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ABSTRACT 

The objective of this dissertation is to understand the structural and optoelectronic properties of 

group III-nitride materials grown by High-Pressure Metal Organic Chemical Vapor Deposition (HP-

MOCVD) and Migration Enhanced Plasma Assisted MOCVD by FTIR reflectance spectroscopy, Raman 

spectroscopy, X-ray diffraction, and Atomic Force Microscopy.  

The influence of the substrates/templates (Sapphire, AlN, Ga-polar GaN, N-polar GaN, n-GaN, 

and p-GaN) on the free carrier concentration, carrier mobility, short-range crystalline ordering, and sur-

face morphology of the InN layers grown on HP-MOCVD were investigated using those techniques. The 

lowest carrier concentration of 7.1×1018 cm-3 with mobility of 660 cm2V-1s-1 was found in the InN film on 

AlN template, by FTIR reflectance spectra analysis. Furthermore, in addition to the bulk layer, an inter-

mediate InN layers with different optoelectronic properties were identified in these samples. The best lo-

cal crystalline order was observed in the InN/AlN/Sapphire by the Raman E2 high analysis. The smooth-

est InN surface was observed on the InN film on p-GaN template. 



The influence of reactor pressures (2.5–18.5 bar) on the long-range crystalline order, in plane 

structural quality, local crystalline order, free carrier concentration, and carrier mobility of the InN epi-

layers deposited on GaN/sapphire by HP-MOCVD has also been studied using those methods. Within the 

studied process parameter space, the best material properties were achieved at a reactor pressure of 12.5 

bar and a group-V/III ratio of 2500 with a free carrier concentration of 1.5x1018 cm-3, a mobility in the 

bulk InN layer of 270 cm2 V-1s-1 and the Raman (E2 high) FWHM of 10.3 cm-1. The crystalline properties, 

probed by XRD 2θ–ω scans have shown an improvement with the increasing reactor pressure. 

The effect of an AlN buffer layer on the free carrier concentration, carrier mobility, local crystal-

line order, and surface morphology of InN layers grown by Migration-Enhanced Plasma Assisted 

MOCVD were also investigated. Here, the AlN nucleation layer was varied to assess the physical proper-

ties of the InN layers. This study was focused on optimization of the AlN nucleation layer (e.g. temporal 

precursor exposure, nitrogen plasma exposure, and plasma power) and its effect on the InN layer proper-

ties. 
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1 CHAPTER 1: INTRODUCTION  

In the last few decades, the group III-nitride semiconductor materials have been shown remarka-

ble progress in the development and design of optical and electronic devices, such as photovoltaic cells, 

light emitting diodes (LED), laser diodes, detectors, high electron mobility transistors, piezoelectric fil-

ters, fiber optical devices, biosensors, gas sensors, due to their properties such as high thermal and chemi-

cal stability, large break-down voltage, polarization, piezoelectricity. As comparing with the other group 

III- nitride materials (AlN and GaN), InN owes a higher peak-drift velocity, higher peak overshoot veloc-

ity, a narrow band gap, which leads to a smaller electron effective mass and higher electron mobility. Due 

to these properties, InN is an auspicious material in developing electronic and optoelectronic devices. 

However, much less effort has been devoted to the growth of InN and indium-rich InGaN in the scientific 

community until discovering the new band gap value 0.7 eV [1, 2] of wurtzite InN, compared to the long 

time established value of 1.9 eV [3]. However, the growth of high quality InN is a challenge, due to the 

lattice and thermal coefficients mismatch between the substrate and sample, and the high partial pressure 

of nitrogen at optimum growth temperatures above the growth surface. Therefore, under the growth tem-

perature which is required for the decomposition of ammonia which is one of the main nitrogen source 

used in chemical vapor deposition, decomposition of InN occurs.  

At present, low indium-content In1-xGaxN (x ≤ 0.25) based LEDs are commercially available in 

traffic displays, automobile headlights, general lighting, etc., but the fabrication of indium-rich InGaN 

layer is still a challenge due to phase segregations, control of surface chemistry, vastly different partial 

pressures, and the differences in growth temperatures between their binaries, which requires the adjust-

ment of the growth conditions for each composition between the binaries InN and GaN. The different sur-

face chemistry in the incorporation of the group III metals is often observed as In-/Ga-rich lateral surface 

segregations and/or metallic indium on the growth surface.  

This chapter provides an overview of the group III- nitride semiconductors properties. The wurtz-

ite structure and properties of these materials are described, including polarity and polarization, crystal 
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defects, lattice strains, band structure and band gap, effective mass, and phonon structure. The latter sec-

tion present a brief history of InN research and development. The scope of this research work and thesis 

layout are presented at the end of the chapter. 

1.1 Properties of Group III-Nitride Semiconductors 

1.1.1  Crystal Structure 

Group III-nitride (AlN, GaN, InN) crystalline structures can be formed wurtzite (hexagonal/ α -

phase) which is thermodynamically stable under ambient conditions, zincblende (cubic/β -phase) which 

is only metastable, and rock salt structure which forms phase transition from the wurtzite structure at hy-

drostatic pressure of 16.6 GPa (AlN), 51.8 GPa (GaN), and 21.6 GPa (InN) [4, 5], and each structure has 

different properties. Wurtzite structure is associated with space group P63mc in the Hermann-Mauguin 

notation (
4

6vC  in the Schoenflies notation). The space grouping for the zincblende and rock salt structures 

are F43m (
2

dT ) and Fm3m (
5

hO ) respectively [4, 6]. The wurtzite and the cubic structures are the stable 

forms, and in the both case, each group III atom is bound by four N atoms and vice versa. The difference 

between the wurtzite and zincblende structure is the stacking sequence of the close-packed diatomic 

plane. The wurtzite structure consists of ABAB stacking sequence of (001) close-packed plane. The 

zincblende structure belongs to ABCABC stacking sequence of (111) close-packed plane. Here, A, B, and 

C, are Al/Ga/In-N bonds. The wurtzite, zincblende, and rock salt structure of group III-nitride are shown 

in Fig. 1.1 (a), (b), and (c). 
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Figure 1.1 The crystal structure of group III-nitrides in ball and stick representation. (a) Zincblende struc-

ture in hexagonal cell and its stacking sequence; (b) Wurtzite structure and its stacking sequence; (c) 

Rock salt structure. 

The figure is after Ref. [7]. 

 

This study focuses the wurtzite structure of AlN, GaN, InN, and their alloys. Wurtzite structure 

has two interpenetrating hexagonal close-packed lattices shifted along the [0001] direction (c-axis). The 

crystal axes and the crystal planes of wurtzite structure are shown in Fig. 1.2. The lattice parameter (lat-

tice constant) ‘a’ is the edge length of the basal hexagon along a-axis, and ‘c’ is the height of the hexago-

nal prism along c-axis as shown in Fig. 1.2. Group III-nitrides have different lattice parameters due to dif-

ferent cations and ionic radii [8]. Structural properties of the material can be predicted by the lattice pa-

rameters since the lattice parameters will be different or deviated from their intrinsic values due to impuri-

ties, inhomogeneity, residual strain (for example, induced by the substrate) and stress, dislocations etc.. 

As an example, Table 1.1 presents the comparison of the measured and the calculated lattice parameter 

values for the wurtzite AlN, GaN, and InN structures. 
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Figure 1.2 Illustration of high-symmetry crystal planes of wurtzite structure for group III-nitrides. 

The figure is after Ref. [9].  
 

Table 1.1 Experimental and calculated (FT-LMTO: full potential linear muffin-tin orbital) lattice parame-

ters for wurtzite AlN, GaN and InN materials. 

Data is taken from Ref. [10-14]. 

 AlN GaN InN 

 Cal. Exp. Cal. Exp. Cal. Exp. 

a (Å) 3.084 3.110 3.17 3.1892 3.53 3.538 

c (Å) 4.948 4.980 5.13 5.1850 5.54 5.703 

 

   

The lattice parameters ‘a’ and ‘c’ of InxGa1-xN can be determined from Vegard’s law given in Eq. 

(1.1) and (1.2) for known indium composition (x) and lattice parameters of InN and GaN.  

 

1( ) . ( ) (1 ). ( )x xc In Ga N x c InN x c GaN                1.1 
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1( ) . ( ) (1 ). ( )x xa In Ga N x a InN x a GaN                1.2 

The composition values InxGa1-xN can be determined by Rutherford backscattering spectrometry 

(RBS), sputtered ion mass spectroscopy (SIMS), and electron probe microanalysis (EPMA). The most 

common method used in obtaining lattice parameter is X-ray diffraction measurements. From the lattice 

parameter, information on the residual strain and stress, doping levels, composition, and thermal expan-

sion coefficients of the layers can be obtained [10]. Apart from lattice parameter X-ray diffraction pro-

vides information about other structural properties such as defect type and densities, crystallite size and 

microstrain, wafer bowing, residual stress, alloy ordering, phase separation, composition, and non-uni-

formities. 

1.1.2 Polarity and Polarization 

Wurtzite crystal structure of group III-nitrides has a non-centrosymmetric structure which is the 

lack of inversion symmetry. The most general growth direction of III-nitrides is along the c-axis (the po-

lar axis), normal to the basal plane. On this plane, atoms placed in bilayers which consist of two closely 

spaced hexagonal close-packed layers. One has the cations, and the other has the anions. The polarity ori-

entation is determined by these bilayers, and it is said that the film has III-polarity (+c III-nitride), if the 

basal surface is III-faced or the III-N bond orientation is along the c-direction from III atom to nitrogen 

atoms. The film has N-polarity (-c III-nitride), if the basal surface is N-faced or the III-N bond orientation 

along c-direction from nitrogen atom to III atom. One should not confuse here the III-faced (or N-faced) 

with the III-termination (or N-termination). The termination refers to the surface property. If the III-faced 

surface is covered with N-atoms, it can be N-terminated. However, it is to be N-faced, the crystal should 

be flipped [8]. Figure 1.3 presents the two polarity orientations of III-nitrides. The polarity of the film de-

pends on the growth modes. 
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Figure 1.3 Wurtzite structure of III-nitride: (a) III-polar III-nitride and (b) N-polar III-nitride. 

The figure is after Ref. [15].  

 

As mentioned before, typically, the wurtzite structure of group III-nitride materials are grown in 

[0001] direction. In the strained materials, there exist a piezoelectric polarization field associated with 

electrostatic charge densities [16]. The direction of the piezoelectric polarization (PPZ) depends on the po-

larity of the materials [8]. Mechanical stress also results in piezoelectric polarization. Therefore, it also 

depends on the compressive and tensile strain. In general, PPZ is negative for tensile stress and positive for 

compressive stress. In addition to piezoelectric polarization, group III-nitride materials also possess a 

large spontaneous polarization (PSP). The crystalline cell size in the epitaxial films can differ from the 

ideal crystalline size and which causes the positive and negative charges of the centers to locate at differ-

ent places, the cell itself is creating an electric dipole [17]. The phenomenon is called spontaneous polari-

zation (which is independent of strain), and it is along c-axis and depends on the polarity of the materials, 

lattice constants a, c, c/a ratio and the internal parameter u [16, 18]. The spontaneous polarization has a 

negative sign, and it increases from GaN over InN to AlN [19] due to the increasing nonideality of the 

crystal structure. The piezoelectric polarization also increases with the strain in the same order under the 

same strain. When defining the orientation of the both polarization, it is assumed that positive direction is 

the direction from the metal to the nearest nitrogen atom on the c-axis. Thus, in general, if the strain is 

tensile, the orientation of the both polarizations is parallel, and it is antiparallel in the case compressive 

strain. In a particular case of both polarization in the same direction, the total polarization (P) is P = PSP + 
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PPZ [20]. Spontaneous and piezoelectric polarization can influence the optical and electrical properties of 

the group III-nitride layers.  

1.1.3 Crystal defects  

Optical, electrical, and structural properties of a semiconductor can be categorized as intrinsic 

properties that depend on the perfect crystalline nature of it, and extrinsic properties that depend on the 

impurities or defects. If the atomic arrangement of a crystal structure has deviated from its perfect ar-

rangement (periodic arrangement), it is said that the crystal contains imperfections or defects. Defects are 

formed during the growth, and they can be classified as (1) point defects (zero-dimensional defects), (2) 

line defects (one-dimensional defects), (3) planar defects (two-dimensional defects), and (4) volume de-

fects (three-dimensional defects). 

(1) Point defects can be distinguished as intrinsic defects, which come from the crystal itself, and 

extrinsic defects, which caused by foreign atoms (impurity or solute). Interstitials, vacancies, and substi-

tutional atoms are the main three types of point defects, and there are few other types as well. Vacancies 

and self-interstitial, and antisite fall into the category of intrinsic defects, while interstitial impurity and 

substitutional impurity fall into extrinsic defects.  

When an atom is missing the place where it should be, it creates an empty place, and it is called a 

vacancy. Migration of atoms in the crystal lattice (solid state diffusion) can only occur because of vacan-

cies. As temperature increases, the number of vacancies increases as follows, 

exp( )v
v A

Q
N N

kT
                              1.3 

Where NA, Qv, k, and T are the total number of atoms in the solid, the energy required to form a vacancy, 

Boltzmann constant, and the temperature in Kelvin, respectively [21, 22]. 

 If an extra atom is positioned between the atomic sites (interstitial sites, a small void space), a 

self-interstitial is formed. To develop the self-interstitial defects in a crystal, it must have enough space 

between the host atoms. When a foreign atom occupies a site between regular atoms, instead of a regular 

crystal site, it is an interstitial impurity defect. The impurity atom must have enough low energy to stay at 
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the interstitial site. If one atom in the crystal is replaced by a different atom, a substitutional defect is oc-

curred. If a foreign atom occupies a crystal sites, it is called substitutional impurity. Substitutional impu-

rity can be produced in the crystal intentionally by doping which is used to control the type (n- or p-type) 

of the semiconductor, or it can be presented in the crystal unintentionally as contaminants. Sometimes, the 

substitution can occur in a crystal itself, and it does not need a foreign atom. In binary systems (group III- 

nitride semiconductors), the first atom can occupy a regular site of the second atom and the second atom 

can occupy in the first site [23]. This kind of defects does not fall into either a vacancy, impurity, or an 

interstitial and it is called an antisite defect. Furthermore, the lattice is under tension when the substitu-

tional atom is smaller than the original atom; it is in compression when the substitutional atom is larger 

than the original atom. Figure 1.4 illustrates the common three type of point defects. 

 

 

Figure 1.4 Illustration of common type of point defects. 

The figure is after Ref. [23]. 

 

(2) Line defects or dislocations are sudden changes in the regular ordering of atoms (generally, 

due to misalignment of atoms or existence of vacancies) along a line (dislocation line). There are three 

main types of dislocations, known as edge dislocations, screw dislocations, and mixed dislocations which 

include of both the edge and the screw dislocations.  
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Dislocations are characterized by the Burgers vector, b. The Burgers vector defines the magni-

tude and direction of the lattice distortion, and it is measured as a distance along the close loop directions 

in the lattice [24].  

Edge dislocations take place when an extra plane of atoms inserted into a part of the crystal lattice 

which results in one part of the lattice to contain extra atoms while the other part is containing the correct 

number of atoms. Due to this, the lattice part with the extra atoms may be under compressive stresses, 

while the other part may be under tensile stresses [23]. The Burgers vector, b is perpendicular to the dislo-

cation line which is at the end of the plane, in the edge dislocation (see Figure 1.5 (a) and (b)). 

 

 

Figure 1.5 Schematic representation of (a) perfect crystal (b) edge dislocation. 

 

The second type of dislocation is screw dislocation which results when planes are displaced rela-

tive to each other through shear stress, and the Burger vector is parallel to the dislocation line. Visualiza-

tion of the screw dislocation in a crystal is difficult. As shown in Fig. 1.6 (a), due to the shear stress, the 

right region of the crystal is shifted/slipped one atomic distance to the down relative about the left region. 

In real crystals, most dislocations are neither purely edge nor purely screw, and they usually ex-

hibit a combination of the two and named as mixed dislocations. Figure 1.6 (b) illustrate the schematic 

representation of mixed dislocations in a crystal. The Burgers vector is nor perpendicular or parallel to the 
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dislocation line, in this case, however, there a fixed orientation in space. The dislocations in crystals can 

be observed using transmission electron microscopy, field ion microscopy or using atom probe tech-

niques.  

 

 

Figure 1.6 Schematic representation of (a) screw dislocation (b) mixed dislocation. 

The figure is after Ref. [25]. 

 

 (3) Planar defects are the discontinuity of the ideal crystal structure across a 2D plane. The 

stacking fault, grain boundaries, and twin boundaries are planar defects. Change or interruption the regu-

lar sequence in the stacking of lattice planes, over a few atomic spacing produces a stacking fault. As an 

example, in the hcp structure, the regular stacking sequence is ABABABAB, and this can arrange itself as 

ABABABCABAB, which produces a stacking fault in the crystal.  

Polycrystalline materials consist of many small crystals or grains which have different crystallo-

graphic orientation. The region, where exist atomic mismatch in a transition from the crystalline orienta-

tion of one grain to the adjacent one, is called grain boundary and which is probably a few atomic diame-

ter wide. If the crystallographic misalignment of atomic planes between the adjacent grains is on order of 

a few degrees, it is called low-angle grain boundary, and if the misorientation angle is larger than 15°, it is 
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called high-angle grain boundary. The changes of the orientation of the crystal across the grain boundaries 

are shown in Fig. 1.7. 

 

Figure 1.7 Schematic of the changes of crystal orientation across grain boundary. 

The figure is after Ref. [26]. 

 

The low-angle boundaries can be described in terms of the orientation of their dislocation arrays. 

One of the simple forms is referred as tilt boundary which is explained by an array of edge dislocations 

when misorientation angle is perpendicular to the grain boundary. The other type is called twist boundary 

which can be described by an array of screw dislocations that are parallel to the misorientation angle. 

Grain boundaries are more reactive than grains themselves, and impurities tend to segregate along the 

boundaries due to their higher energy state. Since the total interfacial energy is greater in fine-grained ma-

terials than large-grained materials, the grains tend to grow larger grains in order to minimize the energy 

[26]. This phenomenon occurs at high temperatures by diffusion. The cooling rate can control grains size, 
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and rapid and slow cooling rate produce smaller and larger grains in the materials, respectively. Smaller 

grain size will increase the strength of the materials. 

Twin boundary separates two crystalline regions that have a mirror image of one side on the other 

side. Twin boundary is formed by annealing and mechanical deformation. Figure 1.8 shows a schematic 

representation of twin boundary and the adjacent atom arrangements. 

 

 

Figure 1.8 Schematic representation of a twin boundary and adjacent atom arrangements. 

The figure is after Ref. [26]. 

 

(4) Volume defects or bulk defects: If any three-dimensional regions in the semiconductor are 

altered from the rest of the crystal (which can be in structure, orientation, composition, etc.), they are 

called volume defects [27]. They include pores, voids/cracks, clusters/precipitation, foreign inclusions, 

and other phases. Volume defects form during the semiconductor processing and fabrication steps and 

they can affect the mechanical, thermal, electrical, and optical properties of the semiconductor. 

1.1.4 Lattice Strains 

Typically, III-nitride semiconductors are grown on different materials (substrates), which is 

called heteroepitaxy. Thus, in group III- nitride semiconductors, strains are formed due to lattice mis-
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match and thermal mismatch between the epitaxial film and the substrate. These strains cause crystal de-

fects. When the epitaxial layer is sufficiently small, the deposited first atomic layers will be strained, and 

consequently, the interface will be coherent [28]. If the stored strain energy in the epilayer exceeds a cer-

tain threshold, the system relaxes and the strain support to misfit dislocations [28, 29]. The strain caused 

by the mismatch of lattice or thermal is known as biaxial strain. 

When the sample is cooled down to room temperature after growth, the thermal expansion coeffi-

cients mismatch between the substrate and the film may cause residual internal strain to form (A degree 

of strain depend on the cool down procedure) [23]. 

 The type of strain in the film due to lattice mismatch will depend on the lattice constants of film 

and substrate. The film is in compressive strain when the lattice constant of the film is greater than the 

lattice constant of the substrate, and the film is in tensile strain when the film lattice constant is less than 

the substrate one. Lattice mismatch or strain ( ) of the film can be given by following Eq. 1.4 [30].  

f s

s

a a

a



                                     1.4 

Where, fa and sa  are unstrained lattice constants of the film and the substrate, respectively. A schematic 

of strain induced in a film is shown in Fig. 1.9. Here, the substrate also experiences in strain, and it is neg-

ligible due to the larger thickness of substrate compare to that of the film. 

The presence of the strain in the film cause to change the physical properties of the film. As an 

example, strain in the film during the growth will change the Ga- ad-atoms mobility of the surface, which 

influence on the surface morphology [23]. Additionally, due to strain, the lattice constant of the crystal 

will increase (tensile strain) or decrease (compressive strain) relative about its unstrained value. Moreo-

ver, the strain field will change the interatomic distance, and consequently, the band gap energy of the 

material will be altered. Phonon frequencies of the crystal will also upshift (compressive strain) or down-

shift (tensile strain) due to strain [23]. 
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X-ray diffraction (XRD), Raman spectroscopy, high-resolution transmission electron microscopy 

can be used for strain measurements [30]. 

 

Figure 1.9 A schematic of strain induced in a film due to lattice mismatch between sapphire and film: (a) 

compressive strain in the plane of film, when lattice constants af > as; (b) tensile strain in the plane of film, 

when af < as. 

The figure is after Ref. [23]. 
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1.1.5 Band Structure and Bandgap 

Optical and electronic properties of a semiconductor material will be decided by the basic quanti-

ties, bandgap and refractive index (or dielectric function) which are closely related to the electronic band 

structure of the material and the band structure is related to the crystal symmetry of it. Optoelectronic 

properties of semiconductors based on the refractive index (dielectric function) will be discussed in Chap-

ter 4. Figure 1.10 depicts the first Brillouin zones of the group III-nitride wurtzite structure with the sym-

metry points. Γ point located at the zone-center (wave vector k=0) has the highest symmetry in the Bril-

louin space. 

 

Figure 1.10 First Brillouin zones and the symmetry points of the wurtzite structure. 

 

Group III-nitrides and their alloys are direct bandgap semiconductors, where conduction band 

minima and the valence band maxima are at the same position in the k-space (k-vector). Although the 

conduction band minimum (CBM) of the GaN and AlN can be calculated by a parabolic approximation, 

the non-parabolic approximation has to be used in the case of InN due to its narrow band gap. In the 

wurtzite group III-nitride materials valence band structure is affected by the spin-orbit splitting and crys-

tal field splitting. Several methods such as GW (Green’s function and the screened Coulomb interaction) 

quasiparticle approach with exact-exchange optimized effective potential (OEPx) and local density ap-

proximation (LDA) [31, 32], have been used to calculate the valence band structure of the III-nitrides at 

the Γ point. In the valence band (VB) of the III-nitride wurtzite crystal, the crystal field and spin-orbit 

coupling result in three doubly degenerate bands are called heavy-holes (HH) band, light holes (LH) 
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band, and crystal field split-off (CH) band [33, 34]. These three bands and CBM for GaN are shown in 

Fig. 1.11. The wave vector k, along the c-axis, is kz and in the plane is kx. 

 

 

Figure 1.11 Schematic of energy band structure at Γ point for GaN. 

It is noted that bands are not drawn to a scale. The calculated valance bands of AlN, GaN, and InN with 

and without spin-orbit coupling can be found in elsewhere [31].  
 

The valance bands in GaN crystal are given in the order of increasing their transition energies: 6

9vbm  (A),

6

7v  (B), 1

7v (C). The ordering is same for the InN, although the energies are different. However, this or-

der changes for AlN as 
1

7vbm  (C), 
6

9v  (A), 
6

7v (B) hence; AlN has a negative crystal field splitting while 

GaN has a positive value for it. In AlN, the top band 
1

7vbm  (which is in GaN : 
6

9vbm ) determine the fun-

damental optical transition near the Γ point and transport properties of the free holes [35].  Due to the 

negative crystal field splitting, AlN can have different optical properties from GaN and InN [35]. It is 

known that the crystal field splitting is sensitive to the lattice deformations, such as changes in internal 

parameter (u), the c0/a0.  
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AlN, GaN, and InN have the bandgap values, the energy difference between the valence band 

maximum and conduction band minimum, of 6.2 eV, 3.39 eV, and 0.7eV, respectively [1, 34]. Since the 

band structure is influenced by the crystal symmetry, the bandgap depends on the lattice parameters of the 

crystal. Figure 1.12 shows the bandgap vs. lattice constant (a) for group III-nitride wurtzite and 

zincblende structure. 

 

Figure 1.12 Bandgaps versus lattice constant (a) for III-nitrides wurtzite and zincblende structure. 

 

Among III-nitrides (i.e. AlN, GaN, and InN), InN is owing to the smallest bandgap. The recently 

obtained bandgap value of InN (0.7 eV) breaks the common-cation (common-anion) rule which says, as 

decreases in atomic number, the direct gap at the Γ point increases. This rule does not apply for InN and 

InP. According to the rule, band gap value of InN (0.7 eV) should be larger than that of InP (1.344 eV) 

and which is not. According to the tight-binding model, the valence band minimum derives from bonding 

anion and cation p orbitals and the conduction band minimum originates from the anti-bonding state of 

anion and cation s orbitals [4, 36]. Figure 1.13 shows these orbitals energies for III-V elements [4, 37, 

38]. 

 



18 

         

Figure 1.13 (a) In group III and V elements, atomic orbital energies. (b) Conduction and valance band min-

imum of the III-V materials relative to the EFS. 

Figure is after Ref. [4]. 

 

N-2s orbital energy is lower than the other elements s orbital energies shown in Fig. 13(a) when 

compared with that of P. Therefore, CBM of InN is lower than that of InP and not follow the common-

cation rule. There is not much s energy difference among Al, Ga, and In. Thus, the energy of the N-2s and 

its weight in the CBM determines the CBM. As the ionicity increases from AlN to GaN, and to InN, the 

contribution of N-2s state increases, which results to have lowest CBM among III-V semiconductors (see 

Figure 1.13(b)). Similarly, the VBM is determined by the interaction between the cation N-2p and d orbit-

als. Because the In 4d level is the highest among AlN, GaN, and InN, the VBM of InN is moved more up 

by this p-d repulsion. However, the atomic size and volume effect also is significant when determining 

the bandgap [4].  

 The other reason for the narrow bandgap of InN is non-parabolicity of the CBM, as a results of 

the k.p interaction across the narrow gap between VB and CB [39]. 

Several explanations has been proposed to clarify the origin of the discrepancy between previ-

ously reported bandgap value and recently reported bandgap value. One explanation is, InN film grown 

by sputtering formed an indium oxynitride, which has a large bandgap. Another one is, bandgap could in-

crease due to the quantum-size effects in InN nanocrystals. A phenomenon known as Burstein-Moss ef-
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fect (see Fig. 1.14) is another reason. In degenerate doping semiconductors, optical absorption is forbid-

den for transitions below the Fermi level (EF). Thus, the onset of the optical absorption could overesti-

mate the intrinsic bandgap [4, 40, 41]. 

 

Figure 1.14 Schematic showing the Burstein-Moss effect in InN. 

 

  

As mentioned before, this narrow bandgap of InN allows extending the energy gap range of III-

nitride alloys from deep ultraviolet to near infrared spectral range [42]. The bandgap of InxGa1-xN alloys 

can be varied between the 0.7 eV and 3.4 eV by changing the indium composition. For InxAl1-xN, it can 

be varied between 0.7 eV and 6.2 eV (see Fig. 1.12). For III-nitride alloys AxB1-xN (A and B can be Al, 

Ga, or In), the bandgap can be given by Eq. 1.5. 

1 (1 ) (1 )x xA B N AN BN

g g gE xE x E bx x                               1.5 

Where, x and b are the composition of A (0 ≤ x ≤ 1) and the bowing parameter of the alloys. 

1.1.6 Effective Mass 

It is known as that the mass of an electron in a solid is the same as the mass of a free electron. However, 

mass of the electron determined by experimentally shows larger (for some solids) or smaller (for other 

solids) values than the free electron mass [43]. Typically, the electron mass determined by experimentally 

is called the effective mass (m*). Due to the interactions between drifting electrons and the atoms in a 
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crystal, the effective mass (m*) can be deviated from the free electron mass (m0), and the deviation can be 

given as ratio m*/m0, which could be slightly smaller or larger than 1. As an example, when an electron is 

accelerating in an electric field, which could be slightly slow down due to collisions with some atoms. 

Then, the ratio is larger than 1. Electric field can be enhanced as the electron wave in another crystal have 

just the right phase, and then the ratio m*/m0 is smaller than 1. 

 The effective mass can be expressed by Eq. 1.6 [43]. 

1
2

2

2

d E
m

dk



  
  

 
                                  1.6 

The effective mass is inversely proportional to the curvature of an electron band. The effective mass is 

small, when the curvature of E = f(k) at a given point in k-space is large, and vice versa. The bottom of 

the CB is concave (see Fig. 1.11), and therefore effective mass is positive. The top of the VB is convex, 

hence effective mass is negative. A negative effective mass means that the particle will be accelerated to 

the opposite direction to an applied electric force. An electron with a negative mass is called an electron 

hole. However, it is commonly ascribed to a hole effective mass and a positive charge. Semiconductors 

have different properties in different direction, therefore, effective mass also differ in each direction. In 

such a case effective mass is a tensor.  

1.1.7 Phonon Structure 

The atoms in a solid are constantly periodically vibrating about fixed positions. The amplitude of these 

vibrations increase, if the material takes energy from heat or a photon. The vibrational waves are quan-

tized. A phonon is quasiparticle which is a quantized lattice vibration wave. Phonon modes are the quan-

tized vibrational modes of a crystal structure, therefore, phonon modes are determined by the crystal 

structure of the material [44]. 

Two types of phonons includes in a solid with a more than one type of atoms in the unit cell. 

They are acoustic phonons which are coherent movements of atoms of the lattice out of their equilibrium 
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positions, and optical phonons are caused by out of phase movements of the atoms in the lattice. The pho-

nons in the lattice can be divided into two types: longitudinal and transverse, according to the direction of 

the atoms motion and wave propagation.  For longitudinal phonons, motion of the atoms is in the direc-

tion of the wave propagation and for transverse phonons, atoms are moving perpendicular to the direction 

of wave propagation. The corresponding acoustic and optical phonons are abbreviated as LA (Longitudi-

nal Acoustic), TA (Transverse Acoustic), LO (longitudinal Optical), and TO (Transverse Optical). Fol-

lowing Table 1.3 presents the summary of these phonons and Fig. 1.15 shows a schematic of each pho-

nons in a diatomic chain. 

Phonon spectrum plays an important role in determining the thermodynamic properties, optical 

properties, and kinetic properties of carriers in semiconductors. It can be known the specific features of 

the crystal structure and interatomic interactions which provides the details about the dynamical proper-

ties of  the crystal, by studying the behavior of the phonon dispersion branches [45].  Another important 

aspect in phonons is their interaction with free carriers. Typically, these interactions is negatively affect in 

device performance though, the recent studies have shown that these interactions can be used in certain 

laser device engineering. The lifetimes of the phones are significant in these interactions and Raman spec-

troscopy is one way to measure the phonon lifetimes. The phonon lifetimes and the factors influence on 

them can be determined by analyzing the Raman linewidth [46]. In addition to this, Raman linewidth can 

be used to analyze the crystalline quality of the semiconductor. Further details in phonons and related 

properties of group III-nitrides are discussed in Chapter 3 under Raman spectroscopy. 
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Table 1.2 Summary of the phonon type, their motion and phase in a solids with more than one types of 

atoms in the unit cell. 

Phonon Type Motion of the atoms Phase 

LA in the plane of the wave propagation 

different atom types move in the same 

direction and in phase 

TA Perpendicular to the wave propagation 

different atom types move in the same 

direction and in phase 

LO in the plane of the wave propagation 

different atom types move in opposite 

direction and out of phase 

TO Perpendicular to the wave propagation 

different atom types move in opposite 

direction and out of phase 

 

 

Figure 1.15 Schematic of phonon propagation in diatomic chain. (a) Longitudinal acoustic phonon, (b) 

Longitudinal optical phonon, (c) Transverse acoustic phonon, and (d) Transverse optical phonon. 

The figure is after Ref. [47] 
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1.2 History of InN and their Alloys 

This section briefly discusses the history and development of InN and alloys. Which include the crystal 

growth techniques and physical properties (structural, optical, and electrical) of InN and alloys extracted 

from different studies.  

The earliest report of InN was in 1938 by Juza and Hahn [48]. In this study, InN powder was syn-

thesized by decomposition of (NH4)3InF6 in a stream of NH3. In which the first reported the crystal struc-

ture of wurtzite lattice parameters values: a = 3.53 Å and c = 5.69 Å by analysis of powder XRD. Only a 

few reports of InN are found in between 1940 and 1960 [49-51]. Those time, grown InN was in powder 

form or small crystal form. Most of the InN growth methods were In compounds interactions with ammo-

nia or thermal decompositions of complex compounds which include direct bonding of In and N [52]. In 

1963, Pastrnak et al. [53] grew InN by using CVD process in which InCl3 react with N2. It was under-

stood that InN does not occur by direct interaction of In metal with nitrogen in an inactivated form even at 

high temperature [54]. In 1970, MacChesney et al. [55] suggested a possible method for single crystal 

growth by obtaining pressure-temperature phase relation of InN prepared in polycrystalline form by a 

modification of the procedure explained by Juza et al. [49]. This study suggested that the equilibrium dis-

sociation temperature for InN was at ~ 527 °C, the pressure was ~ 1 atm, and that is at 600 °C, the pres-

sure is higher than 20 atm. Therefore, the growth of InN is required low growth temperature due to the 

low dissociation temperature of InN and high equilibrium N2 vapor pressure over InN. 

The growth of InN by using plasma techniques started after 1970 and apparently Hovel et al. [56] 

were the first who grew InN by reactively RF sputtering using In target and pure N2. The films were de-

posited on sapphire and Si substrate in the range of 25-600 °C, and they were dark red polycrystalline and 

n-type. Carrier concentration and Hall mobility of the layers were (5-8) × 1018 cm-3 and 250 ± 50 cm2V-1s-

1, respectively. The bandgap of these films was 1.9 eV. The high carrier concentration of the films was 

ascribed to a high density of native defects.  In 1972 and 1975, Osamura et al. [57, 58] grew InN and its 

alloys with GaN by using reactive cathode evaporation technique. In the latter study [58] reported the 
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composition dependence of the transverse optical phonon frequency of Ga1-xInxN by analyzing the reflec-

tance spectra using Kramers-Kronig dispersion formula and found a linear behavior between the longitu-

dinal and transverse phonon frequency. InN transverse phonon mode was calculated as 478 cm-1 by ex-

trapolating the straight line to x = 1. As well as, the longitudinal phonon frequency was determined to be 

694 cm-1. In 1974, Trainor et al. grew InN using electron beam evaporation of In onto heated substrates in 

an atomic nitrogen environment and then only ground state species, provided from a continuous flow 

pulsed nitrogen plasma that was expanded into evaporation system directed into the substrates [59]. The 

bandgap, carrier concentration, and Hall mobility of the film were ~1.7 eV, (3-6) × 1020 cm-3 and 20 

cm2V-1s-1, respectively. Trainor et al. stated that the higher carrier concentration and lower mobility of 

these InN films compared with Hovel et al. [56] reported values could be due to the higher impurity den-

sity of indium metal and lack of the crystallinity of the films. Most of the InN films grown by RF sputter-

ing were polycrystalline or amorphous. However, high Hall mobility of 2700 cm2V-1s-1and low back-

ground carrier concentration of  5.3× 1016 cm-3 were measured at room temperature by Tansley et al. [60] 

for polycrystalline InN films grown on Si or glass substrate by reactive RF sputtering from a nitride me-

tallic target in a nitrogen ambient. The maximum Hall mobility measured at 150 K was 5000 cm2V-1s-1. 

The bandgap of these films was 1.89 eV [3]. After reporting the high Hall mobility and low carrier con-

centration of InN films, although several groups attempted to reproduce these values using sputtering 

technique with different approach such as different substrate, different substrate temperature, they were 

not success [61-73].  

 In 1977, Marasina et al. [74] used chemical vapor deposition (CVD) method to grow mosaic 

crystalline epitaxial InN layers on sapphire (0001) substrate by the reaction between ammonia and InCl3 

(synthesized from In and Cl2). The layers are n-type, and the electron concentration and mobility of the 

layers are in the range of 8 × 1021-2 × 1020 cm-3 and 35-50 cm2V-1s-1, respectively. 

InN received little attention compared to GaN and AlN between the 1940s and 1970s because it 

was difficult to grow single crystalline InN. Various growth approach has been used to achieve the 

growth of InN at a low temperature which inhibits escaping N atoms from the surface which can affect 
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the quality of the films. In 1989, Wakahara et al. reported the epitaxial growth of InN on sapphire for the 

first time by microwave-excited metalorganic vapor phase epitaxy (MOVPE) in the temperature range of 

400-600 °C. The crystal structure and composition of the layers were confirmed by XRD, RHEED (re-

flection high-energy electron diffraction) and ESCA (electron spectroscopy for chemical analysis) analy-

sis.[75] Apparently, for the first time, InN heteroepitaxial growth on a GaAs substrate ( (111)A and (100) 

oriented) were reported by Yuichi et al. in the same year [76]. The lattice mismatch between InN and 

GaAs (11.5%) was estimated to be less than that of between InN and sapphire (28.8%). The crystallinity 

of these samples grown by rf-excited reactive evaporation method was confirmed fairly good film by the 

value (17 s) of full width at half-maximum (FWHM) of an X-ray rocking curve (XRC). However, satis-

factory epitaxial growth was not obtained for the (100) substrate. Nagatomo et al. have been studied the 

lattice constant and bandgap (varied from 3.20 eV to 2.01 eV) of Ga1-xInxN as a function of composition 

(up to x=0.42) grown by MOVPE on sapphire at 500 °C in 1989 [77]. In 1990, single-crystal InN and 

InxGa1-xN alloys grown by MOVPE on sapphire at 500 °C were reported by Matasuoka et al. [78]. Carrier 

concentration and Hall mobility of the InN films were in the range of 1018 cm-3 and 300-400 cm2V-1s-1, 

respectively. Also, it was observed that a surface morphology depends on the V/III ratio. InN film on sap-

phire (0001) by MOVPE with a carrier concentration of ~5× 1019 cm-3 and a Hall mobility of ~300 cm2V-

1s-1 were reproducibly obtained by Yamamoto et al. in 1998 [79]. 

