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Abstract 

The European eel (Anguilla anguilla) is a relatively high lipid, long lived species capable 

of living in a variety of brackish, fresh and marine habitats. As such, eels can accumulate 

organic pollutants and have been incorporated into environmental monitoring programs 

as a suitable “bioindicator” species for the determination of the levels of organic 

contaminants within different water bodies. The global eel stock is now in decline and 

while the cause of the collapse remains unidentified, it is likely to include a combination 

of anthropogenic mortality in addition to environmental degradation. This study provides 

valuable data on a range of contaminants (PCDD/Fs, PCBs, OCPs,  PBDEs, HBCD, 

TBBPA and PBBs) and extractable lipid levels in eel muscle tissue collected from five 

Irish catchments. Extractable lipid levels were lower in the yellow eels compared to those 

in the silver eels. These levels were similar to those reported elsewhere and it has been 

posited that a decline in the lipid content in yellow eels may have consequences for the 

future viability of the stock. With the exception of higher substituted dioxins (especially 

OCDD), in 3 samples collected from one catchment (Burrishoole) in the West of Ireland, 

POP levels in general were determined to be low in eels from Irish waters compared to 

those in other countries. 

 

Keywords: European eel, lipid, PCDD/F, flame retardants, organic persistent pollutants, 

food safety. 



1. Introduction 

Throughout Europe the numbers of glass eels (Anguilla anguilla) returning from sea has 

declined since the early 1980s and the stocks have declined in most of the distributional 

area and are considered below safe biological limits (Bertin, 1956; Feunteun, 2002; 

Dekker, 2003; Tesch, 2003). The International Council for the Exploration of the Sea 

(ICES, 2006) suggested that spawner quality issues (i.e. parasites, disease, contaminants) 

are highly likely to impact on migration and spawning success, however a lack of reliable 

data over the wide geographical range of the eel makes it difficult to assess the impact of 

these issues on the global spawning stock of European Eel. While the cause of the eel 

stock collapse remains unidentified, it is likely to include a combination of anthropogenic 

mortality (e.g. fishing & turbines) in addition to environmental degradation.  It is 

additionally suggested that accumulation of contaminants and/or a reduction in energy 

reserves (lipid levels) may be impairing the quality of potential spawners (Belpaire et al., 

2009).   

 

It is well documented that the eel progresses through five principal life cycle stages 

namely, the leptocephalus, glass eel, elver, yellow and silver eel stages (de Boer et al., 

1994). The leptocephali metamorphose into glass eels and a proportion migrate upstream 

as elvers. At the latter stages elvers develop into the yellow eel stage, which continue to 

feed and grow in a wide range of habitats in marine and freshwater, before completing 

their life cycle and metamorphosing to the silver eel stage for migration to the spawning 

grounds of the Sargasso Sea (Bertin, 1956; Tesch, 2003). This ability for eels to inhabit 

such a diverse range of marine and freshwater environments, along with a wide variety of 



dietary influences, may subject eels to multiple routes (sources) of exposure to 

environmental contaminants Eels spend a large proportion of their lives in estuarine 

and/or freshwater systems which when combined with their long lifecycle and diverse 

feeding patterns can result in the eel accumulating substantial body burdens of 

environmental pollutants (Versonnen et al., 2004; de Boer et al 1994).  

 

Dioxins (PCDDs), furans (PCDFs) and polychlorinated biphenyls (PCBs) are reported to 

be toxic and bioaccumulative, and thus potentially pose a major health risk to the 

consumer of seafood and possibly to the eels themselves (Ryan et al., 1990; Giesy and 

Kannan, 1998; van den Berg et al., 2006). The most toxic dioxin congener is 2, 3, 7, 8-

tetrachlorodibenzo-p-dioxin (2, 3, 7, 8-TCDD). Particular concern is expressed about the 

12 so-called non-ortho (PCBs 77, 81, 126, 169) and mono-ortho (PCBs 105, 114, 118, 

123, 156, 157, 167, 189) dioxin-like (DL) PCBs, for which essentially the toxic effects 

are based on the same principle as that of PCDDs and PCDFs, since they also bind to the 

aryl hydroxyl (Ah) receptor.    Other PCBs are known as non-dioxin-like (NDL) PCBs 

and they do not exert their toxicological effects via binding to the Ah receptor but 

nonetheless are associated with a wide spectrum of toxic responses (Legare (2000); Giesy 

and Kannan, 1998).  

 

Brominated flame retardants (BFRs) comprise a group of chemicals, which are added to 

many household products for the purpose of fire prevention. Limited toxicity (and often 

environmental prevalence) data are available for polybrominated diphenyl ethers 

(PBDEs), hexabromocyclododecane (HBCD), polybrominated biphenyl (PBB) and 



tetrabromobisphenol-A (TBBPA). The potential of these chemicals to cause toxic effects 

though has been documented  (Meironyte et al., 1999; de Boer et al., 2000; Spiegelstein, 

2000; Kitamura et al., 2002; Alaee et al., 2003; Vos et al., 2003; Birnbaum and Staskal, 

2004). Based on their lipophilic nature, environmental persistence and bioaccumulation 

potential, chlorinated pesticides (OCPs) represent a threat to aquatic organisms a number 

having been linked to many health problems in marine mammals (Reijnders, 1986; 

Reijnders, 1994; de Swart et al., 1994).  

 

1.1 Summary contaminant related effects and legislation. 

There are currently no EU maximum limits for BFRs in food and tolerable daily intakes 

(TDIs) have not been derived, primarily due to limited toxicological data and the 

associated uncertainties with such studies. EFSA currently recommends the monitoring of 

BDE 28, 47, 99, 100, 153, 154, 183 and 209, in addition to PBB153 and HBCD in foods 

and feeds (European Food Safety Authority, 2006). With the exception of PBDE209 all 

of these compounds were analysed in this study.  

 

No legislation exists restricting the production of TBBPA or its derivatives and it is 

placed on the fourth list of priority chemicals under European Council (EC) Regulation 

No. 793 regarding the evaluation and control of the risks of existing substances 

(European Commission, 2000).   Due to its high production volumes TBBPA will 

however be one of the first substances to go through the EU REACH (registration, 

evaluation, authorisation and restriction of chemicals) registration process (European 

Commission, 2006a) and as such monitoring data are of importance.  



