhart et al. (1995) noted a high level of 

variability within the ITS1 rDNA of the genus Pseudo-nitzschia and used this to further 

support the species designation of P. multiseries separate to P. pungens.  Since the base 

composition and sequence length of the ITS1 rDNA was conserved at the Pseudo-

nitzschia species level and highly divergent between species in this study also, future 

investigations could use this region to examine closely related species and possibly 

strains of the same species in populations studies. Since the use of ITS sequences as 

molecular marker relies on the mechanisms of concerted evolution to ensure the rDNA 

array is evolving as a single molecule, this must first be established before this fragment 

of rDNA can be used in such studies. 

 

Phylogenetic analysis of the 18S SSU rDNA showed that the genus Pseudo-nitzschia 

formed a monophyletic group separate to the other pennate and centric diatoms.  This is 

in agreement with Douglas et al. (1994), although the branching order in this study was 

less well resolved between the Pseudo-nitzschia species investigated.  For example, in 

this study P. multiseries was placed at the base of the Pseudo-nitzschia cluster and did 

not form as close relationship to P. pungens as shown by other SSU (Douglas et al. 

1994) and LSU rDNA studies (Scholin et al. 1994), and the morphological 

investigations of Hasle (1995).  When the sequence data from this study and those 

published in Manhart et al. (1995) were excluded during phylogenetic analysis, the 
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generated tree had the same topology as Douglas et al. (1994).  This suggests that 

differences in the branching order noted in this study may have arisen due to the lack of 

18S sequence data on P. australis. Additional sequence information on other genes of 

the species from this genus with more closely related diatom genera (e.g. araphid 

diatoms) is probably required to provide the essential data for complete phylogenetic 

resolution within Pseudo-nitzschia.   

 

The rDNA sequence data determined in this study was retrieved from clones 

containing a single amplified PCR copy of the genes of interest and so any mutations 

introduced during PCR would have manifested in the sequence of that clone.    Future 

work investigating species and strain differences (polymorphisms) of Pseudo-nitzschia 

should employ a minimum of 3 isolates of each Pseudo-nitzschia species and amplified 

PCR products should be sequenced directly in both directions (to confirm the fidelity of 

the derived sequences i.e. prevent errors from reading sequences and reveal any micro-

heterogeneities) to generate a consensus sequence for phylogenetic analysis. 

Alternatively multiple clones could be pooled before sequencing to prevent technical 

errors.   

 

As already demonstrated by Scholin et al. (1994), Douglas et al. (1995) and Manhart et 

al. (1995), restriction enzyme digest assays such as RFPs (Restriction Fragment 

Patterns) can help resolve species-specific, strain-specific and allele dependant (micro-

heterogenity in gene copies of the SSU rDNA) nucleotide signatures.  The use of such a 

method as a diagnostic tool to discriminate between Pseudo-nitzschia species is useful 

in culture studies when screening large numbers of isolates since it can help define 

polymorphisms that arise from base substitutions and compensatory base changes within 

a species.  This type of analysis, however, requires specialised equipment and personnel. 

The amount of time needed to prepare the amplified target region is equivalent to that 

required for traditional microscopy methods, so it is unlikely that such a method would 

be incorporated into routine phytoplankton monitoring programmes (Scholin et al. 

1994).  Ribosomal DNA sequence data generated in molecular studies, however, can be 

very valuable since this type of information can be used to construct species-specific 
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probes (Scholin et al. 1994).  Although it is difficult to design an oligonucleotide probe 

from a selected sequence that will specifically hybridize only to the target organism, 

several potential sites unique to the SSU rDNA gene (Appendix 5) for each Pseudo-

nitzschia species could be investigated further to design oligonucleotide probes 

complimentary to these regions and tested their specificity on a large number of Pseudo-

nitzschia isolates.  Potential polymorphisms and/or micro-heterogeneities, however, 

need to be confirmed within each target species and avoided when designing probes. 

 

Application of LSU rRNA-targeted oligonucleotide probes 

Optical examination of fluorescent probes can be an important tool in combating the 

problems of identifying and enumerating species from the genus Pseudo-nitzschia when 

the quality of fluorescent staining shows a clear distinction between the species targeted 

and other non-target species.  This probe based cell detection technique has already been 

successful in obtaining near real�time data on harmful Pseudo-nitzschia blooms in New 

Zealand where it has been integrated into routine harmful algal bloom (HAB) 

surveillance programmes (Rhodes et al. 1998).  Recent investigations by Chris Scholin 

and his co-workers (2000) have demonstrated that the whole cell (In situ) hybridization 

assay could be a better indication of DA in the plankton entering the marine food web 

rather than just relying exclusively on the detection of DA in commercial shellfish tissue 

(Scholin et al. 2000). 

 

Some of the Irish Pseudo–nitzschia isolates showed cross�reaction with certain 

species�specific LSU rRNA�targeted fluorescent probes. Direct visualisation of the P. 

delicatissima strains after hybridization with the deD1 probe exhibited no florescent 

signal from the target cells.  Nina Lundholm (personnel communication) has also 

reported a similar reaction with this gene probe on P. delicatissima strains isolated from 

northern European waters (off the coast of Denmark).  One explanation for this is that 

there may be some form of genetic variation within the LSU rRNA target sequence 

between the European P. delicatissima isolates and the reference strain.  The annealing 

ability of the species�specific rRNA�target probe depends on the nucleotide 

composition of the probe and that of the target sequence.  Although the outward 
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appearance (morphotype) of the P. delicatissima cultures tested in both studies are in 

keeping with that described in the literature, cells from different biogeographic localities 

may differ in LSU rRNA sequence in regions that affect binding or access of the probe.  

Miller and Scholin (1996) found that the frD1 probe had a weak binding ability towards 

strains of P. delicatissima and P. heimii isolated from the west coast of America.  The 

frD1 gene probe has also been reported to bind slightly with P. subpacifica (Miller and 

Scholin, 1998).  When this gene probe was applied to Irish P. delicatissima strains in 

this study, a strong labelling intensity similar to that detected with the positive control 

was observed.  This also suggests that rRNA of Irish strains differs from western North 

American strains of P. delicatissima.  The frD1 probe could however be used to identify 

this species in Irish waters since P. fraudulenta is easily distinguished from P. 

delicatissima by observing the cell dimensions in valve view, there is a significant 

difference in the cell width of P. fraudulenta (>3µm) and P. delicatissima (<3µm) cells 

(Hasle 1965).  

 

Other results in this preliminary study showed that the P. australis strain exhibited 

slight labelling reaction with the gene probes muD1, muD2, puD1 and deD1.  

Nevertheless, enumeration of P. australis cells from wild samples has some potential.  

The overall gross morphology of P. australis (> 4µm in width, spindle to lanceolate 

shape and rounded ends) in association with the bright labelling intensity of this species 

by the auD1 probe can assist in distinguishing between P. australis and other non�target 

Pseudo-nitzschia species.  The disparity in the labelling strength of the puD1 probe with 

the P. pungens strain has been documented by Miller and Scholin (1998) on other P. 

pungens strains, even after repeated applications of this probe to the same clone of P. 

pungens.  This type of anomaly in the labelling efficiency of puD1 requires some care 

when examining samples.  Even though slight cross�reactions (+-) of the P. australis 

and P. fraudulenta strains by the puD1 oligonucleotide probe were observed, 

differentiation between these two species and P. pungens can be made.  Their cell 

outlines are clearly different; P. pungens is a more linear in it�s valve view while the 

other two have a wider cell width and exhibit a more spindle to lanceolate overall shape.  
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The fluorescently labelled probes used in this study were originally designed for a 

limited set of Pseudo-nitzschia strains isolated off the west coast of America.  Since the 

LSU rRNA contains universally conserved sequences with some variable regions unique 

to a given species, chosen short length sequences were used to synthetically design 

oligonucleotide probes which would compliment the target sequence and discriminate 

between closely related Pseudo-nitzschia species (Miller and Scholin 1996).  That is, 

these short nucleic acid strands contain a unique sequence to the given species they 

targeted, those species being isolated from the central Californian coast.  

 

Future work should concentrate on investigating genetic variations between the Irish 

Pseudo-nitzschia strains and their western American counterparts.  The most 

informative method to clarify this would be to sequence the D1-D2 region of the LSU 

rRNA (rDNA) of all, including any cross-reacting strains and compare their genetic 

signatures to the reference sequences (Miller and Scholin 1996).  This would distinguish 

any regional genetic variation and allow the necessary �fine tuning� or redesigning of 

the probe sequences for successful application on Irish Pseudo-nitzschia strains.   

 

Several other elements can influence the labelling proficiency of the Pseudo-nitzschia 

species�specific probes.  Miller and Scholin (1998) found that the labelling ability of the 

probes was effected when a natural water sample containing large amounts of 

particulate material was analysed, non-specific binding and background fluorescent 

interference was observed and the incorporation of the probes into target organisms was 

reduced with positively labelled cells exhibiting weaker signals.  Samples must be 

processed and analysed as quickly as possible since the fluorescence of positively 

labelled cells fade over time (Miller and Scholin 1998).  Difficulties can also be 

encountered if the salt concentration of the hybridization buffer is either too high or too 

low thus reducing the labelling intensity of the probe.  The hybridisation buffer must 

also be kept at room temperature, if stored in the fridge, precipitation of salts can occur 

and this will result in non-specific binding of the probe (Chris Scholin, personnel 

communication). Slight changes in hybridization temperature will have the same effect 

(Chris Scholin, personnel communication).  If the fluorochrome fluorescein 
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isothiocyanate (FITC) is used to label the probes then samples should be stored in the 

dark, exposure to light will affect the labelling intensity and reduce the signal.  

Optimised conditions for labelling with FITC require a slightly basic pH.  If there is 

contamination of materials and reagents with RNase, a lower signal strength or no signal 

of the applied probe will be the final effect, since this enzymes digest RNA (John 

Tyrell, personnel communication).  An important stage during the assay is rinsing out 

excess probe after hybridization since this eliminates background fluorescence and any 

weak labelling reactions.  If too much buffer is used during the rinsing step this will 

reduce the hybridization signal of the target organisms.  The choice of membrane filters 

may effect labelling, Millipore �Isopore� and Whatman �cyclopore� filters have been 

reported to show less background fluorescence then when Nucleopore polycarbonate 

membrane filters are used in the assay (Chris Scholin personnel communication).  

Whatman �cyclopore� filters are optically transparent and therefore allow visualisation 

of a sample under transmitted LM (Miller and Scholin 1998).  Other filter types such as 

the Nucleopore polycarbonate membrane filters used in this study cause interference in 

this regard and make it difficult to view and photograph cells under transmitted light 

microscopy as shown in Plate 2(31).  A final factor that can affect background 

fluorescence on the filter is the length of time hybridization is allowed.  The Cawthron 

institute allow 30 minutes for hybridization and in California (MBARI) samples are 

generally hybridized for 1 hour (John Tyrell, personnel communication).  If the 

hybridization time is allowed to continue for a longer time, the background fluorescence 

noise may increase dramatically.  The optimal reaction conditions need to be determined 

empirically if further research is to be carried out in Irish waters with the LSU rRNA�

targeted Pseudo-nitzschia probes, for example a hybridization time-series should be 

performed to compare signal outputs and background fluorescent levels on the filter and 

on non-target cells.  A change in the type of filter used is also recommended to 

eliminate visualisation problems of cells under transmitted light.  A barrier filter with a 

narrow bandwidth would be a useful alternative to the long band�pass filter used in this 

study, as it would eliminate a larger fraction of cells natural autofluorescence. The 

removal of chlorophyll fluorescence prior to analysis would also help to alleviate this 

kind of interference. 
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If the probes are to be used as a monitoring tool it is crucial that the person employed 

to carry out the assay has the utmost confidence in their technique.  It was proposed by 

Chris Scholin at the HABTech 2000 workshop (New Zealand, 2000) that universal 

standard reagents and test strains to aid in training probe operators was the best possible 

solution to this problem.  Consequently, any unwanted cross�reactions resulting from 

applying the probes in a non-stringent fashion would be eliminated.  Finally, it should 

be stated that, given the results described above, there is great potential for the use of 

LSU rRNA�targeted oligonucleotide probes for monitoring potentially harmful Pseudo-

nitzschia blooms in Irish waters.  However, before this can be achieved successfully, 

further investigations are necessary to confirm and, if required, rectify any irregularities 

such as the unwanted cross�reactions exhibited by the gene probes with non�target 

organisms. 
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CONCLUDING REMARKS 

 

This project was prompted by the recognition that certain species within this genus are 

capable of producing the shellfish neurotoxin, domoic acid (DA).  During the study six 

potentially toxic Pseudo-nitzschia species (P. pungens, P. multiseries, P. fraudulenta, P. 

australis, P. delicatissima, and P. pseudodelicatissima) were unambiguously identified 

from vertical phytoplankton net haul samples collected from a series of research cruises 

off the Irish coast between 1993–1997.    In separate investigations worldwide, isolates of 

the above species have been found to produce DA (Rhodes et al. 1996, Bates et al. 1989, 

Rhodes et al. 1997, Garrison et al. 1992, Smith et al. 1990 and Martin et al. 1990 

respectively).  The presence of these Pseudo-nitzschia species alone, signals a need for a 

more detailed phytoplankton monitoring programme in Irish coastal waters, especially in 

the vicinity of intensive shellfish farming. 

 

Two Pseudo-nitzschia species provisionally identified as P. subpacifica and P. seriata 

(P. seriata f. seriata and P. seriata f. obtusa) were also noted in some of the field samples 

examined during this investigation.  A more detailed survey off the Irish coast is required 

to confirm the presence of P. seriata f. seriata as some strains of this species can produce 

domoic acid (Lundholm et al. 1994). 

 

The cruises undertaken in this study were carried out between spring and autumn and 

were primarily concentrated off the south and southwest coasts. The seasonal occurrence 

of each Pseudo-nitzschia species in Irish waters was in keeping with the literature (Hasle 

and Syvertsen 1997).  Pseudo-nitzschia species that are abundant from October to April 

may have been missed, however, due to the timing of the cruises.   

 

No obvious relationship between environmental data (e.g. nutrients, temperature and 

salinity) and the presence of the genus Pseudo-nitzschia was observed. These diatoms did, 

however, seem to be more abundant in the summer months following the spring bloom 

and in late summer.  One possible reason for the lack of association between 

environmental variables and the presence of Pseudo-nitzschia could be that individual 
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species were not identified at discrete depths.  In future studies, high sampling frequency 

collecting physical, chemical and biological data will be necessary to ascertain the 

synecology of these diatoms in Irish waters. 

 

Pseudo-nitzschia australis is becoming an important source of DA in Europe.  Blooms 

of this organism resulted in the closure of the shellfish industry in Galicia, Spain, during 

September 1994 (Míguez et al, 1996).  This species has also been implicated in DA 

outbreaks in Monterey Bay (California, USA) resulting in the deaths of local seabirds and 

sealions (Buck et al. 1992; Fritz et al. 1992; Work et al. 1993, Scholin et al. 2000). 

Pseudo-nitzschia australis is a regular component of the microalgae in Irish waters, often 

predominating vertical phytoplankton net samples.    

 

Irish isolates of P. pungens, P. fraudulenta and P. delicatissima tested negative for 

domoic acid production.  However, it is recommended, that additional Pseudo-nitzschia 

species are isolated from Irish waters into unialgal cultures to assess exactly how many 

toxic species are present.  Screening for toxic and non-toxic strains within the same 

species also needs to be addressed.  This type of information could become important if 

phytoplankton monitoring is used as an aid in early warning systems in HAB programmes 

in Ireland. 

 

The importance of continuing further work from both research and aquacultural 

viewpoints is further highlighted by the fact that DA has been identified in Irish shellfish 

(Terry Mc Mahon personal communication).  Since the completion of the practical work 

carried out for this thesis, there have been several incidents of DA contamination in Irish 

shellfish.  A biotoxin monitoring programme for DA began in Ireland after concerns were 

raised when an ASP event led to large scale closures of the scallop fisheries in Scotland in 

May 1999.  The Irish authorities began to test for the presence of this toxin in mussels 

(Mytilus edulis) and scallops (Pecten maximus) collected from all commercial shellfish 

sites around the Irish coast.  In early December 1999, the first detection of DA in Irish 

scallops was reported.  Analysis of scallop tissue samples at the Marine Biotoxin Unit, 

Marine Institute has shown consistently that maximum levels of DA are concentrated in 
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the hepatopancreas (HP) region of this mollusc.  Highest concentrations of up to 3,679 µg 

DA.g-1 (HP) have been reported.  To date, the toxin has been found in concentrations 

above the regulatory limit of 20 µg.g-1 more frequently in scallops although testing of 

mussels, oysters (Crassostrea gigas and Ostrea edulis) and razor clams (Ensis siliqua) 

have also shown low concentrations of DA (Joe Silke personal communication). 

Phytoplankton samples taken soon after the first ASP incident showed no indication of a 

Pseudo-nitzschia bloom (personal observation).  However, if there were high cell densities 

of Pseudo-nitzschia in the affected areas, it is quite possible that the bloom had subsided 

before phytoplankton samples were collected for examination. The causative organism 

remains uncertain. 

 

Today the turnaround time to obtain detailed information on individual Pseudo-

nitzschia species in a sample can be up to 48 hours using traditional methods.  This 

requires identification skills since this genus Pseudo-nitzschia is difficult to identify 

down to species level.  Molecular biological techniques are advancing rapidly and these 

alternative methods of identification may well ensure a more efficient response in 

detecting and enumerating species of Pseudo-nitzschia.  Sequencing results from this 

study showed that the genus Pseudo-nitzschia formed a monphyletic group, although the 

relationships between individual species need to be investigated further with a larger 

sequencing data set.  Results from species-specific gene probe application tests on 

Pseudo-nitzschia cultures suggest that there may be some genetic variation between Irish 

Pseudo-nitzschia populations and those off the west coast of the USA.  The LSU 

ribosomal DNA of the Irish isolates need to be sequenced to allow for direct comparisons 

with the published data of Scholin et al. (1994).  
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Appendix I 
 

Terminology used to describe the morphological features of the siliceous frustule in the 

diatom Pseudo-nitzschia.  The terminology follows Anonymous (1975), Ross et al. 

(1979) and Barber & Haworth (1981). 

 

  



TERMINOLOGY 

216 

TERMINOLOGY IN ACCORDANCE WITH ANONYMOUS 1975, ROSS ET AL. 1979 

AND BARBER & HAWORTH, 1981. 
 
APICAL AXIS: The long axis of a bilateral diatom, the axis between the two poles of the 

cell. 

 

APICAL PLANE: This plane is perpendicular to the transapical axis. 

 

AREOLA(E):  
(poroid(s)) 

Regular repeated perforations through the basal siliceous layer, which 

are occluded by a velum (multi–perforated silica membrane).  One or 

more rows of areolae can be found in Pseudo-nitzschia. 

 

BILATERAL:   
(valve shape) 

The valve outline is dissimilar either side of the apical axis, the dorsi–

ventral side being narrower. 

 

CANAL RAPHE:  The raphe runs along this channel.  There is a tubular passage running 

along its inner side and it is separated from interior frustule by siliceous 

elements called the fibulae.  The spaces in between the fibulae are called 

interspaces. 

 

CENTRAL LARGER 

INTERSPACE:  

 

This is seen as the greater distance between the two media fibulae. 

 

CENTRAL NODULE:  
(pseudonodulus) 

This structure is more robust then other siliceous features of the valve 

and is positioned between the two central raphe endings.  The central 

nodule is located in the central larger interspace. 

 

CINGULUM: The girdle elements associated with one valve, usually the older valve. 

 

DISTAL MANTLE:  The mantle that is positioned furthest away from the raphe. 

 

EPICINGULUM:   
(girdle elements) 

This overlaps the hypocingulum and is attached to the epivalve, together 

forming the hypotheca. 
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TERMINOLOGY IN ACCORDANCE WITH ANONYMOUS 1975, ROSS ET AL. 1979 AND BARBER & HAWORTH, 1981 CNT. 

 

EPITHECA:  Epivalve + epicingulum (composed of one or more girdle bands). 

 

EPIVALVE:  Larger and older of the 2 valves. 

 

FIBULA(E): 
(keel punctum(a)) 

A band of silica that forms an arch across the raphe and raphe canal.  

Between each fibula are openings called the interspaces. 

 

FRUSTULE: The siliceous cell wall of the diatom cell.   

Epitheca + hypotheca = Epivalve + girdle + hypovalve. 

 

FUSIFORM:  The shape of a valve with rostrate ends (attenuated ends). 

 

GIRDLE:  The part of the frustule which contains the epicingulum and 

hypocingulum. 

 

GIRDLE BAND:  A single element of the girdle.  Girdle bands = copulae. 

 

HETEROPOLAR :  
(valve symmetry) 

If the transapical axis is heteropolar, this means that the valve is  

asymmetrical with respect to the apical plane.   Heteropolar on its own 

means that the ends of a valve differ in shape or size. 

 

HYMENATE VELUM: A type of velum that is very fine and sieve-like in structure. 

 

HYPOCINGULUM:  
(girdle elements)  

This is attached to the epivalve together forming the hypotheca.  This 

part of the frustule is laid down by the daughter cell after cytokinesis. 

 

HYPOTHECA:  Hypovalve + hypocingulum (composed of one or more girdle bands). 

 

HYPOVALVE:  Smaller and younger/newer of the 2 valves. 

 

INTERSTRIA(E):  
(transapical costa(e)) 

Non perforated strip of silica between two striae on the valve face.  They 

run transapically in the diatom Pseudo-nitzschia. 
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TERMINOLOGY IN ACCORDANCE WITH ANONYMOUS 1975, ROSS ET AL. 1979 AND BARBER & HAWORTH, 1981 CNT.  
 

ISOBILATERAL:  
(valve shape) 

The outline of the valve is similar on either side of the apical axis. 

 

 

ISOPOLAR:  
(valve symmetry) 

If the transapical axis is isopolar, this means that the valve is 

symmetrical with respect to the apical plane. 

 

MARGINAL RIDGE:  A ridge between the valve face and valve mantle. 

 

PERVALVAR AXIS: The axis through the centre point of the two valves (height) the size 

varies with the number of girdle bands formed. 

PROXIMAL MANTLE:  The mantle that is positioned nearest the raphe. 

 

RAPHE:  An elongated slit through the valve wall along the apical axis.  The raphe 

in Pseudo-nitzschia valves is found either as an unbroken line running 

along the length of the valve margin or in two parts separated in the 

central area by the central nodule.  Raphe terminals (ends, nodules) 

occur at the apices (poles) of the valves.  Where the raphe is split into 

two parts, raphe terminals can also be found in the central larger 

interspace.  The raphe usually has a shape like a V on its side < in a cross 

section of a valve.  In the diatom Pseudo-nitzschia the raphe on opposite 

valves of the one frustule are positioned diagonally to each other. 

 

RAPHE ECCENTRIC: The raphe does not run along the centre of the valve.  In the diatom 

Pseudo-nitzschia the raphe is said to be eccentric, this means that the 

raphe is found running along one of the valve margins. 

 

ROSTRATE:  
(usually referring to the 

valve ends) 

Following Sim and Ross, 1985. 

Prolonged distal parts of the valves (drawn out ends), more or less 

sharply delimited from the central part of the valve.  The term projection 

is sometimes used instead of rostrate. 
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TERMINOLOGY IN ACCORDANCE WITH ANONYMOUS 1975, ROSS ET AL. 1979 AND BARBER & HAWORTH, 1981 CNT. 

 
STRIA(E):  
(intercostal membrane)  

Row or rows of areolae (pores).  Groups of poroids. 

 

 

STRIAE/FIBULAE-

FREQUENCY:  

This is the number (density) of striae or fibulae in 10µm, measured from 

the central area of the valve face towards the valve poles. 

 

STRIATED BANDS:  
(ribbed) 

Perforated girdle bands as seen under a light microscope.  They are often 

seen as a row of rectangular openings in Pseudo-nitzschia. 

 

THECA:  Valve with it's associated girdle elements. 

 

TRANSAPICAL AXIS: The imaginary axis that runs perpendicular to the apical axis. 

 

TRANSAPICAL PLANE: This plane is perpendicular to the apical plane or axis. 

 

VALVE:  
(face + mantle) 

One of two opposing distal plates in the frustule.  A valve is generally 

more or less flattened or convex in shape.  

 

VALVE FACE:  Part of the valve that is surrounded by the mantle. Oriented to the valvar 

plane. 

 

VALVE MANTLE:  The marginal part of the valve differentiated by a slope. Oriented to the 

apical plane. 

 

VALVAR PLANE: This plane is parallel to the valves where cell division causes a split 

between them; it is perpendicular to the pervalvar plane or axis. 

 

VALVOCOPULA:  This is the first girdle band.  It is the element adjacent to the valve. 
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Appendix II 
Morphological descriptions of Pseudo-nitzschia species recorded from Irish waters. The 

morphological criteria follow Hasle (1965, 1972, 1995), Hasle & Fryxell (1995), Hasle 

et al. (1995) and Hasle & Syvertsen (1996).   
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Pseudo-nitzschia pungens 
(Robust: v heavily silicified) 

 

LIGHT MICROSCOPY (LM) VEGETATIVE CELLS 

1. The girdle view of whole cells shows that the overlapping of cell ends can be as 

much as 1/4 to 1/3 or more of the total cell length. 

 

LIGHT MICROSCOPY (LM) ACID CLEANED VALVES 

2. The frustule is heavily impregnated with silica. 

3. VALVE VIEW:  

a) The valve is symmetrical with respect to the apical axis. 

b) The shape of the valve is linear in large valves and lanceolate to fusiform in 

smaller valves. 

c) Valve ends are pointed. 

d) Valve margins are straight to gently curved. 

e) Central larger interspace is absent. 

f) The density of fibulae to interstriae is more or less equal. 

The interstriae are visible in watermounts.  The fibulae are sometimes seen as a 

continuation of the interstriae in water mounts.  The fibulae and the interstriae 

are visible in permanent mounts where the fibulae can be easily distinguished 

from the interstriae. 

g) Perforation of the striae can be observed occasionally in acid cleaned valves 

mounted in a medium of high refractive index under phase contrast (100x) and 

oil immersion (100x) LM. 

4. GIRDLE VIEW 

h) Pseudo-nitzschia pungens can be identified in the girdle view by the coarse 

fibulae and interstriae.  The interstriae are visible in watermounts. 

i) The girdle shape is linear to lanceolate (or fusiform). 

j) Deep pervalvar axis (wide in girdle view). 

k) The girdle ends are sharply pointed. 
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l) The girdle margins are curved. 

m) Girdle bands have a ribbed–like appearance, at the centre of the valve the ribs of 

the girdle bands are more widely spaced than at the poles. 

 

ELECTRON MICROSCOPY (EM) ACID CLEANED VALVES 

5. The fibulae and striae are present in more or less equal numbers. The fibulae are 

generally aligned with the interstriae, although sometimes they are slightly displaced 

from each other. 

6. The striae are perforated by two rows of medium sized circular poroids ("biseriate") 

often with a single poroid or extra partial row of poroids between the two rows.  The 

space between the two rows of poroids is more often then not non–perforated. 

7. Poroid structure of the valve face and proximal mantle are round and are occluded 

by a finely perforated velum of a hymenate type (very fine and sieve-like). 

8. Valve ends differ in that one end has a fewer number of poroids per striae than the 

other. 

9. Valve mantle is one poroid high.  The proximal mantle has one to two rows of 

poroids that are usually aligned with a fibula or an interspace, very rarely aligned 

with the striae. 

The cingulum consists of at least three bands, each band has one transverse row of 

large hymenate poroids, the areas toward the apices lack poroids.  The valvocupula is a 

lot wider then the other bands.  The size of the poroids reduces abvalvarly. 
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Pseudo-nitzschia multiseries 
(Robust, heavily/coarsely silicified) 

 

This species when observed under the LM is very similar to Pseudo-nitzschia pungens 

in both the valve and girdle view. 

 

LIGHT MICROSCOPY (LM) VEGETATIVE CELLS 

1. The girdle view of whole cells shows that the overlapping of cell ends can be as 

much as 1/4 to 1/3 or more of the total cell length. 

 

DIFFERENCE BETWEEN P. MULTISERIES AND P. PUNGENS 

2. Valve view 

a) Pseudo-nitzschia multiseries is not as heavily silicified (coarse) as P. pungens. 

b) The ratio of the width:length of smaller to medium sized cells of P. multiseries are 

usually wider then similar sized P. pungens valves. 

c) The fibulae are more distinguishable that the interstriae in cleaned valves mounted 

in a high refractive medium such as Naphrax. 

d) In LM observations the perforations of the striae of P. multiseries cannot be seen 

even under oil immersion LM. 

e) The perforated bands are narrower and more delicate in cleaned mounted 

specimens of P. multiseries. 

