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Abstract

We identify and describe the key qualitative rhythmic states in various 3-cell network motifs of a multifunctional central
pattern generator (CPG). Such CPGs are neural microcircuits of cells whose synergetic interactions produce multiple states
with distinct phase-locked patterns of bursting activity. To study biologically plausible CPG models, we develop a suite of
computational tools that reduce the problem of stability and existence of rhythmic patterns in networks to the bifurcation
analysis of fixed points and invariant curves of a Poincaré return maps for phase lags between cells. We explore different
functional possibilities for motifs involving symmetry breaking and heterogeneity. This is achieved by varying coupling
properties of the synapses between the cells and studying the qualitative changes in the structure of the corresponding
return maps. Our findings provide a systematic basis for understanding plausible biophysical mechanisms for the regulation
of rhythmic patterns generated by various CPGs in the context of motor control such as gait-switching in locomotion. Our
analysis does not require knowledge of the equations modeling the system and provides a powerful qualitative approach to
studying detailed models of rhythmic behavior. Thus, our approach is applicable to a wide range of biological phenomena
beyond motor control.
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Introduction

A central pattern generator (CPG) is a circuit of neuronal cells

whose synergetic interactions can autonomously produce rhythmic

patterns of activity that determine vital motor behaviors in animals

[1–3]. CPGs have been found in many animals, where they have

been implicated in the control of diverse behaviors such as

heartbeat, sleep, respiration, chewing, and locomotion on land and

in water [4–7]. Mathematical modeling studies, at both abstract

and realistic levels of description, have provided useful insights into

the operational principles of CPGs [8–14]. Although many

dynamic models of specific CPGs have been developed, it remains

unclear how CPGs achieve the level of robustness and stability

observed in nature [15–22].

A common component of many identified CPGs is a half-center

oscillator (HCO), which is composed of two bilaterally symmetric

neurons reciprocally inhibiting each other to produce an

alternating anti-phase bursting pattern [23]. There has been

much work on the mechanisms giving rise to anti-phase bursting in

relaxation HCO networks, including synaptic release, escape and

post-inhibitory rebound [24,25]. Studies of HCOs composed of

Hodgkin-Huxley type model cells have also demonstrated the

possibility of bistability and the coexistence of several in-phase and

anti-phase bursting patterns based on synaptic time scales or

delays [26–28].

We are interested in exploring the constituent building blocks

— or ‘‘motifs’’ — that may make up more complex CPG circuits,

and the dynamic principles behind stable patterns of bursting that

may co-exist in the circuit’s repertoire of available states

[13,20,29]. We will refer to such multi-stable rhythmic patterns as

‘‘polyrhythms.’’ We consider the range of basic motifs comprising

three biophysical neurons and their chemical synapses, and how

those relate to, and can be understood from the known principles

of two-cell HCOs. We will study the roles of asymmetric and

unique connections, and the intrinsic properties of their associated

neurons, in generating a set of coexisting synchronous patterns of

bursting waveforms. The particular kinds of network structure that

we study here reflect the known physiology of various CPG

networks in real animals. Many anatomically and physiologically

diverse CPG circuits involve a three-cell motif [30,31], including

the spiny lobster pyloric network [1,32], the Tritonia swim circuit,

and the Lymnaea respiratory CPGs [33–36].

An important open question in the experimental study of real

CPGs is whether they use dedicated circuitry for each output

pattern, or whether the same circuitry is multi-functional [37,38],

i.e. can govern several behaviors. Switching between multi-stable

rhythms can be attributed to input-dependent switching between

attractors of the CPG, where each attractor is associated with a

specific rhythm. Our goal is to characterize how observed multi-

stable states arise from the coupling, and also to suggest how real
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circuits may take advantage of the multi-stable states to

dynamically switch between rhythmic outputs. For example, we

will show how motif rhythms are selected by changing the relative

timing of bursts by physiologically plausible perturbations. We will

also demonstrate how the set of possible rhythmic outcomes can be

controlled by varying the duty cycle of bursts, and by varying the

network coupling both symmetrically and asymmetrically [17,20].

We also consider the role of a small number of excitatory or

electrical connections in an otherwise inhibitory network. Our

greater goal is to gain insight into the rules governing pattern

formation in complex networks of neurons, for which we believe

one should first investigate the rules underlying the emergence of

cooperative rhythms in smaller network motifs.

In this work, we apply a novel computational tool that reduces

the problem of stability and existence of bursting rhythms in large

networks to the bifurcation analysis of fixed points (abbreviated

FPs) and invariant circles of Poincaré return maps. These maps are

based on the analysis of phase lags between the burst initiations in

the cells. The structure of the phase space of the map reflects the

characteristics the state space of the corresponding CPG motif.

Equipped with the maps, we are able to predict and identify the set

of robust bursting outcomes of the CPG. These states are either

phase-locked or periodically varying lags corresponding to FP or

invariant circle attractors (respectively) of the map. Comprehen-

sive simulations of the transient phasic relationships in the network

are based on the delayed release of cells from a suppressed,

hyperpolarized state. This complements the phase resetting

technique and allows a thorough exploration of network oscilla-

tions with spiking cells [39]. We demonstrate that synaptically-

coupled networks possess stable bursting patterns that do not occur

in similar motifs with gap junction coupling, which is bidirection-

ally symmetric [40].

Results

Our results are organized as follows: first, we describe our new

computational tools, which are based on 2D return maps for phase

lags between oscillators. This is a non-standard method that has

general utility outside of our application, and we therefore present

it here as a scientific result. We then present maps for symmetric

inhibitory motifs and examine how the structure of the maps

depends on the duty cycle of bursting, i.e. on how close the

individual neurons are to the boundaries between activity types

(hyperpolarized quiescence and tonic spiking). Here, we also

examine bifurcations that the map undergoes as the rotational

symmetry of the reciprocally coupled 3-cell motif is broken. This is

followed by a detailed analysis of bifurcations of fixed point (FP)

and invariant circle attractors of the maps, which we show for

several characteristic configurations of asymmetric motifs, includ-

ing a CPG based on a model of the pyloric circuit of a crustacean.

We conclude the inhibitory cases with the consideration of the fine

structure of a map near a synchronous state. We then discuss the

maps for 3-cell motifs with only excitatory synapses, which is

followed by the examination of mixed inhibitory-excitatory motifs,

and finally an inhibitory motif with an additional electrical synapse

in the form of a gap junction.

A computational method for phase lag return mappings
We first introduce the types of trajectories we focus on and how

we measure them. The reduced leech heart interneuron can

demonstrate many regular and irregular activity types, including

hyper- and de-polarized quiescence, tonic spiking and bursting

oscillations. We focus on periodic bursting, and Figure 1 shows a

trajectory (dark gray) in the 3D phase space of the model. The

helical coils of the trajectory correspond to the active tonic spiking

period of bursting due to the fast sodium current. The flat section

corresponds to the hyperpolarized quiescent portion of bursting

due to the slow recovery of the potassium current. In Fig. 1, two

snapshots (at t~0 and t~10 s) depict the positions of the blue,

green and red spheres representing the momentarily states of all

three interneurons. The coupling between the cells is chosen weak

so that network interactions should only affect the relative phases

of the cells on the intact bursting trajectory, i.e. without deforming

the trajectory.

V shift
K2 is a model parameter that measures the deviation from

the half-activation voltage V1=2~{0:018 V of the potassium

channel, m?
K2~1=2. We use V shift

K2 as a bifurcation parameter to

control the duty cycle (DC) of the interneurons. The duty cycle is

the fraction of the burst period in which the cell is spiking, and is a

property known to affect the synchronization properties of coupled

bursters [16,17]. The individual cell remains bursting within the

interval V shift
K2 [½{0:024235,{0:01862�. At smaller values of

V shift
K2 , it begins oscillating tonically about the depolarized steady

state, and becomes quiescent at greater values of V shift
K2 . Therefore,

the closer the cell is to either boundary, the DC of bursting

becomes longer or shorter respective: the DC is about 80% at

V shift
K2 ~{0:0225 V and 25% at V shift

K2 ~{0:01895 V. For 50%

DC we set V shift
K2 ~{0:021 V, in the middle of the bursting

interval (see Fig. 2).

When an isolated bursting cell is set close to a transition to

either tonic spiking or hyperpolarized quiescence, its network

dynamics become sensitive to external perturbations from its pre-

synaptic cells. For example, when the post-synaptic cell is close to

the tonic-spiking boundary, excitation can cause the post-synaptic

cell to burst longer or even move it (temporarily) over the

boundary into the tonic spiking (TS) region. In contrast, inhibition

shortens the duty cycle of the post-synaptic neuron if it does not

completely suppress its activity (Fig. 3).

The return map for phase lags. We reduce the problem of

the existence and stability of bursting rhythmic patterns to the

bifurcation analysis of fixed points (FPs) and invariant curves of

Poincaré return maps for phase lags between the neurons. In this

study, we mostly consider relatively weakly coupled motifs, but our

approach has no inherent limitation to weak coupling. Here, the

weakly coupled case is a pilot study that lets us test our technique

and also uncover all rhythms, both stable and unstable, that can

possibly occur in the network. Detailed scrutiny of the return maps

is computationally expensive: an exploration of one parameter set

can take up to three hours on a state-of-the-art desktop

workstation depending on the accuracy of the mesh of initial

conditions and length of the transients computed.

The phase relationships between the coupled cells are defined

through specific events, t(n)
1 ,t(n)

2 ,t(n)
3

n o
, when their voltages cross a

threshold, Hth, from below. Such an event indicates the initiation

of the nth burst in the cells, see Fig. 4. We choose Hth~{0:04 V,

above the hyperpolarized voltage and below the spike oscillations

within bursts.

We define a sequence of phase lags by the delays in burst

initiations relative to that of the reference cell 1, normalized over

the current network period or the burst recurrent times for the

reference cell, as follows:

Key Bifurcations of Bursting Polyrhythms in CPGs
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Dw(n)
21 ~

t
(nz1)
21 {t

(n)
21

t
(nz1)
1 {t

(n)
1

and Dw(n)
31 ~

t
(nz1)
31 {t

(n)
31

t
(nz1)
1 {t

(n)
1

, mod 1: ð1Þ

An ordered pair, Mn~ Dw(n)
21 ,Dw(n)

31

� �
, defines a forward iterate,

or a phase point, of the Poincaré return map for the phase lags:

P : Mn?Mnz1 ð2Þ

A sequence, (Dw
(n)
21 ,Dw

(n)
31 )

n oN

n~0
, yields a forward phase lag trajectory,

Mnf gN
n~0, of the Poincaré return map on a 2D torus ½0,1)|½0,1)

with phases defined on mod 1 (Fig. 5). Typically, such a trajectory

is run for N~90 bursting cycles in our simulations. The run can

be stopped when the distance between several successive iterates

becomes less than some preset value, say DDMn{MnzkDDv10{3

and k~5. This is taken to mean that the trajectory has converged

to a fixed point, M�, of the map. This FP corresponds to a phase

locked rhythm and its coordinates correspond to specific constant

phase lags between the cells. By varying the initial delays between

cells 2 and 3 with respect to the reference cell 1, we can detect any

and all FPs of the map and identify the corresponding attractor

basins and their boundaries.

We say that coupling is weak between two cells of a motif when

the convergence rate to any stable FP of the return map is slow.