In 1991, Davis published an overview of development in III-V nitrides including InN [80] After 

that, in 1992, Strite et al. published a review article which presented a comprehensive history of the devel-

opment of III-nitrides, GaN, AlN, InN, and their alloys through the end of the 1991 calendar year, includ-

ing growth process, chemical, structural, optical and electrical properties of them [81]. 

At the beginning of the 1990s, the evolution of the epitaxial single-crystal InN films and the dis-

covery of the true bandgap value of 0.9 eV [82] in 2001and later 0.7 eV [1, 2] lead to an another transition 

in InN research. However, the different growth approaches exhibited a large variation in carrier concen-

tration and mobility of the carriers even today. The values reported by Tansley et al. [60] were the highest 

that ever achieved. In 1988, Sullivan et al. [61] deposited InN films onto fused quartz, Corning 7059 
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glass, and carbon planchette substrates busing dc planar magnetron sputtering system. These films were 

transparent with reddish-brown color and n-type. The carrier concentration and mobility were ranged 

from 3 to 6× 1020 cm-3 and 35-50 cm2V-1s-1, respectively. In this, Sullivan et al. [61] reported the first 

measurements of the dielectric function of InN in the spectral region 2.5-5.5 eV.  

Usually, as-grown InN films were n-type and unintentionally doped p-type films were rare. Jen-

kins et al. studied the electronic structure and doping of InN, InxGa1-xN, and InxAl1-xN in 1989 [83]. In 

this study, it was found (i) that the native defect responsible for naturally occurring n-type InN is a nitro-

gen vacancy, not NIn (N on an In site), (ii) that by introducing column II impurities on In sites, p-type 

doping should be feasible, and (iii) that n-type conductivity should be a consequence of oxygen atoms on 

N sites. For the first time, Feiler et al. [84] reported the unintentionally doped InN films grown on sap-

phire (0001) by pulsed laser deposition (PLD) in high vacuum and 5 mTorr of N2. Crystalline orientations 

of the investigated InN films were InN(0001)||sapphire(0001) and InN[11‾00]||sapphire[101‾0] for high 

vacuum and N2 ambient films respectively. The corresponding carrier concentration of the films were 

6.5× 1020 cm-3 and 4.7× 1019 cm-3, and mobility of the film were 30 cm2V-1s-1 and 240 cm2V-1s-1, respec-

tively. Tansley et al. suggested that the high carrier concentration in the InN is due to the nitrogen vacan-

cies [85, 86]. In 2004, Butcher et al. showed that the high n-type carrier concentration for RF sputtered 

InN is not due to nitrogen vacancies, and the excess nitrogen is possibly the source of the background n-

type doping [70]. 

In 1993, the influence of the AlN buffer on sapphire (0001) on the structural and electrical prop-

erties of InN film grown by reactive sputtering studied by Kistenmacher et al. [63]. These results revealed 

that the carrier concentration is nearly constant up to 300 °C of InN growth temperature and the carrier 

concentration decreased by a factor of 5 with increasing growth temperature. The mobility of the InN 

films grown on AlN buffer/sapphire increased by a factor of two for the growth temperature beyond 400 

°C. However, the mobility of the InN films on AlN buffer were in the range of ~20-60 cm2V-1s-1 and 

greater than that of on sapphire. The carrier concentration of those films was in the range of ~1-4.5× 1020 

cm-3 [63]. 
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Several groups have predicted the theoretical values for mobility of InN. However, those values 

were far from the experimental values. Chin et al. predicted that the maximum mobility of the InN to be 

4400 cm2V-1s-1 and 33000 cm2V-1s-1 at room temperature (300 K) and 77 K, respectively.[87] Nag et al. 

predicted that the highest value of mobility of InN is about 4000 cm2V-1s-1 at room temperature [88]. 

Fareed et al. reported the highest predicted mobility value for InN as high as 5000 cm2V-1s-1 at room tem-

perature [89]. 

Fareed et al. [89] also studied the influence of the electrical properties of InN films grown on 

GaN/AlN buffer/sapphire template by migration enhance metalorganic chemical vapor deposition 

(MEMOCVD). The results revealed that the mobility of the InN layers increases from 12 cm2V-1s-1 to 846 

cm2V-1s-1, with increasing the layer thickness from 75 nm to 900 nm. As well as, carrier concentration de-

creases from 5.5 × 1019 cm-3 to 4.1× 1018 cm-3, with increasing the InN film thickness from 75 nm to 900 

nm [89]. In order to reduce the concentration of nitrogen vacancy and the corresponding carrier concen-

tration, InN films were grown varying growth rates from 0.23 μm/h to 0.05 μm/h using reactive evapora-

tion method by Sato et al. [90]. It was found that both, the carrier concentration from 3.2× 1020 cm-3 to 

4.3× 1018 cm-3 and the mobility of the films from 34.7 cm2V-1s-1 to 0.6 cm2V-1s-1 decreased, with decreas-

ing the growth rate. Additionally, Sato et al. examined the effect of the InN film damage by the plasma. 

The study revealed that carrier concentration increased from 4.3× 1018 cm-3 to 1.6× 1020 cm-3 as plasma 

power decreased from 80 W to 5 W [90]. 

Typical MOCVD growth temperatures for Al and Ga based nitride materials were required high 

growth temperatures (between 900 °C and 1200 °C). On the other hand, because of the relatively weak 

bond strength between In and N, In based nitrides requires low growth temperatures. As a solution to this 

problem, atomic layer epitaxy (ALE) has been suggested [91, 92]. Carrier concentration and mobility of 

the n-type InN films deposited on (0001) sapphire at 480 °C using ALE by McIntosh were ~ 1019 cm-3 and 

~10 cm2V-1s-1, respectively [93]. The single crystal InN films grown on (0001) sapphire at 440 using UV-

assisted ALE by Inushima et al. exhibited the carrier concentration ~3× 1020 cm-3 and mobility 60 cm2V-

1s-1 [94]. 
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In 1997, Sato et al. found that it was essential to lower the growth rate than increasing the N-radi-

cal flux to achieve the low carrier density [95]. In this study, Sato et al. deposited the InN epitaxial films 

on (0001) sapphire using plasma-assisted MOCVD by which large amounts of radicals can be supplied 

little damaging to the surface. A growth temperature of 600 °C was the highest temperature to grow InN 

without In droplets, promoted surface reaction to fill N-vacancies and reduced the carrier densities. The 

achieved carrier density was 4× 1019 cm-3 [95]. In 1998, Guo et al. studied the dependence of the mobility 

and carrier concentration on the glass substrate temperature (100 °C-500 °C) by radio frequency magne-

tron sputtering [66]. The results revealed that the carrier concentration was almost independent of the sub-

strate temperature and the order 1020 cm-3. However, the Hall mobility increased from 18 cm2V-1s-1 to 115 

cm2V-1s-1 with substrate temperature from 100 °C to 500 °C [66]. In the same year, a similar study was 

carried out by Ikuta et al. The InN films were deposited on (0001) sapphire and ZnO buffer/sapphire. The 

maximum Hall mobility of the film on the ZnO buffer/sapphire (60 cm2V-1s-1) was greater than that of 

bare sapphire (30 cm2V-1s-1) at the same growth temperature. The minimum carrier concentration (2× 1020 

cm-3) was slightly lower than that of bare sapphire (3× 1020 cm-3) at the same temperature [65].  

In 1999, Blant et al. grew intentionally doped InN using Mg as a p-type dopant by modified MBE 

[96] However, the layer exhibited the n-type with the carrier concentration of 5.3×1019 cm-3 and a mobil-

ity of 17.7 cm2V-1s-1. On the other hand the undoped InN film had a higher mobility (190 cm2V-1s-1) and 

lower carrier concentration (3×1019 cm-3) [96]. 

In 1999, Yamaguchi et al. found first that InN can be grown on GaN. An electron Hall mobility 

of InN grown by MOVPE with the film thickness of 2400 Å has been observed of 700 cm2V-1s-1 at an 

electron concentration of 5×1019 cm-3, as high as that of GaAs at the same electron concentration [97]. In 

the same year, Mamutin et al. investigated the InN film properties as dependent on initial growth stages 

grown by MBE. The initial state involving high temperature (~800 to 900 °C) annealing of a 15 nm thick 

InN buffer grown at low temperature demonstrated the highest Hall mobility of 600 cm2V-1s-1, in spite of 

the high electron concentration of 1×1020 cm-3 [98].  
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Low temperature InN growth in common III-nitride techniques such as MBE, and MOVPE, is 

characterized by a short surface migration length of the column III atoms. This will form high defect den-

sity films. To enhance the migration distance of III-atoms during the low temperature epitaxial growth, 

Migration Enhanced Epitaxy (MEE) which composes of an alternative supply of pure In atoms and nitro-

gen plasma, has been introduced [99]. Lu et al. studied the InN films prepared by MEE on sapphire by 

varying substrate temperature from 360 °C to 590 °C. The highest mobility of 542 cm2V-1s-1 and lowest 

electron carrier concentration of 3×1018 cm-3 at room temperature were found at ~500 °C growth tempera-

ture [99]. The results of this study argued against the common view that nitrogen vacancies are responsi-

ble for high background n-type doping. As well as, it has shown that AlN buffer layers improved the elec-

trical properties of InN films. Further studies of the effect of the AlN buffer layer on the epitaxial growth 

of InN by MBE were carried out by Lu et al. in 2001 [100]. In this work, A Hall mobility of 805.3 cm2V-

1s-1 with a carrier concentration ~2.5×1018 cm-3 at room temperature was achieved on a 120 nm InN film 

on AlN buffer layer [100]. For the 300 nm thick InN layer, the Hall mobility, and carrier concentration 

were 911 cm2V-1s-1 and 2.9×1018 cm-3 at room temperature, respectively. The measured the Hall mobility 

and carrier concentration for this sample at 77 K were 1147 cm2V-1s-1. Lu et al. also showed that Hall mo-

bility increases with InN film thickness. In 2003, Lu et al. found that increasing film thickness does not 

lead to an apparent improvement in electrical properties of the a-plane InN grown on r-plane sapphire. In 

these films, Hall mobility and carrier concentration fluctuated around 250 cm2V-1s-1 and 6×1018 cm-3, re-

spectively in the thickness range of 0.5-3 μm [101]. In previously Lu. et al. described the enhancement of 

Hal mobility is due to the reduced defect density away from the lattice-mismatched buffer. For the c-plan 

film, Lu et al. also concluded that impurities from the growth environment are not responsible for the high 

background doping of InN. Instead of some structural defects or substrate/buffer impurities may be the 

major source and growing thicker films it can be reduced [101, 102]. However, for a-plane InN, a signifi-

cant decrease of structural defects along the growth direction were not observed [101]. Higashiwaki et al. 

observed that there was an intermediate sharp increase in mobility up to a film thickness of 150 nm, be-

yond which it almost leveled out. The Hall mobility of the 200 nm thick InN film at room temperature 
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was 1180 cm2V-1s-1 (1240 cm2V-1s-1  at 77 K) with an electron concentration of 2.2×1018 cm-3. The best 

electron concentration of 1.6×1018 cm-3 was achieved for the 300 and 350 nm thick InN films. The InN 

films were grown on the 10 nm thick LT-GaN intermediate and 10 nm thick LT-InN layer by PA-MBE 

[103]. Cimalla et al. found that both the interface and the surface of the InN layer influenced the electrical 

properties essentially [104]. 

In 2001, Inushima reported the mobility of 1700 cm2V-1s-1 and the carrier concentration of 5×1019 

cm-3 for the undoped InN grown on sapphire substrate with 15 nm InN buffer layer at 300°C by ECR-

plasma assisted MBE [82]. The bandgap of this sample was 0.89 eV. In 2001, Yoshiki et al. was grown 

InN layers on sapphire (0001) with an intermediate buffer layer grown at 300 °C by RF-MBE. The best 

Hall mobility of 760 cm2V-1s-1 and carrier concentration 3×1019 cm-3 of were found for the single-crystal 

InN films grown at 550 growth temperature and 240 W plasma power [105]. 

In 2002, Davydov et al. found the band gap value of InN as 0.9 eV, which was smaller than previ-

ously reported value of 1.89 eV. The single-crystalline InN epilayers were grown on (0001) sapphire ei-

ther by plasma assisted MBE or MOMBE.  Electron concentration ranged from 9×1018 cm-3 to 1.2×1019 

cm-3 in the best samples, and their mobility was as high as ~1900 cm2V-1s-1 [106]. Saito et al. reported the 

improvement of electrical properties of InN grown using buffer layer and intermediate layers by RF-

MBE. Electron mobility (carrier concentration) of the InN film with and without intermediate layers were 

830 cm2V-1s-1 (1×1019 cm-3)and 150 cm2V-1s-1 (4.2×1020 cm-3), respectively [107]. 

With the rapid development and availability of characterization tools and development of InN 

based devices, researchers were interested in deep understanding of InN properties. Qian et al. has pro-

posed InN as a good plasma filter material in thermophotovoltaic systems by studying IR reflection spec-

tra of InN films grown on GaAs (111) by RF-sputtering. Carrier concentration and mobility of these films 

were in the range of 2-4×1020 cm-3 and 30-40 cm2V-1s-1, respectively [108]. In the same year, Qian et al. 

[109] reported the Raman spectra and IR reflectance spectra of InN films grown on GaAs (111) and sap-

phire (0001) substrates by RF magnetron sputtering and microwave-excited MOVPE. An evident of blue 

shift of the frequencies for the E1(TO) and A1(LO) phonon modes due to the residual compressive stress 
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was observed. From the Raman spectra, A1(LO) modes at 598 cm-1 and E2 (high) modes at 490 cm-1 were 

observed. From the IR spectra, phonon modes of A1(TO) at 449 cm-1, E1(TO) at 488 cm-1, free carrier 

concentration and mobility were extracted. The extracted carrier concentration and mobility were in the 

range of 2-3×1019 cm-3 and 69-325 cm2V-1s-1, respectively. The mobility obtained from IR spectra was 

smaller (near half) than that from Hall measurements for the similar carrier concentration. Qian et al. 

stated that this effect is due to the increase of scattering for the carrier coupling with the incident phonons 

in the optical measurements [109]. Wu et al. found the effective mass of InN to be electron concentration 

dependent. The effective masses of the films were calculated using the plasma frequency obtained from 

the IR spectra and carrier concentrations obtained from the Hall measurements. The free carrier concen-

tration and mobility were from 3.5×1017 cm-3 to 5.5×1018 cm-3 and 100 to 2050 cm2V-1s-1, respectively for 

unintentionally doped samples [110]. The spectroscopic ellipsometry is one of other tool used in the anal-

ysis of optical and electrical properties of InN layers. Goldhahn et al. studied the anisotropic dielectric 

function of the a-plane InN film grown on r-plane sapphire with an AlN nucleation layer and a GaN 

buffer by spectroscopic ellipsometry [111]. Later, Kasic et al. studied the InN dielectric function from IR 

to ultraviolet range by spectroscopic ellipsometry and determined the film thickness, plasma frequency, 

and plasma damping for the samples with different free carrier concentrations (7.7×1017 cm-3- 1.4×1019 

cm-3) [112]. 

For the first time, Yamamoto et al. reported that a MOVPE InN film with a carrier concentration 

in the order of 1018 cm-3 was grown with an electron mobility of 730 cm2V-1s-1 by using atmospheric pres-

sure growth. Yamamoto et al. also showed that improvement of morphology is needed to attain high elec-

tron mobility in InN films using AFM.[113] Yang et al. investigated the optical constants (refractive in-

dex and extinction coefficient) of InN films on GaAs (111) substrate by RF reactive magnetron sputtering 

as a function of energy with different growth conditions [68]. Further improvement in the electrical prop-

erties of the InN is one of the great challenges [114]. 

It has been found that quality of the InN layer is sensitive to the sapphire nitridation process 

[115]. Pan et al. found that the quality of the InN film was sensitive to the nitridation process, in particular 
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the nitridation temperature and nitridation duration. The results revealed that better InN film quality can 

be achieved with a nitridation temperature of 1000 °C for 40 minutes for InN growth temperature of 550 

°C. The corresponding Hall mobility, carrier concentration, and Raman E2 (high) FWHM values were 270 

cm2V-1s-1 , 5×1019 cm-3, and 4.5 cm-1, respectively [116]. Nanishi et al. found that nitridation of sapphire 

prior to InN growth is effective for producing single crystals. As well as insertion of the low-temperature 

intermediate layer is effective in obtaining thick InN. XRC FWHM, 2   XRD FWHM, Raman E2 

high FWHM, carrier concentration, and mobility of this InN layer were 236.7 arcsec, 28.9 arcsec, 3.7 cm-

1, 4.9×1018 cm-3 and 1130 cm2V-1s-1, respectively [117]. On the other hand, Maleyre et al. have shown that 

excessive temperature and time of nitridation is not beneficial for crystalline quality, morphology, optical 

and electrical properties of InN layer. The obtained root mean square roughness, mobility and electron 

concentration values for InN layer grown on lightly nitride sapphire were 0.60 nm, 800 cm2V-1s-1, and 

9×1018 cm-3. According to Maleyre et al., these are the best results in low pressure MOCVD at that time 

[118]. Drago et al. found the optimum InN quality (electron concentration ~ 6×1018 cm-3 and electron mo-

bility ~450 cm2V-1s-1) for 45 s of sapphire nitridation with ammonia by MOVPE [119]. In 2014, Skuridina 

et al. observed the formation of crystalline AlN (where N-Al dominate) for nitridation of sapphire above 

800 °C and found a smooth surface and single crystalline N-polar InN layer on top of this layer. Further-

more, a formation of amorphous AlNxOy (where N-O dominate) layer was found during the nitridation 

below 800 °C and In-polar InN layers with a rough surface, and a rough polycrystalline structure was 

grown on this layer [120]. The mechanism of sapphire nitridation has been studied with different growth 

techniques [121-124]. 

The effect of polarity on the InN films grown by MBE was studied by Xu et al. in 2003. It was 

found that FWHMs of N-polar InN (002) and In-polarity InN (002) were about 220 arcsec and 600 arcsec, 

respectively. Hall mobilities and electron concentration of the N-polar InN films were ranging from 500-

1200 cm2V-1s-1, and (1-5) ×1018 cm-3, respectively, while those for In-polar films were ranged from 300–

900 cm2V-1s-1 and (4-10)×1018 cm-3, respectively [125].   
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In 2007, Lin et al. studied the properties of the InN layers grown on GaN/sapphire at different 

temperatures by MOCVD. The highest mobility of 1300 cm2V-1s-1 and the lowest carrier concentration of 

4.6×1018 cm-3 was achieved for the InN layer grown on GaN/sapphire at 625 °C [126]. The high mobility 

of InN layers grown with HT-GaN and LT-GaN buffer layer by MOCVD has been reported by Xie et al. 

in the same year. The mobility and electron concentration of this layer were 939 cm2V-1s-1 and 3.9×1018 

cm-3, respectively [127]. Hall mobility of 1400 cm2V-1s-1 with a carrier concentration of 7×1018 cm-3 was 

reported by Khan et al. for the InN layer deposited on AlN template. This result represented the highest 

electron mobility reported for MOCVD grown InN layers [128]. 

High electron mobility InN layers grown on sapphire by boundary temperature controlled epitaxy 

with MBE have been reported by Wang et al. The study revealed that the mobility of the InN layers in-

creased, and electron concentration decreased with increasing the layer thicknesses. The highest mobility 

of 3280 cm2V-1s-1 and lowest electron concentration of 1.47×1017 cm-3 found at 5 μm layer thickness. 

Wang et al. further reported that this increment of mobility and reduced of electron concentration was due 

to the reduction of threading dislocation [129].  In 2013, Sakaguchi et al. reported that dependence of InN 

layer thickness on the electrical properties and even 200 nm thick InN layer demonstrated relatively good 

mobility and electron concentration (1540 cm2V-1s-1 and 2.1×1018 cm-3). The InN layers were grown on 

GaN/sapphire template by PA-MBE [130].  

This short history has shown that there still remains the controversy about the unintentional back-

ground electron concentration of InN layers. Impurities such as silicon, oxygen, and hydrogen acting as 

donors and dislocations could be a cause for the n-type conductivity in undoped InN [131]. Himmerlich et 

al. [132] studies have shown that electron concentration increases with carbon incorporation and disloca-

tion densities independent of carbon incorporation. Control of carbon impurities incorporation is not diffi-

cult, and InN films can be doped with carbon by any growth method based on gas-phase epitaxy. It was 

found that edge dislocations influence on the electron concentrations and electron mobility of the InN 

[131, 133, 134]. 
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1.3 Scope of the Thesis 

The aim of this thesis is to understand and characterize the optoelectronic and structural proper-

ties of group III-nitrides epitaxial layers with different growth conditions, grown by High Pressure Metal 

Organic Chemical Vapor Deposition (HP-MOCVD) and Migration Enhanced Plasma Assisted Metal Or-

ganic Chemical Vapor Deposition (MEPA-MOCVD).   

In this thesis, Chapter 2 discusses an overview of epitaxial growth methodologies and detailed 

description of growth technique employed for the samples studied in this thesis. 

Chapter 3 describes characterization methods, which are used in this study, are briefly explained, 

including Atomic Force Microscopy, X-ray diffraction, Raman spectroscopy, and FTIR reflection spec-

troscopy.  

Chapter 4 extensively describes theoretical models based on frequency dependent dielectric func-

tions and Maxwell’s equations for the interpretation of IR reflection spectra of multilayer structures. The 

theoretical model for isotropic media at normal incidence and angle incidence are explained. Next, IR die-

lectric functions for isotropic and anisotropic media are discussed. Furthermore, the model is extended for 

an anisotropic media and discuss here. The chapter then explains the determination layer thicknesses, op-

toelectronic properties, and structural properties by using these models. 

Chapter 5 presents a detailed investigations of influence of substrate polarity and doping on the 

electrical and optical properties of Indium nitride layers by IR reflectance and Raman spectroscopy. 

Chapter 6 presents the study of the effect of the reactor pressure on the electrical and structural 

properties of InN epilayers grown by HP-MOCVD using IR reflection spectroscopy and Raman spectros-

copy.  

Chapter 7 discusses the initial growth and characterization results of InN-AlN-sapphire grown by 

MEPA-MOCVD. Finally, Chapter 8 summarizes this research. 
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2 CHAPTER 2: THIN FILM GROWTH TECHNIQUES UTILIZED FOR GROUP  

 III-NITRIDES 

The objective of this chapter is to give a brief introduction to the epitaxial growth techniques used 

in group III-N thin film depositions and their growth-related issues and solutions. Although, there are sev-

eral growth techniques, this will focus the high pressure metal organic chemical vapor deposition (HP-

MOCVD) and migration-enhanced plasma-assisted meatal organic chemical vapor deposition (ME-PA-

MOCVD), which were used in this study for the InN growth, while giving a brief overview of hydride 

vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), atomic layer deposition (ALD), as well as 

typical metal organic chemical vapor deposition (MOCVD) will be given. 

2.1 Epitaxy and Growth Related Issues 

Epitaxy is the process of the deposition of a crystalline over layer onto a crystalline substrate. Basi-

cally, there are two kinds of epitaxy, homoepitaxy, and heteroepitaxy. Homoepitaxy is the deposition of 

an epitaxial layer which is the same material (isochemical in composition) as the substrate. Heteroepitaxy 

is the deposition of an epitaxial layer which is a different material (heterochemical in composition) from 

the substrate. The advantages of homoepitaxy growth are lower defect density and doping control due to 

the lattice match, thermal match, and same surface chemistry between the two phases. These advantages 

result in higher quality films. However, heteroepitaxy is often required in optoelectronic structures and 

bandgap engineered devices.  

The five possible epitaxial growth modes are layer-by-layer or Frank-van der Merwe (FM-mode), 

step flow (SF-mode), layer plus island or Stanski-Krastanov (SK-mode), island or Volmer-Weber (VW-

mode), and columnar growth mode (C-mode). The occurrence of these growth modes depends on the lat-

tice mismatch between the substrate and the film, the flux of the crystallizing phase, the growth tempera-

ture, and the adhesion energy [1]. A schematic representation of the three most frequently occurring 

growth modes on a flat surface substrate is shown in Fig. 2.1. 



46 

 

Figure 2.1 A schematic representation of the five most frequently occurring growth modes on a flat sur-

face substrate. (a) layer-by-layer or Frank-van der Merwe (FM-mode), (b) layer plus island or Stanski-

Krastanov (SK-mode), and (c) island or Volmer-Weber (VW-mode). 

Θ is the monolayers coverage. 

 

In the FM- mode (Fig. 2.1 (a)), atoms in the film are more likely to adhere to the substrate than to 

each other. Only after completing the bottom layer, is a new layer nucleated (2D growth). This type of 

growth mode can be observed in metal-metal systems and semiconductor growth on semiconductors. The 

VW-mode (3D growth) (Fig. 2.1 (c)) occurs when the atoms in the film are more likely to adhere to each 

other than to the substrate. Small clusters are nucleated on the substrate then new islands form on top of 

the clusters before filling the space between. This mode can be observed in metal growing on insulators 

and layer compounds such as mica. The SK- mode (Fig. 2.1 (b)) is an intermediate mode between the FK 

and VW modes. After the first few monolayers are formed, islands form on top of the intermediate layer. 

This mode occurs when the monotonic decrease in binding energy, characteristic for layer-by-layer 

growth, is disturbed [1].  

2.1.1 Substrates 

As mentioned in Chapter 1, structural and optoelectronic properties of the group III-nitride materi-

als are influenced by the substrates and growth processes. Therefore, when choosing the substrate, the fol-

lowings factors should be considered: the thermal mismatch, the lattice mismatch between the substrate 

and the overgrown layer, the availability on the market, and its cost. As mentioned in Chapter 1, several 
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substrates have been used and studied for InN epilayer growth. Lattice mismatch between the substrates 

and the group III-nitrides are tabulated in Table 2.1. 

 

Table 2.1 Lattice mismatch with different substrates. 

 Lattice mismatch (%) 

GaN AlN InN 

Sapphire (0001)  ~16 ~13 ~25 [2] 

Si (111) 17 [3] 19 ~8 

GaAs (111)  ~ 20 ~11.3 

GaP (111) 17.2 [4]  ~8 

MgAl2O4 (111) 9.5 [5]  15 

6H-SiC 3.4 ~1 ~14 

Ge (111) 20 [6]  ~ 11 [2] 

AlN ~2.5 - ~13 

GaN -  ~11 

 

 Even though, the lattice mismatch between sapphire substrates and the III-nitride films is higher 

than that of other substrates, sapphire (0001) is the most used substrate in group III-nitrides growth. Sap-

phire substrates are widely used due to the low cost, wide availability in different sizes, transparency, 

high temperature stability, as well as the high surface and crystal quality. 

2.1.2 Solutions for Lattice-mismatched Sapphire Substrates 

As discussed in chapter 1, several methods are being used to overcome the issues initiated by the 

lattice mismatch between the sapphire substrate and InN (or InGaN) films. Few of them are the substrate 

pretreatment and the insertion of the buffer layers and the intermediate layers between sapphire and III-

nitride layer. In the InN growth, using an AlN or GaN layer in between the film and substrate can reduce 

the lattice mismatch from ~25% to 13% or 11%, respectively. The crystalline quality of the InN film can 

also be improved by through the nitridation of the sapphire substrate prior to the InN growth. This process 

changes the growth chemistry of the surface forming a thin nitrogen layer (AlN/ or AlNxOy) on top of the 

sapphire with N-species substituting the O-atoms [7]. 
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2.2 Hydride Vapor Phase Epitaxy (HVPE) 

HVPE is an attractive technique for growth of high quality, large diameter and high growth rate, 

which results in thick GaN layers (>200 μm). The thick GaN can be used as a free-standing substrate by 

separating the film from the sapphire substrate. In HVPE, a stream of HCl is passed through the III-metal 

(temperature around 860 °C) to form GaCl (or AlCl or InCl). These GaCl (or AlCl or InCl) are injected 

through a showerhead into the growth chamber and allowed to react with NH3 at the substrate surface 

(growth temperature 950-1050 °C) to form III-nitride as in the Eq. 2.1 [8, 9]. 

3 2( / ) ( / )GaCl InCl AlCl NH GaN InN AlN HCl H              2.1 

A typical schematic of representation of a vertical reactor is shown in Fig. 2.2.  

 

Figure 2.2 Schematic of a vertical HVPE reactor. 

The figure is after Ref. [8]. 

 

There are several drawbacks in the use of HVPE techniques. One is the NH3 dissociation which 

forms highly explosive NCl3 by reacting with HCl. Another is associated with the use of HCl gas, which 

is corrosive, can quickly destroy the equipment in the reactor. Instead of HCl, some groups have been 
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used GaCl3 to avoid this. P-type doping or AlGaN growth is difficult with HVPE, due to exchange reac-

tions in magnesium-bearing or aluminum compounds with the hot quartz walls of the reactor [8].  

2.3 Molecular Beam Epitaxy (MBE) 

This is a versatile and precious technique for deposition thin semiconductors, metals or insulators. 

MBE uses nearly solid elements (in III-nitride growth, metal Al, Ga, or In); therefore, high temperature 

(above 100 °C) is required for elements vaporization. The elements are heated in separate Knudsen effu-

sion or gas cells. In order to transport the vaporized materials, gas line temperature requires a higher tem-

perature than the vaporization temperature. Thus, vaporized elements transport as beams of atoms or mol-

ecules in an ultrahigh vacuum environment, which minimizes the particle-particle interactions. However, 

in III-nitride growth, dissociation of a N2 molecule into two reactive nitrogen atoms is difficult by thermal 

means since the triple bond between the two nitrogen atoms needs high energy. Therefore, III-nitrides are 

grown using plasma assisted (PA)-MBE where a plasma source (RF or electron cyclotron resonance 

plasma) is used to activate the N2 [8]. In the PA-MBE process, III-metal or vapor beam from the effusion 

cells and plasma activated nitrogen are shot towards the heated substrate to form III-nitride. In order to 

improve the growth homogeneity, the substrate is rotated during the film growth. MBE requires ultra-high 

vacuum (UHV), typically around 10-6-10-9 mbar growth, which is a relatively expensive growth method. 

Such high vacuums prevent the growth surface contamination from outgassing of O2, CO2, H2O, and N2 

and therefore can produce high quality films. Additionally, MBE growth can control the growth thickness 

very precisely. Another advantage of MBE is the UHV allows the use in-situ characterization tools 

(RHEED, low energy electron diffraction, Auger electron spectroscopy, and modulated beam mass spec-

trometry) which is used to monitor the sample surface during growth. The abrupt interface and surface 

morphology, ability to grow complex heterostructures with many different layers and the low growth tem-

perature are other advantages of MBE growth. MBE is seldom used in industry due to its low relative 

growth rate, high temperatures requirements, and its high cost. A schematic representation of a typical 

PA-MBE is depicted in Fig. 2.3.  
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Figure 2.3 A schematic representation of PAMBE.  

The figure is taken from Ref. [8].  

 

2.4 Atomic Layer Deposition (ALD) 

ALD was initially named as atomic layer epitaxy (ALE) and was introduced by the Suntola and 

Antson in 1977, depositing ZnS for flat panel displays [10, 11]. ALD, the more general name was adopted 

because this method was also developed to deposit non-epitaxial materials [12]. Due to its conformity and 

control over the material thickness and the composition originated from the cyclic, self-saturating nature 

of the process, the ALD has proven more advantageous than the other growth techniques. A schematic of 

a general ALD process is shown in Fig. 2.4, which is copied from Ref. [11]. 
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Figure 2.4 A schematic of a general ALD process. (a) Functionalized substrate surface (naturally or unnat-

urally). (b) Precursor A is pulsed and reacts with surface. (c) Remove the excess precursor and by-products 

by purging with inert carrier gas. (d) Precursor B is pulsed and reacts with surface. (e) Remove the excess 

precursor and by-products by purging with inert carrier gas. (f) Repeat the first-five steps until preferred 

thickness is reached.  

The figure is copied from Ref. [11]. 

 

In the ALD process, the precursor is pulsed into the reactor under vacuum for a selected time dura-

tion, during each half-reaction. This allows precursor to completely react with the substrate surface 

through a self-limiting process and deposit an atomic layer (one monolayer) at the surface. Afterwards, to 

eliminate the unreacted precursor and by-products from the reaction, the reactor is purged with an inert 

gas. The, procedure is conducted for the counter-reactant precursor too. This whole process will cycle un-

til desired film thickness is reached [11]. Since ALD growth is layer-by-layer process, the deposition rate 

is very slow. However, the layers are more uniform, as there is no reaction among the precursors and the 

reaction stops after all available sites occupied. 

2.5 Metalorganic Chemical Vapor Deposition (MOCVD) 

MOCVD is the most important manufacturing process for group III-V semiconductor growth. 

MOCVD is also known as OMCVD (organo-metallic chemical vapor deposition). Various kinds of 

MOCVD reactor designs are available. Commonly, there are two kinds of MOCVD reactors. One is based 



52 

on the horizontal laminar flow principle. In the other, chemicals are hosted into the reactor vertically 

through a showerhead. Usually, in MOCVD growth, Metal-organic compound and V-hydrides are used as 

group III and group V precursors, respectively. Typical group III precursors are TMAl (trimethylalumi-

num), TEAl (triethylaluminum), TMGa (trimethylgallium), TEGa (triethylgallium), TMIn (trimethylin-

dium), and TEIn (triethylindium). In conventional MOCVD, NH3 is used as the nitride precursor in III-

nitride growth. MOCVD typically uses N2, H2 or a mixture of both as the carrier gas. In order to achieve 

high quality films, the use of high purity precursors and precise control of growth parameters, such as 

growth temperature and precursor ratios (V/III) are required. 

 The growth reactions occur at an open-tube system in the reactor. There are four main zones in the 

reactor that describe the growth mechanism: (i) precursor injection, (ii) mixing, (iii) boundary layer, and 

(iv) substrate surface. The MOCVD growth mechanism for GaN growth (with TMGa and NH3 precur-

sors) is illustrated in Fig. 2.5. 

 

Figure 2.5 Basic transport and reaction steps for GaN growth in MOCVD reactor  

The figure is after Ref. [13]. 
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The growth rate depends on the growth temperature. Figure 2.6 illustrates the dependence of the 

growth rate on the growth temperature which is divided into three regions as described by Shaw [14].   

 

Figure 2.6 Thermal regimes of growth rate in MOCVD. 

 

At low temperatures, (range about 400-550 °C), kinetics of chemical reactions that take place either 

on the surface of the substrate or in the gas-phase controls the growth rate. The mass transport of constitu-

ents through the boundary layer onto the substrate limits the growth rate under the intermediate tempera-

ture (range about 550-750 °C). The growth rate is constant in this region and only the boundary layer is 

dependent on temperature. In the third region, the decrease in growth rate with increasing temperature is 

thought to be the result of thermodynamic effects or reactant depletion due to upstream reactions [15, 16].  

A typical MOCVD system can be grouped into four major components in term of their functions 

and gas flow streams: (i) precursor sources, (ii) gas delivery system for controlling precursor gasses or 

vapors into the reactor, (iii) reactor zone including a substrate holder and a heater, and (iv) exhaust system 

to remove waste [17]. A schematic of a typical MOCVD is depicted in Fig. 2.7 which is taken from Ref. 

[17] Chapter 6, Figure 6.8. 
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Figure 2.7 A schematic of a typical MOCVD. 

The figure is taken from Ref.[17] Chapter 6, Figure 6.8. 

 

The deposition rate of any MOCVD process can be controlled by the surface reaction rate or mass 

transport rate.  Commercially, the deposition rate is controlled by the mass transport rate.  In the shower-

head reactor, which has become more common, the gasses are inserted from the showerhead flange 

through many small holes (~0.5 mm) toward the substrate. The showerhead uniformly distributes the re-

actant gasses over the substrate yielding a uniform concentration field. Afterward, these gasses cross the 

boundary layer to the surface of the substrate via concentration diffusion. The close distance (~1cm) be-

tween the showerhead and the substrate reduces the convection rolls and gas residence time (the time 

taken to remove mass by gas flow) [18]. In recent mathematical studies [18] of mass transport from a 

showerhead MOCVD reactor, it has been shown that the flow pattern is a stagnation flow and the vertical 
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velocity component, a point above the substrate which only depends on the vertical distance, is independ-

ent of the radial position. Also, the boundary layer thickness in stagnation flow is independent from the 

radial distance. Therefore, uniform velocity, concentration and temperature boundary layer can be built 

above the substrate. Furthermore, Hui [18] has shown that the there is an important effect of ceiling 

height of the reactor on the residence time and mass transport process. The small ceiling height leads to a 

short residence time, and diffusion plays an important role in axial transport, while both convection and 

diffusion are important in radial transport. 

The advantages of this method are the large scale capability (multi-wafer achievable), ability to 

grow complex heterostructures, growth on patterned substrates and faster growth than MBE. Also, high 

purity materials and an abrupt interface between two materials can be obtained using this technique. How-

ever, since it is not possible to use RHEED in higher pressure, monitoring of exact growth rate is difficult 

in MOCVD. Additionally, the precursor materials used in this method are expensive.  