 

There are currently no maximum levels for NDL-PCBs set by the EC, however, a number 

of Member-States have set national levels for individual or sum of 7 indicator/marker 

PCBs.  A stringent level has been set in Belgium for the sum of 7 indicator PCBs with a 

maximum level of 75 �g kg-1 product for “Fish, including shellfish, crustaceans and 

foodstuffs derived thereof” (EU Working Document, 2005). The European Commission 

is currently considering the regulation of NDL-PCBs, possibly via setting maximum 

levels for 6 indicator PCBs (28, 52, 101, 138, 153 and 180).  

 

EFSA report that no health based guidance value for humans can be established for NDL-

PCBs because simultaneous exposure to NDL-PCB and DL-compounds hampers the 

interpretation of the results of the toxicological and epidemiological studies, and the 

database on effects of individual NDL-PCB congeners is rather limited (European Food 

Safety Association, 2003). There are, however, indications that subtle developmental 

effects, being caused by NDL-PCB, DL-PCB, or PCDD/Fs alone, or in combination, may 

occur at maternal body burdens that are only slightly higher than those expected from the 

average daily intake in European countries (EFSA, 2005). Because some individuals and 

some European (sub)-populations may be exposed to considerably higher average 

intakes, EFSA report that a continued effort to lower the levels of NDL-PCB in food is 

warranted. 

 

As part of its exposure reduction strategy the EC has also introduced maximum levels for 

PCDDs, PCDFs and DL-PCBs in foodstuffs, via Council Regulation (EC) No. 



1881/2006; this sets maximum levels for certain contaminants in foodstuffs (European 

Commission, 2006b). The maximum level established for the sum of PCDD/Fs in eel 

muscle is currently 4 pg g-1 WHO-PCDD/F-TEQ (toxic equivalents) whole weight and 12 

pg g-1 WHO-PCDD/F-PCB-TEQ whole weight for the sum of PCDD/F and DL-PCBs. 

Toxic equivalency factors (TEFs) are additionally available for fish and wildlife (table 2) 

however their application to address the significance of potential and/or existing exposure 

to DL-compounds can be subject to a number of limitations (Tillett, 1999).  As TEFs (van 

den Berg et al., 2006) for PCDD/Fs and DL-PCBs have not been adopted in EC 

legislation to date they have not been utilised in this report. 

 

Relatively few data documenting contaminant levels in eels from Irish waters are 

available, as such, levels of extractable lipid, PCDD/Fs, PCBs, OCPs, PBDEs, HBCD, 

TBBPA and PBBs in eel muscle tissue are reported.  

 

2. Experimental. 

Between October and November 2005 eels were obtained at an initial 5 separate river 

systems throughout Ireland from commercial fishermen or from fish monitoring traps in 

the case of those from the Burrishoole catchment (Figure 1). Primarily on the basis of 

dioxin profiling in these initial samples, a second sampling event was completed in the 

Burrishoole (silver eel) and L. Feeagh (from where the majority of Burrishoole silver eel 

originate) area in 2007 where 2 additional samples were collected. Sampling details are 

presented in table 1 and figure 1.  



 

2.1 Sampling methodology – eel biology 

At each site at least 210 eels were randomly selected from each commercial catch or from 

the traps at Burrishoole (Poole et al., 1990). Commercial eels were captured either by 

coghill/fyke net (mesh size 8-10 mm bar) or with the use of eel-pots in tidal waters. 100 

eels were immediately anaesthetised, with chlorobutanol, measured (± 0.1 cm) and frozen 

(<-18 oC) for further biological examination and for subsequent removal of otoliths for 

ageing purposes. The remaining eels were also anaesthetised, measured for the purposes 

of estimating eel size distributions, then revived in freshwater before being returned alive 

to the water. 10 random eels, which were not subjected to anaesthetic, were individually 

bagged and frozen for contaminant analysis.  Eels were sexed macroscopically by 

dissection and ageing analysis was carried out utilising otoliths prepared by burning and 

cracking (Moriarty, 1983; Poole and Reynolds, 1996), followed by reading under x100 

magnification by two independent readers.  Where discrepancies were reported, a third 

reading was taken and all three readings were then averaged.  

 

2007 confirmatory sampling was completed in Burrishoole with the capture of 15 yellow 

eels from a fyke net survey catch of 106 eels on L. Feeagh and 12 silver eels from the 

traps.  These samples were treated in a similar fashion to those taken in 2005. 

 

2.2 Sampling methodology – sub-sampling 

Pooled mixed sex samples of eel muscle were removed from between the pectoral fin and 

tail. Subcutaneous lipid was removed from skin and returned to the sample muscle tissue; 



9 to 15 individual eels (table 1) were then pooled, samples homogenized, sub-sampled 

and stored at <-18 °C prior to analysis.   

 

2.3 Determination of lipid in eel muscle 

The Central Science Laboratory (CSL), York, England completed lipid determinations on 

the mixed sex pooled eel muscle samples via a Werner-Schmidt type method (based on 

British Standard BS:4401:Part 4 1970) to remove lipids including some bound lipid. 

ERGO-Eurofins completed lipid analysis of eel muscle by the exhaustive extraction of 

tissue with a mixture of cyclohexane: acetone 7:3. Lipid content was then derived 

gravimetrically.  Both laboratories show continued successful completion in 

internationally recognised lipid determination proficiency studies underpinning lipid 

quality assurance. 

 

2.4 Muscle tissue contaminants analysis 

Muscle tissue samples from the initial survey were analysed for a range of contaminant 

suites (incl. PCDD/Fs, PCBs, OCPs, PBDEs, PBBs, TBBPA) by Eurofins/ERGO, ERGO 

Forschungsgesellschaft mbH, Hamburg Germany according to EN ISO 17025 accredited 

methods GfA QMA 504-191/203/205. For the analysis of brominated flame retardant 

compounds, a GfA-established GC/MS method was used. Total HBCD (sum of �-, �-, �- 

diastereomers) analysis was completed by ERGO laboratories while individual 

diastereomer analysis was completed on two samples (MSC/05/1119 and MSC/05/1121) 

by CSL on a Waters (Hertsford, UK) Alliance 2695 LC system with a Waters Sunfire 

(C18) column, coupled to a Micromass (Manchester, UK) Quattro Ultima triple 



quadrupole MS in negative electrospray ionisation mode. PCDD/F analysis on the 2007 

samples was completed by CSL.  