 

ELECTRON MICROSCOPY (EM) ACID CLEANED VALVES 

Pseudo-nitzschia multiseries can only be distinguished from P. pungens by observing 

the striae structure, the structure of the valve ends and girdle bands under an electron 

microscope.  The valve shape of P. pungens and P. multiseries is also very like that of 

P. pungiformis under the LM.  A distinctive feature that separates P. pungiformis from 

the other two species is that this species possesses a central larger interspace. 
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Pseudo-nitzschia multiseries is also similar to P. seriata in the structure of the valve 

face striae, valve mantle and bands.  They differ in their overall gross morphology 

(valve shape and valve ends). 

 

3. The fibulae and striae are present in roughly in equal numbers. 

4. The fibulae are generally positioned beside or slightly displaced with the interstriae. 

5. The striae are perforated by three to five closely spaced rows of small poroids 

("multiseriate") - not as big as those seen in P. pungens.  The poroids directly 

adjacent to the interstriae are slightly larger that the poroids of the intermediate 

rows. 

6. The poroids of the valve face and proximal mantle are round and are covered by a 

finely perforated velum of a hymenate type (very fine and sieve-like). 

7. The valve ends differ in that one end bears more branched-like interstriae than the 

other (different to P. pungens). 

8. Valve mantle is two to three poroids high. 

9. The proximal and distal mantles have a similar striae structure to the valve face, 

sometimes with less poroids and more irregular poroid rows.  The mantle striae are 

aligned with the raphe interspaces. 

10. The valvocopula can have four to five hymenate poroids per striae in the pervalvar 

direction, the number of poroids decreases to one or no poroids abvalvarly in the 

other bands and the band apices. 
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Pseudo-nitzschia seriata f. seriata 
(Lightly to moderately silicified) 

 

LIGHT MICROSCOPY (LM) VEGETATIVE CELLS 

1. The girdle view of whole cells shows that the overlapping of cell ends can be as 

much as 1/3 to 1/4 of the total cell length. 

 

LIGHT MICROSCOPY (LM) ACID CLEANED VALVES 

2. The frustule is weakly to moderately silicified. 

3. VALVE VIEW 

a) The valve is asymmetrical with respect to the apical axis. 

b) The valve shape is lanceolate to fusiform. 

c) The transapical axis is broad. 

d) The valve ends are slightly rostrate (elongated) with rounded poles. 

e) One valve margin is curved and the other is more or less straight, this is easily 

observed at the centre of the valve. 

f) The canal raphe can be situated on either the straight or the curved margin. 

g) Central larger interspace is absent. 

h) The density of fibulae to interstriae is equal. 

Interstriae are visible in the more silicified valves in watermounts (dry lens).  

Fibulae are not discernible in watermounts.  Fibulae are more distinguishable 

than the interstriae in permanent mounts.  Oil immersion is not required to see 

interstriae or fibulae. 

4. GIRDLE VIEW 

i) The girdle shape is linear to lanceolate or fusiform. 

j) The girdle ends are pointed. 

k) The interstriae are visible in vegetative cells in watermounts. 

 

ELECTRON MICROSCOPY (EM) ACID CLEANED VALVES 

When a fragment of a P. seriata valve is viewed under the electron microscope it is 
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difficult to distinguish from a fragmented P. multiseries valve.  However, P. seriata may 

have poroids that are smaller in size to poroids found in P. multiseries.  Observation of 

the overall valve shape and valve ends is necessary to differentiate these two species.  

Pseudo-nitzschia seriata is quite similar in the shape of its valve to smaller forms of P. 

australis.  The dimensions and the overlap of cell ends are other features that these two 

species share in common.  Differences in the valvar structure discriminate between the 

two species.  Electron microscopy examination reveals that P. seriata has 3 to 4 rows of 

poroids per stria, while P. australis has only 2.  The girdle bands of these two species 

also differ in structure (P. australis usually has more rows of poroids). 

 

5. The fibulae and striae are present in more or less equal numbers. 

6. The fibulae are generally positioned beside or slightly displaced with the interstriae. 

7. The striae are perforated by three to five rows of poroids "multiseriate". 

8. The rows of poroids adjacent to the interstriae have a larger poroid structure and the 

poroids are more consistent in appearance then those found in the other rows. 

9. The poroids of the valve face and mantle are round and covered by a finely 

perforated velum of the hymenate type (very fine and sieve-like). 

10. The structure of the valve ends differ, one end bears more branched-like interstriae. 

11. The valve mantle is two to three poroids high and wide, with a striae structure 

similar to the valve face. 

12. The striae of the proximal mantle are aligned with the raphe interspaces. 

13. Three to four girdle bands are known.  The first 3 bands are perforated while the 

fourth band is a narrow and nonperforated band.  The striae structure is well formed 

on the first two bands with 2 rows of poroids (sometimes with a third poroid 

between the outer two poroids) with hymenate velae.  At the centre region of the 

valve the valvocopula is four to six poroids high in the pervalvar direction, this 

decreases towards the apices where one to two poroids can be seen. The second band 

is about half the height of the first band and the third band is one poroid in height. 
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Pseudo-nitzschia seriata f. obtusa 
(Lightly to moderately silicified) 

 

This form of Pseudo-nitzschia seriata when viewed under a LM is quite similar to the 

nominate form (P. seriata f. seriata).  LM observation reveals that P. seriata f. obtusa is 

smaller in size (length and width), it has more rounded, blunter (obtuse) ends and the 

striae are more densely spaced than the fibulae.  Discrimination between P. seriata f. 

obtusa and its nominate form can also be made by observing the striae structure. 

 

ELECTRON MICROSCOPY (EM) ACID CLEANED VALVES 

14. The striae are perforated by one to two rows of hymenate poroids. 
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Pseudo-nitzschia australis 
(Lightly to moderately silicified) 

 

Pseudo-nitzschia australis shows great similarity to P. seriata in the shape of the valve 

particularly the slightly rostrate valve ends.  Pseudo-nitzschia australis (large 

representatives) is symmetrical while P. seriata is asymmetrical with respect to the 

apical axis in valve view.  Electron microscopy is required to confirm the identification 

of these two species.  Pseudo-nitzschia australis is generally larger and more coarsely 

silicified than P. seriata.  The striae and band structure are additional features that can 

help to differentiate these two species. 

 

LIGHT MICROSCOPY (LM) VEGETATIVE CELLS 

1. The girdle view of whole cells shows that the overlapping of cell ends can be as 

much as 1/4 to 1/3 of the total cell length.  

 

LIGHT MICROSCOPY (LM) ACID CLEANED VALVES 

2. The frustule is moderately silicified. 

3. VALVE VIEW 

a) The valve is symmetrical with respect to the apical axis, this is difficult to see in 

smaller valves (these can sometimes look asymmetrical). 

b) The valve shape is linear-lanceolate or fusiform.  

c) The valve ends are slightly rostrate (elongated or pinched) in the larger specimens, 

all P. australis species have rounded poles. 

d) The valve margins are slightly curved and the middle part of the valve has more 

or less straight parallel sides (this can be difficult to discern in smaller forms). 

e) The density of fibulae to interstriae is roughly equal.  The interstriae can be 

discerned in water mounts.  The fibulae are more distinct than the interstriae in 

permanent mounts (oil immersion LM). 

f) A central larger interspace is absent. 

4. GIRDLE VIEW 
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g) The frustule is linear to lanceolate or fusiform in shape in the girdle view. 

h) The girdle ends are pointed. 

i) The bands (intact frustules) of the girdle are strongly silicified with transverse 

ribs that are more densely packed then the interstriae of the valve face. 

 

ELECTRON MICROSCOPY (EM) ACID CLEANED VALVES 

5. The striae are perforated by two rows of small poroids ("biseriate").  The poroids 

are positioned close to the interstriae leaving a space of non–perforated silica 

between the two rows.  The poroids of P. australis are circular in structure with 

hymenate velae and are larger in size than those found on P. seriata valves.  

Sometimes an extra poroid is visible towards the valve margins, positioned 

between the other two rows of poroids. 

6. The structure of the valve ends differ, one end bears more branched-like interstriae 

than the interstriae at the other apices. 

7. The valve mantle is one to three poroids high and two to three poroids wide, with 

striae structurally similar to the valve face.  The striae of the proximal mantle are 

aligned with the raphe interspaces although they can sometimes be slightly 

displaced. 

8. Girdle bands: there are three perforated associated bands, at times with a fourth 

nonperforated narrow band attached.  The band striae have more than two rows 

of poroids with hymenate vela.  The band striae of P. australis differ to those of 

P. seriata in shape and there are usually more rows of poroids in the band striae 

of P. australis.  Transverse striae of the intercalary bands are strongly silicified 

and somewhat more closely spaced than those found on the valve face (Villac et 

al. 1993). 
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Pseudo-nitzschia fraudulenta 
(Lightly silicified) 

 

LIGHT MICROSCOPY (LM) VEGETATIVE CELLS 

1. The girdle view of whole cells shows that the overlapping of cell ends can be as 

much as 1/8 to 1/6 of the total cell length. 

 

LIGHT MICROSCOPY (LM) ACID CLEANED VALVES 

2. The frustule is lightly (weakly) silicified. 

3. VALVE VIEW:  

a) The valve is symmetrical with respect to the apical axis. 

b) The valve shape is lanceolate to fusiform. 

c) The valve ends are pointed. 

d) The valve margins are curved to straight. 

e) A central larger interspace is present. 

f) The fibulae and interstriae are in equal numbers.  The fibulae are not discernible 

in watermounts.  The interstriae are sometimes visible in water mounts.  In 

permanent mounts, the fibulae and central nodule are visible (LM oil 

immersion), while the interstriae are barely discernible.  The central larger 

interspace is visible in dark field illumination of water mounts and in 

permanently mounted slides. 

4. GIRDLE VIEW 

g) The frustule is linear to lanceolate or fusiform. 

h) More heavily silicified specimens can be identified in the girdle view as the 

fibulae and interstriae are visible. 

i) The girdle ends are pointed. 

j) The band structure is not visible. 

 

ELECTRON MICROSCOPY (EM) ACID CLEANED VALVES 

5. The number of fibulae to interstriae differs slightly, generally with more interstriae 
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then fibulae.  The fibulae are aligned with the valve face interstriae and often more 

irregularly with the striae or the interstriae of the proximal mantle. 

6. Two rows of fairly large, closely packed circular to squarish poroids are visible per 

stria.  The rows of poroids are also closely aligned.  Occasionally there is an extra 

partial row of poroids between these 2 rows. 

7. This species has a different poroid vela structure than many of the other Pseudo-

nitzschia species in that the vela is divided into compartments, with nonperforated 

sections (delicate bands of silica) that radiate out from the centre and separate the 

hymenate sectors. 

8. The central larger interspace spans three to four valve face striae. 

9. The valve mantle is one to two poroids high 

10. The valvocopula exhibits rectangular striae with two rows (sometimes a third row of 

smaller poroids) of a varying number of irregularly shaped poroids, ~ 8 to 10 in the 

pervalvar direction.  These hexagonal to triangular poroids are similar in structure 

and size of the hymenate sectors of the valve face poroids.  A second narrow and 

indistinctly structured band may be present and an unknown number of non–

perforated bands. 
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Pseudo-nitzschia subpacifica 
(Lightly silicified) 

 

Pseudo-nitzschia subpacifica is very like P. seriata under a LM except it has a narrower 

valve width and possesses a central nodule.  It is also very like P. heimii although it is 

smaller in size and the ratio of width:length is larger in P. subpacifica.  These three 

species are alike in that all three are asymmetrical with respect to the apical axis. 

 

LIGHT MICROSCOPY (LM) VEGETATIVE CELLS 

1. The girdle view of whole cells shows that the overlapping of cell ends can be as 

much as 1/5 to 1/6 of the total cell length. 

 

LIGHT MICROSCOPY (LM) ACID CLEANED VALVES 

2. The frustule is weakly silicified (structure is delicate), P. subpacifica valves are 

comparatively broader than P. heimii. 

3. VALVE VIEW:  

a) The valve is asymmetrical with respect to the apical axis. 

b) The valve is lanceolate to fusiform in shape. 

c) The valve ends are rostrate (elongated) with pointed ends. 

d) One side of the valve margin is convex the other margin is more or less straight 

this is most evident in the middle part of the valve. 

e) A central larger interspace and nodule is present and can be seen in permanent 

mounts under oil immersion LM. 

f) The density of fibulae to interstriae is unequal (~ 1:2).  The interstriae are barely 

visible when viewed under a LM.  The fibulae can be seen under oil immersion 

LM. 

4. GIRDLE VIEW 

g) The girdle margins are convex. 

h) The girdle ends are sigmoid and obliquely truncated at the tips. 

i) The fibulae and interstriae are discernible in permanent mounts. 
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ELECTRON MICROSCOPY (EM) ACID CLEANED VALVES 

The fine structure of the valve face striae resembles P. australis and P. heimii.  Pseudo-

nitzschia subpacifica is also similar to P. seriata in the outline of the valve, but P. 

subpacifica is narrower, it has a central larger interspace and approximately twice as 

many interstriae as fibulae. 

 

5. The number of fibulae to interstriae is unequal, with more interstriae present then 

fibulae.  The fibulae are aligned with the valve face interstriae and often more 

irregularly with the striae or the interstriae of the proximal mantle. 

6. Two rows of minute circular poroids with hymenate velae are visible per stria.  The 

rows of poroids are also closely aligned to the interstriae leaving a space of non–

perforated silica between the two rows.  

7. The central larger interspace spans the length of three valve face striae. 

8. The valve mantle is one to two poroids high. 

9. The valvocopula exhibits rectangular striae with two rows of poroids ~ 8 to 10 in the 

pervalvar direction (mid region of the band).  There are an unknown number of 

perforated bands.  
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Pseudo-nitzschia heimii 
(Lightly silicified) 

 

This Pseudo-nitzschia species is very like P. subpacifica in overall structure including 

the striated bands.  Pseudo-nitzschia heimii is however more heavily silicified, has a 

longer apical axis and is narrower than P. subpacifica.  In water mounts the valve 

outline is similar to P. seriata since P. heimii is also asymmetrical. Pseudo-nitzschia 

heimii differs to P. seriatai in that it possess a central larger interspace and has a higher 

density of interstriae to fibulae.  These features can be resolved in acid cleaned 

specimens mounted in a medium of high refractive index.  Pseudo-nitzschia heimii can 

be distinguished from P. fraudulenta in LM by observing the valve symmetry and the 

less distinct but more densely spaced fibulae in P. fraudulenta.  Electron microscopy 

confirms species designation especially when the poroid structure is included in the 

identification process. 

 
LIGHT MICROSCOPY (LM) VEGETATIVE CELLS 

1. The girdle view of whole cells shows that the overlapping of cell ends can be as 

much as 1/6 to 1/4 of the total cell length. 

 

LIGHT MICROSCOPY (LM) ACID CLEANED VALVES 

2. Frustule is weakly silicified. 

3. VALVE VIEW:  

a) The valve is asymmetrical with respect to the apical axis. 

b) The valve shape is linear to lanceolate, larger valves are almost fusiform, the 

valve is comparatively narrow compared to P subpacifica. 

c) The valve ends are broadly rounded (more rounded than P. subpacifica) the 

smaller forms generally have broad rounded, obtuse ends, often with a 

constriction near the poles. 

d) One side of the valve margin is convex, the other margin more or less straight. 

e) The raphe and fibulae together can be situated on either margin. 
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f) A central larger interspace is present.  The central larger interspace and central 

nodule can be seen when viewed under oil immersion LM. 

g) The density of fibulae to interstriae is unequal, there is more than one stria to each 

fibula.  These features can be seen when a specimen is viewed oil immersion 

LM. 

h) The fibulae and central larger interspace are visible in permanent mounts of 

cleaned specimens (oil immersion LM). 

i) The interstriae although visible in cleaned specimens mounted in Naphrax (oil 

immersion LM) are not as distinct as the fibulae. 

4. GIRDLE VIEW 

j) The girdle shape is linear tapering towards the poles. 

k) The girdle apices are to some extent sigmoid with obliquely truncated tips. 

l) More heavily silicified specimens can be identified in the girdle view where the 

fibulae and interstriae are visible. 

 

ELECTRON MICROSCOPY (EM) ACID CLEANED VALVES 

5. The valve face striae bear 1–2 rows of closely spaced (transapically) hymenate 

poroids (round in shape) with a wide non–perforated layer of silica between the two 

rows. 

6. The central larger interspace is wide and spans 4 to 5 valve face striae. 

7. The valve mantle is 3 to 4 poroids high with two rows of poroids as seen in the striae 

structure of the valve face.  The striae of the proximal mantle are slightly displaced 

from those on the valve face. 

8. The valvocopula has rectangular striae with two rows of 3 to 4 hymenate poroids in 

the pervalvar direction.  There are an unknown number of girdle bands 
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Pseudo-nitzschia delicatissima 
(Lightly silicified) 

 
LIGHT MICROSCOPY (LM) VEGETATIVE CELLS 

1. The girdle view of whole cells shows that the overlapping of cell ends can be as 

much as 1/8 to 1/9 of the total cell length. 

 

LIGHT MICROSCOPY (LM) ACID CLEANED VALVES 

2. The frustule is weakly delicately silicified. 

3. VALVE VIEW:  

a) The valve is symmetrical with respect to the apical axis 

b) The valve length is short. 

c) The valve is narrow, linear to spindle in shape, wide in middle part of the valve in 

larger specimens and slightly rhomboid or sublinear in smaller valves.  

d) The valve is drawn out at the apices with valve ends that are slightly rounded and 

blunt. 

e) The valve margins are linear or sometimes curved. 

f) A central larger interspace is present. 

g) The fibulae can be resolved in watermounts.  

h) The fibulae and occasionally the central larger interspace can be seen under oil 

immersion LM in permanent mounts. 

i) The interstriae are not visible in LM. 

4. GIRDLE VIEW 

j) Linear and narrow in girdle view with slightly sigmoid ends. 

k) The girdle ends are cut-off (truncated). 

l) The band structure cannot be resolved with the LM. 

 

ELECTRON MICROSCOPY (EM) ACID CLEANED VALVES 
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5. The striae are perforated by two transapical rows of minute triangular to round 

poroids with hymenate vela.  There is a non–perforated area between the 2 rows of 

poroids. 

6. The density of fibulae to interstriae is not equal (fibulae:striae ~1:2). 

7. There are ~3 striae per central larger interspace. 

8. The valve ends do not differ in structure. 

9. The valve mantle is one poroid high. 

10. The striae of the valve mantle have one row of large poroids (which can sometimes 

be divided in two) with hymenate velae. 

11. The striae of the proximal mantle are aligned with the valve face striae or valve face 

interstriae. 

12. Three striated bands are found, sometimes wit a fourth narrow non–perforated band 

attached.  The valvocopula has one row of large rectangular poroids with hymenate 

velae.  Each poroid is about the same width as a valve face stria.  The second band 

has a silicified rib running along the its length separating the band into two halves.  

Each half consists of striae with 1 or 2 irregular poroids.  The bottom half of the 

band has smaller poroids then the upper half.  The third band is again divided into 

two halves by a silicified rib.  The upper part of the band consists of 1 to 2 irregular 

shaped poroids per striae.  The lower part of the band is unperforated for the most 

part.  In some of the specimens examined very small poroids (scattered) were 

evident along the lower part of the third band.  The fourth band is unperforated and 

narrow. 
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Pseudo-nitzschia pseudodelicatissima 

(Lightly silicified) 

 

This species is very similar to P. delicatissima when observed under a LM.  However, 

the centre part of the valve is straighter in P. pseudodelicatissima than in P. 

delicatissima and the cell ends differ. 

 

LIGHT MICROSCOPY (LM) VEGETATIVE CELLS 

The girdle view of whole cells shows that the overlapping of cell ends can be as much as 

1/9 to 1/8 of the total cell length . 

 

LIGHT MICROSCOPY (LM) ACID CLEANED VALVES 

The frustule is weakly silicified . 

1. VALVE VIEW:  

a) The valve is symmetrical with respect to the apical axis. 

b) The valve is narrow, straight and needle in shape. 

c) The valve tapers towards pointed ends. 

d) The valve margins are linear to almost linear, more so then the margins of P. 

delicatissima. 

e) A central larger interspace and nodule is present, these features can be seen 

when a P. pseudo-delicatissima specimen is mounted in a medium of high 

refractive index.. 

f) The fibulae can be seen in water and permanent mounts. 

g) The interstriae can sometimes be observed in heavily silicified valves mounted 

in a medium of high refractive index. 

2. GIRDLE VIEW 

h) The girdle ends are pointed. 

i) The girdle is linear to almost linear 

 

ELECTRON MICROSCOPY (EM) ACID CLEANED VALVES 
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3. The striae are perforated by one row of large circular to squarish poroids, partly 

occluded by a membrane with hymenated sectors.  The poroids are more developed 

near the valve apices. 

4. The valve ends are similar in structure. 

5. The density of fibulae to striae is unequal (fibulae:striae, ~1:2) 

6. The valve mantle is approximately one poroid high with one apical row of poroids 

that are squarish to rectangular in shape.  The velae of the mantle poroids are similar 

in structure to the poroids of the valve striae. 

7. The striae of the proximal mantle are generally aligned with the valve face striae. 

8. The distance between the two fibulae at the centre of the valve (the central 

interspace) is equivalent to approximately 4 striae. 

9. The cingulum consists of at least three striated bands and a non–perforated band.  

The valvocopula is wider than the other bands.   The striae of the first three bands 

have 2 to 3 rows of 4 to 6 poroids in the pervalvar direction.  The poroids are similar 

in shape and structure as the sectors of the poroids on the valve face striae.  
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Appendix III 
 

Micrographs of several Pseudo-nitzschia species observed in samples collected from 

Irish waters.  The specimens were examined under light, scanning electron and 

transmission electron microscopes.  Permanent mounts refer to a specimen mounted in 

Naphrax medium. 
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Pseudo-nitzschia pungens 
(Figures 1 – 55) 
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Figs. 1–18 

 

LIGHT MICROGRAPHS (LM). 

 

Figs.1–17 Light micrographs (LM) of a clonal culture, strain WW3 isolated  from 

Waterford Harbour, south coast of Ireland, station: W309 (52˚ 4.09'N, 07˚ 

6.05'W), October 8th 1997. 

 

Figs. 1–4 LM, OIL IMMERSION, WATER MOUNTS. 

Fig. 1 Girdle view of vegetative cells in chain formation, overlap ~1/4 of total cell 

length, 90 µm long. 

Fig. 2 Valve view of dead cells in chain formation, 58 µm long, 3 µm wide. 

Fig. 3 Valve view of vegetative cells in chain formation, 94 µm long, 4 µm wide. 

Fig. 4. Valve view of an acid cleaned valve, 115 µm long, 3.5 µm wide. 

 

Figs. 5–16 LM, OIL IMMERSION, NAPHRAX MOUNTS. 

Figs. 5–7 ACID CLEANED WHOLE VALVES IN PERMANENT MOUNTS. 

Fig. 5 106 µm long, 3.55 µm wide. 

Fig. 6 112 µm long, 3 µm wide. 

Fig. 7 52 µm long, 2.4 µm wide. 
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Figs. 1–18 LIGHT MICROGRAPHS (LM). 

Figs.1–17 

Cont'd. 

Light micrographs (LM) of a clonal culture, strain WW3 isolated from 

Waterford Harbour, south coast of Ireland, station: W309 (52˚ 4.09'N, 07˚ 

6.05'W), October 8th 1997. 

 

Figs. 8–10 SHOWS DIFFERENT PARTS OF THE SAME VALVE (MOUNTED IN NAPHRAX).  

Fig. 8 Valve end with16 interstriae and 16 fibulae in 10 µm. 

Fig. 9 Other end with15 interstriae and 15 fibulae in 10 µm. 

Fig. 10 Middle part of the valve showing14 interstriae and 14 fibulae in 10 µm. 

 

Figs. 11–12 SHOWS DIFFERENT PARTS OF THE SAME VALVE (MOUNTED IN NAPHRAX). 

Fig. 11 Valve end with15 interstriae and 15 fibulae in 10 µm. 

Fig. 12 Middle part of the valve showing15 interstriae and 15 fibulae in 10 µm. 

 

Figs. 13–14 SHOWS DIFFERENT PARTS OF THE SAME VALVE (MOUNTED IN NAPHRAX). 

Fig. 13 Middle part of the valve showing13–14 interstriae and 13–14 fibulae in 10 

µm. 

Fig. 14 Valve end with 15 interstriae and 15 fibulae in 10 µm. 
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Figs. 1–18 

Cont'd. 

 

LIGHT MICROGRAPHS (LM). 

 

Figs.1–17 

Cont'd. 

Light micrographs (LM) of a clonal culture, strain WW3 isolated from 

Waterford Harbour, south coast of Ireland, station: W309 (52˚ 4.09'N, 07˚ 

6.05'W), October 8th 1997. 

 

Figs. 15–17 ACID CLEANED WHOLE VALVES. 

Fig. 15 Valve view of an acid cleaned valve, 86 µm long, 3.5 µm wide. 

Fig. 16 Valve view of an acid cleaned valve, 109 µm long, 3.7 µm wide. 

Fig. 17 Valve view of an acid cleaned valve, 73 µm long, 2.2 µm wide (phase 

contrast LM, Naphrax mount). 

 

Fig. 18 VALVE VIEW OF AN ACID CLEANED VALVE. 

Southwest Ireland (51˚10'N; 09˚ 55'W) June 1995, 132 µm long, 4.5 µm 

wide (LM, oil immersion, Naphrax mount). 

 

Figs. 19–40 

 

SCANNING ELECTRON MICROGRAPHS (SEM) 

Fig. 19 Specimens from a Danish culture, kindly provided by Øjvind Moestrup 

(University of Copenhagen). 

 

Fig. 20 Specimen taken from the south coast of Ireland, station: 1324 (51˚ 11.5'N; 

09˚ 24.1'W), August 18th 1993.  3 µm wide with 3–4 poroids in 1 µm. 
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Figs. 19–40 

Cont'd. 

 

SCANNING ELECTRON MICROGRAPHS (SEM). 

 

Figs. 21–23 Specimen from the southwest coast of Ireland, station: 1801 (51˚ 27'N; 10˚ 

20'W), July 20th 1996.  3.3 µm wide, 12 striae, 12 interstriae, 12 fibulae in 10 

µm, 3 poroids in 1 µm. 

Fig. 21 Middle part of the valve.  

Fig. 22 Valve end. 

Fig. 23 Other end. 

 

Fig. 24 Specimen from the southwest coast of Ireland, station: 1801 (51˚ 27'N; 10˚ 

20'W), July 20th 1996.  Middle part of a valve with girdle bands.  

 

Fig. 25 Specimen from the southwest coast of Ireland, station: 1902 (52˚ 55'N; 10˚ 

25'W), September 3rd 1996, middle part of a valve, 12 interstriae in 10 µm, 3 

poroids in 1 µm. 

 

Figs. 26–30 Scanning electron micrographs (SEM) of a clonal culture, strain WW3 

isolated  from Waterford Harbour, south coast of Ireland, station: W309 (52˚ 

4.09'N, 07˚ 6.05'W), October 8th 1997. 

 

Fig. 26 Valve end.  4 poroids in 1 µm. 

 

Figs. 27–28 Valve ends from the same valve, 3–4 poroids in 1 µm. 
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Figs. 19–40 

Cont'd. 

 

SCANNING ELECTRON MICROGRAPHS (SEM). 

 

Figs. 26–30 

Cont'd. 

Scanning electron micrographs (SEM) of a clonal culture, strain WW3 

isolated  from Waterford Harbour, south coast of Ireland, station: W309 (52˚ 

4.09'N, 07˚ 6.05'W), October 8th 1997. 

 

Fig. 29–30 Valve ends from the same valve, 3 poroids in 1 µm. 

 

Figs. 31–32 Specimen from a Danish culture, kindly provided by Øjvind Moestrup 

(University of Copenhagen). 

Fig. 31  Middle part of a valve, 16 striae, 16 interstriae and 15 fibulae in 10 µm, 4 

poroids in 1 µm. 

Fig. 32 Middle part of a valve, 12 striae, 12 interstriae and 11 fibulae in 10 µm, 4 

poroids in 1 µm. 

 

Figs. 33–34 Scanning electron micrographs (SEM) of a clonal culture, strain WW3 

isolated  from Waterford Harbour, south coast of Ireland, station: W309 (52˚ 

4.09'N, 07˚ 6.05'W), October 8th 1997. 

Fig. 33 Whole valve, 56.4 µm long, 2.7 µm wide. 

Fig. 34 Valve end. 
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Figs. 19–40 

Cont'd. 

 

SCANNING ELECTRON MICROGRAPHS (SEM). 

 

Figs. 35–38 Specimens from a Danish clonal culture, kindly provided by Øjvind 

Moestrup (University of Copenhagen). 

Fig. 35 Middle part of a valve, 12 striae, 12 interstriae and 11 fibulae in 10 µm, 3–4 

poroids in 1 µm. 