2.6 High Pressure Metalorganic Chemical Vapor Deposition (HP-MOCVD or HPCVD) 

When alloying ternary materials (InGaN, AlGaN, InAlN) using their binaries of InN, GaN, and 

AlN, in order to retain the same crystal structure, sufficient mixing of binaries is required. The deviation 

of the crystal structure from the ideal structure results in phase separation. The spinodal phase diagram 

calculations have shown a large unstable region at typical growth temperatures [19, 20]. For InGaN, the 

critical temperature has been found near 1250 ºC which exceeds the melting point of InN (1100 ºC). The 

calculated InN stability in GaN is less than 6% at the maximum growth temperature used for InGaN (800 

ºC). These results indicated that InGaN alloys are unstable over most of the composition range at typical 

growth temperatures and the reported phase separation of InGaN could be a result of this [20]. However, 

there are many reports of InGaN growth over all of the composition range [19, 21, 22]. This disagreement 

could be explained by the reduction of the unstable region due to strain in the InGaN layer caused by the 

GaN substrate [19, 23]. 
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The low pressure growth of InN and its alloys are limited due to the following issues. (i) The 

growth temperature window gap between InN and GaN or AlN requires the adjustment of the growth con-

ditions for heterostructures and alloy growth and for each composition in alloys growth, (ii) low dissocia-

tion temperature of InN (~600 ºC), and the large partial pressure gap between trimethylindium and ammo-

nia precursors. At low temperature, the cracking efficiency of ammonia is low hence high V/III ratio is 

required to avoid the metal droplets on the surface. There are two main advantages in using a higher 

growth temperature. One is, the mobility of the constituent can be increased, which may result in better 

quality films. The second is, the reduction of the growth temperature window gap between the binaries of 

InN and GaN (AlN), which may allow the stabilization of the InGaN alloy. The high pressure MOCVD 

approach is explored to utilize the growth process at elevated pressure in order to stabilize the surface of 

InN and InGaN at optimal growth temperatures [24]. 

A HP-MOCVD system is designed with a high-pressure horizontal narrow flow channel reactor for 

the III-nitrides and a real-time optical characterization system. Figure 2.8 (a) illustrates the view of the 

inner reactor, which consists of two halves. Each half is arranged symmetrically and include a substrate 

within a fused silica plate that is heated from the back side. This arrangement prevents a deposition on the 

opposite reactor wall and reduces heat induced turbulence above the substrate surface [24]. Figure 2.8 (b) 

shows a schematic of heating configuration.  

 

Figure 2.8 (a) A view of upper and lower halves of the inner reactor and (b) A schematic of heating 

configuration of inner reactor for HP-MOCVD reactor. 
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The height of the reactor channel is set as 1 mm in order to reduce the precursor length at elevated 

pressure and to optimize the use of gasses. Also, adjustment of the height of the reactor above the growth 

surface is required for optimum precursor utilization, because the thickness of the surface boundary layer 

has an inverse square-root of pressure relation. A constant cross section is upheld from gas inlet, through-

out the reactor, to minimize flow induced turbulence in the reactor. The inner reactor cylinder is sur-

rounded by an outer cylinder which can be pressurized up to 100 bar [24]. A pulsed precursor injection is 

utilized to attain compression of the precursors to the desired pressure, minimization of gas phase reac-

tions, optimization of nucleation kinetics, and analysis of gas phase and surface decomposition dynamics 

in real-time [25]. 

In order to observe and understand the gas phase dynamics and surface chemistry, three real-time 

optical techniques are used in the HP-MOCVD system. As shown in Fig. 2.9 (The figure is adapted from 

Ref.[25, 26]), the optical access ports are integrated along the centerlines of the substrates, perpendicular 

to the flow direction, in the flow channel reactor, and are entered through the back side of the substrate.   

 

Figure 2.9 A schematic of cross-sectional view of the HP-MOCVD reactor with the optical access 

ports. 
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Precursor’s arrival times and their decomposition are monitored by ultra-violet absorption spectros-

copy (UVAS). Principal angle reflection spectroscopy (PARS) is utilized to monitor and determine the 

film thickness and change in dielectric constant of the film.  Laser light scattering (LLS) is used to under-

stand the surface roughness and crystalline quality of the grown layer. 

2.7 Migration Enhanced Plasma Assisted Metalorganic Chemical Vapor Deposition (MEPA-

MOCVD) 

MEPA-MOCVD is another approach explored to overcome the growth issues discussed in section 

2.1 and 2.6. This has been developed into the MOCVD system by integrating two approaches, migration 

enhanced (ME) and the plasma assisted (PA) techniques. The migration enhanced epitaxy which is a low 

temperature film growth technique was originally introduced to MBE system for the development of 

GaAs and AlAs films [27]. In 1997, it was applied to group III-nitride growth by Hooper et al. [28]. In 

this technique, the delivery of metal and nitrogen precursors are separated in time. Thus, the less volatile 

group III metal precursors are given extra time to migrate along the growth surface to energetically favor-

able sites via adatom diffusion. Then, the active nitrogen species are dosed to the growth front of the ma-

terials to form stationary molecules [28, 29]. This process is repeated for multiple cycles until sufficient 

film thickness is reached. However, until recently, for group III-nitrides, in order to prevent metal drop-

lets from forming during metal-organic deposition, migration enhanced epitaxy has been limited to ap-

proximately a monolayer at a time (for each cycle, the deposition of metal layers is equal to the thickness 

of a metal wetting layer). Therefore, the growth rate was very low. However, recently, it has shown that a 

relatively high growth rate can be achieved even with the presence of meatal droplets by migration en-

hanced epitaxy MBE [30-32].  

This technique has been further developed into the MEAglow MOCVD system for group III-nitride 

growth by Butcher et al. [29, 30]. The MEAglow system operates with a recently developed oxygen-free 

hollow cathode plasma source. The source can be operated at a RF frequency of 13.56 MHz with a maxi-

mum plasma power of 600 W and includes two hollow cathode arrays: ground plane and RF electrode. Due 
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to the self-biasing at the electrode, RF electrode is more cathodic than the ground plane, hence, higher 

plasma density at the RF electrode. However, plasma works as the anode for both electrodes [30]. The 

advantages of this plasma source are, it can achieve higher electron densities than the parallel plate capac-

itive type plasma sources, and it can be scaled into a large areas by increasing the number of holes (each 

hole that can independently operate).  

At Georgia State University, a customized showerhead injection system with the recently devel-

oped MEAglow oxygen-free hollow cathode H2/N2 plasma source has been integrated into a traditional 

MOCVD system.  In this system, precursors can be operated in a pulsed or continuous delivery mode. 

The growth pressure of the reactor can be operated in the range of 1-10 mbar. This system can narrow the 

growth temperature gap between III-N’s binaries by kinetic means, using the kinetic energies of ionized 

nitrogen fragments in the afterglow plasma regime to stabilize the growth surface as well as group V-pre-

cursor fragments [33]. Thus, a significant relatively low growth temperature can be used compare to tradi-

tional MOCVD system. A schematic of a MO and N* plasma precursor injection modulation in MEPA-

MOCVD system are illustrated in Fig. 2.10. 

As shown in the Fig. 2.10, it is possible to have MO and N* plasma overlap or completely separate 

them. By tailoring the temporal interaction between MO precursors and N* plasma, the active species in 

the gas phase and the growth surface can be controlled. As well as, the epitaxial film deposition process is 

dependent on various parameters such as precursor separation times, growth temperature, plasma and MO 

exposures, reactor pressure, and plasma power which controls the V/III ratio indirectly.  
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Figure 2.10 A schematic of a MO and N* plasma precursor injection modulation in MEPA-MOCVD system 

The epitaxial film deposition process is dependent on the various parameters such as precursor separation 

times, growth temperature, plasma and MO exposures, reactor pressure, and plasma power which controls 

the V/III ratio indirectly.  
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3  CHAPTER 3: CHARACTERIZATION TECHNIQUES 

Characterization of group III-N semiconductor materials can be performed during the growth (in-

situ) or after the growth (ex-situ). Different kinds of characterization tools are used to study the funda-

mental properties of the material, and the characterization techniques based on electromagnetic (EM) ra-

diation (infrared to X-ray) are the most effective among these techniques. Most of characteristics of the 

semiconductors can be extracted through these EM radiation techniques. The phonons (by quantum vibra-

tion), the electronic band structure and the bandgap (absorb EM radiation), free electrons and holes (ab-

sorb EM radiation when they are moving), and defects and impurities (interact with EM radiation by their 

own lattice vibrations or by ionization process) of the crystal can be examined in the wavelengths from 

ultraviolet to the millimeter range [1]. Furthermore, EM radiation can be used to measure the dimensions 

and explore the interfaces of semiconductor microstructures. Hence, EM radiation is useful in examina-

tion of the structure and properties of a semiconductor. Among many characterization techniques, the op-

tical techniques are more manifest, because they are fast, usually non-destructive, and required little sam-

ple preparation. These techniques explore the change in intensity, energy, phase, direction, or polarization 

of light after interaction of the material [2]. 

 This chapter will discuss the Atomic Force Microscopy (AFM) in briefly, which is a non-optical 

technique, and four optical characterization methods: X-Ray diffraction (XRD), Photoluminescence spec-

troscopy, Raman spectroscopy, and Fourier Transform Infrared (FTIR) spectroscopy. 

3.1 Atomic Force Microscopy (AFM)  

Atomic force microscopy (AFM) measures the forces between a sharp tip (diameter ~20 nm) 

which connects on to a flexible cantilever, and the sample surface, and gives a three-dimensional topogra-

phy d of the surface. Figure 3.1 illustrates the basic component of a typical AFM system. 
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Figure 3.1 A schematic of a typical AFM. 

 

Usually, AFM does not measure the forces between the tip and sample surface directly. They cal-

culate by the Hook’s law, 

    F kx                         3.1 

This force (F) depends on the stiffness [the spring constant (k)] and cantilever deflection (distance be-

tween the tip and the sample surface). Usually, in AFM, the beam bounce method (an optical lever tech-

nique) is used to measure the cantilever deflection. Here, a semiconductor laser diode beam is focused 

onto the back of the cantilever. Then, it is reflected onto a position sensitive photodiode detector, which 

measures the bending of the cantilever during the tip is raster-scanning across the sample. A map of the 

topography and other properties of the surface are generated using the change in force (small forces cause 

less deflections) as a function of position.  

In AFM, there are three essential components which need to be controlled in order to achieve the 

near atomic resolution. (1) Cantilever with a sharp tip: The cantilever stiffness should be less than the ef-

fective spring constant holding atoms together (order of 1-10 nN/nm). The radius of curvature of the tip 
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should be smaller (less than 20-50 nm). (2)  The scanner that controls the x-y-z position: A piezo-electric 

tube scanner is used to control the movement of the sample in the x, y, and z-directions or the tip. (3) The 

feedback control and loop: there are two principal modes that AFM can operate, which are the with the 

feedback control and the without the feedback control. With the feedback control mode: This operation 

mode is also called as constant force mode. In this mode, moving the sample up and down, the piezo will 

adjust the tip-separation to maintain a constant force. Without the feedback control mode: the microscope 

is operating in the deflection mode, and this mode is useful for imaging very flat samples at high resolu-

tion. 

There are many ways to adjust the contrast of the image, and the three general modes are (1) con-

tact mode, (2) non-contact mode, and (3) tapping mode. The three modes regimes in the forces-distance 

graph are shown in Fig. 3.2. In the contact mode, the tip is in intimate contact with the surface and the 

force on the tip is repulsive. The force between the tip and the sample is kept constant by maintaining the 

constant cantilever deflection. This mode is useful when a rough sample is scanning. In the non-contact 

mode, the tip does not contact with the sample. The tip is oscillated slightly above the surface at its reso-

nant frequency and a constant oscillation amplitude is maintained during the scanning. The tapping mode 

is operating somewhere in between contact and non-contact modes [3]. In this study, non-contact mode is 

used. 

In order to process (such as filtering, background subtraction), display (changes the view of im-

age), analyze (quantitative information of the sample, such as roughness), and report the sample image, a 

computer software is used. The RMS (root-mean-squared) surface roughness can be calculated using fol-

lowing Eq.3.2 [4]. 

 
21
;

N

q i ave

i

R Z Z
N

   where, /
N

ave i

i

Z Z N                     3.2 

Here, iZ , N, and mZ  are the height at the i th row or column of the surface scan, number of rows and col-

umns of the scanned area, and average height, respectively.  
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Figure 3.2 The typical force-distance curve and different modes and regimes of the tip-surface interaction 

in an AFM. 

 

3.2 X-Ray Diffraction (XRD) 

In one way or another, the optical or electronic properties of the semiconductor depend on its 

structural properties. There are many structural forms for the semiconductors materials and which are re-

quired a wide range of experimental techniques to analyze them. Structural properties can be basically 

divided into two: the macroscopic and the microscopic. Then, the structural parameters of materials can 

be categorized into those subdivisions as in Table 3.1 [5]. 

X-ray diffraction is a powerful tool for structural analysis. Which kind of information can be de-

termined from it, is dependent on the sample itself.  If the sample contains many crystallites, strains, 

phases, orientations, etc., separating of them is not quite an easy task. However, some properties can be 
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obtained rather accurately while others can be obtained by extending the range of experiments. The struc-

tural information of the sample may be limited to some average parameters, and its variations because the 

structural probe measures an average of a region or analyze an unrepresentative region of an inhomogene-

ous sample [5]. For highly inhomogeneous structural types, some long-range order, orientation distribu-

tion and their variations will be averaged by the X-ray diffraction. This averaging can be done in several 

ways, within a coherently diffracting volume and the X-ray beam dimensions on the samples. X-ray anal-

ysis techniques depend on the material, the property of interest, the flexibility of the diffractometer, the 

X-ray wavelength, etc., and the understanding of these are important when making a reliable analysis of 

the sample [5]. Figures 3.3 and 3.4 show a typical macroscopic and microscopic properties of a layered 

structure [5]. The probe is defined not only two dimensionally but also some depth into the sample. 

Therefore, the probe brings in all the information of the sample as shown to create a signal. 
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Table 3.1 Various structural parameters used in defining materials. 

Type General property Specific property 

Macroscopic 

Shape 
Layer thickness 

Lateral dimensions 

Form 

Amorphous 

Polycrystalline 

Single Crystal 

Composition 

Structural Phase 

Elements present 

Phase extent 

Orientation 
General preferred texture 

Layer tilt 

Distortion 

Layer strain tensor 

Lattice relaxation 

Warping 

Homogeneity Between analyzed regions 

Interfaces Interface spreading 

Density 
Porosity 

Coverage 

Microscopic 

Shape 
Average crystallite size 

Crystallite size distribution 

Composition Local chemistry 

Orientation Crystallite tilt distribution 

Distortion 

Crystallite inter-strain distribution 

Crystallite intra-strain distribution 

Dislocation strain fields 

Point defects 

Cracks 

Strain from precipitates 

Interface Roughness laterally 

Homogeneity 
Distribution within region of sample 

studied 
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Figure 3.3 The main macroscopic parameters that characterize a layered structure.  

 

 

Figure 3.4 The main microscopic parameters that characterize a layered structure.  

 

The interaction of the X-ray photon with the sample can occur in many different ways and that 

can depend on the energy of the photon and the nature of the sample. Hence, the X-ray photons are elec-

tromagnetic and it has the same nature as light, however shorter wavelength and the electric field vector 

interacts with the sample most strongly. However, the magnetic interactions are only seen in special con-

ditions and which is very small.  
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X-rays are generated by colliding high speed electrons with a metal target (typically Cu) [6]. Gen-

erally, monochromatic x-rays are chosen for XRD. As these x-rays collide with the crystal at a certain an-

gle of incident, intense reflected x-rays are produced by constructive interference. In order to occur con-

structive interference, the path difference AB (as shown in Fig. 3.5) is equal to an integer multiple of the 

wavelength. When the constructive interference occurs, the angle between the incident beam and line par-

allel to the surface and the angle between the diffracted (scattered) x-ray to a parallel line to the surface 

are equal; therefore the path difference can be calculated as a function of the lattice spacing and the angle 

[7]. This phenome is known as the Bragg’s law, which is expressed by the Eq. 3.3. The conditions re-

quired for Bragg’s diffraction are depicted in Fig. 3.5 [8].   

 2 sinhkln d                              3.3 

where, n ,  , hkld , and   are the order of reflection (an integer), incident x-ray wavelength, the inter-

planar spacing of the crystal, and angle of incidence, respectively. h, k, l are the Miller indices. 

 

 

Figure 3.5 Schematic representation of x-ray diffraction; (a) conditions required for Bragg’s diffraction to 

be occurred and (b) an illustration showing the relationship of the incident (k0), diffracted (kh), and scat-

tering (S) vectors with respect the crystal.  

 

The angle 2 (diffracted angle) between the incident x-rays and the detector, is measured experi-

mentally. The crystal behaves as a 3D diffraction grating. When the sample or the detector (or both) 

moves, a 3D array of diffraction maxima is generated. Each set of crystal planes generates a diffraction 
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spot. The positions and the shapes of the diffraction spots are inversely related to the spacing between the 

crystal planes and the size of the crystallites. The crystal planes and the diffraction spots are related to the 

real space and the reciprocal space, respectively and the latter form a 3D reciprocal lattice [8]. The dif-

fraction process can also be demonstrated with respect to the reciprocal lattice as shown in Fig. 3.5 (b). 

The direction of the S vector depends on the angle . This is often illustrated by constructing of Ewald 

sphere. The reciprocal lattice can be investigated using the scattering vector (the probe) and magnitude of 

the S vector dependence on the angle 2  [8]. 

By rotating the detector and the sample in a diffractometer, reciprocal space can be found. Typi-

cally, a diffractometer includes an x-ray source and a detector with incident and/or diffracted beam condi-

tioners. Mostly, for the III-nitrides analysis, high resolution (HR) diffractometers are required [8]. Figures 

3.6 (a) and (b) illustrate the example geometries used in the HR diffraction and the sample reference 

frame with axes of rotation in the set up. HR diffractometer is equipped with a primary monochromator to 

filter out unwanted wavelength, reduce  (the wavelength spread of the radiation), and reduce  (the 

incident beam divergence).  

 

Figure 3.6 (a) The example geometries for the HR diffraction and (b) Sample reference frame with axes 

of rotation.  

The  axis projects out of the plane of the page.  and  axes are in the plane of the page [8]. 
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HRXRD has two instrumental configurations; double axis and triple axis. In the double axis con-

figuration, the detector is opened and all Bragg angles ( 2 ) are measured simultaneously [9]. In the triple 

axis configuration, there is a slit or analyzer crystal before the detector to define the 2  direction. This 

configuration will provide a good 2 resolution, even though it gives a lower intensity [8]. 

There are several scan types available according to the sample axes rotation. Figure 3.6 (b) shows 

the sample axes of rotation in a typical ‘four circle’ diffractometer and Table 3.2 summarizes the availa-

ble scan type on HR diffractometers. Each of these scan types are used to in extracting the different type 

of sample information. The type “ -scans” is used to measure the quality of the films by scanning the 

diffraction spots in arc. The broadening is used to detect the dislocations and the wafer curvature. The 

2   scans type uses for lattice parameter determination. 

The lattice parameter c can be calculated for the hexagonal systems, by measuring the two high-

angle symmetric reflections (d0006 and d0004), directly using the Eq. 3.4 [8]. 

2 2 2

2 2 2

1 4

3hkl

h k hk l

d a c

 
                             3.4 

From high-angle asymmetric reflections measurements (usually, d10-15, d20-25, or d20-24) and the 

previously calculated lattice parameter value “c”, the lattice parameter “a” can be determined. Note that 

this is just a quick method for determination of lattice parameters. 

There are several x-ray techniques that can be used to learn about sample information. Table 3.3 

are presented the x-ray techniques and the type of the sample information that can be extracted from the 

certain technique. This shows that the HRXRD coupled scan or RSM (reciprocal space map) is the best 

technique that can be used to analyze the thickness, composition, lattice strain/relaxation, and orientation 

of the nearly perfect and the textured epitaxial films. Here, coupled scan is a plot of scattered X-ray inten-

sity versus 2 , however,   changes the way that is related to 2  [9]. 
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Table 3.2 Available scan type on HR diffractometers. 

  is the angle between incident rays and sample surface. 2   is the angle between the incident and 

diffracted rays [8]. 

Scan type Description 

2    

The x-ray source or the sample is rotating by  while detector is rotating by 2  

keeping the angular ratio as 1:2. The x-axis unit is 2 . In reciprocal space, S moves 

outwards from the origin and the length of S changes, direction of S stays the same 

and depends on the offset. If no offset and   , which is a symmetrical scan (

2  ) which is vertical in reciprocal space. Standard type for powder diffraction. 

2   Like 2   scan, however, x-axis is   Standard for HR and reflectivity work. 

2  

Detector is moving while the sample and the source is at stationary. Direction and 

length of S change. S traces an arc along the circumference of the Ewald sphere. 

Both direction and the length of S change. 

 -scan 

The sample is rotating about the   axis and the detector is at stationary. In recipro-

cal space, S traces an arc centered on the origin. The length of S remain the same, 

direction of the S changes. 

Q-scan 

Software can use to scan  and 2 in non-integer ratios, scanning S along a given 

direction in reciprocal space. It can collect reciprocal space maps of any preferred 

shape. 

  

Rotate the sample about the  axis, generally in the plane of the sample. The length 

of the S remains the same and sample moves, bringing the reciprocal lattice spot 

through S, thus, the direction of the S changes with respect to the sample. 

  
Same as  scans, except that sample rotation about the  axis (plane of the sample 

rote with respect to the incident). 
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Table 3.3 The x-ray techniques and the type of the sample information that can be extracted from the certain 

technique. 

The abbreviation are used as followings: XPR- X-ray Reflectivity, HRXRD- High Resolution XRD using 

coupled scan or RSM (reciprocal space maps), RC- Rocking Curve, XRPD- Bragg-Brentano powder dif-

fraction, GIXD- grazing incidence XRD, IP-GIXD- in-plane grazing incidence XRD, PF- pole figure, Psi- 

sin2psi using parallel beam [9]. 

 Thickness 
Composi-

tion 

Lattice 

strain/Relax-

ation 

Defects 
Orienta-

tion 

Residual 

stress 

Crystallite 

size 

Perfect epi-

taxy 

XPR, 

HRXRD 

HRXRD, 

RC 

Assume 

100% 

Assume 

none 
HRXRD - - 

Nearly per-

fect epitaxy 

XPR, 

HRXRD 

HRXRD, 

RC 
HRXRD RC HRXRD - - 

Textured 

epitaxial 

XPR, 

HRXRD 
HRXRD 

HRXRD, 

IP-GIXD 
RC HRXRD - - 

Strongly 

textured 

polycrys-

talline 

XPR 
XRPD, 

IP-GIXD 
IP-GIXD 

XRPD, 

IP-

GIXD 

IP-GIXD, 

PF 

IP-

GIXD 

XRPD, 

IP-GIXD 

Textured 

polycrys-

talline 

XPR 

XRPD, 

GIXD or 

IP-GIXD 

- 

XRPD, 

GIXD 

or IP-

GIXD 

PF Psi 
XRPD, 

GIXD 

Polycrys-

talline 
XPR 

XRPD, 

GIXD 
- 

XRPD, 

GIXD 
PF Psi 

XRPD, 

GIXD 

Amorphous XPR - - - - - - 

 

3.3 Photoluminescence Spectroscopy (PL) 

When electromagnetic radiation interact with the semiconductor, the energy of the photon will be 

absorbed by the electron. The electron will transfer onto a higher energy level (if available) where the en-

ergy difference equal to the photon energy. If the energy of the incident photon is greater or equal to the 

bandgap of the semiconductor, the photon can excite an electron from the energy state in valence band 

(VB) into the higher energy states in the conduction band (CB) through the process known as bandgap 
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excitation. Then, this electron, occupying in a higher energy state, will transit or return into an empty 

lower energy state generating radiation (recombination). In the case of radiative emission, the energy is 

emitted as electromagnetic radiation (photons) and the process is called as photoluminescence. The en-

ergy is emitted as heat (phonons) for the case of non-radiative recombination. In many ways, the radiative 

emission of the photons is opposite to the absorption of the photons. Additionally, according to the con-

servation laws of energy and momentum, the fundamental absorption of valence to conduction band is 

analog to the radiation recombination (band to band) of the electron and hole. Like in the rate of absorp-

tion, for the radiative emissions, according to the Fermi’s Golden rule, the rate of the emission is the 

product of densities of the final states (empty lower states) and the densities of initial states (higher en-

ergy states) [10]. However, there are some distinction between them. They are: recombination process is a 

non-equilibrium process. As well as, absorption is expressed by Beers’ law (the mean free path for photon 

decay), while emission is defined by the rate of photon generation for unit volume. Furthermore, all the 

electronic states in the semiconductor contribute in absorption yielding broad spectral features. However, 

radiative emission occur when recombining electrons and holes with well-defined energies. Conse-

quently, PL spectrum is narrower than an absorption spectrum. Therefore, PL produce sharp peaks and 

gives an accurate values for bandgap and impurity energies than absorption. In PL, a laser is used as the 

excitation sources. The use of other excitation method, e.g. electric current, electron beam, etc. make dif-

ferent emission processes (e.g. electroluminescence, cathodoluminescence, etc.). 

There are several possible recombination process in radiative recombination in a semiconductor 

and they are illustrated in Fig. 3.7. 
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Figure 3.7 Possible recombination process in a semiconductor in real space.  

Here, e and h represent the electron and hole carries, respectively, while D and A represent the donor and 

acceptor impurity levels [11]. 

 

The processes shown in Fig. 3.7 are, (i) Band-to-band (e-h): The radiative recombination of 

electron-hole pairs that occurs between the conduction band and the valence band.  

(ii) Free excitons (Fex): If the semiconductor material is intrinsic (very pure), an electron and a 

hole bound each other by the Coulomb attraction and form a quasi-particle called an exciton. Afterwards, 

a photon will be emitted as the exciton collapses radioactively producing a very narrow spectrum. Exci-

tons can move through the lattice as a whole with zero net charge and no current. The energy of the emit-

ted photon ( h ) can be expressed in terms of energy gap of direct gap semiconductor ( gE ) and the bind-

ing energy of the exciton ( exE ), as following Eq. 3.5 [1]. 

g exh E E                                        3.5 

The binding energy of the exciton is a few millielectron volts and which is slightly below the excited state 

energy. In PL, behavior of the exciton is the indication of the sample quality. 

 If the semiconductor is extrinsic, free excitons can attract with donors, acceptor, or neutral impu-

rities by Coulomb force and form bound excitons. However, the energy of the emitted photons are lower 
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than those of the free excitons, due to the higher binding energy. Each type of exciton generates a distinc-

tive PL peak. 

 (iii) Free-to bound (e-A, D-h, e-D): New states can occur within the forbidden gap (between 

conduction band and the valence band) due to the presence of doping (n or p) or lattice defects. Hence, 

the transitions between the impurity states and one of the energy states (conduction or valence) can be oc-

curred. Although these transition are less compared to band-band transition, they still appear intensely in 

PL spectrum. 

 (iv) Donor to acceptor (D-A): This transition occur between donor and acceptor levels.  

 

The broadening of the line FWHM (the full width half maximum) of a given PL peak is known 

the linewidth of the emission peak. There are three reasons for broadening of a PL linewidth. They are, 

Heisenberg broadening, thermal (homogeneous) broadening, and inhomogeneous broadening [12].  

3.3.1 Experimental setup for PL Spectroscopy 

The designed PL measurement system in our lab is shown in Fig. 3.8. 

 

Figure 3.8 Designed experimental setup for PL measurements by the author. 
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The main components of the system are laser excitation source, monochromator, detector, and 

computer data acquisition system. The wavelength of the excitation source should be anywhere within the 

absorption spectrum of the material to sufficiently optically excite the sample and produce an emission 

spectrum. A laser, with narrow spectral linewidth, is selected due to several advantageous. Due to its co-

herent nature, it has a concentrated optical power within a narrow beam, high photon flux density and 

high rate of optical excitation [13]. Usually, the energy of the laser is greater than the fundamental 

bandgap of the semiconductor, and the average spot size is between 1 and 100 μm. In order to block the 

laser plasma emission and to transmit only the laser line (only the excitation wavelength) for exciting the 

material, filter 2 is used. The collected PL emission signal is directed into a monochromator and then into 

a photodetector. The filter 1, before the monochromator entrance, is used to avoid the laser line and to al-

low all other emissions to pass through it. 

A mechanical chopper (with 6/5 slot windows and 4-400 Hz modulation frequency) is inserted in 

the excitation beam path to modulate optical excitation of the material. Periodic slots of chopper blade 

can interrupt the continuous wavelength, consequently, modulate a periodic excitation intensity, PL emis-

sion, and photodetector current. A lock-in amplifier is used to gain high signal-to-noise ratio (SNR), by 

filtering background noise (room lighting) from the photodetector current. 

The monochromator (DK480) is employed with three grating: UV, Visible, and IR. The grating 

and the slits (entrance and exit) are controlled by LabView software. As the photodetector, a photomulti-

plier tube (PMT) is employed for visible and near visible measurements while the InGaAs detector is used 

for near infrared applications. In both devices, an electric field is created by an external bias voltage. In 

this electric field, the excess photogenerated carriers wipe out from the region of absorption to an external 

circuit. Then, the resulting total current will be measured by a voltage drop across a series resistor. The 

photodetector current is collected by the lock-in-amplifier. If the photodetector current is so small, a pre-

amplifier can be utilized before the lock-in-amplifier to amplify the signal. Then, the lock-in-amplifier 
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can send a high SNR signal to a computer trough a USB/data acquisition to produce the PL intensity ver-

sus wavelength graph. In order to do this, all electrical system must communicate with the computer and 

LabView software is used for this. See the appendix.  

3.4 Raman Spectroscopy 

Raman scattering (inelastic scattering) is a versatile and powerful method for studying a wide va-

riety of samples in different physical states; e.g. solids, liquids or vapors, in hot or cold states, in bulk or 

as surface layers. Raman spectroscopy allows examining the samples in aqueous solutions, inside 

glass/quartz containers, and without any sample preparations. Thus, the technique is used in many appli-

cations where microscopic, chemical analysis, imaging, and non-destructive method is needed.  

Light is described as an electromagnetic wave or as a particle “beam” containing single energy 

quanta; therefore, carry both momentum and energy. Thus, photons can contribute in inelastic scattering 

by exchanging momentum and energy between them and the scattering medium [14]. Inelastic light scat-

tering was theoretically anticipated by A. Smekal in 1923 [15] and this effect was first discovered experi-

mentally in liquids by Sir C. V. Raman and K. S. Krishnan in 1928 [16]. The effect, inelastic scattering of 

light by molecular and crystal vibrations, was named as Raman effect. 

When an incident photon with the frequency of i  interact/collide with a material, the photon can 

be scattered either at the original frequency (elastic scattering) or some shifted frequency (inelastic scat-

tering). The first process is called Raleigh scattering (no exchange energy), and the second process is 

called Raman scattering. The frequency of the molecule can be an internal frequency equivalent to vibra-

tional, rotational, or electronic transition inside the molecule. However, vibrational Raman effect is the 

most important. There are two types of Raman scattering processes. If the radiation scattering shifted to 

the lower frequency side (to the red) from the exciting line, the process is called Stokes scattering in 

which the molecule or the atom absorbs energy. If the light scattering is to the higher frequency side (to 

the blue), which is called anti-Stokes scattering, in which the molecule or the atom loses the energy.  
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Raman effect occurs based on three single processes: (1) the material absorbs an incoming photon 

(frequency iω and wave vector ik ), and then, the photon excites absorbing material from its initial state to 

a virtual state (intermediate state). (2) Generates (Stokes process) or annihilates (anti-Stokes process) an 

elementary excitation (frequency pω and wave vector q). In solids, excitations can be phonons, plasmons, 

magnons, etc. and the phonons (lattice vibrations) are the elementary excitations in a regular periodic 

structure. (3) Creates a scattered photon (frequency sω and wave vector sk ) through the recombination 

[14, 17]. 

Figure 3.9 illustrates the Rayleigh, Stokes, and anti-Stokes scattering processes in Raman scatter-

ing.  

 

Figure 3.9 Jablonski diagram for Rayleigh and Raman (Stokes and anti-Stokes) scattering.  

Incident photon is characterized by its energy ( ihω ) and wave vector ( ik ). pω and q are the frequency and 

wave vector of the phonon, respectively. The scattered light is characterized by its energy ( shω ), wave 

vector ( sk ), and its corresponding intensity, which are defined by the properties of the material. Raman 

measurements, usually, focus the Stokes scattering. The figure is after Ref. [17] 
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3.4.1 Kinematical limitation in Raman Scattering 

For first-order Raman scattering (only one phonon process), the energy and momentum conserva-

tions yield, 

s i pω ω ω                                      3.6 

s ik k q                                       3.7 

Here, the signs ‘+’ and ‘-’ refer to anti-Stokes and Stokes scattering, respectively. The magnitude 

of the incident wave vector is,
( ) 2 ( )

 i i
i

n n
k

c

   


, where n and c are refractive index and speed of 

light, respectively. The magnitude of the scattered wave vector is, 
( ) 2 ( )

 s s
s

n n
k

c

   


. In order to 

consider the conservation laws (energy and momentum), let’s consider an ideal crystal with translational 

symmetry. The conditions for the momentum conservation are valid only for the samples that have large 

enough scattering. Typically, light scattering experiments perform with the incident and scattered photons 

in the visible frequency
14 15

i,sω /2π 10 -10 Hz . The excitation frequency lay in the far- to near-infrared 

range 11 14

pω /2π 3 10 -10 Hz  (10-3000 cm-1) [18]. Usually, the energy transfer is smaller than the energy 

of the incoming photons, which means, p i  and i sk k . Therefore, the conditions for wave vector 

can be approximated and written as, iq 2 k sin(θ/2) , where θ is the angle between the directions of the 

incident and the scattered photon. The maximum excitation wave vector is
max i

2
q 2 k  in

c


and for 

typically probed Raman scattering experiments in typical solids, this is in the range of 
3

max0 q 3 10  

Å-1, which is smaller than the size of the Brillouin zone boundary, 
ZB

2
k 1 

a


 Å-1 (‘a’- lattice constant 

of the crystal) [13]. Hence, substantially, this conclude that Raman experiment can probe only excitations 

very close to the Brillouin zone center ( q 0 ). This makes a limitation comparison with other tech-
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niques used in studying solid state excitations, for instance, neutron scattering. Nevertheless, the limita-

tion can avoid in special situations, for examples, excitations of two-particle (two phonons, two magne-

tons, etc.), and in amorphous and discorded materials that have lost the wave vector conservation.  

3.4.2 Raman Scattering Selection Rules 

It is easiest to explain Raman scattering selection rule in a semiclassical way. Considering infinite 

medium and assuming the medium is isotropic, one can represent the electric susceptibility by a scalar. 

Consider an incoming electromagnetic field describes as follows [19],  

( , ) ( , ) cos( )i i i iE r t E k k r t                                      3.8 

This external electric field interacts with the solids and leads to a local polarization, which can be 

written as, 

( , ) ( , ) cos( )i i i iP r t P k k r t                                      3.9 

Here,   ( , ) ( , , ) ( , )i i i i i iP k k Q E k                                    3.10 

where,  is the electric susceptibility, the system’s response to the electromagnetic field. At a finite tem-

perature,  can fluctuate due to thermally excited atomic vibrations, which refer to phonons in a crystal-

line semiconductors. Q is the atomic displacement, which is associated with a phonon and can be de-

scribed as following, 

( , ) ( , ) cos( )p pQ r t Q q q r t                                    3.11 

Supposing that the characteristic electronic frequencies which determine the electric susceptibility 

are greater than p , therefore, the electric susceptibility changes as a function of the atomic displacement. 

Then,  can be written as a Taylor series in Q, because, usually, the amplitude of these vibrations are 

smaller than to the lattice constant of the crystal.  

0 0
( , , ) ( , ) / ( , ) ....i i i ik Q k Q Q r t                          3.12 
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where, 0 is the electric susceptibility without fluctuations. In above Eq. 3.12,   has divided into two: a 

static and a dynamic Q-dependent part. Relating this for polarization of the solids, the first term corre-

sponds to P0, a static polarization which is oscillating with incident field. The second term represent the 

polarization induced by the lattice displacement. Therefore, material polarization is given [19],  

0( , , ) ( , ) ( , , )indP r t Q P r t P r t Q                                       3.13 

Then, Eq. 3.12 can be written as, 

0 0

( , , ) ( , , ) ( , )cos( . )

( , ) ( , )cos( ) / , ) ( , )cos( )

i i i i i i

i i i i i i i i i i

P r t Q k Q E k k r t

k E k k r t Q Qr t E k k r t

   

      

  

      
                      3.14 

From Eq. 3.13, 3.11, and 3.14,  


0

( , , ) / ( , ) cos( ) ( , ) cos( )ind p p i i i iP r t Q Q Q q q r t E k k r t                                    3.15 



0

0

( , , ) ( , ) ( , ) cos( )

1
/ ( , ) ( , ){cos[( ) ( ) ] cos[( ) ( ) ]}

2

ind i i i i i i

p i i i i p i i p

P r t Q k E k k r t

Q Q q E k k q r t k q r t

   

      

  

           

                 3.16 

The first term in Eq. 3.16 corresponds to the elastic scattering (Raleigh) while the second term 

presents the Raman scattering process. Raman scattering term consists two waves with shifted frequencies 

and wave vectors, resulted from the incident radiation. Stokes scattering wave has the wave vector 

( )ik q and frequency ( )i q while those for the anti-Stokes wave are ( )ik q and ( )i q , respectively. 

It is noted that only first-order Raman scattering has been considered in Eq. 3.16. The occupation number 

of a phonon state rises and energy of incident light transfer to the solid in Stokes scattering. In anti-Stokes 

scattering process, the occupation number of a phonon state drops and the energy of the phonon transfer 

to the incident light. The probabilities of these two processes are determined by the original occupation 

number of the phonon state. Stokes and anti-Stokes lines can find symmetrically around the Rayleigh line. 

