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ABSTRACT 

 

1. Planktonic biomass size spectra were used to summarise the ecological quality of 

six shallow lakes sampled in spring, early summer and late summer.  

2. A simple additive model fitted to the data was used to assess the applicability of the 

size spectrum theory to shallow lake ecosystems.  

3. The additive model replicated the hierarchical pattern of biomass predicted by the 

predator-prey theory of aquatic production, and was a more appropriate model for 

predicting biomass size spectra than the frequently used linear regression.  

4. Lakes with varying ecological quality were a significant source of variation in the 

additive model, and further research into using size spectra to monitor ecological 

quality in shallow lakes is warranted.   Specifically, the production of size spectra 

from a wider range of sites is needed to provide greater statistical validation. 

5. The use of size spectra can provide an attractive and cost-effective way for 

classifying lake ecosystems because it circumvents the need for difficult taxonomic 

description. 
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INTRODUCTION 

 

The usefulness of biomass size spectra in condensing and analysing features of aquatic 

ecosystems has been gaining acceptance in recent years, particularly with the realisation 

that indices of ecosystem function may be useful in determining and monitoring ecological 

quality in aquatic ecosystems. The search for simple and effective descriptors of biological 

ecosystem components is a major challenge of monitoring aquatic ecosystem health (Basset 

et al., 2004), and is receiving much attention in Europe, in preparation for the 

implementation of the Water Framework Directive (WFD – Directive 2000/60/EC of the 

European Parliament and of The Council of 23 October 2000 establishing a framework for 

Community action in the field of water policy). The WFD places high emphasis on the use 

of taxonomy in assessing ecological quality. In the explanation of how biological quality 

elements should be used to monitor ecological quality (WFD, Annex 5, section 1.2), 

taxonomic composition is mentioned in all cases. Lack of comparability of taxonomic 

groups across ecoregions, as well as a lack of expertise and the time consuming nature of 

taxonomic work are issues that are likely to be problematic for implementing the Directive. 

Article 20 of the WFD provides for the development of alternatives to taxonomic 

measurements. The aim of this paper is to assess the use of size spectrum analysis as one 

such alternative for monitoring ecological quality in shallow lake ecosystems.  

Interest in the use of ecosystem function indices, such as biomass size spectra, has 

increased in recent years, both in freshwater and marine systems. Biomass size spectrum 

analysis describes the distribution of biomass in progressively increasing size classes. A 

biomass size spectrum is constructed by measuring and counting individuals in the relevant 
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sample(s), converting the measurement to some form of body mass unit (e.g. equivalent 

spherical diameter, or grams of carbon) and graphing this (x-axis) against some form of 

abundance unit (y-axis). The first size spectra for oceanic open water plankton (Sheldon et 

al., 1972) found that total standing biomass in increasing logarithmic size classes was 

approximately constant. Subsequent studies in a wide variety of open water marine and 

freshwater communities have shown a generality of a constant biomass distribution for a 

remarkable range of waterbodies (Gaedke, 1992; García et al., 1995; Witek and Krajewska-

Soltys, 1989). This constant nature is indicated by the slope of the normalised biomass size 

spectrum fitted to a straight line, with a value of  -1. The normalised biomass is simply the 

biomass of organisms within a size range (i.e. the abundance estimate on the y-axis), 

divided by the width of the body mass interval.  Size spectrum theory has undergone much 

development since the 1970s, and has considerable potential for increasing understanding 

of aquatic ecosystem trophic structure, as it is the underlying ecological energetics, 

particularly related to predator-prey interactions, which control the patterns in size spectra 

(Kerr and Dickie, 2001).  

The main advantage of the size spectrum approach is that it condenses a large 

amount of ecosystem information into essentially one column of numbers, and succinctly 

summarises the ecosystem of the study site. In addition, it is an ataxonomic approach 

(Echevarría et al., 1990), in that the data can be collected without having a high level of 

taxonomic expertise in each of the biological components. Cattaneo et al.  (1993) have 

shown that attributes with intermediate levels of detail, such as growth form or size 

spectrum, may be most efficient for biomonitoring because they explain similar amounts of 

variance as fine-level taxonomy, but they require less time and taxonomic expertise.   Size 
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spectrum analysis also provides a way of generally comparing ecosystems, which may have 

quite different species compositions owing to geography.  Size spectrum analysis is 

particularly suited to examining the effects of perturbation on the whole food web of an 

ecosystem (Cottingham, 1999), and as a result is an increasingly widespread approach in 

both marine and freshwater science, particularly to monitor exploitation of commercial fish 

stocks (Graham et al., 2005; Shin et al., 2005).  