 

2.4.1 Brominated Flame Retardant analysis 

Tissue samples were Soxhlet extracted with n-hexane and extracts were further treated on 

an H2SO4/SiO2 clean-up column. PBDEs, PBBs, total HBCD and TBBPA were 

quantified by HRGC/HRMS by means of internal / external standards. Recoveries for 

PBDEs were of the order 83% to 135%; PBB recoveries ranged from 60% to 100% while 

HBCD and TBPPA recoveries were lower ranging between 41% to 70 % and 25% to 

50% respectively. No correction for recoveries was performed.  

 

2.4.2 PCDD/F, PCB  and OCP analysis. 

Marker-PCBs (PCB 28, 52, 101, 118, 138, 153, 180) and OCPs were determined by 

GC/MS on a DB-5 capillary column following soxhlet extraction and clean-up on an 

alumina/silica column. Two isotope masses were measured and quantification was 

completed using appropriate internal/external standard mixtures. WHO-PCBs were 

determined by GC/HRMS following sample extraction and clean-up on a carbon/glass-

fibre column. Quantification was completed by the use of internal/external standard 

mixtures. Recoveries ranged from 62 to 105% for non-ortho, 70 to 110% for mono-ortho 

and from 77 to 118% for the sum of seven ICES PCBs (marker PCBs) respectively. 

 

2.5 Toxic Equivalency calculation 



The WHO-ECEH (European Centre for Environment and Health of the World Health 

Organization) toxic equivalency factors (WHO-TEFs) for PCDD/F and PCBs (van den 

Berg et al., 1998), were utilised. Total toxicity equivalents were calculated for each 

sample (see table 2) by summing the contribution of PCDD/F homologues reported in 

table 2. A combination of appropriate certified and/or laboratory reference materials were 

analysed with samples during this study. 

 

3. Results and Discussion 

3.1 Biological characteristics of sampled eels 

For the 2005 samples, variances in eel length (cm) between the pooled individuals for 

contaminants analysis (n = 10) and corresponding biological sample population (n � 210) 

were found to be homogeneous (student-t and F-test statistics) (P<0.05) for four of the 

five locations sampled (exception Burrishoole).  Additionally the mean age (32.3 yrs) of 

pooled individuals in the Burrishoole sample is greater than the average age of eels from 

other sampling sites (16.0 to 19.8 yrs) (table 1).  These age data are typical of slow 

growing Irish eels and are similar to those reported elsewhere in the literature (Moriarty, 

1988; Poole and Reynolds, 1996). In 2007, the L. Feeagh eel sample was not aged but a 

similar sample taken in 2001 had a mean age of 22 years and the silver eels sampled in 

Burrishoole in 2007 had a mean age of 25.1 years.  

 

3.2 Lipid Levels in eel muscle 

Extractable lipid percentages in the two mixed sex yellow eel samples (8.28 and 9.18%) 

were lower than those observed in the mixed sex silver eels (range 14.3 to 20.9%).  



Belpaire et al. (2009) report that a decrease in fat content in yellow eels may be an 

element in the stock decline raising serious concerns about the chances of the stock to 

recover and suggest that only large individuals, with high lipid content seem to be able to 

contribute to the spawning stock.  Only one sample in this study of Irish eels had lipid 

levels above the assumed 20% benchmark minimum level required for normal migration 

and reproduction (Belpaire et al., 2009). 

 

Belpaire et al. (2009) report a decadal drop in lipid stores in eels from the Netherlands 

and as such consider this as a general indicator for the health of the population.   The 

authors suggest that the decrease in fat stores of the yellow eels has a negative impact on 

the migration and reproduction capacity in the silver eels and thus results in decreased 

recruitment. It should be noted that mixed sex pooled eel samples which were analysed in 

this current study, eels from this study show similar lipid percentages to those reported by 

Belpaire et al. (2009).  

 

3.3 PCDD/F and WHO-PCBs  in eel muscle tissue 

Total upperbound PCDD/PCDF-TEQs in the range 0.21 to 0.29 pg g-1 total-TEQ wet 

weight (ww) (1.04 to 1.30 pg g-1 (ww)  were calculated for four of the 2005 samples in 

this study, while in the Burrishoole an elevated PCDD/PCDF of 4.37 pg g-1 total-TEQ 

(ww) was determined in the 2005 sample with PCDD/PCDF pg g-1 total-TEQ (ww) of 

1.24 - 2.50 determined in the 2007 samples (table 2). In the 2005 and 2007 Burrishoole 

samples, PCDDs (4.24 and 2.42 and 1.19 pg TEQ pg g-1 ww) respectively, contribute the 

majority of the total PCDD/F TEQ in eels at this location, While similar PCDD-



TEQ/PCDF-TEQ ratios (1.75-2.45) were calculated at each of the four sampling sites 

with low total TEQ, the PCDD-TEQ/PCDF-TEQ ratios of 33.0 (2005) and 31.1 and 26.6 

(2007) calculated in eels from the Burrishoole catchment shows much more elevated 

PCDD levels in these eels strongly suggesting point source influences at this location.  

 

OCDD was not detected in four of the five initial survey samples however concentration 

levels of 42.0 pg g–1 (ww) were detected in the initial sample from the Burrishoole 

catchment.  The PCDD/PCDF ratios in confirmatory samples MSC/07/1133 and 

MSC/07/1134 respectively are very consistent with the PCDD/PCDF ratio determined in 

the original Burrishoole sample (MSC/05/1140).   

 

OCDD belongs to the group of “super-hydrophobic” or “super-lipophilic” compounds 

and has a high bioaccumulation factor (Geyer et al., 2000). Geyer further reports that 

OCDD is often the most prevalent polychlorinated PCDD found in pentachlorophenol 

(PCP) a persistent halogenated compound, which has primarily been utilized in the timber 

processing industry.  The authors are not aware of information related to the application 

of PCP or any other dioxin containing substance within the Burrishoole catchment and no 

point sources are clearly identifiable within the catchment. Confirmatory analysis is 

currently subject of a separate investigation. 