Fig. 36 Valve end, 4 poroids in 1 µm. 

Fig. 37 Middle part of a valve, 14 striae and 14 interstriae in 10 µm, 4 poroids in 1 

µm. 

Fig. 38 Valve end, 4 poroids in 1 µm. 

 

Fig. 39–40 Specimen from the south coast of Ireland, station: 1324 (51˚ 11.5'N; 09˚ 

24.1'W), August 18th 1993. 

Fig. 39 Whole valve, 115 µm long, 3.4 µm wide, 16 interstriae and 16 fibulae in 10 

µm. 

Fig. 40 Middle part of a valve, 3.4 µm wide, 4 poroids in 1 µm. 
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Fig. 41–55 TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

Fig. 41–43 Transmission electron micrographs (TEM) of a clonal culture, strain S1 

isolated from Salt lake (53˚ 28.4'N, 10˚ 01'W), west coast of Ireland, August 

7th 1997. 

Fig. 41 Whole valve, 58.8 µm long, 3.1 µm wide, 12 striae, 13 interstriae and 13 

fibulae in 10 µm, 3–4 poroids in 1 µm. 

Fig. 42 Whole valve, 58 µm long, 3 µm wide, 11 striae, 12 interstriae and 12 fibulae 

in 10 µm, 3–4 poroids in 1 µm. 

Fig. 43 Whole valve, 57.8 µm long, 3.3 µm wide, 12 striae, 12 interstriae and 12 

fibulae in 10 µm, 3–4 poroids in 1 µm. 

 

Fig. 44 Specimen from the southwest coast of Ireland, station: 1806 (51˚ 37.1'N, 09˚ 

46.9'W), July 21st 1996.  Part of the valve face, 4 poroids in 1 µm. 

 

Fig. 45 Transmission electron micrograph (TEM) of a clonal culture, strain S1 

isolated from Salt lake (53˚ 28.4'N, 10˚ 01'W), the west coast of Ireland, 

August 7th 1997.  2.9 µm wide, 12 striae, 13 interstriae and 13 fibulae in 10 

µm, 3–4 poroids in 1 µm. 

 

Fig. 46 Specimen from the southwest coast of Ireland, station: 2206 (51˚ 30.03'N, 

08˚ 25.17'W), October 11th 1997.  Middle part of a valve, 3–4 poroids in 1 

µm. 

 

Fig. 47 Specimen from the southwest coast of Ireland, station: 1801 (51˚ 27.0'N, 10˚ 

20.0'W), July 20th 1996, part of a valve, 2 poroids in 1 µm. 
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Fig. 41–55 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM). 

 

Figs. 48–49 Transmission electron micrographs (TEM) of a clonal culture, strain S1 

isolated from Salt lake (53˚ 28.4'N, 10˚ 01'W), west coast of Ireland, August 

7th 1997.   

Fig. 48 Valve end. 

Fig. 49 Other end, 2 poroids in 1 µm. 

 

Fig. 50 Specimen from the southwest coast of Ireland, station: 1314 (51˚ 20.1'N, 10˚ 

05.0'W), August 17th 1993.  Valve end, 4 poroids in 1 µm. 

 

Fig. 51–52 Specimen from the southwest coast of Ireland, station: 1802 (51˚ 27.1'N, 10˚ 

35.0'W), July 20th 1996.  Part of a valve and valve end, 13 striae, 15 

interstriae and 13 fibulae in 10 µm, 3–4 poroids in 1 µm. 

 

Fig. 53–55 Specimen from the southwest coast of Ireland, station: 1806 (51˚ 37.1'N, 09˚ 

46.9'W), July 21st 1996. 

Fig. 53 Part of a girdle band showing the stria structure of the simple hymenate type.

Fig. 54 Close-up of a poroid with hymenate stria on a girdle band. 

Fig. 55 Close-up of a hymenate poroid of the valve face stria. 
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Pseudo-nitzschia australis 

(Figures 56 – 154) 

 
 



Pseudo-nitzchia australis 

251 

Figs. 56–86 

 

LIGHT MICROGRAPHS (LM). 

 

Figs. 56–82 Light micrographs (LM) of a clonal culture, strain WW4 isolated  from 

Waterford Harbour, south coast of Ireland, station: W309 (52˚ 4.09'N, 07˚ 

6.05'W), October 8th 1997. 

 

Fig. 56 – 74 LIGHT MICROGRAPHS, WATER MOUNTS. 

 

Fig. 56 – 73 LIGHT MICROGRAPHS OF VEGETATIVE CELLS IN WATER MOUNTS. 

 

Fig. 56 Girdle view of Vegetative cells in chain formation, overlap ~1/4 of total cell 

length, 60 µm long, 5 µm wide (oil immersion). 

 

Fig. 57 Vegetative cell in valve view, 48 µm long, ~5 µm wide (oil immersion). 

 

Fig. 58 Vegetative  cell in valve, 55 µm long, ~6 µm wide (oil immersion). 

 

Fig. 59 Vegetative cell in girdle view, 45 µm long, 4 µm wide. (oil immersion). 

 

Fig. 60 Two Vegetative cells in valve view, 69 µm long, 5.95 µm wide (phase 

contrast). 

 

Fig. 61 Two Vegetative cells in valve view, 77 µm long, ~7.8 µm wide (oil 

immersion). 
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Figs. 56–86 

Cont'd. 

 

LIGHT MICROGRAPHS (LM). 

 

Figs. 56–82 

Cont'd. 

Light micrographs (LM) of a clonal culture, strain WW4 isolated  from 

Waterford Harbour, south coast of Ireland, station: W309 (52˚ 4.09'N, 07˚ 

6.05'W), October 8th 1997. 

 

Fig. 56 – 74 

Cont'd. 

 

LIGHT MICROGRAPHS, WATER MOUNTS. 

 

Fig. 56 – 73 

Cont'd. 

 

LIGHT MICROGRAPHS OF VEGETATIVE CELLS IN WATER MOUNTS. 

 

Fig. 62–67 ABERRANT FORMS OF Pseudo-nitzschia australis.  
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Figs. 56–86 

Cont'd. 

 

LIGHT MICROGRAPHS (LM). 

 

Figs. 56–82 

Cont'd. 

Light micrographs (LM) of a clonal culture, strain WW4 isolated  from 

Waterford Harbour, south coast of Ireland, station: W309 (52˚ 4.09'N, 07˚ 

6.05'W), October 8th 1997. 

 

Fig. 56 – 74 

Cont'd. 

 

LIGHT MICROGRAPHS, WATER MOUNTS. 

 

Fig. 56 – 73 

Cont'd. 

 

LIGHT MICROGRAPHS OF VEGETATIVE CELLS IN WATER MOUNTS. 

 

Fig. 67 ABERRANT FORM OF A VEGETATIVE P. australis cell.  

 

Figs. 68–73 In old or slightly damaged diatoms, the cytoplasm frequently leaves the cell to 

form a spherical structure (Stefanie Kuehn pers. comm.). 
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Figs. 56–86 

Cont'd. 

 

LIGHT MICROGRAPHS (LM). 

 

Figs. 56–82 

Cont'd. 

Light micrographs (LM) of a clonal culture, strain WW4 isolated  from 

Waterford Harbour, south coast of Ireland, station: W309 (52˚ 4.09'N, 07˚ 

6.05'W), October 8th 1997. 

 

Fig. 56 – 74 

Cont'd. 

 

LIGHT MICROGRAPHS, WATER MOUNTS. 

 

Figs. 74–86 ACID CLEANED VALVES. 

 

Fig. 74 Water mount, 131 µm long, ~7 µm wide. 

 

Figs. 75–86 NAPHRAX MOUNTED ACID CLEANED SPECIMENS. 

 

Fig. 75 79 µm long, 5.4 µm wide. 

 

Fig. 76 74 µm long, 4.5 µm wide. 

 

Figs. 77–79 PARTS OF THE SAME VALVE 

Fig. 77 Valve end. 

Fig. 78 Centre of valve, 5.35 µm wide, 19 striae, 19 interstriae and 19 fibulae in 10 µm. 

Fig. 79 Other end. 
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Figs. 56–86 

Cont'd. 

 

LIGHT MICROGRAPHS (LM). 

 

Figs. 56–82 

Cont'd. 

Light micrographs (LM) of a clonal culture, strain WW4 isolated  from 

Waterford Harbour, south coast of Ireland, station: W309 (52˚ 4.09'N, 07˚ 

6.05'W), October 8th 1997. 

 

Figs. 75–86 NAPHRAX MOUNTED ACID CLEANED SPECIMENS. 

 

Figs. 80–82 PARTS OF THE SAME VALVE 

Fig. 80 Valve ends (two separate valves).  19 striae, 19 interstriae and 19 fibulae in 10

µm. 

Fig. 81 Centre region of valve, 4.7 µm wide, 18 striae, 18 interstriae and 18 fibulae in

10 µm. 

Fig. 82 Other end 19 striae, 19 interstriae and 19 fibulae in 10 µm. 

 

Fig. 83 Specimen from the south coast of Ireland, station: 2204 (51˚ 59.85'N, 07˚

10.88'W) October 7th 1997, part of a girdle band. 

 

Fig. 84 Light micrographs (LM) of a clonal culture, strain WW4 isolated  from 

Waterford Harbour, south coast of Ireland, station: W309 (52˚ 4.09'N, 07˚ 

6.05'W), October 8th 1997.  Part of an aberrant valve. 
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Figs. 56–86 

Cont'd. 

 

LIGHT MICROGRAPHS (LM). 

 

Figs. 75–86 NAPHRAX MOUNTED ACID CLEANED SPECIMENS. 

 

Figs. 85–86 Light micrographs (LM) of a clonal culture, strain WW4 isolated from

Waterford Harbour, south coast of Ireland, station: W309 (52˚ 4.09'N, 07˚

6.05'W), October 8th 1997.  Parts of aberrant valves. 
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Figs. 87–105 SCANNING ELECTRON MICROGRAPHS (SEM). 

 

Figs. 87–89 A specimen from the southwest coast of Ireland, station: 1801 (51˚ 27.0'N, 10˚

20.0'W) July 20th 1996. 

Fig. 87 Whole valve , 79.4 µm long, ~7.4 µm wide.  

Fig. 88 Middle part of valve, 18 striae, 18 interstriae and 18 fibulae in 10 µm. 

Fig. 89 Valve end, 16 striae, 17 interstriae and16 fibulae in 10 µm. 

 

Figs. 90–92 A specimen from the southwest coast of Ireland, station: 1801 (51˚ 27.0'N, 10˚

20.0'W) July 20th 1996. 

Fig. 90 Whole valve , 76.9 µm long, 6.9 µm wide. 

Fig. 91 Middle part of valve, 15 striae, 16 interstriae and 15 fibulae in 10 µm. 

Fig. 92 Valve end, 14 striae, 16 interstriae and 14 fibulae in 10 µm. 

 

Figs, 93–94 A specimen from the southwest of Ireland, station:1902 (52˚ 55'N; 10˚ 25'W),

September 3rd 1996. 

Fig. 93 Some girdle bands and the middle part of a valve , 17 striae, 17 interstriae and

17 fibulae in 10 µm. 

Fig. 94 Close-up of girdle bands and valve face, 5 poroids in 1 µm. 
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Figs. 87–105 SCANNING ELECTRON MICROGRAPHS (SEM). 

 

Fig. 95–102 Scanning electron micrographs (SEM) of a clonal culture, strain WW4 

isolated  from Waterford Harbour, south coast of Ireland, station: W309 (52˚ 

4.09'N, 07˚ 6.05'W), October 8th 1997. 

 
Fig. 95 Middle pat of a valve, 5.4 µm wide, 17 striae, 17 interstriae and 16 fibulae in

10 µm, valve end with branched interstriae at the pole. 

 
Fig. 96 Middle part of a valve, 17 striae and 17 interstriae in 10 µm, 5 poroids in 1

µm. 

 
Fig. 97 Valve end, 6 poroids in 1 µm. 

 
Fig. 98 Whole valve, 48.7 µm long, 5.2 µm wide, 19 striae, 19 interstriae and 19

fibulae in 10 µm. 

 
Figs. 99–101 PARTS OF THE SAME VALVE 

Fig. 99 Whole valves, upper valve: 48.9 µm long, 6.1 µm wide, 17 striae, 17

interstriae and 17 fibulae in 10 µm.  Lower valve: 50.6 µm long, 6.1 µm wide,

17 striae, 17 interstriae and 17 fibulae in 10 µm. 

Fig. 100 Upper valve end, 17 striae, 17 interstriae and 17 fibulae in 10 µm, 5 poroids in

1 µm. 

Fig. 101 Upper valve other end, 17 striae, 17 interstriae and 17 fibulae in 10 µm, 5

poroids in 1 µm. 

Fig. 102 Part of an aberrant valve. 
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Figs. 87–105 SCANNING ELECTRON MICROGRAPHS (SEM). 

 

Figs 103–105 Specimen from the southwest coast of Ireland, station: 1902 (52˚ 25'N, 10˚

25'W) September 3rd 1997. 

Fig. 103 Polar end of a valve, 5 poroids in 1 µm 

Fig. 104 Middle part of a valve,  18 striae, 18 interstriae and 18 fibulae in 10 µm, 6

poroids in 1 µm 

Fig. 105 Whole valve, 74.3 µm long, 5.7 µm wide, 18 striae, 18 interstriae and 18

fibulae in 10 µm 

 

Figs. 106–154 TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

  

Figs. 106–107 Transmission electron micrographs (SEM) of a clonal culture, strain WW4 

isolated  from Waterford Harbour, south coast of Ireland, station: W309 (52˚ 

4.09'N, 07˚ 6.05'W), October 8th 1997. 

Fig. 106. Transect of two cells. 

Fig. 107 Transection of a vegetative cell. 
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Figs. 106–154 TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

  

Figs. 108–111 Specimen from the southwest coast of Ireland, station: 1902 (52˚ 25'N, 10˚

25'W) September 3rd 1997. 

Fig. 108  Part of the valve, 19 striae, 19 interstriae and 19 fibulae in 10 µm, 5 poroids

in 1 µm. 

Fig. 109 Valve end, 19 striae, 19 interstriae and 16 fibulae in 10 µm. 

Fig. 110 Middle part of the valve, 18 striae, 19 interstriae and 19 fibulae in 10 µm. 

Fig. 111 Other end of the valve, 19 striae, 19 interstriae and 17 fibulae in 10 µm. 

  

Figs. 112–114 Specimen from the southwest coast of Ireland, station: 1806 (51˚ 37.1'N, 09˚

46.9'W), July 21st 1996. 

Fig. 112 5.7 µm wide, 16–18 striae,16–18 interstriae and 16–18 fibulae in 10 µm, 5–6

poroids in 1 µm. 

Fig. 113 Valve end. 

Fig. 114 Other end. 
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Figs. 106–154 TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

  

Figs. 115–118 Specimen from the southwest coast of Ireland, station: 1902 (52˚ 25'N, 10˚

25'W) September 3rd 1997. 

Fig. 115 Whole valve, 60 µm long, 6 µm wide. 

Fig. 116 Valve end. 

Fig. 117 Other end. 

Fig. 118 Middle part of the valve, 18 striae, 19 interstriae and 17 fibulae in 10 µm, 6

poroids in 1 µm. 

 

Fig. 119 Specimen from the southwest coast of Ireland, station: 1902 (52˚ 25'N, 10˚

25'W) September 3rd 1997. 

 

Fig. 120 Specimen from the southwest coast of Ireland, station: 1902 (52˚ 25'N, 10˚

25'W) September 3rd 1997. 
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Figs. 106–154 TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

  

Figs. 121–124 Specimen from the southwest coast of Ireland, station: 1908 (51˚ 32'N, 10˚

02'W) September 4th 1997. 

Fig. 121 Whole valve,  62.6 µm long, 5.5 µm wide, 17 striae, 17 interstriae and 17

fibulae in 10 µm, 5–6 poroids in 1 µm. 

Fig. 122 Valve end, 5–6 poroids in 1 µm. 

Fig. 123 Other end, 5 poroids in 1 µm. 

Fig. 124 Close up of part of the proximal mantle. 

 

Figs. 125–127 Specimen from the southwest coast of Ireland, station: 1908 (51˚ 32'N, 10˚

02'W) September 4th 1997. 

Fig. 125 Valve end, 6 poroids in 1 µm. 

Fig. 126 Middle part of the valve, 17 striae, 17 interstriae and 17 fibulae in 10 µm. 

Fig. 127 Other end. 
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Figs. 106–154 TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

  

Figs. 128–129 Specimen from the southwest coast of Ireland, station: 1801 (51˚ 27'N; 10˚

20'W), July 20th 1996. 

Fig. 128 Valve end, 5 poroids in 1µm 

Fig. 129 Other end, 6 poroids in 1µm 

 

Figs. 130–131 Specimen from the south coast of Ireland, Waterford Harbour, station: W309

(52˚ 4.09'N, 07˚ 6.05'W) October 8th 1997, clonal culture, strain WW4 girdle

band. 

Fig. 130 Girdle band, 41.3 µm long (from open end to the closed end). 

Fig. 131 Close up of the stria structure on the girdle band. 

 

Figs. 132–134 Specimen from the southwest coast of Ireland, station: 1809 (51˚ 26'N; 09˚

24'W), July 21st 1996. 

Fig. 132 Valve end, 5–6 poroids in 1µm. 

Fig. 133 Middle part of the valve, 19 striae, 19 interstriae and 19 fibulae in 10 µm, 6–

7 poroids in 1 µm. 

Fig. 134 Other end, 6 poroids in 1 µm. 

 

Fig. 135 Specimen from the southwest coast of Ireland, station: 1806 (51˚ 37.1'N; 09˚

46.9'W), July 21st 1996, whole valve, 70 µm long, 5.5 µm wide, 17 striae, 17

interstriae and 17 fibulae in 10 µm. 
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Figs. 106–154 TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

Figs. 136–137 Specimen from the south coast of Ireland, station: 1810 (51˚ 07.2'N; 09˚

24.0'W), July 22nd 1996. 

Fig. 136 Part of the valve face, 6 poroids in 1 µm. 

Fig. 137 Valve end, 6 poroids in 1 µm. 

 

Figs. 138–140 Specimen from the southwest coast of Ireland, station: 2206 (51˚ 30.03.2'N;

08˚ 25.17'W), October 11th 1997. 

Fig. 138–139 Parts of a girdle band. 

Fig. 140 Part of the valve face, 6 poroids in 1 µm. 

 

Fig. 141 Specimen from the southwest of Ireland, station: 1902 (52˚ 25'N, 10˚ 25'W)

September 3rd 1997, part of a girdle band. 
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Figs. 106–154 TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

Figs. 142–154 Transmission electron micrographs (TEM) of a clonal culture, strain WW4 

isolated  from Waterford Harbour, south coast of Ireland, station: W309 (52˚ 

4.09'N, 07˚ 6.05'W), October 8th 1997. 

 

Figs. 142–145 DIFFERENT PARTS OF THE SAME VALVE 

Fig. 142 Whole valve, 47.7 µm long, 5 µm wide, 17 striae, 18 interstriae and 18 fibulae

in 10 µm. 

Fig. 143 Vale end, 6 poroids in 1 µm. 

Fig. 144 Middle part of the valve, 6–7 poroids in 1 µm. 

Fig. 145 Other end, 6–7 poroids in 1 µm. 

 

Fig. 146 Part of a valve end, 5 poroids in 1 µm.. 

 

Figs. 147–150 DIFFERENT PARTS OF THE SAME VALVE. 

Fig. 147 Most of the valve, ~ 50 µm long, 5.5 µm wide, 17 striae, 18 interstriae and 18

fibulae in 10 µm. 

Fig. 148 Valve end, 6 poroids in 1 µm. 
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Figs. 106–154 TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

Figs. 142–154 

Cont'd. 

Transmission electron micrographs (TEM) of a clonal culture, strain WW4 

isolated  from Waterford Harbour, south coast of Ireland, station: W309 (52˚ 

4.09'N, 07˚ 6.05'W), October 8th 1997. 

 

Figs. 147–150 

Cont'd. 

DIFFERENT PARTS OF THE SAME VALVE. 

 

Fig. 149 Part of the valve face, 5 poroids in 1 µm. 

Fig. 150 Other end, 6 poroids in 1 µm. 

 

Figs. 151–154 DIFFERENT PARTS OF THE SAME VALVE. 

Fig. 151 Most of the valve, ~47 µm long, 5.9 µm wide, 16 striae, 17 interstriae and 17

fibulae in 10 µm. 

Fig. 152 Valve end, 4–5 poroids in 1 µm. 

Fig. 153 Other end, 5 poroids in 1 µm. 

Fig. 154 Part of the valve face, 4–5 poroids in 1 µm. 
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Pseudo-nitzschia fraudulenta 
(Figures 155 – 227) 
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Figs. 155–168 LIGHT MICROGRAPHS (LM). 

  

Figs. 155–157 West coast of Ireland, off Eris Head, st 2011 (54˚ 29.0'N 10˚ 39.9'W) May 

3rd 1997, light micrographs (LM) of clonal culture, strain 2011 

Fig. 155 114 µm long, 5.2 µm wide (OIL IMMERSION) 

Figs. 156–157 In old or slightly damaged diatoms frequently the cytoplasma leaves the cell 

and forms a sperical structure. Dr. Stefanie Kuehn, University of Bremen 

(pers. commun.)  

Fig. 156 105 µm long, 6.9 µm wide (OIL IMMERSION) 

Fig. 157 Close up of the sperical structure (OIL IMMERSION, PHASE CONTRAST) 

 

Fig. 158 West coast of Ireland, St. Hawk (53˚ 289.1'N 10˚ 04.4'W) August 7th, 1997, 

light micrograph (LM) of a clonal culture, strain H2, 54 µm long, 5.6 µm 

wide (OIL IMMERSION) 

 

Figs. 159–164 West coast of Ireland, off Eris Head, st 2011 (54˚ 29.0'N 10˚ 39.9'W) May 

3rd 1997, light micrographs (LM) of clonal culture, strain 2011 

Fig. 159 137 µm long (OIL IMMERSION) 

Fig. 160 134 µm long, 6 µm wide (OIL IMMERSION) 
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Figs. 155–168 

Cont'd. 

 

LIGHT MICROGRAPHS (LM). 

Figs. 159–164 

Cont'd. 

West coast of Ireland, off Eris Head, st 2011 (54˚ 29.0'N 10˚ 39.9'W) May 

3rd 1997, light micrographs (LM) of clonal culture, strain 2011 

Fig. 161 142 µm long, ~7 µm wide (OIL IMMERSION, NAPHRAX MOUNT) 

Fig. 162 60.6 µm long, 4.2 µm wide (OIL IMMERSION, WATER MOUNT) 

Fig. 163 140 µm long, 6 µm wide (OIL IMMERSION, NAPHRAX MOUNT) 

Fig. 164 140 µm long, 6.5 µm wide (OIL IMMERSION, NAPHRAX MOUNT) 

 

Fig. 165 South coast of Ireland, St. 2204 (51˚ 59.85'N, 07˚ 10.88' W) October 7th 

1997, 110 µm long, ~8 µm wide (OIL IMMERSION, NAPHRAX MOUNT) 

 

Figs. 166–168 West coast of Ireland, off Eris Head, st 2011 (54˚ 29.0'N 10˚ 39.9'W) May 

3rd 1997, light micrographs (LM) of clonal culture, strain 2011 (OIL 

IMMERSION, NAPHRAX MOUNTS) 

Fig. 166 Middle part of the valve, ~4 µm wide 

Fig. 167 Valve end 

Fig. 168 Other end 
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Figs. 169–210 SCANNING ELECTRON MICROGRAPHS (SEM) OF ACID CLEANED SPECIMENS 

 

Figs. 169–172 West coast of Ireland, off Eris Head, st 2011 (54˚ 29.0'N 10˚ 39.9'W) May 3rd 

1997, clonal culture, strain 2011 

Fig. 169 Whole valve, 61.5 µm long, ~4 µm wide 

Fig. 170 Middle part of the valve, 22 striae, 23 interstriae and 22 fibulae in 10 µm, 5 

poroids in 1 µm 

Fig. 171 Valve end  

Fig. 172 Other end 
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Figs. 169-210 

Cont'd. 

SCANNING ELECTRON MICROGRAPHS (SEM) OF ACID CLEANED SPECIMENS 

 

 
Figs. 173–177 South coast of Ireland, St. 1314 (51˚ 20.1'N; 10˚ 05.0'W), August 17th 1993 

Fig. 173 Two valves, upper valve: 104 µm long, 4.9 µm wide, lower valve: 91.8 µm 

long, 4.9 µm wide 

Figs. 174–177 Lower valve (positioned diagonally from the bottom left hand corner to the 

upper right hand corner of the micrograph) 

Fig. 174 Valve end, 6 poroids in 1 µm 

Fig. 175 Other end 

Fig. 176 Middle part of the valve, 25 striae in 10 µm 

Fig. 177 Close-up of the valve face, 6 poroids in 1 µm 

 

Figs. 178–181 South coast of Ireland, St. 1324 (51˚ 11.5'N; 09˚ 24.1'W), August 18th 1993 

Fig. 178 Whole valve, 90.7 µm long, 4.4 µm wide 
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Figs. 169-210 

Cont'd. 

SCANNING ELECTRON MICROGRAPHS (SEM) OF ACID CLEANED SPECIMENS 

 

 
Figs. 178–181 

Cont'd. 

South coast of Ireland, St. 1324 (51˚ 11.5'N; 09˚ 24.1'W), August 18th 1993 

Fig. 179 Valve end, 5 poroids in 1 µm 

Fig. 180 Other end, 5 poroids in 1 µm 

Fig. 181 Middle part of the valve, ~25 striae in 10 µm 

 

Figs 182–186 West coast of Ireland, off Eris Head, st 2011 (54˚ 29.0'N 10˚ 39.9'W) May 3rd 

1997 

Fig. 182 Whole valve, 89.7 µm long, 4.5 µm wide 

Fig. 183 Close up of the middle part of the valve , 4.5 µm wide, 5 poroids in 1 µm 

Fig. 184 Middle part of the valve, ~ 26 striae, ~ 26 interstriae and ~ 26 fibulae in 10 µm
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Figs. 169-210 

Cont'd. 

SCANNING ELECTRON MICROGRAPHS (SEM) OF ACID CLEANED SPECIMENS 

 

 
Figs 182–186 

Cont'd. 

West coast of Ireland, off Eris Head, st 2011 (54˚ 29.0'N 10˚ 39.9'W) May 3rd 

1997  

Fig. 185 Valve end 

Fig. 186 Other end 

 

Figs. 187–189 West coast of Ireland, off Eris Head, st 2011 (54˚ 29.0'N 10˚ 39.9'W) May 3rd 

1997,  

Fig. 187 Whole valve, 91.3 µm long, ~4.5 µm wide 

Fig. 188 Valve end 

Fig. 189 Middle part of the valve, 4.5µm wide, ~ 26 striae, ~ 26 interstriae and ~ 26 

fibulae in 10 µm, 5 poroids in 1 µm 

 

Fig. 190 South coast of Ireland, St. 1812 (51˚ 35'N; 8˚ 28.9'W), July 22nd 1996, close-up 

of a valve face, 6–7 poroids in 1 µm 
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Figs. 169-210 

Cont'd. 

SCANNING ELECTRON MICROGRAPHS (SEM) OF ACID CLEANED SPECIMENS 

 

 
Fig. 191 South coast of Ireland, St. 1324 (51˚ 11.5'N; 09˚ 24.1'W), August 18th 1993, 

polar end of a valve,  5 poroids in 1 µm 

 
Figs. 192–196 South coast of Ireland, St. 1324 (51˚ 11.5'N; 09˚ 24.1'W), August 18th 1993 

Fig. 192 Whole valve, 76.8 µm long, ~5 µm wide 

Fig. 193 Valve end, 5–6 poroids in 1 µm 

Fig. 194 Middle part of the valve, 5.1µm wide, ~26striae and ~26 interstriae in 10 µm, 

5–6 poroids in 1 µm 

Fig. 195 Other end, 6 poroids in 1 µm 

Fig. 196 Close-up of the valve face, 6 poroids in 1 µm 
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Figs. 169-210 

Cont'd. 