Therefore, scanning of the anti-scattering region can be used to verify a peak in the Raman spectrum. The 

Stokes scattering can overcomes the anti-Stokes scattering at the room temperature. Because anti-Stokes 
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scattering will vanish at low temperature. Furthermore, there is no any contribution of PL, stray light or 

any artifacts from the substrate to the anti-Stokes spectrum.  

The term,  00
/ ( , ) Q Q q  in the Eq. 3.16 is related to the crystal structure and which is 

known as the Raman tensor ( ). If the unit vectors of incident and scattered polarizations are ie and se , 

the Raman intensity is proportional to [19], 


2

0
/ ( )s i p sI e Q Q e                                         3.17 

In Eq. 3.18, it is approximated that q to be zero for one-phonon scattering and  to be complex. Here, it is 

clear that scattered intensity is proportional to the Q (vibrational amplitude) squared, which means, if 

atomic vibration is absent, there is no Stokes scattering. This is a consequence of classical treatment [20].  

If the unit vector of Q is, /


Q Q Q , which is parallel to the phonon displacement, the modified 

Raman tensor ( ) is,  


0

/ ( )pQ Q 


                                             3.18 

Then, scattered intensity is, 

2

s i sI e e                                            3.19 

 is a second-rank tensor including complex components. If one neglects the difference in frequency of 

incident and scattered light, it is a symmetric second-rank tensor since  is a symmetric tensor. Both Ra-

man tensor and the corresponding phonon have the same symmetry. Equation 3.19 determines under 

which experimental conditions regarding the incident and scattered polarization can observe a Raman-

active phonon. A phonon to be Raman-active, 
0

/ Q should be non-zero. 

In order to analyze the Raman spectra of a material, Raman-active modes and their symmetries 

should be identified first. This can be carried out by three steps procedure. (1) Identify the crystal struc-

ture (the space group) and atoms location in the unit cell, precisely. (2) Determine the irreducible repre-

sentations of the zone-center phonons. (3) Identify the scattering tensors for irreducible representations 
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and determine the Raman-active modes [21]. The first and second steps are valid for finding the IR active 

phonon modes too. Therefore, the following subsection discusses the Raman and IR active phonon modes 

of the hexagonal structure.  

3.4.3 Raman and IR Allowed Phonons for Hexagonal Structure 

The space group for the hexagonal structure is
4

6vC , which includes the elements that represent the transla-

tions, reflections and rotation operations. In order to find the symmetry of the Raman and IR active pho-

nons, the irreducible representations of a vector in the structure should be known. If the space group is 

identified, one can find the corresponding character table in the literature. In a character table, a complete 

set of possible symmetry operations in a point group is listed as a matrix. The character table, which is 

derived from Group Theory, for C6v point group symmetry, is given in Table 3.4 [22]. 

 

Table 3.4 Character table and the symmetry operation for C6v point group symmetry.  

C6v  E 2C6(z) 2C3(z) C2(z) 3 v  3 d  

Linear 

functions, 

rotations 

Quadratic 

functions 
Cubic functions 

A1 1  +1 +1 +1 +1 +1 +1 z x2+y2, z2 z3, z(x2+y2) 

A2 2  +1 +1 +1 +1 -1 -1 Rz - - 

B1 3  +1 -1 +1 -1 +1 -1 - - x(x2-3y2) 

B2 4  +1 -1 +1 -1 -1 +1 - - y(3x2-y2) 

E1 5  +2 +1 -1 -2 0 0 
(x, y)  

(Rx, Rz) 
(xz, yz) 

(xz2, yz2) 

[x(x2+y2), 

y(x2+y2)] 

E2 6  +2 -1 -1 +2 0 0 - (x2-y2, xy) [xyz, z(x2-y2)] 

 

 In the character table, left upper corner Schoenflies symbol is for the point group. The Mulliken 

symbols under the first columns are given by the irreducible representations. ‘A’ indicates the symmetry 
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(singly degenerated or one dimensional) with regard to rotation of the principle axis. ‘B’ means the anti-

symmetric (singly degenerated or one dimensional) with respect to rotation about principle axis. Symbol 

‘E’ means that the representation is doubly degenerated or two dimensional. The subscript ‘1’ and ‘2’ in-

dicate the symmetric and anti-symmetric, respectively to C2 perpendicular to the principle axis, if C2 per-

pendicular does not exit, then to v .  

Next columns represent the symmetry operations (conjugacy classes). E is the identity operation. 

Cn (n-fold rotation) means a rotation by 2π/n around an axis of symmetry. Wurtzite structure contains two 

six-fold (2C6) symmetry axes parallel to the [0001] direction: 2π/6 rotation and10π/6 rotation, two three-

fold (3C3) rotations around the [0001] direction: 2π/3 and 4π/3 , and one two-fold (C2) rotation around the 

[0001] direction by π . Additionally, there are six mirror planes three ( 3 v ) of them are passing opposite 

vertices of the hexagon making π/3 each other, and other three ( 3 d ) are passing through faces of hexa-

gon making π/3 each other [23, 24]. 

Numbers in each row represent the character of the irreducible representations of the group. For 

instance, E in second column indicates the degeneracy of the row (A=B=1 and E=2). 

The other three remaining columns are the basic functions, which represent the spectroscopically 

active elements, corresponding to each the representations. The symbols x, y and z indicate the Cartesian 

coordinates while Rx, Ry, and Rz represent the rotations about these axes. The basic functions have the 

same symmetry as the atomic orbitals. Therefore, px, py, and pz orbitals have the same symmetry as x, y, 

and z. Their dipole moment component can be expressed as  x ex ,  y ey  and  z ez . The selec-

tion rule for IR spectroscopy is 
0

/ 0  Q , which means that vibration must change the dipole mo-

ment of the molecule/phonon, a phonon to be an IR active. Since the atomic displacement and x, y, and z 

behave similarly, IR active modes transform as x, y or z. Hence, according to the Table 3.4, A1 and E1 are 

IR active.  
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As p orbitals and d orbitals (dxy, dxz, dyz, dx2-y2, and dz2) are associated with xy, xz, yz, x2-y2 and z2. 

As mentioned previously, a complex polarizability tensor (susceptibility) must be changed for a phonon 

mode to be a Raman active. Since the polarizability operator has the same symmetry of binary and quad-

ratic basic functions of x, y, and z, the phonon modes transform these functions, hence are Raman active. 

According to the Table 3.4, A1, E1, and E2 phonon modes are Raman active. The last column, cubic func-

tions, are linked to the f orbitals and are not interested in this work. 

In the wurtzite structure, there are four atoms in the basis for unit cell. The displacement of each 

atom is in the directions of Cartesian coordinates, x, y and z. Thus, possible phonon modes are 3×4=12. 

Therefore, there are nine optical modes (3×4-3) and three acoustical phonon modes in the long-wave-

length limit for wurtzite materials. These optical phonon modes must show with the ratio of 2:1 transverse 

to longitudinal optical phonon modes [25]. Table 3.5 summarizes the number of the different long-wave-

length phonon modes with N atoms unit cell [25]. 

 

Table 3.5 The number of phonon modes accompanied with a unit cell with N atoms in the basis. 

Modes Number of modes 

Longitudinal acoustic (LA) 1 

Transverse acoustic (TA) 2 

Total # of acoustic modes 3 

Longitudinal optical (LO) N-1 

Transverse optical (TO) 2N-2 

Total # of optical modes 3N-3 

Total # of modes 3N 

 

  In order to find the irreducible representation of phonon modes for the wurtzite structure, one can 

first construct the table for reducible representation of symmetry operations in wurtzite structure, and then 

reconstruct the irreducible representations of phonons. The irreducible representation of phonon modes at 

the zone center are, 

 irreducible Acoustic Optical 1 1 1 2Γ +Γ =2A 2B 2E 2E                           3.20 
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According to the character table, the B1 phonon modes is neither Raman nor IR active. Thus, Raman ac-

tive optical phonon modes are, 

 Optical 1 1 2Γ A E 2E   .                              3.21 

Wurtzite structures are uniaxial crystals, and the optical axis is coincided with the z-axis. Since 

these crystals are anisotropic, the frequency of the polar phonons polarized along c-axis (z-axis) is altered 

those from the polarized in the (x, y)-plane. A1 and E1 polar phonons split into longitudinal acoustic and 

longitudinal optical (LA, LO), as well as into transverse acoustic and transverse optical (TA, TO). The 

energies of the acoustical modes disappear at the Brillouin zone center, and that is not for optical modes. 

The optical branches of A1 (z-polarized) and E1 (polarized in the x, y plane) are both IR and Raman ac-

tive. According to their frequencies, non-polar E2 and B1 phonons labeled as high and low. In brief, refer-

ring to the Eq. 3.20, there are three acoustical modes (one A1LA, two E1TA), and nine optical modes (one 

A1LO, two E1TO, one B1low, one B1high, two E2low, and two E2high). 

Even though, 12 phonon modes should appear in the above representation (Eq. 3.20) as described, 

only eight phonon modes appear. The reason is, energy of the two E1TA are same. As well as, energy of 

the each set, two E1TO, two E2low, and two E2high phonon modes have the same energy.  

The optical phonon modes for wurtzite structure are illustrated in Fig. 3.10. The atomic displace-

ments of the A1 and B1 phonon modes are along the c-axis, while those for E1 and E2 are perpendicular to 

the c-axis. 
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Figure 3.10 Optical phonon modes of wurtzite structure. In our case, the blue (big) and yellow (small) 

sphere represent the group III and nitride atoms, respectively.  

 

3.4.4 Experimental Setup 

Figure 3.11 illustrates a simple schematic view of the home built Raman setup. In general, the 

Raman signal is a very weak signal because only a very small fraction of the total scattered photons are 

Raman scattered (~10-8). Thus, a laser is used as the excitation source. Higher power of the laser can in-

crease the Raman scattering intensity, however this should be chosen without any damage to the sample. 

The wavelength (can be between UV-visible to near-IR range) of the laser depends on the application.   
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The laser light is focused onto the sample through a beamsplitter and confocal optics. Then, the 

scattered light from the sample is redirected onto the focal lens and passed through the beamsplitter. This 

is designed to configure the backscattering geometry. This beam is focused onto a mirror. The reflected 

light from the mirror is focused onto the McPherson double subtractive monochromator. The interference 

filter (Rayleigh rejection filter) is employed to filter only the Raman scattering light. A higher resolution 

spectrum can be generated using a grating with more lines per mm (in this case, grating with is 

1800/mm). The signal from the grating is collected by the liquid nitrogen cooled CCD (or photomultiplier 

tube). The detector will measure the photocurrent from each wavelength section. The CCD detector is 

measured the photocurrent into electric current. LabView software is used to evaluate and save the meas-

ured data. 

 

 

Figure 3.11 Designed experiment setup for the Raman measurements by the author.  

 

3.4.5 Raman Scattering Geometry 

For the wurtzite structure, the Raman tensor of the A1 phonon mode has only the diagonal com-

ponents and for the E1 phonon mode, Raman tensor has only off-diagonal components. However, for the 

E2 phonon mode, it has both components [26]. Thus, in order to observe the A1 mode, the incident and 



91 

scattered light should have parallel polarization (back scattering geometry). The E1 mode can be observed 

in crossed polarization (non- back scattering geometry). Raman active phonon modes of the hexagonal 

structure and their observing scattering geometry are summarized in Appendix A.1. 

The both A1LO and E2 phonon modes can be observed by the z(x, x)z̅ back scattering geometry. 

The symbols, outside the bracket left to right indicate the direction of the incident and scattered light, re-

spectively. The symbols, inside the bracket left to right show the direction of the incident and scattered 

polarization, respectively. Here, the z- direction is along the c-axis and x- and y- directions are perpendic-

ular to the c-axis. 

3.5 Infrared (IR) Spectroscopy  

Usually, the two analytical techniques, Infrared and Raman spectroscopy, are employed vibra-

tional transitions techniques. In general, Infrared spectroscopy is the measure of the change in absorption, 

or transmission intensity as a function of wavelength (IR absorption and transmission spectroscopy). 

When a molecule or a crystal lattice absorb electromagnetic radiation, it can excite higher energy levels. 

This occurs in three process: (i) rotational transitions occur when the molecular or crystal lattice is excited 

by microwave or infrared radiation, (ii) vibrational transitions occur when it is excited by infrared or visi-

ble radiation, (iii) electronic transition occur when UV light involving. Absorption occurs, when the IR 

radiation energy matches with a specific molecular or lattice vibration energy. The vibration transitions 

occur between different vibrational states. As mentioned in Section 3.4.3, the dipole moment of the mole-

cule or lattice should change during the vibration, for the molecule to be IR active. 

The IR wavelength of the electromagnetic radiation is range from 0.8 µm (12 500 cm-1) to 1000 

µm (10 cm-1). In the electromagnetic spectrum, infrared radiation region can be mainly divided in to three 

regions as near-IR (NIR), mid-IR (MIR), and far-IR (FIR). The NIR region 12 500-4000 cm-1 (0.8-2.5 

µm) can excite overtone or harmonic vibrations. The MIR region is covered approximately 4000-400 cm-1 

(2.5-25 µm), can use to study fundamental vibrations and associated rotational-vibrational structure. The 

FIR region, 400-10 cm-1 (25-1000 µm) excites lattice vibrations, and can use for rotational spectroscopy 
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[27]. One of the advantageous of IR spectroscopy is, it can be used for any samples in any states, liquids, 

solutions, gaseous, films, powders, etc. IR reflection spectroscopy was designed by associating the IR 

spectroscopy and the reflection theories. 

3.5.1 Fourier Transform Infrared (FTIR) Spectroscopy 

Dispersive IR spectrometers were commercially available since 1940s. The dispersive element 

was a prism in these instruments. In the 1950s, diffractive grating based IR spectrometers were available. 

In 1969, first MIR-FTIR spectrometer became commercially available with the resolution greater than 2 

cm-1. This employs an interferometer and exploits the Fourier Transform mathematical method. Based on 

the FTIR’s interferometer, there are two fundamental advantages in FTIR spectrometer compared to dis-

persive instruments. One is known as Fellgett (multiplex) advantage. In the FTIR spectrometer, at any 

given time, all the wavelength are measured, while one wavelength is measured at a time in dispersive 

spectrometer. This causes a higher signal-to-noise ratio. Consequently, FTIR spectrometer can produce a 

faster spectrum. The second one is the Jaquinot (throughput) advantage. FTIR spectrometer can achieve 

spectral higher resolution without using narrow slits. Additional advantages are, FTIR spectrometer is 

self-calibrated and FTIR spectrometer cover the larger spectral range than dispersive spectrometers. As 

well as, spectrum is reproducible [27]. 

The basic components of the FTIR instruments can be different from one to another based on 

their primary applications. There are many designs for interferometer such as Michelson interferometer, 

Fabry-Perot interferometer, and lamellar grating interferometer. The resolving power is lower in Fabry-

Perot interferometer. Michelson interferometer is the most commonly used one for infrared spectra meas-

urements. Figure 3.12 shows the schematic of the basic components of FTIR spectrometer. IR radiation 

from the source reaches to the optics and passes through the interferometer onto the sample. The detector 

is focused the reflected or transmitted beam from the sample, depending on the analysis method required. 



93 

Then, this analogue signal from the detector is converted to a digital signal by the analogue-to-digital con-

verters and the data send to a computer where the Fourier Transform take place. The final IR spectrum 

and data will be stored and presented in the computer. 

 

 

Figure 3.12 A schematic of the basic component of an FTIR spectrometer. 

The figure is after Ref. [27]. 

 

Figure 3.13 illustrates a simple schematic of a Michelson interferometer. In both cases reflection 

and transmission, the sample is located between the beamsplitter (BS) and the detector. BS divides the 

incoming beam from the source into two parts (the source spectrum is ( )S v ). One beam can be partially 

reflected onto the fixed mirror and the other beam can be transmitted to the moving mirror which moves a 

very short distance away from the BS. Then, the two partial beams are reflected off from the mirrors in-

terfere at the BS. The two partial waves acquire different phase shifts with respect to each other for differ-

ent positions of the moving mirror. The laser beam is used for measuring the direction and the position of 

the moving mirror. The detector output is stored as a function of the mirror position x/2. The optical path 

difference of the two beams is x and the interference pattern I(x), which results of this, is called the inter-

ferogram [13]. Then, this is Fourier Transformed to obtain the spectrum by the computer. The spectrum S 

is given by  
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2 1( ) ( ) [ ( )]



 



 
i vxS v I x e dx F I x .                             3.22 

2( ) ( ) [ ( )]







 
i vxI x S v e dv F S v .                             3.23 

The first integral is the inverse Fourier Transform and the second one is the Fourier Transform 

[13]. 

 

 

Figure 3.13 (a) Schematic of simplest form of the Michelson interferometer. At x=0, path difference be-

tween two beams is zero. (b) The source and interferogram I(x) plot is given. 

 

FTIR spectrometers usually use the Globar source as the IR source for MIR region. For the far-IR 

and near-IR region mercury discharge lamp and tungsten-halogen lamp are used, respectively. Deuterium 

triglycine sulfate (DTGS) or mercury cadmium telluride (MCT) detectors are used for the MIR region. 
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These two detectors are also employed for the near-IR region. In the far-IR region, Triglycine sulfate 

(TGS) or liquid helium cooled silicon or germanium bolometers can be used. As the BS, KBr, mylar, and 

quartz are usually used for the MIR, far-IR, and near-IR regions, respectively.  

In the IR region, some studies such as analysis of anisotropic structure and electronic states of the 

materials requires the polarization dependent studies. Wire grid polarizers (includes a grid of parallel con-

ducting wires) are often used as the linear polarizers. For the MIR and near-IR range, a wire grid designed 

on substrate (KRS-5 and quartz) is applied. Free standing wire grid polarizers are employed in the far-IR 

range.  

3.5.2 FTIR Reflection Spectroscopy Measurements 

The sample compartments of the commercial FTIR spectrometer are usually designed for trans-

mission/absorption measurements. For the reflection measurements, optical accessory must be inserted 

into the sample chamber or one can direct the IR beam into an external sample chamber with already has 

the built optics. One can buy the optical accessory for the reflection from manufacturer or the user can 

build it. There are two main reflection configurations, near-normal incidence and grazing angle incidence 

as shown in Fig. 3.14, that use in obtaining the optical constants of materials. 

 

 

Figure 3.14 Reflection at (a) near-normal incidence and (b) grazing angle incidence. 
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4 CHAPTER 4: ANALYSIS OF GROUP III-NITRIDES PROPERTIES USING MULTILAYER 

STACK MODELLING OF FTIR REFLECTANCE SPECTRA 

This chapter describes the analytical method used in the analysis of FTIR reflectance spectra in 

this study. FTIR reflectance (or transmittance) spectrum of a semiconductor contains various types of 

physical properties of that semiconductor. These parameters are dependent on the growth condi-

tions/method, certain properties of the individual semiconductor, and external parameters (e.g. pressure, 

temperature). The extraction of these parameters employing the FTIR spectroscopy will be dependent on 

the wavelength regions and the type of the measurements (transmission or reflection).  When employing 

the FTIR reflectance (or transmittance) spectroscopy, it measures the total reflectance (or transmittance) 

in the multilayer stacked structures. Therefore, in order to extract the material properties of the each layer 

in the material stack, a separation of reflection (or transmission) over each layer is required. Therefore, in 

order to extract the reflection/transmission details of each layer, one should choose a mathematical model 

that best describes, all the parameters of the materials. Reflection or transmission of the each layer in the 

multilayer stack is related to dielectric function, layer thickness, surface roughness, interface roughness, 

and band structure. Thus, modeling of the dielectric function also plays and important role in the model-

ing of the reflectance/transmittance spectrum. Therefore, the multilayer stack model, which calculates the 

total reflectance of the whole layer stack by adding the reflection or transmission at each interface, is 

more suitable for the analysis process. This chapter explains how the modeled reflectance spectrum of the 

isotropic materials and anisotropic materials are being included in the fitting procedure and how to use 

this process to obtain the associated parameters of the semiconductors. 

4.1 Electromagnetic Wave and Maxwell’s Equations  

An electromagnetic wave is a transverse wave and it contains an electric field vector and a mag-

netic field vector. They are mutually perpendicular to each other and perpendicular to the direction of 
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propagation. The magnitudes of the two field vectors are a function of a position and time. The both elec-

tric field vector and magnetic field vector are dependent each other. The conditions/requirements of the 

electric field vector determine the magnetic field vector.  

The properties of the electromagnetic waves and the interactions of the electromagnetic waves 

with matter can be described classically by Maxwell’s equations and the constitutive equations which are 

given as follows [1]: 

Gauss’s law      D                                            4.1 

Gauss’s law of magnetism    0B                                          4.2 

Faraday’s law of induction    
B

E
t


  


                                        4.3 

Ampere’s circuit law      
D

H J
t


  


                                       4.4 

Constitutive equations, 

    D E                                                   4.5 

    B H                                                   4.6 

    J E                                                   4.7 

Where, E -electric field, B -magnetic field, D -displacement field, H -magnetizing field,  -charge den-

sity, J -current density,  -permittivity (dielectric tensor), and  -permeability. 

From the above equations, the plane electromagnetic wave can be given as, 

0 sin( )E E k r t                                                       4.8 

Where, 0E  is the amplitude of the electric field and 
  

  x y xk k x k y k z  is the wave vector, which de-

scribes the propagation direction. r , , and t are position vector, angular frequency, and time, respec-

tively. 
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4.2 Electromagnetic Waves at Dielectric Interfaces 

Consider two dielectric media (k and k+1) with their dielectric functions k and 1k , respectively. 

Figure 4.1 shows a plane electromagnetic wave incident at an angle i on two media. 

 

Figure 4.1 An electromagnetic wave incident on an interface between two dielectric media. 

Where, ik , tk , and rk are the wave vectors of incident, transmitted, and reflected waves, respectively. 

  

4.2.1 S- and P- Polarization 

Light is considered as an electromagnetic wave, and the electric field of it fluctuates perpendicu-

lar to the direction of propagation. When the direction of the electric filed of the light oscillates arbitrarily 

in time, it is said, the light is un-polarized. When the electric field of light is oriented in a well-defined 

direction, it is referred to as polarized light. According to the orientation of the electric field of the wave, 

there are three types of polarizations. If the electric field vector of the electromagnetic wave is pointed in 

fixed direction, however, the magnitude of it varies periodically, it is called linear polarization. A plane 

electromagnetic wave is linearly polarized. The second is circular polarization, in which the electric field 
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vector contains two linear components. These are perpendicular to each other and have the same magni-

tude. The phase difference of those two is 90º. After the two waves combined, the electric field of the re-

sultant wave moves in a circle around the direction of propagation (clockwise or counterclockwise). 

When the phase difference of the two waves is anything other than 90º and amplitude of the two waves is 

not equal, the resulting electric field describes an ellipse, and this is called elliptical polarization. 

In reflection and transmission, the two types of linear polarization states, s- and p- polarization, 

which are orthogonal to each other, and are important. When the electromagnetic wave propagate through 

the medium 1 to the medium 2, it will be partially transmitted and partially reflected at the interface as 

shown in Fig. 4.1. If the electric field vector is polarized perpendicular to the plane of incidence, it is 

called as s-polarization ( sE ). The electric field vector is parallel to the plane of incidence in p-polariza-

tion ( pE ). The plane of the incidence is characterized by the wave vector of the incoming wave ( ik ) and 

the normal vector ( n ), see Fig. 4.1.  

4.2.2 Boundary Conditions at Interfaces 

Boundary conditions for the electromagnetic field in between two different types of media can be 

derived from Maxwell’s equations. The boundary conditions at the interface between two media identi-

fied as 1 and 2 can be given as following equations [1].  

2 1( ) 0   n D D                                                            4.9 

2 1( ) 0  n B B                                                        4.10 

2 1( ) 0  n E E                                                        4.11 

2 1( ) 0   n H H j                                                       4.12 

The free charge on the surface (  ) and the free surface current density ( j ) are equal to zero with 

no charges or current. These equations let to specify the following relationships. 

,2 ,1n nD D   and   ,2 ,1n nB B                                      4.13 
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,2 ,1t tE E    and    ,2 ,1t tH H                                                 4.14 

Where, subscripts n and t represent the normal and tangential components, respectively. This 

summarize to be the normal components of D and B  as well as tangential components of E  and H  are 

continuous at the interface.  

4.3 Wave propagation in Isotropic and Anisotropic media 

4.3.1 Reflection and Transmission Coefficients at a Single Interface 

 

Figure 4.2 Schematic representation showing the transmission and reflection of an electromagnetic wave 

at interface. (a) s-polarization and (b) p-polarization. 

Dot in a circle represent the field is out of the page and cross in a circle means field is into the page. 

 

 

Again consider, a plane electromagnetic wave incident on the interface (x-y plane) between two 

media, a medium 0 (ambient) with dielectric function 0 and a medium 1 (substrate) with dielectric func-

tion 1 (see Fig. 4.2). The amplitudes of the s-polarized electric filed for incident, transmitted, and re-

flected wave are denoted as i

sE , t

sE , and r

sE ,respectively. Those are for p-polarized wave are denoted as
i

pE

,
t

pE , and
r

pE ,respectively. i

sH , t

sH , r

sH , 
i

pH , 
t

pH , and
r

pH  represent the corresponding magnetic field 

quantities. The p-wave can be further separated into two components as parallel (x-direction) to the sur-

face and perpendicular (z-direction) to the surface. However, magnetic field has a component only in the 
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y-direction. For the s-wave, electric filed has a component only in the y-direction, while magnetic field 

has two components both x- and z-directions. 

According to the boundary conditions, the sum of the tangential electric field components above 

the interface must be equal to those for below the interface. Same conditions apply for the magnetic field 

components. Thus, boundary conditions can be written as following form [2], 

 i r t

x x xE E E                     4.15 

 i r t

y y yE E E                     4.16 

 i r t

x x xH H H                     4.17 

 i r t

y y yH H H                     4.18 

In literature, there is a difference in the sign used for the reflected field of p-polarization. Some 

book has considered the magnetic field of the reflected wave out of the page. This changes the sign of the 

equation for p-polarization reflection coefficient. In this work, it has been considered the magnetic field 

of the reflected wave into the page to satisfy the   rE H k . 

Considering the tangential electric filed components of s- and p-waves at the interface, Eq. 4.15 

and 4.16 become. 

( ) cos cos i r t

p p i p tE E E                    4.19 

 i r t

s s sE E E                     4.20 

Similarly for the magnetic field, Eq. 4.17 and 4.18 give the following form 

( ) cos cos i r t

s s i s tH H H                    4.21 

 i r t

p p pH H H                     4.22 

Since 0 0/ . .H n E  , (   is taken as unity for both media, n is the refractive index of the me-

dium and n  ) Eq. 4.21 and 4.22 can be written in terms of electric field. 

0 1( )cos cos   i r t

s s i s tE E E                     4.23 
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0 0 1 i r t

p p pE E E                      4.24 

The reflection coefficients for the electric field are given as,  

01 
r

s s

i

s

E
r

E
     and     01 

r

pp

i

p

E
r

E
             4.25 

The transmission coefficients are 

01 
t

s s

i

s

E
t

E
     and     01 

t

pp

i

p

E
t

E
             4.26 

From Eq. 4.19, 4.20, 4.23, 4.24, 4.25, and 4.26, 

0 1

01

0 1

cos cos

cos cos






i ts

i t

r
   

   
             4.27 

0 1

01

1 0

cos cos

cos cos






t ip

i t

r
   

   
             4.28 

0

01

0 1

2 cos

cos cos




is

i t

t
 

   
             4.29 

0

01

1 0

2 cos

cos cos




ip

i t

t
 

   
             4.30 

These coefficients are known as Fresnel coefficients. Using Snell’s law: 0 1sin sini tn n  , and 

2 2cos sin 1 t t  , the Eq. 4.27, 4.28, 4.29, and 4.30 can be re-written as follows, 

2

0 1 0

01 2

0 1 0

cos sin

cos sin

 


 

i is

i i

r
    

    
            4.31 

2

0 1 0 1

01 2

1 0 1 0

sin cos

cos sin

 


 

i ip

i i

r
     

     
                 4.32 

0

01 2

0 1 0

2 cos

cos sin


 

is

i i

t
 

    
            4.33 
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0 1

01 2

1 0 1 0

2 cos

cos sin


 

ip

i i

t
  

     
            4.34 

From the Poynting vector,
2

4


c
S n E


, reflectance and transmittance for s and p polarized are given [3], 

2
2

012

( )
( )

( )
 

r
s ss

i

s

E
R r

E
                   4.35 

2

2

012

( )
( )

( )
 

r

pp p

i

p

E
R r

E
                   4.36 

2

21 1
012

0 0

( )
( )

( )
 

t

ps s

i

p

En n
T t

n E n
                   4.37 

2

21 1
012

0 0

( )
( )

( )
 

t

pp p

i

p

En n
T t

n E n
                   4.38 

At normal incidence 0i , in an isotropic medium, s- and p-component of the reflectance as well as 

those of transmittance coefficients are equal. 

2

0 1

0 1

 
     

s pR R
 

 
                   4.39 

 
0 1

2

0 1

4
 



s pT T
 

 
                   4.40 

For an absorbing medium, the dielectric function of that medium is complex, while it is real for a 

transparent medium for above equations.    

4.3.2 Modelling Reflectance and Transmittance for Isotropic three layer Structures 

Consider a three layer stacked structure (ambient/film/substrate) as shown in Fig. 4.3. The dielec-

tric function of the ambient, film and substrate are 0 , 1 , and 2 , respectively. Assume that the light inci-

dent on homogeneous, isotropic film (the film thickness is d1) on semi-infinite substrate. Each time, when 

the beam incident on an interface, the beam is divided into the reflected and the transmitted beams and 
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amplitude of these beams are shown in Fig. 4.3 [3]. The complex phase factor between the first and the 

second partial wave is 
2 ie 

and phase shift is 

2

1 1 0 02 sin


d   



 , where   and 0 are the wave-

length of the light beam and the angle of incidence, respectively. 

 

Figure 4.3 Schematic showing the partial waves of a single film on substrate.  

 

Here the total reflection amplitude is given by [3] 

2 4 6

01 01 12 10 01 12 10 12 10 01 12 10 12 10 12 10 ....      i i irr r t r t e t r r r t e t r r r r r t e  
         4.41 

This equation can be further rearranged. 

2 2 1 2 2

01 01 10 12 10 12 10 12[1 ( ) ( ) ....]      i i irr r t t r e r r e r r e  
                4.42 

2

01 10 12
01 2

10 121




 



i

i

t t r e
rr r

r r e




                           4.43 

For non-absorbing media this can be written in terms of reflection coefficients 01r and 12r  since 

10 01 r r  and 2

10 01 011 t t r . 

2

10 12

2

01 121










i

i

r r e
rr

r r e




                           4.44 

Similarly, the total transmission amplitude can be expressed as, 
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3 5

01 12 01 12 10 12 01 12 01 12 01 12 ....     i i itt t t e t t r r e t t r r r r e  
                 4.45 

01 12

2

01 121








i

i

t t e
tt

r r e




                           4.46 

The total reflectance (reflectivity) and transmittance (transmitivity) of three layer stack for s- and 

p-polarized are given by [3] 

*
2 2 2 2

* 01 12 01 12 01 01 12 12
0 2 22 2

01 12 01 1201 12 01 12

2 cos 2
.

1 2 cos 21 1

 

 

     
           

s s

s s

s s i s s i s s s s s
s

s s s s ss s i s s i

r r e r r e r r r r
R rr rr

r r r rr r e r r e

 

 





       4.47  

*
2 2 2 2

* 01 12 01 12 01 01 12 12
0 2 22 2

01 12 01 1201 12 01 12

2 cos 2
.

1 2 cos 21 1

 

 

     
           

p p

p p

p p i p p i p p p p p
p p p

p p p p pp p i p p i

r r e r r e r r r r
R rr rr

r r r rr r e r r e

 

 





       4.48 

*

2 2* 01 12 01 12

2 2
0 0 01 12 01 12

2 2

01 12
2 2 2

01 12 01 12

( )
1 1

.
(1 2 cos 2 )

 

 

  
         


 

s s

s s

s s i s s i
s s s

s s i s s i

s s

s s s s s

t t e t t e
T tt tt

r r e r r e

t t

r r r r

 

 

 

 




                      4.49

*

2 2* 01 12 01 12

2 2
0 0 01 12 01 12

2 2

01 12
2 2 2

01 12 01 12

( )
1 1

.
(1 2 cos 2 )

 

 

  
         


 

p p

p p

p p i p p i
p p p

p p i p p i

p p

p p p p p

t t e t t e
T tt tt

r r e r r e

t t

r r r r

 

 

 

 




                4.50 

where, 0 =1 for the ambient. The reflection and transmission coefficient can be written as follows 

2

0 0 1 0 0

01 2

0 0 1 0 0

cos sin

cos sin

 


 

sr
    

    
,   

2 2

1 0 0 2 0 0

12 2 2

1 0 0 2 0 0

sin sin

sin sin

  


  

sr
     

     
       4.51 

2

0 1 0 0 1 0

01 2

1 0 0 1 0 0

sin cos

cos sin

 


 

pr
     

     
,   

2 2

1 2 0 0 2 1 0 0

12 2 2

2 1 0 0 1 2 0 0

sin sin

sin sin

  


  

pr
       

       
   4.52 

0 0

01 2

0 0 1 0 0

2 cos

cos sin


 

st
 

    
,    

2

1 0 0

12 2 2

1 0 0 2 0 0

2 sin

sin sin




  

st
  

     
       4.53 
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0 1

01 2

1 0 1 0

2 cos

cos sin


 

ip

i i

t
  

     
,    

2

1 2 1 0 0

12 2 2

2 1 0 1 2 0

2 sin

sin sin




  

p

i i

t
    

       
       4.54 

This summation method is not elegant for the calculating total reflection and transmission of a 

layer structure having more layers. There are several transfer matrix methods that have been developed 

for computing electromagnetic field in a system with multilayers. The 2×2 transfer method is the most 

convenient method that have been developed by Abeles used for light propagation in isotropic media. 

This method can be found in many text book. Following section reviews and describes this method for 

computing reflectance and transmittance of a multilayer structure [3, 4]. 

4.3.3 Modelling Isotropic Multilayer Structures 

Figure 4.4 shows a schematic of a multilayer structure and reflection contribution from ambient 

to the substrate through k-films. The numbering of the media starts from ‘0’ (ambient), ‘1’ (film_1) to 

‘k+1’ (substrate). Thicknesses of the each layer denote as d1, d2, …, d(k+1) and the dielectric function of 

corresponding layers are given as 0 , 1 ,.., 1k . The reflection coefficients of each interface are repre-

sented as r01, r12,…, rk(k+1) (also known as Fresnel’s coefficients) for the isotropic homogeneous multilayer 

stack. The right going s- and p-polarized e-filed vectors are denoted as i

sE and
i

pE , and their left going vec-

tor are symbolized as r

sE and
r

pE  (refer Fig. 4.4). 
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Figure 4.4 Schematic showing a multilayer stack (ambient/film_1 to film_k/substrate) and their reflection 

contributions. 

 

Now, consider the mth film (film_m) laying somewhere between the film_3 and film_k-1 and sup-

pose the film thickness is dm, and e-fields are i

sE
i

pE r

sE , and
r

pE . See Fig. 4.5. 

 

Figure 4.5 Schematic for illustration of mth layer showing the e-field components. 

 

For the mth layer, the x and y components of the E and H can be written as [3] 

, ,( ) cos


 m mi z i zi r

mx m p m p mE E e E e
                      4.55 

, ,


 m mi z i zi r

my m s m sE E e E e
 

                                4.56 

, ,( ) cos


  m mi z i zi r

mx m s m s m mH E e E e
                      4.57 
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, ,( )


 m mi z i zi r

my m p m p mH E e E e
                      4.58 

where
2 cos


m m

m

  



. 

(m-1)th and mth layer are separated taking 
1

1






m

m i

i

c d  

1 1

1, 1, 1 , ,( )cos ( )cos  

    m m m m m m m mi c i c i c i ci r i r

m p m p m m p m p mE e E e E e E e
             4.59 

1 1

1 1, 1, , ,( ) ( )  

    m m m m m m m mi c i c i c i ci r i r

m m p m p m m p m pE e E e E e E e
                    4.60 

1 1

1, 1, , ,
  

   m m m m m m m mi c i c i c i ci r i r

m s m s m s m sE e E e E e E e
   

                 4.61 

1

1, 1, 1 1 , ,( ) cos ( ) cos 

       m m m m m m m mi c i c i c i ci r i r

m s m s m m m s m s m mE e E e E e E e
              4.62 

Eq. 4.59-4.62 can be written in terms of Fresnel coefficients [3]. 

1

1, , ,( ) / 

  m m m m m mi c i c i ci i p r p

m p m p m m p mE e E e r E e t
  

                 4.63 

1

1, , ,( ) / 

  m m m m m mi c i c i cr p i r p

m p m m p m p mE e r E e E e t
  

                        4.64 

1

1, , ,( ) / 

  m m m m m mi c i c i ci i p r s

m s m s m m s mE e E e r E e t
  

                        4.65 

1

1, , ,( ) / 

  m m m m m mi c i c i cr p i r s

m s m m s m s mE e r E e E e t
  

                        4.66 

These equations can be simplified by substituting phase shift 
2 cos

 
m m m

m m

d
c

  
 


 

 1 1

1, , ,( ) / 

  
p p

m mi ii i p r p

m p m p m m p mE E e r E e t
 

                         4.67 

1 1

1, , ,( ) /  

  
p p

m mi ir p i r p

m p m m p m p mE r E e E e t
 

                        4.68 

 

1 1

1, , ,( ) / 

  
s s
m mi ii i s r s

m s m s m m s mE E e r E e t
 

                         4.69 

1 1

1, , ,( ) /  

  
s s
m mi ir s i r s

m s m m s m s mE r E e E e t
 

                               4.70 

Matrix form of these equations are, 
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1 1

1 1

1, ,

1, ,

1  

 



 


    
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    
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1 1
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 



 
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    
    

    
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m s m sm
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mm s m sm

E Ee r e

tE Er e e

 

 
                   4.72 

The linear correlation between the right going and the left going e-filed vectors for s- and p-polarization 

at the k - k+1 interface can be written as followings. 