 

Total upperbound PCDF-TEQ in all samples were low, ranging from 0.04 to 0.13 pg g-1 

(ww). Concentrations and consequentially PCDF-TEQs in the Burrishoole being much 

less elevated than those observed for PCDDs.  



 

Regarding levels of WHO-PCBs, the non-ortho PCBs 77 and 81 were low (nd to 0.46 pg 

g–1 ww) in the seven samples. Concentrations of PCB 126 ranged from not detected to 6.3 

pg g–1 (ww). PCB 118 was the most dominant mono-ortho PCB present with levels 

ranging from 230 to 2783 pg g–1 (ww). The total mono-ortho PCB burden ranged from 

370 to 4351 pg g–1 (ww). The combined mono-ortho and non-ortho WHO-PCB TEQ 

ranged from 0.17 to 1.24 WHO TEQ pg g–1 (ww) in the seven samples. These values are 

well below the current EU food legislative maximum level for WHO-PCBs in eel tissue. 

 

Stachel et al. (2007) report eel WHO-PCDD/F-TEQ of between 0.48 to 22 in German 

caught eels and further report that DL-PCB TEQs (range from 8.5 to 59 WHO-TEQ pg g–

1 ww) exceeded those of the PCDD/Fs. 

 

3.4 Marker PCBs 

Levels of marker PCBs in this study ranged from 1.94 to 18.1 ng g–1 (ww) (13.7 to 197 

ng g–1 lipid weight (lw)) and are comparable to those reported by Santillo et al. (2005) for 

the Σ7 PCBs (32 and 114 ng g–1 lipid weight, n = 2) in Irish samples from the Owengarve 

Stream and Lough Furnace (a brackish lake in the Burrishoole catchment) respectively. 

Concentrations of marker PCBs reported by Santillo et al. (2005) in Irish samples were 

amongst the lowest determined in eels collected in various European countries. Santillo et 

al. (2005) report marker PCB concentrations up to 1512 ng g–1 (ww) (9947 ng g–1 lw) in a 

composite sample from the Netherlands. One further study by de Boer and Hagel. (1994) 

reported lipid normalized concentrations ranging from 274 ± 176 ng g–1 to 14400 ± 9700 



ng g–1  (lw) in 142 samples from the Netherlands. The Flemish eel pollutant monitoring 

network (Geomans et al., 2003) reported a mean PCB153 level of 166 ng g–1 (ww) in eels 

from Flanders (1994 to 2001). Maes et al. (2007) reported a mean concentration of 212 

ng g–1 (ww) in eels from Flanders (1994 to 2005). PCB153 concentrations of 18.6 ng g–1 

(ww) have been reported in eels from the Adriatic (Storelli et al., 2007) however PCB153 

levels in this present study are much lower ranging from 0.64 to 5.3 ng g–1 (ww). 

 

3.5 Brominated flame retardants  

Table 4 presents concentration data for a range of BFR compounds in the five composite 

eel samples where BFRs were analysed. Upperbound levels of the Σ11 PBDE congeners 

ranged from 1.01 to 7 .05 ng g–1 wet weight in the Burrishoole and River Suir samples 

respectively. These data are comparable to those of a recent survey by the UK food 

standards (FSA) agency, which determined an upperbound total of 4.88 ng g–1 wet weight 

for the Σ11 PBDE congeners in a composite eel sample from British waters (Food 

Standards Agency, 2006).  

 

The majority of the PBDE burden is accounted for by PBDEs 47, 100, 153 and 154, with 

PBDE47 the most prevalent, its concentrations ranging from 0.52 to 5.15 ng g–1 (ww) in 

the Burrishoole and River Suir samples respectively.  Santillo et al. (2005) reports that 

levels of PBDE47 were low in two Irish samples (not detected to 0.2 ng g–1 ww) 

compared to those determined in eels from other European countries. Eels from Germany 

ranged from 7.9 to 17.0 ng g–1 (ww), while one composite sample from the UK showed 

PBDE47 levels of 46.0 ng g–1 (ww). PBDE47 levels of 4.50 ng g–1 (lw) have been 



reported in eels from German waters (Lepom et al., 2002). In this present study PBDE183 

concentrations were low (not detected to 0.02 ng g–1 ww) indicating that eels in Irish 

waters are primarily exposed to penta-mixtures rather than to octa-formulations.  

 

Van Leeuwen and de Boer (2008) report levels of PBDE congeners (PBDE 28, 47, 99, 

100 154 (+PBB153), 183 and 209) from 1.40 to 379 ng g-1 wet weight in freshwater eels 

from the Netherlands with PBDE 47 and 100 the dominant PBDE congeners, the low 

levels/absence of PBDE99 as opposed to other fish species suggesting a potential 

elimination/metabolism in eels.  

 

Roosens et al. (2008) report the sum of 10 PBDEs (n = 7 samples) in the range 660 to 

1010 ng g-1 (lw)  while total HBCD was determined in the range 2600 to 10100 ng g-1 

(lw). Roosens et al. (2008) suggest that eel as a sedentary species are a good indicator of 

more localised pollution and that congener specific differences in the uptake and 

biotransformation of PBDEs together with their higher lipid content may be responsible 

for observed profile differences compared to more migratory fish. 

 

3.6 HBCD  

Within the scope of this present study, a screening exercise for the levels of total HBCD 

isomers was completed for all five 2005 samples with total HBCD concentrations 

determined between 1.2-15 ng g–1 (ww), corresponding to 7.4 to 166 ng g–1 total HBCD 

(lw). The two samples at the upper end of the range were further re-analysed on an 

isomer specific basis by LC/MS by the Central Science Laboratory, York, England (table 



4).  In these samples �-HBCD was found to contribute the majority (89 to 94%) of the 

total HBCD burden. It should be noted that these analysis were completed by means of 

GC-MS techniques; Van Leeuwen and deBoer (2008) suggest this technique may over 

estimate HBCD concentrations and that HPLC/ESI-MSMS may be a more suitable means 

of deriving HBCD data..  

