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ABSTRACT 

ESSAYS ON ARTEFACTUAL AND VIRTUAL FIELD EXPERIMENTS  

IN CHOICE UNDER UNCERTAINTY 

BY 

MING TSANG 

DECEMBER 2016 

Committee Chair: Dr. Elisabet Rutström 

Major Department: Economics  

In the area of transportation policy, congestion pricing has been used to alleviate traffic 

congestion in metropolitan areas.  The focus of Chapter 1 is to examine drivers’ perceived risk of 

traffic delay as one determinant of reactions to congestion pricing.  The experiment reported in 

this essay recruits commuters from the Atlanta and Orlando metropolitan areas to participate in a 

naturalistic experiment where they are asked to make repeated route decisions in a driving 

simulator.  Chapter 1 examines belief formation and adjustments under an endogenous 

information environment where information about a route can be obtained only conditional on 

taking the route.  If the subjects arrive to the destination late, i.e. beyond an assigned time 

threshold, they are faced with a discrete (flat) penalty.  In contrast, Chapter 2 examines 

subjective beliefs in a setting where the penalty for a late arrival is continuous, such that a longer 

delay incurs additional penalty on the driver.  The primary research question is: does belief 

formation differ when the late penalty is induced as a continuous amount compared to when it is 

induced as a discrete amount?  In particular, will we observe a difference in learning across the 



  

 

 

range of congestion probabilities under different penalty settings?  In the continuous penalty 

setting, we do not observe a difference in learning across the range of congestion probabilities.  

In contrast, in the discrete penalty setting we observe significant belief adjustments in the lowest 

congestion risk scenario. 

In Chapter 3 the “source method” is used to examine how uncertainty aversion differs 

across events that have the same underlying objective probabilities but are presented under 

varying degrees of uncertainty.  Subjects are presented with three lottery tasks that rank in order 

of increasing uncertainty.  Given the choices observed in each task a source function is estimated 

jointly with risk attitudes under different probability weighting specifications of the source 

function.  Results from the Prelec probability weighting suggest that, as the degree of uncertainty 

increases, subjects display increased pessimism; in contrast, the Tversky-Kahneman (1992) and 

the Power probability weightings detect no such difference.  Thus, the conclusion regarding 

uncertainty aversion are contingent on which probability weighting specification is assumed for 

the source function.   
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INTRODUCTION 

The common theme across the three chapters in this dissertation is the study of decision 

making under uncertainty.  The first two chapters investigate risk perception in the context of 

driving.  In a driving simulator experiment, subjects are presented with an unknown probability 

of traffic delay and make route choices over multiple periods under a range of exogenous 

congestion probabilities.  This allows us to compare if learning differs across the range of 

congestion probabilities.  The third chapter examines if behavior differs across events that are 

presented under varying degrees of uncertainty in a context free task.   

The goal of Chapters 1 and 2 is to examine drivers’ perceived risk of travel delay in 

explaining their route choices.  For any given trip, there are uncertainties about the amount of 

time that it takes to complete a trip as well as the level of congestion on the route.  The 

importance of subjective beliefs in influencing drivers’ behavior is well-stated in Hensher, Li and 

Ho (2014):  

Travelers need to assess the probability distribution of possible travel times for a 

future trip based on their experience, beliefs, etc.… Since travel time variability is 

best described under uncertainty rather than risk, respondents should be asked to 

provide their judged probabilities associated with different travel outcomes (i.e., 

subjective probabilities for uncertainty) in a choice study. 

Consistent with this suggestion, the experiment described in Chapters 1 and 2 allow us to infer 

drivers’ subjective beliefs over the uncertain risk of travel delay from their observed choices.  

The experiment is conducted using field drivers from the Atlanta and Orlando metropolitan 

areas, and the choice task that they participate in is designed with many features of a natural 

driving experience.  These field subjects are asked to make route decisions as they are driving in 

a driving simulator.  Using a driving simulator as an instrument to examine drivers’ behavior is a 
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relatively novel development in transportation experiments (Dixit, Harrison and Rutström 

(2014)).  We apply this experimental approach to examine route choices in a repeated choice 

setting.   

One design feature of the experiment is that subjective beliefs are elicited under an 

endogenous information environment: information about a route (such as its congestion level, 

travel time variability) can only be obtained if one drives on that route, thus information 

gathering is endogenous.  This is an information environment that commonly occurs in practice, 

but has not received much attention in the literature on belief formation and learning.  

In the experiment subjects are asked to make a binary choice between a route that has an 

uncertain level of congestion and an alternate route with no risk of congestion.  For the route that 

has an uncertain level of congestion, four treatments are implemented that differ in terms of the 

range of congestion probabilities.  The treatments range from a low risk of congestion to a high 

risk of congestion.  Subjects are assigned monetary incentives for the value of making the drive, 

the penalty for arriving late to the destination, and the toll charged on the non-congested route.  

Apart from some prior information about frequency of congestion on the uncertain route, drivers 

only obtain additional information if they actually choose to drive on it.  The research questions 

are: will the subjects be able to discern different levels of congestion risk (that are not told to 

them)?  Furthermore, as the subjects gain experience driving, will we observe learning as well as 

differences in learning across the four levels of congestion risk?  Our hypothesis is that, in this 

endogenous information environment, subjects who started with a prior belief of low congestion 

(i.e., those who are in the low-congestion risk treatment) are more likely to drive on the uncertain 

route and thus are able to obtain more information to revise their prior belief.  Therefore, these 
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subjects should display more learning than their counterparts who are in the high-congestion risk 

treatments.  

Both Chapters 1 and 2 ask the same set of questions with respect to subjective beliefs. 

However, the two chapters differ in one crucial aspect.  The difference is in the penalty that is 

associated with a late arrival.  In Chapter 1 the penalty for a late arrival is fixed regardless of the 

extent of delay.  In contrast, in Chapter 2 the penalty is variable and is contingent on the extent 

of delay.  In other words, in Chapter 1 the penalty for a late arrival is discrete, whereas in 

Chapter 2 the penalty for a late arrival is continuous.  While there is not yet a theoretical model 

that takes into account the possible behavioral difference under these two penalty settings, the 

empirical significance of this question is worth investigating.  Since the delay penalty for each 

trip may differ depending on the purpose of the trip or the characteristics of the travelers, it is 

natural to investigate route behavior by delay penalties as it realistically reflects different types 

of trips and/or different groups of travelers. 

Recall that in an endogenous information environment, we expect to observe more 

learning in the low-congestion risk treatments than in the high-congestion risk treatments.  We 

can then ask if the same pattern of behavior will still take place when the penalty is induced in a 

discrete vs. a continuous manner.  To examine behavior in a setting where the late penalty is 

continuous calls for an experimental design that has variability in arrival times so that the extent 

of delay varies.  The advantage of using driving simulators in a choice task is that the amount of 

time it takes to complete the drive varies depending not only on route selection, and the 

congestion scenario on the uncertain route, but also on how the subjects drive on the simulator.  

In this way, the arrival times along with late penalties are naturalistically induced as continuous 

variables.   
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 Chapter 3 builds on the previous two chapters, and the goal is to examine how this same 

group of field subjects perceive the unknown probabilities that are presented under varying 

degrees of uncertainty.  Here the research question is: if an event with an unknown probability is 

presented to subjects under separate scenarios that vary in degrees of uncertainty, will it result in 

variations in behavior?  In particular, does behavior vary in a systematic manner going from the 

least uncertain scenario to the most uncertain scenario?  In the experiment, subjects are asked to 

complete three types of lottery tasks that are ranked in order of increasing uncertainty.  Subjects’ 

uncertainty attitudes are analyzed using the “source method” that is introduced by Abdellaoui, 

Baillon, Placido and Wakker (2011). 

The source method assumes that different types of events imply potentially different 

sources of uncertainty, and that attitudes toward uncertainty and the perception of the likelihoods 

may be revealed by comparing decision weights inferred across different types of events.  These 

decision weights are modeled using probability weighting functions (or source functions), and 

the parameters estimated from the source functions give rise to two indices of uncertainty 

aversion: pessimism and likelihood insensitivity.  From here, behavior under uncertainty can be 

analyzed in a tractable manner using these indices.  This allows one to pinpoint if the behavioral 

variation across different types of events is due to differences in pessimism and/or likelihood 

insensitivity.  Chapter 3 asks if the behavioral variation going from the least uncertain scenario to 

the most uncertain scenario is due to an increased pessimism and/or likelihood insensitivity. 

If the indices of uncertainty aversion are based on the estimates that are derived from a 

source function, one theoretical concern is whether different specifications of the source function 

imply different estimates of uncertainty aversion indices.  In other words, is the analysis of 

behavior under uncertainty robust when we assume different specifications of the source 
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function?  Or will the observed behavior be better captured by one specification of the source 

function than another?  The results show that the behavioral difference under uncertainty is better 

captured by the Prelec specification (Prelec (1998)) than the Tversky-Kahneman (1992) or 

Power specification.  Thus, conclusions regarding uncertainty aversion are contingent on which 

specification is assumed for the source function. 
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CHAPTER 1 

Estimating Subjective Beliefs in Naturalistic Tasks with Limited Information 

 

1.1 Introduction 

In the area of transportation policy, congestion pricing has been used to alleviate traffic 

congestion in metropolitan areas.  The policy reduces traffic congestion by charging drivers for 

using congested routes.  This gives them incentives to use an alternate route or mode of 

transportation.  When drivers do not know the actual probability of delay and can only base their 

decisions on past experience on the routes or information from others, their expectations of delay 

as well as risk attitudes are crucial elements in determining their route choices.  As pointed out 

by Savage (1971), to identify the model of decision making under risk one needs to understand 

the preference function of an agent and the way they perceive the probability of the unknown 

event (their subjective probabilities).  This essay examines the perception of travel delay in 

explaining reactions to congestion pricing.  Commuters from Atlanta and Orlando metropolitan 

areas are recruited to participate in an experiment that uses driving simulators and their 

subjective probabilities of the uncertain risk of delay are inferred through the route choices they 

make.  The primary research question is whether the field subjects are able to form estimates of 

the risk of delay that vary with the underlying congestion probabilities in a simulator 

environment.  Furthermore, do they adjust their beliefs in the direction of the objective 

congestion probability?  Does the adjustment of beliefs differ depending on the underlying 

objective congestion probability? 
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 An important and novel aspect of the design is information gathering is endogenous: the 

prior information of congestion on a route can only be updated if one decides to take that route, 

otherwise no new information is generated.  Given some initial belief about the riskiness of a 

potentially congested route, those who start with a lower belief of congestion risk may be more 

inclined to take the risky route than those who start with a higher belief, thus leading to subjects 

with a lower belief of congestion risk obtaining more information than those with a higher belief 

of congestion risk, ceteris paribus.  In a dynamic setting, the implication for belief adjustment is 

that subjects who start with a lower belief of congestion risk will experience faster belief 

adjustment than those who start with a high belief of congestion risk.   

 Another important design feature of this experiment is information about risk is presented 

using visual and immersive simulations.  While much is known about beliefs in stylized 

experiments, such as those using urns of colored balls to model uncertain prospects, there is less 

known about risk perceptions in natural or naturalistic simulated environment.  It has been 

suggested in the psychology literature that, depending on the framing of the experimental task, 

subjects may employ different decision heuristics, and thus there are reasons to believe that this 

may lead to different degrees of bias.  For example, the dual-process theory suggests that some 

frames may induce slower cognitive modes that involves explicit deliberation, whereas others 

may induce faster cognitive modes that involves emotions and heuristics.1  Applying the insights 

of dual process theories to decision making under risk and uncertainty, Mukherjee (2010) 

suggests that if people vary in their disposition to use either of these cognitive processes, then the 

task construction can directly affect the weight that either gets in the valuation of an uncertain 

                                                           
1 See Chaiken and Trope (1999) for a discussion of dual-process theory.  
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prospect.  Thus it is important that the experimental task imitates the real-life setting in which the 

agent would normally make the decision, so as to promote a more natural mode of decision 

making.  Fiore, Harrison, Hughes and Rutström (2009) show that in visual and immersive 

simulations of risky environments, the estimated beliefs are closer to the actual underlying risk 

than in environments with some of the characteristics of standard survey instruments. 

 The purpose of this experiment is to elicit subjects’ perceptions of the probability, p, of 

travel delay.  This probability partly depends on the probability of congestion, which is given 

exogenously but varies across four scenarios.  However, drivers also drive on non-congested 

parts of the route which contributes to their delay.  Subjects’ latent subjective probabilities are 

revealed through their binary choices over two routes: one has an uncertain level of congestion 

risk, the other has no congestion risk.  One objective congestion probability is randomly assigned 

to each subject and stays constant through the session.  This probability is known to the 

experimenter, but not to the subjects.  Four levels of this probability are used: {0.2, 0.4, 0.6, 0.8}.  

The hypothesis is that, as subjects go through the ten driving periods of the experiment, their 

perception of the probability will change throughout, but only to the extent that they choose the 

relatively risky route to receive information feedback about its congestion conditions.  When 

they choose the risk-free route they get no information feedback about the congestion conditions 

on the risky route.  

 The latent subjective beliefs of delay are estimated controlling for risk attitudes, and the 

task for eliciting risk attitudes (i.e., the preference functions) is implemented using stylized 

binary lottery choices.  Andersen, Fountain, Harrison and Rutström (2014) and Manski (2014) 

emphasize that separate tasks are needed to identify both the preference function and the 

perceived probabilities, and this essay follows that advice.  This experiment deviates from 
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Manski (2014) in that incentivized tasks are used to reveal both the risk perceptions and the risk 

attitudes of the subjects.  There is much evidence that hypothetical methods can lead to biases in 

subject responses: for example, Harrison (2014) reports evidence of hypothetical bias in the 

estimation of risk perceptions, whereas Holt and Laury (2002) and Harrison (2005) report 

evidence of hypothetical bias in the estimation of risk attitudes.  

 The estimation results show that the subjective beliefs of delay, p, rank in the order of the 

objective probabilities of congestion.  Across the driving periods only subjects in the lowest 

congestion risk treatment express significant adjustment in the belief of delay.  In the higher risk 

treatments there is no belief adjustment.  The result is consistent with the hypothesis that in an 

endogenous information environment collecting information about a route that has an uncertain 

level of congestion is perceived as riskier when the subjective probability of delay is higher.  

This leads to limited or no updating.  The implication of this finding is that drivers in the field 

who habitually select an expressway over an alternative local route may do so because they 

persistently hold a high belief about the congestion level on the alternative route whether or not 

the objective congestion probability is high.  This would imply that responses to congestion 

pricing could be limited since drivers would be reluctant to try the alternative route.  In addition, 

if drivers are unable to adjust their beliefs about congestion after traffic events such as 

construction, lane closings, or lane conversions, it will result in suboptimal traffic allocation 

across alternate routes.   
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1.2 Literature Review 

 In experimental economics, different methods are used to elicit subjective beliefs in the 

laboratory.  These methods include: survey questionnaires with hypothetical payoffs; the Becker-

DeGroot-Marschak (BDM) method; choice tasks that are constructed in a Multiple Price List 

(MPL) format; or proper scoring rules such as the Quadratic Scoring Rule (QSR).  For example, 

in hypothetical questionnaires, the experimenter may directly ask subjects what they think is the 

true probability of an event occurring, or what they think is the true state of nature out of the 

many possible states presented (Attneave (1953)).  Regardless of which response subjects 

provide or which outcome will be played out, the payoffs that subjects “receive” are hypothetical 

(i.e., $0), which does not incentivize subjects to truthfully report their beliefs.  Furthermore, it is 

well known in the valuation and the risk attitude elicitation literature that hypothetical bias exists 

(Harrison (2006, 2014)), therefore it is reasonable to suspect that belief elicitations that do not 

use monetary incentives may suffer from such hypothetical biases.  Another approach is to use 

the BDM method to elicit subjective probabilities (rather than willingness to pay) (Holt and 

Smith (2009)).  However, the instruction of the BDM may be difficult for subjects to understand 

thus potentially compromising its effectiveness.  Choice tasks that are constructed in the MPL 

format may be used to elicit subjective probability intervals (rather than risk attitudes).  The task 

may involve a series of lottery choice tasks (Moreno and Rosokha (2015)), or a series of betting 

tasks where subjects place bets with multiple bookies who offer different odds (Antoniou, 

Harrison, Lau and Read (2015, 2016)).  Proper scoring rules such as the QSR can be 

implemented through a “slider task” that is constructed using the formula of the QSR.  On a 

computer screen a number of possible events are shown to the subjects, and subjects are asked to 

allocate earnings or points across these events by adjusting the slider that represents each event 
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(Andersen, Fountain, Hole, and Rutström (2014); Harrison (2014); Harrison and Swarthout 

(2014)).  The above mentioned elicitation methods are used in stylized or non-naturalistic 

settings with the exception of Fiore, Harrison, Hughes and Rutström (2009), who use visual and 

immersive simulations to present subjects with information about the unknown risk in a virtual 

reality setting.  The study reports that the beliefs elicited in a virtual reality setting are closer to 

the objective risk than those elicited in a stylized setting with still images and/or textual 

descriptions.    

 Two classic experiments in the psychology literature: Preston and Baratta (1949) and 

Attneave (1953), exemplify the early experimental approach to belief elicitation.  In both 

experiments, subjective beliefs are elicited and the elicitation procedure were not incentivized for 

the truthful reporting of subjective beliefs.  Preston and Baratta (1949) present subjects with a 

series of gambles, and for each gamble the privilege to play the gamble is auctioned off to a 

number of subjects, who are bidders in the experiment.  The highest bidder obtains the privilege 

to play the gamble.  Probability theory would suggest that if a bidder on average pays in excess 

of the mathematical expectation for the privilege to play the gamble, then a long series of plays 

will result in systematic losses; vice versa if a bidder pays in less than the mathematical 

expectation.  The study examines subjects’ bidding prices of the gambles, or subjects’ implied 

subjective probabilities.  Under the range of probabilities studied, subjects tended to make high 

bets for events with objective probabilities that are below 0.2, and low bets for events with 

objective probabilities that are above 0.2.  In other words, subjects overestimated low 

probabilities and underestimated high ones with an equality point at about 0.2.2  The results of 

                                                           
2 An equality point occurs when the subjective probability equals the objective probability.  Results regarding 

equality points differ across experiments: some find an equality point around 02 or around 0.5, whereas others find 

no equality point, see Edwards (1954) for a detailed review.  
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the study may need to be taken with caution as it is well known in the auction literature that 

bidding price in a first-price sealed-bid auction is a function of the number of bidders present 

(Kagel and Levin (2011); Fullbrunn and Neugebauer (2013)), thus the number of bidders in the 

experiment may confound with subjects’ subjective probabilities.  Similar to the findings in 

Preston and Baratta (1949), Attneave (1953) reports that events with low frequencies of 

occurring are systematically overestimated and events with high frequencies of occurring are 

systematically underestimated.  The Attneave (1953) experiment presents subjects with a 

newspaper clipping that has a thousand letters in it, and asks them to guess the occurrence of 

each of the 26 letters in the alphabet in the newspaper clipping.   

To examine the importance of using incentivized methods in belief elicitation 

experiments, Harrison (2014) compares the subjective probabilities elicited using incentivized 

methods to the ones elicited using hypothetical methods.  The study elicits the subjective belief 

distribution of subjects over various health risk and financial matters, using either an 

incentivized QSR or one with hypothetical payment.  Subjects report their beliefs over possible 

events by allocating earnings across these events using a slider task shown on a computer screen.  

As subjects adjust the height of the slider for an event, the height on the slider corresponds to the 

earnings allocated to that event.  Pooling across subject responses, the average belief differs 

significantly between the group who receive salient payment and the group for whom the 

payment is hypothetical.  Furthermore, when controlling for demographic variations, 

hypothetical bias varies significantly across demographic sub-samples.   

Subjective beliefs can be estimated as a discrete probability or as a probability 

distribution.  It is important to control for subjects’ risk attitudes when subjective belief is 
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estimated as a discrete probability estimate.3  For example, when subjects are asked to report 

beliefs in a QSR, risk averse subjects would be drawn toward a 50/50 report, thus they under-

report high probabilities and over-report low probabilities (Offerman et al. (2009); Andersen, 

Fountain, Harrison and Rutström (2014)).  To examine the importance of controlling for risk 

attitudes, Andersen, Fountain, Harrison and Rutström (2014) compare the subjective 

probabilities that are elicited with controlling for subjects’ risk attitudes to those that are elicited 

without controlling for risk attitudes.  Subjective probabilities are elicited over outcomes of the 

2008 Presidential Election, and over the performance of a randomly chosen man and woman 

from the group of subjects in the experiment on a test in psychology known as the Eyes Test.  

Subjects report their beliefs over possible events by allocate earnings across the events using a 

slider task.4  The payoff formula is designed using either the quadratic or the linear scoring rule.  

Beliefs are jointly estimated with risk attitudes assuming Subjective Expected Utility (SEU) and 

Rank Dependent Utility (RDU).  The study reports that both the utility function and the 

probability weighting function are concave, and thus it is important to control for risk attitudes 

through utility curvature and probability curvature.   

Many of the studies described above estimate a discrete probability estimate for an 

unknown event assuming a representative agent.  Andersen, Fountain, Harrison, Hole and 

Rutström (2011) (hereafter, AFHHR) present subjects with a range of bookies offering odds on 

the outcome of some unknown event.  As the subject allocates earnings over the range of 

offering odds, the individual’s probability distribution over the possible probabilities for an 

                                                           
3 When subjective probability is estimated as a probability distribution, Harrison, Martinez-Correa, Swarthout, and 

Ulm (2013) show that adjusting for risk attitudes is not needed if one is willing to assume that subjects behave 

consistently with EUT.   
4 Andersen, Fountain, Harrison and Rutström (2014) and Harrison (2014) both use a slider task to elicit subjective 

beliefs.  The former uses a slider task with two bins to elicit a discrete probability, and the latter uses a slider task 

with ten bins to elicit a probability distribution.   
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unknown event is elicited.  The study examines events that differ across a range of objective 

probabilities, and reports that in the low-probability treatment where the objective probability is 

0.1 or 0.2, in each case the mode and the mean of the subjective distribution are significantly 

greater than its corresponding objective probability.  As for the medium-probability and high-

probability treatments, where the objective probabilities are 0.5 or 0.55, and 0.75 or 0.8, 

respectively, the mean of the subjective probability distributions are virtually the same as the 

objective probabilities.  The experiment is conducted with stationary probabilities and real 

monetary incentives.  Subjective beliefs are corrected for risk attitudes by including a lottery 

choice task and inferring beliefs with joint estimation methods.  

Comparing the AFHHR (2011) study to the classic psychology studies of Preston and 

Baratta (1949) and Attneave (1953), a common finding is that subjects tend to overestimate low 

probabilities.  This therefore seems to be true whether or not one uses monetary incentives or 

adjusts for risk attitudes.  However, in the medium-probability and high-probability range, the 

perception of probabilities may differ depending on incentives and the task at hand.  

 

Repeated Choice  

The studies reviewed so far examine subjective probabilities in a one-task setting where 

beliefs are elicited only once.  Gallistel et al. (2014) was interested in assessing beliefs in a 

dynamic setting with multiple periods.  In each period, subjects are given signals and the 

(posterior) belief is elicited.  The experimental task involves presenting subjects with “a box of 

circles” displayed on a computer screen that has unknown probabilities of green and red circles.  

In each period, the subject is allowed to sample one circle from the box and is asked to state 
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his/her guess as to the proportion of green circles, p, by submitting the answer through a moving 

slider.  Ten subjects are recruited for a flat fee and each go through 1,000 trials.  An important 

feature in the design is that subjects are told that p changes randomly throughout the experiment 

(i.e., p is non-stationary), and thus the estimate of p needs to update with changes in the 

distribution.  In each round, after the subjects submit their answers they receive no information 

feedback as to what the true p is.  At any time during the experiment if the subjects think the 

proportion of circles in the box has changed they are told to click on the button that says “I think 

the box has changed.”  The study reports that “the mapping from the true probability to median 

report probability is the identity,” which suggests that the frequency of overestimating the true 

probability is equal to the frequency of underestimating the true probability.  Gallistel et al. 

(2014) do not compare the subjective probabilities to the true probabilities, therefore one cannot 

infer the degree to which subjects overestimate or underestimate the true probabilities.   

To understand how subjects assess probabilities in a repeated choice setting, many 

studies have focused on belief updating.  Conditional on a prior belief, if subjects update new 

information in a Bayesian manner, the posterior beliefs should converge on the objective 

probabilities over time as new information is acquired.  Conversely, if subjects overweight or 

underweight new information, the posterior beliefs should deviate from objective probabilities.  

Kahneman and Tversky (1973), Grether (1980) and Grether (1992) report that subjects tend to 

make decisions based on how similar or representative the sample distribution is to the parent 

population (known as representativeness), disregarding any prior information they may have.  

Grether (1980) presents subjects with two urns with varying number of colored balls where the 

distribution of each urn is known to the subjects.  Subjects are told that one of the urns will be 

randomly chosen and the (prior) probability of each being chosen is equal.  After an urn is 
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chosen, the experimenter draws six signals (with replacement) from the chosen urn, and subject’s 

belief about the true urn is elicited.  The study reports that subjects do not accurately weight the 

prior information in a Bayesian manner and that they tend to over-weight the new information.  

Building upon the design of Grether (1980, 1992), El-Gamal and Grether (1995) present subjects 

with two cages where the distribution of each cage is known to the subjects.  Subjects are told 

that one of the cages will be randomly chosen and the (prior) probability of each cage being 

chosen may or may not be equal.  Three (prior) probability treatments are examined.  The study 

reports the three commonly-used updating rules used by subjects: (a) Bayes rule, (b) 

representativeness (over-weighting the new signal), and (c) conservatism (under-weighting the 

new signal).  In these belief updating experiments, subjects are given extra monetary payment if 

their responses are correct.   

Building upon past experiments on belief updating, Moreno and Rosokha (2015) examine 

belief updating between two environments.  One environment is a compound risk environment 

where subjects are presented with a compound urn and are told of its composition “process” (i.e., 

its possible distributions).  The second is an ambiguous environment where subjects are 

presented with an ambiguous urn in which they are not told of its composition process.  Each 

treatment lasts for five rounds.  In each round subjects are given three signals from the urn and 

are asked to state their choices in the MPL between a sure amount of money and a lottery (e.g. 

$X if black, $0 otherwise).5  As subjects go through the rounds and gather more signals, one 

would expect their choices in the MPL to adjust and reflect learning.  Subjective beliefs are 

                                                           
5 A MPL is often used to elicit a subject’s valuation of an event that has some subjective risk.  The task involves 

presenting subjects with an array of ordered prices in a table.  In each row, the subject is asked to choose between a 

fixed amount of money and taking a gamble.  The gamble option stays the same throughout but the fixed amount of 

money changes across rows.  The switching point between the two options would indicate subject’s valuation for the 

event and hence their subjective probability interval if the subject is risk neutral.   
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estimated controlling for risk attitudes assume a generalized model of reinforcement learning and 

Bayesian updating.  The study reports that subjects significantly underweight new information in 

an ambiguous environment compared to in a compound risk environment, and as a result the 

updating process is less volatile.   

In a belief updating experiment, Antoniou, Harrison, Lau and Read (2015) use a 

revealed-preference approach to examine if subject’s inferred posterior belief deviates from 

Bayes Rule across a range of low and high probabilities.  Subjects are presented with a white box 

and a blue box, each containing 10-sided dice.  The white box contains N 10-sided dice that each 

has 6 white and 4 blue sides, and the blue box contains similar dice that each has 6 blue and 4 

white sides.  Within each treatment, N is the same for both boxes; across treatments, N may take 

on the value of 3, 5, 9, or 17.  Subjects are told that one of the boxes is randomly selected with 

0.5 (prior) probability but they do not know which box.  After a box is selected, a student-

monitor randomly draws signals (or sample information) from the selected box.  Next, the 

subjects are asked to place a bet in one of the available 19 betting houses offering different odds; 

this way, their choice of a betting house reveals their belief about the selected box.  Each subject 

participates for 30 rounds of betting task, and at the end of the 30 rounds one of the bets is 

randomly selected for payment.  In the experiment a separate task with known probabilities is 

implemented to elicit risk attitudes.  Inferred beliefs are estimated assuming Subjective Expected 

Utility controlling for risk attitudes.  The study reports that, in the low probability range subjects 

overestimate the (posterior) probability, and in the high probability range subjects underestimate 

the (posterior) probability.  Furthermore, when one assumes (incorrectly) linear utility the 

deviation from Bayes Rule is higher.   
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What possibly explains the violation of Bayes Rule?  Griffin and Tversky (1992) propose 

the strength-weight hypothesis as a plausible theory to explain violation of Bayes Rule.  

According to this hypothesis, decision makers who are fallible to the strength-weight bias tend to 

pay too much attention to the extremity (strength) of the information and too little attention to its 

predictive validity (weight).  In an experiment that did not use incentive compatible elicitation 

methods, Griffin and Tversky (1992) report that the magnitude of bias is significant and in some 

cases probabilities diverge from Bayes Rule by 28%.  Antoniou, Harrison, Lau and Read (2016) 

builds on the experimental design of Antoniou, Harrison, Lau and Read (2015) and test if the 

strength-weight bias is plausible when using an incentive compatible elicitation method and 

controlling for risk attitudes.  The 2016 study reports an average bias of 6%, and after controlling 

for non-linear utility further reduces the bias.   