This means that the distance between any two successive iterates

of a trajectory of the return map remains smaller than some

Figure 1. Network motif diagram and phase space of typical bursting trajectory of single cell. (A) Caricature of a mixed 3-cell motif with
inhibitory and excitatory synapses, represented by . and .-like, resp., as well as an electrical connection through the gap junction between
interneurons 1 and 2. (B) Bursting trajectory (gray) in the 3D phase space of the model, which is made of the ‘‘active’’ spiking (solenoid-like shaped)

and the flat hyperpolarized sections. The gap between the 2D slow nullcline, m
0

K2~0, and the low knee on the slow quiescent manifold, Meq,
determines the amount of inhibition needed by the active pre-synaptic cell above the synaptic threshold, Hsyn, to either slow or hold the post-
synaptic cell(s) at a hyperpolarized level around {0:06 V. The positions of the red, green and blue spheres on the bursting trajectory depict the
phases of the weakly-connected cells of the CPG at two instances: the active red cell inhibits, in anti-phase, the temporarily inactive green and blue
cells at two time instances.
doi:10.1371/journal.pone.0092918.g001

Figure 2. Schematic showing regimes and how burst duration
changes as the bifurcation parameter, V shift

K2 is varied. Burst

duration increases as V shift
K2 approaches the boundary of the tonic

spiking (TS) state, and decreases towards the boundary of hyperpolar-
ized quiescence (Q). The post-synaptic cell on the network can
temporarily cross either boundary when excited or inhibited by
synaptic currents from pre-synaptic neurons.
doi:10.1371/journal.pone.0092918.g002
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bound, e.g. max DDMn{Mnz1DDv0:05. Therefore, we can say that

coupling is relatively strong if a remote transient reaches a FP of

the map after just a few iterates. We point out that the

convergence can be quick even for nominally small gsyn provided

that an individual cell is sufficiently close to either boundary of

bursting activity (tonic spiking or quiescence).

We now make some technical remarks concerning computa-

tional derivations of the map, P. A priori, the initial period

(recurrence time) of the motif’s dynamics is unknown due to the

unknown outcome of nonlinear cell interactions; furthermore, it

varies over the course of the bursting transient until it converges to

a fixed value on the phase locked state. Thus, we control the initial

phases between the reference cell and the others releasing the

latter from inhibition at various delays. To do this, we first

estimate the initial phase lag with a first order approximation,

Dw(0)
21 ,Dw(0)

31

� �
between the networked neurons, as the phase lags

Dw?21,Dw?31

� �
on the periodic synchronous solution of period

Tsynch. Note that Dw?21 is shifted away from Dw?31, i.e. is advanced

or delayed. Notice that, in the weakly coupled case, the recurrent

times of the reference cell are close to Tsynch, which implies

(Dw?21,Dw?31)&(Dw
(0)
21 ,Dw

(0)
31 ). By setting Dw21~Dw31~0 and t1j~0

at V1~Hth we can parameterize the synchronous solution by a

time shift, 0ƒt1jvTsynch

� �
or, alternatively, by phase lags

Figure 3. Variations of bursting of the post-synaptic cell with synaptic strength. Step-wise increases in excitatory (top) and inhibitory
(bottom) strengths, gsyn, from pre-synaptic cell(s). Increase of the duty cycle (DC) of bursting is through the extension of either the active phases of
bursting or the interburst intervals as the post-synaptic cell on the network is shifted by synaptic perturbations toward either the tonic spiking (TS) or
hyperpolarized quiescence (Q) boundaries in Fig. 2.
doi:10.1371/journal.pone.0092918.g003

Figure 4. Sample voltage traces depicting phase measure-
ments. The phase of the reference cell 1 (blue) is reset when V1

reaches an auxiliary threshold, Hth~{40 mV, at t
(n)
1 . The recurrent time

delays, t
(n)
21 and t

(n)
31 between the burst onsets in cell 1 and cells 2 (green)

and 3 (red), normalized over the cycle period, t
(nz1)
1 {t

(n)
1

h i
, define a

sequence of phase lags: Dw
(n)
21 ,Dw

(n)
31

n o
.

doi:10.1371/journal.pone.0092918.g004
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0ƒDwj1v1
� �

. Thus, we can set the initial phase lags by releasing

the reference cell and keeping the others suppressed for durations

t12~Dw(0)
21 Tsynch and t13~Dw(0)

31 Tsynch from the same initial point

on the synchronous bursting trajectory, given by

Vi~Hth~{0:04 V.

To complete a single phase lag map we choose the initial phase

lags to be uniformly distributed on a grid of at least 40|40 points

over the ½0,1)|½0,1) torus. The initial guess for the phase lag

distribution is based on knowledge of a trajectory for a

synchronized motif, whose period is already known. This guess

will therefore differ from the self-consistent phase lag distribution

once the networked cells begin to interact, especially with coupling

strength variations. Similarly, the estimated network period,

Tsynch, will differ from the network’s actual self-consistent period.

In computations, this may result in fast jumps from the set of

guessed initial phases from n~0 to n~1. These jumps are artifacts

of our setup and not relevant to our study of the attractors, and so

we begin recording the phase lag trajectory settled from the second

bursting cycle. Due to weak coupling, transients do not evolve

quickly, and we connect phase lag iterates of the map by straight

Figure 5. Poincaré return maps depicted on the torus. The return maps for the phase lags fDw
(n)
21 ,Dw

(n)
31 g between homogeneous cells at 50%

DC correspond to trajectories on a 2D torus ½0,1)|½0,1). Different colors denote attractor basins of several FPs corresponding to phase locked states
of distinct bursting rhythms.
doi:10.1371/journal.pone.0092918.g005

Figure 6. A comparison of time evolutions of phase lags and their motion in the 2D space of phase differences. (A) Time evolutions of
the phase lags, Dw31 (gray) and Dw21 (blue), exponentially converging to phase locked states after 50 burst cycles with short duty cycle,
gsyn~5|10{4 . (B) The corresponding Poincaré phase lag map revealing three stable FPs (shown in blue, red and green) at Dw21,Dw31ð Þ~ 1

2
, 1

2

� �
, 0, 1

2

� �
,

1
2

,0
� �

and two unstable FPs (dark dots) at 2
3

, 1
3

� �
and 1

3
, 2

3

� �
. The attractor basins of the three stable FPs are color coded by the color of the FP, and are

separated by the separatrices of six saddle FPs (smaller dots). Arrows on representative lines that connect iterates indicate the forward direction of
iterates. See note at the end of Methods regarding interpretation of the lines and colors.
doi:10.1371/journal.pone.0092918.g006
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lines in order to demonstrate and preserve the forward order,

making them superficially resemble continuous-time vector fields

in a plane. Lastly, we unfold the torus onto a unit square for the

sake of visibility.

Note on interpreting phase lag diagrams. We use a

consistent labeling convention to make our diagrams of the phase

lag maps easy to interpret. In the first presentation of such a map

(Fig. 6 in the next section), we annotate the diagram with arrows to

Figure 7. Time evolutions of voltage traces in the short duty cycle motif showing switching between coexisting rhythms. Three
coexisting stable rhythms: 1\f2E3gð Þ (first episode), 3\f1E2gð Þ (second episode) and 2\f1E3gð Þ (third episode) in the short duty cycle motif with
25% DC with +5% random perturbations applied to all inhibitory connections with gsyn~0:0005. Switching between rhythms is achieved by the
application of appropriately-timed hyperpolarized pulses that release the targeted cells.
doi:10.1371/journal.pone.0092918.g007

Figure 8. Phase lag maps in the long duty cycle motif and switching between two coexisting rhythms. (A) Symmetric phase lag map for
80% DC, which possesses two stable FPs Dw21,Dw31ð Þ~ 2

3
, 1

3

� �
and 1

3
, 2

3

� �
of equal basins that correspond to a counter-clockwise 1[3[2ð Þ and

clockwise 1[2[3ð Þ traveling waves. The other three FPs have rather narrow basins, thus the traveling waves dominate the behavioral repertoire of
the network. (B) Map corresponding to the clockwise biased motif with ~0:1 reveals the asymmetric basins of the robust rhythms after three
saddles have moved closer to the stable FP at 1

3
, 2

3

� �
. (C) Bistability: switching from the counter-clockwise, 1[3[2ð Þ, to the clockwise, 1[2[3ð Þ,

traveling wave in this motif, after releasing the target blue cell from hyperpolarized silence due to an external inhibitory pulse.
doi:10.1371/journal.pone.0092918.g008
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show the directions of the map on successive forward iterates. We

also label the position of FPs with colored dots. Larger dots are

used for the stable FPs than the saddle points. The colors of the

stable FPs (red, green, and blue) correspond to the colors of the

computed phase lag trajectories that approach them (thereby

depicting the basins of attraction). In Fig. 6, we indicate the

directions of forward iterates of that map to assist the reader in

their interpretation. However, all subsequent figures depict

dynamics with these same essential interpretable features: all

colored trajectories flow towards their color-coordinated FP, and

small dots indicate saddle points. We also note that the origin in

our maps has a complex fine structure but acts globally as a

repeller. As such, we do not depict those FPs explicitly in the full-

scale phase lag diagrams. A later section explicitly examines the

fine structure near the origin.

Multistability and duty cycle in homogenous inhibitory
motifs

We first examine three homogeneous (permutationally symmet-

ric) configurations of the network with nearly identical cells and

connections. We demonstrate that these symmetric network motifs

are multistable and hence able to produce several coexisting

bursting patterns. The homogeneous case allows us to reveal the

role of the duty cycle as an order parameter that determines what

robust patterns are observable. We suggest a biologically plausible

switching mechanism between the possible bursting patterns by

application of a small hyperpolarized current that temporarily

blocks a targeted cell.

Short duty cycle motif. We begin with a weakly coupled

with gsyn~5|10{4, homogeneous motif with 25% DC and

V shift
K2 ~{0:01895 V, which is close to the transition boundary

between bursting and hyperpolarized quiescence. Proximity to the

Figure 9. Time evolutions of voltage traces and phase lag map for the medium duty cycle motif. (A) Transients of the phase lags, Dw31

(gray) and Dw21 (blue), converging to several phase locked states after 90 burst cycles in the medium duty cycle motif. (B) The phase lag Poincaré map
revealing five stable FPs: red dot at 0, 1

2

� �
, green 1

2
,0

� �
, blue 1

2
, 1

2

� �
, black 2

3
, 1

3

� �
and purple 1

3
, 2

3

� �
, corresponding to the anti-phase 3\f1E2gð Þ,

2\f1E3gð Þ, 1\f2E3gð Þ bursts, and traveling clockwise 1[2[3ð Þ and counter-clockwise 1[3[2ð Þ waves; the attractor basins of the same colors are
subdivided by separatrices of six saddles (smaller brown dots).
doi:10.1371/journal.pone.0092918.g009

Figure 10. Voltage traces showing the five bursting polyrhythms in the medium duty cycle motif. Here, we choose gsyn~5|10{3 to
ensure short transients for the purpose of illustration. Inhibitory pulses (horizontal bars) suppress then release the targeted cells, thus causing
switching between the co-existing rhythms: 1\f2E3gð Þ in episode (i), traveling waves 1[2[3ð Þ in (ii) and 1[3[2ð Þ in (iii), followed by 2\f1E3gð Þ
led by cell 2 in (iv). Having released cells 1 and 2 simultaneously, this makes cell 3 lead the motif in the 3\f1E2gð Þ rhythm in the fifth episode, (v).
doi:10.1371/journal.pone.0092918.g010
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boundary means that even weak inhibition is able to suppress a

postsynaptic cell that is near the hyperpolarized quiescent state

(Figs. 1 and 3).

Figure 5A shows the transient behaviors of the iterates of the

phase lags Dw(n)
21 and Dw(n)

31 (shown in blue and gray colors) arising

from initial conditions distributed uniformly over the unit interval.

The phase lags exponentially converge to phase-locked states near

0 and 1
2
.

Using Eq. (2), we compute the map P that is shown in Fig. 6B.

The projection of the map onto the unit square is an efficient way

to represent the synchronized evolution of the phase lags and

facilitates easy identification of phase-locked states. These states

are identified by three coexisting stable FPs or attractors of the

system to which all forward iterates converge. Here, the FPs are:

red at Dw21&0,Dw31&
1
2

� �
, green at 1

2
,0

� �
, and blue at 1

2
, 1

2

� �
. The

attractor basins of the stable FPs are shown in the corresponding

colors. The attractor basins are subdivided by separatrices

(incoming and outgoing sets) of six saddle FPs (shown by small

dots) in the map. See the end of Methods for details on

interpreting the diagram.

The robustness of a rhythm to perturbations is related to the size

of its attractor basin. Similarly, FPs that have much larger basins

than others can be thought of as ‘‘dominating’’ the phase plane in

terms of likelihood of becoming the active state for a random

initial condition or perturbation. Two triplets of saddles surround

two more unstable FPs located at approximately 2
3

, 1
3

� �
and 1

3
, 2

3

� �
.