SCANNING ELECTRON MICROGRAPHS (SEM) OF ACID CLEANED SPECIMENS 

 

 
Fig. 197–198 South coast of Ireland, St. 1324 (51˚ 11.5'N; 09˚ 24.1'W), August 18th 1993 

Fig. 197 Whole valve, 88.8 µm long, 4.8 µm wide, 25 striae, 25striae and 25 fibulae in 

10 µm 

Fig. 198 Valve end, 5 poroids in 1 µm 

 
Figs. 199–226 TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 
Figs. 199–201 South coast of Ireland, St. 2204 (51˚ 59.85'N, 07˚ 10.88' W) October 7th 1997  

Fig. 199 Valve end, 6 poroids in 1 µm 

Fig. 200 Other end, 6 poroids in 1 µm 

Fig. 201 Middle part of the valve, 5.1 µm wide, 6–7 poroids in 1 µm 

 

Fig. 202 South coast of Ireland, St. 2206 (51˚ 30.03'N, 08˚ 25.17' W), October 11th 

1997, part of a girdle band 

 

Fig. 203 South coast of Ireland, off Waterford, St. W312 (52˚ 7.02'N, 06˚ 58.81' W) 

October 8th 1997, part of a valve showing the proximal mantle, 7 poroids in 1 

µm 

 

Fig. 204 South coast of Ireland, St. 2204 (51˚ 59.85'N, 07˚ 10.88' W) October 7th 1997, 

part of a girdle band, 20 poroids in 1 µm 



 

 

 



Pseudo-nitzschia fraudulenta 

276 

 
Figs. 199–226 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Figs. 205–208 South west coast of Ireland, St. 1819 (52˚ 04.9'N; 06˚ 59.0'W), July 23rd 1996 

Fig. 205 Whole valve, ~70 µm long, ~4 µm wide, 25 striae, 25 interstriae and 25 fibulae 

in 10 µm 

Fig. 206 Middle part of the valve, 3 striae per central nodule,  6 poroids in 1 µm 

Fig. 207 Valve end, 6 poroids in 1 µm 

Fig. 208 Other end, 7 poroids in 1 µm 

 
Fig. 209 South coast of Ireland, St. 1808 (51˚ 27.00'N; 09˚ 33.00'W), July 21st 1996, 

valve end, 5–7 poroids in 1 µm 

 
Fig. 210 South coast of Ireland, St. 1809 (51˚ 26.00'N; 09˚ 24.00'W), July 21st 1996, 

part of a valve with the proximal and distal mantles visible, 25 striae, 25 

interstriae and 25 fibulae in 10 µm, 7 poroids in 1 µm 

 
Fig. 211 South coast of Ireland, St. 2204 (51˚ 59.85'N, 07˚ 10.88' W) October 7th 1997, 

part of a girdle band 
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Figs. 199–226 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Figs. 212–214 West coast of Ireland, off Eris Head, st 2011 (54˚ 29.0'N 10˚ 39.9'W) May 3rd 

1997, clonal culture, strain 2011 

Fig. 212 Middle part of the valve,  4.4 µm wide, 4 striae per central larger interspace, 

24 striae and 24 interstriae in 10 µm, 6 poroids in 1 µm 

Fig. 213 Valve end, 5–6 poroids in 1 µm 

Fig. 214 Other end, 6 poroids in 1 µm 

 

Figs. 215–217 South west coast of Ireland, St. 1801 (51˚ 27'N; 10˚ 20'W), July 20th 1996 

Fig. 215 Part of a valve,  5 µm wide, 25 striae, 25 interstriae and 25 fibulae in 10 µm 

Fig. 216 Valve end 

Fig. 217 Middle part of the valve, 5.4 µm wide, 4 striae per central larger interspace, 

24–25 striae and 24–25 interstriae in 10 µm, 6 poroids in 1 µm 

 

Fig. 218 South west coast of Ireland, St. 1801 (51˚ 27'N; 10˚ 20'W), July 20th 1996, 

close up of the valve face and distal mantle 

 

Fig. 219 South coast of Ireland, St. 2208 (51˚ 20.04'N, 08˚ 25.00' W), October 11th 

1997, part of a girdle band 
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Figs. 199–226 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Figs. 220–226  West coast of Ireland, off Eris Head, st 2011 (54˚ 29.0'N 10˚ 39.9'W) May 3rd 

1997, clonal culture, strain 2011, aberrant morphological structures 

 

Fig. 227 West coast of Ireland, off Eris Head, st 2011 (54˚ 29.0'N 10˚ 39.9'W) May 3rd 

1997, clonal culture, strain 2011, part of a girdle band 
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(Figures 228 – 236) 
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Figs. 228–236 SCANNING ELECTRON MICROGRAPHS (SEM) 

 

Figs. 228–231 South coast of Ireland, St. 1808 (51˚ 27.00'N; 09˚ 33.00'W), July 21st 1996 

Fig. 228 Whole valve , 59.6 µm long, 4.4 µm wide, 31striae, 31 interstriae and 19 

fibulae in 10 µm 

Fig. 229 Middle part of the valve,  9 poroids in 1 µm, 3 striae per central larger 

interspace 

Fig. 230 Valve end, 9 poroids in 1 µm 

Fig. 231 Other end, 9 poroids in 1 µm 
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Figs. 228–236 

Cont'd. 

 

SCANNING ELECTRON MICROGRAPHS (SEM) 

 

Figs. 232–236 South coast of Ireland, St. 2205 (51˚ 35.02'N, 08˚ 24.84'W), October 11th 

1997  

Fig. 232 Whole valve , 62.6 µm long, 4.6 µm wide, 30striae, 30 interstriae and 19 

fibulae in 10 µm 

Fig. 233 Middle part of the valve,  9 poroids in 1 µm, 3 striae per central larger 

interspace 

Fig. 234 Close-up of the valve face 

Fig. 235 Valve end, 9 poroids in 1 µm 

Fig. 236 Other end, 9 poroids in 1 µm 
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Pseudo-nitzschia delicatissima 
(Figures 237 – 334) 
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Figs. 237–247 LIGHT MICROGRAPHS (LM) 
Figs. 238–241 Scale bar not available 

 

Fig. 237 West coast of Ireland, St. Inner Galway Bay (53˚ 10.57' N, 09˚ 12.07'W), 

May 8th 1996, girdle view of vegetative cells in chain formation, overlap ~1/9 

of total cell length, ~49 µm long, 2.2 µm wide (water mount, phase contrast) 

 

Fig. 238–241 South west coast of Ireland, St. 1909 (51˚ 37.00' N, 09˚ 46.00'W) September 

6th 1996, culture strain 1909 (water mounts, phase contrast) 

 

Fig. 238 Girdle view of vegetative cells forming a spiral-like chain : a common 

observation in Pseudo-nitzschia cultures 

 

Fig. 239 Dividing cells in girdle view  

 

Fig. 240 Vegetative cells in girdle view  

 

Fig. 241 Culture in stationary phase, this type of clumping of cells is often observed in 

Pseudo-nitzschia cultures  
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Figs. 237–247 

Cont'd. 
LIGHT MICROGRAPHS (LM) 

 
 

Figs. 242–244 South coast of Ireland, continental shelf off Cork, St. 1924 (51º 23.0'N 08º 

15.9'W), September 7th 1996, culture strain 19246 

 

Fig. 242 Vegetative cell in valve view, 28.6 µm long, 2.2 µm wide (water mount, oil 

immersion)  

 

Fig. 243 Vegetative cell in valve view, 28.5 µm long, 2.89 µm wide (water mount, oil 

immersion)  
 

Fig. 244 Acid cleaned valve  in valve view mounted in Naphrax, 21 µm long, 1.9 µm 

wide  

 

Figs. 245–246 South coast of Ireland, St. 1919 (51º 11.00'N 09º 05.00'W), September 7th 

1996, culture strain 1919  

Fig. 245 Acid cleaned valve, 34.7 µm long, 1.6 µm wide (Naphrax mount , oil 

immersion) 

Fig. 246 Acid cleaned valve in valve view, 34.7 µm long, 1.6 µm wide (water mount, 

phase contrast) 

 

Fig. 247 South coast of Ireland, St. 1917 (51º 10.00'N; 09º 24.00'W), September 7th 

1996, culture strain 1917, 29 µm long, 1.7 µm wide (Naphrax mount, oil 

immersion) 
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Figs. 248–249 TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 
Fig. 248 South coast of Ireland, St. 1917 (51º 10.00'N; 09º 24.00'W), September 7th 

1996, culture strain 1917. Acid cleaned valve, 31.4 µm long, 2.2 µm wide, 43 

striae and 27 fibulae in 10 µm 

 

Fig. 249 South coast of Ireland, St. 1913 (51º 11.00'N 09º 05.00'W), September 7th 

1996, culture, strain 1913. Acid cleaned valve, 15.8 µm long, 2 µm wide, 44 

striae and 28 fibulae in 10 µm, 3 striae per central larger interspace 
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Figs. 250–261 

 

SCANNING ELECTRON MICROGRAPHS (SEM) 

 

Figs. 250–253 South west coast of Ireland, St. 1801 (51˚ 27'N; 10˚ 20'W), July 20th 1996 

Fig. 250 Whole valve, 28.6 µm long, 1.8µm wide, 40striae, 40 interstriae and 26 

fibulae in 10 µm 

Fig. 251 Middle part of the valve, 1.8 µm wide, 9 poroids in 1 µm 

Fig. 252 Valve end 

Fig. 253 Other end 

 

Figs. 254–256 South west coast of Ireland, St. 1807 (51˚ 26.10'N; 09˚ 54.9'W), July 21st 

1996 

Fig. 254 Whole valve, 45.9 µm long, 1.1µm wide, 39 striae, 39 interstriae and 23 

fibulae in 10 µm 

Fig. 255 Middle part of the valve, 9–13 poroids in 1 µm, 3 striae per central larger 

interspace 

Fig. 256 Valve end 

 

Fig. 257 West coast of Ireland, St. Inner Galway Bay (53˚ 10.57' N, 09˚ 12.07'W), 

May 8th 1996, 1.6 µm wide , 9 poroids in 1 µm 
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Figs. 250–261 

Cont'd. 

 

SCANNING ELECTRON MICROGRAPHS (SEM) 

 

Figs. 258–261 South coast of Ireland, St. 1913 (51º 11.00'N 09º 05.00'W), September 7th 

1996, culture, strain 1913 

Fig. 258 Whole valve, 16.5 µm long, 2 µm wide, 40 striae, 40 interstriae and 26 

fibulae in 10 µm 

Fig. 259 Middle part of the valve, 2 µm wide, 4 striae per central larger interspace, 8 

poroids in 1 µm 

Fig. 260 Valve end 

Fig. 261 Other end 

 

Figs. 262–334 TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Figs. 262–265 West coast of Ireland, St. Inner Galway Bay (53˚ 10.57' N, 09˚ 12.07'W), 

May 8th 1996 

Fig. 262 Valve end 

Fig. 263 Middle part of the valve, 1.3 µm wide, 9–12 poroids in 1 µm 

Fig. 264 Other end 

Fig. 265 Part of the valve with another partial Pseudo-nitzschia delicatissima valve 

along side, this valve shows the part of the proximal and distal mantles along 

with some girdle bands. Upper valve  shows 40 striae, 40 interstriae and ~26 

fibulae in 10 µm, Lower valve shows 41 striae, 41 interstriae and ~25 fibulae 

in 10 µm 
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Figs. 262–334 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Fig. 266 South coast of Ireland, St. 1811 (51˚ 21.00'N; 08˚ 26.20'W), July 22nd 1996, 

close-up of the central larger interspace with the central raphe endings, there 

are 3 striae to the central larger interspace 

 

Fig. 267 South coast of Ireland, St. 1810 (51˚ 07.2'N; 09˚ 24.0'W), July 22nd 1996, 

close-up of the valve face striae 

 

Figs. 268-269 South coast of Ireland, St. 1811 (51˚ 21.00'N; 08˚ 26.20'W), July 22nd 1996, 

valve end and close-up of valve face, 10 poroids in 1 µm 

 

Figs. 270–271 South coast of Ireland, St. 1811 (51˚ 21.00'N; 08˚ 26.20'W), July 22nd 1996 

Fig. 270 Most of a valve, ~39.5 µm long, 1 µm wide, 46 striae, 46 interstriae and 25 

fibulae in 10 µm, 

Fig. 271 Close-up of the valve face with the central larger interspace and central raphe 

endings 3 striae per central larger interspace,  ~10 poroids in 1 µm 

 

Fig. 272 West coast of Ireland, St. Inner Galway Bay (53˚ 10.57' N, 09˚ 12.07'W), 

May 8th 1996, Close-up of the valve face, 1.3 µm wide, 9–12 poroids in 1 µm, 

4 striae per central larger interspace 

 

Fig. 273 South west coast of Ireland, St.1906 (51˚ 57.00'N; 10˚ 40.00'W), September 

3rd 1996, close-up of the central larger interspace, the central raphe endings,  

the proximal mantle and the valvocopula 
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Figs. 262–334 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Figs. 275–276 South coast of Ireland, St. 1812 (51˚ 35'N; 8˚ 28.9'W), July 22nd 1996 

Fig. 274 Whole valve: 63 µm long, 1.1 µm wide, 44 striae, 44 interstriae and 27 

fibulae in 10 µm 

Fig. 275 Part of the valve, 1.5 µm wide, 9–10 poroids in 1 µm, 37 striae, 37 interstriae 

and 20 fibulae in 10 µm 

Fig. 276 Central part of the valve with 3 striae to the central larger interspace, 8–10 

poroids in 1 µm 

 

Figs. 277–279 South coast of Ireland, St. 1810 (51˚ 07.2'N; 09˚ 24.0'W), July 22nd 1996 

Fig. 277 Whole valve, 50 µm long, 1 µm wide, 39 striae, 39 interstriae and 23 fibulae 

in 10 µm 

Fig. 278 Valve end  

Fig. 279 Middle part of the valve showing 3.5 striae per central larger interspace, ~ 11 

poroids in 1 µm 



 

 

 



Pseudo-nitzschia delicatissima 

290 

 

Figs. 262–334 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Figs. 280–290 South coast of Ireland, St. 1810 (51˚ 07.2'N; 09˚ 24.0'W), July 22nd 1996, 

rough culture 18101  Pseudo-nitzschia cf. delicatissima.  Although the poroid 

structure at the valve ends are similar to that seen in Pseudo-nitzschia 

delicatissima ( ie. small rounded with a simple hymenate vela) if one looks at 

the poroid structure towards the centre of the valve there is a slight similarity 

in the poroid structure to that seen in Pseudo-nitzschia pseudodelicatissima 

Figs. 280–287 Parts of the valve, 2.3 µm wide, 6 poroids in 1 µm, 3 striae to the central 

larger interspace 
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Figs. 262–334 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Figs. 280–290 

Cont'd. 

South coast of Ireland, St. 1810 (51˚ 07.2'N; 09˚ 24.0'W), July 22nd 1996, 

rough culture 18101  Pseudo-nitzschia cf. delicatissima 

Fig. 288 Vale end, detail obscured by a girdle band 

Fig. 289 Mosaic of micrographs, 50 µm long, ~ 2.4 µm wide, 36 striae, 36 interstriae 

and 23 fibulae in 10 µm 

Fig. 290 Central part of the valve, 5–6 poroids in 1 µm 
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Figs. 262–334 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Figs. 291-301 South coast of Ireland, St. 1919 (51º 11.00'N 09º 05.00'W), September 7th 

1996, culture strain 1919  

 

Fig. 291 Whole valves 

cell 1: 36.4 µm long, 1.6 µm wide, 42 striae, 42 interstriae and 29 fibulae in 

10 µm 

cell 2: 42.9 µm long, 1.43 µm wide, 40 striae, 40 interstriae and 27 fibulae in 

10 µm 

 

Fig. 292 Whole valves 

valve 1: 41.4 µm long, 1.3 µm wide, 42–43 striae, 42–43 interstriae and 26–

28 fibulae in 10 µm 

valve  2: 38.2 µm long, 1.6 µm wide, 42 striae, 42 interstriae and 26 fibulae in 

10 µm 

 

Figs. 293–297 Close-up of valve 2 from fig. 292 

Fig. 293 Valve 2 

Fig. 294 Valve end 

Fig. 295 Other end 

Fig. 296 Close-up of the central larger interspace and central raphe endings, 4 striae to 

the central larger interspace 

Fig. 297 Part of the valve and the proximal mantle, 10–11 poroids in 1 µm 
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Figs. 262–334 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Figs. 291-301 South coast of Ireland, St. 1919 (51º 11.00'N 09º 05.00'W), September 7th 

1996, culture strain 1919  

 

Figs. 298–301 Close-up of valve 1 from fig. 292 

Fig. 298 Valve 1 

Fig. 299 Valve end 

Fig. 300 Middle part of the valve, 10–12 poroids in 1 µm, 4 striae to the central larger 

interspace 

Fig. 301 Other end 

 

Figs. 302–304 West coast of Ireland, St. Inner Galway Bay (53˚ 10.57' N, 09˚ 12.07'W), 

May 8th 1996 

Fig. 302 Whole valve, 47.1 µm long, 1.2 µm wide, 41 striae, 42 interstriae and 26 

fibulae in 10 µm 

Fig. 303 Valve end 

Fig. 304 Other end 
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Figs. 262–334 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Figs. 305–308 South west coast of Ireland, St. 1301 (51˚ 29.00'N; 10˚ 16.00'W), August 15th 

1993 

Fig. 305 Whole valve, 31.9 µm long, 1.9 µm wide, 45 striae, 46 interstriae and 28 

fibulae in 10 µm 

Fig. 306 Valve end 

Fig. 307 Other end 

Fig. 308 Middle part of the valve, 9–10 poroids in 1 µm, 3 striae to the central larger 

interspace 

 
Figs. 309–311 South west coast of Ireland, St. 1301 (51˚ 29.00'N; 10˚ 16.00'W), August 15th 

1993 

Fig. 309 Valve end 

Fig. 310 Other end 

Fig. 311 9–11 poroids in 1 µm, 3.5 striae to the central larger interspace 
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Figs. 262–334 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Figs. 312–327 Girdle bands 

 

Figs. 312–317 West coast of Ireland, St. Inner Galway Bay (53˚ 10.57' N, 09˚ 12.07'W), 

May 8th 1996 

 

Fig. 318 South coast of Ireland, St. 1810 (51˚ 07.2'N; 09˚ 24.0'W), July 22nd 1996 

 
Fig. 319 West coast of Ireland, St. Inner Galway Bay (53˚ 10.57' N, 09˚ 12.07'W), 

May 8th 1996 
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Figs. 262–334 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Figs. 320–324 South coast of Ireland, St. 1811 (51˚ 21.00'N; 08˚ 26.20'W), July 22nd 1996 

 
Fig. 325  South west coast of Ireland, St. 1809 (51˚ 26'N; 09˚ 24'W), July 21st 1996 

 

Figs. 326–327 West coast of Ireland, St. Inner Galway Bay (53˚ 10.57' N, 09˚ 12.07'W), 

May 8th 1996 
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Figs. 262–334 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Figs. 328–333 South coast of Ireland, continental shelf off Cork, St. 1924 (51º 23.0'N 08º 

15.9'W), September 7th 1996, culture strain 19246, cross section of 

vegetative cells 
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Figs. 262–334 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Fig. 334 South coast of Ireland, continental shelf off Cork, St. 1924 (51º 23.0'N 08º 

15.9'W), September 7th 1996, culture strain 19246, cross section of 

vegetative cells 
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Pseudo-nitzschia pseudodelicatissima 
(Figures 335 –361) 
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Figs. 335–351 SCANNING ELECTRON MICROGRAPHS (SEM) 

 

Figs. 335–240 South west coast of Ireland, St. 1807 (51˚ 26.10'N; 09˚ 54.9'W), July 21st 1996

Fig. 335 Whole valve, 51.1 µm long, 1.5 µm wide, 39 striae, 39 interstriae and 21 

fibulae in 10 µm 

Fig. 336 Middle part of the valve, 4–6 poroids in 1 µm, 4.5 striae to the central larger 

interspace 

Fig. 337 Valve end 

Fig. 338 Close-up of the valve end 

Fig. 339 Other end 

Fig. 340 Close-up of the other polar end of the valve 



 

 

 



Pseudo-nitzschia pseudodelicatissima 

301 

 
Figs. 335–351 

Cont'd. 

 

SCANNING ELECTRON MICROGRAPHS (SEM) 

 

Figs. 341–346 South west coast of Ireland, St. 1807 (51˚ 26.10'N; 09˚ 54.9'W), July 21st 1996 

Fig. 341 Whole valve, 60 µm long, 1.7 µm wide, 37 striae, 37 interstriae and 22 fibulae 

in 10 µm 

Fig. 342 Middle part of the valve, 5–6 poroids in 1 µm 

Fig. 343 Close-up of the central larger interspace with central raphe endings, 

corresponding to 3.5 striae 

Fig. 344 Close-up of the valve face striae, roundish to squarish poroids containing 

sections of hymenate velae  

Fig. 345 Valve end 

Fig. 346 Other end 

 
Figs. 347–348 South west coast of Ireland, St. 1807 (51˚ 26.10'N; 09˚ 54.9'W), July 21st 1996 

Fig. 347 Centre of tf the valve, 5 poroids in 1 µm, 5 striae to the central larger 

interspace 

Fig. 348 Valve end 
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Figs. 335–351 

Cont'd. 

SCANNING ELECTRON MICROGRAPHS (SEM) 

 

  
Fig. 349 South west coast of Ireland, St.1906 (51˚ 57.00'N; 10˚ 40.00'W), September 3rd 

1996, valve end 

 
Fig. 350 South west coast of Ireland, St.1906 (51˚ 57.00'N; 10˚ 40.00'W), September 3rd 

1996, middle part of a valve showing 5 striae corresponding to the central 

larger interspace,  ~ 6 poroids in 1 µm 

 
Figs. 351–352 South coast of Ireland, St. 1808 (51˚ 27.00'N; 09˚ 33.00'W), July 21st 1996 

Fig. 351 Whole valve, 73.5 µm long, 2 µm wide, 39 striae, 39 interstriae and 23 fibulae 

in 10 µm 

Fig. 352 Close-up of a valve showing the proximal mantle and poroid structure 

 
Figs. 353–361 TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 
Figs. 353–354 South coast of Ireland, St. 1812 (51˚ 35'N; 8˚ 28.9'W), July 22nd 1996, rough 

culture 1812 

Fig. 353 Valve end 

Fig. 354 Part of the valve showing the proximal and distal mantles, 5 poroids in 1 µm 

 
Fig. 355 South coast of Ireland, St. 1812 (51˚ 35'N; 8˚ 28.9'W), July 22nd 1996, rough 

culture 1812, part of a valve,  ~54 µm long, 1.4 µm wide, 44 striae, 45 

interstriae and 25 fibulae in 10 µm 
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Figs. 353–361 

Cont'd. 

 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 

 

Fig. 356 South west coast of Ireland, St. 1807 (51˚ 26.10'N; 09˚ 54.9'W), July 21st 1996, 

part of the valve showing the stria structure, 3 striae to the central larger 

interspace, 1.2 µm wide, 6–7 poroids in 1 µm 

 
Fig. 357 South west coast of Ireland, St. 1311 (51˚ 20.1'N, 10˚ 05.0'W), August 17th 

1993, valve end of Pseudo-nitzschia cf. pseudodelicatissima, 7–8  poroids in 1 

µm 

 
Figs. 358–361 South coast of Ireland, St. 1812 (51˚ 35'N; 8˚ 28.9'W), July 22nd 1996, rough 

culture 1812 

Fig. 358 Part of a valve, 1.4 µm wide, ~6 poroids in 1 µm, 4 striae to the central larger 

interspace 

Fig. 359 Part of a valve end 

Fig. 360 Middle part of a valve showing the proximal and distal mantles, 3.5 striae to 

the central larger interspace, 1.0 µm wide, ~44 striae and ~45 interstriae 10 µm

Fig. 361 Whole valve, 66 µm long, 1.3 µm wide, 41 striae, 41 interstriae and 26 fibulae 

in 10 µm 
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Pseudo-nitzschia cf. multiseries 
(Figures 362 –377) 
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Figs. 362–364 SCANNING ELECTRON MICROGRAPHS (SEM) 

 

Figs. 362–363 Specimen from the southwest coast of Ireland, station: 1807 (51˚ 26.10'N; 

09˚ 54.9'W), July 21st 1996. 

Fig. 362 Part of a valve showing the striae structure, 4.1 µm wide, ~10 striae, ~10 

interstriae and ~10 fibulae in 10 µm, 5–7 poroids in 1 µm. 

Fig. 363 Valve end. 

 

Fig. 364 Specimen from the south coast of Ireland, station: 1808 (51˚ 27.00'N; 09˚ 

33.00'W), July 21st 1996, part of a valve, ~3 µm wide, ~14 striae, ~14 

interstriae and ~14 fibulae in 10 µm, 6 poroids in 1 µm. 

 

Figs. 365–377 TRANSMISSION ELECTRON MICROSCOPY (TEM) 

 

Figs. 365–366 Specimen from the southwest coast of Ireland, station: 1314 (51˚ 20.1'N, 10˚ 

05.0'W), August 17th 1993. 

Fig. 365 Valve end. 

Fig. 366 Middle part of the valve, ~2.9 µm wide, ~12 striae, ~12 interstriae and ~12 

fibulae in 10 µm, 6 poroids in 1 µm. 

 

Figs. 367–369 Specimen from the south coast of Ireland, station: 1815 (51˚ 50.2'N; 08˚ 

15.8'W), July 23rd 1996. 

Fig. 367 Close-up of the valve face, 7 poroids in 1 µm. 

Fig. 368 Part of the valve, ~ 3 µm wide, 11 striae, 11 interstriae and 12 fibulae in 10 

µm. 

Fig. 369 Valve end. 
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Figs. 365–377 TRANSMISSION ELECTRON MICROSCOPY (TEM) 

 

Figs. 370–371 Specimen from the south coast of Ireland, station: 1815 (51˚ 50.2'N; 08˚ 

15.8'W), July 23rd 1996. 

Fig. 370 Close-up of the valve face striae and proximal mantle, 9 poroids in 1 µm. 

Fig. 371 Part of the valve, ~ 3 µm wide, 15 striae, 15 interstriae and 15 fibulae in 10 

µm. 
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Figs. 365–377 TRANSMISSION ELECTRON MICROSCOPY (TEM) 

 

Figs. 372–377 Specimen from the southwest coast of Ireland, station: 1819 (52˚ 04.9'N; 06˚ 

59.0'W), July 23rd 1996 

Fig. 372 Whole valve, 93 µm long, 2.8 µm wide, 15–16 striae, 15–16 interstriae and 

15–16 fibulae in 10 µm 

Fig. 373 Valve end 

Fig. 374 Middle part of the valve showing the striae structure, 7 poroids in 1 µm 

Fig. 375 Part of the valve 

Fig. 376 Part of the valve 

Fig. 377 Other end 
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Pseudo-nitzschia cf. seriata 
(Figures 378 –386) 
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Figs. 378–386 TRANSMISSION ELECTRON MICROGRAPHS (TEM) 
 

Figs. 378–379 Specimen from the south coast of Ireland, station: 1820 (51˚ 45.10'N; 06˚ 
33.9'W), July 24th 1996.  
 

Fig. 378 Part of a valve, 20 striae, 20 interstriae and 20 fibulae in 10 µm. 
Fig. 379 Part of a valve, 8–9 poroids in 1 µm. 

 
Figs. 380–381 Specimen from the south coast of Ireland, station: 1819 (52˚ 04.90'N; 06˚ 

59.00'W), July 23rd 1996. 
 

Fig. 380 Part of a valve, 8 poroids in 1 µm. 
 

Fig. 381 Valve end. 
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Figs. 378–386 
Cont'd. 
 

TRANSMISSION ELECTRON MICROGRAPHS (TEM) 
 

Fig. 382 Specimen from the south coast of Ireland, station: 1810 (51˚ 07.2'N; 09˚ 
24.0'W), July 22nd 1996, part of a valve, 5.3 µm wide at this part of the 
valve, 7 poroids in 1 µm. 
 

Figs. 383–386 Specimens from the coast of Ireland, station: 1820 (51˚ 45.10'N; 06˚ 
33.9'W), July 24th 1996. 
 

Fig. 383 Part of a valve, 8 poroids in 1 µm. 
 

Fig. 384 Part of a valve, 8 poroids in 1 µm. 
 

Fig. 385 Part of a valve, 9–10 poroids in 1 µm. 
 

Fig. 386 Part of a valve, 9 poroids in 1 µm. 
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Appendix IV 
 

A list of the oxidation (cleaning) methods used during the study to remove the organic 

material from the siliceous frustule of the diatom Pseudo-nitzschia.  Included are 

comments on the success rate of each method carried out.  Mounting cleaned pseudo-

nitzschia specimens onto permanent slides.  Preparation of thin sections of fixed 

embedded cultured vegetative Pseudo-nitzschia cells. 
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PREPARATION OF DIATOMACEOUS MATERIAL FOR LIGHT AND ELECTRON MICROSCOPY 

 

At stations where Pseudo-nitzschia was found to be one of the dominant taxa, aliquots 

(ca. 5 mL) were taken from the net samples and the organic matter of the cells was 

removed by acid cleaning.   