While models of size spectra have been shown to fit data from large lakes and 

oceans, they remain relatively untested for shallow lakes, and also ranges of biomass that 

include microbial elements.  It is thought that planktonic biomass size spectra may be more 

spatially and temporally variable in lakes than in oceans, owing to substantial inputs from 

surrounding land into a relatively small volume, and to the influence of benthic organisms 

in the biomass size spectra of lakes. The benthic influence may be particularly important in 

shallow lakes, where benthic and planktonic food webs are closely linked (Cyr and Peters, 

1996). It is also likely that observed switches between alternative steady states in shallow 

lakes (Scheffer, 1998) may affect the stability of the biomass size spectra. 

Obviously, size spectra will only be useful as ecosystem function indicators if they 

are sensitive to variation among and within lakes.  The slope of the normalised size 

spectrum has been shown to become less negative with increasing lake productivity 

(Ahrens and Peters, 1991; Sprules and Munawar, 1986) and others factors suggested to 

affect the shape and slope of the normalised size spectrum include latitude, water depth, 

and lake size (Gaedke, 1992). These studies indicate that factors affecting the ecological 

quality of lakes such as nutrient enrichment (the main pressure in many European lakes), 

acidification and catchment degradation as a result of land use changes are likely to be 



 6 

reflected in the size spectra. It seems likely, therefore, that graphing and analysing the size 

spectra of the openwater communities may be a viable alternative to taxonomic monitoring 

of ecological quality.  

In Irish lakes (and hence our study lakes), the primary factor affecting lake 

ecological quality is nutrient enrichment (Toner et al., 2005). In order for size spectrum 

analysis to adequately capture changes in trophic status, it must therefore be sensitive to 

changes in the openwater planktonic food web that come about as a result of increased 

nutrient loading. Some of these food web changes include a general increase in biomass 

with increasing lake productivity, reflected in a higher intercept in the normalised size 

spectrum (Boudreau and Dickie, 1992). Results from previous studies on the response of 

the phytoplankton assemblage to increased productivity indicate that the proportion of large 

taxa in the phytoplankton usually increases as lakes become more eutrophic (Cottingham, 

1999; Kalff and Knoechel, 1978; Watson and Kalff, 1981), and this should be obvious in 

the normalised  size spectrum as a relatively higher biomass of phytoplankton in the larger 

size classes. Changes in the zooplankton and fish assemblages with productivity are 

inextricably linked and are likely to lead to a disruption in the trophic cascade. For 

example, the loss of planktiviorous fish (e.g. as a result of summer fish kills owing to 

anoxia) would lead to an increase in the size of cladocera in accord with the size efficiency 

hypothesise (Brooks and Dodson, 1965). This, in turn, is likely to have implications for 

both the phytoplankton size distribution, as there is a strong correlation between 

zooplankton size and phytoplankton mean volume, and also possibly for the microbial part 

of the food web (Jeppensen et al., 1998). All these changes should be apparent in the size 

spectrum as shifting domes of biomass.  
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The first step in assessing whether size spectrum analysis can be used to assess and 

monitor ecological quality in shallow lakes is to determine whether size spectra vary across 

a range of lakes of varying ecological quality. This study aims to address this question by 

producing size spectra for plankton in 6 Irish lakes of varying quality (Moss et al., 2003). 

As seasonality may play a large role in structuring the slope and shape of the size spectrum 

(Gaedke, 1992; Tittel et al., 1998), the lakes were sampled in spring, early summer and late 

summer. Normalised size spectra of the open water plankton, ranging from bacteria to 

predatory cladocera, were constructed for each lake for late spring (April), early summer 

(June) and late summer (August). We wanted to ascertain whether there was commonality 

in size spectra across a range of shallow lakes, and determine whether size spectrum 

models are sensitive to trophic, physicochemical or seasonal variation. 

Analysis of size spectra of freshwater ecosystems has largely been based on fitting 

the data to a straight line (e.g. (Gaedke, 1992; García et al., 1995; Sprules and Munawar, 

1986; Tittel et al., 1998). Several other models have, however, been developed for 

describing size spectra. These include the predator-prey size spectrum model summarised 

in Kerr and Dickie (2001), models based on pareto distributions (Brucet et al., 2005; 

Quintana et al., 2002), and models based on the precept that the trophic structure of aquatic 

communities is closely related to organism size (Borgmann, 1982; Borgmann, 1987). 