1

1 1

( 1), 1,

2 2
1, 1,( 1)
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

 

 

 
 
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s
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rE E
e

tE Er e e


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p
m
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k kk p k pi
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rE E
e

tE Er e e



 
           4.74 

In the Eq. 4.73 and 4.74, the 2 2 transfer matrix are denoted as 1,k sM  and 1,k pM   for the simplicity. 

 
, 1,

1,

1, 1,

1 



 

   
   

   
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k s k s

k ssr r
kk s k s

E E
M
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 
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   
   
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i i

k p k p

k ppr r
kk p k p

E E
M

tE E
             4.76       

In order to determine the total reflectance and the phase change in the multilayer stack for both 

the s- and p-polarization, the amplitude of the successive beams of reflected and transmitted rays through 

each interfaces need to be added up as shown in Eq. 4.75 and 4.76.  

    

1 2 1

0, 1,1, 2, 1,

0, 1,

....

.....






   
   

   
   k
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s k ss s k s

s s sr r
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E EM M M
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    

1 2 1
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.....






   
   
   
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i i

p k pp p k p

p p pr r

p k p

E EM M M

t t tE E
                4.78 

The matrix M for the s- and p-polarization can be given by form of Eq. 4.77 and 4.78. 
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    
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
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p
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          4.80 

Considering no back reflection from the exit medium ( 1, 0r

k sE    and 1, 0r

k sE   ), in our case sap-

phire substrate, the Eq. 4.77 and 4.78 can be written as following form (Eq. 4.81 and 4.82). 

    

1 2 1

0, 1, 2, 1, 1,

0,

....

..... 0


 
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 
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p

E M M M E

t t tE
                4.82 

Then, solving Eq. 4.81 and 4.82, the total reflection and transmission for s- and p-polarization (

srr ,
prr ,

stt , and
ptt ) of the multilayer structure can determined by the Eq. 4.83 - 4.86 [3]. 
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               4.83 
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The total complex reflectance and transmittance for each polarization components can be written as [3], 

21, 21,
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   

s ss s s

s s

M M
R rr rr

M M
             4.87 

21, 21,

11, 11,

( )




   

         
   

p pp p p

p p

M M
R rr rr

M M
            4.88 

1 2 1 1 2 11

11, 11,0

..... .....
( )  



 
   

      
   
   

k k

s s s s s s

ks s s

s s

t t t t t t
T tt tt

M M




           4.89 

1 2 1 1 2 11

11, 11,0

..... .....
( )  



 
   

      
   
   

k k

p p p p p p

kp p p

p p

t t t t t t
T tt tt

M M




           4.90 

For the general interface, s- and p- reflection and transmission coefficients are given by, 

2 2

0 0 1 0 0
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
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The phase shift is 

2

02 sin


m md  



. At the normal incidence, s pR R and s pT T  as 

well as 
2


m md 




. 

4.3.4 Modeling Surface Roughness  

The decrease of measured reflectivity compare to the calculated reflectivity below the band gap  

energy attributed to the surface roughness due to increasing light scattering with photon wavelength [5]. 

The reflectivity including the root mean squared (RMS) roughness (at the oblique incidence) is given by 

2 2 2

2

16
.exp

 
  

 

amb
new

n
R R

 


               4.97     

where newR , R , ambn ,  , and  represent the reflectivity with surface roughness, reflectivity without sur-

face roughness, refractive index of the ambient, wavelength, and RMS roughness, respectively. 

4.4 Reflectance of Anisotropic Multilayer Structure 

Analysis of optical constants of arbitrary anisotropic multilayer semiconductor materials are re-

stricted due to larger numbers of unknown parameters associated with the dielectric function formulas 

compared to the isotropic media. Since the electric-field vector parallel to the plane of incidence (p-polar-

ized) and electric-filed vector perpendicular to the plane of incidence (s-polarized) are dependent of each 

other, a 4 4 matrices are required to calculate the total reflectance or transmittance of anisotropic multi-

layer structures [6].  

However, recently, Katsidis et al. [7] has shown that 2 2 transfer matrix algebra, used for the 

isotropic media, can be adapted to calculate the optical response of anisotropic multilayer structures con-

sisting of homogeneous biaxial or uniaxial films, the crystal c-axis aligned with z-axis of laboratory coor-

dinates. The 4 4 matrix algebra has been substituted by two consecutive applications of the 2 2 transfer 

matrix algebra, to calculate the s- and p-polarized transmittance and reflectance of the anisotropic multi-

layer structures separately. In this section, as described in following, this method is adapted to calculate 
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the reflectance of anisotropic multilayer structures such as InN grown on different templates or substrates 

(GaN, AlN or sapphire).  

4.4.1 Modelling Anisotropic Multilayer Structures 

Since the measureable reflectance value from the FTIR is linear combination of 
sR and 

pR , and 

considering the un-polarized IR light source has half of s and half of p-polarized light, the total complex 

reflectance (R) for the anisotropic homogeneous multilayer structure can be written as following Eq. 4.98.  

1
( )

2
 s pR R R                   4.98  

Where, sR and pR are calculated using isotropic model discussed in 4.4.3. For the anisotropic materials, 

one can model the R with adding the surface roughness term as in section 4.4.2. 

The dielectric tensor is diagonal for homogeneous anisotropic media and it is given by, 

0 0 0 0

0 0 0 0

0 0 0 0





  
  

    
     

x

y

z

 

  

 

             4.99 

The dielectric function of a semiconductor will be discussed further in the Section 4.5. 

At general interface k-(k+1), the Fresnel’s reflection coefficients ( ( 1)

s

k kr , ( 1)

p

k kr ) and the phase 

shifts ( s

k , p

k ) for the s- and p-polarization of the propagating rays through the k-th layer written in terms 

of dielectric functions (ordinary and extraordinary) and the incidence angle ( 0 ), can be given as the fol-

lowing equations. The Fresnel’s reflection coefficients has been written in terms of refractive index [7]. 
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         

         
       4.101 

Phase shift for the s- and p- polarized can be expressed by 
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2

, 0 02 sin 
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


            4.102 

2
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2 sin 


k k kp

k

k

d    


 
           4.103 

Where, k and 1 k are ordinary dielectric function of the k and k+1 layers, as well as
k , and 

1k are 

the extraordinary dielectric functions of the k and k+1 layers. The 0 , 0 , and kd  denote as dielectric 

function of the ambient, the angle of incidence, and the thickness of the k-th layer respectively. 

4.5 Model of Dielectric Function of Semiconductors 

The dielectric function of a semiconductor is a linear superposition of the susceptibility contribu-

tions of various physical mechanisms: the lattice vibrations (lat), free carriers (fc) [mobile electrons and 

holes], bound valence electrons (VE), and impurities (imp), assuming there is no interaction of these pro-

cess with each other. Thus, the complex dielectric function can be given as [8], 

1 2( ) ( ) ( ) 1 ( ) ( ) ( ) ...       VE lat fc impi                     4.104 

For the IR region, bound valence contribution is not dependent on frequency and therefore is a 

real value. Thus, 1  VE  , and  is called high frequency dielectric constant. Therefore, Eq. 4.104 

can be re-written as, 

1 2( ) ( ) ( ) ( ) ( ) ( ) ...      lat fc impi                         4.105 

The classical Lorentz oscillator model is used to model the dielectric function of ionic crystals in 

the IR region. This model works well for un-doped and doped semiconductors, and insulators.  

Suppose, the valence electrons are tightly bound to the atoms within the materials. When apply-

ing an electric field by vibrating (damped harmonic oscillators), the equation of motion can be given by 

[1] 

2
2

02
    loc

d r dr
m m m r eE

dt dt
                     4.106 
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where, m  and e  are the mass and charge of the electron. And, the  , 0 , r , and locE  are the damping, 

the displacement, the resonant frequency, and the local electric field acting on the electron, respectively.  

 Assume that the local electric filed and macroscopic electric filed are equal and time dependence 

of
i te 

. Then, the solution to the Eq. 4.106 yields [1] 
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                        4.107 

Induced dipole moment  is, 
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The polarizability can be expressed as 
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
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                   4.109 

Then, the polarization per unit volume yields, 

0( ) ( ). ( ) ( ) ( )    P N E E                          4.110 

The susceptibility can be expressed by 
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With the characteristic of resonant frequency TO and damping constant , dielectric function can be writ-

ten as  

2
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S
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                        4.112 

where, S is the oscillator strength and it may relate with ionic charge , volume density, reduced mass as 

follows  

2
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
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                              4.113 
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For more than one oscillator 
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If the damping factor is neglected, the Eq.4.112 becomes 
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                        4.115 

Due to no excess charges in the medium, Gauss equation should be valid and condition ( )k E

should be satisfied. For the longitudinal filed k E , it is 0 , and the frequency is expressed by 

2
2 2



  TO
LO TO

S
 


                         4.116 

Then the dielectric function can be given as 
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With a non-zero the damping constant, the dielectric function can be given as 
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All the phonon frequencies need to be satisfied the Lyddane-Sachs-Teller relation (Eq.4.119) [9, 

10] 

2

2



s LO

TO

 

 
                 4.119 

where ( 0) s   and ( )      

For the positive imaginary part of the dielectric function, following equation should be fulfilled. 

( ) 0
j jLO TO

j

                4.120 

The free carrier contribution can be expressed by the Drude model which is given at 0 0 in Eq. 

4.111. 
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With the plasma frequency  
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Now the IR isotropic dielectric function with multi oscillators can be expressed in the following 

forms 
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Additionally, the impurities which relate to the lattice vibrations can be solved by considering them as os-

cillators.  

For the anisotropic materials the dielectric function in parallel (  ) and perpendicular (  ) direc-

tion to the crystal c-axis, in the IR region can be written as following, 
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From the plasma frequency ( ,p , ,p ) and damping constant of the plasma ( ,p , ,p ), the free 

carrier concentrations ( ,cN , ,cN ) and mobility of the carries ( ,c , ,c ) in the semiconductor can be de-

termined using following equations. 
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             4.131 

where, ,effm  and ,effm are the effective electron (hole) mass in parallel and perpendicular directions. The

0 , and e denote the vacuum permittivity and the electrical unit charge respectively. For the isotropic ma-

terials   , therefore, , ,c cN N and , ,c c   

In this study, the infrared dielectric response of the sapphire is described using a factorized model 

with the contribution of l (four) polar-optical phonon modes [9]. In order to account for the optical anisot-

ropy, dielectric function is discriminated as parallel ( ( )  ) and perpendicular ( ( )  ) to the crystal c- 

axis direction. 
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4.6 Flow Chart of Fitting Program 

Figure 4.6 illustrates a simple flow chart of the program (Matlab) developed for the analysis of 

the IR reflectance spectra, in order for extracting the physical properties of the material, using the mathe-

matical model discussed in Section 4.3 and 4.4.  
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Figure 4.6 Flow chart of analysis reflectance spectra based on the Multilayer stack model and model of IR 

dielectric function. 

 

 In the first step: layer stack configuration are modeled. In order to do this, the basic growth steps and 

the type of material that have grown need to be known. Fig. 4.7 shows an example for the layer stack 

configuration. 

 

Figure 4.7 Showing the layer configuration of InN on GaN/Sapphire. 

 

 In the second step: initial layer parameters such as dielectric functions, layer thicknesses, and inter-

face perfections of the each layer are defined. As the dielectric function, the user can select the one of 

the dielectric functions discussed above. Under this, a tolerance for the initial parameters of the die-

lectric function should be selected. 
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 In the next step, the program will generate an array of data based on the initial parameters and the tol-

erance, and compare it with the experimental data. 

 If the calculated and the experimental data are not within the given criteria condition, the program 

will be looped to a new iteration cycle with new set of layer parameters based on its current cycle. 

The MATLAB code is attached in Appendix B. 
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5 CHAPTER 5: INFLEUNCE OF SUBSTRATE POLARITY AND DOPING ON THE   

STRUCTURAL AND OPTOELECTRONIC PROPERITIES OF InN LAYERS GROWN BY 

HP-MOCVD 

5.1 Introduction 

In order to achieve the best quality devices (InN based), scientists have been devoted during last 

few decades on experimental investigations on the growth of InN thin films by various growth methods 

with different substrates. However, free carrier concentrations of those layers are still in the range of 1018-

1020 cm-3, with an exception for the MBE growth films, it was achieved to the order 1017 cm-3. As dis-

cussed in Section 1.2, several possible reasons have been suggested for the cause of the high background 

carrier concentration. However, it is still a mysterious. Recently, more researches have been focused on 

the development of InN films for plasmonic applications extending to the infrared (IR) and THz regimes 

due to its lower plasma frequency and its smaller real permittivity than those of the metals [1]. As an ex-

ample, Qian et al. has been shown that aptness of InN films as plasma filters for GaSb and GaInAsSb 

photovoltaic cells in thermophotovoltaic systems with different carrier concentration, mobility, and film 

thickness [2]. Additionally, due to the high superficial electron concentration, the high sensitivity to 

charges in the environment, and the high chemical stability, InN has also been recently considered as ma-

terial for biosensing. For instance, Naveed Alvi et al. has been suggested a development of an efficient 

InN QDs (quantum dots) based biosensor for medical diagnosis and shown it for the ability to detect real 

time changes in the concentration of cholesterol in the human body [3]. 

Based on these unique properties and its applications, the need of further studies of InN properties 

cannot be disregarded. Hence, studies of optical response in the IR regime is necessary since phonon 

modes (lattice vibrations), free carriers, and their coupling, etc. of InN are associated with the IR photon 

energies. Furthermore, these studies will also expose these physical properties of the commonly used sub-

strates such as GaN, AlN, and sapphire used in the growth of InN films. Thus, especially, understanding 

of the IR optical anisotropy properties of InN play a significant role in devices designing due to the high 
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anisotropy in the wurtzite structure. Also, studies of the influence of the substrate properties on the InN 

films properties is crucial for the device fabrication because most physical properties of the materials such 

as point defect, strain, etc. originate from the substrate.  

Y. Ishitani et al. found the dependence of the broadening of InN E1(LO) phonon-plasmon coupled 

states with the electron concentration (from 8×1017 to 1×1019 cm-3) and the crystal temperature by analyz-

ing the S-polarized IR reflectance spectra [4]. As well as, by analyzing the IR reflectance spectra of InN 

down to 200 or 250 cm-1 including longitudinal phonon and plasmon coupling lower energy branch (LPP-

) and higher energy branch (LPP+), Y. Ishitani et al. have extracted the electron concentration and mobil-

ity of inside region of the bulk nature by resolving the contribution of electron accumulation to the spectra 

[5]. One of the important properties of InN is the LO-plasmon coupling, and this has been studied using 

Raman spectra of InN [6] and IR reflectance spectra has been used to compare this features [5]. Moreo-

ver, the role of plasmon and LO-phonon damping on the IR spectra of InN films has also been studied [7]. 

Furthermore, A. Kasic et al. used IR spectroscopic ellipsometry to obtain the electron effective mass. 

These analysis results indicated the average electron effective mass of 0.14m0 for InN [8]. Later, Y.F. 

Chen et al. used IR reflectance measurements and obtained a smaller electron effective mass of 0.05m0 

for InN films [9]. In addition to these studies, IR ellipsometry and IR reflectance analysis has been used to 

understand other properties of InN, such as the electron accumulation at nonpolar (112-0)-oriented and 

semi-polar (101-1)-oriented InN, hole properties of p-type InN films; surface, bulk, and interface elec-

tronic properties of nonpolar InN films [10-12]. Z. G. Qian et al. have reported the first detailed investiga-

tion of the free carrier concentration, carriers mobility, lattice vibration properties (phonon modes) [2]. A 

similar study has been conducted by K. Fukui et al. [13]. However, these studies have focused only iso-

tropic properties of InN layers. Recently, C. C Katsidis et al. analyzed FTIR reflectance spectra of InN 

layers, taking into account a three-layer model and found the capability of separating the contribution of 

free carriers between the bulk, the surface and interface in InN films [14]. In this study, 2×2 matrix alge-

bra based on a general transfer matrix method has been considered to interpret the optical response of ar-

bitrary multilayers with homogeneous anisotropic layers from IR reflectance spectra. 
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The work presented in this chapter is a detailed study of free carrier concentrations, mobility of 

the carriers, high frequency dielectric constant, layer thicknesses and phonon modes of InN layers grown 

on different substrates, Ga-polar, N-polar, n- and p-type doped GaN, AlN, and sapphire by analyzing 

FTIR reflectance spectra (at normal and angle incidence un-polarized). Here, isotropic and anisotropic 

properties of InN layers were analyzed using Multilayer stack model and Model of IR dielectric function 

described in Chapter 4.  

Furthermore, the structural properties of InN layers obtained from Raman spectroscopy analysis 

are presented. Additionally, surface morphology analysis of these layers by AFM are discussed.  

5.2 Experimental 

5.2.1 Growth of InN Films 

All InN samples were grown on sapphire, AlN, Ga-polar GaN, N-polar GaN, p-type GaN, and n-

type GaN templates by HP-MOCVD. Following steps are followed in the growth of all InN samples. 

First, template/substrate was thermally cleaned in N2 flow at 875 °C. Next, in order to deposit low tem-

perature InN layer, template/substrate was nitridized for two minutes, and then nucleated for 1 minute at 

715 °C. After that, the temperature was gradually increased to the growth temperature, and the same time 

the V/III ratio was increased by decreasing trimethylindium (TMI) flow. The process, annealing the nu-

cleation layer was done for 2 minutes. Next, V/III ratio was brought to ~8100 by increasing TMI flow 

gradually. Growth temperature for InN samples grown on sapphire and AlN/sapphire was kept at 875 °C, 

and it was kept at 840 °C for InN on GaN templates. The growth time and reactor pressure were 3 hours 

and 8 bar, respectively. Figure 5.1 illustrates a schematic for the temperature and precursor profiles for 

InN on sapphire or AlN growth. 

Templates used in this analysis were grown at the MOCVD facility at North Carolina University. 

First, low temperature AlN buffer layer was grown on the sapphire substrate (commercially available). 

Then, the Ga- polar, N-polar GaN layer was directly deposited on top of the AlN buffer layer. The n-type, 

and p-type GaN layers were grown on top of the AlN buffer, followed by a thick i-GaN layer.  
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Figure 5.1 Schematic showing the temperature and precursor profiles of the InN growth.  

 

5.2.1 Infrared Reflection Measurements 

IR reflectance measurements were performed at room temperature using Perkin-Elmer 2000 

FTIR spectrometer. IR spectra in the spectral range 450 cm-1- 6500 cm-1 were taken by the MCT 

(HgCdTe) detector and KBr beamsplitter at near normal incidence (~8°) as well as for oblique incidence 

(25°) for un-polarized and polarized light. A TGS/POLY detector and 6-μm-thick Mylar beamsplitter 

were used for the measurements in the range of 300-600 cm-1. In order to obtain the polarized light, a wire 

grid KRS-5 polarizer and polyethylene polarizer were employed in the MIR and FIR region, respectively. 

Gold and Aluminum mirrors were used for the reference spectra in the MIR and FIR regions, respec-

tively.  
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5.2.2 Raman Measurements 

The home-built Raman spectrometer with a McPhersom double subtractive monochromator and a 

liquid N2 cooled charge-coupled (CCD) camera were used to record the Raman scattering. As the excita-

tion source, a Diode-pumped solid-state (DPSS) laser light with an excitation energy of 2.33 eV (532 nm) 

was utilized. All the measurements were performed in back scattering geometry z(x, x)z̅ along the c-plane 

at room temperature.  

Raman measurements with the excitation of 488 nm were performed at Gediz University in Tur-

key. 

5.3 Results and Discussion 

5.3.1 Analysis of IR reflectance Spectra for Sapphire 

The infrared optical properties of InN films and the substrates are explored by using reflectance 

spectra measured at near normal incidence and 25° un-polarized incident light. The normal incidence re-

flectance spectra were calculated based on the 2 2 transfer matrix method for multilayers and Lorentz-

Drude model which represent the dielectric response for each layers assuming layers are isotropic. The 2

 2 matrix method described in Section 4.3-4.6 was used to calculate the reflectance spectra and to obtain 

the best fit spectra for anisotropic media. 

In order to analyze the FTIR reflectance spectra of the InN films, it is required the parameters for 

sapphire. Therefore, initially, the best fit parameter values of sapphire were obtained. Sapphire ( - 

Al2O3) has a rhombohedral structure and consists of a hexagonal closely packed (hcp) lattice of aluminum 

(Al) atoms with oxygen (O) atoms at octahedral sites [15]. The lattice structure of sapphire belongs to the 

space group 6

3dD . Group theory analysis shows that the irreducible representation for the optical modes at 

k = 0 of the first Brillouin zone is opt 1 1 2 22 2 3 2 5 4      g u g u g uA A A A E E . Among them, two
1gA modes 

and five
gE modes are only Raman active, while two 2uA modes and four uE modes are only IR active. The 

two 1uA and three 
2gA modes are neither Raman nor IR active [15].     
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 The factorized model with contribution of l (four) polar-optical phonon modes (see Eq. 4.133 

and 4.134) is well described the dielectric function of the sapphire [16]. For the convenience, the equa-

tions are recalled here as 5.1 and 5.2. In the anisotropic case (at 25° incident angle), the ordinary ( ( ) 
) 

and extraordinary ( ( )  ) dielectric functions are,   

2 2
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Here, ,LO  and ,TO denote the frequencies of the LO and TO for sapphire uA (which are parallel 

to c-axis) phonon modes. As well as, their broadening constants denote as ,LO and ,TO . The ,LO and

,TO account for the frequencies of LO and TO for sapphire uE (which are perpendicular to c-axis) pho-

non modes. Their broadening constants are ,LO and ,TO respectively. In the isotropic case (at normal 

incidence), ( ) ( )     . 

The sapphire spectrum was fitted using the two layer model (ambient/Sapphire) and the above 

dielectric function as described in Chapter 4. Figure 5.2 (a) and (b) show the experimental and the best 

fitted reflectance spectra for sapphire at near normal incidence and at 25° un-polarized incident light, re-

spectively. Simultaneously, Fig. 5.2 (c) and (d) illustrate the S-polarized and P-polarized experimental 

reflectance spectra of sapphire measured at 25° incident light. There is no apparent difference between the 

near normal and 25° s-polarized reflectance spectra, except for the dip around 895 cm-1. Since the aniso-

tropic materials are more sensitive to the incidence angle and the P-polarized light, It can be observed a 

clear difference between the near normal incidence and un-polarized or P-polarized reflectance spectra 

measured at 25° incident light around 500-515 cm-1. Therefore, here the near normal incidence spectrum 
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and the 25° un-polarized spectrum for analysis of isotropic and anisotropic properties of materials, respec-

tively. Furthermore, the best fit parameters are listed in Table 5.1, and they are very close to the reported 

values obtained from the IR-ellipsometry analysis [16]. 

 

 

Figure 5.2 Experimental (solid) and the best fitted (dash) reflectance spectra for sapphire. (a) at near nor-

mal incidence, (b) for oblique incidence of 25° (un-polarized light), (c) S-polarized at 25° incidence, and 

(d) P-polarized at 25° incidence.   
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Table 5.1 The best parameters (isotropic and anisotropic) of sapphire.  

The tolerance are given in the brackets. The thickness of the sapphire from the isotropic model and aniso-

tropic model are 436180 nm and 439000 nm respectively. 

   Oscillator LO (cm-1) LO  (cm-1) TO ( cm-1) TO  (cm-1) 

Normal Inci-

dence 

(isotropic) 

3.079  

(±0.005) 

1 
388.2 

(±0.1) 

4.30 

(±0.1) 

385.63 

(±0.1) 

5.64 

(±0.1) 

2 
482.05 

(±0.05) 

2.77 

(±0.10) 

440.03 

(±0.01) 

3.77 

(±0.01) 

3 
629.33 

(±0.05) 

7.59 

(±0.10) 

569.80 

(±0.10) 

4.78 

(±0.10)  

4 
911.07 

(±1.00) 

25.91 

(±1.00) 

633.86 

(±0.05) 

6.43 

(±0.10) 

25°-Incidence 

(anisotropic) 

3.083 

(±0.005) 

1 
387.66 

(±0.10) 

2.96 

(±0.10) 

385.33 

(±0.10) 

3.76 

(±0.10) 

2 
481.5 

(±0.05) 

1.93 

(±0.10) 

439.55 

(±0.10) 

3.26 

(±0.10) 

3 
629.22 

(±0.05) 

6.67 

(±0.10) 

568.65 

(±0.10) 

6.23 

(±0.10) 

4 
906.25 

(±1.00) 

21.47 

(±1.00) 

633.31 

(±0.10) 

6.29 

(±0.10) 

3.086 

(±0.005) 

1 
510.82 

(±0.10) 

2.10 

(±0.10) 

397.10 

(±0.10) 

5.22 

(±0.10) 

2 
878.47 

(±0.05) 

20.96 

(±1.00) 

580.52 

(±0.10) 

2.63 

(±0.10) 

 

Figure 5.3 (a) and (b) illustrate the real and imaginary dielectric functions for sapphire at near 

normal and 25° un-polarized incidence. The dielectric functions perpendicular and parallel to the c-axis 

determined from the un-polarized reflectance spectrum are shown in dashed and short dashed lines, re-

spectively. The imaginary dielectric function above 1000 cm-1 is almost zero, and this indicates that sap-

phire is optically transparent above 1000 cm-1. The observed vibration modes in the imaginary dielectric 

function below 800 cm-1 is the TO phonon modes of sapphire. The real part of the dielectric function 

slightly increases with wavenumber above 700 cm-1. In the range of 1800-6200 cm-1 (5.55-1.61µm), the 
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real part of the dielectric function is between 2.517 and 3.036 (refractive index is between 1.586 and 

1.742), and this is closer to the reported values in the same wavelength range [17].  

 

 

Figure 5.3 The real (a) and imaginary (b) dielectric function of sapphire at normal incidence (solid), at 

25° incidence angle E-field perpendicular to the c-axis (dash), and at 25° incidence angle E-filed parallel 

to the c-axis (short-dash).  

 

5.3.1 Analysis of IR reflectance Spectra for Templates 

For the templates (AlN and GaN) and InN simulation, the following dielectric function in parallel 

and perpendicular direction to the crystal c-axis were used in the anisotropic analysis, and ( ) ( )     

is considered for isotropic analysis. However, Katssidis et al. [14] has used factorized model with and 

without the free carrier contribution term, for analysis of sapphire and InN (or GaN), respectively. 
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The 
, and 

,  are denoted the high frequency dielectric constant in both directions: parallel 

and perpendicular to the c-axis. For the AlN, GaN, and InN, 
,LO ,

,TO ,
,LO , and 

,TO  are the A1LO, 

A1TO, E1LO, and E1TO phonon modes respectively. The
,TO and 

,TO account for the broadening con-

stant of A1TO and E1TO phonon modes correspondingly. The 
,p and 

,p represent the plasma fre-

quency of the films in parallel and perpendicular directions to the c-axis while 
,p and 

,p account for 

their corresponding damping constant. 

Sapphire parameters were kept constant during the simulation of all templates and InN samples. 

A three layer model (air/AlN/sapphire) was used in AlN layer simulation and was obtained a ~30 nm AlN 

layer from the simulation. This value is consistent with the experimental value. Figure 5.4 (a) shows the 

measured reflectance spectra at normal and 25° (un-polarized) incidence light for AlN/sapphire. Even in 

such a thin layer, the E1TO phonon mode (~674 cm-1) of AlN can be observed in both spectra. However, 

the features of sapphire are more dominant to the reflectance spectra in other frequency ranges (see Fig. 

5.4 (b), which depicts the measured reflectance spectra for the sapphire and AlN/sapphire for 25° un-po-

larized incidence light, and the inset shows the spectra further up to 6500 cm-1). The attenuation of reflec-

tance can be observed in the range between 675 cm-1 and 860 cm-1 in the spectrum of 25° incident angle 

compared that of normal incidence. The best fitted and experimental spectra at normal and 25° incident 

angle are presented in Fig.5. 4 (c) and (d), respectively. It is noted that the free carrier term (Drude term) 

is negligible in both cases since the sample is not intentionally doped. Table 5.2, 5.3, and 5.4 summarize 

the best fit parameter for AlN layers on sapphire obtained from the simulation. 
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Figure 5.4 (a) Experimental spectra for AlN/Sapphire at near normal (solid) and 25° unpolarized inci-

dence light (dash), (b) experimental spectra for sapphire (solid) and AlN/Sapphire at 25° unpolarized inci-

dence, (c) and (d) experimental and best fitted spectra of sapphire at normal (solid) and 25° unpolarized 

incidence for AlN/Sapphire.  

 

The real and imaginary part of the dielectric functions under the near normal incident and the 25° 

un-polarized incident light as function of wavenumber is depicted in Fig. 5.5 (a) and (b). The TO phonon 

frequency is located at the maximum value of the imaginary part of the dielectric function. The real part 

of the dielectric function is between 3.968 and 4.561 (refractive index is between 1.992 and 2.135), in the 

range of 1800-6200 cm-1 (5.51-1.61µm). 
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Figure 5.5 The real (a) and imaginary (b) dielectric function of AlN/sapphire at normal incidence (solid), 

at 25° incidence angle E filed perpendicular to the c-axis (dash), and at 25° incidence angle E filed paral-

lel to the c-axis (short dashed). 

 

For Ga-polar GaN simulation, a four layer model (air/Ga-polar GaN/AlN/sapphire) is used, and 

both the sapphire and AlN layer parameters were kept constant from above study. The experimental spec-

tra for Ga-polar GaN, measured at near normal, 25° un-polarized, P-polarized, and S-polarized incident 

light are shown in Fig. 5.6 (a). In order to discriminate sapphire and AlN features from the GaN features 

in Ga-polar GaN/AlN/Sapphire reflectance spectra, the experimental reflectance spectra of sapphire (at 

normal and P-polarized incidence), AlN/Sapphire (at normal and 25° P-polarized incidence), Ga-polar 

GaN/AlN/Sapphire (at normal, 25° unpolarized, P-polarized, and S-polarized incidence light are over lay-

ered in Fig. 5.7. It is clear that the presence of a small dip at 630 cm-1 in both AlN and GaN spectra is 

coming from the sapphire substrate. The literature values for the phonon frequencies of A1LO (in the 

range of 730-744 cm-1) and E1LO (738-746 cm-1) of GaN show a large deviation because they are shifting 

with the thickness in addition to the measurement type [18]. The dip at the 735 cm-1 in GaN (near normal 
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incidence) spectrum is increasing with the angle of incidence and the polarized light. As well as, it is 

slightly shifted (737 cm-1) with increasing incidence angle. The dip disappears in the S-polarized spec-

trum. Therefore, it is clear that the dip at the 735 cm-1 is due to the A1LO phonon of GaN. When analyz-

ing the near normal reflectance spectra of GaN, in the isotropic model, P-polarized component has ig-

nored. However, even ~8°, the A1LO phonon mode can be observed in the reflectance spectra of GaN. 

Therefore, this is not captured well on the best fit spectrum (see Fig. 5.6(b)). Figure 5.6 (c) shows the ex-

perimental and best fitted spectrum at 25° unpolarized incidence light for Ga polar-GaN/AlN/Sapphire 

and the fitting were carried out using the anisotropic model without free carrier term (since the sample 

was not intentionally doped). Figure 5.6 (d) depicts these two spectra from 300-6500 cm-1 which show the 

interference fringes (above 1500 cm-1) above the reststrahlen region (above 1500 cm-1). The experimental 

and theoretical spectra were well agreed with the model used.  

 

 

Figure 5.6 (a) Experimental spectra at normal incidence (solid), at 25° incidence for unpolarized (dash-

dot), P-polarized (dash), and S-polarized (short-dash) light, (b) and (c) experimental and best fitted spec-

tra at normal and 25°-unpolarized incidence light, respectively, and (d) experimental and best fitted spec-

tra for 25°unpolarized incidence light, showing range of 300-6500 cm-1, for Ga-polar GaN/AlN/Sapphire. 
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Figure 5.7 Experimental reflectance spectra for Sapphire, AlN/Sapphire, and Ga-polar GaN/AlN/Sap-

phire. 

Nor., P, and S represent the normal incidence, P-polarized and S-polarized. 

 

The best fit values from the IR reflectance analysis for are summarized Table 5.2, 5.3, and 5.4. 

GaN parameters reported by Kasic et al. by IR ellipsometry analysis were used as the initial GaN parame-

ters for the simulation [19].  

Figure 5.8 (a) and (b) depicts the real and imaginary part of the dielectric functions for near nor-

mal incident and 25° un-polarized incident light as a function of wavenumber. The real part of the dielec-

tric function is between 4.878 and 5.279 (refractive index is between 2.208 and 2.297), in the range of 

1800-6200 cm-1 (5.51-1.61µm). These values are in close agreement with the reported values [20]. 
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Figure 5.8 The real (a) and imaginary (b) dielectric function of Ga polar GaN/AlN/sapphire at normal in-

cidence (solid), at 25° incidence angle E filed perpendicular to the c-axis (dash), and at 25° incidence an-

gle E filed parallel to the c-axis (dash-dotted). 

 

The experimental reflectance spectra at the near normal incidence at the 25° incidence unpolar-

ized, the P-polarized, and the S-polarized for N-polar GaN/Sapphire template are shown in Fig. 5.9 (a). 

There is no much difference between the near normal and 25° (un-polarized) incidence reflectance spec-

tra. A slight difference (in the region of 1750-2750 cm-1) can be observed in S-polarized spectrum com-

pared with these two spectra. It can be observed that S-polarized spectra is less damped compared to the 

other spectra. These results shows that N-polar GaN is dominated by the reflection of plasma. Conversely, 

the Ga polar GaN is dominated by the phonons [21].  

Initially, a four layer stack model (air/N polar GaN/AlN/sapphire) was considered for the simula-

tion and was not achieved a poor fitting. Thus, three layer stack model (air/N-polar GaN/Sapphire) as 

shown in Fig. 5.10 (a) was used. Figure 5.11 depicts the experimental spectrum and best fit spectrum [(a)] 

obtained from this simulation. The fitted spectra showed a significant deviation from the experimental 
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spectrum, especially, in the region > 2000 cm-1 (the interference region, where the interference creates a 

periodic pattern). This deviation might be due to an additional interface layer with a different dielectric 

function from the GaN layer and sapphire, formed in between the sapphire and GaN during the growth, 

and have not been considered for the simulation. Hence, an interface layer between sapphire and GaN 

[which is label as L2 in Fig. 5.10 (b)] is added to achieve the best fitting between experimental and calcu-

lated spectra. The best fitted spectrum achieved from the four layer model is shown in Fig. 5.11 (b). The 

interface layer modulated the interference fringes and provided a better fitting between the experimental 

and calculated spectra. In order to further improve the fitting quality, a surface layer is added in between 

ambient and GaN layer as shown in Fig. 5.10 (c). A further agreement between the experimental and cal-

culated spectra was not achieved using five layer model [see Fig. 5.11 (c)]. Thus, four layer model was 

used in the 25° (un-polarized) incidence spectrum simulation. Figure 5.9 (b) and (c) depict the experi-

mental and best fitted spectra at normal and 25° (un-polarized) incidence light. 

The lower reflectivity in the experimental spectrum than the calculated spectrum [see Fig. 5.9 (b)] 

may be due to scattering by influence of surface roughness [22]. Thus, the total reflectance was corrected 

including surface roughness term  (see Eq. 4.97). The Fig. 5.9 (d) shows the further improved best fitted 

spectrum after reflectivity correction and experimental spectrum for N-polar GaN/sapphire. The best fit-

ted parameters are listed in Table 5.2, 5.3, and 5.2. The isotropic and anisotropic free carrier concentration 

and the mobility of the carriers of the N polar GaN layer were calculated using Eqs. 4.128-4.131. The ef-

fective mass values of *

00.2m m , *

00.228m m , and *

00.237 m m were used for these calculations 

[19]. 

Figure 5.12 (a) and (b) show the real and imaginary part of the dielectric functions for near nor-

mal incident and 25° un-polarized incident light as a function of wavenumber, respectively. It is clear that 

both the real part and imaginary part of the dielectric function of the layer 1 are different those from the 

layer 2 especially due to plasma damping in the first layer. In the range of 1800-6200 cm-1 (5.51-1.61µm), 
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the real part of the isotropic dielectric function for the layer 1 is between 2.479 and 4.602 (refractive in-

dex is between 1.574 and 2.145).  

 

 

Figure 5.9 (a) Experimental spectra at normal incidence (solid), at 25° incidence for unpolarized, P-polar-

ized, and S-polarized (dash), (b) and (c) experimental and best fitted spectra at normal and 25°-unpolar-

ized incidence light, respectively, and (d) experimental and best fitted spectra with surface roughness for 

25° unpolarized incidence light for N-polar GaN/Sapphire. 

 

 

 

Figure 5.10 Model layer structures used in N-polar GaN/sapphire simulation. 
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Figure 5.11 Experimental and best fitted spectra obtained using (a) three layer, (b) four layer, and (c) five 

layer models for N polar GaN/sapphire template. 