 

Organic contents of diatoms visually obstruct the image of the silica frustule whose 

structure is primarily relied upon for the species identification of many diatoms.  The 

preparation of diatom material therefore entails using a cleaning method.  Strong 

oxidising agents such as a concentrated acid are often applied to burn away the organic 

matter of the cells in order to achieve good resolution of the siliceous structures.  After 

oxidising the organic matter from the sample, mineral substances will remain, including 

the siliceous skeleton of diatom cells.  Many cleaning procedures exist that oxidise the 

organic material from diatomaceous samples.  These are carried out by using physical 

methods or more frequently by chemical means.  Several cleaning methods were 

attempted during the course of this study, of which the following method was used as 

the standard.  Other variations of this method and comments on their performance are 

discussed below. 

 

REMOVAL OF ORGANIC MATERIAL FROM DIATOMACEOUS MATERIAL 

The following steps were carried out during cleaning preparations  

1. 2–5 mL of net sample was placed in a clean test tube and resuspended in 

distilled water.  Cells were collected by centrifuging at 4,500 rpm for 10 min.  

The supernatant was aspirated off (using a separate pipette for each sample to 

avoid cross contamination) and the remaining pellet was washed with distilled 

water.  This was repeated three to five times to ensure no preservative or salt 

remained.  

 

2. Chemical preparations were carried out under a fume hood whenever toxic 

chemicals were used.  A vortex was used to resuspend the cells and to ensure 

clumping did not occur, thus allowing an increased cell surface area for chemical 
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activity.  Cleaned samples were rinsed with distilled water to remove any 

chemical traces (samples were tested with pH sticks to ensure that all the acid 

was removed). 

 

3. After the cleaning procedure cleaned material was rinsed with distilled water and 

stored in glass vials with an equal volume of absolute ethanol (this inhibits 

fungal growth) until further use.  All sample vials were labelled.  A drop of clean 

sample was mounted onto a slide (washed in ethanol) and checked under a light 

microscope for salt crystal formation or remaining organic matter (e.g. 

chromatophores still visible.) 

 

Cell concentrations and the amount of particulate matter present can differ greatly 

between phytoplankton samples.  Therefore, smaller aliquots of the more concentrated 

samples were used.  High-grade Analar water was used for rinsing after it was 

discovered that the distilled water from the laboratory was contaminated with foreign 

particles.  Test tubes were not reused, since diatom frustules can often remain attached 

to the glass. 

 

NITRIC ACID METHOD (Modification of Boyle et al. 1984). 

Concentrated nitric acid (70% HNO3) was added to the sample pellet (1:1) and 

heated in a water bath at 80 ºC for 30 min. (the time varied depending on the amount 

of organic material in the sample).  A marble was placed on top of each test tube to 

prevent loss of sample.  The solution was vortexed gently every 10 min. to 

resuspend the sample.  

 

This nitric acid treatment was the most suitable cleaning method for the field and 

cultures samples examined.  Mann (1978) found that nitric acid was a very efficient 

oxidising agent (especially in calcium free samples, as nitrates are more soluble than a 

lot of the chlorides).  However, he found that sediment samples with high organic 

contents could sometimes take a long time to clean.  During this investigation, a series 

of time and temperature trials using a P. australis culture were carried out to establish 
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the standard method.  This included variations in the length of time a sample was left in 

the waterbath, the temperature and a combination of HNO3 and hydrochloric acid (HCl) 

treatments.  When silica dissolution was apparent after chemical treatment, the cleaning 

procedure was repeated with fresh material and the samples were left at 80ºC for a 

shorter length of time.  The procedure was repeated on samples that contained a lot of 

organic matter after the nitric acid treatment.  One of the disadvantages this method has 

is that the siliceous frustule often disassociates into its separate components (valves and 

girdle elements) and discrimination between girdle bands of different species in field 

samples is difficult if not impossible.  Pseudo-nitzschia delicatissima was one of the few 

species whose girdle elements often remained intact and attached to the valve mantle. 

 

OTHER METHOS TESTED FOR THE REMOVAL OF ORGANIC MATERIAL FROM VEGETATIVE 

DIATOM CELLS. 

 

PHYSICAL CLEANING  

 

INCINERATION METHOD 

(Zoto et al. 1973 cited in Ma and Jefferey 1978)  

A small drop (fraction of a mL) of washed sample was pipetted onto a clean glass 

coverslip.  This was placed in a muffle furnace and heated to 500°C, the temperature 

was maintained for a limited period of time.  A time series ranging from 10 min. to 

60 min. was carried out.  

 

This method was very disappointing.  While frustules remained intact, a great deal of 

organic matter remained, obscuring the fine siliceous structure of the frustule.  This was 

recurrent even when the samples were left for up to 30 min. at 500 °C.  When samples 

were left in the muffle furnace for a longer period of time (40 to 60 min.), the diatom 

frustules became broken or damaged.  Patrick and Reimer (1966 cited in Ma and 

Jefferey 1978) used a similar method and a hot plate was used to burn off the organic 

matter instead of an oven.  They found this cleaning procedure worked best only on 

phytoplankton samples containing primarily diatoms with little or no substrate. 
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CHEMICAL CLEANING 

 

An alternative to the physical approach of stripping diatom cells of their organic 

contents is by chemical means.  Acid attack is a popular and widely practised method 

used to destroy the various organic components that obscure the fine morphological 

detail of the diatom frustule.  However, strong oxidising methods can be damaging 

especially to the more delicately formed species.  Silica destruction can occur as a direct 

result of the cleaning process used, silica dissolution can also be the product of long 

term storage in an unsuitable preservative before any ultrastructural examination is 

carried out.  Another possible reason for this type of observation may be the 

environment in which the diatoms were formed.  Diatoms growing in conditions where 

there are low concentrations of silica may form lightly silicified frustules that will 

dissolve a lot faster in preserved samples and be more open to attack by chemicals.  

Some of the less aggressive methods may permit delicate siliceous elements such as the 

poroid velae to remain intact, but organic matter can remain so this kind of detail is 

unclear or concealed.  Ma and Jefferey (1978), in a review on diatom preparation and 

cleaning, mentioned that the use of sulphuric acids or potassium persulphate may result 

in precipitation of sulphate compounds unless the working sample is pre–rinsed with 

weak hydrochloric acid. 

 

HYDROGEN PEROXIDE (H2O2) METHOD 

A variety of H2O2 concentrations (10%, 20%, or 30%) were added to separate 

phytoplankton samples.  When the sample contained a lot of organic material the 

solution bubbled.  After 5 to 10 min. distilled water was added (1:1; H2O:H2O2) and 

the mixture was then left at room temperature for a few hours or over-night. 

 

The hydrogen peroxide cleaning method was found to be inefficient at removing organic 

material in the samples used.  The organic matter was poorly digested in all samples 

examined after the treatment.  Mann (1978) found that hot hydrogen peroxide (28%) 

was only useful for removing epiphytic diatoms from their substrate and partially 
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breaking down particulate matter.  He used H2O2 only as a pre-treatment before the 

addition of other oxidising agents. 

 

HYDROCHLORIC ACID (HCl) METHOD 

Concentrated HCL (36%) was added to several phytoplankton samples as with the 

hydrogen peroxide procedure above. 

 

Again this treatment was unsuccessful at removing much of the organic material in the 

samples tested.  This method would probably be sufficient if the samples contained very 

little organic particulate matter and the target diatoms had delicate siliceous valves.  

Cupp (1944) used hydrochloric acid as a pre–treatment to bring the organic material 

somewhat into solution and remove calcareous matter from her samples before using a 

more aggressive acid to oxidise the organic matter that remained.  Mann (1978) also 

used hydrochloric acid as a rinsing pre–treatment to avoid precipitation of calcium salts 

(eg. calcium sulphate) when sulphuric acid (H2SO4) was to be added during the cleaning 

procedure. 

 

HYDROCHLORIC ACID AND POTASSIUM PERMANGANATE (KMnO4) METHOD 

(following Simonsen 1974) 

Concentrated potassium permanganate was added to the phytoplankton pellet 

(1:1).  The solution was left to stand for 24 hours.  Concentrated hydrochloric 

acid was then carefully added to the solution (1:2). If the sample turned a dark 

brown colour this indicated that the potassium permanganate was being reduced 

to manganese dioxide.  The mixture was heated slowly (either over an alcohol 

lamp, a bunsen burner or a hot plate) until it boiled, the solution turned an olive-

green colour and eventually a light yellow colour. 

 

Simonsen (1974) highly recommended this method except when samples contained 

a lot of humic acid.  In this study this method did not clean the samples adequately. 
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HYDROCHLORIC ACID AND POTASSIUM PERMANGANATE METHOD 

(Simonsen R. 1974 modified) 

Concentrated hydrochloric acid was added to the sample pellet and the sample was 

left overnight (1:1).  An equal amount of potassium permanganate (KMnO4 

concentrated solution) was then added to the mixture and again left overnight (1:2).  

An equal amount of concentrated hydrochloric acid (HCl) was added to the solution 

(1:3) and heated on a hotplate until oxidation was complete. 

 

The degree of oxidation achieved with this method was not very satisfactory, a lot of 

organic matter remained in the samples and cleaned siliceous elements were a rare 

occurrence.  

 

NITRIC ACID (HNO3) AND SULPHURIC ACID METHOD 

(Hasle G. pers. comm.).  

65% Nitric acid was added to the phytoplankton pellet (1:1; HNO3:sample).  

Concentrated sulphuric acid was then added and a brownish colour was considered a 

good sign.  The solution was heated over a bunsen burner while continuously 

shaking the test tube (it sometimes bubbled vigorously and spat out).  When the 

solution turned a yellowish brown, heating continued until the total volume retreated 

down to the original pellet level.  The sample turned a whitish-grey colour when 

completely oxidised.  The sample was allowed to cool before rinsing with distilled 

water. 

 

This method was found to be slightly aggressive on some of the samples, destroying 

delicate parts of the silica frustule (disappearance of the ornamentation on the poroid 

velae).  Organic matter sometimes remained, and obscured the view of certain siliceous 

structures in other samples.  
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SULPHURIC ACID, POTASSIUM PERMANGANATE AND OXALIC ACID (COOH2) METHOD  

(following Hasle and Fryxell 1970) 

3–5 mL of net sample or 20 mL of bottle sample was poured into a glass beaker.  20 

mL of concentrated sulphuric acid (H2SO4) was added and agitated gently.  

Saturated potassium permanganate (KMnO4) was then added drop by drop and 

agitated gently after each addition until the liquid turned a purple colour (this 

chemical oxidises the organic matter inside the cells).  Freshly made-up saturated 

oxalic acid (COOH2) was then added a little bit at a time and agitated gently after 

each addition until the solution cleared (this sometimes bubbled vigorously).  The 

solution was then centrifuged and concentrated to 5 mL and the supernatant 

carefully aspirated off. 

 

This method was aggressive on some of the samples (dissolution of the silica frustule 

was evident) while in other parts of the same sample organic material remained. 

 

BIOLOGICAL WASHING POWDER  

(Brian Ottway, personal communication)  

The phytoplankton pellet was resuspended in warm distilled water containing a few 

grains of biological washing powder.  The sample was vortexed to ensure it was 

well mixed.  The mixture was then heated in a waterbath and left for a specific 

period of time.  

SAMPLE 1: left at 40 ºC for 90 min. then the temperature was increased to 70 ºC for 

20 min.. 

SAMPLE 2: left at 40 ºC for 90 min. then the temperature was increased to 70 ºC for 

20 min. after which 15% nitric acid added and the sample was left at 

room temperature for 5 min..  

SAMPLE 3: 40 ºC for 180 min. then the temperature was decreased to 60 ºC for a 

further 30 min..  

SAMPLE 4: Left at room temperature. 
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Several ranges of temperatures and time lengths were tested all of which were 

ineffective at removing the organic material from the samples investigated.  

 

FINAL NOTE: Many of the procedures described above were found unsuitable for the 

samples analysed.  Several of the cleaning methods removed a significant amount of 

organic matter, but left behind a thin film that obscured the velae structure of the valve 

face.  Other cleaning attempts were more aggressive leaving the Pseudo-nitzschia valves 

with a "ghost-like" appearance (dissolution of silica), in some instances the valves were 

broken and the vela silica structure had dissolved. 
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MOUNTING CLEANED PSEUDO-NITZSCHIA SPECIMENS ONTO PERMANENT SLIDES  

(Grethe Hasle pers. commun.) 

 

Samples were mounted in triplicate.  Circular coverslips number 0 (thickness of 0.13 

mm) or number 1 (thickness of 0.16 mm) were cleaned with absolute alcohol.  A drop of 

clean sample was placed on the coverslip.  The sample was diluted with distilled water 

when it contained a high concentration of material (obvious by its cloudy appearance).  

The material was then evenly spread out across the coverslip using a clean glass pipette 

(prevents crossover contamination between samples) and left to air dry overnight.  

Samples were sometimes dried under an electric lamp but this tended to cause the valves 

to clump together (surface tension).  To protect against dust particles, a covering 

(petridish) was put over the coverslips while the sample dried.  A drop of resin 

(Naphrax, RI: 1.72) was placed onto a clean microscope glass slide and the coverslip 

was gently pressed on top making sure there were no bubbles.  The slide was placed on 

a hot plate and heated (60ºC) to soften the Naphrax mounting agent (which would 

spread over the entire coverslip).  A cocktail stick was used to tap the coverslip to aid in 

the removal of air bubbles.  When this proved difficult, a small aliquot of Naphrax 

medium was placed at the edge of the coverslip, this would flow into and replace any 

remaining air pockets.  The slide was left at room temperature until the resin hardened.  

Excess Naphrax was scraped off with a scalpel blade and the coverslip was permanently 

sealed with clear nailpolish (painted on the edge of the coverslip).  Slides were labelled 

and checked under a Nikon Optiphot-2 LM using bright field and phase contrast to 

ensure the cleaning procedure was successful.  Objective lenses used to examine the 

material included a 20x dry lens (NA 0.5), a 20x dry phase contrast lens (NA 0.75), a 

40x dry phase contrast lens (NA 1.30), a 50x immersion oil lens (NA O.85) and a 100x 

immersion oil lens (NA 1.25). 

 

 

 

 

 



CLEANING METHODS 

321 

PREPARATION OF THIN SECTIONS OF FIXED EMBEDDED CULTURED VEGETATIVE 

PSEUDO-NITZSCHIA CELLS. 

 

Two Pseudo-nitzschia cultures (P. australis and P. delicatissima) were used to 

examine vegetative cell sections along the transapical and valvar planes.  Cells were 

collected by gentle centrifugation at 4,500 rpm for 10 min.  10 mL aliquot of 3% 

gluteraldehyde in 0.1 M sodium cacodylate buffer (1 mL) at pH 7.2 was added and the 

sample was left to fix for 90 min.  Cells were postfixed in 2 mL aliquots of 2% osmium 

tetroxide in cacodylate buffer for 1 hour (Osmium tetroxide acts as a preservative and 

stains carbohydrates and lipids).  The material was washed once in 1 mL cacodylate 

buffer for 5 min.  The sample was dehydrated in a series of 10, 30, 50, 70, 90% 

acetone:distilled water and 2x 100% acetone for 10 min. at each step.  The cells were 

gradually infiltrated into Spurr’s resin (Spurr 1969) first in acetone:resin (1:1) for 1 hour 

and then in 100% resin and left to stand overnight.  Embedded samples were 

polymerised at 60 ºC for a period of 3 days and sectioned using an ultramicrotome 

(“Ultramicrotome–E”, Reichert–Jung) equipped with a diamond knife.  Ultra–thin (60–

90 µm) sections were placed on 200–mesh copper grids and post–stained with uranyl 

acetate for 30 min. at 40 ºC.  After rinsing in distilled water the sections were post-

stained with lead–citrate for 5 min. at room temperature and finally rinsed in distilled 

water. All fixatives and buffer were made up in filtered seawater (0.22 µm Nucleopore 

filters).  Specimens were viewed under a Hitachi–7000 transmission electron 

microscope at an accelerating voltage of 75 kV.  
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Appendix V 
 

 

Short description of the Phylogenetic methods used in this study. Multiple DNA 

sequence alignment of the 18S SSU (1745 bp) rDNA of several Pseudo-nitzschia 

isolates. Multiple rDNA alignments of character positions of the SSU considered 

unambiguous and analysed using Maximum-Likelihood, distance (Logdet 

transformation) and Maximum Parsimony methods. 

 

 

. 
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MAXIMUM PARSIMONY MODEL OF EVOLUTION 

Maximum Parsimony is a character state based method where each nucleotide position 

in an alignment is considered. The method is based on the principal that the simplest 

explanation consistent with a data set should be chosen over more complex explanations 

(Steward, 1993). This produces a tree called a Maximum Parsimony tree. Parsimony 

analysis only uses informative sites.  A nucleotide site is phylogenetically informative in 

maximum parsimony if there are at least two different kinds of nucleotide at the site, 

each of which is represented in at least two taxa, which allows a decision to be made 

regarding the topology of the tree.  Indels can be regarded as a “fifth base”, a major 

advantage that parsimony has over distance and likelihood based methods. In a sequence 

alignment, all the parsimony-informative sites are first identified, trees are constructed, 

and the tree requiring the least amount of steps is favoured.  Sometimes there are many 

trees that are equally parsimonious but have different topologies.  In this case a 

consensus tree can be constructed.  A strict consensus tree compares the topology of all 

the equally parsimonious trees and resolves any conflicts in branching order by creating 

a multifurcation at that point.  If many multifurcations are created it may comprise the 

structure of the tree.  A 50% majority-rule consensus tree also compares the topology of 

all the equally parsimonious trees and the branching pattern that occurs in greater than 

50% of the trees is used.  This tree may not have as many multifurcations as a strict 

consensus tree.  

 

DISTANCE-BASED METHODS 

Distance-based methods calculate the overall similarities or dissimilarities between 

sequences and convert this data into a matrix of pairwise distances.  The phylogenetic 

tree is constructed from the distance matrix.  The simplest distance estimate is the p-

distance, which simply reflects the actual distance between two sequences.  It does not 

take multiple substitutions (e.g. A-G-A) into account.  Other distance estimates try and 

correct for multiple substitutions and range from simple models like the Jukes and 

Cantor, one parameter model of evolution that assumes all kinds of substitutions are 

equally likely (Jukes and Cantor 1969) and Kimura 2, two parameter model, which 

assumes that the rate of transitions (changes within purines, G and A, and within 
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pyrimidines, C and T) differ from transversions (changes between purines and 

pyrimidines) (Kimura 1980), to more complex models containing more parameters (e.g. 

General Time Reversible).  Once a distance matrix has been generated using some 

model of the substitution process, a phylogenetic tree construction method is 

implemented based on the distance calculation.  Neighbor-joining (Saitou and Nei, 

1987) is one such method.  The principal of the neighbor-joining method is to find 

neighbors sequentially that minimize the total length of the tree. The method starts with 

a starlike tree in which there is no clustering of the OTUs.  The first step is to separate a 

pair of OTUs from all the others, creating an internal branch.  Among the possible pairs 

of OTUs that can be taken, the one that gives the smallest sum of branch lengths is 

chosen.  This pair is then regarded as a single OTU, and the arithmetic mean distances 

between OTUs are computed to produce a new distance matrix.  The next pair of OTUs 

that gives the smallest sum of branch lengths is calculated and the process is repeated 

until all internal branches have been determined.  Neighbor-joining does not assume a 

constant rate of evolution among the lineages unlike UPGMA (unweighted pair-group 

method with arithmetic mean). 

 

MAXIMUM-LIKELIHOOD MODEL OF EVOLUTION 

Maximum-likelihood (ML) is a statistical method of phylogenetic reconstruction that 

was developed for use with DNA sequences by Felsenstein (1981).  The method is made 

up of three ingredients: the data (DNA sequences for groups whose relationships are to 

be estimated), a phylogenetic hypothesis (a candidate tree to be tested) and a model of 

evolution (such as the Jukes and Cantor one parameter model).  Maximum likelihood 

evaluates the tree (the branching order and branch lengths) in terms of the probability 

that the proposed model of evolution and the hypothesised tree would give rise to the 

observed data.  ML is a character-state based method, like maximum parsimony, where 

every position in an alignment is considered.  It is the most computationally intensive 

method of phylogenetic reconstruction and can become impossibly slow if many taxa 

are being considered due to the number of calculations required.  It does, however, make 

more use of sequence data than the other two methods and generally outperforms them 

providing the model of evolution being used is consistent with the data. 
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Modeltest Version 3.0 is a programme that can be used with PAUP* to find the model 

of evolution that best fits the data, using 56 possible models. This is accomplished 

through an implementation of hierarchical likelihood ratio tests. 

 

BOOTSTRAPPING (ASSESES SUPPORT FOR BRANCHING PATTERNS IN A TREE) 

Once a phylogenetic tree has been constructed, it is important to evaluate the accuracy 

of the tree to see how well it reflects the data.  The bootstrapping technique, random 

resampling with replacement, is the most commonly used method to evaluate trees since 

it was introduced by Felsenstein (1985).  The bootstrap provides assessment of 

confidence for each clade of an observed tree, based on the proportion of bootstrap trees 

showing the same clade.  The method works by randomly choosing a site in the original 

data set and using the site as the first site in a new data set.  The chosen character is 

replaced and the process repeated until a new dataset is created that is the same size as 

the original data set.  A tree is now produced from this dataset.  In the new data set some 

sites will not be included while others can be represent more than once.  The method is 

repeated many times (100-1000) and a majority rule consensus tree is constructed which 

includes the frequencies with which a given branch was found, called the bootstrap 

proportion.  Branches that appear in more than 95% of bootstrap trees can be said to be 

well supported. 
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Figure 1.  Multiple DNA sequence alignment of the 18S SSU (1745 bp) rDNA of 

several Pseudo-nitzschia isolates.  The black dots represent conserved character 

positions and hyphens represent insertion/deletion events.  Taxa abbreviations in the left 

hand column are as follows, 1913 and 1917 = P. delicatissima, W2 = P. fraudulenta, 

PSEUD-X = P. australis, TKA-2  (Manhart et al 1994, Genebank accession # U18241), 

13CC (TKA2-28, Douglas et al. 1994), NPARL (Douglas et al. 1994) and POM-X 

(Douglas et al. 1994) = P. multiseries and WW3, F310 (Manhart et al 1994, Genebank 

accession #U18240) and BRUNDC-X (Douglas et al. 1994) = P. pungens. 
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Figure 1 continued. 
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Figure 1 continued. 



PHYLOGENETICS 

329 

 
Figure 1 continued. 
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Figure 1 continued. 
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Figure 1 continued. 
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Figure 2.  Multiple rDNA alignments of character positions of the SSU considered 

unambiguous and analysed using Maximum-Likelihood, distance (Logdet 

transformation) and Maximum Parsimony methods. The black dots represent conserved 

character positions and hyphens represent insertion/deletion events. Taxon abbreviations 

in the left hand column are as follows 1913 and 1917 = P. delicatissima, W2 = P. 

fraudulenta, PSEUD-X (Douglas et al. 1994) = P. australis, WW3, BRUND-X 

(Douglas et al. 1994) and F310 (Genebank accession #U18240) = P. pungens, 

Nitz.apicu = Nitzschia apiculata (#M87334), Bacl.paxil = Bacillaria paxillifera 

(#M87325), Cylt.clost = Cylidrotheca closterium (#M87326), Thss.rotul = 

Thalassiosira rotula (#X85397), Sklt.costa = Skeletonema costatum (#X85395), 

Rhzs.setig = Stephanopyxis broschii (#M87330) and Stpx.brosc = Rhizosolenia setigera 

(#M87329). 
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Figure 2 continued. 
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Figure 2 continued. 
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Figure 2 continued. 
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Figure 2 continued. 
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Figure 2 continued. 
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Figure 2 continued. 
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Figure 2 continued. 
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Figure 2 continued. 
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Appendix VI 
 

Raw data of the morphometric analysis of Pseudo-nitzschia species recorded under the 

scanning electron microscope. 
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Cell no. Length Width Fibulae Striae Interstriae Poroids 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

1 120.00 3.15 10 10 10 3.0
2 81.66 3.44 11 11 11 3.0
3 98.32 2.26 11 11 11 3.0
4 146.64 2.81 11 11 11 3.0
5 95.30 2.99 11 11 11 3.0
6 151.45 2.73 11 11 11 3.0
7 102.60 2.71 11 11 11 3.0
8 86.64 3.19 11 11 11 3.0
9 95.68 2.96 11 12 12 3.0
10 130.12 3.65 11 11 11 3.0
11 115.69 3.73 12 12 12 3.0
12 118.52 3.64 12 12 12 3.0
13 125.41 2.95 12 12 12 3.5
14 119.86 3.07 12 12 12 3.0
15 88.54 3.43 12 11 12 2.0
16 120.21 3.36 12 12 12 2.5
17 104.84 3.78 12 12 12 3.0
18 119.50 3.20 12 12 12 3.5
19 101.63 3.52 12 12 12 3.0
20 113.84 3.60 12 12 12 3.0
21 110.00 4.20 12 12 12 3.0
22 61.00 3.50 12 12 12 3.0
23 90.62 3.17 12 12 12 3.0
24 144.87 3.43 12 12 12 3.0
25 146.37 3.40 12 12 12 3.0
26 139.10 2.91 12 12 12 3.0
27 122.69 2.92 12 12 12 3.0
28 148.30 2.70 12 12 12 3.0
29 109.94 2.58 12 12 12 3.0
30 100.85 3.69 12 12 12 4.0
31 98.50 2.93 12 12 12 3.0
32 102.22 3.05 12 12 12 3.0
33 145.86 3.22 12 12 12 3.0
34 85.64 3.69 12 12 12 3.0
35 75.90 3.42 12 12 12 3.0
36 96.97 3.70 12 12 12 3.0
37 96.34 3.07 12 12 12 3.0
38 94.48 2.46 12 12 12 3.0
39 100.49 3.59 12 12 12 3.0
40 117.10 3.03 12 12 12 3.0
41 120.00 3.00 12 11 12 4.0
42 117.00 3.40 12 12 12 n/d
43 107.65 3.28 13 13 13 3.0
44 89.36 3.01 13 13 13 3.0
45 143.35 3.67 13 13 13 3.0
46 94.00 3.60 13 13 13 3.0
47 99.00 3.80 13 13 13 3.0
48 85.00 4.00 13 13 13 3.0
49 99.00 4.05 13 12 12 3.0
50 91.23 3.08 13 13 13 3.0
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Cell no. Length Width Fibulae Striae Interstriae Poroids 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

51 88.54 2.85 13 13 13 3.0
52 155.66 3.84 13 13 13 3.0
53 157.77 4.27 13 13 13 3.0
54 109.33 3.33 13 13 13 4.0
55 95.37 3.04 13 13 13 3.5
56 106.65 2.85 13 13 13 3.0
57 94.18 2.99 13 12 13 3.0
58 93.47 3.25 13 13 13 3.0
59 152.68 2.79 13 13 13 3.0
60 90.81 3.00 13 13 13 3.0
61 94.87 3.14 13 13 13 2.5
62 n/d 2.80 13 13 13 4.0
63 106.39 3.41 13 13 13 3.0
64 101.13 3.28 13 13 13 2.5
65 90.64 3.44 13 13 13 2.5
66 85.75 3.01 13 13 13 3.0
67 81.16 2.22 13 13 13 3.5
68 95.08 2.59 13 13 13 3.0
69 116.67 3.51 13 13 13 2.5
70 85.00 3.90 13.3 13.3 13.3 2.5
71 111.00 3.00 13.33 13.33 13.33 3.0
72 99.00 3.12 13.33 13.33 13.33 3.0
73 108.00 3.40 13.33 13.33 13.33 3.0
74 125.00 4.56 13.9 13.9 13.9 2.0
75 94.50 4.00 14 14 14 3.0
76 87.50 3.80 14 16 14 3.0
77 120.00 5.40 14 14 14 4.0
78 125.40 4.00 14 14 14 3.0
79 117.80 3.00 14 12 12 3.0
80 n/d 2.25 14 13 14 4.0
81 87.93 3.35 14 14 14 3.0
82 74.90 2.77 14 13 14 3.0
83 87.11 2.88 14 14 14 4.0
84 89.25 2.74 14 14 14 3.0
85 102.18 3.10 14 13 14 3.0
86 109.88 3.29 14 14 14 3.0
87 117.00 4.00 14 14 14 3.0
88 135.63 2.73 14 14 14 3.5
89 108.00 2.60 14 14 14 3.0
90 108.00 2.97 14 14 14 3.0
91 102.00 4.30 16 14 16 3.0
92 89.10 4.00 16 15 15 3.0
93 n/d 2.87 16 14 16 4.0
94 107.90 3.75 16.5 16.5 16.5 3.4
95 123.00 3.50 n/d n/d n/d n/d
96 98.00 4.00 n/d n/d n/d n/d

mean 107.51 3.30 12.76 12.65 12.73 3.06
STDEV  ± 20.25 0.54 1.17 1.09 1.13 0.37
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 No. of Cells  No. of fibulae  No. of striae No. of interstriae No. of poroids
(in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