The immediate neighborhood of the origin has a complex

structure involving several FPs packed closely together, but

globally it acts as a repeller (see later section for a detailed analysis

of this).

Let us interpret the role of a stable FP, for example the red one,

in terms of phase-locked bursting patterns. Since the phases are

defined modulo one, the coordinates (Dw21,Dw31)~ 0, 1
2

� �
, imply

that the corresponding rhythm is characterized by two fixed

conditions w1~w2 and w1{w3~
1
2
. In other words, the reference

cell fires in-phase with cell 2 and in anti-phase with cell 3.

Symbolically, we will use the following notation for this rhythm:

3\f1E2gð Þ, in which in-phase and anti-phase bursting are

represented by (Dw12~0, or E) and (Dw13~
1
2

or \), respectively.

Following this notation, the stable FP (blue) at 1
2

, 1
2

� �
corresponds to the robust 1\f2E3gð Þ pattern, while the stable

(green) FP 1
2

,0
� �

corresponds to the 2\f1E3gð Þ pattern. These

coexisting bursting rhythms are shown in Fig. 7. The motif can be

made to switch between the polyrhythms by applying external

pulses of appropriate duration to the targeted cells.

Two FPs around Dw21,Dw31ð Þ~ 1
3

, 2
3

� �
and 2

3
, 1

3

� �
correspond to

clockwise and counter-clockwise traveling waves (respectively) that

we denote 1[2[3ð Þ and 1[3[2ð Þ. Here, the period of either

traveling wave is broken into three episodes in which each cell is

actively bursting one at a time. For example, in Fig. 4 for the

clockwise bursting, 1[2[3ð Þ, the cell ordering is 1-2-3 before the

pattern repeats. The co-existence of these two waves originates

from the rotational symmetry of the homogeneous motif.

However, both such traveling bursting waves are not robust and

therefore cannot be observed in the motif with a short duty cycle

because the corresponding FPs are repelling, so that a small

perturbation will cause the phase lags of such a traveling rhythm to

transition to those corresponding to one of three ‘‘pacemaker’’

states, as shown in Fig. 7.

Long duty cycle motif. Next, we consider the bursting motif

that has a longer duty cycle of 80%, set by V shift
K2 ~{0:0225 V.

This brings the cells closer to the boundary separating bursting

and tonic spiking activities (Fig. 3). The corresponding return map

for the phase lags is shown in Fig. 8A. There are two equally

dominating stable FPs, Dw21,Dw31ð Þ& 2
3

, 1
3

� �
and 1

3
, 2

3

� �
, corre-

Figure 11. Phase lag maps near a saddle-node bifurcation for an asymmetric motif. (A) Phase lag map for the short duty cycle motif and
coupling asymmetry ~0:41: the three saddles surrounding the stable FP (Dw21,Dw31)~ 2

3
, 1

3

� �
, are about to merge and vanish with other three

stable FPs through simultaneous saddle-node bifurcations; the FP at Dw21,Dw31ð Þ~ 1
3

, 2
3

� �
remains unstable. (B) For w0:42 the FP

Dw21,Dw31ð Þ~ 2
3

, 1
3

� �
becomes the only attractor of the map, which corresponds to the only robust 1[3[2ð Þ traveling wave. The network motif

is inset, where darker connections are stronger.
doi:10.1371/journal.pone.0092918.g011
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sponding to the now highly robust counter-clockwise 1[3[2ð Þ
and clockwise 1[2[3ð Þ traveling waves.

Figure 8B illustrates the waveforms, as well as the bistability of

the motif initially producing the counter-clockwise, 1[3[2ð Þ,
traveling wave that reverses into the clockwise one, 1[2[3ð Þ,
after a 10 second inhibitory pulse ended and released the blue

reference cell to initiate a burst.

Medium duty cycle motif. To complete the examination of

the influence of duty cycle on the repertoire and robustness of

bursting outcomes of the homogeneous motif, we now consider the

case of the medium-length duty cycle, 50%, set by

V shift
K2 ~{0:021 V (the middle interval shown in Fig. 3).

Similarly to Figure 5A, Figure 9A illustrates the evolution of

Dw21 and Dw31 (shown in blue and gray colors) from initial

conditions uniformly distributed over the unit interval. One can

Figure 12. Enlargement of the phase lag map for the short duty cycle motifs. (A) Case g~0:185 depicts a stable invariant circle near a
heteroclinic connection between the surrounding saddles that produces a small-amplitude phase jitter in the voltage traces. (B) Case ~0:32

illustrates the change in stability for the FP at (Dw21,Dw31)~ 2
3

, 1
3

� �
at large values of .

doi:10.1371/journal.pone.0092918.g012

Figure 13. Phase lag maps for the long duty cycle motif with single connection asymmetry. (A) The map for case g
syn
21 ~1:5gsyn possesses

two attractors: one dominant at 1
3

, 2
3

� �
, and another at 2

3
, 1

3

� �
with a smaller basin; note a saddle point in the proximity of the latter, which is a

precursor of a saddle-node bifurcation. (B) Case g
syn
21 ~2gsyn, which has a single attractor corresponding to the clockwise 1[2[3ð Þ traveling wave.

doi:10.1371/journal.pone.0092918.g013
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observe transients ultimately converging to multiple constant

phase locked states. The corresponding map P is presented in

Fig. 9B. In contrast to the case of short and long duty cycle motifs,

the map for the medium duty cycle motif with weak homogeneous

connections reveals the coexistence of five stable FPs: the red one

at 0, 1
2

� �
, the green one at 1

2
,0

� �
, the blue one at 1

2
, 1

2

� �
, the black

one at 2
3

, 1
3

� �
and the gray one at 1

3
, 2

3

� �
. These FPs represent,

correspondingly, five robust polyrhythms: the anti-phase

3\f1E2gð Þ, 2\f1E3gð Þ, 1\f2E3gð Þ bursting patterns, and two

traveling waves, clockwise, 1[2[3ð Þ, and counter-clockwise,

1[3[2ð Þ. By externally applying a current pulse to a targeted

cell we can deliberately switch between the co-existing bursting

patterns (Fig. 10).

Asymmetric inhibitory motifs
In this section, we elucidate how and what intrinsic properties of

the individual bursting cells affect the multistability of the 3-cell

inhibitory motif. The answer involves an interplay between the

competitive dynamical properties of individual neurons and the

cooperative properties of the network. More specifically, it relies

on how close an isolated cell is to the boundary between bursting

and hyperpolarized quiescence and how sensitive the post-synaptic

cell is to the (even weakly) inhibitory current generated by the pre-

Figure 14. Transformation stages of the phase lag maps for an asymmetric medium duty cycle motif. For the network motif shown
(darker connections are stronger), a single connection g

syn
31 increases from 1:04gsyn in (A), to 1:4gsyn in (B), to 1:6gsyn in (C). In (A), the saddle between

the FPs Dw21,Dw31ð Þ~ 0, 1
2

� �
and 1

3
, 2

3

� �
moves closer to the latter, then annihilates through a saddle-node bifurcation. In doing so, the attractor basin

of the dominant red FP at 0, 1
2

� �
widens after absorbing the basin of the vanished FP in (B). In (C) a second saddle-node bifurcation annihilates the red

FP. While the counter-clockwise and reciprocal connections between cell 2 and cells 1 and 3 remain intact, the other three stable FPs, blue at 1
2

, 1
2

� �
,

green 1
2 ,0
� �

and 2
3 , 1

3

� �
, persist in the map.

doi:10.1371/journal.pone.0092918.g014
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synaptic cells. We investigate these ideas by introducing asymme-

tries into the coupling of our homogeneous network motif. We

focus on several representative cases of asymmetrically coupled

motifs with one or more altered synaptic strengths, and we will

elaborate on their bifurcations as we vary the asymmetry.

From multistability to the 1[3[2ð Þ pattern. In this

subsection, we analyze bifurcations occurring en route from the

homogeneous 3-cell motif to a rotationally-symmetric one, during

which all clockwise- and counter-clockwise-directed synapses are

simultaneously increased and decreased, respectively. In the

limiting case of a clockwise, uni-directionally coupled motif there

is a single traveling wave. The question is: in what direction will

the wave travel?

We use a new bifurcation parameter, , which controls the

rotational symmetry as the deviation from the nominal coupling

strengths, gsyn~5|10{4, such that gsyn(1+ ) and 0ƒ ƒ1.

The limit ?1 corresponds to the unidirectional case. Recall

that initially, at ~0, both the traveling waves 1[2[3ð Þ and

1[3[2ð Þ are unstable in the short duty cycle motif with 20%
DC. Then, the network can only generate the 1\f2E3gð Þ,
2\f1E3gð Þ, 3\f1E2gð Þ pacemaker rhythms.

Figure 11A depicts P at a critical value of ~0:41, and

reveals that the FP (Dw21,Dw31)~ 2
3

, 1
3

� �
is stable. Thus the

counter-clockwise traveling wave, 1[3[2ð Þ, is now observable

in the asymmetric motif. The value ~0:41 is a bifurcation value

because further increase make the three saddles and the three

Figure 15. Transformation stages of the phase lag maps for the pyloric circuit motif. Here, a single connection g
syn
23 decreases from 0:9gsyn,

0:6 and 0:2gsyn through to 0 in (A)–(D), respectively. Going from (A) to (B), a triplet of saddle-node bifurcations eliminate first the clockwise 1
3

, 2
3

� �
FP,

and then subsequently the green FP at 1
2

,0
� �

in (B) to (C). The growing domain of the dominant blue FP at 1
2

, 1
2

� �
widens further from (C) to (D) after

the stable counter-clockwise, 2
3

, 1
3

� �
, FP is annihilated through the final saddle-node bifurcation.

doi:10.1371/journal.pone.0092918.g015
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initially stable FPs (blue, green and red), merge in pairs and

annihilate though three simultaneous saddle-node bifurcations.

After that, the FP around 2
3

, 1
3

� �
becomes the global attractor of the

network (see Fig. 11B) at ~0:42, which produces the single

counter-clockwise 1[3[2ð Þ traveling wave, while the FP at 1
3

, 2
3

� �
remains unstable.

Next we have to characterize the missing stages for the

transformation of the initially unstable FP, 1[3[2ð Þ, into the

stable one at ~0:42. Two additional maps, shown in Fig. 12,

focus on the area near this point, and shed light onto the

intermediates in the bifurcation sequence. Figure 12A depicts an

enlargement of P at ~0:185. It shows a stable invariant curve

near a heteroclinic connection involving all three saddles around

the FP 2
3

, 1
3

� �
. In this figure, the FP near the center of the plot is still

unstable. This indicates that the invariant curve has emerged from

the heteroclinic connection at a smaller value of the parameter .

The stable invariant curve is associated with the appearance of

slow phase ‘‘jitters’’ demonstrated by the 1[3[2ð Þ rhythm in

voltage traces.

As is increased further, the stable invariant curve shrinks

down and collapses into the unstable FP 2
3

, 1
3

� �
making it stable

through a secondary supercritical Andronov-Hopf (otherwise

known as a torus bifurcation) as shown in Fig. 12B.

Figure 16. Transformation stages of the phase lag maps for a motif with uni-directional asymmetry. Two connections g
syn
31 and g

syn
12 are

strengthened from 1:03gsyn through 1:5gsyn. Due to the uni-directional symmetry breaking, the map first loses the clockwise, 1
3

, 2
3

� �
, FP (light gray)

after it merges with a saddle at 1:05gsyn, then the blue 1
2

, 1
2

� �
and the red 1

2
,0

� �
FPs disappear through saddle-node bifurcations at 1:35gsyn and

1:45gsyn, respectively. As the counter-clockwise connections remain the same, the presence of the remaining FPs at 2
3

, 1
3

� �
and 1

2
,0

� �
on the torus

guarantees that the 1[3[2ð Þ traveling wave and the 2\f1E3gð Þ rhythm persist in the motif’s repertoire.
doi:10.1371/journal.pone.0092918.g016
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Bifurcations in the motif with one asymmetric

connection. The homogeneous 3-cell motif has six independent

connections, due to permutation properties we can limit our

consideration of asymmetrically coupled motifs only to a few

principle cases without loss of generality. First under consideration

is the motif with a single synaptic connection, g
syn
31 , from cell 3 to

cell 1, being made stronger.