In the studies with a single choice reviewed above, subjects consistently overestimate low 

probabilities.  This result has been found in studies both with and without implementing 

incentivized elicitation methods or adjusting for risk attitudes.  There is less consensus in the 

medium-probability and high-probability range where subjects underestimate the true 

probabilities in some settings but in others form an unbiased estimate.  The consensus is that 

subjects do not typically form an unbiased estimate of the true probabilities over the range of 

objective probabilities.  This generalization is further supported by the belief updating literature, 

which reports that subjects do not update probabilities in a Bayesian manner.  If subjects do not 

properly weight the priors and update new information, then the elicited (posterior) probabilities 

will likely deviate from the objective probabilities. 
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Experimental Frame  

The belief elicitation and updating experiments reviewed above are conducted in stylized 

environments.  In contrast, Fiore, Harrison, Hughes and Rutström (2009) elicit beliefs using a 

virtual reality environment.  To examine how the interactive and visual presentations of risk may 

contribute to differences in the perception of risk, Fiore, Harrison, Hughes and Rutström (2009) 

conduct an experiment that examines subjective beliefs under three settings that differ in the 

degree of interactiveness and immersiveness: 2-picture treatment, 52-picture treatment, and a 

virtual reality treatment.  Subjects are presented with images or virtual simulations of a wild 

forest fire, and they have monetary interest in a property in the area where the fire can potentially 

be spreading.  In a MPL subjects are asked for their willingness to pay for fire protective actions.  

Subjective beliefs are estimated controlling for risk attitudes.  Given that the true probability of 

wild fire damage is 0.29, in the 2-picture treatment the estimated subjective probability was 0.45; 

in the 52-picture treatment it increases to 0.52; and in the virtual reality treatment it decreases to 

0.25 which is quite close to the true probability.  The study concludes that the immersive aspect 

of the virtual reality experiment has the effect of generating subjective beliefs that are closer to 

the objective risk than still images and/or textual descriptions.   

It is well known in the psychology literature that the environment in which agents make 

decisions may affect how information is processed.  The concept of “ecological rationality” 

claims that the rationality of a particular decision depends on the circumstances and environment 

in which it takes place (Gigerenzer and Todd (1999); Gigerenzer (2008)).  Furthermore, when 

agents make decisions under risk and uncertainty, dual process theories suggest that two decision 

processes may be at work: the deliberative system and the affective system (Chaiken and Tope 

(1999); Stanovich and West (2000); Kahneman (2003); Evans and Frankish (2009); Mukherjee 
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(2010)).  This suggests that an agent may value a gamble differently depending on which 

cognitive system is used, and which cognitive system is used depends on a number of attributes 

including the disposition of the agent, the framing of the task and the outcome of past gambles.  

Applying this insight to the construction of belief elicitation task, the framing of the 

experimental task may possibly lead to different degrees of bias in the perception of risk.  

This essay employs virtual reality in order to elicit beliefs that are more relevant for 

discussions of beliefs as they apply in the field.  This essay assumes that the immersive nature of 

the driving simulator has the effect of generating beliefs of delay that are closer to the actual risk 

of delay than if subjects are presented with still images and/or textual descriptions.  The second 

purpose of this essay is to examine belief adjustment in an environment where information 

gathering is endogenous, such that subjects will acquire new information about a route only if 

they choose that route.  This is an information condition that has not been studied in previous 

belief updating experiments.  This information condition could mean that for sufficiently high 

risk cases belief adjustment will be very slow and possibly result in subjective risk deviating 

significantly from the objective risk.   

 

1.3 Experimental Design 

This experiment uses real money incentives.  Each subject is presented with a driving simulator 

task with ten driving periods that elicit subjective beliefs and four binary lottery tasks that elicit 

risk attitudes.  The experiment is not designed to elicit or infer the beliefs of individual subjects, 

but to do so using data pooled across subjects.  This section describes the design of each task 

followed by the recruitment and experimental procedure.   
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1.3.1 Simulator Route Choice Task  

The driving simulator task is designed to mimic a real-life commuting experience.  The 

subjects drive in a simulator environment installed on a laptop that is equipped with a steering 

wheel, gas and brake pedals, and views everything from the perspective of sitting in the driver’s 

seat.  They drive from a simulated home origin to a simulated work destination as they make a 

binary choice between a route that has free-flow traffic and another route that could be congested 

with some probability.  Each drive is referred to as a work day.  If the subjects choose to take the 

free-flow route there is a toll charge that varies across subjects but is stationary across the drives.  

The drive takes approximately 2 to 4 minutes, depending on which route they take, which 

scenario they are in, and how they drive.  To increase the realism of the setting, simulated 

vehicles are added to the road and subjects are required to follow general traffic rules, such as 

speed limits.   

The number of variables that are assigned to the subjects include: a wage that serves as a 

monetary endowment for each drive, a time limit within which they have to arrive to work, a 

monetary penalty if they arrive to work late, a toll charge when taking the risk-free route, and an 

unknown probability of congestion on the risky road.  These variables are adjusted on a between-

subject basis.  The wage can be a high wage of $5.00 or a low wage of $2.50.  If travel time 

exceeds a certain time threshold, a discrete penalty amount will be subtracted from the wage.  

Table A1 shows the ranges of tolls, penalties and time thresholds.  Tolls range from $0.50 to 

$2.00 if wage if $2.50, and from $0.50 to $4.00 if wage is $5.00.  The range of toll is in 10-cent 

increments.  Penalties range from $0.50 to $2.00 if the wage is $2.50, and from $0.50 to $4.00 if 

the wage is $5.00.  The range of penalty is in 50-incent increments.  Time thresholds range from 
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2 minutes and 10 seconds to 2 minutes and 45 seconds in 5-second increments.  These 

assignments are constant across drives.   

Each task is paid sequentially to avoid the issues that arise with random payment 

protocols.6  Across the driving periods the cumulative earnings may present a wealth effect on 

risk aversion, such that an increase in earnings could reduce risk aversion in the following 

periods.  However, an increase in earnings theoretically should not affect the belief of delay, and 

it should only affect the belief estimate indirectly through its effect on risk aversion.  Cox, 

Sadiraj and Schmidt (2015) report that the PAS protocol did not induce a significant wealth 

effect; the same result is reported in Cox and Epstein (1989) and Cox and Grether (1996) who 

also use the PAS protocol.  In contrast, Dixit, Harb, Martinez and Rutström (2015), who use the 

PAS protocol in a driving simulator task with exogenous delay probabilities, report that 

cumulative wealth significantly reduce risk aversion (p-value <1%).  Here the cumulative wealth 

effect is assumed to be negligible on the belief estimate. 

An aerial view of the simulated city where the subjects drive is shown in Figure A1.  In 

the simulation, 7th Avenue is the express route that is risk free, and 9th Avenue is the alternate, 

local road that is congested with some probability.  Before driving, subjects are shown a deck of 

                                                           
6 The payment protocol that is used to elicit lottery choices must be compatible with the decision model in order to 

be incentive compatible.  The pay-one-randomly (POR) protocol implicitly assumes that subjects view each 

outcome in each binary choice independently of each other, such that their behavior is in accordance with the 

Compound Independence Axiom (CIA).  This payment protocol is incentive compatible under EUT (see Harrison 

and Swarthout (2014) and Cox, Sadiraj and Schmidt (2015)).  However, it is incompatible with non-EUT models 

that are not based on the CIA, including Rank Dependent Utility (RDU).  

This essay models choices over risky lotteries using both EUT and RDU, which necessitates the use of a payment 

protocol that is incentive compatible under both.  The Pay-All-Sequentially (PAS) protocol does not rely on the CIA 

and is thus incentive compatible with both.  However, PAS is not problem-free since it may induce a cumulative 

wealth effect.  An alternative approach is to assume that there is one CIA that applies to the evaluation of a given 

lottery (in our case the evaluation of each route) and another CIA that applies to the payment protocol.  One can then 

relax the former CIA and estimate the RDU model, while maintaining the assumption of the latter CIA.  It is then 

possible to use the POR payment protocol and legitimately estimate the RDU model. 
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toll cards (face-down) and are asked to draw one card that will determine their toll fee if they 

were to take 7th Avenue.  On 9th Avenue congestion is induced using a school bus that makes 

frequent stops on the road causing delay.  The objective probability of congestion, or the 

probability of a school bus being present, takes four possible values, 0.2, 0.4, 0.6, or 0.8, and is 

varied across subjects but constant within subjects.  Subjects are not told what probability 

treatment that they are assigned to nor are they told that these are the four possible congestion 

levels.  Subjects are told that the congestion level stay the same across the ten drives.  

To implement the random congestion process, at the start of each period subjects are 

presented with a deck of cards, where some of the cards have the word “bus” on them and others 

have the words “no bus” on them.  They choose a card without seeing if the card says “bus” or 

“no bus”.  Next, the research assistant loads up the scenario stated on the chosen card.  To ensure 

that subjects can trust that the research assistant actually loads the scenario indicated by the card 

drawn, the cards selected are saved in an envelope and revealed at the end of the ten drive tasks.  

Subjects do not know if a bus card is drawn unless they choose to drive on 9th Avenue in which 

case they will find out by experience.  Thus, the information obtain on 9th Avenue will only be 

obtained if the route is selected.  If the subjects drive very slowly, then late arrival is possible 

even when a bus does not come.7  Prior to starting the drive task, subjects draw ten cards from 

the deck of bus cards with replacement, allowing them to form prior beliefs.  

Earnings are recorded after each drive and tracked, along with cumulative earnings, 

throughout the drive periods in a transparent way.  

                                                           
7 These cases are not common.  Pooling across all the drives and across all subjects, there are only 20 out of a total 

of 479 drives where the subjects take 9th Avenue, do not see a bus, and are still late (relative to the assigned time 

threshold).  These are the subjects who are assigned the lowest time threshold and are late by less than 10 seconds; 

many of them are late by only 2 or 3 seconds.  
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1.3.2 Binary Lottery Task 

Subjects are asked to complete four binary lottery tasks that elicit their risk attitudes.  

Figure A2 presents a screenshot from the lottery used in the practice task, and the set of prizes 

and probabilities used is listed in Table A2.  In each task, a binary decision is made between a 

relatively safe lottery and a relatively risky one.  After a decision is made, the outcome of the 

lottery is determined by the roll of a dice.  Within each task the probability of getting the high 

prize is the same for the risky lottery and the safe lottery, but the probability varies across tasks.  

The tasks are randomly assigned to subjects.  Each of the four lottery tasks is actualized 

sequentially, and the research assistants keep track of the task earnings along with the cumulative 

earnings in a way that was transparent to subjects.  

 

1.3.3 Recruitment and Experimental Procedure 

Subjects in this essay are selected from United States Postal Service (USPS) mailing lists 

and are recruited by invitation letters.  The invitation letters direct them to a web page where 

they are instructed to create an anonymous Gmail account to use exclusively for this experiment 

to ensure strict privacy.  Admission to participate in the experiment is contingent on being at 

least 18 years of age, holding a valid driver’s license, and using a vehicle with a valid vehicle 

insurance.   

The experimental tasks analyzed in this essay are part of a larger experiment described in 

Rutström et al. (2011).  The larger experiment consists of four meetings separated by 

approximately two weeks each.  The simulator driving task with uncertain congestion risk is only 
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one of several tasks that subjects perform and is conducted during the second meeting.  Two of 

the lottery tasks are conducted during the first meeting and the last two at the end of the second 

meeting.  Subjects are paid for all tasks, and earnings for each task, along with cumulative 

earnings, are tracked in a clear and transparent manner.  The subjects are commuters from the 

Atlanta and Orlando metropolitan areas and a total of 141 subjects are included for the purpose 

of this analysis.  

 

1.4 Theory 

The experiment described in this essay is designed with features of a theoretical model 

that is commonly used in transportation economics: the scheduling model.  Below we provide a 

description of the scheduling model, and then followed by hypotheses and a description of the 

Subjective Expected Utility model that is assumed for structural analysis.   

 

1.4.1 Scheduling Model in Transportation   

One theoretical approach to modeling traveling decision is the scheduling model that was 

introduced by Small (1982).  The difference between preferred arrival time (PAT) and actual 

arrival time is defined as schedule delay (SD).  A late arrival relative to PAT is a schedule delay-

late (SDL) and an early arrival relative to PAT is a schedule delay-early (SDE).  There are two 

versions to this model.  The first version specifies the arrival time as a discrete variable and 

hence assumes a discrete penalty (or fixed penalty) for any late arrival.  The model is given in 

the following equation:  
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𝑈 =  𝛼𝑇 +  𝛽(𝑆𝐷𝐸) +  𝛾(𝑆𝐷𝐿) +  𝜃𝐷𝐿                 

where utility U is a function of travel time T, schedule delay-early SDE, schedule delay-late SDL, 

and a fixed penalty for any late arrival 𝐷𝐿.  𝐷𝐿 is a dummy variable equal to 1 when there is a 

delay and 0 otherwise.  The estimated parameters (𝛼, 𝛽, 𝛾 and 𝜃) are assumed to be negative.  

The first version of the scheduling model does not include risk, hence there is not a probability 

attached to being early or late. 

An example of a scenario that has a discrete arrival time that incurs a fixed late penalty is 

in airline travels, where the travelers’ decision model considers only two possible arrival 

outcomes: arrive earlier than desired, or arrive late and miss the flight, thus the penalty is the 

same independent of how late the arrival is.  Another example is for travelers who are motor-

vehicle users and choose their departure time without having to adhere to a fixed timetable.  

They may choose their departure time away from the peak congestion hours and postpone 

traveling until the peak hours subside, thus departure times (as well as arrival times) may 

experience a “jump” before or after peak hours.8   

Noland and Small (1995) relax the assumption that the arrival time is a discrete variable 

by extending it to include continuous arrival times by adding a probability distribution of travel 

times.  When travel time T is assumed to be continuous and follows a probability distribution, the 

uncertainty about T propagates onto uncertainties about actual arrival times, also onto 

uncertainties about SDE, SDL, and late arrival.  Thus, each of these variables also follows a 

probability distribution: 

                                                           
8 Another example of a discrete arrival time is for travelers of public transport who plan their time of departure in 

accordance with a fixed timetable that is preset by a scheduler.  Their time of departure may be, for example, every 

15 minutes on the clock; it then follows that their time of arrival is also every 15 minutes.   
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𝐸(𝑈) =  𝛼𝐸(𝑇) +  𝛽𝐸(𝑆𝐷𝐸) +  𝛾𝐸(𝑆𝐷𝐿) +  𝜃𝑃𝐿             

where the expected utility 𝐸(𝑈) is dependent on expected (or mean) travel time E(T), expected 

schedule delay-early E(SDE), expected schedule delay-late E(SDL), and the probability of 

arriving late 𝑃𝐿.  Trips where there is no additional cost associated with the probability of 

arriving late would have 𝜃 = 0.  

This scenario is more representative of travelers who use private transport (i.e., motor-

vehicles) and who choose departure times at any given moment without having to adhere to a 

fixed timetable.  Hence their departure times as well as arrival times, are continuous variables.   

In this continuous time setting the Noland and Small (1995) model can be generalized to 

model discrete penalty (i.e., fixed lump-sum amount), or continuous penalty (i.e., each minute of 

delay incurs an additional penalty).9  In a setting where the late penalty is continuous, the 

traveler’s decision model considers a distribution of arrival outcomes: arrive early, 1 minute of 

late penalty, 2 minutes of late penalty, …, etc.  An example of this scenario is if the purpose of 

the trip is to attend an economics seminar, the longer the delay the more information is missed.   

 

1.4.2 Hypotheses 

This essay examines how field subjects perceive the risk of delay that is uncertain in a 

driving simulator.  Specifically, are field subjects able to form estimates of the risk of delay that 

vary with the underlying objective congestion probability?  Furthermore, under an endogenous 

                                                           
9 Note that Chapters 1 and 2 both examine route choices in a setting where arrival time is continuous (following the 

model of Noland and Small (1995).  Chapter 1 examines route choices where the late penalty is fixed, whereas 

Chapter 2 examines route choices where the late penalty is continuous. 
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information environment, do they adjust their beliefs in the direction of the objective congestion 

probability?  Does the adjustment of beliefs differ depending on the underlying objective 

congestion probability?  

The probability of delay depends partly on the probability of congestion, which is 

unknown to the subjects.  When there is a bus, subjects could be late to work; but when there is 

not a bus, subjects could still be late to work.  In other words, the perceived risk of delay depends 

on the following factors: (1) the probability of congestion, (2) the probability of delay 

conditional on the presence of congestion, and (3) the probability of delay conditional on the 

absence of congestion.   

Once the subject selects 9th Avenue and finds out if a bus appears or not, the uncertainty 

about congestion is resolved, thus the conditional probabilities of delay in (2) and (3) is 

independent of the congestion probability in (1).  To illustrate, supposed Subjects X and Y are 

two subjects from this essay.  Subject X is assigned to a treatment where the probability of a bus 

is 0.2 on 9th Avenue (i.e., low congestion risk), whereas Subject Y is assigned to a treatment 

where the probability of a bus is 0.8 on 9th Avenue (i.e., high congestion risk), ceteris paribus.  If 

Subject X decides to choose 9th Avenue and the bus appears, the chance of her arriving late is 

high.  On a separate and independent choice task, if subject Y decides to choose 9th Avenue and 

the bus appears, the chance of him arriving late is high.  In other words, any subject who chooses 

9th Avenue and encounters a bus has a high chance of arriving late.  This is true whether the 

subject is assigned to a low risk scenario or a high risk scenario.  In other words, the probability 

of delay conditional on a bus is theoretically expected to be similar for all subjects; the same 

logic applies to the probability of delay conditional on no bus.  
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Recall that the perceived risk of delay depends on (1), (2) and (3).  Since (2) and (3) are 

theoretically expected to be constant regardless of (1), it follows that the perceived risk of delay 

should follow the same rank-ordering as (1).  In this essay, the perceived risk of delay is 

estimated without decomposing it into (1), (2) and (3).  

The following two hypotheses are tested: 

Hypothesis I – Subjects are able to form estimates of the risk of delay, and the perceived risk of 

delay will be ranked in the order of the congestion probabilities.  

Hypothesis II – Subjects who start with a lower belief of delay will experience more belief 

adjustment than those who start with a higher belief.  In an endogenous information 

environment, subjects who perceive that a route has a higher risk of delay also perceive 

collecting information to be riskier, therefore they are less like to drive on the route or to collect 

information.  Since little or no information is gathered, it leads to limited or no belief adjustment.  

Subjects are assumed to have a subjective belief of late arrival on each route.  Conditional 

on their subjective beliefs and risk attitudes, they compare the utilities across routes and choose 

the one with a higher subjective expected utility.   

 

1.4.3 Simulator Route Choice Task 

Subjects are presented with a binary route choice: 7th Avenue is a risk-free route with no 

congestion and 9th Avenue is a risky route with an unknown probability of congestion.  Subjects’ 

route choices are modeled initially using Subjective Expected Utility (SEU) and Constant 
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Relative Risk Aversion (CRRA) utility function.  The subjective expected utility of the risk-free 

route, 7th Avenue, is: 

𝑆𝐸𝑈7 =  (
𝑚7(1−𝑟)

(1−𝑟)
)                   (1) 

where 𝑟 is the coefficient of relative risk aversion, 

𝑚7 = 𝑤 − 𝑡 is money payoff,  

𝑤 is wage, and 

𝑡 is the toll charge on 7th Avenue. 

Similarly, the subjective expected utility of the risky route, 9th Avenue, is: 

 𝑆𝐸𝑈9 =  𝑝 ∗ (
𝑚9𝑙𝑎𝑡𝑒

(1−𝑟)

(1−𝑟)
) +  (1 –  𝑝)  ∗ (

𝑚9𝑛𝑜𝑡𝑙𝑎𝑡𝑒
(1−𝑟)

(1−𝑟)
)                                                   (2) 

 where 𝑝 is the subjective probability of late arrival when taking 9th Avenue,  

𝑚9𝑙𝑎𝑡𝑒 = 𝑤 − 𝑙  is the money payoff when subject takes 9th Avenue and arrives late, 

where 𝑙 is the late penalty for arriving late, and 

𝑚9𝑛𝑜𝑡𝑙𝑎𝑡𝑒 = 𝑤  is the money payoff when subject takes 9th Avenue and arrives on time. 

Next, subjects are assumed to behave as if they compare the two subjective expected 

utilities and choose the one with the higher SEU.10   

                                                           
10 In the maximum likelihood estimation, the estimated belief of late arrival for 7th Avenue is zero and is implicit in 

(1).   
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This approach can easily be extended to Rank Dependent Utility (Quiggin (1982)).  To 

illustrate, assume a simple power weighting function.  The rank dependent utility of the risk-free 

route, 7th Avenue, is: 

 𝑅𝐷𝑈7 =  (
𝑚7(1−𝑟)

(1−𝑟)
)                     (1’) 

The rank dependent utility of the risky route, 9th Avenue, is: 

 𝑅𝐷𝑈9 =  𝑝𝛾  ∗ (
𝑚9𝑙𝑎𝑡𝑒

(1−𝑟)

(1−𝑟)
) +  (1 – 𝑝𝛾)  ∗ (

𝑚9𝑛𝑜𝑡𝑙𝑎𝑡𝑒
(1−𝑟)

(1−𝑟)
)            (2’) 

where 𝛾 is the probability weighting parameter. 

Next, subjects are assumed to behave as if they compare the two rank dependent utilities 

and choose the one with the higher RDU.  This simple power weighting function can be given a 

nice behavioral interpretation.  If 𝛾 < 1, then 𝑝𝛾 > 𝑝 and the function is everywhere concave.  

This means that the subjects puts more weight on the likelihood of late arrival than what is 

otherwise implied by 𝑝, and the subjective belief is effectively pessimistic.  Vice versa, if 𝛾 > 1, 

then 𝑝𝛾 < 𝑝 and the function is everywhere convex.  This means that the subjects puts less weight 

on the likelihood of late arrival than what is otherwise implied by 𝑝, and the subjective belief is 

effectively optimistic.  

 

1.4.4 Binary Lottery Task 

Subjects are presented with four binary lottery tasks with known probabilities that elicit 

their risk attitudes.  In each task a decision is made between a relatively safe lottery and a 

relatively risky lottery.  Risk attitudes are estimated assuming Expected Utility Theory (EUT) 
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and a Constant Relative Risk Aversion (CRRA) utility function.  The expected utility of the safe 

option (EUS) is:  

  𝐸𝑈𝑆 =  𝑝 ∗ (
𝑥𝐿

(1−𝑟)

(1−𝑟)
) +  (1 –  𝑝)  ∗ (

𝑥𝐻
(1−𝑟)

(1−𝑟)
)                                                                    (3) 

where p is the probability of a low prize, xL,  

(1-p) is the probability of a higher prize, xH, and  

𝑟 is the coefficient of relative risk aversion.   

Similarly, the expected utility of the risky option is:  

  𝐸𝑈𝑅 =  𝑝 ∗ (
𝑦𝐿

(1−𝑟)

(1−𝑟)
) +  (1 –  𝑝)  ∗ (

𝑦𝐻
(1−𝑟)

(1−𝑟)
)                                   (4) 

where p, is the probability of a low prize, yL, and 

(1-p) is the probability of a high prize, yH.  

 

This approach can be extended to RDU.  If RDU is assumed for the route choice task, 

then the essentially same specification follows for the lottery task as with EUT.  The rank 

dependent utility of the safe option is:  

  𝑅𝐷𝑈𝑆 =  𝑝𝛾  ∗ (
𝑥𝐿

(1−𝑟)

(1−𝑟)
) +  (1 – 𝑝𝛾)  ∗ (

𝑥𝐻
(1−𝑟)

(1−𝑟)
)                      (3’) 

where p is the probability of a low prize, xL,  

(1-p) is the probability of a higher prize, xH,  

𝑟 is the coefficient of relative risk aversion, and  
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𝛾 is the probability weighting parameter that weights the probability of the low prize.   

Similarly, the rank dependent utility of the risky option is:  

  𝑅𝐷𝑈𝑅 =  𝑝𝛾  ∗ (
𝑦𝐿

(1−𝑟)

(1−𝑟)
) +  (1 – 𝑝𝛾)  ∗ (

𝑦𝐻
(1−𝑟)

(1−𝑟)
)           (4’) 

with the same probability, p, for a low prizes, yL, and  

(1-p) for a high prize, yH. 

 

1.5 Empirical Analysis  

The SEU estimation uses (1) – (4), and the RDU estimation uses (1’) – (4’).  Behavioral 

differences would be captured by subjective beliefs and risk attitudes, i.e., the curvature of the 

probability weighting function and the utility function, respectively.  The full nonlinear 

estimation is performed using Maximum Likelihood techniques.  Before estimating these non-

linear models, a Probit model is estimated as a way of describing the data.  

 

1.5.1 Estimation Approach 

The estimation of beliefs uses data from the driving task pooling across subjects, and the 

estimation of risk attitudes uses data from the lottery task pooling across the same subjects.  

Subjective beliefs are estimated jointly with risk attitudes separately for each treatment, implying 

that any imprecision in the estimated risk attitudes are propagated into the estimation of beliefs.  

The joint estimation in the full structural SEU model below can be easily extended to RDU.   
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This joint estimation approach builds on previous work on structural estimation of risk 

attitudes by Andersen, Harrison, Lau and Rutström (2008) and Harrison and Rutström (2008b).  

A detailed description of the methodology can be found in Andersen, Fountain, Harrison and 

Rutström (2014).   

 

Estimate Risk Attitudes from Lottery Tasks  

Risk attitudes and subjective beliefs are estimated jointly using both the lottery data and 

the driving simulator data.  For pedagogic reasons, the econometric model is shown separately 

for each model.  We first describe the econometric model for estimating risk attitudes using only 

the lottery data. 

Following (3) – (4), the index  

 ∆𝐸𝑈 = 𝐸𝑈𝑅 −  𝐸𝑈𝑆                 (5)   

is the difference in valuation between the risky lottery and the safe lottery.   

The index (5) is then linked to observed choices by using a “logit” likelihood function:   

 𝑝𝑟𝑜𝑏 (𝑐ℎ𝑜𝑜𝑠𝑒 𝑟𝑖𝑠𝑘𝑦 𝑜𝑝𝑡𝑖𝑜𝑛) = Λ(∆𝐸𝑈)                (6) 

The risky option is chosen when Λ(∆𝐸𝑈) > ½.   

 Thus the likelihood of the observed responses, conditional on the EUT and CRRA 

specifications being true, depends on the estimated r given the above specification and the 

observed choices, c.  The log-likelihood is then  

  ln 𝐿 (𝑟; 𝑐) = Σ𝑖[ lnΛ(∇𝐸𝑈) × 𝐈(𝑐𝑖 = 1) + ln(1 − Λ(𝛻𝐸𝑈)) ×  𝐈(𝑐𝑖 = 0)]        (7) 
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where 𝐈(∙) is the indicator function and 𝑐𝑖= l (0) denotes the choice of the lottery option R (S) in 

risk aversion task i.   

 An important extension of the core model is to allow for subjects to make some 

behavioral error.  The latent index (5) then becomes 

 ∆𝐸𝑈 = [(𝐸𝑈𝑅 −  𝐸𝑈𝑆) /ν] /𝜇𝑙𝑜𝑡𝑡𝑒𝑟𝑦              (5’) 

where 𝜇𝑙𝑜𝑡𝑡𝑒𝑟𝑦 > 0 is a structural Fechner “noise parameter” used to allow some error when 

evaluating the difference in EU between the two lotteries.  ν is a contextual normalizing term for 

each lottery pair R and S, which is defined as the difference between the maximum and the 

minimum utility in each lottery pair.  This normalization is referred to as “contextual utility” and 

is due to Wilcox (2011).  

 One extends the likelihood specification to include the noise parameter 𝜇𝑙𝑜𝑡𝑡𝑒𝑟𝑦 and 

maximizes ln 𝐿 (𝑟, 𝜇 ; 𝑐) by estimating r and 𝜇𝑙𝑜𝑡𝑡𝑒𝑟𝑦 , given observations on c.  

 

Estimate Subjective Beliefs from Simulator Driving Tasks  

Together with the estimation of risk attitudes described in the previous section, the 

estimation of beliefs follows (1) and (2), and the latent index is 

 ∆S𝐸𝑈 =  (𝑆𝐸𝑈7 −  𝑆𝐸𝑈9)               (8)   

is the difference in valuation between 7th Avenue and 9th Avenue.   

The estimation is performed using Maximum Likelihood and includes both a contextual 

utility normalization and a noise parameter.  The noise parameter differs across the simulator 
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task and the lottery task.  Conditional on the SEU and the CRRA specifications being true, the 

maximized log-likelihood becomes, 

 ln 𝐿 ( �̂�, 𝑟, 𝜇𝑙𝑜𝑡𝑡𝑒𝑟𝑦,𝜇𝑟𝑜𝑢𝑡𝑒; 𝑐 ) = Σ𝑖[ln Λ(∇S𝐸𝑈) × 𝐈(𝑐𝑖 = 0) + ln(1 − Λ(𝛻𝑆𝐸𝑈)) ×

 𝐈(𝑐𝑖 = 1)]                                        (9) 

where 𝐈(∙) is the indicator function, 𝑐𝑖 = 0 (1) denotes that the subject choose 7th Avenue (9th 

Avenue) in period i, and separate noise parameters are estimated for the lottery task (𝜇𝑙𝑜𝑡𝑡𝑒𝑟𝑦) 

and the route choice task (𝜇𝑟𝑜𝑢𝑡𝑒).  When Fechner errors are estimated separately by treatment, 

the results are essentially the same as when a common Fechner error is estimated across 

treatments.  Thus to save on degrees of freedom, a common Fechner error is assumed across 

treatments.   

