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Observation of resistively detected hole spin
resonance and zero-field pseudo-spin splitting
in epitaxial graphene
Ramesh G. Mani1, John Hankinson2, Claire Berger2,3 & Walter A. de Heer2

Electronic carriers in graphene show a high carrier mobility at room temperature. Thus, this

system is widely viewed as a potential future charge-based high-speed electronic material to

complement–or replace–silicon. At the same time, the spin properties of graphene have

suggested improved capability for spin-based electronics or spintronics and spin-based

quantum computing. As a result, the detection, characterization and transport of spin have

become topics of interest in graphene. Here we report a microwave photo-excited transport

study of monolayer and trilayer graphene that reveals an unexpectedly strong microwave-

induced electrical response and dual microwave-induced resonances in the dc resistance. The

results suggest the resistive detection of spin resonance, and provide a measurement of the

g-factor, the spin relaxation time and the sub-lattice degeneracy splitting at zero magnetic

field.
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T
he quantum mechanical spin degree of freedom finds
remarkable applications in the areas of quantum comput-
ing (QC) and spin-based electronics (spintronics)1–8. For

example, in QC scenarios, particle spin often serves as a quantum
bit or qubit1–6. In spintronics, the spin serves to endow electronic
devices with new functionality as in the giant magneto-resistive
read head or the spin-based transistor7,8. Graphene is a novel
two-dimensional system with remarkable properties such as
massless Dirac fermions, an anomalous Berry’s Phase, a pseudo-
spin (valley degeneracy) in addition to spin and half-integral
quantum Hall effect9–12. Graphene is also an appealing material
for electron-spin QC and spintronics1,4–8,13–15, owing to the
expected weak spin–orbit interaction and the scarcity of nuclear
spin in natural carbon. Because of QC and spintronics, the
microwave control and electrical detection of spin have become
topics of interest now in graphene nanostructures1–17, where the
small number of spins limits the utility of traditional spin
resonance.

Here we report the first observation of resistive detection of
spin resonance in epitaxial graphene (EG)9,18,19, provide a
measurement of the g-factor and the spin relaxation time, and
determine the pseudo-spin (valley degeneracy) splitting at zero
magnetic field. Such resistive resonance detection can potentially
serve to directly characterize the spin properties of Dirac
fermions, and also help to determine and tune the valley-
degeneracy splitting for spin-based QC15.

Results
Trilayer graphene. Figure 1a shows the diagonal resistance, Rxx,
versus the magnetic field, B, for the trilayer EG specimen, sample
1. The blue curve obtained at T¼ 1.5 K in sample 1 shows a cusp
in Rxx near null magnetic field, that is, weak localization
(WL)20–22, followed by positive magneto-resistance at B40.2 T.
In Fig. 1a, an increase in T, to T¼ 90 K, results in the red curve,
which includes a positive displacement of the Rxx versus B trace
with respect to the T¼ 1.5 K trace, that is, dRxx/dT40 at B¼ 0 T,
along with the quenching of WL. As WL cannot be observed
without inter-valley scattering in monolayer or bilayer gra-
phene22, the observed WL is presumed to be an indicator of a
non-zero inter-valley matrix element.

Figure 1b illustrates the influence of microwave excitation on
sample 1 at F¼ 48 GHz. Here, for Bo1 T, microwave excitation
produces a positive displacement of the photo-excited Rxx relative
to the blue trace obtained in the absence of photo-excitation, akin
to increasing the temperature, cf. Fig. 1a,b. However, at B41 T,
Rxx shows resistance valleys as the photo-excited curve
approaches the dark curve, similar to reducing the temperature.
To highlight associated resonances, the change in the diagonal
resistance, DRxx¼Rxx(4 mW)�Rxx(dark), is shown versus B in
Fig. 1c. Figure 1c shows two noteworthy features: a high magnetic
field resonance at |B|¼ 1.75 T and a low magnetic field feature at
|B|¼ 1.4 T. These resonances disappeared upon increasing the
bath temperature to T45 K.