We first consider a perturbation to the homogeneous motif

comprised of long duty cycle cells where just a single uni-

directional connection, for instance from cell 2 to 3, is

strengthened. To do this, we increase the coupling stenght g
syn
31

from the nominal value, 5|10{4, through 1:5gsyn, to 2gsyn. This

is effectively equivalent to increasing the parameter V shift
K2 only for

cell 3, thus pushing it toward the quiescence boundary and

extending its interburst intervals. The corresponding maps are

shown in Fig. 13. We observe that the initial increase of g
syn
31

breaks the clockwise symmetry of the motif and makes the stable

node at 2
3

, 1
3

� �
and a saddle come together. This motion further

shrinks the attractor basin of the 1[3[2ð Þ pattern. When g
syn
31 is

increased to 2gsyn, both FPs have annihilated through a saddle-

node bifurcation. In the aftermath, the unperturbed FP at 1
3

, 2
3

� �
remains the unique attractor of such an map. In turn, the

asymmetric motif can stably produce the single bursting pattern,

which is the 1[2[3ð Þ traveling wave.

As our case study throughout the rest of the paper, we use the

non-homogeneous 3-cell motifs composed of bursting cells with

50% duty cycle at V shift
K2 ~{0:021 V. Figure 14 depicts the stages

of transformation of the phase lag maps for the motif with the

connection g
syn
31 increasing from 1:04gsyn and 1:4gsyn through

1:6gsyn. Inset A of Fig. 14 shows how the variations in g
syn
31 first

break the clockwise rotational symmetry that underlies the

existence of the corresponding traveling wave. As g
syn
31 is increased

to 1:04gsyn the saddle between the FPs Dw21,Dw31ð Þ~ 0, 1
2

� �
and

1
3

, 2
3

� �
shifts closer to the one corresponding to the 1[2[3ð Þ

wave. A further increase of g
syn
31 makes the saddle and the stable FP

at 1
3

, 2
3

� �
annihilate through a saddle-node bifurcation. This widens

the attractor basin (colored red in the figure) of the most robust FP

at 0, 1
2

� �
after the clockwise traveling wave has been eliminated at

g
syn
31 ~1:4gsyn, as shown in Fig. 14B. At this value of g

syn
31 , the

3\f1E2gð Þ rhythm dominates over the remaining bursting

rhythms because the red cell 3 produces more inhibition than

the other two. To justify this assertion we point out that another

motif, with weakened clockwise connections (g
syn
12 ~g

syn
23 ~0:9gsyn)

generates the identical Poincaré return map to the one shown in

Fig. 14A.

In the 3\f1E2gð Þ rhythm, cell 3 bursts in anti-phase with the

synchronous cells 1 and 2 that receive evenly balanced influx of

inhibition from cell 3. This is no longer the case after the

Figure 17. Representative phase lag maps for motifs with other connection asymmetry types, Part 1. (A) Counter-clockwise biased motif
with the single strengthened connection g

syn
13 ~1:1gsyn and medium duty cycle. The phase lag map lacks the FP at 2

3
, 1

3

� �
and the saddle near the

dominating blue FP at 1
2

, 1
2

� �
. (B) Motif with a strongly inhibiting cell 1 due to two strengthened connections: g

syn
12 ~g

syn
13 ~2gsyn. The phase lag map

with the strongly dominating FP at 1
2

, 1
2

� �
for the 1\f2E3gð Þ rhythm whose attractor basin expands over those of the FPs corresponding to clockwise

1[2[3ð Þ and counter-clockwise 1[3[2ð Þ traveling waves. This larger basin has narrowed those of the coexisting stable green FP at 1
2

,0
� �

for the

2\f1E3gð Þ rhythm and the red FP at 0, 1
2

� �
for the 3\f1E2gð Þ rhythm.

doi:10.1371/journal.pone.0092918.g017
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connection g
syn
31 is made even stronger, so that the active cell 3

cannot hold both quiescent the postsynaptic cells 1 and 2 due to

uneven coupling weights g
syn
31 ~1:6g

syn
32 in the motif. One can see

from the corresponding map Fig. 14B that the red FP at 0, 1
2

� �
is

approached by a saddle point from the left at g
syn
31 ~1:4gsyn. The

map in Fig. 14C reveals that increasing g
syn
31 through 1:6gsyn

causes a drastic change in the motif: the dominant red FP has

vanished through a subsequent saddle-node bifurcation and so has

the 3\f1E2gð Þ rhythm.

With a single asymmetric connection, the structure of the phase

lag map remains intact. However, the figure shows that the

counter-clockwise wave has become the most robust rhythm, as

the corresponding FP at 2
3

, 2
3

� �
has the largest attractor basin in the

initial phase distribution.

Pyloric circuit motif. As an example, we examine bifurca-

tion scenarios that occur as we transition to a heterogeneous motif

that resembles the crustacean pyloric circuit with one inhibitory

connection missing [1,14,22,34]. Such a network can be also

treated as a sub-motif of a larger crustacean stomatogastric

network [1].

The transformation stages are singled out in Fig. 15, which

shows the bifurcations of the FPs in the phase lag maps. As in the

previous case, decreasing a single either clockwise or counter-

clockwise directional connection removes the corresponding FP at
1
3

, 2
3

� �
or 2

3
, 1

3

� �
, respectively. In this given case, it is the stable

clockwise 1
3

, 2
3

� �
FP that vanishes though a saddle-node bifurcation

after g
syn
23 is decreased below 0:9gsyn. Meanwhile, for

g
syn
23 v0:86gsyn, cell 2 cannot maintain the synchrony between

cells 1 and 3 in the 2\f1E3gð Þ rhythms, which is explained by a

similar argument. This assertion is supported by the phase lag

maps in Fig. 15B–C: one of the saddles shifts toward to the green

FP at 1
2

,0
� �

and annihilates it though a subsequent saddle-node

bifurcation as g
syn
23 is decreased through 0:85gsyn. The principal

distinction from the prior case is that one connection, g
syn
31 , is made

twice as strong as the others in the prior case, while here we

completely remove a single connection in the limit g
syn
23 ~0. A

consequence is that the basin of the stable FP at 2
3

, 1
3

� �
breaks down

after it vanished through the third saddle node bifurcation that

occur with the single connection been taken out, even while the

three counter-clockwise connections remain intact. Its ‘‘ghost’’

remains influential, however, for some initial phase lags the motif

can generate a long transient episode resembling the 1[2[3ð Þ
traveling wave. This wave eventually transitions into the dominant

anti-phase 1\f2E3gð Þ rhythm that coexists with the less robust

3\f1E2gð Þ rhythm. In the phase plane, the ‘‘ghost’’ is located in a

Figure 18. Representative phase lag maps for motifs with other connection asymmetry types, Part 2. Motifs with two connections
strengthened according to g

syn
12 ~g

syn
21 (A) and weakened g

syn
13 ~g

syn
23 (B), resulting in qualitatively similar maps. Due to the broken rotational

symmetries, the maps both no longer possess FPs for the clockwise 1[2[3ð Þ and counter-clockwise 1[3[2ð Þ traveling waves. (C) The phase lag
maps for g

syn
12 ~g

syn
21 ~1:25gsyn and for g

syn
13 ~g

syn
23 ~0:8gsyn. Two large attractor basins belong to the stable (blue) FP in the middle for the 1\f2E3gð Þ

rhythm and the stable (green) fixed point at 1
2

,0
� �

for 2\f1E3gð Þ rhythm. These co-exist with a smaller basin of the red fixed point at 0, 1
2

� �
. (D)

Further increasing to g
syn
12 ~g

syn
21 ~1:5gsyn in motif (A), or decreasing to g

syn
13 ~g

syn
23 ~0:6gsyn in motif (B) makes the blue and green FPs vanish through

consecutive saddle-node bifurcations, thus resulting in the appearance of the stable invariant curve wrapping around the torus. The invariant circle
repeatedly traverses throughout the ‘‘ghosts’’ of the four vanished FPs. Note the shrinking basin of the red FP at 1

2
,0

� �
with decreasing

g
syn
31 ~g

syn
32 ~0:8gsyn in motif (A).

doi:10.1371/journal.pone.0092918.g018
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narrow region of transition between two saddle thresholds

separating the attractor basins, blue and red, of the remaining

stable FPs at 1
2

, 1
2

� �
and 0, 1

2

� �
. Finally, removing the g

syn
23 -

connection leaves the red attractor at 0, 1
2

� �
and its basin intact

in Fig. 15D.

Two asymmetric connections: uni-directional

case. Here, we examine the motif with two uni-directional

connection asymmetries, for example where g
syn
12 and g

syn
31 are

strengthened from the nominal value to 1:5gsyn. The bifurcation

stages of P are depicted in Fig. 16 During the transformations, the

map loses three FPs in sequence through similar saddle-node

bifurcations. Because increasing g
syn
31 and g

syn
12 breaks the clockwise

symmetry, the corresponding FP at 1
3

, 2
3

� �
for the counter-

clockwise wave, 1[2[3ð Þ, is annihilated first at around

1:05gsyn after merging with a saddle. Further strengthening both

corrections annihilates the blue FP at 1
2

, 1
2

� �
, followed by the red

FP at 1
2

,0
� �

. As such, the pacemaker 1\f2E3gð Þ and 3\f1E2gð Þ
rhythms eventually are no longer available as neither cells 1 nor 3

are able to hold the post-synaptic counterparts in synchrony, and

also because the periods of the unevenly driven cells become too

different.

The clockwise symmetry breaking does not affect counter-

clockwise connections. Thus, in the map for 1:5gsyn, two rhythmic

patterns persist: the 1[3[2ð Þ traveling wave with a wide

attractor basin and the pacemaker 2\f1E3gð Þ rhythm. Their

associated FPs are at 2
3

, 1
3

� �
and 1

2
,0

� �
, respectively. It is worth

noticing that the same sequence of bifurcations will not occur in

the map and the motif if only the connection g
syn
23 is weakened

instead.

Two asymmetric connections: Unilateral dominance

case. Next under consideration is a motif in which cell 1 alone

produces stronger inhibitory output due to two strengthened

connections, g
syn
12 and g

syn
13 . Figure 17 depicts two snapshots of the

phase spaces of the map after g
syn
13 and then g

syn
12 have been

strengthened. One sees that a 10% increase in inhibition in the

counter-clockwise direction breaks the rotational symmetry and

therefore makes the stable FP at 2
3

, 1
3

� �
(corresponding to the

1[3[2ð Þ rhythm) disappear through a saddle-node bifurcation

as it merges with a saddle. As in the previous cases, the attractor

basin of the stable blue pacemaker at 1
2

, 1
2

� �
extends to absorb that

of the former FP. As expected, since all counter-clockwise

connections have remained equal in this case, the stable FP at
1
3

, 2
3

� �
persists, as does the 1[2[3ð Þ traveling wave. The

dominating rhythm, clockwise traveling wave 1[2[3ð Þ, coexists

with anti-phase 2\f1E3gð Þ, 3\f1E2gð Þ rhythms.

Figure 19. Asymmetric motifs that only exhibit phase slipping. (A) Here, g
syn
12 ~g

syn
21 ~1:5gsyn and g

syn
13 ~g

syn
31 ~0:8gsyn. The phase lag map

possesses only one attractor: the invariant curve corresponding to the phase slipping regime. (B) Voltage traces showing phase slipping beginning
with the 2\f1E3gð Þ rhythm and continuously transitioning into the clockwise 1[2[3ð Þ traveling wave, followed by the 1\f2E3gð Þ rhythm, and
being continued by the counter-clockwise 1[3[2ð Þ traveling wave and coming back to the initial 2\f1E3gð Þ rhythm in nine bursting cycles.
doi:10.1371/journal.pone.0092918.g019
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Next, in addition to g
syn
13 , the second outgoing connection, g

syn
12 ,

from cell 1 is strengthened thus breaking the clockwise symmetry

as well. As expected, this eliminates the FP at 1
3

, 2
3

� �
and the

corresponding clockwise 1[2[3ð Þ traveling pattern from the

motif. Figure 17B shows the map for the motif with

g
syn
12 ~g

syn
13 ~1:5gsyn. While it retains all three ‘‘pacemaker’’ FPs,

the one at 1
2

, 1
2

� �
corresponding to the strongly inhibiting pre-

synaptic cell 1 possess the largest attractor basin.