1 10.0 10.0 10.0 –
1 16.5 15.0 15.0 –
1 – 16.0 16.5 –
1 – 16.5 – –
2 16.0 – 16.0 2.0
4 13.3 13.3 13.3 –
6 – – – 2.5
8 – – – 3.5
8 – – 11.0 4.0
9 11.0 – – –

10 – 11.0 – –
14 – 14.0 – –
16 – – 14.0 –
18 14.0 – – –
26 – – 13.0 –
27 13.0 – – –
28 – 13.0 – –
32 12.0 – – –
34 – 12.0 – –
35 – – 12.0 –
71 – – – 3.0
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Cell no. Length Width Fibulae Striae Interstriae Poroids 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

1 127.64 4.14 12 12 12 6
2 80.48 4.08 12 12 12 6
3 94.66 3.68 13 13 13 6
4 86.00 4.20 13.33 13.33 13.33 7
5 109.98 3.75 14 15 15 6
6 98.00 4.00 14 14 14 7
7 98.00 4.00 14 14 14 6
8 80.20 3.89 14 14 14 7
9 85.75 4.23 14 14 14 6
10 96.00 4.80 14.8 14.8 14.8 6
11 91.01 4.56 15 15 15 n/d
12 93.00 4.00 15.78 15.78 15.78 6
13 n/d 2.70 16 15 16 7
14 92.00 3.00 16 15 16 7
15 n/d 2.83 16 16 16 7
16 n/d 2.83 16 16 16 7

mean 94.82 3.79 14.37 14.31 14.43 6.47
STDEV  ± 12.69 0.63 1.37 1.26 1.37 0.52

 No. of Cells  No. of fibulae  No. of striae No. of interstria  No. of poroids
(in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

1 13 13 13 –
1 13.3 13.3 13.3 –
2 12 12 12 –
3 15 16 – –
4 – – 14 –
4 – – 15 –
5 14 14 – –
5 16 15 16 –
7 – – – 7
8 – – – 6
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Cell no. Length Width Fibulae Striae Interstriae Poroids 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

Cell # Length (µm) Width (µm) Fibulae Striae Interstriae Poroids 
1 130.7 6.16 15 17 17 8
2 153.34 5.54 20 20 20 8
3 113.3 5.83 20 20 20 8
4 108 6 20 20 20 7

mean 126.34 5.88 18.75 19.25 19.25 7.75
STDEV  ± 20.45 0.27 2.50 1.50 1.50 0.50

 No. of Cells  No. of fibulae  No. of striae No. of interstriae No. of poroids
(in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

1 15 17 17 7
3 20 20 20 8
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Cell no. Length Width Fibulae Striae Interstriae Poroids 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

1 65 5.5 19 18 19 8
2 125.88 5.73 18 18 18 6

mean 95.44 5.615 18.5 18 18.5 7
STDEV  ± 43.05 0.16 0.71 0.00 0.71 1.41

 No. of Cells  No. of fibulae  No. of striae No. of interstriae No. of poroids
(in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

1 19 - 19 8
1 18 - 18 6
2 18 18 - -
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Cell no. Length Width Fibulae Striae Interstriae Poroids 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

1 128.25 6.52 14 17 17 5.0
2 114.15 7.06 14 16 16 5.0
3 103.22 6.54 15 15 15 5.0
4 5.80 15 18 18 6.0
5 123.75 7.44 15 16 16 5.0
6 80.69 7.25 15 15 15 5.0
7 113.62 6.03 15 17 17 5.0
8 114.28 6.56 15 16 16 5.0
9 118.70 6.28 15 14 15 5.0
10 124.62 6.06 15 15 15 5.0
11 83.79 6.61 15 17 17 5.0
12 110.74 6.98 15 16 16 5.5
13 91.00 6.63 15 16 16 5.0
14 120.45 7.12 15 15 15 5.0
15 104.02 6.35 15 15 15 5.0
16 107.40 7.24 15 15 15 4.0
17 87.17 7.42 15 16 16 5.0
18 108.90 7.06 15 15 15 5.0
19 109.61 6.03 16 16 16 5.0
20 102.75 6.52 16 16 16 5.0
21 81.09 6.58 16 16 16 5.0
22 85.25 6.42 16 16 16 5.0
23 79.22 6.85 16 16 16 5.0
24 77.44 6.99 16 16 16 4.0
25 80.00 5.66 16 16 16 5.0
26 82.55 5.30 16 16 16 4.0
27 78.90 7.27 16 16 16 6.0
28 93.28 5.82 16 15 16 5.5
29 84.70 6.98 16 17 18 5.0
30 113.39 6.99 16 16 16 5.0
31 118.49 6.20 16 16 16 5.0
32 74.22 6.90 16 17 17 5.0
33 112.40 6.29 16 15 16 5.0
34 101.37 6.58 16 17 17 5.0
35 76.97 6.17 16 16 16 5.0
36 124.15 6.29 16 16 17 5.0
37 143.09 5.71 16 15 16 5.0
38 96.83 5.56 16 17 17 5.0
39 114.77 6.16 16 17 17 5.0
40 68.04 6.18 16 16 16 5.0
41 80.20 6.71 16 17 17 5.0
42 79.69 6.35 16 16 16 5.0
43 83.12 6.20 16 16 16 5.0
44 92.63 6.16 16 16 16 5.0
45 65.00 6.40 16 16 16 5.0
46 106.29 6.80 16 16 16 5.0
47 113.74 7.52 16 16 16 5.0
48 94.80 6.55 16 16 16 5.0
49 111.84 6.92 16 16 16 4.0
50 108.57 6.61 16 16 16 5.0
51 94.47 6.22 16 17 16 5.0
52 94.98 6.79 16 17 18 5.0
53 92.40 6.14 16 16 16 4.5
54 108.59 6.25 16 16 16 5.5
55 92.21 7.36 17 18 18 5.0
56 87.18 6.01 17 17 17 5.0
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Cell no. Length Width Fibulae Striae Interstriae Poroids 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

57 81.57 6.70 17 17 17 5.5
58 86.15 6.09 17 17 17 6.0
59 88.38 7.25 17 16 17 4.0
60 84.01 6.52 17 17 17 5.0
61 83.06 5.79 17 16 17 5.0
62 78.32 6.56 17 17 17 5.0
63 112.61 6.59 17 18 18 5.0
64 80.97 6.98 17 17 17 5.0
65 89.09 6.96 17 16 17 5.0
66 82.96 6.99 17 16 16 5.0
67 118.21 6.72 17 17 17 5.0
68 114.49 7.65 17 17 17 5.0
69 78.90 6.26 17 17 17 5.0
70 122.99 6.83 17 17 17 5.0
71 117.07 6.55 17 17 17 5.6
72 74.54 6.43 17 17 17 5.0
73 62.69 6.11 17 17 17 5.0
74 79.83 5.89 17 17 17 5.0
75 72.47 6.38 17 17 18 4.5
76 83.09 6.03 17 17 17 5.5
77 69.75 6.80 17 17 17 5.0
78 78.78 5.42 17 17 17 5.5
79 57.50 6.25 17 17 17 5.0
80 90.87 6.89 17 17 17 5.0
81 106.51 6.72 17 16 17 5.0
82 88.08 7.10 17 16 17 5.5
83 107.03 7.43 17 16 17 5.0
84 85.68 7.46 17 17 17 5.0
85 106.33 6.69 17 17 17 5.0
86 88.00 6.76 17 17 17 5.0
87 94.22 6.56 17 17 17 5.0
88 95.23 6.98 17 17 17 5.0
89 88.00 7.48 17 17 17 5.0
90 92.49 6.24 17 17 17 4.0
91 91.84 7.35 17 17 17 4.0
92 89.84 6.70 17 17 17 4.0
93 101.85 6.82 17 17 17 5.0
94 113.06 6.57 17 17 17 5.0
95 98.56 6.08 17 17 17 5.0
96 99.98 6.44 17 17 17 5.0
97 90.39 5.95 17 16 17
98 84.05 7.12 18 18 18 6.0
99 71.86 6.74 18 18 18 5.5
100 136.24 6.49 18 18 18 6.0
101 6.00 18 18 18
102 90.00 5.60 18 18 19 5.5
103 76.00 5.75 18 18 18 5.5
104 126.44 6.92 18 18 18 5.0
105 116.88 6.71 18 18 18 5.0
106 112.91 6.61 18 18 18 5.0
107 81.71 6.43 18 18 18 5.0
108 77.82 6.98 18 18 18 5.0
109 80.54 6.77 18 17 17 6.0
110 91.96 6.20 18 18 18 5.0
111 79.57 6.66 18 18 18 6.0
112 72.95 6.87 18 18 18 4.0
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Cell no. Length Width Fibulae Striae Interstriae Poroids 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

113 72.33 6.61 18 18 18 5.0
114 79.49 6.39 18 17 18 5.5
115 91.24 6.74 18 18 18 5.0
116 92.63 6.94 18 17 18 5.0
117 102.05 7.79 18 18 18 5.0
118 90.78 7.17 18 18 18 5.0
119 109.39 7.08 18 18 18 5.0
120 115.81 7.02 18 18 18 5.0
121 6.80 19 18 19 6.5
122 96.62 6.84 19 19.2 19.5 5.0
123 91.81 6.91 19 19 19 5.0
124 96.61 6.50 19 19 19 4.5
125 88.42 7.28 19 19 19 4.0
126 113.05 6.82 19 19 19 3.5
127 63.00 6.00 20 19 20 5.0

mean 94.89 6.60 16.72 16.80 16.95 5.01
STDEV  ± 17.04 0.50 1.14 1.02 1.03 0.50

 No. of Cells  No. of fibulae  No. of striae No. of interstria No. of poroids
(in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

1 20 14 20 3.5
1 – – – 6.5
2 14 – – –
3 – – – 4.5
6 19 19 – –
7 – – 19 6.0
8 – – 15 –

10 – 15 – 4.0
12 – – – 5.5
14 – – – –
16 15 – – –
23 18 – – –
24 – 18 – –
27 – – 18 –
35 – – 16 –
36 16 – – –
39 – 16 – –
43 17 – – –
47 – 17 – –
49 – – 17 –
91 – – – 5.0



Pseudo-nitzschia fraudulenta 
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Cell no. Length Width Fibulae Striae Interstriae Poroids No. of striae 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm) central interspace

1 90.82 7.20 17 17 17 5.0 n/d
2 77.36 5.82 21 21 21 5.0 n/d
3 79.91 5.03 21 22 22 n/d n/d
4 80.06 6.58 21 22 22 5.0 4.0
5 86.68 6.53 21 23 23 5.0 3.5
6 73.59 5.59 22 22 22 5.5 4.0
7 78.84 5.74 22 22 22 5.5 3.0
8 74.47 5.69 22 22 22 5.0 4.0
9 72.59 5.04 22 22 22 6.0 4.0

10 72.33 4.88 22 22 22 5.0 3.0
11 76.65 6.04 22 22 22 5.0 3.0
12 n/d 4.75 22 26 26 6.0 4.0
13 66.00 6.50 22 22 22 6.0 4.0
14 84.40 5.56 22 22 22 5.0 3.0
15 72.36 5.22 22 22 22 5.5 3.0
16 102.13 6.28 22 22 22 6.0 4.0
17 n/d 6.00 22 22 22 6.0 3.5
18 82.78 5.86 22 22 22 5.0 3.0
19 81.36 6.44 22 23 22 5.0 4.0
20 81.53 5.79 22 22 22 6.0 4.0
21 75.01 6.35 22 23 22 5.0 4.0
22 76.64 6.90 22 22 22 6.0 4.0
23 78.83 5.97 22 22 22 5.0 4.0
24 78.10 5.42 22 24 24 5.0 4.0
25 78.44 5.35 22 22 22 5.0 4.0
26 75.68 5.94 22 24 25 6.0 4.0
27 81.27 6.40 22 22 22 6.0 3.0
28 81.09 8.22 22 22 22 5.0 4.0
29 70.90 6.09 22 22 22 5.0 4.0
30 85.01 6.53 23 23 23 5.0 3.0
31 84.82 5.94 23 22 23 6.0 4.0
32 82.14 6.30 23 22 23 5.5 4.0
33 82.75 6.87 23 22.5 23 5.0 4.0
34 78.06 6.49 23 22 23 5.5 4.0
35 70.78 5.48 23 23 23 6.0 3.0
36 80.45 6.55 23 23 23 5.0 4.0
37 79.02 5.67 23 23 23 5.5 3.0
38 86.00 5.59 23 22 23 5.0 4.0
39 80.19 5.71 23 23 23 5.5 4.0
40 75.66 5.67 23 23 23 5.0 4.0
41 77.66 5.99 23 23 23 6.0 3.0
42 75.47 5.63 23 23 23 5.0 3.0
43 78.82 6.31 23 23 23 n/d 4.0
44 85.45 6.91 23 23 23 n/d 3.0
45 70.60 5.66 23 22 23 5.0 3.0
46 77.48 5.71 23 23 23 5.0 4.0
47 76.09 5.88 23 23 23 5.0 4.0
48 94.00 5.30 23 24 25 6.0 4.0
49 n/d 5.40 23 24 24 6.0 4.0
50 77.53 4.82 23 23 23 5.0 3.0
51 93.63 5.45 23 23 23 5.0 3.0
52 83.34 5.38 23 23 23 5.0 n/d
53 74.30 5.45 23 23 23 5.0 n/d
54 81.62 5.39 23 23 23 6.0 3.0
55 84.28 4.91 23 23 23 6.0 3.0
56 78.72 5.95 23 23 23 5.0 4.0
57 73.40 6.25 23 23 23 7.0 4.0  



Pseudo-nitzschia fraudulenta 
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Cell no. Length Width Fibulae Striae Interstriae Poroids No. of striae 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm) central interspace

58 86.63 6.41 23 23 23 6.0 4.0
59 78.13 6.32 23 23 23 5.0 3.0
60 80.76 5.38 23 23 23 5.0 3.0
61 75.40 5.08 23 23 23 5.0 3.0
62 85.89 5.14 23 23 23 5.0 4.0
63 98.66 5.23 23 23 23 7.0 3.0
64 101.78 5.03 23 23 23 5.5 3.0
65 99.93 4.07 23 23 23 5.0 4.0
66 85.34 5.12 23 24 24 5.0 3.0
67 102.86 4.72 23 23 23 5.0 4.0
68 81.16 5.30 23 23 23 5.0 4.0
69 77.92 5.40 23 23 23 n/d 3.0
70 80.50 5.61 23 23 23 n/d 3.0
71 73.65 6.05 23 24 24 n/d 3.0
72 73.76 6.06 23 23 23 5.0 3.0
73 75.76 5.83 23 23 23 n/d 4.0
74 75.89 5.57 23 23 23 5.5 3.5
75 93.53 5.46 23 24 24 6.0 n/d
76 74.47 5.94 23 24 24 5.5 4.0
77 81.41 5.70 23 23 23 5.5 4.0
78 80.39 5.91 23 22 23 5.0 4.0
79 79.36 6.17 23 23 23 5.0 3.0
80 73.23 6.38 23 24 23 5.0 3.0
81 80.91 6.06 23 22 23 5.5 3.0
82 81.52 6.40 23 22.5 23 5.5 4.0
83 76.14 5.89 23 23 23 5.0 4.0
84 77.73 5.66 23 23 23 5.0 4.0
85 81.48 5.39 23 23 24 5.0 3.0
86 79.69 6.14 24 24 24 6.0 3.0
87 80.35 5.81 24 23 24 6.0 3.0
88 57.20 5.90 24 24 24 6.0 3.0
89 57.00 6.30 24 24 24 6.0 4.0
90 67.50 5.00 24 24 24 6.0 4.0
91 66.24 5.01 24 24 24 6.0 3.0
92 70.00 4.75 24 24 24 5.5 4.0
93 80.38 5.53 24 24 24 5.0 3.0
94 70.40 6.00 24 24 24 n/d 3.0
95 75.29 5.57 24 24 24 6.0 4.0
96 99.62 5.42 24 24 24 5.0 4.0
97 75.86 5.39 24 23 24 5.0 4.0
98 102.21 5.22 24 24 24 6.0 3.0
99 81.94 5.45 24 24 24 5.0 4.0
100 79.83 5.60 24 24 24 5.0 3.0
101 78.54 5.78 24 24 24 4.5 3.0
102 70.77 5.60 24 24 24 5.0 4.0
103 78.47 5.65 24 24 24 6.0 n/d
104 75.16 5.71 24 24 25 6.0 4.0
105 69.97 4.94 24 24 25 6.5 3.0
106 70.58 5.16 24 24 24 6.0 3.5
107 70.67 6.60 24 24 24 6.0 4.0
108 75.90 5.65 24 24 25 6.0 4.0
109 74.74 5.05 24 24 24 6.0 3.0
110 71.96 6.49 24 24 24 n/d 4.0
111 80.13 5.35 24 23 24 5.0 3.0
112 72.86 5.56 24 24 24 6.0 3.0
113 74.15 5.56 24 24 24 5.0 3.0
114 74.77 6.41 24 24 24 5.5 3.0  



Pseudo-nitzschia fraudulenta 
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Cell no. Length Width Fibulae Striae Interstriae Poroids No. of striae 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm) central interspace

115 74.98 5.98 24 24 24 6.0 3.0
116 77.13 5.77 24 23 24 5.5 4.0
117 75.34 6.00 24 24 24 5.5 3.0
118 75.78 5.60 24 23 24 5.0 4.0
119 106.50 5.84 24 24 24 5.0 4.0
120 76.53 5.20 24 24 24 5.0 4.0
121 80.02 5.92 24 24 24 5.0 4.0
122 75.50 6.22 24 24 24 5.0 4.0
123 70.79 5.89 24 23 24 6.0 4.0
124 78.87 6.47 24 24 24 5.5 4.0
125 81.39 6.01 24 24 24 5.0 3.0
126 76.94 5.71 24 24 24 5.0 3.5
127 76.42 6.02 25 25 25 6.0 3.0
128 74.15 6.23 25 24 25 5.5 3.0
129 n/d 5.00 25 25 26 6.0 4.0
130 n/d 5.58 25 25 25 n/d 3.0
131 74.86 4.88 25 25 25 6.0 3.0
132 90.00 5.40 25 24 25 7.0 4.0
133 71.75 5.97 26 23 23 6.0 4.0
134 69.00 6.00 n/d n/d n/d n/d n/d
135 67.00 6.90 n/d n/d n/d n/d n/d
136 100.00 6.00 n/d n/d n/d n/d n/d
137 111.89 4.75 n/d n/d n/d n/d n/d
138 74.90 5.76 n/d n/d n/d 5.0 3.0
139 75.58 5.73 n/d n/d n/d n/d n/d
140 75.98 6.28 n/d n/d n/d n/d 3.0

mean 79.29 5.77 23.14 23.15 23.30 5.45 3.5
STDEV  ± 8.81 0.58 1.06 1.02 1.08 0.52 0.5

 No. of Cells  No. of fibulae  No. of striae No. of interstriae No. of poroids
(in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

1 17.0 17.0 17.0 4.5
1 26.0 21.0 21.0 6.5
1 – 26.0 – –
2 – 22.5 26.0 –
3 – – – 7.0
4 21.0 25.0 – –
6 25.0 – – –

10 – – 25.0 –
19 – – – 5.5
24 22.0 – – –
23 – – 22.0 –
28 – 22.0 – –
39 – – – 6.0
41 24.0 – – –
45 – – 24.0 –
46 – 24.0 – –
50 – 23.0 – –
51 – – 23.0 –
56 23.0 – – –
61 - – – 5.0  



Pseudo-nitzschia cf. subpacifica 
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Cell No. Length Width Fibulae Striae Interstriae Poroids No. of striae 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm) central interspace

1 62.62 4.64 19 30 30 9 3
1 59.61 4.39 19 31 31 9.5 3

mean 61.12 4.52 19.00 30.50 30.50 9.25 3.00
STDEV  ± 2.13 0.18 0.00 0.71 0.71 0.35 0.00

 No. of Cells  No. of fibulae  No. of striae No. of interstriae No. of poroids
(in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

1 – 30 30 9
1 – 31 31 9.5
2 19 – – –



Pseudo-nitzschia delicatissima 
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Cell No. Length Width Fibulae Striae Interstriae Poroids No. of striae 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm) per central interspace

1 n/d 1.5 20 38 38 10 3
2 41.61 1.59 22 40 40 12 3
3 53.47 1.42 22 39 39 10 3
4 54.99 1.34 22 39 39 10 3
5 37.45 1.48 22 39 39 12 3
6 32.5 1.68 22.5 41 41 10 n/d
7 36.51 1.84 23 40 40 11 3
8 35.76 1.68 23 40 40 12 3.5
9 35.47 2.23 23 40 40 11 3

10 31.94 1.87 23 40 40 12 3
11 60.79 1.49 23 39 39 6 3
12 28.12 1.54 23 40 40 12 3
13 47.5 1.5 23 40 44 10.5 n/d
14 49.5 1.37 23 40 40 12 3
15 47.91 1.51 23 39 39 10 3
16 51.89 1.39 23 40 40 11 3.5
17 75.04 1.72 23 40 40 n/d 3
18 39.08 1.42 23 40 40 11 3
19 51.51 1.45 23 39 39 10 3
20 48.61 1.48 23 39 39 11 2
21 48.28 1.27 23 41 41 10 3
22 42.58 1.44 23 40 40 12 3
23 52.2 1.39 23 40 40 10 3.5
24 52.95 1.56 23 40 40 10 3
25 42.49 1.54 23 39 39 9 3
26 n/d n/d 23 39 39 12 3
27 33 2.25 24 44.5 44 8.5 3.5
28 35.36 2.38 24 39 39 11 4
29 36.08 1.89 24 40 40 12 3
30 35 2.03 24 39 39 12 3
31 34.88 2.13 24 40 40 12 3
32 35.01 1.87 24 40 40 12 3
33 34.31 2.06 24 40 40 11 3
34 47.54 1.35 24 40 40 n/d 3
35 47.41 1.47 24 39 39 12 3.5
36 28.97 1.86 24 44 44 n/d 3.5
37 27.03 1.54 24 40 40 12 3
38 25.14 1.64 24 40 40 12 3
39 26.27 1.82 24 40 40 12 3
40 26.05 1.62 24 39 39 12 3
41 25.06 1.91 24 41 41 12 3
42 28.02 1.63 24 40 40 11 3
43 30.6 1.79 24 40 40 12.5 3
44 45.52 1.52 24 40 40 12 3.5
45 42.47 1.53 24 40 40 11 3
46 38.68 1.64 24 40 40 12 3
47 67.76 1.72 24 39 39 11 3
48 57 1.66 24 40 40 n/d 3.5
49 34.9 1.74 24 40 40 10 3
50 35.9 1.4 24 40 40 12 3
51 46.37 1.41 24 39 39 10 3
52 39.76 1.45 24 40 40 10 3
53 n/d 1.7 24.5 41 42 11.5 n/d
54 27.21 1.7 25 40 40 12 3
55 27.51 1.95 25 44 44 11 3
56 23.54 1.83 25 41 41 n/d 3
57 26.87 1.92 25 41 41 n/d 3  



Pseudo-nitzschia delicatissima 
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Cell No. Length Width Fibulae Striae Interstriae Poroids No. of striae 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm) per central interspace

58 49 1.55 25 40 40 11 3
59 49.71 1.56 25 40 40 11 3
60 49.06 1.43 25 40 40 12 3.5
61 49.35 1.57 25 40 40 12 3
62 50.33 1.34 26 39 39 10 3
63 32.5 1.75 26 40 43 10 n/d
64 32.75 1.75 26 40 40 10 3
65 64.12 1.52 26 41 41 11 3.5
66 24.61 1.83 26 41 41 13 3
67 42 1.2 27 44 48 10 3
68 n/d 1.29 27 40 40 10.5 n/d
69 41.43 1.57 27.5 45 46 11 n/d
70 42.8 2 28 46 46 9 n/d
71 28.82 2.16 29 40 40 10 3
72 n/d 1.95 n/d 40 47 8.5 3
73 25.74 1.9 n/d n/d n/d n/d n/d
74 27.06 1.91 n/d n/d n/d n/d n/d
75 25.96 1.75 n/d n/d n/d n/d n/d
76 41 1.33 n/d 40 40 n/d n/d

 
mean 40.05 1.66 24.05 40.24 40.51 10.94 3.08

STDEV  ± 11.36 0.25 1.48 1.46 1.94 1.20 0.25

 No. of Cells  No. of fibulae  No. of striae No. of interstriae No. of poroids
(in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

1 20.0 38.0 38.0 6.0
1 22.5 44.5 42.0 11.5
1 24.5 45.0 43.0 12.5
1 25.5 46.0 47.0 13.0
1 28.0 – 48.0 –
1 28.0 – – –
2 27.0 – 46.0 8.5
2 – – – 9.0
2 – – – 10.5
3 – 44.0 – –
4 22.0 – 44.0 –
5 26.0 – – –
7 – – 41.0 –
8 25.0 41.0 – –

15 – – 11.0
16 – 39.0 39.0 –
17 – – – 10.0
20 23.0 – – –
24 – – – 12.0
26 24.0 – – –
39 – – 40.0 –
42 – 40.0 – –  



Pseudo-nitzschia pseudodelicatissima 
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Cell No. Length Width Fibulae Striae Interstriae Poroids No. of striae 
(µm) (µm) (in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm) central interspace

1 82.92 1.58 22 41 41 4 5
2 56.42 1.62 23 42 42 5 3
3 66.4 1.21 23 43 43 4.5 3
4 55.55 1.23 23 42 42 5 3.5
5 53.78 1.52 23 43 43 5 3
6 71.25 1.32 23 42 42 4.5 n/d
7 58.1 1.54 23 42 42 4 n/d
8 70.82 1.12 23 43 43 4 5
9 48.86 1.3 23 42 42 5 4

10 47.43 1.44 23 44 44 5 4
11 60.79 1.49 23 39 39 6 3
12 63.44 1.37 23 42 42 4 4.5
13 52.92 1.37 24 42 42 4 4
14 69.36 1.25 24 41 41 5 3.5
15 78.66 1.32 24 43 43 4 n/d
16 59.46 1.43 24 42 42 5 n/d
17 59.83 1.34 24 42 42 5 3
18 84.64 1.25 24 44 44 5 3
19 62.71 1.14 24 42 42 4.5 4
20 42.22 1.17 24 40 40 4 4
21 48.71 1.4 24 43 43 5 4.5
22 57.81 1.25 24 41 41 5 4
23 27.41 1.89 25 40 40 4 3
24 60.31 1.55 25 42 42 4.5 4
25 76.89 1.29 25 43 43 4 4
26 70.24 1.13 25 40 40 4 4
27 53.81 1.3 25 43 43 5 3.5
28 61.24 1.28 25 43 43 4 4.5
29 52.06 1.28 25 42 42 5.6 3.5
30 63.05 1.34 26 43 43 5 3.5
31 58.86 1.36 26 42 42 4 4
32 65.14 1.32 26 44 44 5 3
33 n/d 1.35 26 43 44 7 n/d
34 56.14 1.05 26 43 43 4 3.5
35 66.22 1.64 26 44 44 4 4.5
36 n/d n/d 30 40 40 6 n/d
37 62.44 1.21 n/d n/d n/d n/d n/d

mean 60.74 1.35 24.33 42.14 42.17 4.68 3.77
STDEV  ± 11.33 0.17 1.49 1.25 1.28 0.71 0.61

 No. of Cells  No. of fibulae  No. of striae No. of interstriae No. of poroids
(in 10 µm) (in 10 µm) (in 10 µm) (in 1 µm)

1 22 39 39 5.6
1 30 – – 7.0
2 – – – 6.0
3 – 41 41 –
4 – 40 40 4.5
4 – 44 – –
5 – – 44 –
6 26 – – –
7 25 – – –

10 24 – 43 –
11 23 43 –
13 – 42 42 –
14 – – – 4.0
14 – – – 5.0
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Appendix VII 
 

Data on station positions, depth, temperature, salinity, chlorophyll, inorganic nutrients, 

Pseudo-nitzschia cell concentrations ("P. seriata" and "P. delicatissima" groups), 

Pseudo-nitzschia identification, secchi depth, the vertical attenuation coefficient, λ, the 

dimensionless optical depth (λ .h), stratification parameter, Φ, and surface to bottom 

water temperature difference, Delta-t, along transects sampled during separate cruises 

off the west coast of Ireland in May 1997, and the south and southwest coasts of Ireland 

in August 1993, July 1996, early September 1996 and October 1997 .  
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Table 1.  Station positions, temperature and salinity values recorded at discrete depths 
relating to archived samples, cruise # 13, southwest coast of Ireland, August 8th-18th 

1993. 
 