 Beliefs are estimated including fixed effects for the time periods, which is a non-

parametric way of looking at belief formation.  

 

1.5.2 Descriptive Statistics  

The characteristics of the subject pool are described in Table A3.  The proportion of commuters 

from Atlanta and Orlando are about equal.  Each gender is evenly represented in the overall 

sample.  About 44% have household income of above $100,000, and are labeled high income; 

the rest have household income of $100,000 or below, and are labeled low income.  A significant 

majority hold a college education (78%).  Within each risk treatment, the breakdown by 

demographics generally follows a similar trend as the overall sample distribution.  An exception 

is in Treatment 0.8 where less than 10% are non-college graduates.   
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Travel Times and Frequency of Delay 

The distribution of travel times is shown in Figure A3.  On average, 7th Avenue takes the 

shortest time (115 seconds), next is 9th Avenue without a bus (134 seconds), and 9th Avenue with 

a bus takes the longest (201 seconds).  The standard deviations are 3.7, 7.3, and 17.7, 

respectively.  The increase in standard deviation is significantly different across the three 

scenarios (p-value < 0.001).11  Thus the longer it takes to complete the drive, the higher is the 

variance of the distribution of travel times.  

As expected, the average travel time is directly related to the frequency of delay.  On 

average, the frequency of delay on 7th Avenue is 4%, on 9th Avenue without a bus it is 12%, and 

on 9th Avenue with a bus it is 97%.12  Note that on 9th Avenue without a bus, the majority of 

delay happen to subjects who are assigned the lowest time thresholds (see Figure A4), and these 

subjects are late by 10 seconds or less, with many being late by only 2 or 3 seconds.  

Pooling across time periods, the frequency of delay on 9th Avenue with a bus is not 

significantly different across the last three risk treatments.  The same is true for the frequency of 

delay without a bus.  This provides support for the claim that the conditional probability of delay 

with or without a bus is similar across congestion risks.13  One exception is that the lowest risk 

treatment (i.e., Treatment 0.2) has significantly lower frequency of delay compare to other risk 

treatments.  One possible explanation is that subjects in the lowest risk treatment drive more 

                                                           
11 The test is performed using Levene’s robust test for the equality of variances between the three groups.  
12 It is uncommon to see cases where subjects arrive late on 7th Avenue, arrive late on 9th Avenue without a bus, or 

arrive on-time on 9th Avenue with a bus.  When the estimation is run dropping these uncommon cases, the main 

conclusion still holds. 
13 An estimation is performed dropping the cases where subjects are late on 9th Avenue without a bus, or are on time 

with a bus.  This makes the frequency of delay on 9th Avenue without a bus zero, and the frequency of delay on 9th 

Avenue with a bus one.  The results remain the same.  
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frequency on 9th Avenue and may therefore learn how to drive more efficiently, and this may 

help to shorten the travel time.14 

 

Randomized Incentives across Risk Treatments  

Recall that subjects are randomly assigned to a wage, and conditional on that wage they 

are randomly assigned to a late penalty and a toll.  The assignment of time threshold is also 

random.    The distribution of subjects who belong to each wage level as well as each level of 

penalties, tolls, and time thresholds are shown in Figures AA1, AA2, AA3, and AA4, 

respectively.  

Even though the mean and standard deviation of these distributions are very similar, these 

distributions are not the same (i.e., the shapes of the distributions are not the same), as is 

revealed by the Kolmogorov-Smirnov test when comparing the distributions between any two 

given treatments.  Given the small sample size in the experiment it is difficult to achieve perfect 

randomization that result in even representation of all possible values; the more values there are 

for a single parameter the more difficult it is to achieve an even representation for each value of 

the parameter.  This is particularly the case for the toll assignment, where there are a total of 36 

possible assignments.  Comparing any two risk treatments, the distributions of tolls are 

significantly different from each other within a 10% significance level based on the 

Kolmogorov-Smirnov test.   The same is for the penalty assignment where there are 8 possible 

values to be assigned, and the same is for the time threshold assignment where there are 8 

                                                           
14 Here the possible implication is the perceived risk of travel delay on a particular route may be partly affected by 

how familiar the subjects are with driving on that route.  
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possible values to be assigned.  For the wage variable, however, there are only 2 possible values 

to be assigned, the distribution of subjects who are assigned to each level of wage are not 

significantly different across the risk treatments except for Treatment 0.2. 

 

Incentives and Choice of Route  

Do the difference in incentives affect the choice of route?  Since a higher toll may 

discourage driving on 7th Avenue, it is expected that the average subject who takes 9th Avenue 

has a higher toll than the average subject who takes 7th Avenue.  The distribution of tolls for the 

drives on 7th Avenue and 9th Avenue is shown in Figure A5.  The two distribution are 

significantly different based on the Kolmogorov-Smirnov15  test, with the mean of the 

distribution being higher for 9th Avenue than 7th Avenue.  This provides preliminary evidence 

that subjects with a high toll are more likely to drive on 9th Avenue.    

Given that 9th Avenue on average takes longer to drive relative to 7th Avenue, subjects 

who are assigned a high penalty should be less likely to drive on 9th Avenue and more likely to 

drive on 7th Avenue.  The distributions of assigned penalties for the drives on 7th Avenue and 9th 

Avenue are shown in Figure A6.  The two distribution are significantly different, with the mean 

of the distribution being higher on 7th Avenue than on 9th Avenue.  This provides preliminary 

evidence that subjects with a high penalty are more likely to take 7th Avenue since it has a 

shorter travel time.   

                                                           
15 The Kolmogorov-Smirnov test if performed to examine the null hypothesis that two distributions are equal.  
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Wage is not expected to affect the choice of route.  The distributions of assigned wages 

for the drives on 7th Avenue and 9th Avenue are not significantly different (p-value = 0.529). 

 

Proportions of Route Choice  

Prior to starting the driving task, the perception of congestion risk can be expected to 

reflect the prior bus card information.  Figure A7 shows that the number of bus cards drawn 

increases with the objective risk.  As the number of bus cards drawn increases with objective 

risk, the proportion of subjects who choose the risky route is expected to decrease.  This is the 

case in our experiment as is shown in Figure A8, which describes the raw proportion of subjects 

who choose the risky route across the ten periods by treatment.  It appears that subjects hold 

beliefs that are consistent with their prior bus card information.   

Comparing the proportion of route choices across risk treatments, there is a larger 

proportion of subjects taking the risky route in the two treatments with objective congestion 

probabilities below 0.5 than in the two treatments with objective congestion probabilities above 

0.5.  Pooling across periods, the proportion of route choice ranks in the order of objective risks: 

Treatment 0.2 has the highest proportion of subjects taking the risky route (79%), followed by 

Treatments 0.4 (71%), 0.6 (53%), and 0.8 (47%).  Most of the pairwise comparisons between 

treatments are significantly different, except between Treatments 0.2 and 0.4 (p-value 0.02) and 

between Treatments 0.6 and 0.8 (p-value 0.09).  Thus, there is some preliminary evidence that 

subjects can perceive differences between high and low probabilities, lending partial support to 

Hypothesis I.   
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Across the ten periods, in each treatment there is some evidence of change in the 

proportion of risky route choices (see Figure A8).  In particular there appears to be an increased 

proportion of risky choices following the first period, except in Treatment 0.4.  This pattern of 

behavior is consistent with subjects initially overestimating the risk of delay and subsequently 

adjusting their beliefs.  For example, in Treatment 0.2, the largest increase is 19% from period 1 

to 8 (p-value 0.054).  The next largest increase is 13% from period 1 to 5, but the change is not 

statistically significant.  In Treatment 0.6 there is an increase of 25% from period 1 to 7 (p-value 

0.045).  In Treatment 0.8 the largest increase is from period 1 to 3 by 18% but this is not 

significant (p-value 0.105).   

The number and proportion of subjects who switch routes between periods are shown in 

Table A4.  In Treatment 0.2, subjects who take 9th Avenue are less likely to experience 

congestion than subjects in the higher risk treatments, so one would expect them to be less likely 

to switch away from using 9th Avenue.  In fact, of the 22 subjects who initially selected 9th 

Avenue only 2 switched to 7th Avenue in period 2.  That corresponds to only 9% of the sample.  

On the other hand, of those who took 7th Avenue, 56% switched to 9th Avenue in period 2.  

Pooling across periods, in Treatment 0.2 the proportion who switched from 9th Avenue to 7th 

Avenue (8%) is smaller than the proportion who switched from 7th Avenue to 9th Avenue (32%).  

This is consistent with frequent experiences of no congestion on 9th Avenue in Treatment 0.2.  In 

Treatment 0.4 there is a similar but weaker pattern: 11% switched from 9th Avenue to 7th Avenue 

and 25% switched from 7th Avenue to 9th Avenue.  In the two high risk treatments the average 

proportion of subjects switch from 9th Avenue to 7th Avenue and from 7th Avenue to 9th are 

similar: 19% and 14%, respectively, in Treatment 0.6; and 15% and 14%, respectively, in 

Treatment 0.8.  However, in the later periods in Treatment 0.8, a higher proportion switched 



  

42 

 

 

from 9th Avenue to 7th Avenue than in the opposite direction.  This is a sign that, in Treatment 

0.8, once subjects select 9th Avenue they experience on average more congestion than their 

counterparts in the lower risk treatments.   

 Based on the route switching behavior, Table A5 displays the conditions under which 

subjects switch away from 9th Avenue.  It shows the proportion of subjects who switched from 

9th Avenue to 7th Avenue conditional on encountering congestion or not.  One would expect the 

proportion of subjects who switched in the former case to be at least as high as in the latter case.  

This is indeed the pattern observed in the three treatments with the highest congestion risk: 

Treatments 0.4, 0.6 and 0.8.   

 In summary, behavior appears consistent with subjects forming subjective beliefs that 

reflect the objective risks.  Analysis of the raw data provides preliminary evidence that subjects 

can perceive the difference across high-probability and low-probability and that subjective 

beliefs may be ranked in the order of the objective risk.  This lends partial support to Hypothesis 

I.  Across periods there is some adjustments that indicate that subjects may come to believe they 

initially overestimate the risks, at least in Treatments 0.2 and 0.6.  Given that the proportion of 

risky choices is higher in the low risk treatments than in the high risk treatments, subjects in the 

low risk treatments would obtain more information about the risky route than their counterparts 

in the high risk treatments.  This result would imply that the estimated belief in the low risk 

treatments will be more likely to converge on the true probabilities than in the high risk 

treatments, which would lend support to Hypothesis II.  
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1.5.3 Propensity of Route Choice 

In this section route choice is estimated controlling for variations in experimental 

parameters such as tolls and delay penalties, so to directly investigate whether changes in the 

tolls are less effective for subjects in the high risk treatments than in the low risk treatments, as 

suggested by the second hypothesis.  Table A6 shows the result of a Probit model controlling for 

variations in payoff incentives and period fixed effects.  The endogenous variable is the 

propensity to take the risky route and the independent variables are Wage, Toll, Late Penalty, the 

prior number of bus cards (Prior), and period fixed effects (i.e., Period 2, …, Period 10).   

𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦𝑟𝑖𝑠𝑘𝑦

=  𝛽0 + 𝛽1 × 𝑊𝑎𝑔𝑒 + 𝛽2 × 𝑇𝑜𝑙𝑙 + 𝛽3 × 𝐿𝑎𝑡𝑒 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 + 𝛽4 × 𝑃𝑟𝑖𝑜𝑟 +  𝛽5

× 𝑃𝑒𝑟𝑖𝑜𝑑 2 +  𝛽6 × 𝑃𝑒𝑟𝑖𝑜𝑑 3 +  𝛽7 × 𝑃𝑒𝑟𝑖𝑜𝑑 4 +  𝛽8 × 𝑃𝑒𝑟𝑖𝑜𝑑 5 +  𝛽9

× 𝑃𝑒𝑟𝑖𝑜𝑑 6 +  𝛽10 × 𝑃𝑒𝑟𝑖𝑜𝑑 7 +  𝛽11 × 𝑃𝑒𝑟𝑖𝑜𝑑 8 + 𝛽12 × 𝑃𝑒𝑟𝑖𝑜𝑑 9 + 𝛽13

× 𝑃𝑒𝑟𝑖𝑜𝑑 10 

All coefficients are transformed to marginal probability effects computed using the delta 

method.16 

 

Effects of Payoff Incentives 

As expected from the descriptive data, Wage has no effect on the propensity to take the 

risky route.  Toll has the theoretically expected positive effect on the propensity to take the risky 

                                                           
16 The delta method takes a nonlinear transformation of an estimated parameter about its mean and its variance based 

on a Taylor approximation (Oehlert (1992)). 
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route, but the effect is only significant in the two low risk treatments.  Comparing the 

coefficients across treatments reveals that the marginal effect of Toll is significantly higher in 

Treatment 0.2 than the other treatments, and the latter have coefficients that are not significantly 

different from each other.  One explanation is that in the high risk treatments the alternate route 

has a higher risk of delay, and thus these subjects are reluctant to drive on the alternate route 

until a higher toll is set for the toll road.  This finding suggests that changes in the Toll are less 

effective for subjects in the high risk treatments than in the low risk treatments.  This is 

consistent with Hypothesis II: since subjects in the high risk treatments are more likely to start 

with a high belief of congestion for the risky route, they will be more likely to drive on the safe 

route, which means the effectiveness of Toll will be smaller for these subjects.  Because 

information for the risky route can only be obtained if one drives on it, this would suggest that 

less information will be obtained about the risky route, resulting in asymmetric information 

across the two routes.   

The variable Late Penalty has the theoretically expected negative sign but is only 

significant in Treatment 0.4.  Within each treatment, the number of prior bus cards subjects draw 

does not have a significant effect on the propensity of route choice.  Since the number of bus 

cards subjects draw does not vary much within each treatment, it is not surprising that the 

variable Prior is not significant within treatment.  However, when pooling the data across all 

treatments, there is a significant decrease in the propensity to take the risky route as the number 

of prior bus cards increases (p-value < 0.001), which is expected, as is shown in the final column 

of Table A6.  
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Period Effects 

 Across treatments, in period 1 (captured by the coefficient on Constant) the propensity to 

choose the risky route is significantly higher in the low risk treatments than in the high risk 

treatments.  However, the point estimates are not statistically significant except in Treatment 0.4.  

In all treatments, for subsequent periods the marginal propensity to take the risky route generally 

is higher, though the increase is not significant in most cases except in Treatment 0.2 in periods 5 

and 8.  Thus, results in the Probit model indicates that there is a higher propensity to take the 

risky route in the low risk treatments than in the high risk treatments, which suggests that 

subjects in the low risk treatments will obtain more information feedback about the risky route 

than their counterparts in the high risk treatments.    

 In summary, the conditional analysis of route choice in the Probit model tells a similar 

story to that of the unconditional descriptive analysis: the low risk treatments show a higher 

propensity to choose the risky route than the high risk treatments do.  In addition, the responses 

to Toll variations is stronger in the two low risk treatments, and the only significant adjustment 

in route choice over time is found in the lowest risk treatment.  The next sections analyze the 

subjective beliefs that are implied by this behavior, assuming SEU with a CRRA utility function.  

This allows for control for the influence of risk attitudes on inferred subjective beliefs.  

 

1.5.4 Subjective Expected Utility  

The estimation result of the SEU specification is shown in Table A7 assuming a CRRA 

utility function in equations (1) – (4).  Risk attitudes and subjective probabilities are jointly 
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estimated using both the lottery and the driving simulator data.  The coefficients are the marginal 

probabilities computed using the delta method.17  The top row of the table shows the estimated 

risk attitude for a representative agent.  The middle of the table shows the estimated subjective 

probabilities, and the variable Prior captures the effect on route choice of the number of bus 

cards with the word “bus” that subjects drew before starting the drive task.  The last part of the 

table shows the Fechner errors.   

 

Risk Attitudes 

 Risk attitudes and subjective probabilities are estimated jointly.  First the estimated risk 

attitudes are discussed, the next session discusses the estimated beliefs.  The estimated 

distribution of the EUT CRRA risk attitudes are shown in Figure A9, by treatment.  These 

CRRA estimates are from the model shown in Table A7 where we pool across all demographic 

subgroups.  Thus, these estimated risk attitudes reflect the variations of demographics in the 

subject pool.  Across the risk treatments there are considerable differences in risk attitudes.  All 

estimated CRRA-values fall in the range 0 – 1, and are thus consistent with the literature (e.g., 

Harrison and Rutström (2008b)).  

 

 

 

                                                           
17 The estimates for the subjective probability p are obtained as follows: first we estimate the parameter κ which can 

vary between ±∞, next κ is converted to p using p = 1/(1+exp(κ)) and the resulting p is constrained to be in the unit 

interval.  The non-linear transformation from κ to p uses the delta method that correctly calculate standard errors 

(Oehlert (1992)).   
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SEU Probabilities  

 The first period subjective delay probabilities (captured by the coefficient on Constant) 

are ranked in the order of congestion risk and are significant at the 1% level in all risk 

treatments.  These joint ML results match those of the Probit model, showing how the propensity 

to choose the risky route decreases across risk treatments.  The initial subjective delay 

probabilities are estimated to be .632, .688, 1 and 1 in Treatments 0.2, 0.4, 0.6 and 0.8, 

respectively.   

 Across the treatments, are subjects able to perceive that the treatment conditions are 

different?  For example, between Treatments 0.8 and 0.2 the congestion risks differ objectively 

by 0.6 percentage points: are subjects able to perceive a difference?  The same can be asked 

between Treatments 0.6 and 0.2 and between Treatments 0.8 and 0.4, which have congestion 

risks that differ objectively by 0.4 percentage points.  To answer these questions, pairwise 

comparisons are made between the coefficients across treatments.  In period 1, only two pairwise 

comparisons are significantly different: comparing Treatments 0.6 and 0.2 and Treatments 0.8 

and 0.2.  In subsequent periods, the difference between Treatments 0.6 and 0.2 are positive and 

significant, and the same is true between Treatments 0.8 and 0.2.  Thus subjects are on average 

able to perceive differences in congestion risks when they objectively differ by 0.6 percentage 

points, and perhaps when they differ by 0.4 percentage points (such as when comparing 0.6 and 

0.2).  The difference in perceived probabilities lends support to Hypothesis I: the estimated 

probabilities are ranked in the order of congestion risk.  
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Belief Adjustment 

 There is evidence of significant belief adjustment across periods only in the lowest risk 

treatment, but even there it is limited.  Although the marginal period effects are generally 

insignificant, the size of the marginal period effects ranks in the order of objective risk: 

Treatments 0.8 and 0.6 have the smallest marginal effect, next is Treatment 0.4, and treatment 

0.2 has the largest marginal effect.  This points toward there being less adjustments in the high 

risk treatments than in the low risk treatments.   

 In Treatment 0.2 the marginal effects in periods 5 and 8 are negative and significantly 

different from zero.  They are -0.289 and -0.465 with p-values of 0.097 and 0.003, respectively.  

The marginal effects in the other periods are not small, although they are insignificant.  These 

estimates have large 95% confidence intervals, and the large confidence intervals are likely a 

result of a great deal of heterogeneity in choices across subjects in this treatment.  The 

subsequent section provides a discussion on how this can be captured to some degree by 

controlling for demographics. 

 In Treatment 0.4, the marginal effects are not significant in any periods.  In Treatments 

0.6 and 0.8 subjects start with a subjective probability of 1, which is an extreme belief of delay.  

There is no significant adjustment of belief across any periods, with point estimates that are also 

small.   

 In summary, subjects are able to perceive the difference in objective risk across 

treatments as shown by the rank ordering of estimated probabilities across treatments.  In 

particular, the estimated probabilities reveal that they are able to distinguish probabilities that 

objectively differ by 0.6 percentage points, and sometimes when they differ by 0.4 percentage 
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points, such as when comparing congestion risks of 0.6 and 0.2.  Across periods, only subjects in 

the lowest risk treatment adjust their belief of delay, whereas in the high risk treatments they fail 

to adjust their beliefs.  This is consistent with Hypothesis II under endogenous information 

feedback, showing that when the subjective belief of delay is higher, the riskier route is 

perceived as riskier and this leads to little or no belief adjustment.   

Thus, results of the SEU model are similar to the unconditional descriptive analysis and 

the Probit model when comparing across treatments.  Across periods, the SEU model agrees 

with the Probit model, but the unconditional descriptive data shows more adjustments.  

Results in the SEU model for the lowest risk treatment are consistent with past 

experimental studies where subjective beliefs are elicited only once: Attneave (1953) reports that 

subjects overestimate low probabilities; Preston and Baratta (1949) and Andersen, Fountain, 

Harrison, Hole and Rutström (2011) report an equality point at 0.2 where subjects overestimate 

probabilities below 0.2.  A crucial element to keep in mind when comparing past and present 

studies is that subjects in this essay make decisions under an endogenous information 

environment, i.e., information on a route can only be obtained if one takes that route, and this 

leads to asymmetric information across the two routes.   

 

1.5.5 Demographics  

Tables A8 shows the SEU probabilities estimated controlling for period fixed effects and 

demographic effects.  The list of demographic variables include: Female, College Education, and 

High Income.  Subjects are grouped into two education levels: those who hold a college degree 
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are coded as College Education = 1 and those who do not are coded as College Education = 0.  

In terms of income, subjects with household income of above $100,000 are coded as High 

Income = 1 and those with household income of $100,000 or below are coded as High Income = 

0.   

 The Constant is now referencing a particular demographic group, and none of the 

demographic variables is significant.  The ideal model for studying demographics would include 

all possible demographic variables with a full set of interaction terms between demographic 

subgroups, but this would require a large data set.   

 Given the large confidence intervals in the main model it may be helpful to estimate 

subjective probabilities by demographic subgroups.  This can reveal if a particular demographic 

subgroup contributes the most to the adjustment of belief in the overall data or to its imprecision.  

 

Income  

 In Tables A9 and A10, subjective probabilities are shown separately for subjects with 

high income and low income, respectively.  In Treatments 0.2 and 0.4, the high income subjects 

have initial beliefs of 0.766 and 0.751, respectively, and are not significantly different from each 

other.  This shows that the high income subjects have a higher belief of delay than the average 

subject in Table A7.  In Treatments 0.6 and 0.8, the high income subjects have initial beliefs of 

1, which is the same estimate as the average subject.  Treatment 0.2 is (again) the only treatment 

showing significant belief adjustment.  Here, after dropping the low income subjects, significant 

adjustment is observed in periods 3, 6 and 10 in addition to periods 5 and 8.  The marginal 

effects in the other periods are not small, but they are not statistically significant.  In the higher 
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risk treatments the marginal effects are (again) small and no adjustment is observed.  Thus 

removing the low income subjects removes at least some of the noise in Table A7. 

 For the low income subjects, in Treatments 0.2 and 0.4 the initial beliefs are 0.278 and 

0.528 respectively, but the estimates are not significant.  Compared to the estimates shown in 

Table A7 that uses the aggregate data, the low income subjects have beliefs that are lower than 

the average subject.  Across the periods, the low income subjects exhibit no significant belief 

adjustment, which also shows that the belief adjustments observed in the aggregate data are 

largely driven by high income subjects.  Across high income and low income groups, the same 

pattern is observed in the high risk treatments: initial belief is 1 and subsequent periods show no 

belief adjustment.    

 

 Education 

 Next, subjective probabilities are estimated for college graduates and Table A11 shows 

the results.  The initial beliefs are 0.718, 0.753, 0.999 and 1 across the risk treatments.  After 

dropping the non-college subjects, Treatment 0.2 shows significant belief adjustment in periods 

2, 3 and 6 in addition to periods 5 and 8; the subsequent beliefs are adjusted downward and none 

are significantly different from 0.2.  In contrast, in Treatments 0.6 and 0.8 no belief adjustment is 

observed and subjective beliefs remain above the objective probabilities throughout.  This shows 

that the belief adjustment in the aggregate data is largely driven by college graduates, implying 
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that the non-college graduates may have contributed a considerable amount of noise to the 

aggregate data.18  

 

1.5.6 Rank Dependent Utility - Robustness Check 

The estimated probabilities for the RDU specification are shown in Table AA1.   The 

RDU probabilities are jointly estimated with the utility curvature parameter and the probability-

weighting parameter.  The results are estimated assuming the CRRA utility function and the 

power weighting function of equations (1’) – (4’).  When the weighting parameter 𝛾 takes on the 

value of 1, the RDU probabilities are identical to the SEU probabilities.  A value of 𝛾 above 

(below) 1 indicates an underweighting (overweighting) of probabilities, which means that the 

inferred probabilities are higher (lower) than under SEU.  The estimated weighting parameter 𝛾 

is not significantly different from 1 in any of the risk treatments, which means that subjects on 

average do not weigh probabilities in either direction.  Thus it is not surprising that the estimated 

probabilities are not significantly different across the SEU and RDU specifications.  The initial 

beliefs are 0.629, 0.630, 1 and 1 in Treatments 0.2, 0.4, 0.6 and 0.8, respectively.  Across the 

periods, only in the lowest risk treatment is there significant belief adjustment, which occurs in 

period 8.  In period 5 the marginal effects are virtually identical across the SEU and RDU 

specifications (0.39 and 0.343, respectively) but the effect is not significant in the latter 

specification.   

                                                           
18 It is not possible to perform the estimation for the non-college subjects, since in treatment 0.8 only four subjects 

are non-college graduates.   
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The estimated RDU probabilities controlling for period fixed effects and demographic 

effects are shown in Table AA2.  Similar to the results in the SEU specification, none of the 

demographic variables is significant in the RDU specification. 

 

1.6 Conclusion  

The goal of this essay is to examine drivers’ perception of the risk of delay as one factor 

that influences route choice behavior in a simulated driving environment.  This experiment 

recruits commuters from the Atlanta and Orlando metropolitan areas and presents them with a 

route choice task in a driving simulator.  Subjects are required to make a binary choice between a 

route that has an uncertain level of congestion and an alternate route with no risk of congestion.  

Subjects are assigned monetary incentives for the value of making the drive, the discrete penalty 

for arriving late to the destination, and the toll charged on the non-congested route.  Apart from 

some prior information about frequency of congestion on the risky route, drivers only obtain 

additional information if they actually choose to drive it.  Information feedback is therefore 

endogenous and high risk scenarios can lead to less belief updating than low risk scenarios since 

drivers are more likely to avoid taking the risky route when it is riskier.  The experiment 

implements four risk treatments that differ in the objective risk of congestion across a range of 

probabilities.  This allows the examination of belief formation and adjustment across a range of 

probabilities.  

 Across risk treatments, the estimated beliefs of delay rank in the order of the objective 

congestion probabilities.  In subsequent periods only subjects in the lowest risk treatment 

experience significant belief adjustments.  In contrast, in the high risk treatments no belief 



  

54 

 

 

adjustment is made.  Behavior across treatments is as predicted under an endogenous information 

environment: subjects who start with a lower belief of delay are more inclined to take the route 

that has an uncertain level of congestion than those who start with a higher belief of delay, 

leading to subjects with a lower belief of delay obtaining more information than those with a 

higher belief of delay.  Thus, subjects who start with a lower belief of delay experience more 

belief adjustment than those who start with a higher belief of delay.  The results are consistent 

with past experimental findings in the low probabilities treatments but not in the high 

probabilities treatments.   

 Results of this essay show that when drivers hold a high initial belief of delay over a 

route they normally do not take, then they could be reluctant to try it out even when conditions 

on their usual route become less favorable.  The policy implication is that for drivers to be more 

inclined to use unfamiliar routes as alternatives when their usual routes experience construction, 

maintenance or tolls, clear and credible information about the congestion situation on the 

alternate route is required.  Furthermore, since the Probit model shows that the marginal effect of 

toll is lower for drivers in a high congestion risk scenario, this suggests that we will need to 

impose a higher toll on these subjects in order to incentivize them to switch to the alternate route.   
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Tables and Figures for Chapter 1 

Table A1: Tolls and Wages in the Simulator Task 

 Toll Range Late Penalty Time Threshold  

Wage=$2.50 $0.50-$2.00 $0.50-$2.00 2min 10 secs to 2m 45 secs  

 Wage=$5.00 $0.50-$4.00 $1.00-$4.00 

The range of toll cards was in 10-cent increments.                                                                                               

The range of penalty was in 50-cent increments.                                                                                                 

The range of time thresholds was in 5-second increments.  