Rather than confine our analysis to previously published models, which may or may not be 

appropriate to shallow lake ecosystems, we used additive modelling to find the best fit for 

the data.   
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METHODS 

 

Study sites and field sampling - The six lakes chosen for this study (Carra, Gara, Gur, 

Maumwee, Mullagh, Ramor) cover a range of the physicochemical and ecological 

conditions found in Ireland (Table 1). In addition, Loughs Carra and Maumwee are both 

situated in designated SACs (Special Areas of Conservation). Lough Carra is part of the 

Lough Carra/Mask Complex SAC, with the lake itself designated as the Habitats Directive 

(92/43/EEC) habitat ‘Hard oligo-mesotrophic waters with benthic vegetation of Chara spp’ 

(HD code 3140).  Lough Maumwee is in a large SAC complex (Maumturk Mountains 

SAC) and the lake is designated as ‘Oligotrophic waters containing very few minerals of 

sandy plains (Littorelletalia uniflorae)’ (HD code 3110). Both of these lakes may require 

additional monitoring as protected areas under the WFD.    

The lakes were sampled in April, June and August 2000. Composite water samples 

were collected on each sampling occasion from the deepest point of each lake using a 3 

metre plastic tube. In lakes with a maximum depth of less than 3 metres, the water samples 

were taken at 30-50 cm depth, from the boat. Subsamples of these water samples were 

preserved with Lugol’s iodine for phytoplankton and ciliate counts, and with Formalin 

(final concentration 1.5%) for counts of bacteria, heterotrophic nanoflagellates (HNF) and 

autotrophic picoplankton (APP). The rest of the water was used for chemical analysis. 

Zooplankton were sampled by vertical hauls of the water column using a conical 

zooplankton net (53 µm mesh, with a flow meter for correcting filtering efficiency). Where 

the lake was too shallow for effective use of the net, 10 litres of water was collected using a 
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perspex tube (diameter 5.5 cm, volume 2276 cm2). Samples were preserved in excess 70% 

ethanol.   

Chemical analysis and biomass determination - Total phosphorus (TP) was determined 

using potassium persulphate digestion, followed by the spectrophotometric molybdenum-

blue method of Eisenreich et al. (1975). Chlorophyll a was determined using ethanol 

extraction according to ISO 10260 (1992).  Total N (TN) was determined in duplicate by 

alkaline persulfate digestion followed by flow-injection analysis (Tecator Kjeltec Analyzer 

System), which involved Cd reduction followed by azo dye colorimetry.  Alkalinity was 

determined by titration with H2SO4. Colour was measured at an absorbance of 400nm. 

Conductivity, turbidity and pH were determined using electronic meters. Ecological quality 

was assigned using the ECOFRAME methodology developed in Moss et al. (2003), which 

was based on a combination of 28 variables comprising biological, physical and chemical 

data. 

 To count and measure bacteria, HNF and APP, aliquots were filtered onto black 

0.22µm Isopore filters, stained with DAPI (4'-6-Diamidino-2-phenylindole) and counted 

using epiflouresence, following the methodologies of Porter and Feig (1980) and Kemp et 

al. (1993). Digital photographs of the fields of view at x1000 magnification were taken and 

individuals were counted and measured using the computer programme Scion Image, 

version 4.0.2. Phytoplankton, ciliates and rotifers were counted and measured using an 

inverted microscope (x400 magnification) and an eyepiece graticule. Zooplankton samples 

were subsampled using a 5 ml wide bore pipette, and counted and measured using a 

dissecting microscope (x30). Individual measurements were converted into biomass (pg 
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Carbon) using the conversion factors in Gaedke (1992). The body size of bacteria, APP, 

HNF, phytoplankton and ciliates were calculated from standard geometric formulas.  

Colonial phytoplankton were treated as individuals only in cases where it was too difficult 

to differentiate between cells as they shared a common surface area. In general, therefore, 

the individual cells of the colony were counted and measured.  Measurements of rotifers 

were converted to dry weight using Latja and Salonen (1978) and Telesh et al. (1998). 

Measurements of the larger crustaceans were converted to dry weights using length-weight 

regressions calculated for various species from each lake during the course of the study (de 

Eyto and Irvine, 2005). 