 

The UK FSA report levels of 5.11 ng g–1 (ww) for α−HBCD in eels, with these results 

being the highest value recorded in 48 diverse fisheries products analysed (FSA, 2006). 

Santillo el al. (2005) report eel tissues concentrations of HBCD of the order (<1 to >50 

ng g–1 ww) for a range of composite eel samples in European waters. Irish eels in the 

Santillo et al. (2005) study showed no detectable residues in one sample (Lough Furnace) 

and a level of 3 ng g–1 (ww) in a further sample from the River Owengarve.  

 

Morris et al. (2004) report that concentrations of HBCD in yellow eels from the Scheldt 

and River Leie reflect the spatial distribution of HBCD found in sediments in the area. 

The author suggests that the study provides evidence of HBCD bioaccumulation at this 

trophic level and biomagnification in the ascending aquatic food chain, justifying risk 

assessment studies at the ecosystem level. Janak et al. (2005) reported levels of �-HBCD 

in the range of 1.8 – 7.0 ng g-1 (ww) in eels from the Scheldt while levels of �-HBCD 

ranged from 0.5 to 0.8 ng g–1 (ww). Total HBCD levels in eels from the Netherlands 

ranging from <0.1 to 210 ng g–1 (ww) have been reported by van Leeuwen and de Boer 

(2008). 



 

3.7 TBBPA   

TBBPA was not detected (LODs <0.03 to <0.2 ng g–1 ww) in any of the five initial 

samples analysed in this study. Recoveries of spiked recovery standards in this current 

study were low (table 4) ranging from 25-50 % between the five samples; this may be as 

a result of TBBPA binding to other endogenous compounds in muscle tissue such as 

proteins (Schauer et al., 2006). In general relatively low concentrations of TBBPA tend to 

occur in aquatic biota for a number of reasons. TBBPA is generally chemically bound to 

the polymer matrix of the end product thereby potential emissions of TBBPA are likely to 

be limited compared to that of other BFR compounds (Covaci et al., 2008). TBBPA has 

lower bioaccumulation potential than HBCD due in part to low partition rates to the 

particulate and organic carbon compartments of sediments and structural phenolic groups 

have been reported to allow direct phase-II biotransformation. Further to this the polar 

nature of TBBPA can subject it to metabolism and elimination from the organism (Morris 

et al., 2004).   

 

Generally low levels of TBBPA in biota from the Scheldt basin with concentrations 

ranging from <0.1 to 13 ng g–1 (lw) have been recorded (Morris et al., 2004). TBBPA 

residues were not detected (detection limits ranging from 10-180 ng g–1 lw) in any of the 

20 pooled samples reported by Santillo et al. (2005), while de Boer et al. (2002 and 2003) 

reported that concentrations appear to be similar or even lower in other freshwater and 

marine species compared to those determined in eels. TBBPA was also analysed as part 

of the UK FSA study but residues were not detected above the limit of detection in 48 



fisheries products (Food Standards Agency, 2006). On the basis of this study the UK 

committee on toxicity of chemicals in food, consumer products and the environment 

concluded that the levels of TBBPA detected in fish and shellfish do not raise 

toxicological concerns and that estimated dietary exposure seems to have limited 

implications for health. 

 

3.8 PBB  

Individual PBB levels were low with a range of congeners determined in only three of the 

five samples suggesting low usage/transport of PBBs to environments in which these eels 

were sampled (table 3). Upperbound Σ5PBB ranged from 0.005 to 0.127 ng g–1 (ww) for 

the 5 samples analysed. Levels of PBBs were similarly low in the UK FSA survey of 48 

fisheries products, reporting levels of 0.016 ng g–1 (ww) for the Σ6PBBs in one 

composite eel sample (Food Standards Agency, 2006). 

 

3.9 Organochlorine pesticides. 

OCPs were only measured in the initial five eel samples. Overall levels were low. 

p,p’DDE was found to be the most abundant compound in the samples followed by 

dieldrin, p,p’DDD and p,p’DDT. Toxaphene and endrin residues were only detected in 

one sample (MSC/05/1140) from the Burrishoole catchment (table 4). Trans-nonachlor 

was found to be the most abundant chlordane compound contributing (42-56%) of the 

total chlordane contaminant burden.  α-chlordane was found in higher concentrations 

than the γ-isomer in each of the eel samples in this present study.  Heptachlor epoxide is 

the primary oxidation metabolite of heptachlor with the epoxide form being more 



persistent in the environment than the parent heptachlor, which was not detected in eel 

samples.  

 

 γ-HCH levels ranged from not detected to 0.45 ng g-1 (ww) (2.1 ng g-1 lw) and are lower 

than concentrations (6.33 to 707 ng g-1 lw) in eels from the Orbetello lagoon in Italy 

reported by Corsi et al. (2005). β-HCH was detected in four samples in the range 0.06 to 

0.31 ng g-1 (ww) while the δ-HCH isomer was not detected in any of the five samples. 

Upperbound p,p’DDE levels (11 to 77 ng g-1 lw) were similar to those of the Corsi et al. 

(2005) study (17.1 to 94.6 ng g-1 lw).  Upperbound ΣDDTs levels in this study ranged 

from 2.12 to 10.2 ng g-1 (ww) (13.6 to 111 ng g-1 lw). Corsi et al. (2005) reported 

upperbound ΣDDTs in the range 22.9 to 98.4 ng g-1 (lw) in Italian eels. A number of 

contaminant studies determine the p, p’-DDE/Total DDT ratio in order to assess the 

chronology of DDT inputs. Aguilar (1984) states that a ratio > 0.6 is indicative of a stable 

system with no new DDT inputs. In the current study, p, p’-DDE/Total DDT ratios 

determined in eels muscle tissue ranged from 0.69 to 0.78, suggesting that eel DDT 

residues are derived from historic contamination. 