 

 

 

Table A2: Prizes and Probabilities in Lottery Task 

Probability 

range 

Safe Lottery 

Low Prize 

Safe Lottery 

High Prize 

Risky Lottery 

Low Prize 

Risky Lottery 

High Prize 

0.1 – 0.9 $2 $3 $0.25 $4 

0.1 – 0.9 $2 $3 $0.25 $5 

0.1 – 0.9 $2 $3 $0.25 $6 

0.1 – 0.9 $4 $6 $0.50 $10 
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Table A3: Demographic Sub-groups in Each Treatment  

 Treatment 

0.2 

Treatment 

0.4 

Treatment 

0.6 

Treatment 

0.8 

All  

 

Number of subjects 31 40 32 38 141 

 

Location  

   Orlando 41.75% 50% 37.50% 47.49% 45.06% 

   Atlanta 58.25% 50% 62.50% 52.51% 54.94% 

 

Gender  

    Male  54.12% 52.88% 56.36% 54.91% 52.21% 

    Female 45.88% 47.12% 43.64% 45.09% 47.79% 

 

Education  

    College  68% 74.82% 72.27% 90.17% 78.09% 

    Non-college 32% 25.18% 27.73% 9.83% 21.91% 

 

Income  

    High: above $100K 49.18% 42.09% 34.09% 38.92% 44.09% 

    Low: $100K or    

below 

50.82% 57.91% 65.91% 61.08% 55.91% 
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Table A4: Route Switches 

From 

one 

period 

to the 

next 

# of subj. 

who took 

7th Ave. in 

the first of 

the two 

periods 

# of subj. 

who took 

9th Ave. in 

the first of 

the two 

periods 

Proport

ion 

taking 

9th 

# of 

subj. 

switch 

from 

7th to 

9th  

# of 

subj. 

switch 

from 9th 

to 7th 

Conditional 

on taking 

7th Ave., the 

proportion 

that switch 

to 9th 

Conditional 

on taking 

9th Ave., the 

proportion 

that switch 

to 7th 

Difference 

Treatment 0.2 

1 to 2 9 22 71% 5 2 56% 9% 47% 

2 to 3  6 25 81% 1 2 17% 8% 9% 

3 to 4 7 24 77% 3 2 43% 8% 35% 

4 to 5  6 25 81% 3 2 50% 8% 42% 

5 to 6 5 26 84% 0 2 0% 8% -8% 

6 to 7 7 24 77% 1 2 14% 8% 6% 

7 to 8 8 23 74% 5 0 63% 0% 63% 

8 to 9 3 28 90% 0 5 0% 18% -18% 

9 to 10 8 23 74% 4 2 50% 9% 41% 

Average  -  - 79% -  - 32% 8% 24% 

Treatment 0.4 

1 to 2 12 28 70% 3 2 25% 7% 18% 

2 to 3  11 29 73% 0 5 0% 17% -17% 

3 to 4 16 24 60% 7 1 44% 4% 40% 

4 to 5  10 30 75% 1 3 10% 10% 0% 

5 to 6 12 28 70% 3 2 25% 7% 18% 

6 to 7 11 29 73% 3 4 27% 14% 13% 

7 to 8 12 28 70% 6 3 50% 11% 39% 

8 to 9 9 31 78% 3 3 33% 10% 23% 

9 to 10 9 31 78% 1 4 11% 16% -5% 

Average -  - 71% -  - 25% 11% 14% 

Treatment 0.6 

1 to 2 21 11 34% 5 2 24% 19% 5% 

2 to 3  18 14 44% 5 1 28% 7% 21% 

3 to 4 14 18 56% 3 3 21% 17% 4% 

4 to 5  14 18 56% 2 2 14% 11% 3% 

5 to 6 14 18 56% 3 2 21% 11% 10% 

6 to 7 13 19 59% 3 3 23% 16% 7% 

7 to 8 13 19 59% 0 2 0% 11% -11% 

8 to 9 15 17 53% 4 2 27% 12% 15% 

9 to 10 13 19 59% 2 4 15% 21% -6% 

Average -  - 53% -  - 19% 14% 5% 

Treatment 0.8 

1 to 2 25 13 34% 6 2 24% 15% 9% 

2 to 3  21 17 45% 6 3 29% 18% 11% 

3 to 4 18 20 52% 3 4 17% 20% -3% 

4 to 5  19 19 50% 2 1 11% 5% 6% 

5 to 6 18 19 51% 3 3 17% 16% 1% 

6 to 7 19 19 50% 2 4 11% 21% -10% 

7 to 8 21 17 45% 2 2 10% 12% 2% 

8 to 9 21 17 45% 3 1 14% 6% 8% 

9 to 10 19 19 50% 1 3 5% 16% 11% 

Average -  - 47% -  - 15% 14% 1% 
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Table A5: Congestion Experiences 

From one 

period to the 

next 

# of subjects 

who switch 

from 9th to 

7th 

Conditional on a 

bus card, # of 

subjects who 

switch from 9th 

to 7th  

Conditional on 

no bus card, # 

of subjects who 

switch from 9th 

to 7th 

Conditional on 

a bus card, % 

of subjects who 

switch from 9th 

to 7th 

Conditional on 

no bus card, % 

of subjects who 

switch from 9th 

to 7th 

Treatment 0.2      

1 to 2 2 0 2 0% 100% 

2 to 3  2 0 2 0% 100% 

3 to 4 2 0 2 0% 100% 

4 to 5  2 2 0 100% 0% 

5 to 6 2 2 0 100% 0% 

6 to 7 2 0 2 0% 100% 

7 to 8 0 - - - - 

8 to 9 5 2 3 40% 60% 

9 to 10 2 0 2 0% 100% 

Average  -- -- -- 30% 70% 

Treatment 0.4      

1 to 2 2 1 1 50% 50% 

2 to 3  5 3 2 60% 40% 

3 to 4 1 1 0 100% 0% 

4 to 5  3 0 3 0% 100% 

5 to 6 2 2 0 100% 0% 

6 to 7 4 2 2 50% 50% 

7 to 8 3 2 1 67% 33% 

8 to 9 3 2 1 67% 33% 

9 to 10 4 2 2 50% 50% 

Average  -- -- -- 60% 40% 

Treatment 0.6      

1 to 2 2 0 2 0% 100% 

2 to 3  1 1 0 100% 0% 

3 to 4 3 2 1 67% 33% 

4 to 5  2 1 1 50% 50% 

5 to 6 2 2 0 100% 0% 

6 to 7 3 2 1 67% 33% 

7 to 8 2 2 0 100% 0% 

8 to 9 2 0 2 0% 100% 

9 to 10 4 3 1 75% 25% 

Average  -- -- -- 62% 38% 

Treatment 0.8      

1 to 2 2 1 1 50% 50% 

2 to 3  3 2 1 67% 33% 

3 to 4 4 4 0 100% 0% 

4 to 5  1 0 1 0% 100% 

5 to 6 3 2 1 67% 33% 

6 to 7 4 4 0 100% 0% 

7 to 8 2 2 0 100% 0% 

8 to 9 1 1 0 100% 0% 

9 to 10 3 3 0 100% 0% 

Average  -- -- -- 76% 24% 
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Table A6: Propensity of Route Choice Estimated with a Probit Model  

 Treatment 

0.2 

N=31 

Treatment 

0.4 

N=40 

Treatment 

0.6 

N=32 

Treatment 

0.8 

N=38 

Pooled 

Across 

Treatments 

N=141 

Constant  0.232 

(0.192) 

0.394*** 

(0.008) 

0.011 

(0.470) 

0.003 

(0.637) 

0.511*** 

(<0.001) 

Wage -.059 

(0.263) 

0.022 

(0.619) 

-0.002 

(0.697) 

0.003 

(0.569) 

-.012 

(0.550) 

Toll 0.720*** 

(<0.001) 

0.410*** 

(<0.001) 

0.200 

(0.157) 

0.108 

(0.381) 

0., 

(<0.001) 

Late Penalty  -.059 

(0.451) 

-0.243*** 

(<0.001) 

-.011 

(0.462) 

-.003 

(0.636) 

-0.282*** 

(<0.001) 

Period 2 0.235 

(0.203) 

0.031 

(0.817) 

0.016 

(0.494) 

0.007 

(0.595) 

0.114* 

(0.099) 

Period 3 0.150 

(0.394) 

-0.144 

(0.241) 

0.066 

(0.295) 

0.023 

(0.526) 

0.127* 

(0.067) 

Period 4 0.224 

(0.211) 

0.087 

(0.535) 

0.085 

(0.257) 

0.016 

(0.553) 

0.201*** 

(0.003) 

Period 5 0.324* 

(0.080) 

0.003 

(0.984) 

0.067 

(0.289) 

0.019 

(0.545) 

0.187*** 

(0.006) 

Period 6 0.150 

(0.394) 

0.032 

(0.814) 

0.084 

(0.261) 

0.021 

(0.531) 

0.183*** 

(0.007) 

Period 7 0.077 

(0.639) 

0.011 

(0.936) 

0.105 

(0.230) 

0.007 

(0.604) 

0.153** 

(0.026) 

Period 8  0.498*** 

(0.004) 

0.129 

(0.365) 

0.052 

(0.322) 

0.008 

(0.600) 

0.194*** 

(0.004) 

Period 9 0.087 

(0.593) 

0.144 

(0.316) 

0.086 

(0.260) 

0.016 

(0.552) 

0.194*** 

(0.004) 

Period 10 0.239 

(0.190) 

-0.045 

(0.728) 

0.051 

(0.327) 

0.008 

(0.593) 

0.130* 

(0.060) 

Prior -0.081* 

(0.100) 

0.026 

(0.206) 

0.008 

(0.283) 

0.002 

(0.476) 

-0.044*** 

(<0.001) 
p-values are in parentheses. 

The coefficients are marginal propensities computed using the delta method that takes a nonlinear transformation of 

an estimated parameter about its mean and its variance based on a Taylor approximation.  

*** means that the coefficient is significant at the 1% level. 

** means that the coefficient is significant at the 5% level.  

* means that the coefficient is significant at the 10% level. 
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Table A7: Subjective Expected Utility Estimates Across Periods  

 Treatment 0.2 

N=31 

Treatment 0.4 

N=40 

Treatment 0.6 

N=32 

Treatment 0.8 

N=38 

Risk Aversion: 

r .262* 

(0.074) 

.424*** 

(0.002) 

.554*** 

(0.001) 

.525*** 

(<0.001) 

Beliefs:  

Constant  .632*** 

(<0.001) 

.688*** 

(<0.001) 

1*** 

(<0.001) 

1 

(a) 

Period 2 -.232 

(0.178) 

-.045 

(0.661) 

-.0001 

(0.941) 

<.001 

(0.978) 

Period 3 -.159 

(0.330) 

.154 

(0.110) 

-.005 

(0.709) 

<.001 

 (0.970) 

Period 4 -.210 

(0.165) 

-.063 

(0.440) 

-.003 

(0.738) 

<.001 

 (0.974) 

Period 5 -.289* 

(0.097) 

.029 

(0.526) 

-.005 

(0.727) 

<.001 

 (0.977) 

Period 6 -.159 

(0.330) 

.0005 

(0.996) 

-.006 

(0.711) 

<.001 

 (0.974) 

Period 7 -.089 

(0.545) 

.035 

(0.748) 

-.005 

(0.734) 

<.001 

 (a) 

Period 8  -.465*** 

(0.003) 

-.092 

(0.317) 

-.001 

(0.842) 

<.001 

 (a) 

Period 9 -.089 

(0.618) 

-.094 

(0.283) 

-.006 

(0.720) 

<.001 

 (a) 

Period 10 -.198 

(0.219) 

.066 

(0.574) 

-.002 

(0.754) 

<.001 

 (a) 

Prior .009 

(0.859) 

-.026 

(0.489) 

-.0001 

(0.944) 

<.001 

 (0.826) 

 

μRA .177*** 

(<0.001) 

μBelief .231*** 

(<0.001) 
The results are obtained using a joint estimation of risk attitudes and beliefs from the lottery data and the driving 

simulator data.  

p-values are in parentheses.  The coefficients are marginal effects computed using the delta method.  

*** means that the coefficient is significant at the 1% level. 

** means that the coefficient is significant at the 5% level.  

* means that the coefficient is significant at the 10% level. 

(a) implies that a standard error cannot be computed by the delta method due to numeric issues, because the 

estimated probabilities approach 0 or 1. 

μRA is the Fechner error for the lottery data; μBelief is the Fechner error for the belief data. 

 



  

61 

 

 

Table A8: Subjective Expected Utility Estimates Across Periods and Demographic Effects  

 Treatment 0.2 

N=31 

Treatment 0.4 

N=40 

Treatment 0.6 

N=32 

Treatment 0.8 

N=38 

Risk Aversion: 

r .278* 

(0.053) 

.423*** 

(0.004) 

.474*** 

(0.003) 

.549*** 

(0.001) 

Beliefs:  

Constant  .844*** 

(<0.001) 

.595*** 
(<0.001) 

.976*** 
(<0.001) 

.689** 

(0.021) 

Period 2 -.266 

(0.112) 

-.050 

(0.655) 

-.038 

(0.733) 

.133 

(0.701) 

Period 3 -.176 

(0.195) 

.185* 

(0.096) 

-.101 

(0.497) 

-.125 

(0.781) 

Period 4 -.233 

(0.230) 

-.070 

(0.442) 

-.140 

(0.484) 

-.224 

(0.593) 

Period 5 -.303* 

(0.049) 

.031 

(0.558) 

-.128 

(0.380) 

-.389 

(0.477) 

Period 6 -.176 

(0.195) 

.001 

(0.994) 

-.047 

(0.678) 

.120 

(0.774) 

Period 7 -.107 

(0.344) 

.048 

(0.694) 

-.220 

(0.344) 

-.098 

(0.788) 

Period 8  -.555** 

(0.013) 

-.102 

(0.289) 

-.083 

(0.370) 

.141 

(0.692) 

Period 9 -.110 

(0.430) 

-.102 

(0.297) 

-.047 

(0.678) 

-.224 

(0.570) 

Period 10 -.211 

(0.130) 

.088 

(0.483) 

-.108 

(0.281) 

.137 

(0.710) 

Female  .067 

(0.321) 

.004 

(0.980) 

.024 

(0.808) 

-.503 

(0.654) 

College 

Education 

-.098 

(0.477) 

.031 

(0.862) 

-.059 

(0.733) 

.303 

(0.362) 

High income 

(above $100K) 

-.220 

(0.110) 

-.076 

(0.699) 

-.041 

(0.751) 

.311 

(a) 

μRA .177*** 

(<0.001) 

μBelief .231*** 

(<0.001) 
p-values values are in parentheses.  The coefficients are marginal effects.  

*** means that the coefficient is significant at the 1% level. 

** means that the coefficient is significant at the 5% level. 

* means that the coefficient is significant at the 10% level. 

(a) implies that a standard error cannot be computed by the delta method due to numeric issues, because the 

estimated probabilities approach 0 or 1. 

μRA is the Fechner error for the lottery data; μBelief is the Fechner error for the belief data. 
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Table A9: High Income Subject’ Subjective Expected Utility Estimates Across Periods 

 Treatment 0.2 

N=18  

Treatment 0.4 

N=20 

Treatment 0.6 

N=19 

Treatment 0.8 

N=25 

Risk Aversion: 

r .171 

(0.201) 

.533* 

(0.065) 

.550 

(0.605) 

.991 

(0.124) 

Beliefs:  

Period 1 .766*** 

(<0.001) 

.751*** 

(0.002) 

1 

(a) 

1 

(a) 

Period 2 -.205 

(0.172) 

<.001 

 (1.000) 

<.001 

(a) 

<.001 

(a) 

Period 3 -.206* 

(0.063) 

.123 

(0.339) 

<.001 

(a) 

<.001 

(a) 

Period 4 -.205 

(0.172) 

<.001 

 (1.000) 

<.001 

(a) 

<.001 

(a) 

Period 5 -.353** 

(0.029) 

.070 

(0.423) 

<.001 

(a) 

<.001 

(a) 

Period 6 -.206* 

(0.063) 

.031 

(0.719) 

<.001 

(a) 

<.001 

(a) 

Period 7 -.205 

(0.172) 

.026 

(0.736) 

<.001 

(a) 

<.001 

(a) 

Period 8  -.502*** 

(<0.001) 

-.049 

(0.730) 

<.001 

(a) 

<.001 

(a) 

Period 9 -.206 

(0.203) 

-.051 

(0.550) 

<.001 

(a) 

<.001 

(a) 

Period 10 -.501*** 

(<0.001) 

.026 

(0.736) 

<.001 

(a) 

<.001 

(a) 

Prior -.005 

(0.895) 

-.047 

(0.223) 

<.001 

(a) 

<.001 

(a) 

 

μRA .093*** 

(<0.001) 

.183*** 

(0.006) 

.729 

(0.387) 

.181** 

(0.024) 

μBelief .100*** 

(<0.001) 

.204* 

(0.067) 

.383*** 

(0.009) 

.287*** 

(0.010) 
p-values are in parentheses.  The coefficients are marginal effects.  

*** means that the coefficient is significant at the 1% level. 

** means that the coefficient is significant at the 5% level.  

* means that the coefficient is significant at the 10% level. 

 (a) implies that a standard error cannot be computed by the delta method due to numeric issues, because the 

estimated probabilities approach 0 or 1. 

μRA is the Fechner error for the lottery data; μBelief is the Fechner error for the belief data. 
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Table A10: Low Income Subjects’ Subjective Expected Utility Estimates Across Periods 

 Treatment 0.2  

N=13 

Treatment 0.4 

N=20 

Treatment 0.6 

N=13 

Treatment 0.8 

N=13 

Risk Aversion:  

r .302 

(0.196) 

.354** 

(0.011) 

.696*** 

(<0.001) 

.340* 

(0.098) 

Beliefs:  

Constant  .278 

(0.239) 

.528 

(0.134) 

1 

(a) 

1 

(a) 

Period 2 -.177 

(0.492) 

-.105 

(0.560) 

<.001 

(a) 

-.035 

(0.776) 

Period 3 -.043 

(0.900) 

.232 

(0.234) 

-.014 

(0.715) 

-.105 

(0.806) 

Period 4 -.133 

(0.533) 

-.142 

(0.459) 

-.004 

(0.745) 

-.074 

(0.782) 

Period 5 -.148 

(0.511) 

-.043 

(0.367) 

-.007 

(0.746) 

-.084 

(0.783) 

Period 6 -.043 

(0.900) 

-.034 

(0.883) 

-.011 

(0.708) 

-.067 

(0.825) 

Period 7 .141 

(0.673) 

.090 

(0.771) 

-.008 

(0.750) 

-.038 

(0.819) 

Period 8  -.220 

(0.210) 

-.142 

(0.210) 

-.008 

(0.750) 

-.010 

(0.854) 

Period 9 .141 

(0.735) 

-.147 

(0.438) 

-.022 

(0.703) 

-.065 

(0.829) 

Period 10 .210 

(0.244) 

.232 

(0.624) 

-.006 

(0.773) 

-.014 

(0.878) 

Prior .114 

(0.205) 

.030 

(0.683) 

<.001 

(a) 

<.001 

(a) 

 

μRA .188*** 

(0.001) 

.144*** 

(<0.001) 

.141** 

(0.031) 

.201*** 

(0.001) 

μBelief .305*** 

(0.001) 

.267*** 

(<0.001) 

.195*** 

(<0.001) 

.191*** 

(<0.001) 
p-values are in parentheses.  The coefficients are marginal effects.  

*** means that the coefficient is significant at the 1% level. 

** means that the coefficient is significant at the 5% level. 

* means that the coefficient is significant at the 10% level. 

(a) implies that a standard error cannot be computed by the delta method due to numeric issues, because the 

estimated probabilities approach 0 or 1. 

μRA is the Fechner error for the lottery data; μBelief is the Fechner error for the belief data. 
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Table A11: College Graduates’ Subjective Expected Utility Estimates Across Periods 

 Treatment 0.2  

N=21 

Treatment 0.4 

N=30 

Treatment 0.6 

N=23 

Treatment 0.8 

N=34 

Risk Aversion:  

r .169 

(0.231) 

.289* 

(0.092) 

.647*** 

(0.002) 

.494** 

(0.030) 

Beliefs:  

Period 1 .718*** 

(0.004) 

.753*** 

(<0.001) 

.999*** 

(<0.001) 

1 

(a) 

Period 2 -.319* 

(0.089) 

<.001 

(1.000) 

.001 

(a) 

<.001 

 (0.921) 

Period 3 -.316* 

(0.091) 

.113 

(0.172) 

-.006 

(0.708) 

<.001 

 (0.923) 

Period 4 -.094 

(0.602) 

-.046 

(0.336) 

-.006 

(0.720) 

<.001 

 (0.902) 

Period 5 -.452* 

(0.054) 

.043 

(0.335) 

-.011 

(0.709) 

<.001 

 (0.908) 

Period 6 -.316* 

(0.091) 

.040 

(0.598) 

-.014 

(0.680) 

<.001 

 (0.921) 

Period 7 -.094 

(0.384) 

.031 

(0.667) 

-.011 

(0.697) 

<.001 

(a) 

Period 8  -.452* 

(0.054) 

-.046 

(0.567) 

-.005 

(0.746) 

<.001 

 (a) 

Period 9 -.199 

(0.361) 

-.007 

(0.910) 

-.003 

(0.752) 

<.001 

 (a) 

Period 10 -.180 

(0.259) 

.056 

(0.582) 

-.004 

(0.729) 

<.001 

 (a) 

Prior -.009 

(0.909) 

-.037 

(0.162) 

-.001 

(0.761) 

<.001 

 (a) 

 

μRA .158*** 

(<0.001) 

.158*** 

(<0.001) 

.164*** 

(0.001) 

.189*** 

(<0.001) 

μBelief .201*** 

(<0.001) 

.187*** 

(<0.001) 

.250*** 

(0.0001) 

.220*** 

(<0.001) 
p-values are in parentheses.  The coefficients are marginal effects.  

*** means that the coefficient is significant at the 1% level. 

** means that the coefficient is significant at the 5% level.  

* means that the coefficient is significant at the 10% level. 

(a) implies that a standard error cannot be computed by the delta method due to numeric issues, because the 

estimated probabilities approach 0 or 1. 

μRA is the Fechner error for the lottery data; μBelief is the Fechner error for the belief data. 
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Figure A1: Downtown Network With Bus on 9th Avenue 

 

 

 

Figure A2: Screen Shot For Lottery Practice Task 
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Figure A3: Distribution of Observed Travel Times 

   

Travel time on 7th Avenue has a mean of 115 and standard deviation of 3.7.                                         

Travel time on 9th Avenue without a bus has a mean of 134 and standard deviation of 7.3.                    

Travel time on 9th Avenue with a bus has a mean of 201 and standard deviation of 17.7.  
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Figure A4: Frequency of Delay by Time Threshold 

  

 

Figure A5: Distribution of Toll by Route 
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Figure A6: Distribution of Penalty by Route 

 

 

Figure A7: Number of Bus Cards Subjects See Before First Period 
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Figure A8: Proportion of Subjects who take 9th Avenue Across Periods 

 

Figure A9: Estimated Distributions of Risk Aversion Coefficients for the EUT CRRA Models 
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CHAPTER 2 

Estimating Subjective Beliefs in Naturalistic Tasks with Limited Information  

Under Variable Delay Penalty 

 

2.1. Introduction 

This essay examines drivers’ subjective beliefs of congestion as a way of explaining their 

route choices.  We examine subjective belief in a setting where the penalty for a late arrival is 

variable and is contingent on the extent of delay, such that a longer delay incurs additional 

penalty on the driver.  This continuous penalty setting complements the discrete penalty setting 

that is examined in Chapter 1.  This is consistent with route choice models that simply subtract 

the value of the travel time from the value of the trip (Small (1982); Jackson and Jucker (1982)).   

The primary research question in this essay is: if the penalty for a late arrival is a varying 

amount, does belief formation differ compared to when the penalty is a fixed amount?  Recall 

from Chapter 1, where the penalty is a fixed amount, that we observe belief adjustment only 

when the underlying congestion risk is low.  This behavior is said to be expected under an 

endogenous information environment, as it is in the context of driving, where information about 

a route can only be obtained if one drives on that route.  Thus, in a scenario where the underlying 

congestion risk is low and subjects start with a prior belief of low congestion, they are more 

likely to drive on the route and are able to obtain more information and result in more belief 

adjustment.  Here in the continuous penalty setting, will we observe the same pattern of 

behavior?  
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There are reasons to believe that the consequences of delay (here referred to as late 

penalties) affect which route an individual may select.  For example, an individual whose 

purpose of the trip is to attend a conference meeting faces a different delay consequence than 

another individual whose purpose of the trip is to catch a flight.  For the first individual, the 

consequence of delay is missing part of the meeting, where the longer the delay the more 

information is missed; for the second individual, the consequence of delay is missing the flight 

and the loss of the entire value of the trip.  The first scenario exemplifies a penalty that is 

continuous with longer delay incurring additional penalty, whereas the second scenario 

exemplifies a penalty that is discrete with a fixed amount.  Even if no appointment is being 

missed, fully or partially, the fact that more of the individual's valuable time is wasted sitting in 

traffic reduces the utility of the trip. 

To examine behavior in a setting where the late penalty is continuous calls for an 

experimental design that has variability in arrival times so that the extent of delay varies.  In the 

experiment subjects are asked to make route choices using a driving simulator, and the amount of 

time it takes to complete the drive varies depending on route selection, the congestion scenario 

on the uncertain route, and how the subjects drive on the simulator.  In this way, the arrival times 

along with late penalties are induced as continuous variables.   

Commuters from the Atlanta and Orlando metropolitan areas are recruited to participate 

in this experiment.  The field subjects are asked to make binary choices over two routes: one has 

an uncertain level of congestion risk, the other has no congestion risk.  We elicit subjects’ 

perceptions of the probability, p, that there is congestion on the uncertain route.  This probability 

is known to the experimenter, but not to the subjects.  Four levels of this probability are used: 

{0.2, 0.4, 0.6, 0.8}.  One of the congestion probabilities is randomly assigned to each subject and 
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stays constant throughout the session for that subject.  We also elicit each subject’s perceptions 

of the amount of time it takes to travel on the route that has an uncertain congestion risk when 

there is actually congestion vs. no congestion, and the amount of time it takes to travel on the 

route that has no congestion risk.  The route choices are made using driving simulators, and 

subject’s subjective probabilities of the uncertain risk of congestion, as well as their subjective 

probabilities of the travel time distributions, are inferred through the route choices they make.  

The latent subjective probabilities are estimated controlling for risk attitudes which are estimated 

from separate tasks with binary lottery choices.   

 In this continuous penalty setting, the results indicate that subjects are able to discern the 

difference between low-congestion and high-congestion risks, which is the same result as 

reported in a discrete penalty setting.  In terms of learning (or belief adjustment), however, we 

draw different conclusions from those in Chapter 1.  In the discrete penalty setting, we saw 

adjustments in beliefs over time in the lowest risk scenario.  In this essay we compare the 

standard deviations of the estimated travel time belief distributions as an indication of whether 

more is learnt in the low risk scenario than the high risk scenario.  We do not see a significant 

difference across treatments in these standard deviations.  

 

2.2 Experimental Design   

The field subjects are asked to make route choices over two routes: 9th Avenue which has 

an uncertain level of congestion risk, and 7th Avenue which has no congestion risk.  Subjects are 

assigned: a wage that serves as a monetary endowment for each drive, a time threshold after 
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which the variable penalty kicks in,19 a monetary penalty per-second beyond the threshold that 

they arrive, a toll charge when taking the congestion-free route (7th Avenue), and an unknown 

probability of congestion on the risky road (9th Avenue).  Table B1 shows the ranges of wage, 

toll, penalties and time thresholds.  These assignments are constant across the drives for a given 

subject.  On 9th Avenue congestion is induced using a school bus that makes frequent stops on 

the road, causing delay.   

Subjects make route choices in a setting where the late penalty is continuous, and 

presented as a per-second amount.  This is different from Chapter 1 where the late penalty is 

discrete, and presented as a fixed lump-sum.  All other aspects of the experimental design are the 

same as for the discrete penalty case.  The penalty is $0.03 per second for some subjects or $0.05 

per second for other subjects if the wage is $2.50, and is $0.05 per second for some subjects or 

$0.10 per second for other subjects if the wage is $5.00, thus there are only three possible 

assignments.  The time thresholds are lower than in Chapter 1 and range from 1 minute and 50 

seconds to 2 minutes and 30 seconds in 5-second increments.20  The purpose of assigning a time 

threshold for each trip is to induce a large value of time use at the margin so that any “extra 

time” that is above an assigned threshold incurs a larger marginal cost to the subject.  This is 

indeed the case.   

The rest of the design is a replica of the experiment described in Chapter 1.  We employ 

the same joint-task design: the driving simulator task is used to elicit subjective belief, and the 

lottery choice task is used to elicit risk attitudes.  The lottery choice task is exactly the same; see 

Table B2 for the range of prizes and probabilities that are used in the experiment.  We also 

                                                           
19 The time threshold is induced to make sure that the incentives at the margin (per second) are salient in relation to 

the overall payments for the drive.   
20 This is in contrast to Chapter 1 where the time thresholds range from 2 minutes and 10 seconds to 2 minutes and 

45 seconds in 5-second increments. 
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employ the same payment protocol.  The subjects are recruited in the same manner as the 

subjects described in Chapter 1.   

 

2.3 Theory 

This essay examines how field subjects perceive the risk of congestion in a setting where 

the penalty of delay is continuous.  To test if the same behavioral pattern can be observed in both 

continuous and discrete penalty settings, here we ask a similar set of questions as in Chapter 1. 

Are the field subjects able to form estimates of the risk of congestion that vary with the 

underlying objective probability?  Furthermore, under this endogenous information environment, 

do they adjust their beliefs in the direction of the underlying congestion probability?  Does 

learning differ depending on the underlying congestion probability?  

Since the penalty increases for each second that the subject is late relative to a time 

threshold, it is important to consider the beliefs over the distribution of travel times on each route 

as well as the belief of congestion on 9th Avenue.  Thus, the subjects are assumed to hold a belief 

distribution of possible travel times in addition to the belief of congestion.    

In this continuous penalty setting we test two hypotheses:  

Hypothesis I – Subjects are able to form estimates of the risk of congestion, and the perceived 

risk of congestion ranks in the order of the underlying congestion probabilities.  

Hypothesis II – Subjects who are in the low risk treatments are more likely to try out 9th Avenue 

than those who are in the high risk treatments.  With more experience driving on 9th Avenue, 

these subjects should be able to learn about its congestion condition and to form more accurate 

estimates of the underlying objective probability.  Hence, we should see a difference in learning 
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when compared across the risk treatments, such that there should be evidence of more learning in 

the low risk treatment than in the high risk treatment.   