We may conclude that strengthening a single directional

connection, or alternatively, a simultaneous and proportional

weakening coupling strengths of the two synaptic connections of

the same orientation in the motif, controls one of the three saddle

points between the FP corresponding to traveling waves and the

pacemaker FP corresponding to the stronger inhibiting cell. This

will eventually causes the disappearance of either point as soon as

the rotational symmetry is broken after the coupling strength is

increased over some critical value, which varies depending on the

nominal value gsyn and the duty cycle of the bursting cells.

Motifs with a stronger coupled HCO: loss of phase-

locking. A 3-cell motif with the cells coupled reciprocally by

inhibitory synapses can be viewed alternatively as a group of three

half-center oscillators (HCO). Each HCO represents a pair of cells

that typically burst in anti-phase, when isolated from other cells.

When a HCO is symmetrically driven, even weakly, by another

bursting cell, it can produce in-phase bursting, instead of out of

phase bursting [16].

In this section, we consider transformations of rhythmic

outcomes in the motif containing a single HCO with stronger

reciprocally inhibitory connections, for example,

g
syn
12 ~g

syn
21 ~1:25gsyn (see Fig. 18A). It turns out that a 25%

increase in coupling is sufficient to break both rotational

symmetries because it eliminates the associated FPs around
1
3

, 2
3

� �
and 1

3
, 2

3

� �
through saddle-node bifurcations. Since both

connections are strengthened simultaneously, the attractor basins

of the both dominating FPs, blue near 1
2

, 1
2

� �
and green near 1

2
,0

� �
,

widen equally. However, increasing the connections g
syn
12 and g

syn
21

between cells 1 and 2 does not affect the attractor basin of the red

FP at 0, 1
2

� �
. In other words, the motif can still produce the co-

existing 3\f1E2gð Þ rhythm.

The following bifurcation sequence involving the dominant FP

differs drastically from the saddle-node bifurcations discussed

earlier. Observe from the map in Fig. 18A that two saddles

separating two attractor basins, have moved close to the blue and

green FPs as the coupling between the HCO cells is increased to

1:5gsyn. This is a direct indication that a further increase of the

coupling strength between the strongly inhibitory cells 1 and 2 will

cause two simultaneous saddle-node bifurcations that eliminate

both stable FPs.

A feature of these bifurcations of the map at the critical moment

is that there are two heteroclinic connections that bridge the saddle-

node FPs on the 2D torus. The breakdown of the heteroclinic

connections with the disappearance of both FPs results in the

emergence of a stable invariant circle that wraps around the torus

[41,42]. The attractor basin of the new invariant curve is bounded

away from that of the red FP at 0, 1
2

� �
by the stable sets (i.e.,

incoming separatrices) of the two remaining saddles. This motif is

therefore bi-stable as the corresponding map shows two co-existing

attractors.

Further increase in the coupling strength between the stronger

inhibitory HCO and cell 3 cannot not qualitatively change the

structure of the phase lag map, while it can have only a

qualitatively effect on the size of the attractor basins of the

invariant circle and the remaining FP (red). So, weakening

g
syn
31 ~g

syn
32 ~0:8gsyn makes the separating saddles come closer to

the red FP and hence shrink its attractor basin, as seen in Fig. 18B.

This is not the case when either connection between cell 3 and

the HCO is made sufficiently asymmetric. Depending on the

connection’s direction of asymmetry, such an imbalance causes

either of the two remaining saddles to come close and annihilate

with the stable red FP at 1
2

,0
� �

. Figure 19 presents the map for this

motif with weakened reciprocal connections between cells 3 and 1:

g
syn
13 ~g

syn
31 ~0:8gsyn. This motif, comprised of three HCOs with

strong, nominal and weak reciprocal connections, no longer

produces any phase-locked bursting rhythm, including

3\f1E2gð Þ, as the map no longer has any stable FPs. The

resulting motif is monostable with a single attractor for the stable

invariant curve. This curve can be characterized with a rational or

irrational winding number. The number is a rational if the invariant

curve is made of a finite number of periodic points across the

torus.

The occurrence of the stable invariant curve wrapping around

the torus gives rise to a phase slipping phenomenon observed in

voltage traces such as those shown in Fig. 19B. We define ‘‘phase

slipping’’ as a repetitive rhythm with varying phase lags between

the bursting cells of the motif. The period of the invariant circle

depends on how far the map with the invariant circle is from the

bifurcations of ‘‘ghost’’ FPs. The ‘‘ghosts’’ make the bursting

Figure 20. Asymmetric motif with strong connections to cell 3.
Motif with cell 3 receiving inhibition stronger than the nominal value:
g

syn
13 ~g

syn
23 ~1:6gsyn. Such strong asymmetry means the map no longer

possesses the traveling wave or the blue and green pacemaking FPs,
similar to that shown in Fig. B. There is bi-stability between the two
remaining attractors, i.e. the stable red FP at 1

2
,0

� �
and the stable

invariant curve. The stable invariant curve ‘‘flows’’ upwards, because the
period of cell 3 is longer than the period of cells 1 and 2.
doi:10.1371/journal.pone.0092918.g020
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pattern with varying phase lags appear as it is composed of four

sequential episodes and transitions between them.

From the top of the Dw21,Dw31ð Þ-unit square, the curve begins

with the 2\f1E3gð Þ rhythm continuously transitioning into the

clockwise 1[2[3ð Þ traveling wave, followed by the 1\f2E3gð Þ
rhythm, and being followed by the counter-clockwise 1[3[2ð Þ
traveling wave and finally returning to the initial 2\f1E3gð Þ
rhythm in nine bursting cycles, which is the period of the phase

slipping. Each episode of the phase slipping rhythm can be

arbitrarily large as it is controlled by the coupling strength of the

specific motif connections near the corresponding saddle-node

bifurcation(s). Observe that Dw21^
1
2

on the invariant curve, i.e.,

while cell 1 and 2 are in anti-phase bursting, cell 3 modulates the

rhythm by recurrently slowing down and advancing the HCO to

generate continuously all four episodes.

One may wonder about what determines the direction of the

invariant curve on the torus and hence the order of the episodes of

the shown voltage waveform. Observe that the phase slip occurs in

the Dw31 direction and that the invariant curve, unlike a FP, has

no fixed period for the whole network. Indeed, the recurrent times

of this network change periodically, approximately every eight

episodes. The eight episodes constituting the bursting pattern are

determined by a rational ratio of the longer HCO period (due to

stronger reciprocal inhibition that extends the HCO interburst

intervals) to the shorter period of pre-synaptic cell 3 (due to a

weaker incoming inhibition) (see Figs. 19B and 20).

Let us discuss another motif configuration, shown in Fig. 18B,

that produces maps with stable invariant curves that wrap around

the torus. These are qualitatively identical to the maps for the

motif containing the strong HCO formed by cells 1 and 2

(Fig. 18A). In this configuration, cell 3 receives weaker inhibition

from pre-synaptic cells 1 and 2 according to g
syn
13 ~g

syn
23 ~0:6gsyn.

The de-stabilizing factor 0.6 turns out to be small enough to make

sure that neither cell 1 nor 2 can be a pacemaker as the

corresponding stable FPs have disappeared because the period of

cell 3 has become shorter than the periods of cells 1 and 2. As the

result, the map demonstrates the same stable invariant curve that

‘‘flows’’ downwards with decreasing Dw31 phase lags.

The direction of the stable invariant circle flowing across the 2D

torus can be reversed by making cell 3 receive stronger inhibition

instead of weaker inhibition relative to the other cells. An example

is depicted in the phase lag map of Fig. 20, where

g
syn
13 ~g

syn
23 ~1:6gsyn.

Toward control of multistability. We now elucidate the

issues involved in designing inhibitory motifs with predetermined

bursting outcomes and how to control them. Let us revisit the

motif with a single HCO in Fig. 17A. The map is depicted near

the bifurcations that eliminate both blue and green FPs

simultaneously as the coupling strength between cells 1 and 2 is

increased. The corresponding saddle-node bifurcations are each of

co-dimension one, i.e. can be unfolded by a single parameter. This

means that increasing either coupling parameter, g
syn
12 or g

syn
21 ,

makes the respective FP at 1
2

,0
� �

(green) or 1
2

, 1
2

� �
(blue) disappear

or re-emerge. This suggests alternative ways of perturbing the

motif to get the desired outcome. For instance, in the motif with

Figure 21. Motifs with the asymmetric inhibition to cell 3. (A) The phase lag map for the medium duty cycle motif at g
syn
12 ~g

syn
21 ~g

syn
23 ~1:5gsyn

generates two phase-locked bursting rhythms. There is a dominant 2\f1E3gð Þ rhythm due to the large attractor basin of the green FP at 1
2

,0
� �

, and

the 3\f1E2gð Þ rhythm corresponding to the red attractor at 0, 1
2

� �
which has a smaller basin. (B) Here, g

syn
12 ~g

syn
21 ~g

syn
13 ~1:5gsyn. In the corresponding

phase lag map, the stable FP at 1
2

, 1
2

� �
has a larger attractor basin compared to that of the coexisting FP for cell 3 that leads the 3\f1E2gð Þ rhythm.

doi:10.1371/journal.pone.0092918.g021
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the HCO given by g
syn
12 ~g

syn
21 ~1:5gsyn, cell 2 can be made the

strongest on the motif by increasing the outgoing inhibitory drive:

g
syn
23 ~1:5gsyn. The green FP at 1

2
,0

� �
in the corresponding map in

Fig. 21A has a largest attraction basin that guarantees the

dominance of the 2\f1E3gð Þ-rhythm over the network. The map

in Fig. 21B has the basin of the blue FP at 1
2

, 1
2

� �
largest, after

strengthening the coupling from cell 1 to 3 in the motif with two

robust bursting outcomes: the 1\f2E3gð Þ-rhythm dominating

over the 3\f1E2gð Þ-rhythm corresponding to the red FP at 0, 1
2

� �
with a smaller basin formed by initial phases.

The above configurations of the inhibitory motif are bistable

with two coexisting FPs: dominant blue (or green) with a large

attractor basin and red with a smaller basin corresponding to the

less robust 3\f1E2gð Þ rhythm. To construct the monostable motif

with the single rhythm, for example 1\f2E3gð Þ, cell 1 must be

coupled reciprocally stronger with cell 3 than cell 2. Such a motif has

two HCOs that both contain cell 1 due to the strengthened pairs of

synaptic connections: g
syn
12 ~g

syn
21 ~1:5gsyn and g

syn
13 ~g

syn
31 ~

1:5gsyn. The corresponding map for the phase lags is shown in

Fig. 22. The resulting map demonstrates that both the red and

green FPs have been annihilated, as well as the corresponding

bursting rhythms. Note that the map still has two saddle FPs in

addition to the only attractor at 1
2

, 1
2

� �
. It is a feature of a map on a

2D torus that the number of FPs must be even, in general, for

them to emerge and vanish through saddle-node bifurcations.

Therefore, the map must possess another hyperbolic FP. This

point resides near the origin where all three cells burst

synchronously, which we consider next.

Fine structure near the origin. A common misconception

concerning modeling studies of coupled cells is that fast, non-

delayed inhibitory synapses always foster anti-phase dynamics over

unstable in-phase bursting. While being true in general for simple

relaxation oscillators, interactions of bursting cells can be

incomparably more complex even in small networks including

HCOs with fast inhibitory coupling [16,27]. It was shown in [28]

that overlapped bursters can reciprocally synchronize each other

in multiple, less robust, phase-locked states due to spike

interactions. Furthermore, the number of such synchronous steady

states is correlated with the number of spikes within the

overlapped bursts.