Monolayer graphene. Figure 2a–c shows the results for sample 2,
whereas Fig. 2d–f shows representative data for sample 3. Both
sample 2 and sample 3 are monolayer EG specimens. The T
dependence of Rxx at B¼ 0 T is shown in Fig. 2a,d for samples 2
and 3, respectively. Unlike sample 1, samples 2 and 3 show a
decrease in Rxx(B¼ 0) with increasing temperature, that is, dRxx/
dTr0. Further, as indicated in Fig. 2b,e, microwave irradiation of
these specimens produces a uniform negative displacement in the
Rxx traces with increasing power, P. Yet, the effect of microwave
excitation (dRxx/dPr0 at B¼ 0) is again similar to heating the
specimen (dRxx/dTr0), cf. Fig. 2a,b or d,e. Thus, the Rxx(B¼ 0)

regions from Fig. 2b,e have been marked as coloured discs in
Fig. 2a,d. Apparently, microwave excitation at P¼ 10 mW serves
to increase the carrier temperature up to T¼ 32 K in sample 2,
and up to T¼ 36 K in sample 3. At such higher P, the radiation
helps to manifest, in addition, resonant Rxx peaks in the vicinity
of the dashed lines of Fig. 2b,e, unlike in Fig. 1b, where valleys
characterize the resonances in Rxx. Yet, in all three specimens, the
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Figure 1 | Transport in trilayer graphene. (a) The diagonal resistance, Rxx,

is shown versus the magnetic field, B, at temperatures T¼ 90 K, shown in

red, and T¼ 1.5 K, shown in blue, for sample 1, in the dark condition, without

microwave excitation. The upward displacement of the T¼90 K curve with

respect to the T¼ 1.5 K curve shows that Rxx increases with the

temperature, that is, dRxx/dTZ0. (b) Rxx versus B in the absence of

microwave excitation is shown in blue, and under constant F¼48 GHz

microwave excitation at P¼4 mW is shown in red, for sample 1. The photo-

excited Rxx trace shown in red exhibits a uniform upward shift with respect

to the dark Rxx curve shown in blue for Bo1 T. At higher B, resonant

reductions in the Rxx are observed in the vicinity of B¼±1.4 and ±1.75 T,

where the photo-excited Rxx approaches the dark value. Inset: an atomic

force microscopy image of the EG/SiC surface with the device

superimposed upon it. The size scale bar corresponds to 10 mm.

(c) The change in the diagonal resistance, DRxx, between the photo-excited

and dark conditions in panel b, that is, DRxx¼ Rxx(4 mW)� Rxx(dark),

is shown versus B. Note the valleys in DRxx in the vicinity of B¼±1.40

and ±1.75 T.
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photo-excited Rxx moves towards the dark curve at resonance.
Fig. 2c,f shows resonances at nearly the same |B|, at F¼ 18 GHz,
in samples 2 and 3.

Spin resonance evolution. Figure 3 illustrates the frequency
evolution of the DRxx resonances for all three specimens. Here,
Fig. 3a–e illustrates the results for sample 1, Fig. 3f–h exhibits the
data for sample 2 and Fig. 3i,j shows some results for sample 3.
Note the shift of resonances to higher B with increasing F.

Figure 4a presents a plot of the microwave frequency, F, versus
the resonance magnetic fields, B, extracted from Fig. 3. Figure 4a
shows that the resonance B values for the three specimens col-
lapse onto two lines: a gold-coloured line in Fig. 4a, which
represents the high B-field resonances of Fig. 3, shows a linear
increase as F(GHz)¼ 27.2B(T), with the ordinate intercept at the
origin. Another line shown in magenta in Fig. 4a, which
represents the low-B resonances of Fig. 3, shows a linear increase
as F(GHz)¼ 10.76þ 26.9B(T), with a non-zero intercept,
F0¼ 10.76 GHz. In such a plot, spin resonance for an electron
with g-factor ge¼ 2.0023 would follow: F(GHz)¼ 28.01B(T).
Thus, the observed slopes, dF/dB¼ 26.9±0.4 GHz T� 1 (dF/dB

¼ 27.2±0.2 GHz T� 1) for the low (high) field resonance
correspond to spin resonances with g//¼ 1.92±0.028
(g//¼ 1.94±0.014).

Discussion
The g-factors measured here are comparable to the g-values
obtained from traditional ESR studies of graphite, which have
indicated that the g-factor for B//c-axis, g//, increases from 2.05
at 300 K to 2.15 at 77 K, while, at T¼ 300 K, the g-factor for
B>c-axis, g>¼ 2.003 (refs 23,24). In graphite, the g-factor
depends upon the orientation of the B field, the temperature,
the location of the Fermi level and the sign of the charge carriers,
with opposite g-factor shifts, Dg, from ge, for electrons and
holes23–25. The negative Dg and reduced g// observed here relative
to ge are consistent with expectation for holes.