Across the treatments the difference in learning is measured in two ways.  First, it would 

be reflected by a more precise estimate of the subjective probabilities of congestion, thus we 

would expect a smaller standard error for the estimated subjective probability of congestion in 

the low risk treatments than in the high risk treatments.21  Second, with more experience driving 

on 9th Avenue, these subjects should be able to form a more precise estimate of the time it takes 

to drive on each route.  A more precise belief estimate over travel times would be reflected by a 

smaller standard deviation in the subjective probability distribution of travel times, as a sign of 

learning.  Thus, we would expect the standard deviation of the estimated travel time distribution 

for 9th Avenue to be smaller in the low risk treatments than the high risk treatments.  Thus, the 

difference in learning across the treatments are measured in terms of the estimated subjective 

probabilities of congestion and/or the estimated subjective probability distributions of travel 

times.   

Lastly, we will compare the results obtained from the continuous penalty setting to the 

results from the discrete penalty setting in Chapter 1. 

 

 

 

                                                           
21 This implication, and the next implication, tacitly assumes an underlying Bayesian model of learning in which the 

individual starts off with a relatively diffuse prior.  If the individual started off with a relatively precise prior that 

was biased, then this implication does not follow.  We see no reason a priori to expect the prior belief to differ 

across discrete environment of Chapter 1 and the continuous environment examined here.  



  

76 

 

2.3.1 Simulator Route Choice Task 

Recall that 7th Avenue is a risk-free route with no congestion and 9th Avenue is a risky 

route with an unknown probability of congestion.  Subjects’ route choices are modeled using 

Subjective Expected Utility (SEU) and a Constant Relative Risk Aversion (CRRA) utility 

function.  We view each subject as making the decision to take 7th Avenue or 9th Avenue by 

evaluating the SEU of each route.22   

For 7th Avenue the subject holds a subjective belief 𝑝7𝑡 about the time, 𝑡, that a trip will 

take.  We assume that this distribution is normally distributed with mean 𝜇7 and standard 

deviation 𝜎7, and that it is a distribution over 𝑛 discrete values of time 𝑡 defined as seconds.  For 

each time taken, 𝑡, we know the earnings that the subject would make, which we denote 𝑚7𝑡.  

Specifically,  

𝑚7𝑡 = 𝑤 − 𝑓                  (1) 

if the time 𝑡 taken is less than the time threshold 𝑡∗ allowed, where 𝑤 is an exogenous wage and 

𝑓 is the toll fee on 7th Avenue, and  

𝑚7𝑡 = 𝑤 − 𝑓 −𝑙𝑡 × (𝑡 − 𝑡∗)                     (2) 

if the time taken 𝑡 exceeds the time threshold 𝑡∗, where 𝑙𝑡 is the penalty for late arrival associated 

with time 𝑡.  If 𝑚7𝑡 is negative, it is set to zero.  

We can then define the lottery entailed by taking 7th Avenue in terms of the combination of 

probability 𝑝7𝑡 and payoffs 𝑚7𝑡, using the CRRA utility function        

                                                           
22 In principle this approach could be extended to consider alternatives to SEU.  
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             𝑢(𝑚7𝑡) = (
𝑚7𝑡

(1−𝑟)

(1−𝑟)
)                                                                                                                                                       

to evaluate the utility of payoffs.  Assuming a lower and upper time to the distribution of travel 

times on 7th Avenue, the SEU for 7th Avenue is then  

𝑆𝐸𝑈7 = ∑ 𝑝7𝑡 ×𝑡=300
𝑡=50 𝑢7𝑡                             

The lower and upper bounds of the distribution are selected based on the range of travel times we 

have observed in the experiment (shown in Figure B1).  We choose increments between 𝑡 and 𝑡 

to obtain good convergence properties; the later empirical analysis uses increments of 1 second.  

As the parameters 𝜇7 and 𝜎7 vary, the value of 𝑝7𝑡 changes for each 𝑡, and hence the SEU of 7th 

Avenue changes.  

 The evaluation for 9th Avenue follows essentially the same logic, apart from the fact that 

the distribution of travel times on 9th Avenue is conditional on whether or not there is a bus on 

that route.  Hence we view the subject as having some probability, 𝜋, that there will be a bus (on 

9th Avenue) and as having two conditional distributions of travel times for the trips on 9th 

Avenue.  One conditional distribution assumes no bus, and is again assumed to be normally 

distributed with mean 𝜇9
𝑛𝑜 𝑏𝑢𝑠 and standard deviation 𝜎9

𝑛𝑜 𝑏𝑢𝑠.  Another conditional distribution 

assumes there is a bus, and is assumed to be normally distributed with mean 𝜇9
𝑏𝑢𝑠 and standard 

deviation 𝜎9
𝑏𝑢𝑠.  Given values of 𝜇9

𝑛𝑜 𝑏𝑢𝑠 and 𝜎9
𝑛𝑜 𝑏𝑢𝑠 we can generate 𝑛 discrete probabilities 

𝑝9𝑛𝑜 𝑏𝑢𝑠
𝑡
, and given values of 𝜇9

𝑏𝑢𝑠 and 𝜎9
𝑏𝑢𝑠 we can generate 𝑛 discrete probabilities 𝑝9𝑏𝑢𝑠

𝑡
.  

We know that payoffs on 9th Avenue are given by 

𝑚9𝑡 = 𝑤                 (4) 

if the time 𝑡 taken is less than the time threshold 𝑡∗ allowed, and  
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𝑚9𝑡 = 𝑤 − 𝑙𝑡 × (𝑡 − 𝑡∗)                             (5) 

if the time taken 𝑡 exceeds the time threshold 𝑡∗.  Again, if 𝑚9𝑡 is negative, it is set to zero.  

 We can then define the SEU for 9th Avenue respecting the fact that there is a compound 

risk of there being a bus and a distribution of times conditional on the presence of the bus.  

Hence we have 

             𝑆𝐸𝑈9 = ∑ {𝜋 (𝑝9𝑏𝑢𝑠
𝑡

 × 𝑢9𝑏𝑢𝑠
𝑡) + (1 −  𝜋)(𝑝9𝑛𝑜 𝑏𝑢𝑠

𝑡
 × 𝑢9𝑛𝑜 𝑏𝑢𝑠

𝑡)}

𝑡=300

𝑡=50

 

We use the same lower and upper bounds as in (3).  Subjects are assumed to behave as if they 

compare the two SEUs and choose the one with the higher SEU.   

 

2.3.2 Binary Lottery Task 

Subjects are asked to complete four binary lottery tasks with known probabilities that 

allow us to elicit their risk attitudes.  In each lottery task a decision is made between a relatively 

safe lottery and a relatively risky lottery.  Risk attitudes are estimated assuming Expected Utility 

Theory (EUT) and a CRRA utility function.  The expected utility of the safe option (EUS) is:  

 𝐸𝑈𝑆 =  𝑝 × (
𝑥𝐿

(1−𝑟)

(1−𝑟)
) +  (1 –  𝑝) × (

𝑥𝐻
(1−𝑟)

(1−𝑟)
)             (7) 

where p is the probability of a low prize, xL, (1-p) is the probability of a higher prize, xH, and  

𝑟 is the coefficient of relative risk aversion.  Similarly, the expected utility of the risky option is:  

 𝐸𝑈𝑅 =  𝑝 × (
𝑦𝐿

(1−𝑟)

(1−𝑟)
) +  (1 –  𝑝) × (

𝑦𝐻
(1−𝑟)

(1−𝑟)
)                                              (8)    
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where p is the probability of a low prize, yL, and (1-p) is the probability of a high prize, yH.  

 

2.4 Empirical Analysis   

The non-linear structural estimation of the SEU model is performed using Maximum 

Likelihood techniques.  Before estimating the SEU structural model, a Probit model is estimated 

as a way of describing the data. 

 

2.4.1 Estimation Approach 

 Following the same estimation procedure as in Chapter 1 we jointly estimate risk 

attitudes and subjective beliefs.  Instead of estimating the probability of delay, here we estimate 

the joint probability of congestion and travel time.  We estimate subjective beliefs using the data 

from the driving task pooling across subjects, and we estimate risk attitudes using the data from 

the lottery tasks pooling across the same subjects.  Subjective beliefs about travel times are 

estimated conditional on risk treatment dummies, and jointly with risk attitudes.23 

In a setting where the late penalty is continuous and where the extent of delay matters, 

subjects hold a belief as to how long the trip will take, i.e., a belief of all the possible travel 

times.  Subjects also hold a belief as to the probability of congestion (or a bus) on the risky route.  

Therefore, in the estimation we derive separate estimates for each belief.  

 

                                                           
23 This joint estimation approach builds on previous work on structural estimation of risk attitudes by Andersen, 

Harrison, Lau and Rutström (2008) and Harrison and Rutström (2008b).  A detailed description of the methodology 

can be found in Andersen, Fountain, Harrison and Rutström (2014).   
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Estimate Risk Attitudes from Lottery Tasks  

First we describe the estimation of risk attitudes.  The estimation of risk attitudes uses 

only the lottery data, and the equations shown here are the same as equations (5) – (7) in Chapter 

1.  For purpose of completeness we present a similar set of equations so that one can see how the 

econometrics follow from the theories stated in Section 3.  

Following (7) – (8), the index  

 ∇𝐸𝑈 = 𝐸𝑈𝑅 −  𝐸𝑈𝑆                 (9) 

is the difference in valuation between the risky lottery and the safe lottery.   

The index in (9) is then linked to observed choices by using a “logit” likelihood function:  

𝑝𝑟𝑜𝑏 (𝑐ℎ𝑜𝑜𝑠𝑒 𝑟𝑖𝑠𝑘𝑦 𝑜𝑝𝑡𝑖𝑜𝑛) = Λ(∇𝐸𝑈)              (10) 

The risky option is assumed to be chosen when Λ(∇𝐸𝑈) > ½.   

 Thus the likelihood of the observed responses, conditional on the EUT and CRRA 

specifications being true, depends on the estimated r given the above specification and the 

observed choices, c.  The log-likelihood is then  

  ln 𝐿 (𝑟; 𝑐) = Σ𝑖[ lnΛ(∇𝐸𝑈) × 𝐈(𝑐𝑖 = 1) + ln(1 − Λ(𝛻𝐸𝑈)) ×  𝐈(𝑐𝑖 = 0)]        (11) 

where 𝐈(∙) is the indicator function and 𝑐𝑖= l (0) denotes the choice of the lottery option R (S) in 

lottery task i.   

 We allow for behavioral errors in the core model, and the latent index (9) then becomes 

 ∇𝐸𝑈 = [(𝐸𝑈𝑅 −  𝐸𝑈𝑆) /ν] /𝜇𝑙𝑜𝑡𝑡𝑒𝑟𝑦             (9’) 
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where 𝜇𝑙𝑜𝑡𝑡𝑒𝑟𝑦 > 0 is a structural Fechner “noise parameter” used to allow some error when 

evaluating the difference in EU between the two lotteries.  The constant ν is a contextual 

normalizing term for each lottery pair R and S, and is defined as the difference between the 

maximum and the minimum utility in each lottery pair.  This normalization is referred to as 

“contextual utility” and is due to Wilcox (2011).  

 One can extend the likelihood specification in (11) to include the noise parameter 

𝜇𝑙𝑜𝑡𝑡𝑒𝑟𝑦 and maximize ln𝐿 (𝑟, 𝜇𝑙𝑜𝑡𝑡𝑒𝑟𝑦 ; 𝑐) by estimating r and 𝜇𝑙𝑜𝑡𝑡𝑒𝑟𝑦 , given observations on c.  

 

Estimate Subjective Beliefs from Simulator Driving Tasks  

Recall that for 7th Avenue, the subject holds a distribution of subjective beliefs 𝑝7𝑡 about 

the time 𝑡 that a trip will take.  We assume that this distribution is normally distributed with 

mean 𝜇7 and standard deviation 𝜎7, and that it is a distribution over time t defined as seconds.  

Given this distribution, we model the subject as evaluating a discrete lottery that evaluates this 

continuous distribution at 𝜏 equally-spaced intervals of 𝑡 between some lower time 𝑡 and upper 

time 𝑡.  We set 𝑡 = 50 and 𝑡 = 300 at 𝜏 = 250 equally-spaced intervals.24  We select 𝑡, 𝑡 and 𝜏 

solely for numerical purposes, and as we increase 𝜏 for a given 𝑡 and 𝑡 we can obtain a better 

discrete approximation of the underlying continuous distribution.  Once these 𝜏 evaluations are 

taken, the 𝜏 densities are normalized to sum to 1.  The approach for 9th Avenue follows the same 

logic for the distribution of travel time when there is a bus (with mean 𝜇9
𝑏𝑢𝑠 and standard 

deviation 𝜎9
𝑏𝑢𝑠) and when there is no bus (with mean 𝜇9

𝑛𝑜 𝑏𝑢𝑠 and standard deviation 𝜎9
𝑛𝑜 𝑏𝑢𝑠).  

                                                           
24 Even though we evaluate these lotteries with 𝜏 equally-spaced intervals of time 𝑡, the density of each interval is 

generally a different value.  
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 For numerical reasons we initially constrain the numerical values of the parameters of the 

travel time distributions (i.e., 𝜇7, 𝜎7, 𝜇9
𝑏𝑢𝑠, 𝜎9

𝑏𝑢𝑠, 𝜇9
𝑛𝑜 𝑏𝑢𝑠 and 𝜎9

𝑛𝑜 𝑏𝑢𝑠) to be equal to the 

distributions of travel times shown in Figure B1, and to estimate only the subjective probability 

of a bus, 𝜋.  We do allow 𝜋 to vary with the exogenous treatments in which there is a true 

probability of the bus of 20%, 40%, and 60%.25  Normalizing on Treatment 0.2 (where the true 

probability of a bus is 20%), and defining binary variables 𝑇40 and 𝑇60 for those treatments, we 

estimate  

𝜋 =  𝜋20 +  𝜋40  × 𝑇40 +  𝜋60 ×  𝑇60           (12) 

and constrain 𝜋 to lie in the unit interval.  Once we obtain estimates of 𝜋20, 𝜋40, and 𝜋60, we 

selectively relax the rational expectation constraints for the parameters of the travel time 

distributions (i.e., 𝜇7, 𝜎7, 𝜇9
𝑏𝑢𝑠, 𝜎9

𝑏𝑢𝑠, 𝜇9
𝑛𝑜 𝑏𝑢𝑠 and 𝜎9

𝑛𝑜 𝑏𝑢𝑠).  

Together with the estimation of risk attitudes, the estimation of beliefs follows (3) and 

(6), and the latent index is 

 ∇S𝐸𝑈 =  (𝑆𝐸𝑈7 −  𝑆𝐸𝑈9)                        (13)   

where ∇S𝐸𝑈 is the difference in valuation between 7th Avenue and 9th Avenue.   

The estimation is performed using Maximum Likelihood.  One parameter was estimated 

using the “profile likelihood” method,26 due to local numerical flatness of the likelihood 

                                                           
25 The likelihood function was flat with respect to the data from Treatment 0.8, so data from that sub-sample was 

dropped.  The local flatness of the likelihood with respect to these data is not surprising, given the discussion from 

Chapter 1 about this treatment and the lack of behavioral variation it generated in comparison to the other 

treatments. 
26 The profile likelihood method assumes a grid of values for one of the model parameters, and solves for the 

conditional maximum likelihood, allowing all other parameters to vary as the constrained parameter is varied over 

that grid.  The conditional ML estimates are then used as constrained estimates.  The parameter evaluated in this 

manner is the mean of the distribution of subjective beliefs of travel times on the 9th Avenue with a bus, 𝜇9
𝑏𝑢𝑠. 
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function.  Conditional on the SEU and the CRRA specifications being true, the maximized log-

likelihood becomes 

 ln 𝐿 (𝜋20, 𝜋40, 𝜋60, 𝜇9
𝑏𝑢𝑠, 𝜎9

𝑏𝑢𝑠, 𝜇9
𝑛𝑜 𝑏𝑢𝑠, 𝜎9

𝑛𝑜 𝑏𝑢𝑠, 𝜇7, 𝜎7, 𝑟, 𝜇𝑟𝑜𝑢𝑡𝑒 , 𝜇𝑙𝑜𝑡𝑡𝑒𝑟𝑦 ; 𝑐 ) =

Σ𝑖[ln Λ(∇S𝐸𝑈) × 𝐈(𝑐𝑖 = 0) + ln(1 − Λ(𝛻𝑆𝐸𝑈)) ×  𝐈(𝑐𝑖 = 1)]         (14) 

where 𝐈(∙) is the indicator function, 𝑐𝑖 = 0 (1) denotes that the subject choose 7th Avenue (9th 

Avenue) in drive task i, and separate noise parameters are estimated for the simulator driving 

task (𝜇𝑟𝑜𝑢𝑡𝑒) and the lottery task (𝜇𝑙𝑜𝑡𝑡𝑒𝑟𝑦).  A common noise parameter is assumed across risk 

treatments.27 

 

 Estimate Unconditional Travel Time Distribution for 9th Avenue  

 We also estimate an unconditional travel time distribution for 9th Avenue by taking the 

weighted average of the two conditional distributions, and using the estimated bus probability as 

the weight.   

We allow the two parameters 𝜇9 and 𝜎9 to vary with the exogenous probability of a bus 

being 20%, 40%, and 60%.  Normalizing on Treatment 0.2, and defining binary variables 𝑇40 

and 𝑇60 for those treatments, we estimate  

𝜇9 =  𝜇9_𝑇20
+  𝜇9_𝑇40

 × 𝑇40 +  𝜇9_𝑇60
×  𝑇60 , and         (15) 

𝜎9 =  𝜎9_𝑇20
+  𝜎9_𝑇40

 × 𝑇40 +  𝜎9_𝑇60
×  𝑇60             (16)     

                                                           
27 Note that (13) and (14) in this essay is the same as equations (8) and (9) in Chapter 1. 
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Following the same approach as in the estimation of (14), the maximized log-likelihood 

now becomes 

 ln 𝐿 (𝜇9, 𝜎9, 𝜇7, 𝜎7, 𝑟, 𝜇𝑟𝑜𝑢𝑡𝑒 , 𝜇𝑙𝑜𝑡𝑡𝑒𝑟; 𝑐 ) = Σ𝑖[ln Λ(∇S𝐸𝑈) × 𝐈(𝑐𝑖 = 0) +

ln(1 − Λ(𝛻𝑆𝐸𝑈)) ×  𝐈(𝑐𝑖 = 1)]                   (17) 

Note that the unconditional travel time distribution for 9th Avenue does not distinguish between a 

bus or no bus, thus we do not estimate the subjective probability of a bus, i.e., 𝜋 is not in the 

model.  

 

2.4.2 Descriptive Statistics  

The characteristics of the subject pool are described in Table B3.28  The proportion of 

commuters from Atlanta and Orlando are about the same.  Each gender is evenly represented in 

the overall sample.  About 49% have household income of above $100,000.  A significant 

majority hold a college education (82%).  Within each risk treatment, the breakdown by 

demographics generally follows a similar trend as the overall sample distribution.  

In addition to being randomly assigned to a congestion risk on 9th Avenue, subjects are 

randomly assigned to a toll, late penalty, and a wage.  Since all the experimental parameters are 

randomly assigned to subjects and stay constant throughout the drives, the distribution of 

subjects who belong to each level of toll (or each level of late penalty, or wage) should be similar 

across the four congestion risk treatments.  However, given the relatively small sample size in 

the experiment it is difficult to achieve perfect randomization that result in even representation of 

                                                           
28 These are not the same subjects as those we observed in Chapter 1, although they are recruited from the same 

population.  Here the sample size is 141 subjects.     
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all possible values.  Because of this it is important to control for all of the parameters in the 

analysis.  This is particularly the case for the toll assignment, where there are a total of 36 

possible assignments.  Comparing any two risk treatments, the distributions of tolls are 

significantly different from each other within a 10% significance level based on the 

Kolmogorov-Smirnov29  test.30  In contrast, for the penalty assignment, where there are only 3 

possible values to be assigned, the distribution of subjects who are assigned to each level of 

penalty are not significantly different from each other in half of the pairwise treatment 

comparisons (within a 10% significance level).  For the wage variable, where there are only 2 

possible values to be assigned, the distribution of subjects who are assigned to each level of 

wage are not significantly different across the four risk treatments, with the exception of only 

two pairwise comparisons (i.e., when comparing Treatments 0.4 and 0.6 with p-value = 0.001, 

and when comparing Treatments 0.6 and 0.8 with p-value = 0.010).   

 

Travel Times and Realized Penalties  

The distribution of travel times pooling over all subjects and treatments is shown in 

Figure B1.  On average 7th Avenue takes the shortest time (114 seconds), next is 9th Avenue 

without a bus (133 seconds), and 9th Avenue with a bus takes the longest (195 seconds).  The 

standard deviations are 5.5, 10.1 and 17.4 seconds, respectively.  The increase in standard 

deviation across the three scenarios is significant (p-value < 0.001).31  This shows that the longer 

it takes to complete the drive, the higher is the variance of the distribution of travel times.  

                                                           
29 The Kolmogorov-Smirnov test whether two distributions are equal.  
30 On average, Treatments 0.4 and 0.6 have the larger tolls ($1.84 and $1.80, respectively).  However, the averages 

in these two treatments are not much different than the averages in Treatments 0.2 and 0.8 ($1.73 and $1.68, 

respectively).  Other features of the distributions differ across these treatments.  
31 This test is performed using Levene’s robust test for the equality of variances between the groups. 
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Overall, the descriptive data in Figure B1 shows that subjects perceive a travel time difference 

across routes and congestion scenarios.   

On average as travel time increases, we should expect late penalties to increase.  The 

distribution of the resulting penalties (or realized penalties) pooling over all subjects and 

treatments is shown in Table B4.  On average 7th Avenue incurs the lowest penalty ($0.05), next 

is 9th Avenue without a bus ($0.36), and 9th Avenue with a bus incurs the highest penalty ($3.06).  

The standard deviations are $0.15, $0.62 and $1.45, respectively.  The increase in standard 

deviation across the three scenarios is significant (p-value < 0.001).  Thus, the distributions of 

realized penalties follow the ranking of the distributions of travel times: the longer it takes to 

complete the trip, the higher is the realized penalty.    

 

Proportions of Route Choice  

Given that subjects are randomly assigned to a toll, a late penalty and a wage, route 

choice is predicted to depend on many of these parameters, in addition to the main congestion 

treatments.  We expect that subjects who are assigned a higher toll are more likely to drive on 9th 

Avenue than subjects who are assigned a lower toll.  Figure B2 shows the distribution of toll 

across drivers who chose to drive on 7th and 9th Avenue, respectively.  The two distributions are 

significantly different at the 1% level.  The drivers who chose to drive on 9th Avenue have on 

average a toll assignment of $2.10, whereas those who chose to drive on 7th Avenue have on 

average a toll assignment of $1.50.  This provides preliminary evidence that subjects with a high 

toll are more likely to drive on 9th Avenue.   

We expect that subjects who are assigned a higher late penalty are more likely to select 

the faster route.  There are only three assignments for penalties: $0.03, $0.05 and $0.10 per 
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second.  The  distributions of late penalties do not differ significantly across subjects who took 

7th and 9th Avenue (p-value = 0.109).  However, this test is unconditional, not controlling for 

variations in any of the other variables.  We will look at a conditional test below in a Probit 

model.  

 

Proportion of Route Choice by Risk Treatment 

Prior to starting the driving task, the only information that subjects have for forming a 

prior belief about congestion are the drawings of the ten bus cards before starting the drives.  

Figure B3 shows that the number of bus cards drawn increases with the objective risk.  As the 

number of bus cards drawn increases with objective risk, in the first period the proportion of 

subjects who chose the risky route decreases.  This is shown in Figure B4 (in the first period).  It 

appears that subjects hold initial beliefs of congestion that are consistent with their prior bus card 

information.   

Comparing the proportion of route choice across risk treatments, we see that a larger 

proportion of subjects taking the risky route in the two treatments with objective congestion 

probabilities below 0.5 than in the two treatments with objective congestion probabilities above 

0.5.  Pooling across periods, the proportion of route choice rank in the order of objective risks: 

Treatment 0.2 has the highest proportion of subjects taking the risky route (62%), follow by 

Treatment 0.4 (52%), 0.6 (38%), and 0.8 (33%).  Most of the pairwise comparisons between 

treatments are significantly different (at the 1% level), except between Treatments 0.6 and 0.8 

(p-value = 0.18).  Thus, there is some preliminary evidence that subjects on average can perceive 

differences between high and low probabilities.  
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Across the periods, there is no significant change in the proportion of route choice 

following the first period.  This is true for all risk treatments.  Even though Figure B4 shows 

some differences in the proportion of route choice across the periods, none of the between-period 

pairwise comparisons are significant.   

The number and proportions of subjects who switched routes between periods are shown 

in Table B5.  Recall that 9th Avenue is the risky route with an uncertain risk of congestion and 7th 

Avenue is the safe route with no risk of congestion.  In Treatment 0.2, subjects who take 9th 

Avenue are less likely to experience congestion than subjects in the higher risk treatments, so 

one would expect them to be less likely to switch away from using 9th Avenue.  In fact, of the 25 

subjects who initially selected 9th Avenue only 7 (OR 28%) switched to 7th Avenue in period 2.  

On the other hand, of those who took 7th Avenue, 47% switched to 9th in period 2.  Pooling 

across periods, in Treatment 0.2 the proportion who switched from 9th Avenue to 7th Avenue 

(16%) is smaller than the proportion who switched from 7th Avenue to 9th Avenue (24%).  This is 

consistent with frequent experiences of no congestion on 9th Avenue in Treatment 0.2.  In 

Treatment 0.4, there is a similar but weaker pattern: 19% switched from 9th Avenue to 7th 

Avenue and 21% switched from 7th Avenue to 9th Avenue.   

In the two high risk treatments, the pattern is reversed: there is a higher proportion of 

subjects that switched from 9th Avenue to 7th Avenue than from 7th Avenue to 9th Avenue.  In 

Treatment 0.6, 39% switched from 9th Avenue to 7th Avenue and 22% switched from 7th Avenue 

to 9th Avenue; in Treatment 0.8, 29% switched from 9th Avenue to 7th Avenue and 14% switched 

from 7th Avenue to 9th Avenue.  This is a sign that in the high risk treatments, once subjects 

selected 9th Avenue, they experienced on average more congestion than their counterparts did in 

the lower risk treatments.   
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 Based on the route switching behavior, Table B6 displays the conditions under which 

subjects switched out of 9th Avenue.  It shows the proportion of subjects who switched from 9th 

Avenue to 7th Avenue conditional on encountering congestion or not.  One would expect the 

proportion of subjects who switched in the former case to be at least as high as in the latter case.  

This is indeed the pattern observed in the three treatments with the highest congestion risk: 

Treatments 0.4, 0.6 and 0.8.   

In summary, behavior appear consistent with subjects forming subjective beliefs of 

congestion that reflect its underlying objective probability.  Analysis of the raw data provides 

preliminary evidence that subjects can perceive the difference across high-probabilities and low-

probabilities and that subjective beliefs of congestion rank in the order of the objective risk of 

congestion.  This lends partial support to Hypothesis I and confirms the results obtained in 

Chapter 1.  

Given that the proportion of risky choices is higher in the low risk treatments than in the 

high risk treatments, subjects in the low risk treatments would obtain more information about the 

risky route and display more adjustments in route choices compared to their counterparts in the 

high risk treatments.  However, the route proportions data revealed that across the periods the 

proportion of risky choices stay virtually the same with no significant adjustments.  This is true 

for all risk treatments.   

 

2.4.3 Propensity of Route Choice 

Before discussing the results of the full structural model estimation, in this section route 

choice is estimated controlling for variations in experimental parameters such as tolls and late 
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penalties, so to directly investigate whether, under this endogenous information environment, the 

changes in the tolls are less effective for subjects in the high risk treatments than in the low risk 

treatments, as suggested by the second hypothesis.  Table B7 shows the result of a Probit model 

controlling for variations in payoff incentives and period fixed effects.  The endogenous variable 

is the propensity to take the risky route and the independent variables are Toll, Late Penalty Per 

Second, Wage, the prior number of bus cards (Prior), and period fixed effects (i.e., Period 2, …, 

Period 10)..   

𝑃𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦𝑟𝑖𝑠𝑘𝑦

=  𝛽0 + 𝛽1 × 𝑇𝑜𝑙𝑙 + 𝛽2 × 𝐿𝑎𝑡𝑒 𝑃𝑒𝑛𝑎𝑙𝑡𝑦 𝑃𝑒𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 + 𝛽3 × 𝑊𝑎𝑔𝑒 + 𝛽4

× 𝑃𝑟𝑖𝑜𝑟 +  𝛽5 × 𝑃𝑒𝑟𝑖𝑜𝑑 2 +  𝛽6 × 𝑃𝑒𝑟𝑖𝑜𝑑 3 +  𝛽7 × 𝑃𝑒𝑟𝑖𝑜𝑑 4 +  𝛽8

× 𝑃𝑒𝑟𝑖𝑜𝑑 5 +  𝛽9 × 𝑃𝑒𝑟𝑖𝑜𝑑 6 +  𝛽10 × 𝑃𝑒𝑟𝑖𝑜𝑑 7 +  𝛽11 × 𝑃𝑒𝑟𝑖𝑜𝑑 8 +  𝛽12

× 𝑃𝑒𝑟𝑖𝑜𝑑 9 +  𝛽13 × 𝑃𝑒𝑟𝑖𝑜𝑑 10 

As in Chapter 1, all coefficients are transformed to marginal probability effects computed using 

the delta method. 