 

Statistical analysis – Initially, size spectra were constructed for each lake and each 

sampling period, using log2 (pg C) size classes. Normalised size spectra were produced for 

the whole range of sizes from bacteria to predatory cladocerans. To produce the normalised 

size spectra, the biomass in a size class was divided by the width in picograms of carbon of 

that size class. Normalised size spectra were analysed using additive modelling in the 

computer package Brodgar v 2.4.3 (www.brodgar.com). The response variable (normalised 

biomass) was modelled using size class, month and lake as explanatory variables. Size class 

was included as the smoothing term, while month (1 – April; 2 –June; 3 -August) and lake 

(1- Carra; 2 – Gara; 3 – Gur;, 4 – Maumwee; 5 – Mullagh;, 6 – Ramor) were included as 

nominal variables.  The optimal degrees of freedom of the smoothing term was found using 

cross-validation (Wood, 2000; Wood, 2004). An additive model was used rather than a 

simple linear model as the residuals from a linear model showed distinct patterns or clumps 

of both negative and positive residuals (Fig. 1). Including interaction terms in the linear 
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model did not reduce the patterns in the residuals, indicating the relationship between size 

class and normalised biomass was non-linear. The spread of the residuals of the additive 

model with a Gaussian distribution was homogenous, indicating that there was no 

requirement to use a generalised additive model with a Poisson distribution (Montgomery 

et al., 2001; Zuur et al., 2006 (In Press)). An interaction term between month and lake was 

included in the model. F-tests were used to test the significance of the interaction and 

smoothing terms.  

 

RESULTS 

The ECOFRAME scheme for assessing ecological status (Moss et al., 2003), classified 

Loughs Gara, Gur and Mullagh as having moderate ecological status, Carra and Maumwee  

as high, and Ramor as poor. This was based on 80% compliance for all variables in the 

scheme. The size spectra of the plankton communities of the six lakes extended over 34 

log2 body size classes, with individual biomasses ranging from 0.0078 pg C (bacteria and 

autotrophic picoplankton) to 6710864 pg C (predatory cladocera). Total openwater 

planktonic biomass ranged from 0.08µg C per ml in Lough Gara in April to 1.47µg C per 

ml in Lough Mullagh in August. Generally, Lough Ramor and Lough Mullagh had the 

highest biomass, Lough Gara and Lough Maumwee the lowest, with Lough Carra and 

Lough Gur intermediate between the two. A full description of the plankton communities, 

and the relative contribution of each functional group to the total biomass can be found in 

de Eyto and Irvine (2005).  

 The size spectra of the openwater plankton showed a decreasing pattern with several 

apparent domes of biomass (Fig. 2). The optimum additive model confirmed the presence 
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of these domes, with the smoothing term having 8.31 estimated degrees of freedom (Fig. 3) 

with an approximate significance of p<0.001. In the additive model, lake was a significant 

source of variation for the normalised biomass (p<0.001), as was the interaction term month 

x lake (p<0.001). The normalised biomass did not vary significantly among months 

(p=0.08). A summary of the optimum additive model is given in Table 2.  

 Examination of the parametric coefficients for each lake and month indicated how 

the size spectrum model changed according to lake and month x lake (Table 3). The 

intercept of the model was significantly lower (i.e. the whole curve shifted down) for 

Lough Gara (p=0.008) than for Lough Carra, while those of Lough Mullagh and Ramor 

were significantly higher (i.e. the whole curve shifted up) (p<0.001 in both cases). This is 

apparent in Fig. 4, as there are many points representing Lough Gara below the fitted curve 

towards the right side of the graph, while several of the points (in the range of larger 

phytoplankton taxa) representing Loughs Mullagh and Ramor are above the curve in the 

middle of the graph. The intercept was generally related to the total biomass of the 

openwater plankton for each group, with more productive lakes having higher intercepts. 

Given the small dataset, it would misleading to investigate significant correlations between 

the model and physicochemical variables. However, there is a general trend of increasing 

intercept with increasing productivity, as indicated by total phosphorus, chlorophyll a and 

turbidity, and decreasing intercept with increasing water hardness (as indicated by 

conductivity, alkalinity and pH) (Fig. 5). 

 The interaction between month and lake was also a significant source of variation, 

particularly for Lough Gara in August, which had a significantly higher intercept 



 13 

(p=0.008), than in other months, while Lough Ramor in June had a significantly lower 

intercept (p=0.015) than in other months. 