To explore the dual role of inhibition, we now explore nearly

synchronous bursting in all three cells of the homogeneous,

medium DC motif. Because synchronous steady states are due to

spike interactions, we restrict the consideration to a relatively small

positive vicinity of the synchronous state, Dw21~Dw31~0, in P. A

magnified portion of the map is shown in Fig. 23, where green, red

and black dots denote the locations of the stable, repelling and

saddle (threshold) phase locked states (respectively) for the nearly

synchronized bursting outcomes. The map reveals that several

overlapping burst patterns can occur where either cell spikes

slightly in advance or delayed compared to the reference cell.

Unstable FPs surround the outer part of this small region of the

map make the origin repelling in the map on the global scale.

Excitatory motifs
In this section, we discuss a variation of a homogeneous 3-cell

motif with short, 25% DC at V shift
K2 ~{0:01895 V, will all three

excitatory synaptic connections. The synaptic current is again

given through the FTM paradigm:

Isyn~gsyn(Esyn{Vpost)C(Vpre{Hsyn). The synapses are made

Figure 22. A motif with cell 1 leading in two half-center
oscil lators. The phase lag map at g

syn
12 ~g

syn
21 1:5gsyn and

g
syn
13 ~g

syn
31 ~1:5gsyn has a single phase-locked attractor – the blue FP

at 1
2

, 1
2

� �
corresponding to the unique rhythm, 1\f2E3gð Þ.

doi:10.1371/journal.pone.0092918.g022

Figure 23. Fine dynamical structure near the origin
Dw21~Dw31~0 of the phase lag map. Green, red, and black dots
denote stable, repelling, and saddle FPs (resp.) in the vicinity of the
origin, corresponding to all three cells almost synchronized in the
homogenous medium-bursting motif. Globally, at a larger scale, the
origin appears unstable.
doi:10.1371/journal.pone.0092918.g023
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more excitatory by increasing the synaptic reversal potential, Esyn,

from {0:0625 V (corresponding to the inhibitory case) to 0:0 V.

Esyn~0 guarantees that the voltages of all the cells remain below

the reversal potential, on average, over the bursting period. In the

excitatory motif, whenever the advanced cell initiatives a new

bursting cycle, the synaptic current raises the voltages of post-

synaptic cells, thus making it follow the pre-synaptic one, at the

hyperpolarized knee-point on the quiescent manifold (Fig. 1B).

Figure 6 shows the phase lag map for the original inhibitory

motif with three stable FPs (shown in blue, red and green) at

Dw21,Dw31ð Þ~ 1
2

, 1
2

� �
, 0, 1

2

� �
, 1

2
,0

� �
and two unstable FPs (dark dots)

at 2
3

, 1
3

� �
and 1

3
, 2

3

� �
. The attractor basins of three stable FPs are

separated by the separatrices of six saddle FPs (smaller dots). A

small area around the origin is globally repelling. This motif can

stably produce three coexisting patterns in which either cell bursts

in anti-phase with the two remaining in-phase.

It is often presumed in neuroscience that excitation acts

symmetrically opposite to inhibition in most cases, i.e. wherever

inhibition tends to break synchrony, excitation fosters it. Figure 24

supports this assertion for this particular kind of network and

coupling. It depicts the map corresponding to the homogeneous 3-

cell motif with reciprocally excitatory connections for same short,

25% DC.

Compared to the map for the inhibitory motif, the map for the

homogeneously excitatory motif is the inverse:

P{1 : Dw
(nz1)
21 ,Dw

(nz1)
31

� �
? Dw

(n)
21 ,Dw

(n)
31

� �
; here the inverse is

the forward map in discrete backward time. As such, the FPs at
1
3

, 2
3

� �
and 2

3
, 1

3

� �
, which used to be repelling in the inhibitory case,

become attracting but with smaller basins. This means that the

motif can generate traveling waves, albeit with low probability.

Meanwhile, the FPs colored blue, green and red, are now

repellers, and hence none of the pacemaker rhythms can occur.

Reversing the stability does not change the topological type of the

six saddles, but their stable and unstable separatrices are reversed.

The dominant attractor of the map is now located at the origin, to

which nearly all transient trajectories converge. This implies that

the reciprocally excitatory motif, whether homogeneous or

heterogeneous, will exhibit stable synchronous bursting with all

three cells oscillating in-phase.

Mixed motifs
Here we discuss two intermediate configurations of mixed

motifs having both inhibitory and excitatory connections. First, we

consider the motif with a single excitatory connection from cell 3

to 1. Its coupling strength is regulated by the level of the synaptic

reversal potential, E31
syn. Figure 25 depicts three phase lag maps for

the motif with Esyn being increased from {0:050, {0:030

through 0:0 V.

Initially, an increase in E31
syn gives rise to two saddle-node

bifurcations in the motif (Fig. 25A): the first one breaks the

clockwise rotational symmetry and hence annihilates the stable FP

at 1
3

, 2
3

� �
. The second bifurcation annihilates the stable red point at

0, 1
2

� �
, because cell 3, inhibiting 2 and exciting 1, cannot hold both

of them at the hyperpolarized quiescent state to generate the

3\f1E2gð Þ-rhythm as it promotes burst initiation in cell 1

following those in cell 3. On the contrary, excitation applied to

cell 1 forces it to follow cell 3 after a short delay in the burst

initiation. As the result, the disappearance of the 3\f1E2gð Þ-
rhythm promotes the 2\f1E3gð Þ-rhythm and an increase of the

attractor basin of the green FP.

Initial elevations of the level of E31
syn keep the other three FPs

intact, while widening the basins of the blue and green stable FPs

at 1
2

, 1
2

� �
and 1

2
,0

� �
. Further increasing E31

syn increases the duty

cycle of the blue cell by extending its active bursting phase.

Consequently, the counter-clockwise ring no longer contains

identical cells that could orchestrate the 1[3[2ð Þ pattern. This

patten is eliminated with the disappearance of the corresponding

FP at 2
3

, 1
3

� �
through a merger with a saddle. The map now has two

persistent attractors, blue and green, as shown in Fig. 25B. With

E31
syn increased still further, the blue cell 1 receives strongly

unbalanced input: larger excitation influx from the postsynaptic

cell 3 and an inhibitory drive from cell 2, acting oppositely. This

unbalanced input increases the active phase of bursting of cell 1

and hence its duty cycle and period, and hence breaks cell 1’s

ability to robustly maintain the 1\f2E3gð Þ-rhythm by evenly

inhibiting the pots-synaptic cells 1 and 2 of the same period. In P,

this results in the shrinking of the attractor basin of the blue FP,

whereas the basin of the dominating green FP widens. By setting

E31
syn~0:0 V, the resulting strong imbalance between excitation

and inhibition onto cell 1 makes the 1\f2E3gð Þ-rhythm

impossible to occur in the network and the corresponding FP at
1
2

, 1
2

� �
disappears in the map. After this last saddle-node

bifurcation, the map has a unique attractor in the green FP.

Eventually, regardless of initial phases, the synergetic interaction of

Figure 24. Phase lag map for the excitatory, weakly coupled,
homogeneous motif with short duty cycle. With gsyn~5|10{4 ,
this map has a dominant attractor at the origin that corresponds to
synchronous bursting. Also depicted are three repelling FPs (blue, red
and green) at Dw21,Dw31ð Þ~ 1

2
, 1

2

� �
, 0, 1

2

� �
, and 1

2
,0

� �
, as well as stable FPs

at 2
3

, 1
3

� �
and 1

3
, 2

3

� �
with small attractor basins, corresponding to

traveling waves, co-existing with the synchronous bursting.
doi:10.1371/journal.pone.0092918.g024
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inhibitory and excitatory cells in this mixed motif will give rise to

the 2\f1E3gð Þ-rhythm led by cell 2 (Fig. 26).

Finally, we consider the mixed motif with two excitatory

connections originating from cell 3. Figure 27 depicts the

transformations of the P as the reversal potentials, E31
syn and

E32
syn, are increased simultaneously from {0:050, {0:030 through

to {0:020 V. The increase makes postsynaptic cells 1 and 2 more

excited compared to cell 3, which consequently receives a longer

duration of inhibition.

As in the previous case, increasing E31
syn~E32

syn~{0:050 V

breaks both rotational symmetries, which is accompanied by the

disappearance of the corresponding, counter-clockwise and

clockwise, FPs. The increased excitability of cells 1 and 2 initiates

the active bursting states of those cells soon after that of cell 3 in

each cycle. Thus, the 3\f1E2gð Þ-rhythm led by cell 3 is less likely

to occur compared to the 1\f2E3gð Þ and 2\f1E3gð Þ- rhythms.

The corresponding (red) FP at 0, 1
2

� �
loses the attractor basin in the

map and then disappears, following the FPs for the traveling

waves, at {0:030 V, see Fig. 27B. After that, the blue and green

stable points have equal attractor basins corresponding to equal

chances of the emergence of the phase-locked rhythms 1\f2E3gð Þ
and 2\f1E3gð Þ. Examination of the map suggests that besides

these phase-locked rhythms, the motif can generate long transients

Figure 25. Phase lag maps for the mixed homogeneous motif with medium duty cycle as reversal potential varies. With gsyn~0:0005,
maps are depicted for E31

syn~{0:050 in (A), {0:030 in (B) and {0:020 V in (C). (A) Increasing E31
syn causes two saddle-node bifurcations: one breaks

the clockwise rotational symmetry and annihilates the corresponding FP at 1
3

, 2
3

� �
, while the other annihilates the stable red point at 0, 1

2

� �
. (B) This

widens the basins of the blue and green stable FPs at 1
2

, 1
2

� �
and 1

2
,0

� �
. Further raising E31

syn eliminates the attractor basin for the black FP at 2
3

, 1
3

� �
in

(B), and finally the blue FP along with the 1\f2E3gð Þ- rhythm in (C). Black-labeled trajectories indicate the direction field on the torus and the
separatrices of saddles.
doi:10.1371/journal.pone.0092918.g025
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with episodes that resemble those of the 3\f1E2gð Þ-rhythm

transitioning back and forth with in-phase bursting. Such

transients are due to regions of the map that are constrained by

the incoming separatrices of the remaining saddles, which are

forced to curve in complex ways to embed onto the torus with two

attractors and an unstable origin. Note that the origin may not

longer be a repeller as a whole but has a saddle structure, because

it is no longer associated with synchronous bursting.

Setting the excitatory reversal potential to zero annihilates the

two remaining phase-locked states (blue and green FPs) in two

simultaneous bifurcations. As with the case of the inhibitory motif

with the HCO (compare with Fig. 18), these global bifurcations

underlie the formation of a closed heteroclinic connection between

the saddle-node points at the critical moment. These connections

transform into an invariant circle that wraps around the torus.

Having settled onto the invariant curve that zigzags over the torus,

the network will generate long recurrent patterns consisting of

three transient episodes: namely, in-phase bursting that transitions

to the 1\f2E3gð Þ-rhythm, which transitions back to in-phase

bursting, then transitioning to the 2\f1E3gð Þ-rhythm, which then

returns to the in-phase bursting, and so forth.

At higher values of reversal potentials, excitation overpowers

inhibition and this mixed motif fully becomes the excitatory motif

with the single, all-synchronous, bursting rhythm forced by the

driving cell 3. In the corresponding return map, this rhythm

occurs after the invariant curve terminates at a homoclinic

connection to a saddle-node near the origin so that the origin

becomes a global attractor again.

Gap junction in an inhibitory motif
Finally, let us consider the role of a single electrical synapse

though a gap junction between cells 1 and 2 in the inhibitory motif

(Fig. 1A). The difference in the membrane potentials gives rise to a

directional ohmic current described by Iel~gel (V2{V1) in the

model (3). Figure 28 depicts the stages of transformation of the

corresponding maps as gel is increased from 10{4 through

3|10{4.

The electrical coupling breaks down the rotational symmetry

that causes the disappearance of the corresponding FPs at 1
3

, 2
3

� �
and 2

3
, 1

3

� �
. The disappearance of both FPs widens the attraction

basin of the red FP at 0, 1
2

� �
compared to the individual basins of

the blue and green FPs. The bidirectional electrical coupling tends

to equilibriate the membrane potentials of the connected cells, so

that cell 1 and 2 are brought closer together to burst in synchrony,

rather than in alternation. At intermediate values of gel , inhibitory

coupling can still withstand the tendency to synchronize cells 1 and

2, while the red basin widens further due to shrinking basins of the

blue and green FP. At larger values of gel , synchrony of bursting

cells 1 and 2 overpowers their reciprocal inhibition, and the motif

generates only the 3\f1E2gð Þ-rhythm regardless of the choice of

initial phases. Thus, we find that motifs with strong electrical

synapses describe a dedicated rather than a multifunctional CPG.