 

Effects of Payoff Incentives 

Toll has the expected positive effect on the propensity to take the risky route.  The 

coefficients are significantly different from zero in all risk treatments.  Comparing any two 

treatments the coefficients are significantly different from each other except between Treatments 

0.2 and 0.6 (p-value = 0.145).  The influence of Toll increases across Treatments 0.4, 0.6 and 0.8. 

Late Penalty Per Second has the theoretically expected negative effect on the propensity 

to take the risky route in the last three treatments, but only in Treatments 0.4 and 0.8 where the 
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coefficients are significantly different from zero.  Wage is predicted to have no effect on the 

propensity of route choice.  This is true for all risk treatments except the lowest risk treatment, 

and even there the coefficient is very small, at -0.080 (p-value = 0.026).   

Within each treatment (except in Treatment 0.8) the number of prior bus cards subjects 

draw does not have a significant effect on the propensity of route choice.  Since the number of 

bus cards subjects drew does not vary much within each treatment, it is not surprising that the 

variable Prior is not significant within treatment.  However, when pooling the data across all 

treatments, there is a significant decrease in the propensity to take the risky route as the number 

of prior bus cards increases (p-value < 0.001), which is expected and shown in the final column 

of Table B7.  

 

Period Effects 

 In period 1 (captured by the coefficient on Constant) the propensity to take the risky 

route is not rank-ordered across the four treatments.  The pairwise comparisons across treatments 

do not show significant differences except between Treatments 0.2 and 0.4 and between 

Treatments 0.4 and 0.6, and the latter is in the opposite direction from what we expect.  In 

subsequent periods, there is no significant change in the propensity to take the risky route, and 

this is true for all four treatments.   

 In summary, the conditional analysis of route choice using a Probit model tells a slightly 

different story compared to the unconditional descriptive analysis: the low risk treatments 

generally do not show a significantly higher propensity to choose the risky route than the high 

risk treatments.  Across the periods the proportion of risky choices (or the propensity for the 

risky route) stay virtually the same with no significant adjustments, and this is true for all risk 
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treatments.  The next section estimates the subjective beliefs that are implied by this behavior, 

assuming SEU with a CRRA utility function.   

 

2.4.4 Subjective Expected Utility   

We estimate the conditional travel time model in (14) using maximum likelihood.  The 

estimation results of the SEU model are shown in Table B8.  The subjective belief distributions 

over travel times are estimated for 7th Avenue, 9th Avenue without a bus, and 9th Avenue with a 

bus.  The subjective beliefs of congestion are estimated conditional on treatment dummies for the 

objective risk of congestion.  The likelihood function was flat with respect to the data from 

Treatment 0.8, so data from that sub-sample was dropped.   

Figure B5 displays the estimated distribution of actual travel times, assuming that the 

actual data are normally distributed.  This is similar to Figure B1, but imposes the parametric 

assumption that each distribution is Gaussian.  This is the assumption under which the model is 

estimated, so Figure B5 is easier to compare to the estimated subjective belief distributions.  

Figure B6 displays the estimated subjective belief distributions for the travel times on 7th 

Avenue, with the actual distribution (from Figure B5) shown in a dashed line.  We see that the 

estimated subjective belief distribution for 7th Avenue has virtually no dispersion compared to 

the actual distribution.  Although less extreme, we will see this pattern with respect to beliefs 

about travel times on 9th Avenue as well. 

Figure B7 displays the conditional distributions of subjective beliefs about travel times on 

9th Avenue, depending on whether there is a bus or not.  As expected a priori, but without any 

constraints on the estimates, we see that the bus does lead to subjective beliefs of time delay.  
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Moreover, the dispersion of the subjective distribution with a bus is significantly larger than the 

dispersion of the subjective distribution with no bus.  Figure B8 compares these estimated 

subjective belief distributions with the actual distributions, and again we see a tendency for the 

beliefs to be less dispersed than the actual.   

In general we see that the averages of the subjective beliefs about travel times are close to 

the true average.  But we see that these subjective beliefs are much more precise in terms of their 

standard deviation, with the subjects behaving as if they had more confidence in these estimated 

average travel times than the data would justify.  Of course, the subjects are actively learning 

about these distributions in real-time, so these implied subjective beliefs may reflect that partial 

adaptation to the data they are seeing.   

By sharp contrast, the estimated subjective probabilities of a bus in Table B8 are 

apparently very imprecise.  The estimated probability of the bus in Treatment 0.2 is 13.3% but it 

is not significantly different from zero given its large standard error (p-value = 0.627).  In terms 

of the 95% confidence interval, Treatment 0.2 has a wide 95% confidence interval between -40% 

and 67%.  The estimated probability of the bus in Treatment 0.4 is 51.9%, again with a wide 

95% confidence interval between 16% and 87%.  The estimated probability of the bus in 

Treatment 0.6 is 58.0%, also with a wide 95% confidence interval between 24% and 92%.   

One implication of these results is to suggest, for future research, an identifying 

restriction in which the probability of a bus is set to 0 for Treatment 0.2 and set to 1 for 

Treatment 0.8.  This does not reduce the agent’s decision problem here to one of certainty, 

because there are still conditional distributions of travel times for 9th Avenue whether or not a 

bus is assumed to be present or not.  In other words, if the subjective probability of a bus is 0, 

then the agent still has a risky choice between 7th Avenue (which is never affected by the bus) 
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and 9th Avenue with no bus.  The latter route still has a subjective distribution of travel times.  

Similarly, if the subjective probability of a bus is 1, then the agent still has a risky choice 

between 7th Avenue and 9th Avenue with a bus; again, the latter route still has a subjective 

distribution of travel times.  In this compound risk setting, it could be that the imprecision in the 

estimated first-stage risks (the risk of a bus) in Treatments 0.4 and 0.6 lead to an 

“overcompensation” by reducing the uncertainty in the estimated second-stage risks (the 

distribution of travel times, conditional on a route and/or bus).  On the other hand, given the 

uncertainty over the probabilities of a bus in Treatments 0.4 and 0.6, it may be cognitively easier 

for the subjects to behave as if the probabilities are at their extremes of 0 and 1 in Treatments 0.2 

and 0.8, respectively. 

From these estimates we can infer some estimates for 9th Avenue that might be more 

natural to interpret in terms of behavior and the hypotheses of interest.  Consider the 

unconditional travel time distribution for 9th Avenue.  In this case we need to take a weighted 

average of the distribution conditional on there being a bus and the distribution conditional on 

there being no bus, where the weights are the (estimated) probability of a bus and the (estimated) 

probability of no bus.  The weighted average of the mean of the two conditional distributions is 

just the weighted average of the means.  But the weighted average of the variance of the two 

conditional distributions is not just the weighted average of the variances unless the covariance is 

zero.  In fact, there is a non-zero covariance, since these reflect estimated subjective belief 

distributions.  A subject who holds beliefs that travel times without a bus are high compared to 

the beliefs of other subjects is also likely to hold beliefs that travel times with a bus are high 

compared to other subjects.  Hence we expect there to be a positive correlation (and hence 

covariance) between the two estimated distributions, and the parameters characterizing them.  In 

turn, this correlation might be naturally generated by subjects that have different efficiencies of 
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driving, or have different degrees of optimism or pessimism with respect to travel time.  When 

we allow for this non-zero covariance, the weighted variance is the weighted average of the two 

variances plus a term that is 2 times the two weights times the correlation.32  Once we know the 

weighted variance we immediately have the weighted standard deviation as the square root of the 

weighted variance.  Since we have estimated the model using Full Information Maximum 

Likelihood we can recover all of these terms correctly accounting for the non-linearity between 

them and inferring their correct standard errors.  Table B9 shows the estimates that result for 9th 

Avenue.  

We see that the unconditional travel time distributions for 9th Avenue have means (151, 

170 and 173) that are higher than for 7th Avenue (116).  We also see that the ranking of the mean 

travel times matches the ranking of the objective bus probability across treatments, although the 

differences are small apart from Treatment 0.2.  It is easy to check with a t-test that Treatment 

0.2’s distribution is significantly different from either of the other two, at a 1% level.  We do not 

see a lower standard deviation for the lower risk treatments than for the higher risk treatments. 

 

Hypotheses 

What do these estimates of the structural model tell us about the hypotheses? 

Hypothesis I states that subjects are able to discern the differences in congestion risk 

across treatments.  The evidence from estimates of the subjective probabilities of a bus does not 

provide support for this hypothesis, even though the point estimates are in the predicted 

direction.  The reason is that they are just so imprecisely estimated.  However, when we combine 

                                                           
32 This is a basic property of statistics when evaluating the weighted sum of variances. 



  

96 

 

these estimates with the conditional distributions of travel time, we can discern a clear difference 

between Treatment 0.2 and Treatments 0.4 and 0.6, even though Treatments 0.4 and 0.6 are not 

distinguishable (Figure B9).  We are able to make such a claim because the subjective beliefs 

about the conditional travel time distributions are estimated so precisely (Figure B8), offsetting 

the imprecision of the subjective probabilities that are used to condition those distributions, to 

arrive at the unconditional distributions for each treatment.   

Hypothesis II states that under an endogenous information environment, we should see a 

difference in learning comparing across the risk treatments, such that there should be evidence of 

more learning in the low congestion risk treatments than in the high congestion risk treatments .  

Across the treatments, the difference in learning is measured by comparing the estimated 

subjective probabilities of congestion or the subjective probability distributions of travel times.  

The estimates of the subjective probability of congestion do not provide any support for the 

hypothesis, since the standard error is larger, not smaller, in Treatment 0.2 compared to the 

higher risk treatments.  The estimates of the subjective probability distribution of travel times 

also do not provide support for the hypothesis, since the standard deviations for the three 

distributions are not significantly different from each other: they are 10.992, 10.298, and 10.524, 

respectively (Figure B9).  Thus, neither the subjective probability of congestion nor the 

subjective probability distribution of travel times provide support for Hypothesis II.  The results 

of the structural estimation are consistent with the results of the descriptive data and Probit 

model in showing a lack of support for Hypothesis II: in the descriptive data, there is no 

significant changes in the proportion of risky choices in any of the treatments; in the Probit 

model, there is no significant changes in the propensity to take the risky route in any of the 

treatments.  
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Subjects have an expectation as to how long it will take to complete the drive on 9th 

Avenue, but how accurate is their expectation?  In other words, does their expectation match the 

actual travel time that it took them to complete the drive?  Here, another way to examine learning 

is perhaps by comparing the expected outcome to the realized outcome.  If subjects hold a fairly 

accurate expectation of the travel times on 9th Avenue, then the estimated belief of travel time 

distribution should be close to the actual realized travel time distribution.  Hence we compare the 

mean and standard deviation of the estimated subjective distribution to the mean and standard 

deviation of the actual distribution.  In that case there is some slight evidence that the estimated 

distribution in Treatment 0.2 is closer to its corresponding actual distribution than the other 

treatments.  However, this “evidence” is not statistically significant. Overall, we do not have 

significant results to support Hypothesis II regardless of what we describe as learning.33   

 Overall, results of the structural model are consistent with results of the Probit model, 

showing support for Hypothesis I but not Hypothesis II.  Both models are consistent in showing 

that subjects are able to discern the difference between low congestion risk and high congestion 

risk.  In terms of learning, however, we do not observe a difference in learning across the 

treatments from either model.  In the Probit model, there is no significant changes in the 

propensity of route choice in any of the treatments, thus we do not observe a difference in 

learning across the treatments.  In the structural model, there is also no evidence of a difference 

in learning across the risk treatments, as it is measured by the estimated probabilities of 

                                                           
33 The usual Bayesian approach might expect that subjects start with a diffuse prior, and refine that as sample data 

are observed.  This would suggest that the posterior distribution (i.e., the estimated travel time distribution) would 

initially be more diffuse than the sample (i.e., the actual distribution), and converge towards the sample standard 

deviation over time, which would seem to be inconsistent with what we infer (Figure B8).  However, the Bayesian 

logic does not require that one start with a diffuse prior, and the evidence that these subjects do not have a subjective 

belief distribution that is more diffuse than the data does not violate Bayesian logic.  To test the Bayesian version of 

Hypothesis II we would need to have independent estimates of the prior distributions that subjects had at the 

beginning of the experiment with respect to the travel times on 9th Avenue conditional on a bus or no bus. 
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congestion and the estimated travel time distributions.  The standard error of the estimated 

probability of congestion is not smaller (in fact, it is larger) in the lowest risk treatment than the 

high risk treatments, and the standard deviation of the estimated travel time distribution is also 

not smaller (or significantly different) in the lowest risk treatment than the high risk treatments.  

 

2.5 Conclusion  

The goal of this essay is to examine belief formation and learning under a continuous 

penalty setting, so that we can compare it to results from Chapter 1 that examines behavior under 

a discrete penalty setting.  Under an endogenous information environment, we examine if 

learning differs depending on the underlying congestion probability under different penalty 

settings.  Recall in the discrete penalty setting, the results show there is more learning in the low 

risk treatment than in the higher risk treatments.  The difference in learning across the risk 

treatments is expected under an endogenous information environment, since in a low risk 

treatment subjects are more likely to start with a prior belief of low congestion, and are therefore 

more likely to drive on the risky route, and subsequently obtain more information to revise their 

prior belief compared to their counterparts who starts with a prior belief of high congestion.  This 

same pattern of behavior would still be expected to be taking place when the penalty is induced 

in a continuous rather than discrete manner; however, here we do not report evidence that 

learning differs across the risk treatments.  What could explain this difference? 

Recall that in the Probit model, in the continuous penalty setting the marginal effect of 

Toll is significant in the propensity to choose the risky route and this is true in all risk treatments.  

In contrast, in the discrete penalty setting the marginal effect of Toll is only significant in the low 

risk treatments but not in the high risk treatments.  Thus, depending on the penalty setting the 
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marginal effect of toll may or may not be significant on the propensity to choose the risky route.  

Further, given that information about the risky route can only be obtained if one chooses to drive 

on it, the difference in the marginal effect of Toll on route propensities may contribute to the 

difference in learning across the penalty settings.  
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Tables and Figures for Chapter 2 

Table B1: Tolls and Wages in the Simulator Task 

 Toll Range Late Penalty Time Threshold  

Wage=$2.50 $0.50-$2.00 $0.03 or $0.05 per sec 1min 50 secs to 2m 30 secs  

 Wage=$5.00 $0.50-$4.00 $0.05 or $0.10 per sec 

The range of toll cards was in 10-cent increment.                                                                                               

The range of time thresholds was in 5-second increment.  

 

 

 

Table B2: Prizes and Probabilities in Lottery Task 

Probability 

range 

Safe Lottery 

Low Prize 

Safe Lottery 

High Prize 

Risky Lottery 

Low Prize 

Risky Lottery 

High Prize 

0.1 – 0.9 $2 $3 $0.25 $4 

0.1 – 0.9 $2 $3 $0.25 $5 

0.1 – 0.9 $2 $3 $0.25 $6 

0.1 – 0.9 $4 $6 $0.50 $10 
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Table B3: Demographic Sub-groups in Each Treatment 

 Treatment 

0.2 

Treatment 

0.4 

Treatment 

0.6 

Treatment 

0.8 

All  

 

Number of subjects 40 33 30 36 139 

 

Location  

   Orlando 30% 39% 50% 56% 56% 

   Atlanta 70% 61% 50% 44% 44% 

 

Gender  

    Male  55% 52% 54% 54% 53% 

    Female 45% 48% 46% 46% 47% 

 

Education  

    College  85% 82% 81% 78% 82% 

    Non-college 15% 18% 19% 22% 18% 

 

Income  

    High: above $100K 42% 57% 47% 50% 49% 

    Low: $100K or     

below 

58% 43% 53% 50% 51% 

 

Table B4: Distribution of Realized Penalties  

 

Realized Penalties 7th Avenue 9th Avenue without bus 9th Avenue with bus 

0 90.46% 61.52% 1.57% 

0.5 4.90% 20.76% 0.39% 

1 0.68% 6.33% 1.18% 

1.5 0% 4.81% 11.37% 

2 0.14% 2.78% 16.08% 

2.5 1.50% 3.29% 30.98% 

3 0% 0% 3.53% 

3.5 0% 0% 7.06% 

4 0% 0.25% 6.67% 

4.5 0% 0.00% 1.96% 

5 2.32% 0.25% 19.22% 

Total 100% 100% 100% 

Pooling over all subjects and treatments.  Number of observations is 1,347.                                                                                                  

Realized penalty on 7th Avenue has a mean of $0.05 and standard deviation 0.15.                                                                                                           

Realized penalty on 9th Avenue without a bus has a mean of $0.36 and standard deviation 0.62.                                                        

Realized penalty on 9th Avenue with a bus has a mean of $3.06 and standard deviation 1.45.  
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Table B5: Route Switches  

From one 

period to the 

next 

# of 

subjects 

who took 

7th Ave. in 

the first of 

the two 

periods 

# of 

subjects 

who took 

9th Ave. in 

the first of 

the two 

periods 

Proportion 

taking 9th 

Avenue  

# of 

subjects 

who switch 

from 7th to 

9th  

# of 

subjects 

who switch 

from 9th to 

7th 

For those 

who take 

7th Ave., 

proportion 

that switch 

to 9th 

For those 

who take 

9th Ave., 

proportion 

that switch 

to 7th 

Difference   

Treatment 0.2 

1 to 2 15 25 62.5% 7 7 47% 28% 19% 

2 to 3  15 25 62.5% 4 3 27% 12% 15% 

3 to 4 14 26 65% 3 4 21% 15% 6% 

4 to 5  15 25 62.5% 4 3 27% 12% 15% 

5 to 6 14 26 65% 2 4 14% 15% -1% 

6 to 7 16 24 60% 4 2 25% 8% 17% 

7 to 8 14 26 65% 4 5 29% 19% 9% 

8 to 9 15 25 62.5% 0 3 0% 12% -12% 

9 to 10 19 21 52.5% 5 3 26% 14% 12% 

Average  -  -   61.94% -  -  24% 16% 8% 

Treatment 0.4 

1 to 2 16 17 51.52% 5 4 31% 24% 8% 

2 to 3  15 18 54.55% 2 1 13% 6% 8% 

3 to 4 14 19 57.58% 3 5 21% 26% -5% 

4 to 5  16 17 51.52% 4 4 25% 24% 1% 

5 to 6 16 17 51.52% 3 3 19% 18% 1% 

6 to 7 16 17 51.52% 7 3 44% 18% 26% 

7 to 8 12 21 63.64% 1 6 8% 29% -20% 

8 to 9 17 16 48.48% 4 2 24% 13% 11% 

9 to 10 15 18 54.55% 1 3 7% 17% -10% 

Average -  -  53.88% -   21% 19% 2% 

Treatment 0.6 

1 to 2 16 14 46.67% 4 3 25% 21% 4% 

2 to 3  15 15 50% 4 8 27% 53% -27% 

3 to 4 19 11 36.67% 4 5 21% 45% -24% 

4 to 5  20 10 33.33% 7 4 35% 40% -5% 

5 to 6 17 13 43.33% 4 3 24% 23% 0% 

6 to 7 16 14 46.67% 5 7 31% 50% -19% 

7 to 8 18 12 40% 1 4 6% 33% -28% 

8 to 9 21 9 30% 4 4 19% 44% -25% 

9 to 10 21 8 27.59% 3 3 14% 38% -23% 

Average -  -  39.36% -   22% 39% -16% 

Treatment 0.8 

1 to 2 24 12 33.33% 4 1 17% 8% 8% 

2 to 3  21 15 41.67% 1 5 5% 33% -29% 

3 to 4 25 11 30.56% 7 4 28% 36% -8% 

4 to 5  22 14 38.89% 3 4 14% 29% -15% 

5 to 6 23 13 36.11% 3 5 13% 38% -25% 

6 to 7 26 10 27.78% 5 5 19% 50% -31% 

7 to 8 26 10 27.78% 3 3 12% 30% -18% 

8 to 9 26 10 27.78% 3 2 12% 20% -8% 

9 to 10 25 11 30.56% 3 1 12% 9% 3% 

Average -  -  32.72% -   14% 29% -15% 
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Table B6: Congestion Experiences  

From one 

period to the 

next 

# of subjects 

who switch 

from 9th to 

7th 

Conditional on a 

bus card, # of 

subjects who 

switch from 9th 

to 7th  

Conditional on 

no bus card, # 

of subjects who 

switch from 9th 

to 7th 

Conditional on 

a bus card, % 

of subjects who 

switch from 9th 

to 7th 

Conditional on 

no bus card, % 

of subjects who 

switch from 9th 

to 7th 

Treatment 0.2 

1 to 2 7 2 5 29% 71% 

2 to 3  3 0 3 0% 100% 

3 to 4 4 0 4 0% 100% 

4 to 5  3 1 2 33% 67% 

5 to 6 4 0 4 0% 100% 

6 to 7 2 2 0 100% 0% 

7 to 8 5 3 2 60% 40% 

8 to 9 3 1 2 33% 67% 

9 to 10 3 1 2 33% 67% 

Average  -- -- -- 32% 68% 

Treatment 0.4 

1 to 2 4 4 0 100% 0% 

2 to 3  1 0 1 0% 100% 

3 to 4 5 2 3 40% 60% 

4 to 5  4 2 2 50% 50% 

5 to 6 3 3 0 100% 0% 

6 to 7 3 2 1 67% 33% 

7 to 8 6 4 2 67% 33% 

8 to 9 2 1 1 50% 50% 

9 to 10 3 3 0 100% 0% 

Average  -- -- -- 64% 36% 

Treatment 0.6 

1 to 2 3 3 0 100% 0% 

2 to 3  8 8 0 100% 0% 

3 to 4 5 1 4 20% 80% 

4 to 5  4 3 1 75% 25% 

5 to 6 3 1 2 33% 67% 

6 to 7 7 5 2 71% 29% 

7 to 8 4 3 1 75% 25% 

8 to 9 4 3 1 75% 25% 

9 to 10 3 2 1 67% 33% 

Average  -- -- -- 68% 32% 

Treatment 0.8 

1 to 2 1 1 0 100% 0% 

2 to 3  5 3 2 60% 40% 

3 to 4 4 4 0 100% 0% 

4 to 5  4 4 0 100% 0% 

5 to 6 5 3 2 60% 40% 

6 to 7 5 5 0 100% 0% 

7 to 8 3 3 0 100% 0% 

8 to 9 2 1 1 50% 50% 

9 to 10 1 1 0 100% 0% 

Average  -- -- -- 86% 14% 
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Table B7: Propensity of Route Choice Estimated with a Probit Model 

 Treatment 0.2 

N=40 

Treatment 0.4 

N=33 

Treatment 0.6 

N=30 

Treatment 0.8 

N=36 

Pooled 

Across 

Treatments  

N=139 

Constant  .397*** 

(0.001) 

.791*** 

(<0.001) 

.232 

(0.159) 

.596** 

(0.037) 

.619*** 

(<0.001) 

Toll .301*** 

(<0.001) 

.069** 

(0.040) 

.200*** 

(0.002) 

.351* 

(0.087) 

.194*** 

(<0.001) 

Late Penalty  

Per Second 

.453 

(0.599) 

-.791*** 

(<0.001) 

-.232 

(0.159) 

-.596** 

(0.037) 

-.619*** 

(<0.001) 

Wage -.080** 

(0.026) 

.027 

(0.312) 

.028 

(0.305) 

.057 

(0.190) 

-.013 

(0.407) 

Period 2 -.001 

(0.997) 

.030 

(0.741) 

.025 

(0.819) 

.114 

(0.385) 

.030 

(0.622) 

Period 3 .031 

(0.795) 

.052 

(0.561) 

-.080 

(0.424) 

-.047 

(0.741) 

-.009 

(0.882) 

Period 4 .002 

(0.984) 

-.001 

(0.991) 

-.103 

(0.308) 

.088 

(0.505) 

-.015 

(0.803) 

Period 5 .029 

(0.809) 

.005 

(0.958) 

-.029 

(0.776) 

.0382 

(0.778) 

.009 

(0.883) 

Period 6 -.029 

(0.800) 

-.003 

(0.978) 

-.005 

(0.963) 

-.104 

(0.471) 

-.025 

(0.682) 

Period 7 .028 

(0.810) 

.094 

(0.282) 

-.057 

(0.567) 

-.140 

(0.331) 

.006 

(0.920) 

Period 8  .0002 

(0.999) 

-.028 

(0.777) 

-.122 

(0.242) 

-.096 

(0.501) 

-.066 

(0.293) 

Period 9 -.106 

(0.337) 

.030 

(0.745) 

-.145 

(0.191) 

-.059 

(0.678) 

-.081 

(0.202) 

Period 10 -.053 

(0.638) 

-.031 

(0.762) 

-.115 

(0.262) 

.032 

(0.814) 

-.057 

(0.366) 

Prior .008 

(0.738) 

-.018 

(0.159) 

.018 

(0.200) 

-.069*** 

(0.001) 

-.051*** 

(<0.001) 

The p-values are in parentheses, testing if the coefficient is different from zero.  

The coefficients are marginal effects computed using the delta method.  

*** means the coefficient is significant at the 1% level. 

** means the coefficient is significant at the 5% level.  

* means the coefficient is significant at the 10% level. 
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Table B8: Subjective Expected Utility Beliefs  

Risk attitudes:  

𝒓 

.367*** 

(<0.001) 

{0.203, 0.532} 

Belief of travel time on 9th Avenue with bus:  

𝝁𝟗
𝒃𝒖𝒔 

194.952 

(a) 

{a} 

𝝈𝟗
𝒃𝒖𝒔 

5.385 

(0.111) 

{-1.241, 12.020} 

Belief of travel time on 9th Avenue without bus:  

𝝁𝟗
𝒏𝒐 𝒃𝒖𝒔 

143.966*** 

(<0.001) 

{140.946, 146.99} 

𝝈𝟗
𝒏𝒐 𝒃𝒖𝒔 

1.034 

(0.407) 

{-1.410, 3.478} 

Belief of travel time on 7th Avenue:  

𝝁𝟕 

115.642*** 

(<0.001) 

{115.499, 115.785} 

𝝈𝟕 

.365* 

(0.083) 

{-0.048, 0.778} 

Belief of congestion (or bus) on 9th Avenue: 

𝝅𝟐𝟎 

.133 

(0.627) 

{-0.405, 0.672} 

𝝅𝟒𝟎 

.519*** 

(0.004) 

{0.164, 0.874} 

𝝅𝟔𝟎 

.580*** 

(0.001) 

{0237, 0.923} 

The p-values are in parentheses, testing if the coefficient is different from zero.   

The 95% confidence intervals are in brackets. 

*** means the coefficient is significant at the 1% level. 

** means the coefficient is significant at the 5% level.  

* means the coefficient is significant at the 10% level.   

(a) implies that a standard error or confidence interval cannot be computed by the delta method due 

to numeric issues, because the estimated probabilities approach 0 or 1. 
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Table B9: Unconditional Estimated Travel Time Distributions 

 Treatment 0.2 Treatment 0.4 Treatment 0.6 

Belief of travel time on 9th Avenue: 

𝝁𝟗 

150.781*** 

(<0.001) 

{125.400, 176.161} 

170.437*** 

(<0.001) 

{153.109, 187.765} 

173.560*** 

(<0.001) 

{156.718, 190.402} 

𝝈𝟗 

10.996*** 

(<0.001) 

{7.532, 14.460} 

10.298*** 

(0<0.001) 

{9.268, 11.329} 

10.524*** 

(<0.001) 

{9.030, 12.017} 

Belief of travel time on 7th Avenue: 

𝝁𝟕 

115.642*** 

(<0.001) 

{115.499, 115.785} 

𝝈𝟕 

.365* 

(0.083) 

{-0.048, 0.778} 

The p-values are in parentheses, testing if the coefficient is different from zero.  

The 95% confidence intervals are in brackets 

*** means the coefficient is significant at the 1% level. 

** means the coefficient is significant at the 5% level.  

* means the coefficient is significant at the 10% level. 
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Figure B1: Distribution of Observed Travel Times 

  

Pooling over all subjects and treatments.                                                                                                  

Travel time on 7th Avenue has a mean of 114 and standard deviation of 5.5.                                                                                                           

Travel time on 9th Avenue without a bus has a mean of 133 and standard deviation of 10.1.                                                       

Travel time on 9th Avenue with a bus has a mean of 195 and standard deviation of 17.4.  