 

DISCUSSION 

 

The lakes that the additive model highlighted as having different size spectra from Lough 

Carra (high ecological quality) were Loughs Mullagh and Ramor (classified under 

ECOFRAME as moderate and poor quality, respectively) and Lough Gara (moderate). The 

other lake of moderate quality (Lough Gur) did not have a significantly different size 

spectrum than Lough Carra, although the p value was quite small (p=0.10). The two lakes 

with the most similar size spectra were Loughs Carra and Maumwee (p=0.54), which are 

both classified as high quality according to the ECOFRAME scheme. These two lakes have 

distinctly different alkalinity and, therefore, would be placed into different water body 

types under WFD. As a first step, this indicates that size spectrum analysis may be 

appropriate for monitoring ecological quality.  The ECOFRAME method of assessing 

ecological quality is, for the most part, independent of the data that was used to construct 

the size spectra, yet the size spectra results mirrored the ECOFRAME classifications 

reasonably well.  The biological variables in the ECOFRAME scheme included the number 

of phytoplankton species, the proportion of large cladoceran species in the zooplankton and 

the ratio of zooplankton to phytoplankton, all of which would contribute to the biomass size 

spectra. However, the ECOFRAME scheme comprised 25 other variables unrelated to the 

biomass size spectra. 
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 The time of year (month) was not a significant source of variation for the additive 

model, which indicates that the size spectra are relatively stable within the year. There were 

two exceptions:  the size spectra of Lough Gara in August, and Lough Ramor in June, were 

different from other months.   In Lough Gara in August, there was a general increase in 

biomass of both bacteria and zooplankton compared with other months, causing the whole 

curve to shift slightly upwards. In Lough Ramor, the different size spectra in June reflected 

a much lower zooplankton dome than in the other two months. Total zooplankton biomass 

in Lough Ramor in June was only 0.014 µg C ml-1, in comparison with 0.35 and 0.12 µg C 

ml-1 in April and August respectively (de Eyto and Irvine, 2005). This may be owing to the 

appearance of Leptodora kindtii, which was not present in the other two months. The 

presence of this large predatory cladoceran caused the zooplankton dome to move slightly 

to the right of the graph (bigger size class), and plays a crucial role in the structure of the 

size spectrum; causing the intercept of the additive model to decrease significantly by –

1.93.  

 Trophic state of the lakes was reflected in size spectrum analysis. Firstly, more 

productive lakes had higher intercepts, indicative of a general increase in biomass, in 

accord with the predictions of Boudreau and Dickie (1992). Secondly, the two most 

productive lakes (Mullagh and Ramor) had a higher proportion of large taxa in the 

phytoplankton (Fig. 4).  As we did not include fish in this analysis, it is difficult to interpret 

differences in the zooplankton assemblage as a result of nutrient enrichment, as the two are 

so closely linked through top down control. In addition, the fish assemblages of the six 

lakes vary considerably, and hence will have different impacts on the zooplankton 

assemblage. For example, Lough Carra is a brown trout (Salmon trutta) fishery (King and 
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Champ, 2000), with extensive Chara beds that provide excellent refuge for large 

cladocerans. In contrast, the fish assemblage of Lough Gur is dominated by rudd 

(Scardinius erythrophthalmus L.) and also has some pike (Esox lucius L.) and eel (Anguilla 

anguilla L.) (King and O'Grady, 1994). Nevertheless, the two brown trout lakes (Carra and 

Maumwee) both had similar size spectra, despite their chemical differences, and that these 

differed significantly from Loughs Mullagh, Ramor and Gara, which are predominantly 

coarse fisheries. This observation underpins the link between top down control by fish, and 

the general ecological quality of a lake, and highlights the fact that, in Ireland at least, there 

is a strong correlation between nutrient enrichment and lakes switching from salmonid to 

coarse fisheries.  