 

 

Figure 5.12 The real (a) and imaginary (b) dielectric function of N polar GaN layers ( L1 and L2) at nor-

mal incidence, at 25° incidence angle E filed perpendicular to the c-axis, and at 25° incidence angle E 

filed parallel to the c-axis. 
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Figure 5.13 (a) shows the experimental spectra for the n-GaN/i-GaN/AlN/sapphire at near nor-

mal, 25° un-polarized, P-polarized, and S-polarized incident light. Except intensity changing in the region 

of 770-900 cm-1 and 350-420 cm-1, the spectra are very similar to the Ga-polar GaN/AlN/sapphire. The 

changes of the intensity 350-420 cm-1 may be due to the free carrier absorption. As in the N polar GaN, 

two GaN layers (with and without free carriers) were found using five layer model. Further improved best 

fitted spectrum with surface roughness and experimental spectrum are exhibited Fig. 13 (d). For the cal-

culations of free carrier concentration and mobility, effective mass values of *

00.2m m , *

00.228m m , 

and *

00.237 m m were used. See Table 5.2, 5.3, and 5.3 for the obtained properties of n-GaN layers. 

 

 

Figure 5.13 (a) Experimental spectra at normal incidence (solid), at 25° incidence for unpolarized, P-po-

larized, and S-polarized (dash), (b) and (c) experimental and best fitted spectra at normal and 25°-unpo-

larized incidence light, respectively, and (d) experimental and best fitted spectra with surface roughness 

for 25° unpolarized incidence light for n-GaN/i-GaN/AlN/Sapphire. 

 

The real and imaginary part of the dielectric functions for near normal incident and 25° un-polar-

ized incident light as a function of wavenumber, respectively are depicted in Fig. 5.14 (a) and (b). Since 
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the plasma frequency of the layer 1 is in the region below 150 cm-1, there is no much influence on the die-

lectric function in the shown region. However, the both the real part and imaginary part of the dielectric 

functions of the layer 1 are different those from the layer 2  due to different phonon frequencies and their 

broadening. This may be due to the different strains in the layers. The real part of the isotropic dielectric 

function for layer 1 is between 4.751 and 5.192 (refractive index is between 2.179 and 2.278) in the fre-

quency range of 1800-6200 cm-1 (5.51-1.61µm). 

 

 

Figure 5.14 The real (a) and imaginary (b) dielectric function of n-GaN layers ( L1 and L2) at normal in-

cidence, at 25° incidence angle E filed perpendicular to the c-axis, and at 25° incidence angle E filed par-

allel to the c-axis. 

 

The experimental spectra of the p-GaN/i-GaN/AlN/sapphire at near normal, 25° un-polarized, P-

polarized, and S-polarized incident light are shown in Fig. 5.15. The sapphire features around 630 cm-1 

were not observed in these spectra. As well as, the dip of the A1LO phonon mode at the normal incidence 

is less compared to the Ga polar and n-type GaN because p-GaN layer is thicker than the Ga polar and n-
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type GaN layers. However, the A1LO phonon mode is sensitive to the angle of the incidence and P-polar-

ized light. 

Two GaN layers were found using five layer model. Fig. 5.15 (b) and (c) show the best fitted and 

experimental reflectance spectra for p-GaN/i-GaN/AlN/sapphire at normal and 25° (unpolarized) inci-

dence light. The experimental spectrum and best fitted spectrum with surface roughness are depicted in 

Fig. 5.15 (d). The best fit properties of p-GaN layers are listed in Table 5.2, 5.3, and 5.4. The free carrier 

concentration and mobility of the carriers were calculated using effective mass values of *

01.4m m , 

*

01.4m m , and *

01.4m m  [19]. 

 

 

Figure 5.15 (a) Experimental spectra at normal incidence (solid), at 25° incidence for unpolarized, P-po-

larized, and S-polarized (dash), (b) and (c) experimental and best fitted spectra at normal and 25°-unpo-

larized incidence light, respectively, and (d) experimental and best fitted spectra with surface roughness 

for 25° unpolarized incidence light for p-GaN/i-GaN/AlN/Sapphire. 

 

For p-GaN layers, the real and imaginary part of the dielectric functions at near normal incident 

and 25° un-polarized incident light as a function of wavenumber are shown in Fig. 5.14 (a) and (b). It is 
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observed that the dielectric function of the layer 1 is different from the layer 2.  The real part of the iso-

tropic dielectric function for layer 1 is between 4.715 and 5.144 (refractive index is between 2.171 and 

2.268). In the frequency range of 1800-6200 cm-1 (5.51-1.61µm). 

 

Figure 5.16 The real (a) and imaginary (b) dielectric function of p-GaN layers ( L1 and L2) at normal in-

cidence, at 25° incidence angle E filed perpendicular to the c-axis, and at 25° incidence angle E filed par-

allel to the c-axis. 
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Table 5.2 Best fitted isotropic and anisotropic high frequency dielectric constant, plasma frequencies, and 

their damping values for AlN and GaN layers. 

The tolerance for the high frequency dielectric constant is (±0.01), and that is for plasma frequency and 

damping of the plasma is (±5.0).  

 

Substrate 

Normal Incidence 25° Incidence 

  
p

(cm-1) 

p

(cm-1) 
,   

,p

(cm-1) 

,p

(cm-1) 
,  

,p

(cm-1) 

,p

(cm-1) 

AlN/sapphire L1 4.46 - - 4.73 - - 4.61 - - 

Ga-polar-

GaN/AlN/sapphire 
L1 5.32 - - 5.15 - - 5.31 - - 

N-polar-

GaN/sapphire 

L1 4.8 1152 347 5.05 1157 373 5.1 1305 345 

L2 4.26 - - 4.79 - - 4.8 - - 

n-type-

GaN/AlN/sapphire 

L1 5.23 150 86 5.04 55 40 5.31 111 100 

L2 5.14 - - 4.93 - - 5.35 - - 

p-type-

GaN/AlN/sapphire 

L1 5.18 130 130 5.1 186 170 5.24 101 100 

L2 5.31 - - 5.13 - - 5.33 - - 

 

 

Table 5.3 Best fit isotropic and anisotropic phonon frequencies, and their broadening values for AlN and 

GaN layers. 

The tolerance for the phonon frequencies and their broadening is (±0.1). 

 

Substrate 

Normal Incidence 25° Incidence 

LO

(cm-1) 

TO  

(cm-1) 

TO

(cm-1) 

LO,

E1LO  

(cm-1) 

,TO

E1TO 

(cm-1) 

,TO

(cm-1) 

,LO

A1LO 

(cm-1) 

,TO

A1TO 

(cm-1) 

,TO

(cm-1) 

AlN/sap. L1 907.1  675.0  45.1  917.7  674.0  44  882.3  616.8  10.4  

Ga-polar-

GaN/AlN/sap. 
L1 742.5  558.7  4.8  741.8  560.0  4.0  734.2  533.7 8.0  

N-polar-

GaN/sapp. 

L1 754.7  557.5  4.5  740.8  557.2  5.1  746.6  540.3  3.8  

L2 742.0  555.0  6.4  757.8  555.0  10.0  738.1  533.6  6.1  

n-type-

GaN/AlN/sap. 

L1 747.6  558.0  5.2  745.3  558.4  7.0  728.8  530.4  5.2  

L2 734.1  555.0  4.8  742.5  557.7  6.7  735.7  536.7  7.5  

p-type-

GaN/AlN/sap. 

L1 747.0  557.0  4.2  742.7  557.0  4.9  730.4  536.6  3.1 

L2 733.0  556.1  6.7  737.2  556.9  8.1 737.5  535.1  11.9 
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Table 5.4 Best fit isotropic and anisotropic layer thicknesses, free carrier concentration, mobility of the 

carriers, and surface roughness values for AlN and GaN layers. 

The effective mass values used in the free carrier concentration and mobility of the carrier calculations are 

shown in the brackets. 

 

Substrate 

Normal Incidence 25° Incidence 

d 

(nm) 

cN  

(×1019 

cm-3) 

c  

(cm2V

-1s-1) 

d 

(nm) 

c,N  

(×1019

cm-3) 

,c  

(cm2V

-1s-1) 

c,N  

(×1019

cm-3) 

,c  

(cm2V

-1s-1) 

Surf. 

Rough. 

(nm) 

AlN/sap. L1 25 - - 28 - - - - - 

Ga-polar-

GaN/AlN/sap. 
L1 1227 - - 1244 - - - - - 

N-polar-

GaN/sapp. 

L1 1200 1.4 130 1169 1.8 110 2.2 120 28 

L2 576 - - 580 - - - -  

n-type-

GaN/AlN/sap. 

L1 680 0.030 470 620 0.004 980 0.016 410 25 

L2 1129 - - 1328 - - - -  

p-type-

GaN/AlN/sap. 

L1 822 0.136 51 740 0.275 39 0.083 67 20 

L2 1508 - - 1641 - - - -  

 

As a summary, both the isotropic and the anisotropic broadening of the E1TO phonon modes for 

the AlN layer have a higher value compared to that of the GaN layers. Since the broadening of the E1TO 

phonon mode is related to the crystalline quality of the layers, these results indicate that poor quality for 

AlN layer in these structures. It has been attributed the thicker interface layer as an effective optical tran-

sition layer due to the interface imperfections [23]. The phonon frequencies for un-doped Ga polar GaN 

layer have a close agreement with the reported values obtained from Raman analysis, except for the  

A1TO (531 cm-1) [24]. It is observed that phonon frequencies of N polar GaN, n-GaN, and p-GaN layers 

are shifted with respect to that of the Ga polar GaN layers. This may be due to the presence of stains and 

those been different in each layer [23]. Higher carrier concentration in N polar GaN layers compared to 

that of Ga polar GaN layers has been attributed to the presence of donors, likely the oxygen [21].  
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5.3.2 Analysis of IR reflectance Spectra for InN films 

For the simulation of InN grown on the template described in previous two section, these ob-

tained physical properties of templates were kept constant and used the values obtained in those studies. 

Figure 5.17 (a) shows the experimental reflectance spectra of InN/sapphire, measured at near nor-

mal, 25° un-polarized, P-polarized, and S-polarized incident light. There was no significant difference be-

tween near normal incidence spectrum and the 25° (unpolarized) incidence spectrum. The S- and P-polar-

ized spectra were slightly difference from these two spectra, especially, plasma damping. As well as, the 

intensity in the region of 2000-6500 cm-1 has increased in the S-polarized spectrum. Due to the free car-

rier absorption, it is difficult to discriminate the phonon mode of InN layers by experimentally. 

The best fitted spectrum was achieved for four layer stack structure. Two InN layers with differ-

ent dielectric function were found from the simulation. Figure 5.17 (a) and (b) show the experimental and 

best fitted spectra for InN/sapphire at normal and 25° (unpolarized) incidence light. The obtained iso-

tropic and anisotropic optoelectronic properties of the InN layers from the fitting are listed in Table 5.5, 

5.6, and 5.7. Thickness of the layer (L2) between the sapphire and the top InN layer is 283 nm and the 

thickness of the layer (L1) close to the ambient is 115 nm. According to our growth process, there can be 

two InN layers (a nucleation layer and a bulk layer). However, the thickness of the L2 is higher than the 

nucleation layer thickness. Therefore, the L2 layer can be attributed to a mixture of both nucleation and 

bulk layers. This layer has the higher carrier concentration and lower carrier mobility compared to that of 

L1 layer.  
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Figure 5.17 Experimental spectra at normal incidence, at 25° incidence for unpolarized, P-polarized, and 

S-polarized, (b) and (c) experimental (solid) and best fitted (dash) spectra at normal and 25°-unpolarized 

incidence light, respectively, and (d) experimental and best fitted spectra with surface roughness for 25° 

unpolarized incidence light for InN/Sapphire. 

Insets show the region of 300-1500 cm-1. 

 

Figure 5.18 (a) and (b) show the real and imaginary part of the dielectric functions for InN layers 

grown on sapphire at the near normal incident and the 25° unpolarized incident light as a function of 

wavenumber, respectively. The damping behavior of the dielectric function is due to the plasma. In the 

range of 2800-6200 cm-1 (3.57-1.61µm), the real part of the isotropic dielectric function for the layer 1 is 

between 3.859 and 5.663 (refractive index is between 1.964 and 2.379).  
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Figure 5.18 The real (a) and imaginary (b) dielectric function of InN layers (L1 and L2) grown on sap-

phire at normal incidence, at 25° incidence angle E filed perpendicular to the c-axis, and at 25° incidence 

angle E filed parallel to the c-axis. 

 

The experimental reflectance spectra at the near normal and the 25° un-polarized incidence light 

for the InN/AlN/sapphire structure are given in Fig. 5.19 (a). It can be observed that the dip ~467 cm-1 has 

increased with the angle of incidence as well as, the spectrum for the 25° un-polarized incidence light has 

more damped in the region of 1000-2500 cm-1 than the spectrum at normal incidence due to different car-

rier absorptions. The best fitted spectra were found for six layered structure and Fig. 5.19 (b) and (c) are 

given the best fitted and experimental spectra at normal and 25° un-polarized incidence light, respec-

tively. The best fitted spectra with surface roughness are shown in Fig. 5.19 (d). See Table 5.5, 5.6, and 

5.7 for the obtained properties of InN layers on AlN/sapphire. Three InN layers were obtained from the 

simulation. The bulk layer (L2) has the higher carrier concentration and lower carrier mobility compared 

to the other two InN layers (L1 and L3). The top InN layer (L1) could be attributed to a layer that is domi-

nated by voids. 
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Figure 5.19 Experimental spectra at normal incidence (solid), at 25° (unpolarized) incidence (dash), (b) 

and (c) experimental (solid) and best fitted (dash) spectra at normal and 25°-unpolarized incidence light, 

respectively, and (d) experimental and best fitted spectra with surface roughness for 25° unpolarized inci-

dence light for InN/AlN/Sapphire. 

 

The real and imaginary part of the dielectric functions for three InN layers at 25° (un-polarized) 

incident light as a function of wavenumber, respectively are shown in Fig. 5.20 (a) and (b). The real part 

of the ordinary dielectric function (which is not shown here) for layer 1 is between 4.239 and 4.897 (re-

fractive index is between 2.213 and 2.058) in the range of 2800-6200 cm-1 (3.57-1.61µm). 
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Figure 5.20 The real (a) and imaginary (b) dielectric function of InN layers (L1, L2 and L3) grown on 

AlN/sapphire at normal incidence, at 25° incidence angle E filed perpendicular to the c-axis, and at 25° 

incidence angle E filed parallel to the c-axis. 

 

Figure. 5.21 (a) shows the experimental reflectance spectra at the near normal and the 25° un-po-

larized incidence light for the InN/Ga polar GaN/AlN/sapphire structure. Three InN layers were found on 

Ga polar GaN/AlN/sapphire using seven layer stack model and the anisotropic model for 25° un-polarized 

incidence light. However, from analysis of spectrum at normal incidence using isotropic model, only two 

InN layers on Ga polar GaN/AlN/sapphire were found. Anisotropic model allowed separate surface InN 

layer (10 nm) with lower carrier concentration. Figure 5.21 (b) and (c) show the best fitted spectra and 

experimental spectra at normal and 25° un-polarized incidence light, respectively. A well agreement be-

tween the calculated and experimental spectra was found for the 25° un-polarized incidence light without 

surface roughness term. Therefore, there is no RMS data for this layer from IR reflectance analysis. Table 

5.5, 5.6, and 5.7 summarize the properties obtained for InN layers on Ga polar GaN/AlN/sapphire.  
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Figure 5.21 Experimental spectra at normal incidence (solid), at 25° (unpolarized) incidence (dash), (b) 

and (c) experimental (solid) and best fitted (dash) spectra at normal and 25°-unpolarized incidence light, 

respectively, and (d) experimental and best fitted spectra for 25° unpolarized incidence light, in the range 

of 300-2500 cm-1 for InN/Ga polar GaN/AlN/Sapphire. 

 

 

For the three InN layers on Ga polar GaN layers, the real and imaginary part of the dielectric 

functions at the 25° un-polarized incident light as a function of wavenumber are shown in Fig. 5.22 (a) 

and (b). The damping of the dielectric function increases from L1 to L3 since plasma frequency increases 

from L1 to L2. The real part of the ordinary dielectric function for layer 1 is between 4.536 and 4.897 (re-

fractive index is between 2.129 and 2.212) in the frequency range of 3500-6200 cm-1 (2.85-1.61µm). 
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Figure 5.22 The real (a) and imaginary (b) dielectric function of InN layers (L1, L2 and L3) grown on Ga 

polar GaN/AlN/sapphire at normal incidence, at 25° incidence angle E filed perpendicular to the c-axis, 

and at 25° incidence angle E filed parallel to the c-axis. 

 

The Figure 5.23 (a) shows the experimental spectra for the InN on N polar GaN/sapphire struc-

ture at the near normal, the 25° (un-polarized) incident light. There is a slight difference of plasma damp-

ing and interference fringes between these two spectra. Three InN layers were found by fitting normal in-

cidence spectrum with calculated spectrum. Those two spectra are shown in Fig. 5.23 (b). However, only 

two InN layers were investigated on N polar GaN/sapphire for 25° (un-polarized) incident light using ani-

sotropic model. It is supposed that the layer close to the N polar GaN (in anisotropic analysis) is a combi-

nation of nucleation layer and a layer with interface imperfection. Figure 5.23 (c) shows the best fitted 

and experimental reflectance spectra for 25° (un-polarized) incident light. Further improved best fitted 

spectrum with surface roughness, and experimental spectrum is depicted in Fig. 5.23 (d). 

 



154 

 

Figure 5.23 Experimental spectra at normal incidence (solid), at 25° (unpolarized) incidence (dash), (b) 

and (c) experimental (solid) and best fitted (dash) spectra at normal and 25°-unpolarized incidence light, 

respectively, and (d) experimental and best fitted spectra with surface roughness for 25° unpolarized inci-

dence light for InN/N polar GaN/Sapphire. 

 

The real and imaginary part of the dielectric functions of InN layers grown on N polar GaN/sap-

phire for 25° un-polarized incident light as a function of wavenumber are depicted in Fig. 5.24 (a) and (b). 

It can be observed that the dielectric function of the L2 is highly damped compared to all other InN layers 

grown on different template since this layer shows highest damping of plasma. In the range of 3000-6200 

cm-1 (3.33-1.61µm), the real part of the ordinary dielectric function for layer 1 (L1) is between 3.519 and 

4.485 (refractive index is between 1.875 and 2.117).  
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Figure 5.24 The real (a) and imaginary (b) dielectric function of InN layers ( L1 and L2) grown on N po-

lar GaN/sapphire at normal incidence, at 25° incidence angle E filed perpendicular to the c-axis, and at 

25° incidence angle E filed parallel to the c-axis. 

 

The experimental reflectance spectra for InN on n-GaN/AlN/sapphire at 25° un-polarized incident 

light are shown in Fig. 5.25 (a). It can be observed that the interference fringes in the reflectance spectrum 

for 25° un-polarized incident light are more damped than those in the near normal incidence reflectance 

spectrum. Two InN layers were investigated on n-GaN/AlN/sapphire by analyzing the normal incidence 

spectrum and three InN layers were found by analyzing the 25° un-polarized incident light reflectance 

spectrum. The anisotropic model allowed to separate an interface layer (24 nm) between two InN layers. 

Fig. 5.25 (b) and (c) shows the best fitted and experimental reflectance spectra for n-GaN/AlN/sapphire at 

normal and 25° (unpolarized) incidence light. Figure 5.25 (d) depict the experimental spectrum and best 

fitted spectrum with surface roughness (25 nm). It is clear that there is no much improvement of the fit-

ting by considering the surface roughness. These results indicate that the reduction of the reflection of the 
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experimental spectrum at higher frequency compared with the calculated spectrum is not related to the 

surface roughness of the layer. 

 

 

Figure 5.25 Experimental spectra at normal incidence (solid), at 25° (unpolarized) incidence (dash), (b) 

and (c) experimental (solid) and best fitted (dash) spectra at normal and 25°-unpolarized incidence light, 

respectively, and (d) experimental and best fitted spectra with surface roughness for 25° unpolarized inci-

dence light for InN/n-GaN/AlN/Sapphire. 

 

Figure. 5.26 (a) and (b) shows the real and imaginary part of the dielectric functions of three InN 

layers grown on N polar GaN/sapphire for 25° un-polarized incident light as a function of wavenumber. 

In the range of 3500-6200 cm-1 (2.85-1.61µm), the real part of the ordinary dielectric function for layer 1 

(L1) is between 4.731 and 5.565 (refractive index is between 2.175 and 2.359).  
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Figure 5.26 The real (a) and imaginary (b) dielectric function of InN layers  (L1, L2 and L3) grown on n-

GaN/AlN/sapphire at normal incidence, at 25° incidence angle E filed perpendicular to the c-axis, and at 

25° incidence angle E filed parallel to the c-axis. 

 

Figure 5.27 (a) depicts the experimental reflectance spectra for InN on p-GaN/AlN/sapphire at 

25° un-polarized incident light. Two InN layers were investigated on n-GaN/AlN/sapphire by analyzing 

the normal incidence spectrum and the 25° un-polarized incident light reflectance spectrum. The best fit-

ted and experimental reflectance spectra for p-GaN/AlN/sapphire at normal and 25° (unpolarized) inci-

dence light are depicted in Fig. 5.27 (b) and (c). Figure 5.25 (d) shows the experimental spectrum and best 

fitted spectrum with surface roughness (40 nm). As in InN on n-GaN/AlN/sapphire, there is no much in-

fluence on the fitting by the surface roughness.  
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Figure 5.27 Experimental spectra at normal incidence (solid), at 25° (unpolarized) incidence (dash), (b) 

and (c) experimental (solid) and best fitted (dash) spectra at normal and 25°-unpolarized incidence light, 

respectively, and (d) experimental and best fitted spectra with surface roughness for 25° unpolarized inci-

dence light for InN/p-GaN/AlN/Sapphire. 

 

Figure. 5.26 (a) and (b) depict the real and imaginary part of the dielectric functions of InN layers 

grown on p-GaN/AlN/sapphire for 25° un-polarized incident light as function of wavenumber. In the 

range of 3500-6200 cm-1 (2.85-1.61µm), the real part of the ordinary dielectric function for layer 1 (L1) is 

between 6.326 and 6.784 (refractive index is between 2.515 and 2.604).  
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Figure 5.28 The real (a) and imaginary (b) dielectric function of InN layers ( L1 and L2) grown on p-

GaN/AlN/sapphire at normal incidence, at 25° incidence angle E filed perpendicular to the c-axis, and at 

25° incidence angle E filed parallel to the c-axis. 

 

Overall FTIR reflectance analysis results of InN layers in different templates indicate followings.  

A thicker InN layer can be achieved by using Ga polar GaN template. The lowest carrier concentration of 

6.0×1018 cm-3 with mobility of 450 cm2V-1s-1 (the InN layers close to the ambient were used for the com-

parison. However, the surface layer (10 nm) with carrier concentration 4.3×1018 cm-3 did not include for 

this comparison) was obtained for the sample grown on AlN template. The lowest carrier concentration of 

7.1×1018 cm-3 with mobility of 660 cm2V-1s-1 (the InN layers close to the templates were used for the com-

parison) was obtained for the InN grown on AlN template The highest mobility value of 740 cm2V-1s-1 

was achieved for the layer grown on n-GaN template. The InN layer close to the template has higher car-

rier concentration for the samples grown on sapphire, Ga polar, N polar, n-GaN, and p-GaN templates. 

However, the layer grown on AlN template behaves differently forming a film with lower carrier concen-

tration on AlN first. 



160 

The reason for the variation seen (from 4.29 to 8.3) of the high frequency dielectric constant is 

discussed in Chapter 7.  

 

Table 5.5 Best fitted isotropic and anisotropic high frequency dielectric constant, plasma frequencies, and 

their damping values for InN layers. 

The tolerance for the high frequency dielectric constant is (±0.01), and that is for plasma frequency and 

damping of the plasma is (±5.0).  

 

Sample 

Normal Incidence 25° Incidence 

  
p

(cm-1) 

p

(cm-1) 
,   

,p

(cm-1) 

,p

(cm-1) 
,  

,p

(cm-1) 

,p

(cm-1) 

InN/sapphire 
L1 6.14 1698 457 5.74 1695 462 6.2 1451 433 

L2 7.22 2702 460 7.12 2683 491 7.2 2590 511 

InN/AlN/sapphire 

L1 4.91 1190 260 5.07 1091 230 4.93 1052 208 

L2 7.71 2880 537 8.25 2723 705 8.3 2697 584 

L3 6.11 1215 424 6.12 1076 158 6.11 1158 223 

InN/Ga-polar-

GaN/AlN/sapphire 

L1 6.2 890 198 6.78 800 244 7.38 916 282 

L2 7.02 3266 485 6.02 1850 380 7.6 2130 310 

L3 - - - 6.58 3500 500 8.3 3480 515 

InN/N-polar-

GaN/sapphire 

L1 4.29 1392 337 4.78 1513 144 4.51 1317 300 

L2 7.97 2890 379 8.31 2970 711 8.28 3003 403 

L3 5.21 1490 120 - - - - - - 

InN/n-type-

GaN/AlN/sapphire 

L1 8.02 1553 388 5.97 1574 484 5.99 808 140 

L2 5.97 3525 508 7.95 2493 362 8.07 2497 323 

L3 - - - 7.21 3395 493 7.24 3304 455 

InN/p-type-

GaN/AlN/sapphire 

L1 7.53 947 354 7.0 1042 300 6.99 690 203 

L2 6.88 3002 379 8.3 3356 170 8.24 3400 424 
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Table 5.6 Best fit isotropic and anisotropic phonon frequencies, and their broadening values for InN lay-

ers. 

The tolerance for the phonon frequencies and their broadening is (±0.1). 

 

Sample 

Normal Incidence 25° Incidence 

LO

(cm-1) 

TO  

(cm-1) 

TO

(cm-1) 

LO,

E1LO  

(cm-1) 

,TO

E1TO 

(cm-1) 

,TO

(cm-1) 

,LO

A1LO 

(cm-1) 

,TO

A1TO 

(cm-1) 

,TO

(cm-1) 

InN/sap. 
L1 568.0 479.1 7.2 568.1 477.8 5.5 579.8 479.8 3.5 

L2 570.6 477.4 7.0 569.0 478.6 8.7 580.2 480.3 1.6 

InN/AlN/sap. 

L1 567.1 478.2 5.1 567.9 477.1 8.4 579.6 480.4 4.3 

L2 571.4 479.1 4.7 567.4 475.9 8.9 581.8 479.9 1.0 

L3 570.9 479.2 4.2 568.5 480.5 4.3 581.1 480.9 4.5 

InN/Ga-polar-

GaN/AlN/sap. 

L1 571.0 476.0 6.3 567.3 480.9 5.5 580.6 481.4 4.2 

L2 572.1 477.5 5.3 567.1 476.1 5.2 578.6 479.7 5.1 

L3 - - - 567.4 475.9 6.9 582.1 478.6 2.1 

InN/N-polar-

GaN/sapp. 

L1 570.3 476.9 6.9 564.7 481.0 7.2 578.2 480.1 5.9 

L2 570.2 477.9 6.7 568.9 476.8 4.4 581.1 479.2 1.3 

L3 570.5 477.7 6.7 - - - - - - 

InN/n-type-

GaN/AlN/sap. 

L1 571.8 477.2 6.0 570.1 476.3 5.8 578.9 478.6 6.8 

L2 573.2 474.0 9.5 571.5 475.8 4.5 577.7 480.7 6.5 

L3 - - - 570.0 475.1 4.7 580.7 479.5 1.3 

InN/p-type-

GaN/AlN/sap. 

L1 569.8 475.3 9.2 570.5 475.9 4.6 577.2 480.8 6.6 

L2 572.5 471.6 10.0 569.2 475.1 4.7 580.6 479.6 1.4 
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Table 5.7 Best fit isotropic and anisotropic layer thicknesses, free carrier concentration, mobility of the 

carriers, and surface roughness values for InN layers. 

The effective mass values used in the free carrier concentration and mobility of the carrier calculations are 

shown in the brackets. 

 

Substrate 

Normal Incidence 25° Incidence 

d 

(nm) 

cN  

(×1018 

cm-3) 

c ( 

cm2V-

1s-1) 

d 

(nm) 

c,N  

(×1018

cm-3) 

,c  

(cm2V

-1s-1) 

c,N  

(×1018

cm-3) 

,c  

(cm2V

-1s-1) 

Surf. 

Rough. 

(nm) 

InN/sap. 
L1 115 17.7 230 114 16.6 220 13.0 240 77 

L2 283 52.8 230 309 51.4 210 48.4 200  

InN/AlN/sap. 

L1 162 6.9 400 187 6.0 450 5.4 500 40 

L2 59 64.1 190 62 61.4 150 60.5 180  

L3 185 9.0 240 136 7.1 660 8.2 470  

InN/Ga-polar-

GaN/AlN/sap. 

L1 106 4.9 520 10 4.3 430 6.2 370 - 

L2 308 75.0 210 121 20.7 270 34.6 330  

L3 - - - 391 81.0 210 100.0 200  

InN/N-polar-

GaN/sapp. 

L1 197 8.3 310 228 11.0 720 7.8 350 70 

L2 177 66.8 270 137 73.5 150 74.9 260  

L3 157 11.0 860 - - - - -  

InN/n-type-

GaN/AlN/sap. 

L1 58 19.0 270 56 14.8 210 3.9 740 25 

L2 390 74.4 200 24 49.5 290 50.4 320  

L3 - - - 376 83.3 210 79.3 230  

InN/p-type-

GaN/AlN/sap. 

L1 24 6.7 290 57 7.6 350 3.3 510 40 

L2 447 62.2 270 324 93.0 170 95.6 240  

 

5.3.1 AFM Analysis 

AFM topography for the templates and InN films were obtained, in order to compare the surface 

morphology of the InN layers on different templates and compare the RMS surface roughness values ob-

tained from the AFM with the values determined by FTIR reflectance analysis. Figures 5.29, 5.30, 5.31, 

5.32, 5.33 present the 2D-, 3D-AFM surface topographies with the profile of the change in the height 

along the distance, and the corresponding s-SNOMs for (a) the templates and (b) InN films on templates. 
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Table 5.9 summarizes the RMS surface roughness values for the layers determined from the AFM analy-

sis and FTIR analysis. 

 

Figure 5.29 2D-AFM and 3D-AFM surface images with the profile of change in the height along dis-

tance, and corresponding s-SNOM images for (a) sapphire and (b) InN/sapphire. 

The corresponding s-SNOM image for sapphire was not obtained. 
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Figure 5.30 2D-AFM and 3D-AFM surface images with the profile of change in the height along dis-

tance, and corresponding s-SNOM images for (a) Ga polar GaN template and (b) InN on Ga polar GaN. 

 

 

Figure 5.31 2D-AFM and 3D-AFM surface images with the profile of change in the height along dis-

tance, and corresponding s-SNOM images for (a) N polar GaN template and (b) InN on N polar GaN. 
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Figure 5.32 2D-AFM and 3D-AFM surface images with the profile of change in the height along dis-

tance, and corresponding s-SNOM images for (a) n-GaN template and (b) InN on n-GaN. 

 

 

Figure 5.33 2D-AFM and 3D-AFM surface images with the profile of change in the height along dis-

tance, and corresponding s-SNOM images for (a) p-GaN template and (b) InN on p-GaN. 

 

 



166 

Table 5.8 The RMS surface roughness values obtained from AFM analysis and FTR analysis (in paren-

theses) for templates and InN films on corresponding templates. 

Template RMS values (nm) Sample RMS values (nm) 

Sapphire 0.225 InN/sapphire 54.3 (77) 

Ga polar GaN 0.472 InN/Ga polar GaN 22.5 

N polar GaN 4.78 (30) InN/N polar GaN 50.0 (70) 

n-GaN 3.43 (25) InN/n-GaN 3.99 

p-GaN 0.318 (20) InN/p-GaN 1.27 

 

     

AFM topography and s-SNOM picture show that the InN film grown on sapphire has large tilted 

grains on the surface (see Fig. 5.29). This resulted in the highest RMS surface roughness in this sample 

compared to the other InN surfaces. It can be observed steps feature on the Ga polar surface. The InN film 

grown on this Ga polar surface has large grains on the surface. However, here, they are not tilted as ob-

served for the InN films grown on sapphire. Non-uniform corn shape grains are observed on N polar GaN 

surface and this surface has a higher roughness compared to the other templates. Hexagonal shape crystal-

line grains in different sizes can be observed on the InN film grown on N polar GaN. Similarly, randomly 

distributed large corn shape grains randomly are observed on the n-GaN surface. The InN film on n-GaN 

has small grains on the surface. It is observed steps feature similar to the one observed on the Ga polar 

GaN surface. The smoothest InN surface was found on the InN film grown on p-GaN. However, it is 

noted that scanned area is different from the other samples. 

The surface roughness values obtained from the IR reflectance spectra analysis are higher than 

that of the AFM surface roughness values. Further studies are needed to explain the reason.  
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5.3.2 Analysis of Raman Spectra  

Figure 5.34 shows the Raman spectra for each templates with excitation wavelength of 532 nm 

(solid lines) and 488 nm (short-dashed lines), in back scattering geometry. The allowed six Raman pho-

non modes for sapphire with 532 nm (488 nm) excitation wavelength were observed at gE 378.0 cm-1 

(378.8 cm-1), 1gA 416.0 cm-1 (417.0 cm-1), gE 429.0 cm-1 (430.0 cm-1), gE 446.6 cm-1 (448.6 cm-1), gE 576.7 

cm-1 (576.1) cm-1, gE 749.7 cm-1. Note that Raman spectrum with excitation wavelength of 488 nm for 

sapphire is measured only up to 700 cm-1. Raman scattering intensities of all phonon modes except 749.9 

cm-1 mode (since there is no measured data after 700 cm-1 for 488 nm excitation wavelength) are same. In 

the Raman spectrum of AlN/sapphire (Fig. 5.34 (b)), sapphire modes are stronger than AlN due to pene-

tration depth into the sapphire for relatively thinner film (25 nm). A slight indication of A1LO peak is ob-

served at 888 cm-1 though and there is no prominent peak of E2 high peak at 653 cm-1 observed. 

Raman spectrum (excitation wavelength 532 nm) for Ga polar GaN film grown on AlN/sapphire 

is illustrated in the Fig. 5.34 (c). According to the Ref. [25], the peaks at 569.4 cm-1, and 734.8 cm-1 can 

be attributed to the E2 high, and A1LO phonon modes of GaN, respectively. As mentioned in the Ref. 

[25], with Lorentzian fit for the range 700-800 cm-1, E1LO phonon mode of GaN can be found at 742 cm-

1. Fig. 5.34 (d) is depicted the Raman spectra of N-polar GaN grown on sapphire for the excitation wave-

length of 532 nm and 488 nm. As well as, Raman spectra of n- and p-type doped GaN grown on i-

GaN/AlN/sapphire are shown in the Fig. 5.34 (e), and (f) respectively. The Raman scattering from sap-

phire are absence in the Raman spectra for each samples measured with 488 nm excitation wavelength. 

For this case, the Raman scattering measured using micro-Raman system and which allowed to focus the 

Raman features from the samples (in this case GaN) and sapphire scattering became much weaker. In 

fact, the intensity of A1LO phonon modes decreases for both n- and p-type samples. The absence of A1LO 

peak in N-polar GaN grown sapphire in both cases, 532 nm and 488 nm excitation wavelength and coinci-

dence of A1LO with LPP modes and this was also observed from the FTIR reflectance spectrum. 
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Figure 5.34 Raman spectra of sapphire (a), AlN/sapphire (b), Ga-polar GaN/AlN/sapphire (c), N-polar-

GaN/sapphire (d), n-type GaN/i-GaN/AlN/sapphire (e), p-type GaN/i-GaN/AlN/sapphire (f). 

Solid line and short dashed lines are the Raman spectra for the excitation wavelength of 532 nm and 488 

nm respectively. Dashed lines mark for the strongest sapphire-related Raman peaks. 

 

 

 Before arriving at conclusions about the InN samples, it is important to understand the quality of 

the templates or substrate since most of the dislocations can be originated from the substrate or template. 

Therefore, the Raman E2 high and A1LO phonon modes were analyzed in order to understand the struc-

tural and electronic properties. The sifting of the Raman E2 high peak position from the ideal position is 

resulted by the stress or strain in semiconductors hence it can be used as a qualitative measure of those 

stress or strains. The stress is tensile as the E2 high peak exhibit the red shift (decrease of Raman fre-

quency) and the stress is compressive as the E2 high peak has a blue shift (increase of Raman frequency). 
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Further, the full width half maximum (FWHM) of E2 high peak is expounded the short range ordering of 

the crystalline structure. The narrow E2 high FWHM is the better crystalline quality. The Raman E2 high 

and A1LO phonon modes FWHM maximum values and positions are listed in the Table 5.9. 

 

Table 5.9 Raman E2 high and A1LO position and their FWHM values different templates. (532 nm of ex-

citation wavelength). 

Parentheses shows the values determined with 488 nm excitation wavelength. 

Substrate 

E2 high (cm-1) A1 LO (cm-1) 

FWHM Peak Position FWHM Peak Position 

sapphire - - - - 

AlN/sapphire - - - 888.0 

Ga polar GaN/AlN/sapphire 5.3 569.4 7.4 734.8 

N polar GaN/AlN/sapphire 6.7 (4.4) 566.3 (565.8) - - 

n-GaN/AlN/sapphire 5.6 (2.7) 569.1 (568.1) 7.3 (5.6) 734.6 (733.3) 

p-GaN/AlN/sapphire 5.6 (3.7) 567.9 (569.5) 7.8 (6.3) 734.1 (733.9) 

 

For the Ga polar GaN and n-GaN templates, Raman E2 high peak position has shown a blue shift 

of 1.4 cm-1 and 1.1 cm-1, respectively, from the bulk value of 568 cm-1 [24].  Raman E2 high peak position 

of the p-GaN is almost close to the bulk value. In contrast, N polar E2 high peak position exhibits a red 

shift of 2.3 cm-1 indicating it has tensile stress. A slight shift of E2 high modes with excitation wavelength 

is observed. Local crystalline order of the all GaN templates is almost same except N polar GaN template.  
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Figure 5.35 Raman spectra of InN films grown on sapphire (a), AlN/sapphire (b), Ga-polar GaN/AlN/sap-

phire (c), N-polar-GaN/sapphire (d), n-type GaN/AlN/sapphire (e), p-type GaN/AlN/sapphire (f). 