Discussion

Our new computational technique reduces the dynamics of a 9-

dimensional network motif of three cells to the analysis of the 2D

maps for the phase lags between the bursting cells. With this

technique, we demonstrated that a reciprocally inhibitory network

can be multistable, i.e. can generate several distinct polyrhythmic

bursting patterns. We studied both homogeneous and non-

homogeneous coupling scenarios as well as mixtures of inhibition,

excitation and electrical coupling. We showed that the observable

rhythms of the 3-cell motif are determined not only by symmetry

considerations but also by the duty cycle, which serves as an order

parameter for bursting networks. The knowledge of the existence,

stability and possible bifurcations of polyrhythms in this 9D motif

composed of the interneuron models is vital for derivations of

reduced, phenomenologically accurate phase models for non-

homogeneous biological CPGs with inhibitory synapses.

The idea underlying our computational tool is inspired by

common features of electrophysiological experimentation. As such,

it requires only the voltage recording from the model cells and

does not explicitly rely on the gating variables. We intentionally

choose the phases based on voltage as often this the only

experimentally measurable variable. Moreover, as with real

experiments, we can control the initial phase distribution by

releasing the interneurons from inhibition at specific times relative

to the reference neuron. Our analysis of the system only utilizes

the qualitative, geometric tools of dynamical systems theory. Thus,

although in this example we simulated a system of underlying

differential equations to generate the maps, in principle such maps

could be generated and analyzed directly from experimental data.

In this sense, our method does not require knowledge of explicit

model equations.

Summary and interpretation of main results
Rhythmic motor behaviors, such as heartbeat, respiration,

chewing, and locomotion are often independently produced by

small networks of neurons called Central Pattern Generators

(CPGs). It is not clear either what mechanisms a single motor

system can use to generate multiple rhythms, for instance: whether

CPGs use dedicated circuitry for each function or whether the

Figure 26. Transient voltage traces converging to the 2\f1E3gð Þ-rhythm generated by a mixed motif. Here, E31
syn~{0:020 V, which

corresponds to the phase lag map having a single attractor at the green FP in Fig. 25C; here stronger gsyn~0:005 was used for the sake of illustration
of a quicker convergence.
doi:10.1371/journal.pone.0092918.g026
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same circuitry can govern several behaviors. A systematic way to

explore this is to create mathematical models that use biologically

plausible components and classify the possible varieties of

rhythmic outcomes.

We performed such a study of CPG networks based on three

inter-connected neurons. We systematically varied the strength

and functional form of coupling between the neurons to discover

how these affect the behavioral repertoire of the CPG. To do this,

we created a geometric representation of the simulated CPG

behavior of each possible configuration of the network, which

greatly simplifies the study of the 9-dimensional system of

nonlinear differential equations. We discovered several configura-

tions that support multiple rhythms and characterized their

robustness. By varying physiologically reasonable parameters in

the model, we also describe mechanisms by which a biological

system could be switched between its multiple stable rhythmic

states.

In the Homogeneous Inhibitory Motifs section, we showed that

a weakly coupled, homogeneous motif comprised of three bursting

interneurons with reciprocally inhibitory fast synapses can produce

a variable number of polyrhythms, depending on the duty cycle of

the individual components. The phase lag maps are de facto proof

of the robust occurrence of the corresponding rhythmic outcomes

generated by such a motif. While the occurrence of some rhythms,

Figure 27. Phase lag maps for the mixed motifs as an excitatory reversal potential varies. Here, we choose values {0:050, {0:030 and
{0:010 V, for the reversal potential, Esyn in the two excitatory connections originating from cell 3. (A) Increasing Esyn causes two saddle-node

bifurcations, and breaks the rotational symmetries and hence annihilates the FPs at 2
3

, 1
3

� �
and 1

3
, 2

3

� �
. This widens the basins of the blue and green

stable FPs at 1
2

, 1
2

� �
and 1

2
,0

� �
, and shrinks that of the red stable FP at 0, 1

2

� �
. (B) Making two connections more excitatory produces a closed

heteroclinic connection between the remaining FPs, which becomes a stable invariant circle wrapped around the torus (inset C). Black-labeled
trajectories indicate the direction field on the torus and the separatrices of saddles.
doi:10.1371/journal.pone.0092918.g027
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such as 1[2[3ð Þ and 1[3[2ð Þ, in a 3-cell motif can

hypothetically be deduced using symmetry arguments; the

existence and robustness of the rhythms can be only verified by

accurate computations of the corresponding return maps. More-

over, the observability of these rhythms in even the homogeneous

motifs, and the stability of the FPs, are both closely linked to the

temporal properties of the bursts.

Recall that the inhibitory current shifts the post-synaptic cell

closer to the boundary or can even move it over the boundary into

silence while the pre-synaptic cell remains actively spiking (Fig. 3).

In terms of dynamical systems theory, this means that the

perturbed driven system closes the gap between the hyperpolar-

ized fold and the slow nullcline m
0

K2~0, eventually causing the

emergence of a stable equilibrium state on the quiescent branch.

As such, the homogeneous network produces three pacemaker

rhythms, 3\f1E2gð Þ, 2\f1E3gð Þ, and 1\f2E3gð Þ – the only

rhythms available in the short motif. These strongly synchronized

activities imply fast convergence to the phase locked states because

of the emergent equilibrium state near the closed gap: compare the

time spans in Figs. 6A and 9A.

The gap never gets closed by weak inhibition in the long duty

cycle motif as the individual cells have initially remained far

enough from the boundary separating the bursting and hyperpo-

larized quiescence. As the result, this motif can only effectively

produce two possible bursting outcomes: the clockwise 1[2[3ð Þ
and counter-clockwise 1[3[2ð Þ traveling waves. This bistability

Figure 28. Transformation stages of the phase lag map for the inhibitory motif with a single gap junction between cells 1 and 2.
Increasing the electrical coupling strength from 10{4 through 3|10{4 transforms the multistable motif into a dedicated one by eliminating first the
FPs corresponding to the traveling waves, and next the green and blue FPs at the same time as the gap junction is bi-directional. Eventually, the red
FP 0, 1

2

� �
, corresponding to the single 3\f1E2gð Þ-rhythm led by cell 3 in the motif with the gap junction uniting bursting cells 1 and 2, becomes the

global attractor of the map.
doi:10.1371/journal.pone.0092918.g028
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results from a weaker form of synchronization, which is confirmed

by the rate of convergence to the FPs. This will not be the case

when the inhibition becomes stronger due to increasing the

nominal coupling strength, gsyn.

The intermediate case of the medium motif is far from the

above extremes and benefits from a natural optimization between

the coupling strength, initial phase distributions, and the spatio-

temporal characteristics of unperturbed and perturbed bursting.

One such characteristic is the slow passage through the ghost of

the stable equilibrium state that guarantees the robust synchrony

in the short duty cycle motif. As the result, the motif can produce

five stable bursting rhythms: the anti-phase 3\f1E2gð Þ,
2\f1E3gð Þ, and 1\f2E3gð Þ; and the clockwise 1[2[3ð Þ and

counter-clockwise 1[3[2ð Þ traveling waves.

In the Asymmetric Inhibitory Motifs section, we described a

number of generic bifurcations of the original five polyrhythms

that can occur in the homogeneous, reciprocally inhibitory motif

with the medium duty cycle. We revealed the basic principles of

transformations of such a multi-functional network into ones with

fewer rhythms or even with a single pattern bursting pattern.

The rhythmic outcomes of the CPG do not always have to

involve phase locking, as there can be a stable pattern of phase

slipping bursts that have time varying phase lags.

While each rhythm remains robust with respect to variations of

the coupling connections, one can still make the network switch

between them by applying an external pulse to the targeted cell

that, upon release, appropriately changes the relative phases of the

cells, as demonstrated in Fig. 10 for the medium duty cycle motif.

In terms of the Poincaré return maps for the phase lag, switching

between rhythms is interpreted as switching between the

corresponding attractor basins of FPs or invariant circles. This

causes the state of the network to ‘‘jump’’ over the separating

threshold defined by a saddle (more precisely, over the incoming

separatrices of the saddle). We stress, however, that the choice of

timing in the suppression of a targeted cell to effectively switch

between these polyrhythms is not intuitive and requires a detailed

understanding of the underlying dynamics.

Although there are alternative ways of creating the 3-cell

reciprocally inhibitory motif with predetermined outcomes, the

fundamental principles are universal: the pre-synaptic cell that

produces stronger inhibition gains the larger attractor basin and

therefore the corresponding rhythm led by this cell becomes

predominant. In particular, a sufficient increase (or decrease) of

the coupling strength of a single connection can break the intrinsic

rotational symmetry of the motif to remove the possibility of

observing traveling wave patterns.

Of special interest are the motifs with asynchronous phase-

slipping patterns that have no dominating phase-locked states.

Such patterns result from the synergetic interactions between all

contributing cells, and is comprised of four transient episodes, but

primarily marked by a continuous transition between two primary

sub-rhythms: 2\f1E3gð Þ and 1\f2E3gð Þ (for example, see

Fig. 20). Both competing sub-rhythms are equally possible, and

none can prevail over the other without the weaker inhibiting cell

3 whose reciprocal connections change the existing balance by

shifting the phase lags during all four episodes.

In all cases we have considered, inhibition was chosen weak

enough to guarantee that the post-synaptic cell remains in a

bursting state even when its duty cycle decreases to 20% near the

boundary between bursting and silence. This ensures that the

phases of the cells, as well as the phase lags, are well defined for the

return maps. However, this assumption may fail, for example

when phase of a post-synaptic cell is not defined because the

incoming synaptic inhibition makes it quiescent [17]. This leads to

a phenomenon called sudden death of bursting that occurs when a

rhythmic leader (red cell 3 in Fig. 29) becomes suppressed by the

Figure 29. Sudden death of bursting in cell 3 after application of an inhibitory stimulus to cell 1. An inhibitory stimulus causes the switch
from the 3\f1E2gð Þ rhythm, led by cell 3, to a pattern where it is forced to become hyperpolarized quiescent. This state is due to cell 3 receiving
continuous inhibition by the half-center oscillator formed by cells 1 and 2 in an asymmetric motif at g

syn
13 ~g

syn
23 ~6gsyn and g

syn
31 ~g

syn
32 ~0:4gsyn.

doi:10.1371/journal.pone.0092918.g029

Figure 30. Sketch of nested synchronization zones in the
parameter space of the network. The synchronization zones are the
existence regions of co-existing stable FPs corresponding to various
phase-locked bursting patterns of the CPG. The boundaries of the zones
are crossed when a single bifurcation parameter Dg

syn
ij (e.g. one of the

coupling strengths) is varied from a nominal value so that it causes a
sequence of saddle-node bifurcations that eliminate FPs and corre-
sponding patterns from the network dynamics.
doi:10.1371/journal.pone.0092918.g030

Key Bifurcations of Bursting Polyrhythms in CPGs

PLOS ONE | www.plosone.org 24 April 2014 | Volume 9 | Issue 4 | e92918



other two cells that form an anti-phase HCO, which alternately

inhibit the post-synaptic cell. In our example, the outgoing

inhibition from cell 3 is several times weaker than the inhibition

that it receives from the HCO formed by cells 1 and 2:

g
syn
31 ~g

syn
32 ~0:4gsyn and g

syn
13 ~g

syn
23 ~6gsyn (this ratio does not

always have to be as large when gsyn is increased).

It should be stressed that the sudden death of bursting co-exists

with other bursting patterns in the motif at the same coupling

parameters. As such, this example bears a close qualitative

resemblance to the experimental recordings from identified

interneurons comprising the leech heart CPG in which the so-

called switch interneuron alternately leads synchronous patterns

and then becomes inactive during peristaltic patterns [43–45].