Size spectrum models based on mathematical formulations describing energy 

transfer, production and body size ratios between predators and prey predict a hierarchical 

structure in the size spectra (Thiebaux and Dickie, 1993) as predator–prey relationships 

lead to powerful size-based trophic structuring (Shin et al., 2005). This predator-prey 

model predicts that over a wide range of body sizes, a smooth parabola with a very low 

negative curvature may be the best fit for biomass size spectra. In addition, it predicts that 

there is some degree of secondary scaling, with groups of predators and their prey 

appearing as periodic oscillations or domes of biomass. Thiebaux and Dickie (1992; 1993) 

predicted that if these domes are fitted to parabolas, and if a fixed R (predator – prey size 

ratio) is presumed, then the smooth quadratic integral spectrum can be overlaid with 

parabolas representing approximate trophic positions, with each parabola having fixed 

curvature and uniform vertical and horizontal displacement among functional groups. The 

best fit of the additive model contained a smoothing curve with four apparent ‘domes’ of 
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biomass. This is particularly noticeable in the size classes between –7 and 0, and between 

18 and 26. Two other domes occurred between size classes 0 and 8, and 8 and 16, although 

they are less pronounced (Fig. 3). The first dome was within the size classes of bacteria and 

the smaller phytoplankton taxa. The second dome comprised HNF, some smaller ciliates 

and mid-sized phytoplankton. The third dome comprised larger ciliates, rotifers and the 

larger phytoplankton taxa (as well as colonial phytoplankton). The last dome primarily 

comprised copepod and cladoceran zooplankton.  While we did not attempt to fit these 

specific parabolic equations used by Kerr and Dickie (2001), our additive model still 

highlighted these apparent peaks and troughs of biomass, with horizontal shifts between 

domes of about 8 size classes (log2 size classes pg C) and vertical shifts between 

normalised biomass of domes of about 7 (log2 pg C ml-1 / width of size class). The 

predator-prey theory of biomass size spectra suggests that these are representative of 

predator-prey couplings, and indicate the trophic position of each group. Our data support 

the view that there are uniform horizontal shifts among trophic groups if there is a fixed 

ratio between predators and prey ratio, and that the predator-prey model, as summarised in 

Kerr and Dickie (2001), is applicable to shallow lake ecosystems. This extends the range of 

aquatic systems to which this theory may be applied. That the model fitted well to data 

from small shallow lakes, which are likely subject to high seasonal fluctuation and localised 

impact from catchment, and have strong linkages with the benthos, strengthens the view 

that the model is applicable to many aquatic environments.   

Our analysis suggests that it is inappropriate to use straight lines to model biomass 

size spectra, as one of the main assumptions of linear regression is violated, i.e. that 
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residuals should not show any patterns (linearity). This means that R2 values and the slopes 

of the line are unreliable if the model used is a linear regression.  

We support the view that biomass size-spectra provides a useful tool for 

summarising and condensing information about ecosystems into easily analysed models, 

and our data suggest that the resulting models are sensitive to variation in ecological 

quality. The use of simple descriptors of biological ecosystems, such as body size 

distributions, for monitoring purposes is receiving increasingly more interest as 

anthropogenic influences continue to impact on freshwaters (Basset et al., 2004), and the 

increasing use and awareness of AM (additive modelling) and GAM (general additive 

modelling) should make the analysis and use of biomass size spectra more accessible and 

statistically viable. In addition, the development of automated counting and measuring 

systems will make it cost-effective to construct biomass size spectra in the future. While we 

have shown that size spectra vary significantly among lakes of differing ecological quality, 

we are aware that in this study, ecological quality and the variance in size spectra, is mainly 

related to eutrophication, and based on rather a small sample size.  Further research into 

how size spectra might vary with other pressures and impacts, including changes in fish 

assemblages is required. In addition, analysis of size spectra across a wider range of lakes, 

or within the same lake undergoing ecological change would be useful in developing and 

quantifying appropriate size spectra metrics for monitoring use.  

The use of size-spectra in assessment of ecosystem health may be particularly 

important for the monitoring of protected areas, including those designated under 

conservation legislation.  These sites merit a greater intensity of monitoring because of their 

high national or international importance. Size-spectra analysis provides cost-effective 
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information that can span all, or most, trophic levels; thereby providing a metric 

encompassing the overall ecosystem.  Shifts in size spectra can elicit the need for further 

investigation.  Furthermore, it may be especially useful for a surrogate of the status of fish 

populations where labour-intensive monitoring may be expensive or unreliable.   
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FIGURE LEGENDS 

 

Figure 1. Residual pattern generated when a linear regression is fitted to normalised 

biomass size spectra 6 Irish shallow lakes. The solid line is a smoothing curve showing the 

relationship between each x value and the corresponding residual, and the dashed lines 

represent 95% confidence intervals for the relationship. Size class is measured in units of 

Log2 body mass (pg C). 