 

3.10 Summary consumer risk assessment.  

Several studies  carried out by the Food Safety Authority of Ireland, the Marine Institute 

and a study by An Board Iascaigh Mhara (BIM) have indicated that levels of PCDDs in 

Irish food (excluding eel) are relatively low (Food Safety Authority of Ireland, 2004; 

Gruemping et al., 2004; Tlustos et al., 2006). These studies indicate that levels of 

PCDD/Fs and DL-PCBs found in Irish fish are lower than those found in the more 



industrialised EC countries. While the PCDD/Fs TEQ (4.37 pg TEQ g-1 ww) from one of 

the three Burrishoole samples was found to marginally exceed EU legislative limits (4 pg 

TEQ g-1 ww) for PCDDs in eel muscle, it should be noted that eels currently form a small 

proportion of the diet of the Irish consumer. Eels may provide a much greater 

contribution to the diets of other nations, thus the risk to the consumer may vary between 

countries and individual consumer preferences. Moreover as PCB concentrations were 

low the total PCDD/F TEQ for all samples including the initial 2005 Burrishoole sample 

(4.93 PCDD/F and WHO-PCB TEQ pg g-1 ww) is well within the total EC legislative 

limit for PCDD/F /WHO-PCB TEQ pg g-1 (ww) in eels. 

 

3.11 Contaminant related effects on eel health  

Belpaire et al. (2009) report that the eel, due to its characteristic lifecycle, is very 

sensitive to the bioaccumulation of contaminants, although effects are difficult to 

measure in the continental immature phase. However, the direct link between the reported 

effects at this sub-cellular level and the response on population level is yet to be 

demonstrated.  Belpaire et al. (2009) additionally reports that where spawner quality is 

poor and lipid content low, silver eels may not contribute to the overall spawning and 

recruitment of the European stock.  Feunteun (2002) and Versonnen et al. (2004) report 

that while contaminant lethal effects in adult eels generally only occur at very high 

exposure levels, sub-lethal effects on physiology and on spawning success on reaching 

sexual maturity cannot be discounted. The potential for contaminant and/or lipid level 

associated effects on aquatic biota have been documented by a number of authors (for 

example (Boetius and Boetius, 1980; Lassiter and Hallam, 1990; Tillett, 1999; Feunteun, 



2002; Versonnen et al., 2004; Corsi et al., 2005; Palstra et al., 2006; Maes et al., 2008) 

and are thus not further discussed here.   

 

Assuming the hypothesis of a relationship between lipid content in yellow and in 

emigrant silver eel, poor lipid content in yellow eel would indicate low energy reserves in 

silver eel. While low lipid levels were observed in the described eels, further research 

into the potential for contaminant and lipid level related biological effects is merited. 

 

4. Conclusions 

This study provides valuable data for a range of contaminants and extractable lipid levels 

in eel muscle tissue. Extractable lipid levels were lower in the two yellow eel samples 

compared to those in the silver eels, with these relatively low levels being consistent with 

the observations of Belpaire. With the unexpected exception of higher substituted PCDD, 

(especially OCDD) congener levels in one sample from the Burrishoole region, POP 

levels in general are low in eels from Irish waters compared to those in other countries. 

Further investigations into the potential source within the Burrishoole catchment are 

currently subject to a separate investigation. The merits of the use of eels as a 

biomonitoring tool for chemical environmental contamination have been demonstrated. 

While POP levels observed in eel muscle from this study are relatively low, the potential 

for factors such as localised contamination, and/or potential mobilization of lipid reserves 

to other organs (as a response to beginning of migration) need to be considered when 

evaluating the potential for health effects in eels.  
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Table 1: Sampling details, length (cm) and age (yrs) and extractable lipid content (%) for both the pooled sampled individuals and the 

overall population from which the sample was taken (in parenthesis) in eels from Irish waters. 

MI Reference MSC/05/1119 MSC/05/1120 MSC/05/1121 MSC/05/1122 MSC/05/1140 MSC/07/1133 MSC/07/1134 
Ecotype Yellow Silver Silver Silver  Silver  Silver  Yellow  
Location Waterford, 

River Suir 
Mayo, 

L. Conn 
Galway, 

River Corrib 
Monaghan, 
River Fane 

Burrishoole, 
Co. Mayo 

Burrishoole, 
Co. Mayo 

L. Feeagh, 
Co. Mayo 

Date Fished NA 11/08/2005 10/27/2005 11/04/2005 10/9/2005 07/25/2007 10/9/2007 
Individuals (n) 10 9 10 10 10 12 15 
Mean Length (cm) 40.1 (46.9) 47.5 (53.1) 46.4 (52.2) 45.7(43.7) 48.8 (52.8) 46.4 (45.7) 46.1 (46.1) 
Std. Dev. (cm) 9.92 (10.7) 8.73 (6.17) 9.54 (6.97) 11.6(9.62) 9.69 (4.29) 8.5 (9.5) 9.6 (10.3) 

Mean Age (yrs) 16.0 (11.8) 19.8 (23.2) 19.4 (17.2) 17.9 (18.2) 32.3 (27.6) NA (25.1) NA (22.01) 

Extractable Lipid (%) 9.18 15.3 14.3 16.0 20.9 17.9 8.28 
1 L.Feeagh age sample from 2001. 
 



Table 2 Concentrations of marker-PCBs (ng g–1), dioxins, furans and dioxin like PCB 

levels in eel muscle from Irish waters (pg g-1 wet weight); TCDD Toxic Equivalent 

Factors (TEFs) and summary upperbound TEQs for Dioxins/Furans and Dioxin like 

PCBs are also presented (pg g-1 wet weight). 