 

 

 

 

 

 

 

 

 

 

 

 

0

.05

.1

.15

Density

100 150 200 250
Travel Time in Seconds

7
th
 Avenue

9
th
 Avenue Without Bus

9
th
 Avenue With Bus



  

108 

 

Figure B2: Distribution of Toll by Route  

 

 

 

Figure B3: Number of Bus Cards Subjects See Before First Period  
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Figure B4: Proportion of Subjects who Take 9th Avenue Across Periods

 

Figure B5: Distribution of Observed Travel Times, Assume Normal Distribution 

 

25

35

45

55

65

1 2 3 4 5 6 7 8 9 10
Periods

Treatment 0.2, N = 40

25

35

45

55

65

1 2 3 4 5 6 7 8 9 10
Period

Treatment 0.4, N = 33

25

35

45

55

65

1 2 3 4 5 6 7 8 9 10
Periods

Treatment 0.6, N = 30

25

35

45

55

65

1 2 3 4 5 6 7 8 9 10
Periods

Treatment 0.8, N = 36

0

.02

.04

.06

.08

Density

100 150 200 250
Travel Time in Seconds

9
th
 Avenue with a Bus 9

th
 Avenue with No Bus 7

th
 Avenue



  

110 

 

Figure B6: Subjective Travel Time Beliefs for 7th Avenue 

 

Figure B7: Subjective Travel Time Beliefs for 9th Avenue 
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Figure B8: Subjective Travel Time Beliefs for 9th Avenue Compared to Actual Distributions of 

Travel Time 

 

Figure B9: Subjective Travel Time Beliefs for 9th Avenue Depending on the Exogenous Chance 

of a Bus 
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CHAPTER 3 

Estimating Uncertainty Aversion Using the Source Method in Stylized Tasks 

With Varying Degrees of Uncertainty 

 

3.1 Introduction 

This essay examines uncertainty aversion34 using the source method introduced in 

Abdellaoui, Baillon, Placido and Wakker (2011), hereafter ABPW.  The source method assumes 

that different types of events imply potentially different sources of uncertainty; for example, an 

event with an unknown probability is a different source of uncertainty from an event with a 

known probability.  For each type of event a probability weighting function can be estimated in a 

rank-dependent model.  The probability weighting function estimated from each source of 

uncertainty is referred to as the source function.  The source function transforms the probabilities 

into decision weights and the transformation partially reflects preferences and partially 

perceptions.  Attitudes toward uncertainty can be examined by comparing source functions.  

Note that a source function is essentially a probability weighting function, and since our analysis 

is performed using the source method, we use the term source function (instead of probability 

weighting function) hereafter.  

                                                           
34 The terms uncertainty and ambiguity both refer to events that have unknown probabilities, but they differ in that 

uncertainty refers to events that the individual has some information about the probability distribution, whereas 

ambiguity refers to a complete lack of information about the probabilities.  To put it differently, both uncertainty and 

ambiguity refer to an underlying nondegenerate distribution (i.e., not assuming the Reduction of Compound 

Lotteries), however, ambiguity differs from uncertainty in that in the former the individual does not even have 

enough information to form any subjective belief distribution, degenerate or non-degenerate.   

In our lottery task experiment, subjects are provided with partial information about the unknown probabilities 

instead of a complete lack of information.  Thus in the analysis we use the term uncertainty aversion instead of 

ambiguity aversion.   
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The primary research question in this essay is: if an event with an unknown probability is 

presented to subjects under two scenarios that vary in degrees of uncertainty (i.e., in one scenario 

the event is presented with little uncertainty about its probabilities, whereas in another scenario 

the same event is presented with more uncertainty about its probabilities), will this result in 

variations in behavior?  If we estimate a source function for each scenario, will the estimated 

source functions shift in a way that is consistent with these variations in uncertainty?  In other 

words, does behavior vary in a systematic manner going from the least uncertain scenario to the 

most uncertain scenario?  The experiment described in this essay uses a within-subjects design 

where each subject completes three types of lottery tasks that are ranked in order of increasing 

uncertainty.  Each task involves making a pairwise comparison between a relatively safe lottery 

and a relatively risky lottery.  In the first task the probabilities of the outcomes are known, in the 

second and third tasks the probabilities are unknown and are presented under varying degrees of 

uncertainty.   

Using a revealed preference approach, a source function is estimated for each of the three 

types of tasks based on the choices observed.  The estimation is performed using maximum 

likelihood assuming the two-parameter Prelec (Prelec (1998)), Tversky-Kahneman (Tversky and 

Kahneman (1992)), hereafter TK, and Power probability weighting specifications assuming a 

rank ordering of outcomes consistent with Rank Dependent Utility Theory (Quggin (1982)).  

Next, the resulting source functions are compared using the two indices of uncertainty aversion 

from the source method: the index of pessimism and the index of likelihood insensitivity.  

Pessimism is a tendency to place a lower decision weight for the best outcome relative its 

underlying objective probability (i.e., w(p) < p).  It reflects a source function that is convex, 

globally or locally, such that on the unit interval a subject displays pessimism only for a 
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particular range of probabilities.  A concave region would similarly be interpreted as optimism.  

Likelihood insensitivity is a tendency to overweigh low probabilities and underweigh high 

probabilities: for an event that has a low probability of occurring, subjects weigh the event higher 

than its underlying objective probability (i.e., w(p) > p), and for an event that has a high 

probability of occurring, subjects weigh the event lower than its underlying objective probability 

(i.e., w(p) < p).  Likelihood insensitivity reflects an inverse-S shaped source function, but notice 

that likelihood insensitivity could also reflect a change in subjective probabilities in the direction 

of uniformity, as posited under the principle of insufficient reason.35   

The index of pessimism and the index of likelihood insensitivity can be estimated, for 

example, using the two-parameter Prelec probability weighting specification.36  Given the 

choices that subjects make in the three types of lottery tasks, we estimate a source function for 

each type of task assuming the Prelec specification.  Next, across the three estimated source 

functions we compare the pessimism indices, and the difference of the pessimism indices is 

interpreted as uncertainty aversion, as is defined by the source method.  Likewise, we compare 

the likelihood insensitivity indices across the three source functions, and the difference of the 

likelihood insensitivity indices is interpreted as another characteristic property of uncertainty 

aversion.  We undertake a similar estimation for the TK and Power probability weighting 

specifications.   

                                                           
35 The “principle of insufficient reason” or the “principle of indifference” states that if one is ignorant of the ways an 

event can occur, the event will occur equally likely in any way (first enunciated by Jakob Bernoulli).   
36 The Rieger and Wang weighting function is another relatively flexible probability weighting specification with 

two parameters (Rieger and Wang (2006)).  Harrison, Humphrey and Verschoor (2009) estimate probability 

weighting using both Prelec (1998) and Rieger and Wang (2006) specifications and report only small differences in 

results between the two specifications. 
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Based on an experiment that presents simply stylized lottery tasks to adult non-student 

participants in Atlanta and Orlando, we find that the results obtained using the source method are 

consistent with past studies that do not use the source method in showing that behavior differs 

under events with known vs. unknown probabilities (i.e., Cubitt, Kuilen and Mukerji (2012) and 

Attanasi, Gollier, Montesano and Pace (2014)).  Furthermore, the estimated source functions 

show that, compare to events with known probabilities subjects display more likelihood 

insensitivity for events with unknown probabilities, which is consistent with the findings by 

ABPW.  We also find that the behavioral difference under unknown probabilities is better 

captured by the Prelec specification than the TK or Power specification.  Results from the Prelec 

specification suggest that, as the degree of uncertainty increases, subjects display increased 

pessimism; in contrast, the TK and the Power specifications detect no such difference.  Thus, the 

conclusion regarding uncertainty aversion are contingent on which probability weighting 

specification is assumed for the source function. 

 

3.2 Literature Review 

Models of uncertainty or ambiguity can be categorized into two general types.37  One 

type is models with multiple-priors.  Multiple-priors models consider a set of priors or a set of 

probability distributions over the outcomes, not just one distribution.  Examples are the smooth 

model (Klibanoff, Marinacci and Mukerji (2005)) and the 𝛼-MEU model (Ghirardato et al. 

                                                           
37 Models of uncertainty or ambiguity describe events that have probabilities not known to the subject.  The 

parameter p refers to subject’s subjective probability and is an unknown parameter in the decision model.  In 

contrast, models of risk describe events that have known probabilities, thus p, the objective probability, is a known 

parameter in the decision model.   
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(2004)).  The smooth model considers a set of priors for the possible outcomes,38 plus separate 

utility parameters to capture attitudes toward risk and attitudes toward uncertainty.39  In 

evaluating any two-stage lotteries, the smooth model takes the Expected Utility (EU) of each 

one-stage lottery within each prior and then takes the Expected Value of all EUs across the 

priors.  The α-MEU model also considers a set of priors or scenarios. The parameter, α, weighs 

the worst scenario, and (1- α) weighs the best scenario, thus α serves as the index of uncertainty 

aversion.  Another type is rank-dependent models such as Choquet Expected Utility (CEU) 

(Gilboa (1987) and Schmeidler (1989)) and Cumulative Prospect Theory (CPT) (Tversky and 

Kahneman (1992)).  These models use decision weights to model preferences toward risk and 

uncertainty; they rank outcomes in the order of attractiveness and attach decision weights to each 

ranked outcome.  When testing which model has better descriptive and predictive power for the 

observed choices, Savage’s Subjective Expected Utility (SEU) model (Savage (1971)) typically 

serves as a baseline comparison to the more complex uncertainty models.40 

This literature review focuses on studies that model preferences toward uncertainty using 

decision weights.  Decision weights have been elicited using methods such as the indifference 

approach (Mangelsdorff and Webber (1994)), the Quadratic Scoring Rule (Offerman, Sonneman, 

Kuilen and Wakker (2009), Andersen, Fountain, Hole, and Rutström (2014) and Harrison 

(2014)), or lottery pairs in a list format (ABPW (2011), Abdellaoui, Vossman and Weber 

                                                           
38 Events that have a set of priors may be viewed as having elements of a compound risk.  One should note that the 

smooth model assumes that compound risk is not reducible to a single probability, i.e., the model does not assume 

the axiom of Reduction of Compound Lotteries (ROCL).  
39 For example, the Constant Relative Ambiguity Aversion (CRAA) parameter serving as the index of uncertainty 

aversion under uncertainty is analogues to the Constant Relative Risk Aversion (CRRA) parameter serving as the 

index of risk aversion under risk.   
40 One important distinction between Savage’s subjective risk model and a more complex uncertainty model is that 

the former assumes ROCL and the latter doesn’t.  In a subjective risk model, any probability distribution is reducible 

to a single (degenerate) probability, i.e., to the mean of its distribution.  In contrast, in an uncertainty model a 

probability distribution is not reducible to a single probability estimate.  
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(2005)).  The common finding across these methods is that, under uncertainty subjects tend to 

overweigh low probabilities and underweigh high probabilities, displaying a tendency to place 

equal decision weights on all possible outcomes.   

The rank-dependent models CEU and CPT can both be generalized to non-additive 

decision weights.  CPT is different from CEU in that the former estimates separate weighting 

functions W+ and W- for gains and losses, respectively.  The experimental literature on 

uncertainty aversion considered CEU to be rank-dependent and similar to Rank Dependent 

Utility (RDU) under risk.  As Hey and Pace (2014) puts it: “CEU is the same as RDU (which is 

not regarded by all as a theory of behavior under uncertainty because it uses objective 

probabilities but also uses a weighting function, mapping objective probabilities into subjective 

probabilities) under an appropriate interpretation of that latter theory.”  In the estimation of CEU, 

Hey and Pace (2014) rank-order the outcomes and assume non-additive capacities.  The 

capacities are estimated non-parametrically, such that each of the capacities is a parameter to be 

estimated, as are the pairwise unions.  The same estimation approach is used in Conte and Hey 

(2013) and Hey, Lotito and Maffioletti (2010).  A recent approach is to assume that the 

capacities add up to 1 and estimate them parametrically assuming a probability weighting 

function, as it is shown in Kothiyal, Spinu and Wakker (2014).  In this way, the CEU capacities 

are essentially RDU decision weights.  

The following review first discusses studies that examine uncertainty aversion using the 

source method.  In these studies decision weights are elicited over the full range of objective 

probabilities, and then these elicited values are compared to their respective underlying objective 

probabilities using two indices of uncertainty aversion defined below.  The next set of studies 
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discusses different approaches to elicit decision weights or to correct the reported probabilities 

for risk and/or uncertainty premium.  

 

3.2.1 Abdellaoui, Baillon, Placido and Wakker (2011), ABPW 

In this study different types of events are presumed to constitute different sources of 

uncertainty, and that the decisions made can be examined using the source method.  The source 

method employs a class of uncertainty models that are rank-dependent: RDU/CEU or CPT.41  

These models rank the possible outcomes according to the level of attractiveness, then estimate 

decision weights assuming a probability weighting function.  The probability weighting function 

estimated from each source of uncertainty is referred to as the source function that maps the 

probabilities, p, into decision weights, w(p).  A source function can be estimated from events 

with known or unknown probabilities.  Each source function reflects interactions between beliefs 

and preferences, and by comparing two source functions attitudes toward uncertainty that reflect 

a combination of beliefs and preferences are revealed.  Note that a source function is presumed 

to reflect a combination of beliefs and preferences; it does not separate the two.  It is the 

difference in two source functions that is said to reveal uncertainty aversion.  Here, the term 

uncertainty aversion reflects the differences of beliefs across events as well as differences of 

preferences across events.42 

                                                           
41 ABPW (2011) perform the estimation under the name Rank Dependent Utility, whereas Kothiyal, Spinu and 

Wakker (2014) perform the same estimation under the name Choquet Expected Utility.  Both studies use the source 

method.  
42 In the context of the source method, the term “uncertainty aversion” reflects beliefs as well as preferences.  We 

are aware that this way of defining uncertainty aversion may cause confusion with many uncertainty models that 

separate beliefs from preferences.  Nevertheless, we use the source method for our analysis for the purpose of 

examining uncertainty aversion using decision weights.  
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Attitudes toward uncertainty and the degree of perceived uncertainty can be defined in a 

tractable manner using two indices of uncertainty: pessimism and likelihood insensitivity.  As 

mentioned previously, the index of pessimism reflects the concavity or convexity of a source 

function, and the difference in concavity or convexity across the graphs of the source functions is 

interpreted as uncertainty aversion by ABPW.  Likelihood insensitivity reflects a source function 

that is inverse-S shaped, i.e., for an event that has a low probability of occurring, subjects weigh 

the event higher than its underlying objective probability (i.e., w(p) > p), and for an event that 

has a high probability of occurring, subjects weigh the event lower than its underlying objective 

probability (i.e., w(p) < p), displaying a tendency to place equal decision weights on all possible 

outcomes.  The difference in insensitivity across the graphs of the source functions is interpreted 

as another characteristic property of uncertainty aversion by ABPW.43  In the study these two 

indices are captured using the two-parameter Prelec weighting function (Prelec (1998)).  

The source method does not propose a new theoretical model of uncertainty.  Instead, it 

proposes a way to analyze behavior under uncertainty using a class of theoretical models that 

already exist in the literature: rank-dependent models.  The novelty here is to define uncertainty 

preferences by means of two indices based on the decision weights.  

The ABPW study is based on two experimental tasks.  The first task is the classic 

Ellsberg urn experiment and the second involves natural uncertainties such as the weather and a 

stock index in an obscure country.  In the Ellsberg task subjects are presented with two urns each 

containing eight balls.  The known urn K contains eight balls of different colors: red, blue, 

yellow, black, green, purple, brown, and cyan.  The unknown urn U contains eight balls with the 

                                                           
43 One should note that likelihood insensitivity, by itself, may solely reflect diffuse perceptions and may not reflect 

any preferences toward uncertainty at all.  It is the difference in insensitivities between two source functions that is 

considered a characteristic property of uncertainty preferences in the source method.  
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same set of colors but the composition is unknown to the subjects in the sense that some colors 

might appear several times and others might be absent.  Using a list format, subjects are 

presented with a series of choices, each between a prospect and an ascending range of a sure 

payment, with the switching point taken as the certainty equivalent.  One of the choices on the 

list is selected for payment.  The second task involves natural uncertainties, such as the French 

stock index CAC40, temperature in Paris (the home city where the experiment is conducted), and 

temperature in a foreign city.  The elicitation method is again a list varying the amount of the 

certain option.  One of the choices is randomly selected for payment.44  

To control for risk preferences, utilities are elicited using lotteries with known 

probabilities that are presented in a list format similar to that used for the uncertainty tasks, with 

the switching values taken as the certainty equivalent.  The lotteries always have an objective 

probability of 0.5.  Utilities are estimated assuming a power utility function using nonlinear 

least-squares methods.   

In the uncertainty task ABPW calculate, rather than estimate, decision weights, after 

which they fit these weights to a two-parameter Prelec function by minimizing quadratic 

distance.  The Ellsberg task compares the certainty equivalents for risk and for uncertainty.  The 

source functions for urns K and U significantly deviate from linearity (i.e., decision weights 

deviate from the underlying objective probabilities), and display significant likelihood 

insensitivity, with significantly more insensitivity in the urn U than in the urn K.  In particular, 

                                                           
44 In the Ellsberg task, ABPW (2011) implement a random incentive payment procedure where one of the choices is 

randomly selected for real payment.  In the task that involves natural uncertainties, ABPW implement two 

treatments of payment procedures.  In one treatment subjects receive a flat payment and the choices are hypothetical, 

thus the choices are not incentivized.  In the other treatment one of the choices is randomly selected for real 

payment.  The money that the subjects earned is collected about three months from the date of the experiment, after 

the uncertainty is resolved.   
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for large probabilities (p > 0.5) there is more underweighting of probabilities for urn U than for 

urn K; for small probabilities (p ≤ 0.5) there is no significant difference.  The pessimism index is 

not significantly different from zero in either urn.  Pessimism in urn U, however, significantly 

exceeds that in urn K.  The ABPW interpret the underweighting or overweighting of the 

subjective probabilities as indicative of willingness to bet,45 and report that there is more 

willingness to bet for risk than is for uncertainty in the high probabilities (p > 0.5), and that the 

willingness to bet is the same for both in the low probabilities (p ≤ 0.5).   

The second task makes observations on the certainty equivalents for natural uncertainties.  

All source functions display a common inverse-S shaped with low probabilities overweighted 

and high probabilities underweighted.  The insensitivity and pessimism indices are significantly 

different from zero but are not significantly different across the sources of natural uncertainties.  

Furthermore, the source functions for natural uncertainties are not significantly different from the 

one for the uncertain urn in the Ellsberg task.  These findings suggest that events with unknown 

probabilities are perceived to be similar, but they are perceived differently from events with 

known probabilities.   

 

3.2.2 Kothiyal, Spinu and Wakker (2014), KSW 

This study compares the predictive power of the source method to that of popular 

alternatives.  The list of models examined include CEU using the source method, CPT using the 

source method, and multiple-priors models such as maxmin EU and maxmax EU.   

                                                           
45 ABPW elicit subject’s certainty equivalent for each event.  It appears that ABPW equate the difference in 

certainty equivalents across events to difference in willingness to bet across events.  
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In the experiment uncertainty is implemented using a bingo blower that contains balls of 

three different colors in 0.2, 0.3, 0.5 proportions.  There are three treatments with the total 

number of balls being 10, 20, to 40 balls.  They find that the more balls there are in the bingo 

blower, the harder it is for subjects to guess the proportion of each color, i.e., the harder it is for 

them to figure out the underlying objective probability of each color.  In this way, the treatments 

are ranked in order of increasing uncertainty, with the 10-ball bingo blower being the least 

uncertain treatment and the 40-ball bingo blower being the most uncertain treatment.  The 

outcomes include both gains and losses, and one of the choices is randomly selected for 

payment.46   

Some of the observed choices are used for model fitting, and the remaining choices are 

used as a prediction set.  The estimation uses maximum likelihood and the comparison between 

models is based on the predicted log-likelihood of the test set.  The study reports that CPT using 

the source method outperforms alternative theories for predicting decisions under uncertainty.  

Furthermore, when estimating CPT using different specifications of the source function (i.e., 

Prelec (1998), Tversky-Kahneman (1992), Goldstein and Einhorn (1987), and Neo-additive 

(2007)), CPT still outperforms alternative theories. Hence, the conclusion that CPT best predicts 

choices under uncertainty is not sensitive to the particular parameterization chosen.  The study 

does not report the shape of the estimated source functions.47 48   

 

                                                           
46 KSW (2014) do not mention how they would handle a situation where the subject’s realized outcome turns out to 

be a loss.   
47 KSW (2014) estimate separate source function parameters for gains and losses and report that the weighting 

parameters for gains are significantly different than for losses.   
48 Recall that some events involve possible gains and losses, to avoid taking the utility of a negative payment, KSW 

“normalize” the utilities such that the utility of the best outcome is 1 and the utility of the worst outcome is 0.   
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3.2.3 Abdellaoui, Vossmann and Weber (2005), AVW 

AVW uses an approach that is essentially the source method without referring to it as 

such.  The experiment aims to decompose decision weights into a decision attitude component 

and a belief component.  To do so they use three different types of tasks to elicit certainty 

equivalents for utility, choice-based probabilities (beliefs) and decision weights, respectively.  In 

each type of task subjects go through a series of binary choice questions in a list format.  In the 

“utility” task subjects choose between two risky prospects; in the “choice-based probability” task 

they choose between a risky prospect and an uncertain prospect; in the “decision weight” task 

they choose between an uncertain prospect and a sure amount.  Subjects are paid a flat fee for 

participating in the experiment and the lottery outcomes are hypothetical, thus subjects’ choices 

are not incentivized in a salient manner.  

Decision weights are estimated from the inferred choice-based probabilities using a 

linear-in-log-odds function.  The linear-in-log-odds function has two parameters that can be 

interpreted along the lines as the two indices of uncertainty described in ABPW (2011): one 

parameter controls the concavity or convexity of the source function and the other parameter 

reflects a source function that is inverse-S shaped.  AVW report that SEU is violated, since the 

estimated source function is non-linear.  This is consistent with the findings reported in ABPW 

(2011). However, the AVW study does not report the shape of the estimated weighting 

functions.49  

 

                                                           
49 The AVW (2005) experiment has outcomes for both gains and losses, and behavior is modeled using CPT.  They 

report violation of SEU in both gains and losses domains.  



  

124 

 

3.2.4 Dimmock, Kouwenberg and Wakker (2015), DKW 

Based on the source method, this study measures uncertainty attitudes using matching 

probabilities, which involves eliciting a probability that would make subjects indifferent between 

choosing a risky option and an uncertain option.  The matching probabilities approach is claimed 

to directly capture uncertainty attitudes without the need to measure utility or probability 

weighting. 

In the experiment, subjects go through a series of choice tasks that are designed in a list 

format, and each task is shown separately one at a time on the computer screen.  Subjects are 

asked to choose between Choice K that could result in a gain of €15 or €0 with known 

probabilities, and Choice U that could result in a gain of €15 or €0 with unknown probabilities.  

If subjects are indifferent between the choices, then they could select Indifferent.  If the subject 

selects Choice K in the current task, then Choice K is made less attractive in the next task by 

lowering the probability of the winning prize.  If, instead, the subject selects Choice U, then 

Choice K is made more attractive in the next task by increasing the probability of the winning 

prize.  This iterative process continues until the subject selects Indifferent, when this happens a 

matching probability is found.50  Alternatively, the subject could reach the maximum number of 

six iterations without selecting Indifferent, in which case the experimenter infers the average of 

the remaining upper and lower bound.  One of the decision tasks is randomly selected for 

payment.   

                                                           
50 This iterative process for eliciting preferences, i.e., chaining “old responses” into new lotteries, may not be 

incentive compatible since any strategic misrepresentation of preferences in the current round (or any decision error 

for that matter) have consequences into the following rounds, producing a different final outcome than otherwise.  

See Harrison and Rutström (2008b) for a discussion of the Trade-Off elicitation procedure.  
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For each probability on the unit interval, the authors derive the local uncertainty attitude 

by mapping the underlying objective probability, p, to the elicited matching probability, m(p).  

The function that maps p to m(p) has two parameters that have similar interpretations as the 

pessimism and likelihood sensitivity indices in ABPW (2011).  DKW report that behavior 

display uncertainty-generated likelihood insensitivity, which is a tendency to treat subjective 

likelihood as a 50-50 probability.  This is consistent with an inverse-S weighting function 

reported in ABPW (2011).  

 

3.2.5 Mangelsdorff and Webber (1994), MW 

Mangelsdoff and Webber (1994) introduce the indifference approach to eliciting 

preferences under uncertainty.  The approach is based on asking what change that is needed in 

one lottery in order to make subjects indifferent between it and another lottery.  There are two 

different aspects of the lottery that could be changed: the money outcome, or the probability.  

The first indifference approach is demonstrated in ABPW (2011) through eliciting certainty 

equivalents; the latter is demonstrated in DKW (2016) through eliciting matching probabilities.  

MW use both of these approaches to elicit Choquet capacities.51  MW did not estimate a 

(parametric) function that maps probabilities into decision weights.  In the experiment, subjects 

are asked to choose between two lottery options: an ambiguous lottery that has two possible 

outcomes with unknown probabilities, and a risky lottery that has two possible outcomes with 

known probabilities.  Subjects are asked to specify what changes had to be made to the lotteries 

                                                           
51 Studies that use the source method treat RDU the same as CEU, thus for purpose of discussing these studies the 

two terms are used interchangeably.   
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in order for them to be indifferent between the lotteries, thus the name of the elicitation method: 

indifference approach.  The first approach to elicitation is by changing the amount to be won.  

To implement the version where the money outcome is changed, subjects are asked to specify 

what changes in the amount of winning have to be made in order for them to be indifferent 

between the lotteries.  For example, if the subjects prefer the risky lottery (over the uncertainty 

lottery), then how much does the winning amount in the risky lottery have to be reduced 

(increased) in order for them to be indifferent between the two lotteries?  The second approach to 

elicitation is by changing the probability of winning.  After each lottery comparison subjects are 

asked what changes to the probabilities have to be made in order for them to be indifferent 

between the lotteries.  For example, if the subjects prefer the risky lottery (over the uncertain 

lottery), then what changes have to be made to the probabilities in the risky lottery in order for 

them to be indifferent between the two lotteries.  Subjects are paid a flat fee for participating in 

the experiment and the money in the lotteries is not paid out, thus subjects’ choices are not 

incentivized.   

MW use a simple approach to categorize behavior based on whether the subjects select 

the option with known probabilities or the option with unknown probabilities.  MW report that in 

the group of subjects who are categorized as having non-neutral attitudes toward uncertainty, 

CEU predicts behavior better than EU when EU is assumed the “principle of insufficient 

reason”.52  For the uncertain option, the underlying objective probabilities do not vary across the 

full range of probabilities, thus no probability function could be estimated and no conclusion is 

drawn regarding the shape of the function.   

                                                           
52 EU plus the assumption of the “principle of insufficient reason” is essentially SEU that assumes subjective 

probabilities for all possible outcomes are equal.  
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3.2.6 Offerman, Sonneman, Kuilen and Wakker (2009), OSKW 

This study introduces a calibration method in which elicited probabilities (from the 

Quadratic Scoring Rule) are calibrated to correct for possible effects of risk premium (for events 

with known probabilities) or uncertainty premium (for events with unknown probabilities).  For 

choices made under unknown probabilities, the corrected probabilities may be viewed as 

nonparametric decision weights.  

Subjects are presented with statements of events that have known probabilities.  They are 

asked to choose a probability (i.e., 1%, 2%, …, 100%) that the statement is true or false.  

Depending on the probability they choose, referred to as the reported probability, the subject 

receives one score if the statement is true and another score if the statement is false; the scores 

are determined by the Quadratic Scoring Rule (QSR).  The reported probabilities and their 

corresponding scores are presented on a list shown on a computer screen.  After subjects select a 

reported probability, any awarded points are converted to money using an exchange rate.  OSKW 

obtain measurements for the reported probabilities over the full range of objective probabilities.  

Subjects are assigned to one of the two payment treatments: pay all tasks,53 or pay one task 

randomly.54 

The probability that is reported by the subject is confounded by their utility and 

probability weighting curvatures.  The goal is to estimate the reported probability as a function of 

                                                           
53 In the pay-all task treatment OSKW actualize the earnings for all tasks at the end of the experiment; note that the 

earnings are not actualized after each task.  
54 Many of the experiments reviewed above employ a pay-one-randomly payment protocol and model behavior 

using non-EU models such as RDU and CPT.  Theoretically this causes incentive compatibility issues.  The pay-

one-randomly (POR) protocol implicitly assumes that subjects view each outcome in each binary choice 

independently of each other, such that their behavior is in accordance with the Compound Independence Axiom 

(CIA).  This payment protocol is incentive compatible under EUT (see Harrison and Swarthout (2014) and Cox, 

Sadiraj and Schmidt (2015)).  However, it is incompatible with non-EUT models that are not based on the CIA, 

including RDU and CPT.   
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utility and probability weighting, so that this function can serve as a correction function to 

correct the reported probability for curvatures of the utility and probability weighting.  Based on 

the choices subjects make,  OSKW calibrate the parameters of the utility and probability 

weighting functions assuming power utility and Prelec probability weighting.  Estimation is 

performed using maximum likelihood.   

The results show that correcting for utility curvature significantly increases the likelihood 

compared to the model without correction, and correcting for probability weighting curvature 

also significantly increases the likelihood compared to the model without correction, though less 

so than correcting for utility curvature does.  Next, the reported probability can be compared to 

the corrected probability, and the difference between the two can be interpreted as a risk 

premium.   

This correction method can be extended to events with unknown probabilities, and the 

difference between the reported and the corrected probabilities can be interpreted as uncertainty 

premium.  While OSKW refer to the corrected probability as reflecting “beliefs,” referring to 

them as nonparametric decision weights would also be valid.55  

 

3.3 Experimental Design 

The experiment reported here uses real money incentives.  Each subject is presented with 

four lotteries that have known probabilities, hereafter pure risk lotteries (Figure C1), and two 

                                                           
55 OSKW implement a separate task that uses similar events but with unknown probabilities, and they use the data 

from that task to test if the corrected probabilities (which they refer to as “subjective beliefs”) are additive.  OSKW 

report that the correction method reduces the violations of additivity in subjective beliefs.  For this task with 

unknown probabilities there was no variation over the full range of objective probabilities and OSKW did not 

estimate the uncertainty premium.   
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lotteries that have unknown probabilities, hereafter uncertainty lotteries.  The two uncertainty 

lotteries are presented in varying degrees of uncertainty: the uncertainty lottery that is less 

uncertain is referred to as the scrambled lottery (Figures C2.1 and C2.2), and the uncertainty 

lottery that is the most uncertain is referred to as the blackened lottery (Figures C3.1 and C3.2).  