From these data, we also estimate a resonance half-width
DBE0.05 T, which corresponds to a spin relaxation time ts¼
h/(4pDE)¼ 6� 10� 11 s. The spin relaxation time has been a
topic of great interest in graphene. Spin relaxation26 has been
experimentally studied in monolayer and bilayer exfoliated
graphene on SiO2/Si (refs 27–34) and, more recently, on EG35,36
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Figure 2 | Transport in single-layer graphene. Panels a–c show some results for sample 2, whereas figs d,f show representative data for sample 3.

(a) Sample 2 shows a decrease in the resistance Rxx with increasing temperature T, that is, dRxx/dTr0, in the absence of a magnetic field, that is, B¼0 T.

(b) The data traces show a downward shift with increasing microwave power, P, at F¼ 18 GHz, suggestive of microwave-induced carrier heating in the

specimen. The Rxx at B¼0 T obtained from these traces have been marked as filled circles in panel a above, which shows the T dependence of Rxx.

Apparently, P¼ 10 mW serves to increase the carrier temperature up to T¼ 32 K in sample 2. Microwave-induced resonances appear in the vicinity of the

dashed lines with increasing P. (c) DRxx¼ Rxx(10 mW)� Rxx (dark) is shown versus the magnetic field for sample 2. Note the change in DRxx due to spin

resonance in the vicinity of the dashed lines at B¼±0.66 and ±0.27 T. (d) Sample 3 also shows a decrease in the resistance Rxx with increasing

temperature T, that is, dRxx/dTr0, in the absence of a magnetic field, that is, B¼0 T. (e) At F¼ 18 GHz and T¼ 1.5 K, Rxx is shown versus B for sample 3,

at several power levels. The Rxx at B¼0 T observed in these data have been marked as filled circles in panel d. (f) This panel shows DRxx¼ Rxx(10 mW)

� Rxx(dark) versus the magnetic field for sample 3. Note the change in DRxx due to spin resonance in the vicinity of B¼±0.66 and ±0.28 T.
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using spin valve devices, and possible mechanisms involved
in spin relaxation have been examined by theory37–39. For
monolayer exfoliated graphene, observed spin relaxation times
generally fall in the range of 40–150 ps (refs 28,30,31,34), while
exfoliated bilayer graphene shows spin relaxation times as long as
2–6 ns (refs 32,33). The observed shorter-than-expected spin
lifetime in exfoliated monolayer graphene has been attributed to
extrinsic mechanisms based on impurity adatoms37, charged
impurities and phonons from the substrate38, spin–orbit coupling
due to ripples in graphene39, and so on. Note that the ts reported
here for C-face EG is comparable to previous reports of the spin
relaxation time for monolayer exfoliated graphene on SiO2/Si.
The spin-diffusion length here is ls¼ (Dts)1/2¼ 1.4 mm (ref. 13),
while the Hall bar width, w¼ 4 mm. Here, D is the diffusion
constant. In such a situation, edges could be having a role in spin
relaxation, given that edges in graphene can be magnetically

active12, and the electrical contacts include gold, a heavy element.
Thus, there could be additional avenues for spin relaxation in the
small specimen, in addition to the other above-mentioned
mechanisms37–39. Finally, inhomogeneities could serve to
broaden the resonance linewidth and help to produce an
apparently reduced spin relaxation time.

The observation of similar double resonances in monolayer
and trilayer graphene can be viewed as a consequence of
rotational (non-AB) layer stacking in EG, which makes it
possible even for multilayer EG to show the same electronic
properties as isolated graphene18. Note also that sub-lattice or
pseudo-spin degeneracy lifting is known to occur at high B in
graphene40–42. For example, the progression of quantum Hall
effect from the Rxy¼ [4(Nþ 1/2)]� 1 h/e2 sequence10,11,43, to
observations of sxy increases in steps of e2/h (ref. 40), reflects the
lifting of both the spin- and pseudo-spin degeneracy. In addition,
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a non-linear interaction-enhanced valley-degeneracy splitting has
been reported from a scanning tunnelling spectroscopy study42.
Finally, the manifestation of WL, which is observable in Figs 1
and 2, is an indicator of inter-valley coupling in these
specimens22. As sub-lattice degeneracy splitting is not
unexpected owing to the above, the observed F0¼ 10.76 GHz is
attributed to a zero magnetic field pseudo-spin (sub-lattice
degeneracy) splitting of D0¼ hF0¼ 44.4 meV.