PCDDs/PCDFs WHO-TEF            FISH TEF MSC/05/1119 MSC/05/1120 MSC/05/1121 MSC/05/1122 MSC/05/1140 MSC/07/1133 MSC/07/1134
2.3.7.8-Tetra-CDD 1 1 0.04 0.03 0.02 0.03 0.06 0.03 0.02
1.2.3.7.8-Penta-CDD 1 1 0.10 0.08 0.09 0.09 2.00 1.28 0.66
1.2.3.4.7.8-Hexa-CDD 0.1 0.5 0.03 0.08 0.04 0.06 5.30 2.75 1.22
1.2.3.6.7.8-Hexa-CDD 0.1 0.01 0.16 0.17 0.10 0.23 13.0 6.57 2.99
1.2.3.7.8.9-Hexa-CDD 0.1 0.01 0.04 0.04 n.d.(0.02) 0.03 2.20 1.11 0.54
1.2.3.4.6.7.8-Hepta-CDD 0.01 0.001 0.10 0.11 0.05 0.08 13.00 6.57 3.62
OCDD 0.0001 0.0001 n.d.(0.3) n.d.(0.3) n.d.(0.3) n.d.(0.3) 42.0 23.6 13.2
2.3.7.8-Tetra-CDF 0.1 0.05 n.d.(0.3) n.d.(0.02) n.d.(0.3) n.d.(0.04) n.d.(0.02) <0.02 <0.01
1.2.3.7.8-Penta-CDF 0.05 0.05 0.02 0.01 0.02 0.02 0.09 0.02 <0.01
2.3.4.7.8-Penta-CDF 0.5 0.5 0.15 0.10 0.06 0.09 0.12 0.10 0.06
1.2.3.4.7.8-Hexa-CDF 0.1 0.1 0.05 0.06 0.03 0.06 0.22 0.10 0.05
1.2.3.6.7.8-Hexa-CDF 0.1 0.1 0.03 0.04 0.02 0.03 0.12 0.06 0.04
1.2.3.7.8.9-Hexa-CDF 0.1 0.1 n.d.(0.02) n.d.(0.02) n.d.(0.02) n.d.(0.02) n.d.(0.02) <0.01 <0.01
2.3.4.6.7.8-Hexa-CDF 0.1 0.1 0.09 0.09 0.08 0.07 0.25 0.07 0.03
1.2.3.4.6.7.8-Hepta-CDF 0.01 0.01 0.04 n.d.(0.04) n.d.(0.04) n.d.(0.04) 0.09 0.07 0.03
1.2.3.4.7.8.9-Hepta-CDF 0.01 0.01 n.d.(0.03) n.d.(0.02) n.d.(0.04) n.d.(0.05) n.d.(0.02) <0.01 <0.01
OCDF 0.0001 0.0001 n.d.(0.05) n.d.(0.05) n.d.(0.07) n.d.(0.05) 0.07 <0.01 <0.01

Total 2.3.7.8-PCDD 0.78 0.81 0.62 0.81 77.6 41.9 22.2
Total 2.3.7.8-PCDF 0.52 0.44 0.42 0.46 1.01 0.47 0.26
Total 2.3.7.8-PCDD/PCDF 1.29 1.25 1.04 1.28 78.6 42.4 22.5

Dioxin Like PCBs
3,3',4,4'-Tetra-CB    77 0.0001 0.0001 n.d.(4) n.d.(2) n.d.(3) n.d.(3) n.d.(2) <0.19 0.46
3,4,4',5-Tetra-CB    81 0.0001 0.0005 n.d.(0.14) n.d.(0.08) n.d.(0.08) n.d.(0.1) n.d.(0.06) 0.02 <0.02
3,3',4,4',5-Penta-CB  126 0.1 0.005 6.30 n.d.(2) n.d.(2) 2.30 2.80 1.86 1.08
3,3',4,4',5,5'-Hexa-CB  169 0.01 0.00005 2.00 1.20 1.30 1.30 1.80 0.98 <0.61
Total non-ortho PCB 12.4 5.28 6.38 6.70 6.66 3.05 2.17

2,3,3',4,4'-Penta-CB  105 0.0001 <0.000005 853 188 75 429 381 90 40
2,3,4,4',5-Penta-CB  114 0.0005 <0.000005 43 10 8.4 36 22 <10 <10
2,3',4,4',5-Penta-CB  118 0.0001 <0.000005 2783 564 282 1496 1077 430 230
2',3,4,4',5-Penta-CB  123 0.0001 <0.000005 43 12 n.d.(9) 26 n.d.(10) 10 <10
2,3,3',4,4',5,-Hexa-CB  156 0.0005 <0.000005 311 75 37 170 168 60 30
2,3,3',4,4',5'-Hexa-CB  157 0.0005 <0.000005 72 13 12 42 33 20 10
2,3',4,4',5,5'-Hexa-CB  167 0.00001 <0.000005 215 46 38 84 94 40 30
2,3,3',4,4',5,5'-Hepta-CB  189 0.0001 <0.000005 32 11 13 19 16 20 <10
Total mono-ortho PCB 4352 919 474 2302 1801 680 370

TEQs
WHO-TEQ 2.3.7.8-PCDD 0.17 0.14 0.13 0.14 4.24 2.42 1.19
WHO-TEQ 2.3.7.8-PCDF 0.13 0.07 0.08 0.07 0.13 0.08 0.04
WHO-TEQ 2.3.7.8-PCDD/PCDF 0.29 0.22 0.21 0.21 4.37 2.50 1.24
WHO-TEQ non-ortho PCB 0.65 0.21 0.21 0.24 0.30 0.20 0.11
WHO-TEQ mono-ortho PCB 0.59 0.13 0.07 0.32 0.26 0.10 0.05
WHO-TEQ WHO-PCB 1.24 0.34 0.28 0.57 0.56 0.30 0.17
Ratio TEQ PCDD TEQ/PCDF 1.32 1.94 1.65 2.16 33.0 31.1 26.6
Ratio TEQ non-ortho/mono-ortho 1.11 1.67 3.18 0.76 1.14 1.95 2.10

Marker-PCBs (ng g–1 ) MSC/05/1119 MSC/05/1120 MSC/05/1121 MSC/05/1122 MSC/05/1140 MSC/07/1133 MSC/07/1134

PCB 28 0.58 0.03 0.03 0.35 0.03 0.02 0.02
PCB 52 1.4 0.13 0.06 0.9 0.21 0.12 0.06
PCB 101 1.55 0.2 0.11 0.69 0.27 0.23 0.1
PCB 118 2.78 0.56 0.28 1.5 1.08 0.43 0.23
PCB 138 4.11 1.01 0.56 1.83 2.13 1.31 0.77
PCB 153 5.3 1.19 0.64 1.62 2.09 1.33 0.89
PCB 180 2.33 0.51 0.26 0.75 0.96 0.42 0.3
Σ Σ Σ Σ Marker-PCBs 18.1 3.63 1.94 7.64 6.77 3.86 2.37  
n.d. = not detectable, detection limits in () 
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Table 3: Concentrations of Brominated flame retardants in eels from Irish waters (ng g–1 1 

wet weight). 2 

 3 
PBDEs MSC/05/1119 MSC/05/1120 MSC/05/1121 MSC/05/1122 MSC/05/1140 

PBDE #17 0.011  0.0016 n.d.(0.001)  0.0042 n.d.(0.002) 