 

The Raman spectra of InN layers on each template with the excitation wavelength of 532 nm 

(solid lines) and 488 nm (short-dashed lines), in back scattering geometry, are depicted in Fig. 5.35. It is 

indicated that Raman scattering intensity and the broadening of the phonon modes are dependent on the 

excitation energy. The sapphire phonon modes (~378.7 cm-1) is absent in the Raman spectra with 488 nm 

excitation wavelength. A1TO (445 cm-1) phonon mode is not allowed in the scattering geometry used in 

this study. However, for all above InN layers, the A1TO mode is detected. The E2 high and A1LO phonon 

modes of InN are observed ~487.5 cm-1 and ~590-593.2 cm-1 with 532 excitation wavelength. Table 5.10 

summarizes the Raman E2 high and A1LO phonon modes FWHM maximum values and positions. 
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The intensity enhancement of the A1LO phonon mode compare to the E2 high, is related to the 

high carrier concentration [26]. Raman spectra of InN layers performed with the excitation wavelength of 

532 nm indicate that this wavelength excites the properties of the InN layer close to the templates. When 

compare the intensity of A1LO phonon mode with the intensity of E2 high mode (with excitation wave-

length of 532 nm), InN grown on AlN/sapphire has the lowest A1LO phonon mode intensity. Thus, lowest 

carrier concentration. This confirms by the FTIR analysis results. See Table 5.7. The InN layer close to 

the AlN has the lowest carrier concentration comparison with the other samples.  

The lowest Raman E2 high FWHM values of 6.8 cm-1 (with the 532 nm excitation source) is ob-

served the InN grown on AlN/sapphire. Therefore, the InN layer grown on AlN template shows the better 

local crystalline order. The broadening of the E1TO phonon mode in IR reflectance spectra is related to 

the quality of the film [23]. From the FTIR analysis, lowest E1TO broadening value of 4.3 cm-1 was also 

obtained for this sample. It is further confirmed that InN on AlN has the better crystalline InN layer. 

 

Table 5.10 Raman E2 high and A1LO position and their FWHM values for InN layers grown on different 

templates (532 nm of excitation wavelength). 

Parentheses shows the values determined with 488 nm excitation wavelength. 

Sample 

E2 high (cm-1) A1 LO (cm-1) 

FWHM Peak Position FWHM Peak Position 

InN/sapphire 8.9 (7.6) 487.8 (489.1) 17.5 (19.6) 591.4 (587.8) 

InN/AlN/sapphire 6.8 487.7 17.1 591.9 

InN/Ga polar GaN/AlN/sapphire 10.3 (7.9) 487.4 (490.5) 19.9 (21.7) 592.3 (590.7) 

InN/N polar GaN/AlN/sapphire 8.3 (8.0) 487.6 (489.2) 17.4 (16.3) 592.7 (589.3) 

InN/n-GaN/AlN/sapphire 8.2 489.1 19.3 593.2 

InN/p-GaN/AlN/sapphire 7.9 (7.5) 487.8 (491.4) 19.6 (19.6) 592.0 (591.1) 
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5.4 Conclusion 

FTIR reflectance spectra (measured at near normal incidence and 25° incident light) of InN sam-

ples grown on different substrate were analyzed using multilayer stack model based on the transfer matrix 

method and model IR dielectric function to determine the isotropic and anisotropic properties (film thick-

ness, high frequency dielectric constant, phonon modes and broadening, plasma frequency, damping of 

the plasma, free carrier concentration, and mobility of the carriers) of the films. These results suggest that 

the films on the templates have more than one layer with different properties. Further studies are needed 

to explain these results. The lowest carrier concentration of 7.1×1018 cm-3 with the mobility of 660 cm2V-

1s-1 was found in the InN film grown on AlN template. The smoothest InN surface (RMS=1.273 nm) was 

observed the InN film on p-GaN template. InN grown AlN/sapphire shows the better local crystalline or-

der. Further studies are carrying out to correlate the results. 

5.5 References 

[1] A. Shetty, K. J. Vinoy and S. B. Krupanidhi,  presented at the COMSOL, Bangalore, India2012). 

[2] Z. G. Qian, W. Z. Shen, H. Ogawa and Q. X. Guo, Journal of Applied Physics 92 (7), 3683-3687 

(2002). 

[3] N. ul Hassan Alvi, V. Gómez, P. Soto Rodriguez, P. Kumar, S. Zaman, M. Willander and R. 

Nötzel, Sensors 13 (10), 13917 (2013). 

[4] Y. Ishitani, T. Ohira, X. Wang, S.-B. Che and A. Yoshikawa, Physical Review B 76 (4), 045206 

(2007). 

[5] Y. Ishitani, X. Wang, S.-B. Che and A. Yoshikawa, Journal of Applied Physics 103 (5), 053515 

(2008). 

[6] R. Cuscó, J. Ibáñez, E. Alarcón-Lladó, L. Artús, T. Yamaguchi and Y. Nanishi, Physical Review 

B 79 (15), 155210 (2009). 

[7] J. S. Thakur, G. W. Auner, D. B. Haddad, R. Naik and V. M. Naik, Journal of Applied Physics 95 

(9), 4795-4801 (2004). 



173 

[8] A. Kasic, M. Schubert, Y. Saito, Y. Nanishi and G. Wagner, Physical Review B 65 (11), 115206 

(2002). 

[9] S. P. Fu and Y. F. Chen, Applied Physics Letters 85 (9), 1523-1525 (2004). 

[10] V. Darakchieva, M. Schubert, T. Hofmann, B. Monemar, C.-L. Hsiao, T.-W. Liu, L.-C. Chen, W. 

J. Schaff, Y. Takagi and Y. Nanishi, Applied Physics Letters 95 (20), 202103 (2009). 

[11] M. Fujiwara, Y. Ishitani, X. Wang, S.-B. Che and A. Yoshikawa, Applied Physics Letters 93 

(23), 231903 (2008). 

[12] W. M. Linhart, T. D. Veal, P. D. C. King, G. Koblmüller, C. S. Gallinat, J. S. Speck and C. F. 

McConville, Applied Physics Letters 97 (11), 112103 (2010). 

[13] K. Fukui, Y. Kugumiya, N. Nakagawa and A. Yamamoto, physica status solidi (c) 3 (6), 1874-

1878 (2006). 

[14] C. C. Katsidis, A. O. Ajagunna and A. Georgakilas, Journal of Applied Physics 113 (7), 073502 

(2013). 

[15] S. P. S. Porto and R. S. Krishnan, The Journal of Chemical Physics 47 (3), 1009-1012 (1967). 

[16] M. Schubert, T. E. Tiwald and C. M. Herzinger, Physical Review B 61 (12), 8187-8201 (2000). 

[17] I. H. Malitson, J. Opt. Soc. Am. 52 (12), 1377-1379 (1962). 

[18] Z. G. Hu, A. B. Weerasekara, N. Dietz, A. G. U. Perera, M. Strassburg, M. H. Kane, A. Asghar 

and I. T. Ferguson, Physical Review B 75 (20), 205320 (2007). 

[19] A. Kasic, M. Schubert, S. Einfeldt, D. Hommel and T. E. Tiwald, Physical Review B 62 (11), 

7365-7377 (2000). 

[20] Optical constants of GaN (Gallium nitride), December 5, 2016, 

http://refractiveindex.info/?shelf=main&book=GaN&page=Barker-o 

[21] F. Tuomisto, T. Suski, H. Teisseyre, M. Krysko, M. Leszczynski, B. Lucznik, I. Grzegory, S. 

Porowski, D. Wasik, A. Witowski, W. Gebicki, P. Hageman and K. Saarinen, physica status solidi (b) 

240 (2), 289-292 (2003). 

http://refractiveindex.info/?shelf=main&book=GaN&page=Barker-o


174 

[22] S. Shokhovets, R. Goldhahn, V. Cimalla, T. S. Cheng and C. T. Foxon, Journal of Applied 

Physics 84 (3), 1561-1566 (1998). 

[23] Z. C. Feng, Y. T. Hou, S. J. Chua and M. F. Li, Surface and Interface Analysis 28 (1), 166-169 

(1999). 

[24] H. Harima, Journal of Physics: Condensed Matter 14 (38), R967 (2002). 

[25] Z. C. Feng, M. Schurman, R. A. Stall, M. Pavlosky and A. Whitley, Appl. Opt. 36 (13), 2917-

2922 (1997). 

[26] J. S. Thakur, D. Haddad, V. M. Naik, R. Naik, G. W. Auner, H. Lu and W. J. Schaff, Physical 

Review B 71 (11), 115203 (2005). 

 



175 

6 CHAPTER 6: EFFECT OF REACTOR PRESSURE ON THE ELECTRICAL AND    

STRUCTURAL PROPERTIES OF InN EPILAYERS GROWN BY HP-MOCVD 

6.1 Introduction 

Indium nitride (InN) and indium-rich group III-nitride alloys are of renowned interest due to their 

potential in high-speed (THz-regime) device structures, for high-efficient energy conversion devices such 

as photovoltaic cells and various light emitting device structures [1]. Therefore, understanding and opti-

mizing of the material properties as function of growth process conditions are of crucial importance for 

fabrication of InN and indium-rich group III-nitride epilayers and heterostructures [2].  

As of today, the structural and optoelectronic properties of the binary InN vary widely depending 

on the growth process used. Under low-pressure MOCVD conditions, the integration of InN epilayers 

with other group III-nitrides is challenged due to the low dissociation temperature of InN [1] (~600 °C) 

relative to that of GaN [3] (~1000 °C), which leads to stoichiometric instabilities [4, 5] and a potential im-

miscibility for ternary InGaN alloys [6]. In 1970, MacChesney et al. [5] assessed the use of high pressure 

as a potential pathway to stabilize the group III-nitrides and their alloys at higher growth temperatures un-

der thermodynamic equilibrium conditions. Though thin film growth processes can employ various de-

grees of non-equilibria to stabilize epilayers, the regime of super-atmospheric CVD is still mostly unex-

plored for the growth of III-nitride alloys. At low-pressure MOCVD, the growth of InN is limited to 

growth temperatures at or below 600 °C [7], requiring a high group-V/III precursor ratio due to the insuf-

ficient cracking of ammonia. In order to stabilize InN epilayers at higher growth temperatures that may 

allow for improved materials quality as well as the stabilization of indium-rich ternary InGaN heterostruc-

tures, we explore in this study the growth of InN by high-pressure chemical vapor deposition (HPCVD) at 

reactor pressures ranging from 2.5 bar and up to 20 bar. The details of the HPCVD rector system have 

been described previously [8-11] and in Section 2.6. For reactor pressures around 15 bar, the growth tem-

peratures for InN are in the vicinity of 850 °C [12], with group V/III precursor ratio from 1000 to 5000 

explored. The smaller V/III precursor ratio compared to low-pressure MOCVD is due to the improved 
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NH3 decomposition kinetics at higher temperatures and gas densities. So far there are no studies that cor-

relate the reactor pressure with the structural and electrical properties of InN epilayers grown by HPCVD 

which is the goal of this contribution. This study present results on the influence of the rector pressure on 

the structural and optoelectronic properties of epitaxial InN layers, noting however that the reactor pres-

sure is only one of the many process parameters that affects the properties of the epilayers. 

6.2 Experimental 

The InN epilayers were grown on GaN/Sapphire (0001) templates using a custom-built HPCVD 

reactor system. Ammonia (NH3) and trimethylindium (TMI) were used as group-V and group-III precur-

sors. The group-V/III molar precursor ratio was kept at ~ 2500, while the reactor pressure was varied be-

tween 2.5 bar and 18.5 bar. The total flow (carrier gas and reactants) was adjusted to maintain a constant 

flow velocity in the reaction zone, above the growth surface. The growth temperatures were adjusted for 

each reactor pressure to obtain optimum crystallinity. The growth temperature increases linearly with re-

actor pressure from 750 °C to 865 °C [12]. The InN deposition process consists of the following steps 

(see Fig. 6.1 (a)): First, the substrate was heated to the growth temperature and exposed to a constant am-

monia flow of 1200 sccm for 5 minutes. Afterwards, an InN nucleation layer was deposited with a group-

V/III ratio of 2400 for 1 minute. This nucleation layer was annealed with a group-V/III flow ratio of 

12000 for 1 min, which was immediately followed by the steady-state growth of the bulk InN epilayer 

grown with a group-V/III ratio of 2400. All these steps were done at the same temperature. The growth 

time for each samples was 90 minutes. In order to prevent the gas phase reactions in the reactor, TMI and 

NH3 are injected into the carrier gas (N2) alternately by pulsed injection. Figure 6.2 illustrates the pulsing 

sequence used for injection of precursors into the reactor. The pulse durations for TMI and NH3 were 800 

and 2000 ms, respectively. The s1, pulse separation between TMI and NH3 (s2) was 1650 ms, while the 

pulse separation between NH3 was 350 ms.  
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Figure 6.1 Schematic illustration of the temperature precursor profiles for the growth process.  

 

 

Figure 6.2 Schematic illustration for precursor pulse timing. 

 

The grown InN epilayers were characterized by FTIR reflection measurements, Raman, and XRD 

measurements. The IR reflection measurements on the samples were performed in near normal incidence 

(~8°) configuration at room temperature using a Perkin-Elmer FTIR spectrophotometer, in the spectral 
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range of 450-7000 cm-1 with the MCT (HgCdTe) detector and KBr beam splitter. The structural proper-

ties of the InN epilayers have been analyzed by X’pert Pro MRD PANalytical high-resolution X-ray dif-

fraction spectrometer performing both on-axis as well as off-axis and by a custom built Raman spectrom-

eter (see Section 3.4.4) utilizing a McPherson McTripleLE spectrometer system equipped with a 40x-

times microscope lens. The Raman spectra were taken at room temperature in un-polarized back scatter-

ing geometry along the (0001) crystalline plane with excitation energy of 2.33 eV (532 nm). 

6.3 Results and Discussion 

The FWHM values of the InN (0002) XRD (2-scan) Bragg reflex as a function of the reactor 

pressure are depicted in the Fig. 6.3. With increasing reactor pressure the FWHM values decrease but 

show a wide statistical variance. In order to extensively study the crystalline quality of the samples, the 

off-axis measurements were also performed using XRD 2- scans. The correlation between the FWHM 

values of off-axis InN (2-102) with the reactor pressure is depicted in Fig. 6.4. A similar trend as for the 

on-axis scan is observed indicating an improved in plane structural quality. The Raman analysis of 

FWHM values for the Raman E2 (high) mode of the InN epilayers grown on GaN templates are exhibited 

in Fig. 6.5 as a function of reactor pressure. The Raman E2(high) mode position and FWHM values are  

microscopic measurements for the local strain and for the local crystalline structure and ordering perfec-

tion respectively, while the position and the FWHM values of the InN (0002) XRD (2- scan) reflects 

the long range ordering and crystalline perfection in the InN epilayers. As shown in the Fig. 6.3, a sudden 

improvement of the FWHM value of the InN (0002) XRD (2- scan) is observed for the sample grown 

at 10 bar, a phenomenon not understood at present and not consistent with the sample grown at 12.5 bar. 
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Figure 6.3 XRD FWHM (2) scan in triple crystal geometry) of InN peak ((0002) Bragg reflex at 

about 31.33) as function of the reactor pressure. 

 

However, the overall tendency shows a systematic improvement of FWHM values with increas-

ing reactor pressure and with this a better long range crystalline ordering in the InN epilayers. Tuna et al. 

[4] reported a similar behavior for InN epilayers grown on GaN/Sapphire templates by low-pressure 

MOCVD, in the pressure range of 200 mbar to 800 mbar. The InN sample grown at 18.5 bar with a group 

V/III precursor ratio of 2500 shows a good long range crystalline ordering with a XRD (2 scan) 

FWHM value of 162.5 arcsec. Since the InN epilayers were grown on GaN/Sapphire templates of differ-

ent origins, we observe a large statistical variation in the crystalline quality of the InN epilayers, as de-

picted in Fig. 6.4. Nevertheless, the overall FWHM values for the off-axis Bragg reflexes decrease with 

the increase of reactor pressure, a similar trend as shown in on axis crystalline order (Fig.6.3). The InN 

epilayer grown at 5 bar shows the best crystalline quality, which is attributed to the high crystalline tem-

plate quality with controlled Ga-polar surface [13], indicating a further potential to improve the quality 

through the use of better templates and through an improved nucleation procedure. The Raman results in-

dicate a local optimum of the short-range crystalline ordering around 10 bar with an E2 (high) FWHM 

value of 10.3 cm-1.  
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Figure 6.4 XRD FWHM (2- scan in triple crystal geometry) values of off-axis InN (2-102) of the InN 

epilayers as a function of reactor pressure. 

 

 

Figure 6.5 The FWHM of the Raman E2 (high) of the InN epilayers grown on GaN templates vs. reactor 

pressure. 
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For higher reactor pressures, a slight degradation in the near-range crystalline ordering is ob-

served, a phenomenon that might be related to higher point defect densities. To understand the discrepan-

cies between near- and long-range crystalline ordering, further experiments in an extended process param-

eter field are needed. 

 

Figure 6.6 Experimental (solid line) and best fit (dotted line) IR reflectance spectra for an InN /GaN/ Sap-

phire film grown at 800C and 10 bar reactor pressure.  

Inset illustrates the layer structures were used for best fit. 

 

In order to correlate and understand the relationships between the structural epilayer quality and 

the electrical properties as function of reactor pressure, infrared reflectance spectroscopy is utilized to an-

alyze the InN samples. A typical FTIR reflectance spectrum for an InN-epilayer grown on a GaN/Sap-

phire template is shown in Fig. 6.6. The solid line depicts the experimental reflectance spectrum and the 

dotted line (color online) depicts the simulated IR reflectance spectrum for a multilayer stack, consisting 

of a Sapphire/GaN/InN layered structure as depicted in the inset of Fig. 6.6. The Multilayer stack model 

and Model of IR dielectric function for isotropic media as explained in Section 4.3, 4.5 and 4.6 allowed 

the determination of the high-frequency dielectric function (∞), layer thickness, as well as the free carrier 

concentration and mobility of the free carriers for each layer in the stack by simulating the properties for 

each layer and fitting it to the experimental IR-reflectance spectrum. The dielectric function of the InN 
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and GaN layers can be modeled in the infrared region by the lattice vibrations contribution, the free car-

rier contribution, and the high frequency dielectric constant ∞ as follows.  
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where,  is the high frequency dielectric constant, TO , LO , and   are the TO, LO phonon frequen-

cies and broadening parameter of the phonons, respectively. p  and p  are the plasma frequency and the 

damping constant of plasma respectively. The theoretical IR reflection spectrum is calculated using Eq. 

6.1 and the Multilayer stack model. A nonlinear fitting algorithm, utilizing a Levenberg-Marquardt ap-

proach [14], was used to obtain the best fit parameters for each layer. To improve the reliability of the pa-

rameter set for each layer, FTIR reflection spectra were taken for the Sapphire and GaN/Sapphire tem-

plates to first establish the GaN and the sapphire parameter sets. For the simulation of the grown InN epi-

layers, the established GaN/Sapphire template parameters were kept constant.  

The simulation results show that a single InN layer on top of the GaN/Sapphire-template structure 

did not converge sufficiently well, thus a second InN layer was added to improve the simulation model. 

This additional InN layer is assumed to capture the different properties of InN in the interfacial region at 

the GaN/InN interface and is related to the nucleation conditions. The inset of Fig. 6.6 shows the multi-

layer stack for the samples considered in the analysis. The plasma frequency and damping constant was 

extracted from the simulation for each layer, the free carrier concentration and the mobility of the free 

carriers were calculated using Eq. 6.2 and Eq. 6.3.  
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where, cN is the free carrier concentration, e is the electron charge, meff is the effective mass of 

the carriers, and is the free carrier mobility. The established best fit data for InN layer thickness, dielec-

tric function, and electrical parameter for all samples grown between 2.5 and 18.5 bar reactor pressure are 

summarized in Table 6.1. Table 6.1 contains two rows for each sample with the established fit parameter 

for the 1st - bulk (top row) and the 2nd - nucleation (bottom row) simulated two-layered stack as schemati-

cally illustrated in the inset of Fig. 6.6.  

Figure 6.7 and 6.8 show the computed free carrier concentrations for the InN bulk and nucleation 

layer as a function of reactor pressure, respectively. The free carrier concentration of the bulk layers vary 

from 1.5×1018 cm-3 to 7.8×1019 cm-3 and  in the nucleation layers the free carrier concentration range from 

6.6×1019 cm-3 to 1.5×1020 cm-3. The lowest free carrier concentration of 1.5×1018 cm-3 was obtained for 

the InN bulk layer grown at 12.5 bar. These values for the bulk free carrier concentration is still higher 

compared to recent reported bulk free carrier concentrations of 5.6×1017 cm-3 in InN epilayers grown on 

GaN by plasma assisted molecular beam epitaxy (PA-MBE) [15].  Figure 6.8 depicts the variation of free 

carrier concentration in the nucleation layer as a function of the reactor pressure, indicating a slight reduc-

tion of free carrier concentration with the increasing reactor pressure. This result suggests that the reactor 

pressure does not significantly alter the nucleation process - and with it the free carrier concentration in 

the nucleation layer. Other process parameter such as the integration of a strain relaxation layer and/or 

optimized nuclei coalesce process have to be investigated to improve the properties of the nucleation 

layer. 

A further possible source for the high free carrier concentration may be the presence of impurities 

such as hydrogen and carbon [16], which may be incorporated through an insufficient decomposition of 

the precursor sources. Yamamoto et al. [17] showed that the free carrier concentration of the bulk InN 

layer grown on sapphire by MBE decreases with increasing the growth temperature at two different reac-

tor pressures, 0.1 bar and 1 bar.  
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Table 6.1 InN layer parameters obtained from the best fits of FTIR reflectance spectra for InN epilayers 

grown are various reactor pressures. 

The free carrier concentration and mobilty were derived from the plasma frequency and the its damping 

constant, respectively. The effective mass for InN and GaN were taken constant as 0.09 m0 and 0.2 m0, 

respectively. The two rows for each sample contain the parameter for the modeled two-layered InN stack, 

representing the bulk (top raw) and the nucleation (bottom raw) layer of the deposited InN. 

Sample Pressure 

(bar) 

Thickness 

d (nm) 

∞ Plasma 

freq. (cm-1) 

Damping 

const. (cm-1) 

Mobility 

(cm2V-1s-1) 

Free carri. 

conc. (cm-3) 

a 2.5 452.1 

195.5 

5.61 

6.03 

3720.4 

4808.5 

1180.2 

224.1 

87.9 

460 

7.78×1019 

1.39 ×1020 

b 5.0 72.9 

193.8 

5.95 

7.44 

1801.3 

4452.9 

1093.3 

1210.4 

95 

85.7 

1.94 ×1019 

1.44 ×1020 

c 7.5 34.1 

325.7 

5.84 

6.59 

1048 

3710.6 

1033.7 

1046.8 

110 

99.1 

0.44 ×1018 

9.11 ×1019 

d 10.0 33.1 

275.8 

6.63 

6.57 

1316.9 

3970 

881.1 

742.2 

120 

140 

1.15×1019 

1.04 ×1020 

e 12.5 62.2 

189.3 

6.08 

6.54 

492.4 

4286.8 

378.5 

686.2 

270 

150 

1.49 ×1019 

1.21×1020 

f 15.0 10 

307.4 

7.69 

5.29 

983.9 

3543.8 

872.7 

592.5 

120 

180 

7.47 ×1018 

6.62 ×1019 

g 18.5 21.2 

248.5 

7.19 

6.15 

1608.3 

3522.2 

1518 

485.1 

68.4 

210 

1.87 ×1019 

7.66 ×1019 
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Figure 6.7 Dependence of free carrier concentration of InN- bulk layer on the reactor pressure. 

 

 

 

Figure 6.8 Dependence of free carrier concentration of InN- nucleation layer on the reactor pressure. 
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Yamamoto et al. [17] also showed that InN layers grown at atmospheric pressure had a lower free 

carrier concentration compared to InN layers grown at lower, sub-atmospheric pressures. This indicates 

that increasing the reactor pressure can decrease the free carrier concentration. The results from the inves-

tigated set of InN samples indicate that for reactor pressures above 12.5 bar, the free carrier concentration 

increases with increasing reactor pressure, even though the crystalline quality of the epilayers improves 

with reactor pressure as depicted in Fig. 6.3.  However, the trend in the free carrier concentration behavior 

correlates with the Raman E2 (high) FWHM values, indicating a possible link of point defect density with 

bulk free carrier concentration. Since the higher reactor pressure enables higher growth temperatures, the 

effective V/III precursor ratio changes due to the higher cracking efficiency of the ammonia precursor. In 

this series, the group V/III precursor ratio was kept constant and has not been adjusted for the change in 

growth temperature with reactor pressure, which may explain the increase in the bulk free carrier concen-

tration in the samples grown at pressures above 12 bar. 

The mobility values for the InN bulk layer as a function of reactor pressure is depicted in the Fig. 

6.9. These values were calculated using the Eq. 6.3 with the effective mass taken constant as 0.09 m0. The 

mobility shows a maximum for the InN bulk layer grown with a reactor pressure of 12.5 bar, and the 

highest mobility of the bulk layer is found to be 270 cm2V-1s-1. It was also observed and inverse correla-

tion between the mobility and the free carrier concentration, as the bulk free carrier concentration shows a 

minimum at this pressure. The similar correlation between the mobility and the free carrier concentration 

has been reported by Yamamoto et al. [17]. In addition, Lin et al. [18] reported that the InN sample grown 

on GaN/Sapphire template by MOCVD at 675 ○C has the highest mobility (1300 cm2V-1s-1) and lowest 

free carrier concentration (4.6×1018 cm-3) with the increase of growth temperature. 
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Figure 6.9 Mobility of the carriers of the InN bulk layer as function of reactor pressure. 

 

 

These findings could indicate structural defects and non-intentional co-doping as sources for the 

high free carrier concentration, since they generate more carriers which act as scattering centers in the 

crystal reducing the carrier mobility. Therefore, we conclude that the free carrier mobility and free carrier 

concentration of the bulk InN layer can be further improved by adjusting the V/III precursor ratio and im-

proving the nucleation of the InN by introducing an AlN buffer. This assumption is supported by Khan et 

al. [19] who reported  a decrease in free carrier concentration and increased mobility for InN layer grown 

on AlN/Sapphire template with increasing V/III precursor ratio.    

The InN layer thicknesses obtained from the reflectance spectra analysis were used to compute 

the growth rate as function of the reactor pressure. As depicted in Fig. 6.10, the growth rate decreases lin-

early with increasing reactor pressure as observed in the previous study [12]. Since the diffusion layer 

thickness decreases inversely proportional to the square root of the pressure, a similar behavior would be 

expected for the growth rate in the transport limited growth regime. The InN layer grown at 2.5 bar has a 

large processing error, since in our present reactor the flow channel height is fixed at 1 mm and cannot be 

adjusted for the variation in the diffusion layer thickness as function of the reactor pressure.   
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Figure 6.10 Growth rate as a function of reactor pressure. 

 

6.4 Conclusion 

The reactor pressure dependent structural and electronic properties of InN epilayers have been 

studied. The XRD results show that the structural quality of the InN epilayers improves with increasing 

reactor pressure. This tendency was confirmed by the Raman results, which showed that the near-field 

crystallinity improves as reactor pressure increase up to 12.5 bar. Above 12.5 bar the near-filed ordering 

decreases, which is likely due to the higher ammonia cracking efficiency requiring adjustment of the 

group V/III ratio. The lowest free carrier concentration and highest mobility were found for InN grown at 

12.5 bar, with values of 1.5×1018 cm-3 and 270 cm2V-1s1, respectively. Further investigation are in pro-

gress in order to study the influence of the group V/III precursor ratio at higher reactor pressure and to 

investigate the influence of nitrogen and indium precursor fragments at the growth surface on the electri-

cal and structural properties of the InN epilayers. 

6.5 References 

[1] A. G. Bhuiyan, A. Hashimoto and A. Yamamoto, Journal of Applied Physics 94 (5), 2779-2808 

(2003). 



189 

[2] D. Alexandrov, K. Scott A. Butcher and T. L. Tansley, Journal of Crystal Growth 288 (2), 261-

267 (2006). 

[3] D. D. Koleske, A. E. Wickenden, R. L. Henry, J. C. Culbertson and M. E. Twigg, Journal of 

Crystal Growth 223 (4), 466-483 (2001). 

[4] Ö. Tuna, H. Behmenburg, C. Giesen, H. Kalisch, R. H. Jansen, G. P. Yablonskii and M. Heuken, 

physica status solidi (c) 8 (7-8), 2044-2046 (2011). 

[5] J. B. MacChesney, P. M. Bridenbaugh and P. B. O'Connor, Materials Research Bulletin 5 (9), 

783-791 (1970). 

[6] G. B. Stringfellow, Journal of Crystal Growth 312 (6), 735-749 (2010). 

[7] H. Lu, W. J. Schaff, J. Hwang, H. Wu, W. Yeo, A. Pharkya and L. F. Eastman, Applied Physics 

Letters 77 (16), 2548-2550 (2000). 

[8] N. Dietz, in III-Nitride Semiconductor Materials, edited by Z. C. Feng (Imperial College Press, 

London, 2006), pp. 203-235. 

[9] N. Dietz, H. Born, M. Strassburg and V. Woods, MRS Proceedings 798 (2011). 

[10] M. Buegler, M. Alevli, R. Atalay, G. Durkaya, I. Senevirathna, M. Jamil, I. Ferguson and N. 

Dietz,7422 (2009). 

[11] V. Woods, H. Born, M. Strassburg and N. Dietz, Journal of Vacuum Science &amp; Technology 

A 22 (4), 1596-1599 (2004). 

[12] M. Buegler, S. Gamage, R. Atalay, J. Wang, M. K. I. Senevirathna, R. Kirste, T. Xu, M. Jamil, I. 

Ferguson, J. Tweedie, R. Collazo, A. Hoffmann, Z. Sitar and N. Dietz, physica status solidi (c) 8 (7-8), 

2059-2062 (2011). 

[13] N. Dietz, M. Alevli, R. Atalay, G. Durkaya, R. Collazo, J. Tweedie, S. Mita and Z. Sitar, Applied 

Physics Letters 92 (4), 041911 (2008). 

[14] W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannerry, The Art of Scientific 

Computing. (Cambridge University Press, Cambrigde, MA, 1992). 



190 

[15] I. Gherasoiu, M. O’Steen, T. Bird, D. Gotthold, A. Chandolu, D. Y. Song, S. X. Xu, M. Holtz, S. 

A. Nikishin and W. J. Schaff, Journal of Vacuum Science &amp; Technology A 26 (3), 399-405 (2008). 

[16] V. Darakchieva, K. Lorenz, N. P. Barradas, E. Alves, B. Monemar, M. Schubert, N. Franco, C. L. 

Hsiao, L. C. Chen, W. J. Schaff, L. W. Tu, T. Yamaguchi and Y. Nanishi, Applied Physics Letters 96 (8), 

081907 (2010). 

[17] A. Yamamoto, Y. Murakami, K. Koide, M. Adachi and A. Hashimoto, physica status solidi (b) 

228 (1), 5-8 (2001). 

[18] J. C. Lin, Y. K. Su, S. J. Chang, W. H. Lan, W. R. Chen, Y. C. Cheng, W. J. Lin, Y. C. Tzeng, H. 

Y. Shin and C. M. Chang, Optical Materials 30 (4), 517-520 (2007). 

[19] N. Khan, A. Sedhain, J. Li, J. Y. Lin and H. X. Jiang, Applied Physics Letters 92 (17), 172101 

(2008). 



191 

7 CHAPTER 7: INITIAL GROWTH AND CHARACTERIZATION RESULTS OF InN-AlN-

SAPPHIRE GROWN BY MIGRATION-ENHANCED PLASMA ASSISTED MOCVD 

7.1 Introduction 

Due to the narrow direct band gap of Indium nitride (InN), its small effective mass, high electron 

mobility and high drift velocity, indium-rich group III-nitride alloys are of high interest for photovoltaic-, 

electronic-, and optoelectronic device applications [1-4]. Furthermore, InN containing heterostructures 

might be utilized the performance of electronic devices such as sensors and terahertz emitters [5, 6]. How-

ever, the growth of high quality InN is a challenge, due to the high partial pressure of nitrogen at optimum 

growth temperatures above the growth surface. Ammonia, the main nitrogen source used in the traditional 

CVD/MOCVD growth of InN, decomposes at a temperature above 900 °C, which is greater than the de-

composition temperature of InN. Additionally, the growth of multinary indium-rich group III-nitrides, is 

further challenged due to the differences in the partial pressures of the group III-N binaries, requiring the 

adjustment of the growth processing parameters for each target composition. In order to reduce the 

growth temperature gaps between the binaries and to control the growth surface chemistry, several ad-

vanced growth techniques are presently explored. For example, super-atmospheric pressure chemical va-

por deposition (denoted as HPCVD) [7-10], atomic layer deposition (ALD), plasma-assisted ALD [11], 

and  migration-enhanced, plasma-assisted metalorganic chemical vapor deposition  (MEPA-MOCVD) 

[12-16], are explored to assess the control of the vastly different partial pressures and surface chemistries 

by thermodynamic and/or kinetic means. However, at present, the layers grown by the various growth 

methods exhibit variations in their measured physical properties (e.g. free carrier concentrations, optical 

band gap, structural quality, etc.), leading to widely speculative assumptions on the fundamental proper-

ties of InN and indium-rich alloys. In this contribution, we evaluate the layer properties of group III-N 

alloys grown by MEPA-MOCVD using plasma activated nitrogen species/ fragments as nitrogen precur-

sors that are directed to the growth surface in the afterglow regime. The MEPA-MOCVD reactor system 

is equipped with a load lock system, metalorganic precursors (MO’s) showerhead injection system, and a 
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MEAglow oxygen-free hollow cathode N2 plasma source to generate energy-controlled active nitrogen 

species and the afterglow regime above the growth surface. The reactor pressure can be operated in the 

range of 1 mbar -10 mbar. The MO and plasma-activated nitrogen precursor species can be supplied tem-

poral and spatially separated, which allows controlling the surface diffusion processes of adatoms at the 

growth surface. The plasma-activated nitrogen species are formed at much lower temperatures compared 

to conventionally used ammonia as the nitrogen precursor. At present, the vast growth parameter space in 

MEPA-MOCVD is hardly explored. In this study, we focus only on the crystalline quality of the InN epi-

layer grown on various AlN interlayers deposited at growth temperatures between 550 and 780 °C. As 

widely reported in the literature [17, 18], the AlN interlayer between sapphire (c-Al2O3) and a group III-

nitride epilayer plays a critical role in the transition from a metal-oxygen surface chemistry to a metal-

nitrogen chemistry, reducing dislocation and defect densities in the subsequent group III-N overgrowth 

process. However, lattice mismatch induced strain has to be still dealt with in the InN/AlN overgrowth 

process. 

7.2 Experimental 

Group III-N heterostructures were deposited on sapphire (0001) substrate using a customized 

MEPA-MOCVD reactor, which details are provided elsewhere [12, 15, 19]. A MEAglow plasma source 

is used to provide controlled nitrogen fragments in an afterglow regime towards the growth surface. As 

schematically illustrated in Fig. 2.10, a spatial and temporal controlled injection of MO’s and plasma-acti-

vated nitrogen precursor injection scheme is used in this study. The deposition of InN and AlN epilayers 

were examined by varying, growth temperature, plasma power, and plasma exposure time. In order to 

study the influence of the AlN interlayer between the sapphire and the subsequent InN layer, the growth 

conditions for the InN layer were taken from a previous study [19] and kept constant with a reactor pres-

sure of 3.3 Torr, a growth temperature of 775 °C, a pulsed plasma power of 400 W (14 s), followed by a 

TMI (Trimethylindium) pulse of 1 sec (9.6 µmol/min). The deposition conditions for the AlN buffer lay-

ers were varied as described in the result section.  
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The InN layers grown on top of the AlN buffer layers were characterized by AFM, FTIR reflec-

tion- and Raman spectroscopy. In order to analyze the local crystalline order, the Raman spectra of the 

samples were taken at room temperature in z (xx)-z back scattering geometry with excitation energy of 

2.33 eV. Here, a customized Raman set up was utilized, based on a single 2m-monochromator and a liq-

uid N2-cooled multichannel CCD (Charge-Couple Detector). The surface morphology of the layers was 

analyzed by AFM.  

 The IR reflection measurements were performed at room temperature, at near normal incidence 

(~8°) configuration using a Perkin-Elmer 2000 FTIR spectrophotometer. A MCT (HgCdTe) detector and 

KBr beam splitter were used to cover the spectral range of 450 - 6500 cm-1. 

7.3 Results and Discussion 

Initial growth of AlN buffer layers were carried out at a growth temperature of 775°C, a reactor 

pressure of 3.3 Torr, and a plasma power of 400 W, followed by a subsequent deposition of an InN epi-

layer. In the first series, the precursor trimethylaluminum (TMA) and plasma activated nitrogen (PAN) 

were introduced temporally spaced with a 1 sec TMA injection following a PAN exposure time that was 

varied from 4 s to 12 s.  

The E2(high) and A1(LO) phonon modes for the wurtzite structure of the AlN, should be observed 

around 657 cm-1 and 890 cm-1 [20]. In our Raman spectra, these two modes were very weak, which might 

be due to the very low thickness of the AlN layer or the limited AlN crystallinity. Surface morphology 

studies of the layers were carried out by AFM. Figure 7.1 shows the AFM topography and corresponding 

island height-vs-position plots for sapphire (a) and the AlN layers grown with 4 s (b), 8 s (c), and 12 s (d) 

PAN exposure time, respectively. The corresponding surface RMS roughness in a 0.5×0.5 µm2 area are 

0.245 nm, 2.4 nm, 2.16 nm and 1.36 nm, respectively. The RMS surface roughness is calculated using the 

following equation:  
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Here, Zi  , N, and Zm  are the height at the i th row or column of the surface scan, number of rows 

and columns of the scanned area, and average height, respectively.  