A provisonal interpretation of the F versus B plot of Fig. 4a is
provided in Fig. 4b. Chiral eigenstates and linear energy-wavevector
dispersion characterize carriers in graphene. The application of a
B field nominally produces fourfold, valley- and spin-degenerate
Landau levels characterized by EN¼±nF(2e:BN)1/2, where

N¼ 0, 1, 2y, e is the electron charge, nF is the Fermi velocity
and : is the reduced Planck’s constant.

We imagine the fourfold degeneracy being lifted by hF0 even at
B¼ 0, to produce energy doublets as EN0 ¼ EN±hF0/2. Then,
owing to the Zeeman effect, associated Landau levels show a
further splitting of the spin degeneracy as EN00 ¼ EN0±gmB/2.
Observed microwave-induced transitions occur within the highest
occupied Landau level in the vicinity of the Fermi level. As
EN44hF0/2 and gmB/2, we remove the EN term and plot E/
h¼ (EN00 �EN)/h in Fig. 4b.

Here, microwave photo-excitation induces spin-flip transitions,
shown in gold, of unpaired carriers between the spin levels of the
lower or the upper doublet. Such transitions require vanishing
photon energy in the limit of vanishing B. In contrast, a transition
between the lower spin (‘up’) level of the lower doublet and the
higher spin (‘down’) level of the upper doublet requires additional
energy hF0, and such a transition, shown in magenta, exhibits
non-vanishing photon energy in the B-0 limit. Thus, the
F versus B plot appears consistent with spin resonance and a
zero-field pseudo-spin (valley degeneracy) splitting enhanced
spin resonance.

In summary, we have realized the resistive detection of spin
resonance in EG, provided a measurement of the g-factor and the
spin relaxation time, and identified—and measured—a pseudo-
spin (valley degeneracy) splitting in the absence of a magnetic
field. Such resistive resonance detection can potentially serve to
directly characterize the spin properties of Dirac fermions, and
also help to determine—and tune—the valley-degeneracy splitting
for spin-based QC.

Methods
Graphene samples. EG was realized by the thermal decomposition of insulating
4H silicon carbide (SiC)18. The EG specimens were characterized by ellipsometry
and the extracted layer thickness was converted to the number of layers at the rate
of 0.335 nm per layer. The C-face of the EG/SiC chip was processed by e-beam
lithography into micron-sized Hall bars with Pd/Au contacts. Measurements are
reported here for three Hall bar specimens labelled 1, 2 and 3. Sample 1 is
nominally trilayer graphene, while samples 2 and 3 are monolayer graphene. The
samples are p-type, with a hole concentration, pE1013 cm� 2, and a carrier
mobility mE103 cm2 V� 1 s� 1.

Measurement configuration. Typically, an EG Hall bar specimen was mounted at
the end of a long straight section of WR-62 rectangular microwave waveguide. The
waveguide with sample was inserted into the bore of a superconducting solenoid,
immersed in pumped liquid Helium and irradiated with microwaves over the
frequency range 10rFr50 GHz, at a source power 0.1rPr10 mW, as in the
usual microwave-irradiated transport experiment44. Here, the applied external
magnetic field was oriented along the solenoid and waveguide axis, as a probe-
coupled antenna launcher excited the Transverse Electric (TE-10) mode in the
waveguide. Thus, the microwave electric field was oriented perpendicular to the
applied external magnetic field. The microwave magnetic field lines formed closed
loops, with components in the transverse and axial directions of the waveguide.
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B-field resonance found in Fig. 3 follows a linear fit, indicated by the

gold line, as F(GHz)¼ 27.2B(T) with an intercept at the origin. The low

B-field resonance found in Fig. 3, indicated by the magenta line, follows a

linear fit as F(GHz)¼ 10.76þ 26.9B(T) with a non-zero intercept,

F0¼ 10.8 GHz. Here, the lines indicate the fits, while the symbols show

the data points. The circles correspond to the data for sample 1, the squares

correspond to the data for sample 2 and the triangles correspond to the

data for sample 3. (b) The observed experimental results appear to be

consistent with spin resonance and zero-field pseudo-spin (valley-

degeneracy) splitting enhanced spin resonance. A fourfold degeneracy is

lifted in the absence of a magnetic field to produce a pair of spin degenerate

levels (doublets) separated by E/h¼ F0. Zeeman splitting then lifts the

spin degeneracy of the upper and lower doublets. Microwave photo-

excitation induces spin-flip transitions between the spin levels of the lower-

or upper doublet, as shown by the gold lines. Such transitions require

vanishing photon energy in the B-0 limit. On the other hand, the transition

shown in magenta requires non-vanishing photon energy in the limit of

B-0.
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