PBDE #28 0.065 0.017  0.0070 0.038  0.0061 

PBDE #47  5.15  1.67 0.77  1.83 0.52 

PBDE #66 0.099 0.053 0.015 0.064 0.017 

PBDE #85 n.d.(0.0009) n.d.(0.002) n.d.(0.001) n.d.(0.002) n.d.(0.002) 

PBDE #99 0.16 0.025 0.017 0.10 0.024 

PBDE #100  1.26 0.33 0.20 0.40 0.16 

PBDE #138 n.d.(0.002) n.d.(0.002) n.d.(0.002) n.d.(0.002) n.d.(0.002) 

PBDE #153 0.072 0.055 0.031 0.12 0.052 

PBDE #154 0.20 0.13 0.090 0.20 0.095 

PBDE #183 n.d.(0.002)  0.0038  0.0019 0.022  0.0076 

Σ Σ Σ Σ 11PBDEs (lower bound)  7.01  2.28  1.14  2.83  1.00 

ΣΣΣΣ 11PBDEs (upper bound)  7.05  2.33  1.18  2.83  1.01 

      

PBBs      

PBB #15  0.0015 n.d.(0.002) n.d.(0.001) n.d.(0.002) n.d.(0.002) 

PBB #49 n.d.(0.0009) n.d.(0.002) n.d.(0.001) n.d.(0.002) n.d.(0.002) 

PBB #52  0.0031 n.d.(0.002) n.d.(0.001) n.d.(0.002) n.d.(0.002) 

PBB #101  0.0011  0.0018 n.d.(0.001) n.d.(0.002)  0.0040 

PBB #153 n.d.(0.001) n.d.(0.002) n.d.(0.001) n.d.(0.002)  0.0027 

Total PBBs (Upper Bound) 0.0076 0.0098 0.005 0.01 0.0127 

      

TBBPA n.d.(0.03) n.d.(0.05) n.d.(0.04) n.d.(0.05) n.d.(0.2) 

      
total HBCD  15 2.2 1.2 15  1.6 

αααα-HBCD1 8.9 NA NA 6.0 NA 

ββββ-HBCD1 0.48 NA NA 0.18 NA 

�-HBCD1 0.58 NA NA 0.20 NA 
 4 
1 isomer specific confirmation analysis completed by CSL York England. 5 
NA = Not analysed 6 
n.d.  = Not detected detection limit in parenthesis. 7 

 8 
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Table 4: Concentrations of Organochlorine compounds in eel muscle from Irish waters 9 

(ng g-1 wet weight). 10 

 MSC/05/1119 MSC/05/1120 MSC/05/1121 MSC/05/1122 MSC/05/1140 
�-HCH n.d.(0.10) 0.14 0.061 0.20 0.31 
�-HCH n.d.(0.1) 0.21 0.22 0.19 0.29 
�-HCH 0.21 0.16 n.d.(0.2) 0.29 0.45 
�-HCH n.d.(0.2) n.d.(0.2) n.d.(0.2) n.d.(0.2) n.d.(0.2) 
o,p-DDT 0.038 0.041 0.037 n.d.(0.04) 0.072 
p,p'-DDT 0.31 0.27 0.14 0.17 0.55 
o,p-DDD 0.093 n.d.(0.04) 0.059 0.045 n.d.(0.04) 
p,p'-DDD  2.70 0.55 0.21  1.90 0.67 
o,p-DDE 0.047 n.d.(0.03) n.d.(0.04) n.d.(0.04) n.d.(0.04) 
p,p'-DDE  7.10  3.20  1.60  5.00  3.10 
Hexachlorobenzene n.d.(0.5) n.d.(1) n.d.(0.8) n.d.(0.9) n.d.(2) 
Heptachlor n.d.(0.2) n.d.(0.2) n.d.(0.2) n.d.(0.2) n.d.(0.2) 
cis Heptachlorepoxide 0.11 0.45 0.32 0.19 0.88 
trans Heptachlorepoxide n.d.(0.7) n.d.(0.7) n.d.(0.8) n.d.(0.7) n.d.(0.8) 
Aldrin n.d.(0.1) n.d.(0.10) n.d.(0.1) n.d.(0.1) n.d.(0.1) 

Toxaphene 26 n.d.(0.3) n.d.(0.3) n.d.(0.4) n.d.(0.2) 0.86 
Toxaphene 50 n.d.(0.3) n.d.(0.4) n.d.(0.4) n.d.(0.3)  1.2 
Toxaphene 62 n.d.(1) n.d.(1) n.d.(1) n.d.(1) n.d.(1) 
Octachlorstyrene n.d.(0.08) 0.071 n.d.(0.08) n.d.(0.07) 0.14 
Dieldrin  2.00  1.40  2.20  2.10  3.50 
Endrin n.d.(0.1) n.d.(0.10) n.d.(0.1) n.d.(0.1) 0.16 
Mirex n.d.(0.01) 0.050 0.016 n.d.(0.02) 0.20 
Endosulphane sulphate n.d.(0.3) n.d.(0.2) n.d.(0.2) n.d.(0.2) n.d.(0.2) 
�-Endosulphane n.d.(0.9) n.d.(0.8) n.d.(0.9) n.d.(0.9) n.d.(1.0) 
�-Endosulphane n.d.(3) n.d.(2) n.d.(3) n.d.(3) n.d.(2) 
�-Chlordane n.d.(0.05) 0.084 0.11 0.058 0.096 
�-Chlordane 0.081 0.28 0.15 0.095 0.86 
Oxychlordane n.d.(0.2) n.d.(0.2) n.d.(0.2) n.d.(0.2) 0.29 
Transnonachlor 0.26 0.72 0.48 0.28  1.60 
n.d. =not detected, detection limit in parenthesis. 11 
 12 
 13 
 14 
 15 
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Figure 1: Sampling location map for eels collected for contaminants analysis. 16 
 17 
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