 

Figure 2. Normalised biomass size spectra for 6 Irish shallow lakes sampled in April, June 

and August (18 data sets in total). The size ranges of each taxonomic group are shown. Size 

class is measured in units of Log2 body mass (pg C). 
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Figure 3. Additive model smoothing curve fitted to the normalised biomass of openwater 

zooplankton sampled from 6 shallow Lakes. Dashed lines represent 95% confidence 

intervals around the main effects. Size class is measured in units of Log2 body mass (pg C). 

 

Figure 4. Scatterplot with fitted AM (additive model) smoothing curves for the relationship 

between size class (log2 pg C) and the normalised biomass of openwater plankton of six 

shallow lakes. Size class is measured in units of Log2 body mass (pg C). 

 

Figure 5. Relationship between the intercepts for 6 lakes as predicted by the additive model 

with TP (left) and Alkalinity (right). Values of TP and alkalinity are averages of three 

sampling occasions. 
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Lake Position Mean depth Max. depth Catchment Annual Area Trophic status
(basin) (Lat Long) (m) (m) composition time (yrs) (Ha)

Carra (north) 53º 42’ N 09º 15’ W 2 16 Calcareous 0.2 1500 Oligotrophic
Gara (south) 53º 55’ N 08º 27’ W 1 1.6 Calcareous 0.02 202 Mesotrophic
Gur 52º 31’ N 08º 32’ W 1.5 3.8 Calcareous 0.21 78 highly Eutrophic
Maumwee 53º 28’ N 09º 32’ W 2 7.9 Organic 0.1 27 Oligotrophic
Mullagh 53º 49’ N 06º 57’ W 2.3 8.1 Siliceous 1.34 35 highly Eutrophic
Ramor 53º 49’ N 07º 04’ W 3 5.5 Siliceous 0.17 741 Hypertrophic

Table 1. Characteristics and morphometric data for 6 Irish lakes in this study. Trophic status is classified 
according to the modified version of the O.E.C.D. classification scheme (1982) used by the Irish EPA (Lucey et 
al ., 1999) according to maximum values of Chlorophyll a. Catchment compostion is assigned based on the 
dominant geology (>50%) in the catchment.
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Table 2. Summary of optimum additive model. A normal (gaussian) distribution was 

assumed for the response variable (normalised biomass). AIC (Akaike Information 

Criterion) is a measure of fit for a model. 

 

 

  

df 

 

Chi sq 

 

P 

 

 

Parametric terms 

 

Month 

 

2 

 

5.02 

 

0.0821 

 Lake 5 102.93 <0.001 

 Month x lake 10 29.53 0.0012 

     

Smoothing terms s (Size class) 8.84 (est.) 9766.9 <0.001 

     

Model parameters Deviance explained 95.7%   

 Dispersion 4.47   

 AIC  

 

2446.32 
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Table 3. Parametric coefficients calculated for an additive model for normalised biomass of 
openwater plankton in 6 shallow lakes, sampled three times. The model comprises a 
smoothing curve (size class) and two nominal variables, lake (n=6) and month (n=3). 
Lough Carra and April are the baselines for the model. Significantly (95%) different values 
are in bold.  
 
Variable 

 

 
Estimate 

 

 
Standard error 

 
t ratio 

 
p 
 

 
Intercept 

 
 1.82 0.41 4.45 <0.001 

      
Month June 0.78 0.57 1.38 0.168 
 August 1.29 0.58 2.22 0.026 
      
Lake Garra -1.52 0.57 -2.65 0.008 
 Gur 0.94 0.58 1.62 0.105 
 Maumwee 0.36 0.59 0.62 0.538 
 Mullagh 2.24 0.57 3.95 <0.001 
 Ramor 3.71 0.57 6.47 <0.001 
      
Month x lake June x Gara 1.39 0.81 1.72 0.087 
 August x Gara 2.15 0.81 2.64 0.008 
 June x Gur -0.69 0.81 -0.86 0.392 
 August x Gur 0.17 0.81 0.21 0.831 
 June x Maumwee -1.00 0.82 -1.22 0.224 
 August x Maumwee -1.13 0.82 -1.38 0.169 
 June x Mullagh -0.19 0.80 -0.24 0.811 
 August x Mullagh 0.21 0.80 0.25 0.799 
 June x Ramor -1.93 0.80 -2.42 0.016 
 August x Ramor 

 
-1.16 

 
0.82 

 
-1.41 

 
0.158 
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