Station Date Latitude (N) Longitude (W) Depth Temperature Salinity 
Number (1993) dec. deg dec. deg (m) (°C) (PSU) 
       
1301 15-Aug-93 51.48 10.27 5 13.54 34.99 
    15 11.60 35.06 
1302 15-Aug-93 51.44 10.50 0 15.00 34.74 
    20 15.40 35.22 
    50 11.25 35.39 
1303 15-Aug-93 51.42 10.67 0 15.00 35.24 
    20 15.35 35.21 
    50 11.44 35.21 
1304 15-Aug-93 51.39 10.83 45 12.12 35.22 
1312 15-Aug-93 51.54 10.00 18 12.78 34.87 
1313 16-Aug-93 51.51 10.17 0 13.84 34.95 
    12 13.38 34.97 
    20 12.44 34.97 
    40 11.62 35.06 
1314 17-Aug-93 51.34 10.08 0 14.13 34.81 
    15 12.18 34.90 
    30 10.61 35.08 
    50 10.30 35.30 
1315 17-Aug-93 51.24 9.92 0 13.90 34.91 
    10 13.00 34.95 
    30 10.61 35.05 
    50 10.30 35.28 
1316 17-Aug-93 51.28 9.83 18 12.25 34.90 
    28 11.26 34.98 
1317 17-Aug-93 51.33 9.75 0 14.50 34.85 
    20 12.57 34.95 
1318 17-Aug-93 51.38 9.68 15 12.95 34.89 
1319 17-Aug-93 51.42 9.60 25 13.25 34.88 
1323 18-Aug-93 51.28 9.40 20 13.16 34.76 
1324 18-Aug-93 51.19 9.40 20 12.93 34.81 
1325 18-Aug-93 51.22 9.20 12 13.80 34.80 
    22 11.49 34.79 
    50 9.86 35.18 
1326 18-Aug-93 51.25 9.00 0 15.13 34.75 
    25 12.90 34.84 
1327 18-Aug-93 51.28 8.80 20 11.76 34.88 
    40 11.35 35.04 
1328 18-Aug-93 51.32 8.60 0 15.70 34.69 
    10 15.25 34.69 
    35 10.75 35.07 
1329 18-Aug-93 51.33 8.44 0 15.80 34.75 
    27 11.24 34.86 
    40 10.10 35.03 
1330 18-Aug-93 51.37 8.25 0 16.20 34.80 
    23 11.14 34.72 
    33 11.10 35.09 

  



STATION DATA 

361 

Table 2.  Station positions, temperature and salinity values recorded at discrete depths, 
cruise # 18, south coast of Ireland, July 20th-25th 1996. n/d = not determined. 
 

Station Date Latitude (N) Longitude (W) Depth Temperature Salinity 

Number (1993) dec. deg dec. deg (m) (°C) (PSU) 

       

1801 20-Jul-96 51.45 10.33 20 14.81 35.34 

    40 10.58 35.48 

1802 20-Jul-96 51.45 10.58 25 13.82 35.49 

    55 11.45 35.52 

1803 20-Jul-96 51.45 10.84 10 15.54 35.51 

    30 14.06 35.53 

1804 20-Jul-96 51.45 11.08 15 15.73 35.55 

    35 14.32 35.54 

1805 20-Jul-96 51.45 11.33 30 13.16 35.54 

    50 11.79 35.55 

1806 21-Jul-96 51.62 9.78 15 13.85 35.20 

    35 12.12 35.31 

1807 21-Jul-96 51.44 9.92 20 13.15 35.18 

    40 11.97 n/d 

1808 21-Jul-96 51.45 9.55 15 15.46 35.04 

    35 13.67 35.13 

1809 21-Jul-96 51.43 9.40 15 14.06 35.07 

    30 13.16 35.08 

1810 22-Jul-96 51.12 9.40 15 13.60 35.23 

    35 9.62 35.31 

1811 22-Jul-96 51.35 8.44 20 13.40 35.19 

    40 9.50 35.29 

1812 22-Jul-96 51.58 8.48 18 12.30 35.00 

    30 11.14 35.02 

    50 10.66 35.03 

1813 22-Jul-96 51.70 8.50 6 17.00 33.78 

1814 23-Jul-96 51.75 8.25 15 13.70 34.97 

1815 23-Jul-96 51.84 8.26 20 15.19 34.81 

1816 23-Jul-96 51.83 7.79 13 15.00 34.95 

    23 11.63 35.00 

1817 23-Jul-96 51.92 7.50 22 13.08 34.95 

1818 23-Jul-96 52.00 7.15 20 12.36 n/d 

    40 12.26 34.98 

1819 23-Jul-96 52.08 6.98 10 14.17 n/d 

1820 24-Jul-96 51.75 6.57 15 14.00 n/d 



STATION DATA 

362 

Table 3.  Station positions, temperature and salinity values recorded at discrete depths, 
cruise # 19, south coast of Ireland, September 3rd-8th 1996. n/d = not determined. 
 
 

Station Date Latitude (N) Longitude (W) Depth Temperature Salinity 

Number (1993) dec. deg dec. deg (m) (°C) (PSU) 

       

1901 03-Sep-96 52.92 9.92 30 13.19 35.22 

1902 03-Sep-96 52.42 10.42 15 13.83 35.23 

1903 04-Sep-96 51.95 11.40 40 12.86 35.52 

1904 04-Sep-96 51.95 11.17 40 13.43 35.46 

1905 04-Sep-96 51.95 10.92 60 11.36 35.44 

1906 04-Sep-96 51.95 10.67 20 14.43 35.24 

1907 05-Sep-96 51.65 10.30 0 14.27 34.88 

1908 05-Sep-96 51.53 10.03 25 13.05 34.99 

1909 05-Sep-96 51.62 9.77 20 13.12 35.01 

1910 06-Sep-96 51.08 10.17 25 13.01 35.05 

1911 06-Sep-96 51.23 9.92 25 11.63 35.10 

1912 06-Sep-96 51.35 9.75 25 13.96 34.94 

1913 06-Sep-96 51.46 9.54 10 14.65 34.94 

1914 07-Sep-96 51.42 9.40 43 14.55 34.92 

1915 07-Sep-96 51.33 9.40 40 11.09 35.14 

1916 07-Sep-96 51.25 9.40 35 13.20 35.12 

1917 07-Sep-96 51.17 9.40 32 12.22 35.14 

1918 07-Sep-96 51.08 9.40 30 n/d 35.17 

1919 07-Sep-96 51.18 9.08 35 10.01 35.17 

1920 07-Sep-96 51.22 8.92 35 10.40 35.18 

1921 07-Sep-96 51.27 8.75 20 13.06 35.12 

1922 07-Sep-96 51.30 8.58 25 10.44 35.15 

1923 07-Sep-96 51.35 8.42 20 16.46 35.17 

1924 07-Sep-96 51.38 8.25 30 13.01 35.22 
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Table 4.  Station positions, temperature and salinity values recorded at discrete depths, 
cruise # 20, west coast of Ireland, May 1st-5th 1997. n/d = not determined. 
 

Station Date Latitude (N) Longitude (W) Depth Temperature Salinity
Number (1993) dec. deg dec. deg (m) (°C) (PSU)
    
2001 02-May-97 53.67 10.38 0 12.08 35.03
  20 10.88 35.00
  40 9.99 35.17
  60 9.26 35.19
  80 9.11 35.27
2002 02-May-97 53.67 10.54 0 11.85 35.27
  30 10.35 35.22
  50 9.47 35.28
  70 9.39 35.34
  100 9.38 35.34
2003 02-May-97 53.67 10.67 0 11.53 35.35
  20 11.36 35.50
  40 11.17 35.51
  60 9.64 35.41
  80 9.60 35.43
  120 9.58 35.42
2004 03-May-97 54.00 10.67 0 12.01 35.52
  10 11.63 35.53
  30 11.35 35.53
  60 10.49 35.50
  100 9.85 35.46
2005 03-May-97 54.00 10.53 0 11.69 35.35
  15 11.46 35.38
  40 11.13 35.38
  70 10.17 35.47
  100 9.88 35.46
2006 03-May-97 54.00 10.38 0 11.09 34.89
  10 10.76 34.93
  40 10.21 35.06
  60 10.08 35.15
  80 9.97 35.15
2007 03-May-97 54.30 10.13 0 11.00 34.96
  10 10.62 34.99
  30 10.47 35.13
  50 10.46 35.16
2008 03-May-97 54.35 10.25 0 11.16 35.38
  10 11.27 35.45
  30 10.77 35.46
  60 10.16 35.39
  80 10.09 35.37
2009 03-May-97 54.37 10.34 0 11.60 35.54
  20 11.31 35.52
  40 10.87 35.48
  70 10.14 35.38
  100 9.82 35.42
2010 03-May-97 54.44 10.53 0 11.41 35.52
  20 11.25 35.52
  50 11.04 35.53
  90 10.48 35.53
  120 9.99 35.48
  140 n/d 35.47
2011 03-May-97 54.48 10.67 0 11.60 35.50
  30 11.15 35.50
  60 10.61 35.51
  100 10.47 35.53
  150 10.31 35.51
  200 10.21 35.51
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Table 5.  Station positions, temperature and salinity values recorded at discrete depths, 
cruise # 22, south coast of Ireland, October 7th-12th 1997. n/d = not determined. 
 

Station Date Latitude (N) Longitude (W) Depth Temperature Salinity 

Number (1993) dec. deg dec. deg (m) (°C) (PSU) 

       

2201 07-Oct 51.59 8.25 0 15.74 35.07 

    20 15.74 35.10 

    40 14.40 35.27 

    60 12.44 35.34 

2202 07-Oct 51.83 7.75 0 15.67 35.07 

    20 15.62 35.06 

    45 14.72 35.26 

2203 07-Oct 51.92 7.50 0 15.43 35.01 

    15 15.36 35.01 

    40 14.88 35.13 

2204 07-Oct 52.00 7.18 0 15.48 35.07 

    15 15.45 35.07 

    40 15.42 35.22 

2205 11-Oct 51.58 8.42 0 15.22 35.09 

    20 15.17 35.10 

    50 13.21 35.31 

    65 12.98 35.32 

2206 11-Oct 51.50 8.42 0 15.34 35.10 

    25 15.28 35.10 

    65 11.80 35.33 

    75 11.43 35.31 

2207 11-Oct 51.42 8.42 0 15.58 35.13 

    20 15.54 35.11 

    60 11.33 35.29 

    80 9.72 35.28 

2208 11-Oct 51.33 8.42 0 15.49 35.09 

    20 15.43 n/d 

    60 10.61 n/d 

    85 9.66 35.30 

W309 08-Oct 52.07 7.10 2 15.19 34.92 

    30 14.73 35.21 

W310 08-Oct 52.09 7.06 6 15.13 34.96 

    26 14.95 35.18 

W311 08-Oct 52.10 7.02 6 15.06 35.12 

    26 14.98 34.65 

W312 08-Oct 52.12 6.98 6 15.00 34.80 

    16 14.98 34.94 
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Table 6. Values for Delta-t (surface to bottom temperature differences), the stratification 
parameter, Φ, the vertical attenuation coefficient, λ, and the dimensionless optical depth 
(λ .h) for station visited off the south and southwest coast of Ireland, August, 1993.  
Attenuation coefficients are calculated from 1.7/Secchi depth (Parsons et al., 1984). 
Where stations were deeper than 100 m, the 100 m value has been used as the water 
column depth.  
 
 

Station Depth Secchi λ λ.h Φ Delta-t 
 h Depth     

number (m) (m) (m-1)  (J.m-3) ºC 
       

1301 102 6 0.28 28.56 81 3.3 
1302 142 19 0.09 12.78 145 5.0 
1303 157 20 0.09 14.13 131 5.3 
1304 169 20 0.09 15.21 140 5.3 
1305 195 22 0.08 15.60 120 4.9 

       
1306 27 8 0.21 5.67 44 4.0 
1307 34 8 0.21 7.14 55 4.5 
1308 38 8 0.21 7.98 60 4.9 
1309 41 7 0.24 9.84 61 4.8 
1310 50 8 0.21 10.50 56 4.9 
1311 61 10 0.17 10.37 41 3.8 
1312 67 8 0.21 14.07 60 3.9 
1313 85 6 0.28 23.80 82 3.6 

       
1314 103 10 0.17 17.51 109 3.8 
1315 108 7 0.24 25.92 96 3.7 
1316 99 14 0.12 11.88 95 4.7 
1317 82 11 0.15 12.30 72 4.4 
1318 69 11 0.15 10.35 36 2.8 
1319 58 9 0.19 11.02 39 3.0 
1320 42 9 0.19 7.98 12 1.4 

       
1321 25 8.5 0.20 5.00 7 1.1 
1322 76 11 0.15 11.40 29 3.9 
1323 92 12 0.14 12.88 81 4.9 
1324 108 13 0.13 14.04 109 4.7 
1325 103 11 0.15 15.45 110 4.8 
1326 100 12 0.14 14.00 136 5.4 
1327 100 12 0.14 14.00 121 5.9 
1328 96 11 0.15 14.40 133 6.5 
1329 93 12 0.14 13.02 137 6.6 
1330 93 13 0.13 12.09 123 6.5 
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Table 7. Values for Delta-t (surface to bottom temperature differences), the stratification 
parameter, Φ, the vertical attenuation coefficient, λ, and the dimensionless optical depth 
(λ .h) for station visited off the south and southwest coast of Ireland, July, 1996.  
Attenuation coefficients are calculated from 1.7/Secchi depth (Parsons et al., 1984). 
Where stations were deeper than 100 m, the 100 m value has been used as the water 
column depth. n/d = not determined. 
 

Station Depth Secchi λ λ.h Φ Delta-t 
 h Depth     

number (m) (m) (m-1)  (J.m-3) ºC 
       

1801 120 21.5 0.08 9.49 104 4.9 
1802 148 18.5 0.09 13.60 104 5.9 
1803 168 14.0 0.12 20.40 104 5.7 
1804 189 13.5 0.13 23.80 109 5.7 
1805 223 12.0 0.14 31.59 90 5.3 

       
1806 53 9.5 0.18 9.48 46 4.1 
1807 71 11.5 0.15 10.50 45 4.2 
1808 43 10.0 0.17 7.31 19 1.5 
1809 57 10.5 0.16 9.23 42 3.0 
1810 119 11.5 0.15 17.59 114 6.3 

       
1811 93 14.5 0.12 10.90 137 7.2 
1812 61 11.0 0.15 9.43 71 5.2 
1813 11 3.5 0.49 5.34 12 1.0 
1814 29 10.0 0.17 4.93 26 3.1 
1815 25 7.5 0.23 5.67 1 0.7 
1816 49 10.5 0.16 7.93 60 4.9 
1817 55 10.0 0.17 9.35 80 5.3 
1818 56 12.0 0.14 7.93 40 4.7 
1819 27 6.5 0.26 7.06 27 2.5 
1820 72 13.0 0.13 9.42 24 3.1 
1821 77 n/d - - 4 0.6 
1822 64 n/d - - 5 0.6 
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Table 8. Values for Delta-t (surface to bottom temperature differences), the stratification 
parameter, Φ, the vertical attenuation coefficient, λ, and the dimensionless optical depth 
(λ .h) for station visited off the south and southwest coast of Ireland, September, 1996.  
Attenuation coefficients are calculated from 1.7/Secchi depth (Parsons et al., 1984). 
Where stations were deeper than 100 m, the 100 m value has been used as the water 
column depth. n/d = not determined. 
 

Station Depth Secchi λ λ.h Φ Delta-t 
 h Depth     

number (m) (m) (m-1)  (J.m-3) ºC 
       

1901 99 12.0 0.14 14.03 3 7.1 
1902 96 n/d - - 64 4.8 
1903 225 n/d - - 115 5.4 
1904 166 n/d - - 120 5.5 
1905 140 n/d - - 153 6.2 
1906 102 n/d - - 99 4.8 

       
1907 84 5.5 0.31 25.96 42 2.1 
1908 71 n/d   55 3.6 
1909 50 8.0 0.21 10.63 38 3.0 
1910 132 16.0 0.11 14.03 119 4.5 
1911 114 15.0 0.11 12.92 149 5.9 
1912 80 12.0 0.14 11.33 88 5.2 
1913 40 7.0 0.24 9.71 14 1.7 

       
1914 63 11.5 0.15 9.31 29 2.4 
1915 77 12.5 0.14 10.47 119 6.2 
1916 100 12.0 0.14 14.17 165 7.0 
1917 114 21.0 0.08 9.23 172 7.3 
1918 119 18.0 0.09 11.24 142 7.2 
1919 107 18.0 0.09 10.11 173 7.5 
1920 107 14.0 0.12 12.99 174 7.4 
1921 103 16.0 0.11 10.94 142 7.4 
1922 99 14.0 0.12 12.02 162 7.5 
1923 92 n/d - - 122 7.2 
1924 91 n/d - - 147 7.2 
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Table 9. Values for Delta-t (surface to bottom temperature differences), the stratification 
parameter, Φ, the vertical attenuation coefficient, λ, and the dimensionless optical depth 
(λ .h) for station visited off the south and southwest coast of Ireland, May, 1997.  
Attenuation coefficients are calculated from 1.7/Secchi depth (Parsons et al., 1984). 
Where stations were deeper than 100 m, the 100 m value has been used as the water 
column depth. n/d = not determined. 
 

Station Depth Secchi λ λ.h Φ Delta-t 
 h Depth     

number (m) (m) (m-1)  (J.m-3) ºC 
       

2001 102 10.0 0.17 17.34 62 2.9 
2002 122 9.5 0.18 21.83 29 2.4 
2003 137 10.0 0.17 23.29 13 1.9 

       
2004 131 n/d - - 4 2.2 
2005 138 n/d - - 20 1.8 
2006 97 n/d - - 22 1.1 

       
2007 60 n/d - - 10 0.5 
2008 114 8.0 0.21 24.23 21 1.2 
2009 125 13.0 0.13 16.35 36 1.7 
2010 151 13.0 0.13 19.75 25 1.5 
2011 229 13.0 0.13 29.95 38 1.1 
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Table 10. Values for Delta-t (surface to bottom temperature differences), the 
stratification parameter, Φ, the vertical attenuation coefficient, λ, and the dimensionless 
optical depth (λ .h) for station visited off the south and southwest coast of Ireland, 
October, 1997.  Attenuation coefficients are calculated from 1.7/Secchi depth (Parsons 
et al., 1984). Where stations were deeper than 100 m, the 100 m value has been used as 
the water column depth. n/d = not determined. 
 

Station Depth Secchi λ λ.h Φ Delta-t 
 h Depth     

number (m) (m) (m-1)  (J.m-3) ºC 
       

2201 84 9.0 0.19 15.87 77 3.4 
2202 55 9.0 0.19 10.39 29 1.1 
2203 55 8.0 0.21 11.69 22 1.0 
2204 56 8.5 0.20 11.20 15 0.7 

       
2205 69 11.0 0.15 10.66 52 2.7 
2206 89 13.0 0.13 11.64 80 5.1 
2207 90 11.5 0.15 13.30 113 5.8 
2208 96 14.0 0.12 11.66 118 5.8 

       
W308 19 3.0 0.57 10.77 20 0.3 
W309 39.1 n/d - - 12 0.4 
W310 31 n/d - - 8 0.3 
W311 27.6 5.5 0.31 8.53 10 0.0 
W312 23.8 3.0 0.57 13.49 4 0.2 
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Table 11. Nutrient, chlorophyll levels and Pseudo-nitzschia cell concentrations 
(separated into the �P. seriata� and �P. delicatissima� groups) recorded at discrete 
depths during cruise # 13, southwest coast of Ireland, August 8th-18th 1993.  n/d = not 
determined. 
 

Station Depth NO3 PO4 SiO4  Chl a "P. seriata" "P. delicatissima"
Number (m) (µM) (µM) (µM) (mg m-3) (cells.mL-1) (cells.mL-1)
       
1301 5 0.6 0.11 1.6 11.9 57.0 6.3
 15 5.4 0.46 4.4 0.6 1.5 0.0
1302 0 0.7 0.04 1.5 0.2 0.0 0.0
 20 0.6 0.05 2.2 0.1 0.0 0.0
 50 3.0 0.36 1.9 0.3 0.0 0.0
1303 0 0.7 0.09 0.9 0.0 0.0 0.0
 20 0.6 0.04 0.8 0.0 0.0 0.0
 50 7.9 0.51 1.7 0.4 0.0 0.0
1304 45 0.7 0.05 1.1 0.6 0.0 0.0
1312 18 2.1 0.07 1.1 9.6 399.0 329.0
1313 0 0.4 0.01 1.0 5.4 40.0 0.0
 12 0.4 0.00 0.8 5.5 135.0 5.0
 20 0.7 0.16 1.1 12.5 95.0 2.0
 40 6.2 0.50 4.0 0.2 3.0 0.0
1314 0 0.0 0.12 2.1 0.8 180.0 0.0
 15 2.4 0.13 3.9 11.5 290.0 380.0
 30 8.3 0.45 7.6 0.3 4.0 0.0
 50 9.9 0.74 8.4 0.1 1.0 0.0
1315 0 n/d n/d n/d 4.8 140.0 11.0
 10 0.0 0.17 2.3 0.0 180.0 0.0
 30 5.3 0.33 5.5 n/d 9.0 0.0
 50 8.4 0.38 5.7 n/d 0.6 0.0
1316 18 0.4 0.08 1.1 0.5 66.0 0.0
 28 7.4 0.57 3.4 n/d 12.0 0.0
1317 0 0.4 0.02 1.1 0.3 135.0 0.0
 20 10.1 0.76 2.7 0.2 31.0 0.0
1318 15 0.8 0.13 2.1 5.9 413.0 0.0
1319 25 2.3 0.20 2.1 n/d 52.0 0.0
1323 20 0.4 0.05 0.7 2.8 57.0 0.0
1324 20 0.1 0.14 2.6 2.3 40.0 16.0
1325 12 0.0 0.07 2.4 1.8 19.0 30.0
 22 0.0 0.08 3.3 2.9 20.0 0.0
 50 10.2 0.58 8.7 0.2 0.0 0.0
1326 0 0.1 0.15 2.8 0.5 9.0 9.0
 25 0.2 0.08 2.4 3.8 360.0 180.0
1327 20 0.0 0.09 2.8 2.6 3.0 25.0
 40 9.1 0.57 7.9 0.1 0.0 0.0
1328 0 0.0 0.17 2.9 0.2 0.0 0.0
 10 0.0 0.12 3.1 0.3 1.5 0.8
 35 6.1 0.45 7.7 1.4 0.8 2.3
1329 0 0.2 0.14 2.9 0.2 0.0 0.0
 27 4.5 0.30 5.9 0.9 0.0 1.5
 40 9.2 0.52 8.8 0.1 0.0 0.8
1330 0 0.2 0.12 3.3 0.2 0.0 0.0
 23 n/d n/d n/d n/d 1.5 12.3
 33 7.7 0.39 6.2 0.2 0.0 0.0
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Table 12.  Nutrient, chlorophyll levels and Pseudo-nitzschia cell concentrations 
(separated into the �P. seriata� and �P. delicatissima� groups) recorded at discrete 
depths, during cruise # 18, south coast of Ireland, July 20th-25th 1996. n/d = not 
determined. 
 

Station Depth NO3 PO4 SiO4  Chl a "P. seriata" "P. delicatissima"

Number (m) (µM) (µM) (µM) (mg m-3) (cells.mL-1) (cells.mL-1)

       

1801 20 2.0 0.08 0.6 0.5 19.0 21.6

 40 6.9 0.50 2.2 1.7 0.0 0.0

1802 25 0.0 0.08 0.5 0.5 0.0 2.3

 55 4.4 0.33 0.7 0.2 0.0 0.0

1803 10 0.0 0.02 0.5 0.3 0.0 0.0

 30 1.1 0.15 0.6 0.3 0.0 0.0

1804 15 0.1 0.03 0.7 0.2 0.0 0.0

 35 0.0 0.06 0.6 0.3 0.0 0.0

1805 30 1.6 0.25 1.0 0.3 0.0 0.0

 50 5.3 0.43 1.4 0.3 0.0 0.0

1806 15 0.0 0.02 0.3 0.8 3.0 444.0

 35 0.7 0.06 0.3 2.8 74.0 31.0

1807 20 0.5 0.13 0.4 2.2 12.0 190.0

 40 1.5 0.20 0.6 2.2 9.0 0.0

1808 15 0.1 0.09 0.5 1.3 10.0 240.0

 35 0.3 0.11 0.5 2.6 0.0 180.0

1809 15 0.0 0.06 0.4 1.4 140.0 38.0

 30 0.0 0.09 0.4 1.6 5.0 180.0

1810 15 0.1 0.03 0.3 0.3 9.0 250.0

 35 7.4 0.55 2.1 2.3 9.0 850.0

1811 20 0.0 0.05 0.3 0.5 0.0 80.0

 40 7.4 0.58 2.8 0.7 0.0 150.0

1812 18 0.1 0.08 0.3 1.1 4.0 37.0

 30 1.0 0.27 1.2 0.7 23.0 17.0

 50 1.5 0.31 1.5 n/d 25.0 1.0

1813 6 1.0 0.42 0.9 4.6 0.0 14.0

1814 15 0.1 0.08 0.3 2.2 0.0 6.0

1815 20 0.2 0.14 0.6 1.2 11.0 69.0

1816 13 0.1 0.03 0.2 0.6 0.0 4.0

 23 0.2 0.09 0.7 0.9 0.0 9.0

1817 22 1.3 0.04 0.4 2.0 0.0 0.0

1818 20 0.1 0.09 0.4 n/d 70.0 6.0

 40 0.5 0.15 0.8 0.9 28.0 1.0

1819 10 0.1 0.06 0.3 2.9 9.0 18.0

1820 15 0.1 0.05 0.2 n/d 3.0 0.0

 60 0.59 0.12 0.31 n/d n/d n/d
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Table 13.  Nutrient, chlorophyll levels and Pseudo-nitzschia cell concentrations 
(separated into the �P. seriata� and �P. delicatissima� groups) recorded at discrete 
depths, during cruise # 19, south coast of Ireland, September 3rd-8th 1996. n/d = not 
determined. 
 

Station Depth NO3 PO4 SiO4  Chl a "P. seriata" "P. delicatissima"

Number (m) (µM) (µM) (µM) (mg m-3) (cells.mL-1) (cells.mL-1)

       

1901 30 0.6 0.05 0.4 0.7 0.0 0.0

1902 15 0.2 0.15 0.9 0.5 92.0 0.0

1903 40 1.6 0.35 1.1 0.1 0.0 0.0

1904 40 0.5 0.17 0.6 0.1 0.0 0.0

1905 60 2.7 0.47 0.8 0.2 0.0 0.0

1906 20 0.2 0.10 1.2 1.8 0.0 25.0

1907 0 n/d n/d n/d 3.3 0.0 78.0

1908 25 0.2 0.14 2.5 0.9 0.0 33.0

1909 20 0.1 0.25 2.2 1.8 0.0 1.0

1910 25 0.2 0.12 1.3 1.4 0.0 19.0

1911 25 2.4 0.26 1.7 1.7 0.0 0.0

1912 25 0.1 0.18 1.5 0.4 0.0 0.0

1913 10 0.3 0.16 1.4 0.5 0.0 0.0

1914 43 0.3 0.18 0.8 1.0 0.0 8.0

1915 40 2.8 0.38 2.8 0.0 0.0 2.0

1916 35 0.1 0.08 0.6 0.3 0.0 0.0

1917 32 0.2 0.23 0.7 4.4 0.0 0.0

1918 30 0.2 0.11 1.7 1.1 0.0 0.0

1919 35 1.6 0.48 3.0 0.1 0.0 0.0

1920 35 0.5 0.25 1.2 5.8 0.0 0.0

1921 20 1.0 0.23 1.0 0.1 0.0 0.0

1922 25 2.3 0.64 3.6 0.3 0.0 6.0

1923 20 1.8 0.34 1.4 0.1 0.0 2.0

1924 30 0.4 0.16 0.8 0.1 0.0 16.0
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Table 14.  Nutrient, chlorophyll levels and Pseudo-nitzschia cell concentrations (separated into 
the �P. seriata� and �P. delicatissima� groups) recorded at discrete depths, during cruise # 20, 
west coast of Ireland, May 1st-5th 1997.  n/d = not determined. 