Analogous reversions of direction in the blood circulation,

peristaltic and synchronous, are observed in the leech heartbeat

CPG and its models [21,46]. The contrast between the patterns is

that switching appears to be autonomously periodic in the leech,

i.e. occurs without external stimulus, in a way similar to the phase-

slipping pattern presented in Fig. 19.

Examination of the complex fine structure of the map near the

origin reconfirms that fast, non-delayed inhibition can have

stabilizing effects leading to the onset of several nearly synchro-

nous bursting patterns with several overlapping spikes [28]. Such

bursting patterns are less robust compared to those corresponding

to FPs with large attractor basins in the phase lag maps.

We showed in the Excitatory Motifs section that raising the

synaptic reversal potential is equivalent to reversing the time in the

inhibitory motif model. In the maps, this action transforms

attractors into repellers, while saddles remain saddles but have

their incoming and outgoing directions reversed. To fully illustrate

this phenomenon, we used the symmetric motif with the short duty

cycle, in which the clockwise and counter-clockwise traveling

waves are unstable. In the symmetric counterpart with excitatory

synapses, these FPs become the attractors along with the dominant

fixed point at the origin corresponding to synchronous bursting.

In the Mixed Motifs section we analyzed the transformation of

the maps corresponding to the motifs with mixed, inhibitory and

excitatory synapses. We showed step-by-step how the the multi-

functional motif becomes a dedicated motif. The final example

was the mixed motif with two excitatory connections. Unlike the

former case, such a monostable motif possesses a bursting rhythm

with time varying phase lags, which corresponds to a stable

invariant curve wrapping around the 2D torus.

Conclusions and future work
We emphasize that a highly detailed examination of the

occurrence and robustness of bursting patterns in the 3-cell motifs

would be impossible without the reduction of the complex 9D

network model with six algebraic equations for chemical synapses

to the 2D maps and the numerical bifurcation analysis of FPs,

invariant circles, homoclinic structures in it. Recall that the

dimension of the map is determined by the number of the nodes in

the network, not the number of differential equations per synapse

and per neuron, which can be much greater. With the aid of our

computational tools we were able to identify even some exotic

bifurcations from the dynamical system theory like the Cherry flow

(Fig. 27B) on the torus [41] occurring in this neural network. High

accuracy of numerical simulations is required in our analysis. This

involves at least a 40|40 mesh of initial conditions run for 100

bursting cycles to generate a single map and identify its structure.

This computation takes up to three hours on a multi-core CPU

workstation, but future work will take advantage of parallel

computing architectures.

A stable FP of the map corresponding to a robust bursting pattern

with specific phase lags is also structurally stable, i.e. persists under

particular variations of coupling parameters. So by varying the

given parameter(s) we can evaluate the boundaries and region of its

existence and stability, which we will call a ‘‘synchronization zone.’’

A boundary of the region corresponds to a bifurcation, which can be

either of saddle-node type, in which the FP vanishes, or of

Andronov-Hopf type, through which the FP merely changes

stability. Figure 30 sketches a possible arrangement of such zones

in a parameter space of the network. They are shown to be nested

within each other, because changing monotonically a single

parameter can cause a cascade of saddle-node bifurcations in the

map, such as those shown in Figs. 18 and 19. Given the number of

the reciprocal synapses in the motif, the parameter space of the

network is at least six dimensional, which presents a challenge for

examining all bifurcations in detail and creating a complete

catalogue. However, we have demonstrated that several inhibitory

configurations of the 3-cell motif generate phase lag maps of

qualitatively the same structure, see exemplary Fig. 1. This

observation provides underlying foundations for highly effective

reduction tools for studies of multi-component neural networks. It

implies that variations of different coupling parameters make the

network undergo same bifurcations while transversally crossing the

corresponding bifurcation boundaries in the parameter space. This

approach provides de facto proof that, without the phase lag maps, it

would be impossible to claim and understand why two distinct

network configurations produce same rhythmic outcomes.

In general, our insights allow us to predict both quantitative and

qualitative transformations of the observed patterns as the network

configurations are altered or the network states are perturbed

dynamically [47]. The nature of these transformations provides a set

of novel hypotheses for biophysical mechanisms about the control

and modulation of rhythmic activity. A powerful aspect to our

geometric form of analysis is that it does not require knowledge of

the equations that model the system, for instance if the maps were

generated from an unknown model system (or even from

experimental data). For the sake of demonstration, we generated

our maps from explicit differential equations. Our computational

tools help us explain the fundamental dynamical mechanisms

underlying the rhythmogenesis in plausible models of CPG

networks derived from neurophysiological experiments [48]. Thus,

we believe that have developed a universal approach to studying

both detailed and phenomenological models that is also applicable

to a variety of rhythmic biological phenomena beyond motor

control.

Models and Numerical Methods

We study CPG network motifs comprised of three cells coupled

reciprocally by non-delayed, fast chemical synapses and with weak

coupling strengths. The time evolution of the membrane potential,

V , of each neuron is modeled using the framework of the

Hodgkin-Huxley formalism, based on a reduction of a leech heart

interneuron model, see [49] and the references therein:

CV
0

~ {INa{IK2{IL{Iapp{Isyn,

tNah
0
Na ~ h?Na(V ){h,

tK2m
0
K2 ~ m?

K2(V ){mK2:

ð3Þ

The dynamics of the above model involve a fast sodium current,

INa with the activation described by the voltage dependent gating

variables, mNa and hNa, a slow potassium current IK2 with the

inactivation from mK2, and an ohmic leak current, Ileak:
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INa ~ �ggNam3
NahNa(V{ENa),

IK2 ~ �ggK2m2
K2(V{EK),

IL ~ �ggL(V{EL):

ð4Þ

C~0:5 nF is the membrane capacitance and Iapp~0:006 nA is

an applied current. The values of maximal conductances are
�ggK2~30 nS, �ggNa~160 nS and gL~8 nS. The reversal potentials

are ENa~45 mV, EK~{70 mV and EL~{46 mV.

The time constants of gating variables are tK2~0:9 s and

tNa~0:0405 s.

The steady state values, h?Na(V ), m?
Na(V ), m?

K2(V ), of the of

gating variables are determined by the following Boltzmann

equations:

h?Na(V ) ~ ½1zexp(500(Vz0:0325))�{1

m?
Na(V ) ~ ½1zexp({150(Vz0:0305))�{1

m?
K2(V ) ~ ½1zexp({83(Vz0:018zVshift

K2 ))�{1:

ð5Þ

Fast, non-delayed synaptic currents in this study are modeled

using the fast threshold modulation (FTM) paradigm as follows

[50]:

Isyn ~ gsyn(Vpost{Esyn)C(Vpre{Hsyn),

C(Vpre{Hsyn) ~ 1=½1zexpf{1000(Vpre{Hsyn)g�;
ð6Þ

here Vpost and Vpre are voltages of the post- and the pre-synaptic

cells; the synaptic threshold Hsyn~{0:03 V is chosen so that

every spike within a burst in the pre-synaptic cell crosses Hsyn, see

Fig. 1. This implies that the synaptic current, Isyn, is initiated as

soon as Vpre exceeds the synaptic threshold. The type, inhibitory

or excitatory, of the FTM synapse is determined by the level of the

reversal potential, Esyn, in the post-synaptic cell. In the inhibitory

case, it is set as Esyn~{0:0625 V so that Vpost(t)wEsyn. In the

excitatory case the level of Esyn is raised to zero to guarantee that

the average of Vpost(t) over the burst period remains below the

reversal potential. We point out that alternative synapse models,

such as the alpha and other detailed dynamical representation, do

not essentially change the dynamical interactions between these

cells [28].

The numerical simulations and phase analysis were accom-

plished utilizing the freely available software PyDSTool (version

0.88) [51,52]. Additional files and instructions are available upon

request.

Supporting Information

Movie S1 Polyrhythmic dynamics of 3-cell CPGs: from
3\f1E2gð Þ to 2\f1E3gð Þ pattern. Bursting trajectory (gray) in

the 3D phase space of the model, which is made of the ‘‘active’’

spiking (solenoid-like shaped) and the flat hyperpolarized sections.

The gap between the 2D slow nullcline, m
0

K2~0, and the low knee

on the slow quiescent manifold, Meq, determines the amount of

inhibition needed by the active pre-synaptic cell above the synaptic

threshold, Hsyn, to either slow or hold the post-synaptic cell(s) at a

hyperpolarized level around {0:06 V. The red, green and blue

spheres on the bursting trajectory depict the temporal evolution of

the the phases of the [not weekly]-coupled cells of the CPG: active

cell(s) above Hsyn inhibits, in anti-phase, the temporarily inactive

cells and visa versa. Inhibitory pulse applied to the blue cell

changes the relative phases of the bursting cells so that the CPG

pacemaker becomes the green cell after the red cell. Below are

shown the corresponding voltage waveforms. This motion picture

complements Fig. 10.

(MOV)

Movie S2 Polyrhythmic dynamics of 3-cell CPGs: from
3\f1E2gð Þ to 1[2[3ð Þ pattern. Bursting trajectory (gray) in

the 3D phase space of the model, which is made of the ‘‘active’’

spiking (solenoid-like shaped) and the flat hyperpolarized sections.

The gap between the 2D slow nullcline, m
0

K2~0, and the low knee

on the slow quiescent manifold, Meq, determines the amount of

inhibition needed by the active pre-synaptic cell above the synaptic

threshold, Hsyn, to either slow or hold the post-synaptic cell(s) at a

hyperpolarized level around {0:06 V. The red, green and blue

spheres on the bursting trajectory depict the temporal evolution of

the the phases of the [not weekly]-coupled cells of the CPG: active

cell(s) above Hsyn inhibits, in anti-phase, the temporarily inactive

cells and visa versa. Inhibitory pulse applied to the blue cell

changes the relative phases of the bursting cells so that the the

pacemaking rhythm led by the red cell is replaced by the clock-

wise traveling wave (peristaltic bursting). Shown below are the

corresponding voltage waveforms. This motion picture comple-

ments Fig. 10.

(MOV)

Movie S3 Multistable dynamics of an asymmetric 3-cell
CPG: from 3\f1E2gð Þ pattern to sudden death. Bursting

trajectory (gray) in the 3D phase space of the model, which is

made of the ‘‘active’’ spiking (solenoid-like shaped) and the flat

hyperpolarized sections. The gap between the 2D slow nullcline,

m
0

K2~0, and the low knee on the slow quiescent manifold, Meq,

determines the amount of inhibition needed by the active pre-

synaptic cell above the synaptic threshold, Hsyn, to either slow or

hold the post-synaptic cell(s) at a hyperpolarized level around

{0:06 V. The red, green and blue spheres on the bursting

trajectory depict the temporal evolution of the the phases of the

[not weekly]-coupled cells of the CPG: active cell(s) above Hsyn

inhibits, in anti-phase, the temporarily inactive cells and visa versa.

Inhibitory pulse applied to the blue cell changes the relative phases

of the bursting cells so that the pacemaking red cell, leading

initially the rhythm, becomes permanently inhibited by the blue

and green cells bursting in alternation. Below are shown the

corresponding voltage waveforms. This motion picture comple-

ments Fig. 29.

(MOV)

Movie S4 Multistable map and formation of five phase-
locked bursting patterns. The phase lag Poincaré map for a

homogeneous 3-cell CPG revealing the attraction basins of the

coexisting bursting rhythms: the red, green and blue fixed points at

0, 1
2

� �
, 1

2
,0

� �
, and 1

2
, 1

2

� �
correspond to the anti-phase 3\f1E2gð Þ,

2\f1E3gð Þ, 1\f2E3gð Þ patterns, and black 2
3

, 1
3

� �
and purple

1
3

, 2
3

� �
, correspond traveling clockwise 1[2[3ð Þ and counter-

clockwise 1[3[2ð Þ waves. This motion picture complementes

Fig. 9.

(MOV)

Movie S5 Bistable map and phase-slipping bursting
pattern. The stable invariant curve ‘‘flowing’’ upwards in the

return map corresponds to bursting patterns with periodically

varying phase lags in this asymmetric CPG, as the phase point

passes throughout the ghost of the vanished fixed points. This

motion picture complements Fig. 20.

(MOV)
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