 

 

Figure 7.1 2D-AFM surface topography (scale bar = 200 nm) of sapphire (a) and AlN buffer layers grown 

with 4 s (b), 8 s (c), and 12 s (d) plasma exposure per pulse  

On the right are the corresponding AFM height pro-files. The scan area is 0.5×0.5 µm2. 

  

The results show that a longer plasma pulse exposure time (12 s) leads to a smoother layer sur-

face, with a smaller grain size, and a higher grain density compared to AlN nucleation layers grown at 4 s 

and 8 s. Increasing the plasma exposure time, increases the growth surface nitridation which can result in 

higher nuclei density. The efficiency of the nitridation procedure depends on the concentration of active 

nitrogen species at the growth surface and the amount of active nitrogen generated via the hollow cathode 

source (e.g. plasma power and N2 flow).  
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In order to study the influence of the plasma power on plasma activated nitrogen species on the 

growth chemistry and the related surface morphology, a set of AlN samples were grown with a 12 s PAN 

exposure time and a variation of the plasma power from 300 W to 500 W. The AFM topography and cor-

responding height profiles of the AlN surfaces at 300 W, 400 W, and 500 W are depicted in the Fig. 7.2. 

 

 

Figure 7.2 2D-AFM surface topography (scale bar = 200 nm) within a 0.5×0.5 µm2 scan area and corre-

sponding profile of change in the height along distance for AlN-NL grown at (a) 300 W, (b) 400 W, and 

(c) 500 W plasma power.  

The RMS surface roughness values are 0.8 nm, 1.36 nm, and 1.451 nm, respectively. 
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Figure 7.3 2D-AFM surface topography (scale bar = 200 nm) of  (a) as- grown AlN-NL and  an-

nealing temperature of AlN -NL layers at (b) 800 °C, (c) 825 °C, (d) 850 °C and (e) 875 °C.  

On the left and right are the corresponding AFM 3D topography and the height profiles. The scan area is 

0.5×0.5 µm2. 

 

The results show that the surface roughness increases with plasma power, which suggests that the 

energies of the PAN species are too high. An increase of hollow cathode plasma power changes not only 

the kinetic energies of the activated nitrogen species, but also the type of nitrogen species in the afterglow 

regime above the growth surface. Consequently, we can expect damage to the growth surface at higher 

plasma power, which may lead to a higher surface roughness. On the other hand, AFM topography shows 
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the highest grain size and lowest nuclei density for the sample grown at 500 W plasma power. Since a 

higher grain size of AlN buffer improves the crystalline quality of a subsequent overgrown GaN layers 

[21], the 500W plasma power was used in the growth of AlN buffer layer in further studies.  

As discussed in the literature [21], the quality of an AlN layer may improve upon thermal anneal-

ing. Thus, we annealed the AlN-NLs grown at 775 °C for 60 minutes. The injection of plasma and MO 

were continuous during the growth. The annealing temperature was varied from 800 °C to 875 °C at 3 

Torr N2 pressure. Figure 7.3 depicts the AFM 2D-3D topography for as-grown AlN layer, and AlN layers 

annealed at various annealing temperatures with 800 °C, 825 °C 850 °C, 875 °C, respectively. The RMS 

surface roughness values versus annealing temperature are shown in Fig. 7.4.  

 

Figure 7.4 RMS surface roughness vs annealing temperature 

 

These results show that the RMS surface roughness of the AlN layers improves with the anneal-

ing temperature of the deposited AlN layers. With increasing the annealing temperature, the RMS surface 

roughness values reduces from 1.2 nm to 0.212 nm indicating an atomically flat surface. To evaluate the 

influence of the annealed AlN layer on the crystalline quality, the Raman spectra were taken for the post-

annealing AlN layers. As shown in Fig. 7.5 with increasing annealing temperature, the Raman A1(LO) 

phonon mode appears at 890 cm-1 for the AlN buffer layer annealed at 850 °C, indicating an improvement 

of the crystalline quality of the AlN layer.  
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Figure 7.5 Raman spectra for the AlN buffer grown on sapphire by varying post-annealing temperature, 

(long-dashed)) 800 °C, (dotted) 825 °C, (dashed-long dashed) 850 °C, (dashed) 875 °C, and (solid) sap-

phire. 

 

In the following step, we investigated the crystalline quality and surface morphology of InN lay-

ers as a function of the AlN/sapphire template. First, an InN sample was grown on sapphire. The second 

InN layer was grown on an AlN template which was not annealed. The third InN layer was grown on AlN 

layer which was subsequently annealed at 850 °C for 60 minutes. For all InN films, a mirror-like surface 

was observed. Figures 7.6, 7.7, and 7.8 depict (a) 2D-AFM and (b) 3D-AFM topographies for the various 

InN layers deposited.  

The three samples investigated show that the InN islands density decreases if an AlN buffer is 

added and the AlN layer is annealed. At the same time, the lateral size of the islands increases. These re-

sults indicate that an annealed AlN buffer layer between sapphire and InN layers leads to an improved 

surface morphology of subsequent InN layer, with a RMS surface roughness value of 2.02 nm for the AlN 

layer annealed at 850 °C/sapphire. 
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Figure 7.6 (a) 2D-AFM surface image (scale bar = 200 nm) with the corresponding profile of change in 

the height along position, (b) 3D-AFM surface topography for the InN/sapphire  

The scan area is 0.5×0.5 µm2. 

 

 

 

Figure 7.7 2D-AFM surface image (scale bar = 200 nm) with the profile of change in the height along dis-

tance, and (b) 3D-AFM surface topography for the InN/AlN/sapphire 

The scan area is 0.5×0.5 µm2. 
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Figure 7.8 (a) 2D-AFM surface image (scale bar = 200 nm) with the profile of change in the height along 

distance, and (b) 3D-AFM surface topography for the InN/AlN-annealed at 850 °C/sapphire 

 The scan area is 0.5×0.5 µm2. 

 

For the layers investigated by Raman spectroscopy, the InN epilayer grown directly on sapphire 

exhibit a pronounced Raman E2 (high) mode, indicating a good local crystalline ordering of the InN epi-

layer. As depicted in Fig. 7.9, the Raman spectrum for the InN layer grown on top of AlN buffer layer 

(dashed line) shows an improved E2(high) mode, which is further improved if the AlN layer is annealed 

(dashed line). The E2 (high) and A1(LO) phonon modes are observed at ~ 488 cm-1 and ~586 cm-1 respec-

tively [22]. In addition to these two modes, the sapphire phonon modes at 749 cm-1 and 575 cm-1 are ob-

served. These modes diminish for thicker InN epilayers. The broadening and strength of the A1(LO) mode 

in the layers is attributed to the high free carrier concentration in the films [23], while the broadened 

E2(high) mode relates to the local structural disorder (point and extended defects) in the InN layers. The 

FWHM values of the E2 (high) mode of the three InN layers are 14.3 cm-1, 12.2 cm-1, and 11.5 cm-1, re-

spectively. We also observe a decrease of the Raman background scattering for the InN layers grown with 

AlN layers, which is related to structural defects and/or metallic inclusions. Further experiments are 

needed to improve the local crystallinity of the InN layers.  



201 

FTIR reflectance measurements were carried out to extract the free carrier concentration, mobility 

of the carriers, and high frequency dielectric function of the InN layers. Figure 7.10 summarizes the ex-

perimental FTIR reflectance spectra for InN/sapphire (dotted line), InN/AlN/sapphire (solid line), and InN 

grown on post-annealed (at 850 °C) AlN buffer/sapphire (dashed line).  

To extract the layer properties, a multilayer stack model and a fit program are used. The dielectric 

function in the IR region is approximated using the Lorentz-Drude model [24] and effective high fre-

quency dielectric function ε∞, accounting for the lattice (phonon) contributions, free carrier contributions, 

and the contribution due to the inter-band transitions, respectively (see Eq. 7.2).  

22 2

2 2 2
( ) 1

pLO TO

TO pi i

 
  

      


 
    

        

               7.2 

 

 

Figure 7.9 The Raman spectra for the InN/sapphire (solid), InN/AlN/sapphire (dashed), and InN grown on 

AlN annealed at 850°C /sapphire (dotted-dashed), and sapphire (dotted). 
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Figure 7.10 The experimental reflectance spectra for InN/sapphire (dotted line), InN/AlN/sapphire (solid 

line), and InN/AlN annealed at 850 °C/sapphire (dashed line) 

 

Here, TO, LO, and p are the TO, LO phonon frequencies and broadening parameter of the pho-

nons. p and  are the plasma frequency and the damping constant of plasma. ∞is the high frequency di-

electric constant. The free carrier concentration and mobility of the carriers were calculated by using fol-

lowing Eq. 7.3 and Eq. 7.4. 

 

   

2
0

2

p eff

c

m
n

q

  
                      7.3 

    
eff

q

m



                       7.4 

Here, nc, q, meff, and  are the free carrier concentration, the electron charge, the effective mass of 

the carriers and the free carrier mobility, respectively. Each layer in the multilayer stack is parameterized 

with layer thickness, effective dielectric function, and interfacial imperfection parameter, which allows 

establishing a model reflectance spectrum, which is fitted to the experimental spectrum [25]. A nonlinear 

fitting algorithm was used to determine the best fit parameter for the layers [24]. 
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The experimental and calculated FTIR reflectance spectra for InN/AlN/sapphire are depicted in 

Fig. 7.11. The inset shows the modeled three-layer stack structure used to determine the parameter of the 

InN layer. The AlN interlayer was not resolvable in the model configuration. The other two samples were 

modeled in the manner. The extracted layer thickness, high frequency dielectric constant, free carrier con-

centration and the mobility of the free carries for each InN layers are summarized in Table 7.1. The free 

carrier concentration was confirmed by the Hall measurements. 

 

 

Figure 7.11 Experimental (solid line) and best fit (dashed line) IR reflectance spectra for InN/AlN/sap-

phire.  

Inset shows the layer structure used for best fit. 

 

Table 7.1 The best fit InN layer parameters, thickness (d), high frequency dielectric constant (ε∞), free 

carrier concentration, and mobility obtained from the FTIR reflectance simulation. 

Sample 
Thickness 

(nm) 
ε∞ 

Free carrier conc. 

(cm-3) 

Mobility 

(cm2V-1s-1) 

InN/sapphire 64 5.78 9.5×1019 57 

InN/AlN/sapphire 80 5.96 7.6×1019 72 

InN/AlN(annealed)/sapphire 54 5.81 5.6×1019 85 
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These results show an improvement in free carrier concentration and mobility of the free carriers 

for InN films grown on AlN buffer and annealed at 850 °C. As discussed in the literature [26-28], the mo-

bility and electron concentration depends on the InN layer thickness and has to be greater than 0.5 µm in 

order to achieve a mobility above 1000 cm2V-1s-1 and an electron concentration below 1018 cm-3. As indi-

cated in Table 7.1, there is no significant influence of high frequency dielectric constant of the layers 

grown with without AlN buffer layer, which indicates that the optical density of the layers remains. Liter-

ature data report large variations for high frequency dielectric constant ε∞, varying from 10.8 to 5.03 [29, 

30], with a ε∞ value reported as 8.4 for InN wurtzite structure [31-34]. Later studies used this value to cal-

culate the free carrier concentration and mobility of InN layers [35-39]. Bernardini et al. [40, 41] calcu-

lated the high frequency constant InN as 8.49 using geometric quantum phase polarization theory and 

density-functional theory. Inushima et al. [42] obtained a ε∞ value of 5.8 using Kramers–Konig analysis 

of reflectivity data for InN layer grown on sapphire by ALE (atomic layer epitaxy). Qian et al. [43] used a 

value of ε∞ = 5.8 to obtain the mobility and free carrier concentration of InN layers grown on GaAs and 

the sapphire substrate using RF magnetron sputtering. Different values of ε∞ = 5.03, 7.054, 7.27, and 8.1 

have been obtained from different theoretical models [30] assuming InN wurtzite structure. Kasic et al. 

[44] utilized infrared spectroscopic ellipsometry data (IR-SE) data to determine a ε∞ value of 6.7. Later 

studies [23, 45-55] of InN based on IR-SE, IR reflectivity data or Raman data used this value to calculate 

the free carrier concentration, mobility, effective mass, etc.. Ishitani et al. [56] determined a ε∞ of 8.3 by 

IR reflectivity data measured at 296 K and 5 K temperature. In 2006, Fukuik et al. [57] obtained ε∞ as 8.5 

from the IR reflectivity data analysis for the InN grown on sapphire by OMVPE. Schley et al. [58] ob-

tained ε∞ as 7.84 and 7.76 by IR-SE data analysis for the In-face and N-face InN layers, grown by plasma-

induced molecular beam epitaxy. In the previous studies [10], we obtained a ε∞ value of 5.78 for InN 

grown on GaN/sapphire by HPCVD. This value is closer to the value reported by Inushima et al. [42]. In 

our other study, [24] we obtained ε∞ values varying between 5.29 and 7.69 for different InN layers grown 

at different reactor pressure by HPCVD. Model simulations of IR-SE data by Himmerlich et al. [59] sug-

gest that ε∞ is strongly influenced by carbon doping concentration and may vary from 7.64 for undoped 
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InN layer (7.4×1017 cm-3) to 7.28 for doped layer (3.5×1018 cm-3) grown on GaN/sapphire by MBE. Zang 

et al. [29] determined ε∞ for InN grown on sapphire by PR-MOVPE (pressurized-reactor metalorganic va-

por phase epitaxy) at different growth temperature. The ε∞ values obtained from IR reflectance analysis 

varied from 10.8, 6.0, and 6.3 for 500 °C, 600 °C, and 700 °C, respectively. 

All these results indicate the large variation of the high frequency dielectric constant ε∞ for InN 

layers grown with various growth techniques. This might be related to extended defects, voids in the bulk 

material, a shift in the effective band structure, or the calculation methods used to determine the dielectric 

constant. These uncertainties in ε∞ makes it difficult to compare the obtained ε∞ values for our InN layers 

with reported values. However, the obtained ε∞ high frequency dielectric constants of InN layers from this 

study are close the value of 5.8 obtained by Inushima et al. [42]. 

7.4 Conclusion 

We presented first results on the structural and optoelectronic properties of InN layers grown on 

AlN buffer layer/sapphire (0001) by Migration-Enhance Plasma Assisted Metal Organic Chemical Vapor 

Deposition (MEPA-MOCVD). The results indicate that an AlN buffer layer annealed at 850 °C, between 

the InN layer and sapphire improves the structural quality and optoelectronic properties of overgrown InN 

layers. Further improvements on the AlN buffer layer quality and InN growth processing parameters are 

needed to further improve the structural quality of the InN epilayers and their optoelectronic properties. 
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8 CHAPTER 8: SUMMARY 

In this work, the optoelectronic and structural properties of group III-N (InN and AlN) layers 

grown by high pressure metal organic chemical vapor deposition (HP-MOCVD) and migration-enhanced 

plasma-assisted metal organic chemical vapor deposition (MEPA-MOCVD) have been studied by Fourier 

Transform Infrared (FTIR) spectroscopy, Raman Spectroscopy, and X-ray diffraction (XRD) 

FTIR reflectance spectrum of a semiconductor contains various types of physical properties that 

depend on the experimental conditions/type, wavelength range, certain properties of the individual semi-

conductor, and external parameters (e.g. pressure, temperature). When studying a multilayer structure, in 

order to extract the properties of the each layer, through the reflectance spectra, it requires a method to 

separate the reflection of each layer from the total spectrum. The multilayer stack model, which calculates 

the total reflectance of the whole layer stack by adding the reflectance or transmission at each interface 

was used to archive this task. The choice of the model is important as it should include most of the prop-

erties of the materials, such as dielectric function, layer thickness, surface roughness, interface roughness, 

and the band structure. Thus, modeling of the dielectric function also plays a major role in the modeling 

of the reflectance spectrum. The dielectric function in the IR region can be modeled as described in Sec-

tion 4.5. 

The effect of the substrates/templates (Sapphire, AlN, Ga-polar GaN, N-polar GaN, n-GaN, and 

p-GaN) on the free carrier concentration, carrier mobility of the InN layers grown on HP-MOCVD were 

investigated by FTIR reflectance spectra analysis. The FTIR reflectance spectra analysis prevailed, on 

identifying an intermediate InN layers with different optoelectronic properties in these sample, in addition 

to the bulk layer on the substrate/template, there were intermediate InN layers with different properties in 

these samples The lowest carrier concentration of 7.1×1018 cm-3 with the mobility of 660 cm2V-1s-1 was 

found in the InN film grown on AlN template, by FTIR reflectance spectra analysis. Additionally, the Ra-

man E2 high analysis indicates the best local ordering in the same InN film. The AFM study revealed the 
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smoothest InN surface (RMS=1.273 nm) on the InN film grown on the p-GaN template. Further studies 

are carrying out to correlate the results. 

The influence of reactor pressures (2.5–18.5 bar) on the long-range crystalline order, in-plane 

structural quality, local crystalline order, free carrier concentration, and carrier mobility of the InN epi-

layers deposited on GaN/sapphire by HP-MOCVD has been investigated using these techniques. The 

XRD 2- scans InN (2-102) off-axis and InN (0002) on-axis studies showed the structural quality im-

provement with increasing reactor pressure. This tendency was confirmed by the Raman results. The 

near-field crystallinity improves as reactor pressure increase up to 12.5 bar. Above 12.5 bar reactor pres-

sure the near-filed ordering of the InN films has decreased, which is likely due to the higher ammonia 

cracking efficiency requiring adjustment of the group V/III ratio. Additionally, a low free carrier concen-

tration and the highest mobility with values of 1.5×1018 cm-3 and 270 cm2V-1s1, respectively were found 

for the InN film grown at 12.5 bar. 

The effect of the AlN buffer layer on the free carrier concentration, carrier mobility, local crystal-

line ordering, and surface morphology of InN layers grown by Migration-Enhanced Plasma Assisted 

MOCVD was also studied. Here, the AlN nucleation layer was varied to assess the physical properties of 

the InN layers. This study was focused on optimizing of the AlN nucleation layer (e.g. temporal precursor 

exposure, nitrogen plasma exposure, plasma power, and annealing temperature) and studying its effect on 

the InN layer properties. The results indicated that the annealing of the AlN buffer layer at 850 °C im-

proves the structural quality and optoelectronic properties of overgrown the InN layers. Further improve-

ments on the AlN buffer layer quality and InN growth processing parameters are needed to further im-

prove the structural quality of the InN epilayers and their optoelectronic properties. 
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APPENDICES  

Appendix A 

Appendix A.1 Geometry configuration and Raman active modes for wurtzite structure 

Geometry Configuration Raman active phonon mode 

x(y, y)x̅ A1 (TO), E2 

x(z, z)x̅ A1 (TO) 

x(z, y)x̅ E1 (TO) 

x(y, z)y E1 (TO), E1 (LO) 

x(y, y)z E2 

z(x, y)z̅ E2 

z(x, x)z̅ A1 (LO), E2 

 

Appendix A.2 The Operating Window for PL 
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Appendix B 

Appendix B.1 MATLAB code for the simulation program 

%================================== Main program for multilayer reflection 

calculations ==========================  
%==================================                         ©NALD                       

==========================   

  
% 
% ---------------------------------------------------------------------------

------------------------------------------------------------------ 

 
clear all 

  
clc;                                                                 

  
IR_Refl_Header;                                                      

  
%  stepwidth width 
stepwidth    = 1.0;  

  
 %  Numbers of layers - in addition to ambient and substrate!!! 
Nblay        = 2;                      

  
%  Material id# for each layer 
Eps_lay       =[22, 9]; 

  
%  Dielectric function of ambient 
eps_amb      = 1;    

  
 %  Dielectric function of last infinite medium  
eps_sub      = 1;     

  
 %  Thickness for each layer  
thi_lay       = [1790, 461230.16];  

  
%  Thickness variation for each layer  
thicknvar     = [10,  00]; 

  
%  Interface perfection / loss for each layer 
InterfPerf    = [0.90,   0.89764]; 

  
%  Interface perfection variation range 
InterfPerfvar =  [0.01,  0.0];  

  
% limits for x-axis range in simulation 

  
xlowlimit = 450;         
xuplimit = 6500;  

  
% Parthilay:  initial thickness array - which are the parent parameter!!   
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Parthilay     = thi_lay;  
% ParInterfPerf:  initial Interface perfections parameter 
%  always with respect to layer k/k+1  
ParInterfPerf = InterfPerf;          

  
% enter here the number of childrens generated through each fit iteration cy-

cle   
itnumb       = 450;  
% best least-square fit value between experiment and simmulation data 
bestfitres   = 100; 
% stop if best least-square fit value is below bestfitvalue 
bestfitvalue = 0.000001;   
% The pointer to the parent or child with the sofar best set of fitting pa-

rameters 
parent       =   1;          

  
% close all windows and open new windows for display 
set_displaywin;                                                      
if (~set_IR_Refl_ProgPath())  
   error('error setting the pathes - check!!!! ');  
   break; 
else 
    disp(' path for read-in\write data file location and fitting parameter 

files correct found and set! ');   
    disp(progfilepath); 
    disp(datafilepath); 
    disp(IRfitParamPath); 
end 

  
 % read in experimental data array 
 [xarrayhlp, Experim, start,stop,NbStep]= read_experiment_dat(xlowlimit, 

xuplimit);   
 if (NbStep==0) 
    error('error reading in experimental data');    
    break;   
 end 

  
 hp1         = 1;   

 hp2         = NbStep; 
 xaxisarray  = zeros(NbStep,3); 
 % 4 = experimental x-axis defines the remaining x-axis array 
 xaxisarray(1:NbStep,1:3) = init_xaxis(4, start, stepwidth, NbStep, xarrayhlp 

);        
 figure(fig_h1); plot(xarrayhlp,Experim); 

  
%---------------------------------------% 
% EspMLarr = [1:NbStep] [ Nblay + 2  ]  [ itnumber + 1 ] dielectric function 

array 
EspMLarr      = zeros(NbStep,(Nblay + 2), (itnumb +1) );        
ParEspMLarr   = zeros(NbStep,(Nblay + 2)); 
DeltPar       = zeros(NbStep,1); 
Trans         = zeros(NbStep,1); 
Refl          = zeros(NbStep,1); 
Refl2         = zeros(NbStep,1); 

  
% Eps - Parameter field for a single layer 
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SingStack      = zeros(9, 4);                        
% Cildren parameter set generaterd from Parent set of Eps - Parameter fields  

 
IterLayEps     = zeros(itnumb, Nblay+2, 9, 4);       
DeltChild      = zeros(NbStep,1); 

  
%---------------------------------------------------% 
% get all dielectric function values  

  
% get the initial simmulation parameter sets for the parent  
%       ParEspMLarr(NbStep,(Nblay + 2)):  eps-values for all layers 
%       Parthilay :thickness values for each layer 
% calculate all the dielectric functions and their variations   
    for m = 0:1:Nblay,              
        if (m ==0)  
             SingStack(1:9,1:4)            = Dielectfct_ML_init(eps_amb); 
             [ParEspMLarr(1:NbStep,1), ParMLStack_eps(1,1:9,1:4)] = Dielect-

fct_ML_Lorentz(eps_amb,SingStack,xaxisarray(1:NbStep,3), NbStep, 1);  
        else      
            SingStack(1:9,1:4)           = Dielectfct_ML_init(Eps_lay(m));           
            [ParEspMLarr(1:NbStep,(m+1)), ParMLStack_eps(m+1,1:9,1:4)] = Die-

lectfct_ML_Lorentz(Eps_lay(m),SingStack,xaxisarray(1:NbStep,3),NbStep, 1);  

              
        end 
    end % end for m - layers ......  
    %-- add susbtrate layer 
    SingStack(1:9,1:4)                     = Dielectfct_ML_init(eps_sub);   
    [ParEspMLarr(1:NbStep,Nblay+2), ParMLStack_eps(Nblay+2,1:9,1:4)] = Die-

lectfct_ML_Lorentz(eps_sub,SingStack,xaxisarray(1:NbStep,3),NbStep, 1);  
    % 
    %--  ParMLStack_eps:    contains the original parameter set for varying 

the dielectric functions 
    %--  ParEspMLarr:       is an array with the dielectric functions as 

function of wave# 

  
    % Parthilay:      initial thickness array - which are the parent parame-

ter!! 
    Parthilay     = thi_lay; 
    % ParInterfPerf:   initial Interface perfections parameter  
    ParInterfPerf = InterfPerf;        
    Refl = CalMLRef02(xaxisarray, NbStep, Nblay, 

ParEspMLarr(1:NbStep,1:(Nblay+2)), Parthilay, ParInterfPerf); 

  
    %-- calculate difference spectra and chi^2  
    DeltPar(1:NbStep) = Refl(1:NbStep) - Experim(1:NbStep);    
    sumhlp =0;  
    for j=1:1:NbStep, 
        sumhlp = sumhlp + DeltPar(j)^2; 
    end 
    SumDeltPar = sumhlp / (NbStep+1);  

  

  
bestfitres = SumDeltPar; 
parent = 0; 
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strhlp = sprintf('bestfitres for Parent parameter set: %-8.5f', bestfitres); 

disp(strhlp);    
echo off; stopflg = 0;  
% ---------------------------------------------------------------------------

------------------------------------------------------------------ 
% --------------------------------------------     here starts the main loop 

for the fitting      --------------------------------------------- 
while (bestfitres > bestfitvalue)  
    % 1.)  calculate the dielectric functions and generate a set of childrens 

from the parent parameter set 

      

  
% calculate the dielectric functions for all layers (parent) and generate a 

set childrens (defined by itnumb)     

    
        for m = 0:1:Nblay,                                                 % 

calculate all the dielectric functions and their variations      
            if (m==0)  
                 SingStack(1:9,1:4)     = ParMLStack_eps(1,1:9,1:4);   
                 [EspMLarr(1:NbStep, 1,1:itnumb), IterLayEps(1:itnumb, 

1,1:9,1:4) ] = Dielectfct_ML_Lorentz(eps_amb,  SingStack, xaxisar-

ray(1:NbStep,3), NbStep, itnumb); 

                  
            else    
                 SingStack(1:9,1:4)       = ParMLStack_eps(m+1,1:9,1:4);   
                 hlpeps                       = Eps_lay(m); 
                 [EspMLarr(1:NbStep,m+1,1:itnumb), IterLayEps(1:itnumb, 

m+1,1:9,1:4)] = Dielectfct_ML_Lorentz(hlpeps,SingStack,xaxisar-

ray(1:NbStep,3),NbStep,itnumb);  

  
            end % end if m ..... 
        end % end for m = ...  
        SingStack(1:9,1:4)                = ParMLStack_eps(Nblay+2,1:9,1:4);    
        [EspMLarr(1:NbStep,Nblay+2,1:itnumb), IterLayEps(1:itnumb, 

Nblay+2,1:9,1:4)] = Dielectfct_ML_Lorentz(eps_sub,SingStack,xaxisar-

ray(1:NbStep,3),NbStep,itnumb);        
        % end of calculate the dielectric functions for all layers ......    
        % 
        % 
        sumdelt = zeros(1,itnumb); 
        for k=1:itnumb,             % k=1; is the parameter set is initially 

defined 
           if (k>1)   % vary the layer thicknesses / Interface perfection  by 

generating a new set from the original defined parameter     
                for m = 1:Nblay,    
                    thi_lay(m)    = Parthilay(m)     + thicknvar(m)     * 

rand*(-1)^(round(rand(1)*10));  % vary layer thicknesses 
                    InterfPerf(m) = ParInterfPerf(m) + InterfPerfvar(m) * 

rand*(-1)^(round(rand(1)*10));  % vary Interface perfection 
                    if (InterfPerf(m) > 1)   
                        InterfPerf(m) = 1.0;  
                    end 
                    if (InterfPerf(m) < 0.05)  
                        InterfPerf(m) = 0.05;  
                    end 
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                end % end for - vary the thickness / Interface perfection for 

each layer! 
           end % end if       

  
           if (k==1) 
            figure(fig_h1);  
            xarr = xaxisarray(hp1:hp2,3);   yarr1 = real(EspMLarr(hp1:hp2,2, 

k));  yarr2 = imag(EspMLarr(hp1:hp2,2, k)); 
            plot(xarr,yarr1, xarr,yarr2), title(' Dielectric functions - 

Layer 1) '); xlabel('wavenumber (cm-1)');  
           end 

  

           
           Refl = CalMLRef02(xaxisarray, NbStep, Nblay, Es-

pMLarr(1:NbStep,1:(Nblay+2), k), thi_lay, InterfPerf); 
           DeltChild(1:NbStep) = Refl(1:NbStep) - Experim(1:NbStep);  
           sumhlp =0;   
           for j=1:1:NbStep,  
               sumhlp = sumhlp + DeltChild(j)^2;  
           end 
           sumdelt(k) = sumhlp / (NbStep+1);         
           if (sumdelt(k) <  bestfitres)      
                bestfitres = sumdelt(k); 
                % k is better than original parent and becomes new parent!! 
                parent        = k;  
                % save thickness area of potential new Parent value 
                Parthilay     = thi_lay; 
                % save InterfPerf to ParInterfPerf 
                ParInterfPerf = InterfPerf;                                             

  

            
                figure(fig_h2); xarr = xaxisarray(hp1:hp2,3); 
                plot(xarr,Refl,xarrayhlp,Experim), title(' Reflectance of 

original parent parameter '); xlabel('wavenumber (cm-1)');  ylabel('reflec-

tance (a.u.)'), 
                figure(fig_h3); plot(xarr,DeltChild), title(' Difference: Exp 

- Simul) '); xlabel('wavenumber (cm-1)');         

           
                 strhlp = sprintf('bestfitres for child # %3d = %-8.5f', k, 

bestfitres); disp(strhlp);  

                  
%                  strhlp = sprintf('Thicknesses: Lay#(%2d)=%-8.5f; 

Lay#(%2d)=%-8.5f; Lay#(%2d)=%-8.5f \n', ...                          
%                                 Eps_lay(1), Parthilay(1),Eps_lay(2), Par-

thilay(2),Eps_lay(3), Parthilay(3)); disp(strhlp);  
%                   strhlp = sprintf('Thicknesses: Lay#(%2d)=%-8.5f; 

Lay#(%2d)=%-8.5f; Lay#(%2d)=%-8.5f \n', ...                          
%                                 Eps_lay(1), Parthilay(1),Eps_lay(2), Par-

thilay(2)); disp(strhlp);  

  
                  strhlp = sprintf('Thicknesses: Lay#(%2d)=%-8.5f; 

Lay#(%2d)=%-8.5f; Lay#(%2d)=%-8.5f \n', ...                          
                                Eps_lay(1), Parthilay(1)); disp(strhlp); 
%                              
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%                    strhlp = sprintf('Interface Perfection: Lay#(%2d)=%-

8.5f; Lay#(%2d)=%-8.5f; Lay#(%2d)=%-8.5f \n', ... 
%                                 Eps_lay(1), ParInterfPerf(1), Eps_lay(2), 

ParInterfPerf(2), Eps_lay(3), ParInterfPerf(3)); disp(strhlp);  

                           
%                           
                 strhlp = sprintf('Interface Perfection: Lay#(%2d)=%-8.5f; 

Lay#(%2d)=%-8.5f; Lay#(%2d)=%-8.5f \n', ... 
                                Eps_lay(1), ParInterfPerf(1) ); disp(strhlp);          
%                                  
                 strhlp = sprintf('Parameter Layer1 '); disp(strhlp);  
                 strhlp = sprintf(' %-10.4f   %-10.4f %-10.4f %-10.4f\n', It-

erLayEps(parent,2,1:9,1:4)); disp(strhlp);  

   
                 strhlp = sprintf('Parameter Layer2 '); disp(strhlp);  
                 strhlp = sprintf(' %-10.4f   %-10.4f %-10.4f %-10.4f\n', It-

erLayEps(parent,3,1:9,1:4)); disp(strhlp);  

                 
%                  strhlp = sprintf('Parameter Layer3 '); disp(strhlp);  
%                  strhlp = sprintf(' %-10.4f   %-10.4f %-10.4f %-10.4f\n', 

IterLayEps(parent,4,1:9,1:4)); disp(strhlp);  
           end 

  
           figure(gcf); 
           if ((strcmpi(get(gcf,'CurrentKey'),'q')) && ~stopflg)  
               echo on; 
               disp('q has been pressed - fit will stop after iteration loop 

is completed');  
               stopflg = 1;  
               bestfitres = 0; 
               echo off; 
           end 

              
        end % for loop 

     
    %--  Now check whether any of the children parameter set generated a bet-

ter fit result 

    
    if (parent > 0) 
         %  eps-parameter of child k will become the parent parameter 
           ParMLStack_eps(1:Nblay+2,1:9,1:4) = IterLayEps(parent, 

1:Nblay+2,1:9,1:4);  
           ParEspMLarr(1:NbStep,1:(Nblay+2)) = EspMLarr(1:NbStep,1:(Nblay+2), 

parent); 
           parent = 0;    
    end    

     
end % -------------------------------     End  while (bestfitres ..... main 

loop for the fitting      --------------------------------------------- 
% ---------------------------------------------------------------------------

---------------------------------------------------------------------- 
% echo on; 
% Save data:   the best fitting result should be in ParEspMLarr  
% 1st - write the parameter established: 
% 



220 

    action = 0; retval = Write_IR_MLStackFitParam(action); 
    if ~retval 
        error(' Error writing Fit parameter to file!');   
    end 

  

     
    close(fig_h3); close(fig_h2);  
    %  next recalculate the reflectance spectra with the best fitting result 
    % 

  
    Refl = CalMLRef02(xaxisarray, NbStep, Nblay, 

ParEspMLarr(1:NbStep,1:(Nblay+2)), Parthilay, ParInterfPerf); 
    figure(fig_h1); xarr = xaxisarray(hp1:hp2,3);    
    plot(xarr, Refl, xarr, Experim), title(' Experimental and Simulated Re-

flectance Spectra'); xlabel('wavenumber (cm-1)');  ylabel('reflectance 

(a.u.)'); 
    % 
    % write the data to a file 
    % 
    retval = Write_BestFitSimData(NbStep, xaxisarray(1:NbStep,3), Ex-

perim(1:NbStep), Refl(1:NbStep)); 
    if ~retval  
        error(' Error writing Best Simulation fit data file!');   
    end 
% 
% End of Main Program 
% ---------------------------------------------------------------------------

------------------------------------------------------------------ 
% ---------------------------------------------------------------------------

------------------------------------------------------------------ 
   function Refl = CalMLRef02(xaxis, Numbstep, Numblay, Epsarr, thi-

lay,IntPerf) 

  
% This function calculates the reflectance of a multilayer stack in normal 

incidence configuration  
% 
% Input parameter:  
%           xaxis:     Array for x-axis:  xaxis(:,1)= nm; xaxis(:,2)= eV; 

xaxis(:,3) = cm-1 
%           Numbstep:  number of Steps  
%           Numblay:   Number of layers in stack (in addition to to ambient 

and substrate!!! 
%           epsamb:    medium # for ambient  
%           epsubs:    medium # for susbtrate  
%           Epslay:    Array of medium #'s for each layer  
%           thilay:    Array of layer thicknesses for each layer given in nm  
%           IntPerf:   Array of interface perfection parameters for k/k+1 

layer interfaces  

  

  
% global  fig_h1 fig_h2 fig_h3       % Window handles  

  
im      = sqrt(-1);                %  definition of imaginary part 
pi      = 3.141593; 
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Refl    = zeros(Numbstep,1); 
 %ReflN   = zeros(Numbstep,1); 
phase   = zeros(Numblay+1); 
delta = 0.0; 

    
% ------------------------------------------------------------------------ 
for k = 1:Numbstep,                              

   

  
 if (Numblay > 0)  
        for m = 1:Numblay,  
            phshlp = (2 * pi * thilay(m) * sqrt(Epsarr(k,m+1))) / xaxis(k,1);     

% phase will need xaxis in nm!! 
            phase(m) = phshlp;        
        end % end for m = ...  

     
 end % endif (Numblay > 0)  

  

     
    % Calculate Matrix:   M0 = ambient - Layer_1 and  M_subs = Layer_N - Sub-

strate       
    for m = 0:1:Numblay, 
        rnk = (sqrt(Epsarr(k,m+1))-sqrt(Epsarr(k,m+2)))/(sqrt(Ep-

sarr(k,m+2))+sqrt(Epsarr(k,m+1)));     
        if (m == 0)   
           Matr   = [1  rnk;    rnk   1];  
        else 
            if ((IntPerf(m) > 0) && (IntPerf(m) < 1.0)) rnk = rnk * 

IntPerf(m); end 
            Matr = Matr * [           1                                rnk; 
                            rnk * exp(complex(0,-2)*phase(m))    exp(com-

plex(0,-2)*phase(m))]; 
        end % endif  
    end % end for m = ...  

    
    Refl(k) = calc_reflect(Matr); 

  

        
end  % End for-loop: compute normal incidence reflectance of multi-layer 

stack   

  

  
% ---------------------------------------------------------------------------

- 
end % function 

  

  
% ---------------------------------------------------------------------------

-------------------------------------------- 
% ---------------------------------------------------------------------------

-------------------------------------------- 
% ---------------------------------------------------------------------------

-------------------------------------------- 
%                 Help functions multilayer stack calculations   
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% % 
function [reflect] = calc_reflect(Rmatr)  % calculated the total reflectivity 

of the multilayer stack  
                                          % matr is a complex 2x2 matrix   
   reflect =  (real(Rmatr(2,1)/Rmatr(1,1)))^2 + 

(imag(Rmatr(2,1)/Rmatr(1,1)))^2; 
   if (reflect > 1) reflect=1.0; elseif (reflect < 0) reflect = 0.0; end 

    
end % end calc_reflect 
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