Station Depth NO3 PO4 SiO4 Chl a "P. seriata" "P. delicatissima"
Number (m) (µM) (µM) (µM) (mg m-3) (cells.mL-1) (cells.mL-1)
    
2001 0 1.5 0.07 0.8 0.7 0.0 0.7
 20 0.2 0.06 0.2 1.0 0.0 0.0
 40 4.1 0.38 2.2 1.4 0.3 1.9
 60 5.1 0.45 1.7 0.4 0.0 0.6
 80 n/d n/d n/d 1.0 0.0 0.6
2002 0 0.8 0.17 0.6 1.0 0.0 0.1
 30 0.7 0.13 0.7 1.0 0.0 0.0
 50 4.9 0.34 1.3 0.3 0.0 0.3
 70 6.9 0.55 3.5 0.6 0.0 0.0
 100 7.5 0.56 3.8 0.3 0.0 0.1
2003 0 0.9 0.15 1.0 1.8 0.0 2.1
 20 1.8 0.25 2.0 1.8 0.0 5.0
 40 7.8 0.24 2.4 0.9 0.0 8.2
 60 2.4 0.50 2.9 0.2 0.0 0.8
 80 6.5 0.50 4.1 0.2 0.0 0.3
 120 8.9 0.52 4.4 0.3 0.0 0.0
2004 0 2.5 0.19 1.9 1.8 0.1 7.6
 10 1.8 0.27 2.7 2.8 0.1 5.8
 30 2.5 0.23 2.2 1.6 0.0 5.8
 60 6.9 0.23 4.2 0.6 0.0 12.0
 100 7.0 0.53 3.6 0.3 0.0 0.5
2005 0 0.9 0.16 1.3 1.8 0.0 14.0
 15 1.2 0.16 1.6 3.3 0.4 1.1
 40 2.3 0.20 1.7 1.3 0.0 13.0
 70 7.0 0.29 3.6 0.4 0.0 1.0
 100 7.1 0.52 3.4 0.3 0.0 0.2
2006 0 0.0 0.09 0.9 1.8 0.0 1.6
 10 2.2 0.09 0.6 1.8 0.0 3.4
 40 2.4 0.17 1.7 0.7 0.0 0.8
 60 4.3 0.31 2.3 0.6 0.0 1.0
 80 2.8 0.26 1.5 0.7 0.0 1.8
2007 0 3.9 0.23 2.5 2.4 0.0 1.8
 10 5.1 0.42 3.0 1.7 0.0 0.8
 30 0.8 0.15 0.5 0.8 0.0 3.4
 50 1.1 0.13 2.3 0.7 0.0 0.0
2008 0 2.1 0.24 1.8 2.7 0.0 0.0
 10 2.4 0.25 1.5 2.0 0.0 2.2
 30 2.0 0.17 1.5 0.9 0.0 0.5
 60 3.0 0.17 2.0 0.4 0.0 0.7
 80 2.8 0.31 1.9 0.4 0.0 0.4
2009 0 2.5 0.25 1.9 1.9 0.0 0.0
 20 3.3 0.28 2.3 1.6 0.0 1.1
 40 3.2 0.32 2.1 0.8 0.0 0.6
 70 4.5 0.51 2.5 0.5 0.0 0.1
 100 6.6 0.49 3.3 0.4 0.0 0.0
2010 0 4.5 0.38 2.6 0.7 0.0 0.3
 20 4.5 0.36 2.9 0.9 0.0 0.0
 50 4.3 0.36 2.8 0.6 0.0 0.4
 90 8.6 0.50 3.9 0.1 0.0 0.0
 120 8.2 0.57 4.4 0.2 0.0 0.1
 140 7.4 0.54 3.5 0.2 0.0 0.0
2011 0 4.5 0.38 1.3 0.5 0.0 15.0
 30 4.7 0.36 0.3 1.0 0.0 19.0
 60 7.5 0.54 4.3 0.5 0.0 13.0
 100 7.5 0.54 3.3 0.1 0.0 1.2
 150 9.2 0.56 3.9 0.1 0.0 0.0
 200 7.2 0.52 3.5 n/d 0.0 0.0
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Table 15.  Nutrient, chlorophyll levels and Pseudo-nitzschia cell concentrations (separated into 
the �P. seriata� and �P. delicatissima� groups) recorded at discrete depths, during cruise # 22, 
south coast of Ireland, October 7th-12th 1997.  
 

Station Depth NO3 PO4 SiO4  Chl a "P. seriata" "P. delicatissima"

Number (m) (µM) (µM) (µM) (mg m-3) (cells.mL-1) (cells.mL-1)

       

2201 0 0.6 0.11 1.4 1.1 85.0 0.0

 20 0.1 0.10 1.4 0.8 66.0 0.0

 40 3.6 0.34 3.0 0.2 1.0 0.0

 60 6.8 0.53 5.5 1.5 0.0 0.0

2202 0 0.3 0.09 1.3 2.8 180.0 2.0

 20 0.4 0.16 1.6 2.7 340.0 5.0

 45 4.1 0.36 3.6 0.1 1.0 0.0

2203 0 0.2 0.08 1.3 3.1 730.0 8.0

 15 0.2 0.08 1.1 5.2 620.0 7.0

 40 1.5 0.24 2.1 1.3 160.0 6.0

2204 0 0.2 0.07 1.2 4.0 550.0 3.0

 15 0.1 0.06 1.1 5.1 450.0 12.0

 40 3.3 0.31 3.2 0.2 4.0 0.0

2205 0 0.6 0.16 1.3 1.8 78.0 0.0

 20 0.5 0.19 1.3 2.2 120.0 8.0

 50 8.1 0.54 5.4 0.2 9.0 0.0

 65 5.7 0.49 5.1 0.2 8.0 1.0

2206 0 0.3 0.15 1.3 2.5 2.0 1.0

 25 0.2 0.09 1.1 1.6 65.0 2.0

 65 8.7 0.79 6.6 0.1 0.0 0.0

 75 9.0 0.82 5.9 0.1 0.0 0.0

2207 0 0.3 0.13 0.7 0.5 0.0 0.0

 20 0.2 0.12 1.6 0.5 0.0 0.0

 60 8.9 0.69 5.6 0.1 0.0 1.0

 80 11.1 0.74 6.3 0.1 0.0 2.0

2208 0 0.5 0.12 1.6 0.1 0.0 0.0

 20 0.4 0.13 1.5 0.4 0.0 0.0

 60 9.1 0.67 5.5 0.1 0.0 1.0

 85 8.8 0.77 5.4 0.1 0.0 1.0

W309 2 2.8 0.40 2.3 1.9 22.0 0.0

 30 3.3 0.50 3.5 0.5 28.0 1.0

W310 6 2.8 0.30 2.7 1.1 9.0 0.0

 26 3.0 0.37 3.5 0.4 11.0 1.0

W311 6 5.5 0.33 3.0 0.9 14.0 1.0

 26 6.5 0.38 3.3 0.4 0.0 1.0

W312 6 4.4 0.33 3.1 0.8 0.0 1.0

 16 3.6 0.33 2.7 0.5 1.0 4.0
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 Table 16. Nutrient levels in inshore and offshore waters during cruises carried out 
between 1993 and 1997 off the south, southwest and west coasts of Ireland.  
 

Year Month Nitrate 
(µM) 

Phosphate 
(µM) 

Silicate 
(µM) 

     
Surface mixed Layer  

     
Inshore      
1993 (cruise #13) August  0.4-2.3 0.00-2.00 0.7-2.1 
1996 (cruise #18) July  0.0-1.3 0.02-0.42 0.2-0.9 
1996 (cruise #19) September  0.1-0.3 0.16-0.25 1.4-2.5 
1997 (cruise #20) May  0.0-5.1 0.06-0.42 0.2-3.0 
1997 (cruise #22) October  0.1-6.5 0.06-0.40 0.7-3.5 
     
Offshore     
1993 (cruise #13) August  0.0-2.4 0.04-0.17 0.8-3.9 
1996 (cruise #18) July  0.0-2.0 0.02-0.25 0.2-1.0 
1996 (cruise #19) September  0.2-2.4 0.01-0.64 0.9-3.6 
1997 (cruise #20) May  0.7-4.5 0.13-0.38 0.6-2.9 
     

Year Month Nitrate 
(µM) 

Phosphate 
(µM) 

Silicate 
(µM) 

     
Bottom mixed Layer  

     
Inshore      
1993 (cruise #13) August  6.2-10.1 0.05-0.76 2.7-4.0 
1996 (cruise #18) July  0.0-1.5 0.06-0.31 0.3-1.5 
1996 (cruise #19) September  0.3-2.8 0.18-0.38 0.8-2.8 
1997 (cruise #20) May  0.8-5.1 0.13-0.45 0.5-2.3 
1997 (cruise #22) October  1.5-11.1 0.24-0.82 2.1-6.6 
     
Offshore     

1993 (cruise #13) August  0.7-10.2 0.05-0.74 1.1-8.8 
1996 (cruise #18) July  0.0-7.4 0.06-0.58 0.6-2.8 
1996 (cruise #19) September  0.7-10.2 0.05-0.74 1.1-8.8 
1997 (cruise #20) May  1.3-9.2 0.17-0.57 1.3-4.4 
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Figure 1. Vertical profiles of nitrate, phosphate, silicate and chlorophyll concentrations 
with depth.  Included in the plot are the cell densities of the �P. delicatissima� and "P. 
seriata� groups recorded at discrete depths.  Samples from all depths and times 
throughout the study (cruise #13, 18, 19, 20 and 22) containing all the above variables 
were used.   
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Figure 2.  Stations where Pseudo-nitzschia cell numbers were >90 cells.ml-1 are plotted 
against depth.  The data are derived from cruises #13, 18, 19, 20 and 22 carried out 
between 1993 and 1997.  Red = August 1993, blue = July 1996 and black = October 
1997.  No counts of  >90 cells.ml-1 were recorded during cruises #19 and 20. 



STATION DATA 

378 

Table 17.  Pseudo-nitzschia species recorded in net material collected during cruise # 
13, southwest coast of Ireland, August 8th-18th 1993. ++ = dominant Pseudo-nitzschia 
species in the sample, + = present, - = absent, n = number of stations were net samples 
were examined.  
 
Station P. pungens P. multiseries P. seriata P. australis P. fraudulenta P. subpacifica P. delicatissima P. pseudo- 

delicatissima 

1301 ++ - - + + - + - 

1311 + - - + + - - ++ 

1312 ++ - - - + - - - 

1313 ++ - - - - - - + 

1314 + + - + + - ++ - 

1315 ++ - - - - - - - 

1317 ++ + - - + - + - 

1324 ++ + + (?) - + - - - 

1325 ++ - - - - - - - 

1326 ++ - - - - - - - 

n = 10 100% 30% 10% 30% 60% 0% 30% 20% 

 

Table 18.  Pseudo-nitzschia species recorded in net material collected during cruise # 
18, south coast of Ireland, July 20th-25th 1996. ++ = dominant Pseudo-nitzschia species 
in the sample, + = present, - = absent, n = number of stations were net samples were 
examined. % = presence or absence on an individual station basis. 
 
Station P. pungens P. multiseries P. seriata P. australis P. fraudulenta P. subpacifica P. delicatissima P. pseudo- 

delicatissima 

1801 ++ + + (?) + + - + + 

1802 ++ + - + - - - - 

1806 ++ + - + + - + + 

1807 + + + (?) + + - + ++ 

1808 + + + (?) + + + (?) + ++ 

1809 + - - + + - + ++ 

1810 + - + (?) + + - + ++ 

1811 + - - + + - ++ + 

1812 + - - + - - ++ ++ 

1813 - - - - - - ++ + 

1815 + + - - + - + ++ 

1818 ++ + - + + - - + 

1819 ++ + - + + - - + 

1820 ++ + + (?) + + - - - 

1821 - - - - - - + ++ 

n = 15 87% 53% 36% (?) 73% 73% 7% (?) 73% 87% 
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Table 19.  Pseudo-nitzschia species recorded in net material collected during cruise # 
19, south coast of Ireland, September 3rd-8th 1996. ++ = dominant Pseudo-nitzschia 
species in the sample, + = present, - = absent, n = number of stations were net samples 
were examined.  
 
Station P. pungens P. multiseries P. seriata P. australis P. fraudulenta P. subpacifica P. delicatissima P. pseudo- 

delicatissima 

1902 ++ - - ++ + - ++ + 

1906 + - - + + - ++ - 

1907 + + - ++ + - + + 

1908 + + - ++ + - + + 

1909 ++ - - + - - ++ - 

1917 - - - - - - ++ - 

1919 - - - - - - ++ - 

1924 + - - - + - ++ + 

n = 8 75% 25% 0% 63% 63% 0% 100% 50% 

 

 
Table 20.  Pseudo-nitzschia species recorded in net material collected off the southwest 
coast of Ireland, June 2nd-8th 1995, and in Galway Bay, May 6th-8th 1996. ++ = dominant 
Pseudo-nitzschia species in the sample, + = present, - = absent, n = number of stations 
were net samples were examined.  
 
Station P. pungens P. multiseries P. seriata P. australis P. fraudulenta P. subpacifica P. delicatissima P. pseudo- 

delicatissima 

June ++ + - + + - + - 

n = 1 100% 100% 0% 100% 100% 0% 100% 0% 

May - - - - - - ++ + 

n = 1 0% 0% 0% 0% 0% 0% 100% 100% 
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Table 21.  Pseudo-nitzschia species recorded in net material collected during cruise # 
20, west coast of Ireland, May 1st-5th 1997.  ++ = dominant Pseudo-nitzschia species in 
the sample, + = present, - = absent, n = number of stations were net samples were 
examined.  
 
Station P. pungens P. multiseries P. seriata P. australis P. fraudulenta P. subpacifica P. delicatissima P. pseudo- 

delicatissima 

2006 - - - - ++ - - - 

2011 - - - - ++ - - + 

n = 2 0% 0% 0% 0% 100% 0% 0% 50% 

 
 
Table 22.  Pseudo-nitzschia species recorded in net material collected during cruise # 
22, south coast of Ireland, October 7th-12th 1997. ++ = dominant Pseudo-nitzschia 
species in the sample, + = present, - = absent, n = number of stations were net samples 
were examined.  
 
Station P. pungens P. multiseries P. seriata P. australis P. fraudulenta P. subpacifica P. delicatissima P. pseudo- 

delicatissima 

2201 + + - + ++ - - - 

2202 - + - + ++ - - + 

2203 + - - + ++ - - - 

2204 + - - + ++ - - - 

2205 + + - + ++ + (?) - - 

2206 + + - ++ ++ - - + 

2208 + + - + ++ - - + 

W308 + - - + ++ - - - 

W309 + - - + ++ - - - 

W310 + - - + ++ - - - 

W311 - - - + ++ - - - 

W312 + - - + ++ - - - 

n = 11 82% 45% 0% 100% 100% 9% 0% 27% 
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	Specimen from the southwest coast of Ireland, station: 1908 (51˚ 32'N, 10˚ 02'W) September 4th 1997.
	Valve end, 6 poroids in 1 µm.
	Middle part of the valve, 17 striae, 17 interstriae and 17 fibulae in 10 µm.
	Other end.
	Transmission electron micrographs (TEM)
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	Specimen from the southwest coast of Ireland, station: 2206 (51˚ 30.03.2'N; 08˚ 25.17'W), October 11th 1997.
	Parts of a girdle band.
	Part of the valve face, 6 poroids in 1 µm.
	Specimen from the southwest of Ireland, station: 1902 (52˚ 25'N, 10˚ 25'W) September 3rd 1997, part of a girdle band.
	Transmission electron micrographs (TEM)
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	Light micrographs (LM).
	South coast of Ireland, St. 1324 (51˚ 11.5'N; 09˚ 24.1'W), August 18th 1993, polar end of a valve,  5 poroids in 1 µm
	South coast of Ireland, St. 1324 (51˚ 11.5'N; 09˚ 24.1'W), August 18th 1993
	Valve end, 5–6 poroids in 1 µm
	Middle part of the valve, 5.1µm wide, ~26striae and ~26 interstriae in 10 µm, 5–6 poroids in 1 µm
	Other end, 6 poroids in 1 µm
	Close-up of the valve face, 6 poroids in 1 µm
	South coast of Ireland, St. 1324 (51˚ 11.5'N; 09˚ 24.1'W), August 18th 1993
	Valve end, 5 poroids in 1 µm
	Transmission electron micrographs (TEM)
	Transmission electron micrographs (TEM)
	South west coast of Ireland, St. 1819 (52˚ 04.9'N; 06˚ 59.0'W), July 23rd 1996
	Whole valve, ~70 µm long, ~4 µm wide, 25 striae, 25 interstriae and 25 fibulae in 10 µm
	Middle part of the valve, 3 striae per central nodule,  6 poroids in 1 µm
	Valve end, 6 poroids in 1 µm
	Other end, 7 poroids in 1 µm
	South coast of Ireland, St. 1808 (51˚ 27.00'N; 09˚ 33.00'W), July 21st 1996, valve end, 5–7 poroids in 1 µm
	South coast of Ireland, St. 1809 (51˚ 26.00'N; 09˚ 24.00'W), July 21st 1996, part of a valve with the proximal and distal mantles visible, 25 striae, 25 interstriae and 25 fibulae in 10 µm, 7 poroids in 1 µm
	Transmission electron micrographs (TEM)
	Transmission electron micrographs (TEM)


	A3 (4) P subpacifica micrographs
	A3 (4) P subpacifica
	Pseudo-nitzschia cf. subpacifica
	South coast of Ireland, St. 1808 (51˚ 27.00'N; 09˚ 33.00'W), July 21st 1996
	Whole valve , 59.6 µm long, 4.4 µm wide, 31striae, 31 interstriae and 19 fibulae in 10 µm
	Middle part of the valve,  9 poroids in 1 µm, 3 striae per central larger interspace
	Valve end, 9 poroids in 1 µm
	Other end, 9 poroids in 1 µm
	South coast of Ireland, St. 2205 (51˚ 35.02'N, 08˚ 24.84'W), October 11th 1997
	Whole valve , 62.6 µm long, 4.6 µm wide, 30striae, 30 interstriae and 19 fibulae in 10 µm
	Middle part of the valve,  9 poroids in 1 µm, 3 striae per central larger interspace
	Close-up of the valve face
	Valve end, 9 poroids in 1 µm
	Other end, 9 poroids in 1 µm


	A3 (5)  P. delicatissima micrographs
	A3 (5)  P. delicatissima
	Pseudo-nitzschia delicatissima
	Light micrographs (LM)
	Light micrographs (LM)
	Transmission electron micrographs (TEM)
	South west coast of Ireland, St. 1801 (51˚ 27'N; 10˚ 20'W), July 20th 1996
	South west coast of Ireland, St. 1807 (51˚ 26.10'N; 09˚ 54.9'W), July 21st 1996
	South coast of Ireland, St. 1811 (51˚ 21.00'N; 08˚ 26.20'W), July 22nd 1996, close-up of the central larger interspace with the central raphe endings, there are 3 striae to the central larger interspace
	South coast of Ireland, St. 1810 (51˚ 07.2'N; 09˚ 24.0'W), July 22nd 1996, close-up of the valve face striae
	South coast of Ireland, St. 1811 (51˚ 21.00'N; 08˚ 26.20'W), July 22nd 1996, valve end and close-up of valve face, 10 poroids in 1 µm
	South coast of Ireland, St. 1811 (51˚ 21.00'N; 08˚ 26.20'W), July 22nd 1996
	Most of a valve, ~39.5 µm long, 1 µm wide, 46 striae, 46 interstriae and 25 fibulae in 10 µm,
	Close-up of the valve face with the central larger interspace and central raphe endings 3 striae per central larger interspace,  ~10 poroids in 1 µm
	West coast of Ireland, St. Inner Galway Bay (53˚ 10.57' N, 09˚ 12.07'W), May 8th 1996, Close-up of the valve face, 1.3 µm wide, 9–12 poroids in 1 µm, 4 striae per central larger interspace
	South west coast of Ireland, St.1906 (51˚ 57.00'N; 10˚ 40.00'W), September 3rd 1996, close-up of the central larger interspace, the central raphe endings,  the proximal mantle and the valvocopula
	South coast of Ireland, St. 1812 (51˚ 35'N; 8˚ 28.9'W), July 22nd 1996
	Whole valve: 63 µm long, 1.1 µm wide, 44 striae, 44 interstriae and 27 fibulae in 10 µm
	Part of the valve, 1.5 µm wide, 9–10 poroids in 1 µm, 37 striae, 37 interstriae and 20 fibulae in 10 µm
	Central part of the valve with 3 striae to the central larger interspace, 8–10 poroids in 1 µm
	South coast of Ireland, St. 1810 (51˚ 07.2'N; 09˚ 24.0'W), July 22nd 1996
	Whole valve, 50 µm long, 1 µm wide, 39 striae, 39 interstriae and 23 fibulae in 10 µm
	Valve end
	Middle part of the valve showing 3.5 striae per central larger interspace, ~ 11 poroids in 1 µm
	South coast of Ireland, St. 1810 (51˚ 07.2'N; 09˚ 24.0'W), July 22nd 1996, rough culture 18101  Pseudo-nitzschia cf. delicatissima.  Although the poroid structure at the valve ends are similar to that seen in Pseudo-nitzschia delicatissima ( ie. small ro
	Parts of the valve, 2.3 µm wide, 6 poroids in 1 µm, 3 striae to the central larger interspace
	South coast of Ireland, St. 1810 (51˚ 07.2'N; 09˚ 24.0'W), July 22nd 1996, rough culture 18101  Pseudo-nitzschia cf. delicatissima
	Vale end, detail obscured by a girdle band
	Mosaic of micrographs, 50 µm long, ~ 2.4 µm wide, 36 striae, 36 interstriae and 23 fibulae in 10 µm
	Central part of the valve, 5–6 poroids in 1 µm
	South west coast of Ireland, St. 1301 (51˚ 29.00'N; 10˚ 16.00'W), August 15th 1993
	Whole valve, 31.9 µm long, 1.9 µm wide, 45 striae, 46 interstriae and 28 fibulae in 10 µm
	Valve end
	Other end
	Middle part of the valve, 9–10 poroids in 1 µm, 3 striae to the central larger interspace
	South west coast of Ireland, St. 1301 (51˚ 29.00'N; 10˚ 16.00'W), August 15th 1993
	Valve end
	Other end
	9–11 poroids in 1 µm, 3.5 striae to the central larger interspace
	South coast of Ireland, St. 1810 (51˚ 07.2'N; 09˚ 24.0'W), July 22nd 1996
	South coast of Ireland, St. 1811 (51˚ 21.00'N; 08˚ 26.20'W), July 22nd 1996
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	A3 (6)  P. pseudodelicatissima
	Pseudo-nitzschia pseudodelicatissima
	South west coast of Ireland, St. 1807 (51˚ 26.10'N; 09˚ 54.9'W), July 21st 1996
	Whole valve, 51.1 µm long, 1.5 µm wide, 39 striae, 39 interstriae and 21 fibulae in 10 µm
	Middle part of the valve, 4–6 poroids in 1 µm, 4.5 striae to the central larger interspace
	Valve end
	Close-up of the valve end
	Other end
	Close-up of the other polar end of the valve
	South west coast of Ireland, St. 1807 (51˚ 26.10'N; 09˚ 54.9'W), July 21st 1996
	Whole valve, 60 µm long, 1.7 µm wide, 37 striae, 37 interstriae and 22 fibulae in 10 µm
	Middle part of the valve, 5–6 poroids in 1 µm
	Close-up of the central larger interspace with central raphe endings, corresponding to 3.5 striae
	Close-up of the valve face striae, roundish to squarish poroids containing sections of hymenate velae
	Valve end
	Other end
	South west coast of Ireland, St. 1807 (51˚ 26.10'N; 09˚ 54.9'W), July 21st 1996
	Centre of tf the valve, 5 poroids in 1 µm, 5 striae to the central larger interspace
	Valve end
	South west coast of Ireland, St.1906 (51˚ 57.00'N; 10˚ 40.00'W), September 3rd 1996, valve end
	South west coast of Ireland, St.1906 (51˚ 57.00'N; 10˚ 40.00'W), September 3rd 1996, middle part of a valve showing 5 striae corresponding to the central larger interspace,  ~ 6 poroids in 1 µm
	South coast of Ireland, St. 1808 (51˚ 27.00'N; 09˚ 33.00'W), July 21st 1996
	Whole valve, 73.5 µm long, 2 µm wide, 39 striae, 39 interstriae and 23 fibulae in 10 µm
	Close-up of a valve showing the proximal mantle and poroid structure
	Transmission electron micrographs (TEM)
	South coast of Ireland, St. 1812 (51˚ 35'N; 8˚ 28.9'W), July 22nd 1996, rough culture 1812
	Valve end
	Part of the valve showing the proximal and distal mantles, 5 poroids in 1 µm
	South coast of Ireland, St. 1812 (51˚ 35'N; 8˚ 28.9'W), July 22nd 1996, rough culture 1812, part of a valve,  ~54 µm long, 1.4 µm wide, 44 striae, 45 interstriae and 25 fibulae in 10 µm
	Transmission electron micrographs (TEM)
	South west coast of Ireland, St. 1807 (51˚ 26.10'N; 09˚ 54.9'W), July 21st 1996, part of the valve showing the stria structure, 3 striae to the central larger interspace, 1.2 µm wide, 6–7 poroids in 1 µm
	South west coast of Ireland, St. 1311 (51˚ 20.1'N, 10˚ 05.0'W), August 17th 1993, valve end of Pseudo-nitzschia cf. pseudodelicatissima, 7–8  poroids in 1 µm
	South coast of Ireland, St. 1812 (51˚ 35'N; 8˚ 28.9'W), July 22nd 1996, rough culture 1812
	Part of a valve, 1.4 µm wide, ~6 poroids in 1 µm, 4 striae to the central larger interspace
	Part of a valve end
	Middle part of a valve showing the proximal and distal mantles, 3.5 striae to the central larger interspace, 1.0 µm wide, ~44 striae and ~45 interstriae 10 µm
	Whole valve, 66 µm long, 1.3 µm wide, 41 striae, 41 interstriae and 26 fibulae in 10 µm
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	A3 (7)  P. multiseries
	Pseudo-nitzschia cf. multiseries
	Scanning electron micrographs (SEM)
	Specimen from the southwest coast of Ireland, station: 1807 (51˚ 26.10'N; 09˚ 54.9'W), July 21st 1996.
	Part of a valve showing the striae structure, 4.1 µm wide, ~10 striae, ~10 interstriae and ~10 fibulae in 10 µm, 5–7 poroids in 1 µm.
	Valve end.
	Specimen from the south coast of Ireland, station: 1808 (51˚ 27.00'N; 09˚ 33.00'W), July 21st 1996, part of a valve, ~3 µm wide, ~14 striae, ~14 interstriae and ~14 fibulae in 10 µm, 6 poroids in 1 µm.
	Transmission electron microscopy (TEM)
	Specimen from the southwest coast of Ireland, station: 1314 (51˚ 20.1'N, 10˚ 05.0'W), August 17th 1993.
	Valve end.
	Middle part of the valve, ~2.9 µm wide, ~12 striae, ~12 interstriae and ~12 fibulae in 10 µm, 6 poroids in 1 µm.
	Specimen from the south coast of Ireland, station: 1815 (51˚ 50.2'N; 08˚ 15.8'W), July 23rd 1996.
	Close-up of the valve face, 7 poroids in 1 µm.
	Part of the valve, ~ 3 µm wide, 11 striae, 11 interstriae and 12 fibulae in 10 µm.
	Valve end.
	Transmission electron microscopy (TEM)
	Specimen from the south coast of Ireland, station: 1815 (51˚ 50.2'N; 08˚ 15.8'W), July 23rd 1996.
	Close-up of the valve face striae and proximal mantle, 9˜ poroids in 1 µm.
	Part of the valve, ~ 3 µm wide, 15 striae, 15 interstriae and 15 fibulae in 10 µm.
	Transmission electron microscopy (TEM)
	Specimen from the southwest coast of Ireland, station: 1819 (52˚ 04.9'N; 06˚ 59.0'W), July 23rd 1996
	Whole valve, 93 µm long, 2.8 µm wide, 15–16 striae, 15–16 interstriae and 15–16 fibulae in 10 µm
	Valve end
	Middle part of the valve showing the striae structure, 7 poroids in 1 µm
	Part of the valve
	Part of the valve
	Other end
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	A3 (8)  P. seriata
	Pseudo-nitzschia cf. seriata
	Transmission electron micrographs (TEM)
	Specimen from the south coast of Ireland, station: 1820 (51˚ 45.10'N; 06˚ 33.9'W), July 24th 1996.
	Part of a valve, 20 striae, 20 interstriae and 20 fibulae in 10 µm.
	Part of a valve, 8–9 poroids in 1 µm.
	Specimen from the south coast of Ireland, station: 1819 (52˚ 04.90'N; 06˚ 59.00'W), July 23rd 1996.
	Part of a valve, 8 poroids in 1 µm.
	Valve end.
	Transmission electron micrographs (TEM)
	Specimen from the south coast of Ireland, station: 1810 (51˚ 07.2'N; 09˚ 24.0'W), July 22nd 1996, part of a valve, 5.3 µm wide at this part of the valve, 7 poroids in 1 µm.
	Specimens from the coast of Ireland, station: 1820 (51˚ 45.10'N; 06˚ 33.9'W), July 24th 1996.
	Part of a valve, 8 poroids in 1 µm.
	Part of a valve, 8 poroids in 1 µm.
	Part of a valve, 9–10 poroids in 1 µm.
	Part of a valve, 9 poroids in 1 µm.
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