Thus three types of lottery tasks are administered: pure risk, scrambled, and blackened.  This 

section describes the design of each lottery task followed by the recruitment and experimental 

procedures.   

 

3.3.1 Binary Lottery Tasks 

In each lottery task subjects choose between a relatively safe option and a relatively risky 

option.  Each option has two possible prizes.  The set of prizes and probabilities used for the pure 

risk lotteries is listed in Table C1.  Each subject completes four pure risk lottery tasks.  In each 

task, the probability of obtaining the higher prize is the same in each option, thus the only 

difference between the two options are the prizes.  The set of prizes and probabilities used for the 

uncertainty lotteries is listed in Table C2.  Each subject completes one scrambled lottery task and 

one blackened lottery task.  The set of possible parameter values is the same for both types of 

uncertainty lotteries, but a subject may be assigned a scrambled lottery that has different 

underlying probabilities than the blackened lottery.  

The lotteries are presented using pie chart images.  Each pie has two colors (dark blue 

and light blue) and each color represents a prize.  The proportion of the pie that is dark blue 



  

130 

 

represents the probability of getting the high prize, and the proportion that is light blue represents 

the probability of getting the low prize.56  

In the pure risk lottery task subjects know the probabilities of the outcomes.  Figure C1 

shows a screenshot of the practice round before starting the round for real payment.  In the pie 

chart the colors that represent the probabilities are divided into two distinct sections, making it 

easy to see the proportions.  In addition the subjects are explicitly told which numbers on a ten-

sided die correspond to which prize.  It is safe to assume that there is no uncertainty, only risk, in 

this task.   

In the scrambled lottery task (Figures C2.1 and C2.2), subjects are not told the 

probabilities, and the colors that represent the probabilities are divided into small segments that 

scrambled across the pie, thus making it difficult to see the proportion that each color occupies.  

This likely generates some degree of uncertainty on the probabilities.57   

The most uncertain task is likely the blackened lottery task (Figures C3.1 and C3.2).  It 

builds on the scrambled lottery and adds an additional layer of uncertainty by hiding parts of the 

pie with a black field so that subjects are not able to see the colors.  For both the scrambled and 

the blackened lotteries there is a time limit (of 15 seconds) on how long subjects can view the pie 

chart images.  

 

                                                           
56 In the black-and-white version of this text, the dark blue appears as dark gray and the light blue appears as light 

gray.  
57 We acknowledge that the uncertainty surrounding how the colors are scrambled across the pie chart images may 

be perceived as an additional risk by the subjects.  In other words, the uncertainty lotteries could be perceived as 

having a compound risk.  In that case the analysis may be viewed as examining the difference in behavior under one 

compound risk (the scrambled lottery) vs. another compound risk (the blackened lottery). 
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3.3.2 Recruitment and Experimental Procedure 

The experimental tasks analyzed here are part of a larger experiment described in 

Rutström et al. (2011).  The subjects who are described here are selected from United States 

Postal Service (USPS) mailing lists and are recruited by invitation letters.  The invitation letters 

direct them to a web page where they are instructed to create an anonymous Gmail account to 

use exclusively for the experiment to ensure strict privacy.  Admission to participate in the 

experiment is contingent on being at least 18 years of age, holding a valid driver’s license, and 

using a vehicle with a valid vehicle insurance.   

The larger experiment consists of four meetings separated by approximately two weeks 

each.  Subjects participate in an experiment that takes place over four sessions with many other 

tasks than those analyzed here.  They complete two pure risk tasks in session 1, another two in 

session 2, and one scrambled and one blackened task in session 3.  Subjects are paid for all tasks, 

and earnings are actualized immediately following each task, so to avoid issues that arise with 

the random payment protocols.58  Earnings in each task, along with cumulative earnings, are 

tracked in a clear and transparent manner.  The subjects are commuters from the Atlanta and 

                                                           
58 As mentioned previously, the pay-one-randomly (POR) protocol implicitly assumes that subjects view each 

outcome in each binary choice independently of each other, such that their behavior is in accordance with the 

Compound Independence Axiom (CIA).  This payment protocol is incentive compatible under EUT (see Harrison 

and Swarthout (2014) and Cox, Sadiraj and Schmidt (2015)).  However, it is incompatible with non-EUT models 

that are not based on the CIA, including Rank Dependent Utility (RDU).  

This essay models choices over risky lotteries using RDU, which necessitates the use of a payment protocol that is 

incentive compatible with RDU.  The Pay-All-Sequentially (PAS) protocol does not rely on the CIA and is thus 

incentive compatible with RDU.  However, PAS is not problem-free since it may induce a cumulative wealth effect.  

Cox, Sadiraj and Schmidt (2015) report that the PAS protocol did not induce a significant wealth effect; the same 

result is reported in Cox and Epstein (1989) and Cox and Grether (1996) who also use the PAS protocol.  In 

contrast, Dixit, Harb, Martinez and Rutström (2015), who use the PAS protocol in a driving simulator task with 

exogenous delay probabilities, report that cumulative wealth significantly reduces risk aversion (p-value <1%).  

Here the cumulative wealth effect is assumed to be negligible on the probability weighting estimates.  
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Orlando metropolitan areas, and a total of 270 subjects are included for the purpose of this 

analysis. 

 

3.4 Theory 

We assume that all uncertainty preferences are captured by probability weighting, and the 

perceptions of the likelihoods are measured using two indices: the index of pessimism and the 

index of likelihood insensitivity.  Each of the three types of lotteries are presumed to constitute a 

different source of uncertainty, and we assume that utility is constant across uncertainty sources.  

The latter assumption is supported by the findings of ABPW (2011) and Abdellaoui, L’Haridon 

and Paraschiv (2009); both studies report no difference in utility estimates when measuring 

utilities for risk and uncertainty tasks.59 60  Risk attitudes are controlled through curvature of the 

utility function and the estimation is performed assuming RDU.61     

This essay examines decision weights using three probability weighting specifications: a 

two-parameter Prelec function (Prelec (1998)), a one-parameter Tversky-Kahneman function 

(Tversky and Kahneman (1992)), and a one-parameter Power function.  The first two can 

measure both of the desired indices, but the last can only measure pessimism, not likelihood 

                                                           
59 Despite the findings of ABPW (2011) and Abdellaoui, L’Haridon and Paraschiv (2009), we acknowledge the 

limitations of this assumption.  The assumption that utility curvature is constant across sources implicitly assumes 

that utility curvature may be constant across risk domains, which may not be consistent with empirical findings.   
60 As a response to ABPW (2011)’s findings, Harrison (2011) undertake a maximum likelihood evaluation of 

ABPW’s data and report no evidence of source dependence in either the utility function or the power weighting 

function. 
61 Using the source method, ABPW (2011) estimate a probability weighting function under the name RDU, whereas 

KSW (2014) perform the same estimation but under the name CEU.  In contrast to KSW (2014), Hey and Pace 

(2014) and Conte and Hey (2013) use a different approach to estimate CEU (i.e., they estimate CEU capacities non-

parametrically and do not assume a probability weighting function).  Since CEU has been estimated under different 

approaches, to avoid confusion the name RDU is used here.  
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insensitivity.  It is included here only because it is a popular function in the literature on choice 

under risk.   

 

3.4.1 Prelec Weighting  

 The Prelec weighting function (Prelec (1998)) has parameters 𝜂 and 𝜑:  

            𝑤(𝑝) = 𝑒𝑥𝑝 (−𝜂(−𝑙𝑛𝑝)𝜑)                                                                       (1) 

where 𝑝 is the objective probability of the event, and 𝜂 and 𝜑 are the parameters that weigh the 

probability.  This function is defined for 0 ≤ 𝑝 ≤ 1, 𝜂 > 0 and 𝜑 > 0.62 63  In Appendix D, Figures 

BB1.1 – BB1.5 provide examples of how an agent with a Prelec weighting function weighs the 

probabilities under different values of 𝜂 and 𝜑.  These two parameters represent the two indices 

of uncertainty: pessimism and likelihood insensitivity.  The index of pessimism is captured by 𝜂 

which controls the concavity or convexity of the function.  The difference in pessimism across 

the lotteries reflects uncertainty aversion under the maintained assumption of ABPW.  The index 

of likelihood insensitivity is captured by 𝜑 which give an S-shaped or inverse-S shaped to the 

function.  The inverse-S shaped in probability weighting suggests a tendency to overweigh low 

probabilities and underweigh high probabilities (i.e., in the direction of 50-50) and a lack of 

                                                           
62 Holding η =1 and letting ϕ vary, the function takes on an S-shaped or inverse-S shaped.  Holding ϕ =1 and letting 

η vary, the function takes on a convex or concave shape.   
63 In our estimation ϕ is constrained to be nonnegative, but not to the unit interval.  Constraining ϕ to the unit 

interval implies that subjects exhibit an inverse-S weighting function, which would be contrary to many received 

evidence that shows otherwise.  In particular, Andersen, Harrison, Lau and Rutström (2015) report that constraining 

ϕ to the unit interval incorrectly leads to evidence of no probability weighting for their average subjects.  Thus, we 

do not impose such assumption and let the data speak for itself.   
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sensitivity to variation in the objective probabilities.  If 𝜂 and 𝜑 are both equal to one in the pure 

risk lottery the subject is an EU maximizer.   

Four hypotheses are tested with respect to the Prelec function:  

Hypothesis I – For both uncertainty lotteries, the index of pessimism, 𝜂, differs significantly 

from 1, controlling for utility curvature.            

   𝜂𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑  ≠ 1; 𝜂𝑏𝑙𝑎𝑐𝑘𝑒𝑛𝑒𝑑  ≠ 1                                                                                                             

Hypothesis II – For both uncertainty lotteries, the index of likelihood insensitivity, 𝜑, differs 

significantly from 1, controlling for utility curvature.        

𝜑𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑  ≠ 1; 𝜑𝑏𝑙𝑎𝑐𝑘𝑒𝑛𝑒𝑑  ≠ 1 

Hypothesis III – As the level of uncertainty increases, going from the pure risky lottery to the 

uncertainty lotteries, the index of pessimism decreases.  This suggests that pessimism for the 

uncertainty lotteries exceeds that for the pure risk lottery, such that the weighting functions for 

the uncertainty lotteries are more convex than the one for the pure risk lottery.                                                                                                                                    

𝜂𝑝𝑢𝑟𝑒 𝑟𝑖𝑠𝑘 > 𝜂𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑;  𝜂𝑝𝑢𝑟𝑒 𝑟𝑖𝑠𝑘 > 𝜂𝑏𝑙𝑎𝑐𝑘𝑒𝑛𝑒𝑑 

Hypothesis IV – As the level of uncertainty increases going from the pure risky lottery to the 

uncertainty lotteries, the index of likelihood insensitivity decreases.  This suggests that subjects 

are increasingly more likelihood insensitive: the weighting functions for the uncertainty lotteries 

are “flatter” than the one for the pure risk lottery.          

𝜑𝑝𝑢𝑟𝑒 𝑟𝑖𝑠𝑘 > 𝜑𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑;  𝜑𝑝𝑢𝑟𝑒 𝑟𝑖𝑠𝑘 > 𝜑𝑏𝑙𝑎𝑐𝑘𝑒𝑛𝑒𝑑 
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3.4.2 Tversky – Kahneman Weighting  

The TK weighting function (Tversky and Kahneman (1992)) has only one parameter, γ: 

            𝑤(𝑝) =
𝑝𝛾

[𝑝𝛾+(1−𝑝)𝛾]
1
𝛾

                   (2) 

where 0 ≤ p ≤ 1.  This function exhibits inverse-S probability weighting (i.e., optimism for small 

p, and pessimism for large p) for 0 < γ < 1, and S-shaped probability weighting (i.e., pessimism 

for small p, and optimism for large p) for 1 < γ < 2.  A review by Gonzalez and Wu (1999) 

indicates that the commonly reported weighting function is an inverse-S function; in contrast, 

Wilcox (2015) reports that a concave weighting function (i.e., optimism for the best outcome) is 

the most prevalent weighting function in his subjects.  

Within the range 0 < γ < 1, as γ moves closer to 1 the crossover point where w(p) = p 

moves toward p = 0.5 such that the concave and convex regions are about equal; as γ moves 

closer to 0 the crossover point moves toward p = 0 such that the convex region becomes larger 

than the concave region.  See Figures BB2.5 – BB2.7 for comparisons.  Within the range 1 < γ < 

2, as γ moves closer to 1 the crossover point moves toward p = 0.5 such that the concave and 

convex regions are about equal; as γ moves closer to 2 the crossover point moves toward p = 1 

such that the convex region is larger than the concave region.  See Figures BB2.2 – BB2.4 for 

comparisons.  At γ > 2, the function is everywhere convex, and as γ increases the convexity 

increases.  This function is undefined at γ = 0 and non-monotonic for really small γ.  For more 

examples of how an agent would weigh the probabilities under different values of γ, see Figures 

BB2.1 – BB2.8 in the Appendix. 
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The TK specification does not allow independent specification of location and curvature, 

therefore it is less flexible than the two-parameter Prelec.  For γ = 1 in the pure risk lottery the 

subject is an EU maximizer.  Comparing γ between the pure risk and uncertainty lotteries reveals 

possible uncertainty aversion.   

Two hypotheses are tested with respect to the TK function:  

Hypothesis I – For both uncertainty lotteries, 𝛾 differs significantly from 1, controlling for utility 

curvature.                    

𝛾𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑  ≠ 1; 𝛾𝑏𝑙𝑎𝑐𝑘𝑒𝑛𝑒𝑑  ≠ 1 

Hypothesis II – Subjects display uncertainty aversion for the uncertainty lotteries relative to the 

pure risk lotteries.                     

𝛾𝑝𝑢𝑟𝑒 𝑟𝑖𝑠𝑘 > 𝛾𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑;  𝛾𝑝𝑢𝑟𝑒 𝑟𝑖𝑠𝑘 > 𝛾𝑏𝑙𝑎𝑐𝑘𝑒𝑛𝑒𝑑 

 

3.4.3 Power Weighting  

The Power weighting function has parameter γ: 

𝑤(𝑝) = 𝑝𝛾                       (3)      

where 0 ≤ p ≤ 1.  For γ >1 this function is everywhere convex and subjects underweigh the 

probabilities; for γ < 1 the function is everywhere concave and subjects overweigh the 

probabilities.64  For γ = 1 in the pure risk lottery, the subject is an EU maximizer.  In Appendix D 

                                                           
64 In the Power weighting function γ = 0 raises issues because it would imply that the agent places a probability of 1 

for an event regardless of its objective probability.  We do not encounter this issue in the estimation, though one 

could still constrain γ > 0.  
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Figures BB3.1 – BB3.3 provide examples of what the weighting function would look like under 

different values of γ and its implied decision weights.  

The Power function has the least flexible functional form compared to the Prelec or TK 

function, given that the former can only accommodate the index of pessimism, not likelihood 

insensitivity.  Comparing γ between the pure risk and uncertainty lotteries reveals possible 

uncertainty aversion that is due to difference in pessimism.   

  

Two hypotheses are tested with respect to the Power function:  

Hypothesis I – For the uncertainty lotteries, 𝛾 differs significantly from 1, controlling for utility 

curvature.      

𝛾𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑  ≠ 1; 𝛾𝑏𝑙𝑎𝑐𝑘𝑒𝑛𝑒𝑑  ≠ 1 

Hypothesis II – Pessimism for the uncertainty lottery exceeds that for the pure risk lotteries, such 

that the weighting function for the uncertainty lotteries is more convex than the one for the pure 

risk lottery.         

𝛾𝑝𝑢𝑟𝑒 𝑟𝑖𝑠𝑘 < 𝛾𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑; 𝛾𝑝𝑢𝑟𝑒 𝑟𝑖𝑠𝑘 < 𝛾𝑏𝑙𝑎𝑐𝑘𝑒𝑛𝑒𝑑             

 

3.5 Empirical Analysis 

The weighting functions are jointly estimated with risk attitudes assuming RDU with 

CRRA utility functions.  This joint estimation approach builds on previous work on structural 

estimation of risk attitudes by Andersen, Harrison, Lau and Rutström (2008), Harrison and 

Rutström (2008b) and Andersen, Fountain, Harrison and Rutström (2014).   
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3.5.1 Estimation Approach  

Data are pooled across the three types of lotteries.  The main assumption is: different 

sources of uncertainty generate different source functions but not different utility functions.  

Therefore, we estimate a common CRRA utility function but allow the weighting parameters to 

vary with type of lotteries.  The reference lottery is the pure risk lottery, and the covariates are 

the scrambled and blackened lotteries.  The econometric approach is illustrated using the Prelec 

weighting function shown in (1).  This approach can be easily extended to the TK and Power 

weighting functions.   

Recall the Prelec weighting function in (1):  

 𝑤(𝑝) = 𝑒𝑥𝑝 (−𝜂(−𝑙𝑛𝑝)𝜑)    

where 𝑤(. ) is the function that transforms p into decision weight, 𝑤(𝑝), and                                                    

𝑤(. ) weighs the best option and (1 −  𝑤(. )) weighs the worst option. 

The parameters, 𝜂 and 𝜑, are allowed to vary with the exogenous treatments for type of 

lotteries.  With the pure risk lottery as the reference, both 𝜂 and 𝜑 are estimated conditional on 

dummy covariates Scrambled and Blackened:  

𝜂 = 𝜂𝑝𝑢𝑟𝑒 𝑟𝑖𝑠𝑘 +  𝜂𝑠𝑐𝑟𝑎𝑚𝑎𝑏𝑙𝑒𝑑  × 𝑆𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑 +  𝜂𝑏𝑙𝑎𝑐𝑘𝑒𝑛𝑒𝑑 × 𝐵𝑙𝑎𝑐𝑘𝑒𝑛𝑒𝑑         (4) 

𝜑 = 𝜑𝑝𝑢𝑟𝑒 𝑟𝑖𝑠𝑘 + 𝜑𝑠𝑐𝑟𝑎𝑚𝑎𝑏𝑙𝑒𝑑  × 𝑆𝑐𝑟𝑎𝑚𝑏𝑙𝑒𝑑 + 𝜑𝑏𝑙𝑎𝑐𝑘𝑒𝑛𝑒𝑑 × 𝐵𝑙𝑎𝑐𝑘𝑒𝑛𝑒𝑑         (5) 

with 𝜂 and 𝜑 each constrained to be non-negative.  

In the full structural model, the evaluation of the risky option is:   
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  𝑅𝐷𝑈𝑟𝑖𝑠𝑘𝑦 = 𝑒𝑥𝑝 (−𝜂(−𝑙𝑛𝑝)𝜑) ∗ (
𝑥𝐻

𝑟𝑖𝑠𝑘𝑦(1−𝑟)

(1−𝑟)
) +  (1 –  𝑒𝑥𝑝 (−𝜂(−𝑙𝑛𝑝)𝜑))  ∗ (

𝑥𝐿
𝑟𝑖𝑠𝑘𝑦(1−𝑟)

(1−𝑟)
) (6) 

where r is the coefficient of relative risk aversion, xH is the high prize, xL is the low prize, and  

p is the objective probability of the high prize, xH.  Similarly, the evaluation for the safe option 

is:  

    𝑅𝐷𝑈𝑠𝑎𝑓𝑒 = 𝑒𝑥𝑝 (−𝜂(−𝑙𝑛𝑝)𝜑) ∗ (
𝑥𝐻

𝑠𝑎𝑓𝑒(1−𝑟)

(1−𝑟)
) +  (1 –  𝑒𝑥𝑝 (−𝜂(−𝑙𝑛𝑝)𝜑))  ∗ (

𝑥𝐿
𝑠𝑎𝑓𝑒(1−𝑟)

(1−𝑟)
)  (7) 

The latent preferences for evaluating each option, or the RDU for each lottery pair, is 

calculated for the candidate estimates of  𝑟, 𝜂 and 𝜑.  Following (6) and (7), the index  

 ∆𝑅𝐷𝑈 = 𝑅𝐷𝑈𝑟𝑖𝑠𝑘𝑦 − 𝑅𝐷𝑈𝑠𝑎𝑓𝑒                            (8)   

is the difference in valuation between the risky option and the safe option.  The index is then linked 

to observed choices by using a “logit” likelihood function that is denoted as Λ(∆𝐸):   

 𝑝𝑟𝑜𝑏 (𝑐ℎ𝑜𝑜𝑠𝑒 𝑟𝑖𝑠𝑘𝑦 𝑜𝑝𝑡𝑖𝑜𝑛) = Λ(∆𝑅𝐷𝑈)             (7) 

The risky option is assumed to be chosen when Λ(∆𝑅𝐷𝑈) > ½.   

 Thus the likelihood of the observed responses, conditional on the RDU specification, 

CRRA utility function and the Prelec probability weighting function specifications being true, 

depends on the estimated parameters 𝑟, 𝜂 and 𝜑 given the above stochastic specification and the 

observed choices, y.  The log-likelihood is then  

        ln 𝐿 ( 𝑟, 𝜂, 𝜑; 𝑦) = Σ[ lnΛ(∇𝑅𝐷𝑈) × 𝐈(𝑦 = 1) + ln(1 − Λ(𝛻𝑅𝐷𝑈)) ×  𝐈(𝑦 = 0)]       (9) 

where 𝐈(∙) is the indicator function and y = l (0) denotes the choice of the risky (safe) option. 
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 An important extension of the core model is to apply contextual utility, due to Wilcox 

(2011), and to allow for subjects to make some behavioral errors.  The latent index in (8) then 

becomes:  

 ∆𝑅𝐷𝑈 = [(𝑅𝐷𝑈𝑟𝑖𝑠𝑘𝑦 −  𝑅𝐷𝑈𝑠𝑎𝑓𝑒) /ν] /𝜇                                               (8-) 

where ν is a normalizing term defined as the difference between the maximum and the minimum 

utility in each lottery pair.  The parameter 𝜇 > 0 is a structural Fechner “noise parameter” used 

to allow some error when evaluating the difference in RDU between the two options.  A 

common Fechner error is assumed for the three types of lotteries.  

 We extend the likelihood specification to include the noise parameter, 𝜇, and maximize 

ln 𝐿 (𝑟, 𝜂, 𝜑, 𝜇 ; 𝑦) by estimating r, 𝜂, 𝜑 and 𝜇, given observations on y.  The estimation is 

performed using maximum likelihood.  

 

3.5.2 Descriptive Statistics  

The characteristics of the subject pool are described in Table C3.  Each gender is about 

evenly represented in the overall sample.  Income is divided into two groups: 40% have 

household income above $100,000 and the rest have household income of $100,000 or below.  

Age is divided into two groups: 56% are between the ages of 18 and 40 and the rest between the 

ages of 41 and 75.  A majority hold a college education (80%).   

The underlying objective probabilities (i.e., 0.1, …, 0.9) are randomly assigned to 

subjects.  If subjects are evenly distributed across the 9 objective probabilities, then the 

proportion of subjects in each probability should make up around 11% of the sample size.  This 
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is true for the pure risk lottery tasks where each subject completes four tasks; Table C4 shows 

that the proportion of subjects in each objective probability is about 11%.  This is also true for 

many of the probabilities in the uncertainty lottery tasks.  However, since each subject only 

completes one scrambled and one blackened lottery task, the sample set there is smaller, and 

thus, it is harder to achieve an even representation of subjects for all probability assignments.  A 

few of the probability assignments have proportions that are as low as 6% or as high as 19% of 

the sample size (relative to the ideal 11%).  

  The proportion of safe choices made by subjects is illustrated in Figure C4.1; the solid, 

dash and dotted curves represent the pure risk, scrambled and blackened lotteries, respectively.  

For the pure risk lotteries, as the probability of getting the high prize increases, the proportion of 

safe choices decreases, as shown by the downward-sloping solid curve.  This behavior is 

expected since subjects know the probabilities of all possible outcomes.  In contrast, the curves 

for the uncertainty lotteries are flatter, which suggests that behavior is similar across the range of 

underlying probabilities.  The same general pattern is observed across demographic sub-samples.  

Thus, there is preliminary evidence that in the uncertainty lotteries subjects tend to overweigh 

low likelihood events and underweigh high likelihood events, displaying likelihood insensitivity.   

 Comparing across the three curves, in the low probabilities the pure risk curve is below 

the uncertainty curves, whereas in the high probabilities the pure risk curve is above the 

uncertainty curves.  To examine if the three curves are significantly different from one another, a 

proportions test is performed to examine if the proportions of safe choices are significantly 

different across the three types of lotteries.65  When comparing between the uncertainty lotteries,  

                                                           
65 The proportions test, by the Stata command prtesti, tests whether the same proportion from two classes are 

significantly different.  
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behavior is not significantly different.  When comparing between the uncertainty and the pure 

risk lotteries, behavior is significantly different.  This is shown in Figure C4.2, where the “black 

dot” denotes if a given uncertainty lottery has proportion of safe choices that is significantly 

different from the pure risk lotteries.  Overall there is preliminary evidence showing that subjects 

behave differently in scenarios with known vs. unknown risk.   

 

3.5.3 Results of Structural Estimation 

Recall the assumption from ABPW that different sources of uncertainty generate 

different source functions but not different utility functions, hence the structural estimation pools 

across the three types of lotteries to estimate one common CRRA utility function.  The weighting 

parameters are estimated conditional on the type of lotteries.  The reference lottery is the pure 

risk lottery and the covariates are the scrambled and blackened lotteries.  The dummy variable 

Scrambled takes the value of 1 for the scrambled lottery, and the dummy Blackened takes the 

value of 1 for the blackened lottery.  The results are presented in Table C5 for each probability 

weighting specification.  

 

A. Constant Relative Risk Aversion  

The estimated CRRA coefficients are significantly different from zero; they are 0.508 (p-

value < 0.001), 0.205 (p-value = 0.034), and 0.636 (p-value = 0.008), respectively for the three 

probability weighting specifications.  Being in the range of 0 – 1, they are consistent with the 

experimental literature reviewed by Harrison and Rutström (2008b).   
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B. RDU - Prelec Probability Weighting  

Results from the Prelec specification are shown in column (b) in Table C5.  In the pure 

risk lottery 𝜂 nor 𝜑 differ significantly from 1; EU is therefore not rejected in the pure risk 

lottery.  Hypotheses I states that the index of pessimism, 𝜂, should differ significantly from 1 for 

both uncertainty lotteries; however, a χ 2 test shows that 𝜂 differs significantly from 1 for the 

blackened lottery (p-value = 0.036) but not for the scrambled lottery (p-value = 0.727), thus 

lacking full support for Hypothesis I.   

Hypothesis II states that the index of likelihood insensitivity, 𝜑, should differ 

significantly from 1 for both uncertainty lotteries.  This is confirmed by a χ 2 test with a p-value 

<0.001 for both uncertainty lotteries, thus providing support for Hypothesis II.   

According to assumptions of the source method, the three types of lotteries each 

constitute a different source of uncertainty.  One should then expect behavior under the 

uncertainty lotteries to differ from the pure risk lotteries, and the index of pessimism and the 

index of likelihood insensitivity should capture this behavioral difference, as is suggested in 

Hypotheses III and IV.  

As uncertainty increases, going from pure risk to scrambled to blackened lotteries, the 

estimate of 𝜂 decreases (see Table C6), showing more pessimism.  Comparing each of the 

estimates for the uncertainty lotteries to the estimates for the pure risk lotteries, pessimism is 

significantly higher for the former compared to the latter, by 0.457 (p-value = 0.020) and 0.227 

(p-value = 0.228), respectively.  Furthermore, comparing the uncertainty lotteries, pessimism is 

higher for the blackened lottery than the scrambled lottery (p-value = 0.071), showing that for 
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events with unknown probabilities that vary in the degrees of uncertainty subjects display 

different degrees of pessimism.   

As for the index of likelihood insensitivity, likelihood insensitivity is significantly higher 

when comparing each of the uncertainty lottery to the pure risk lottery, by 1.418 (p-value < 

0.001) and 1.297 (p-value = 0.001), respectively.  However, when comparing the uncertainty 

lotteries, there is no significant difference in likelihood insensitivity (p-value = 0.322).  This 

shows that for events with unknown probabilities that vary in the degrees of uncertainty subjects 

display a similar degree of likelihood insensitivity.  

For each of the three types of lotteries a graph of the weighting function is constructed 

based on its estimates of 𝜂 and 𝜑; see Figures C5.1, C5.2 and C5.3 for the three respective 

lotteries.  The graphs are constructed based on a lottery with two outcomes.  The left panel 

shows how the subjects weigh the probability of the best outcome given a range of objective 

probabilities; the right panel shows a specific example where the probabilities of the worst and 

best outcomes are equal (p = ½) and their respective decision weights.  A pattern emerges going 

from the pure risk to the scrambled to the blackened lotteries: the weighting function becomes 

increasingly flatter, showing that subjects display increasing tendency to place equal weights for 

all underlying probabilities.66 

Results from the Prelec specification are consistent with results from the descriptive 

analysis.  Subjects display increasing pessimism and likelihood insensitivity going from events 

                                                           
66 Comparing the uncertainty lotteries, the blackened lottery has a crossover point (i.e., w(p) = p) at 0.5 and the 

scrambled lottery has a crossover point at below 0.5 (see Figures C5.2 and C5.3).  The weighting function for the 

blackened lottery has roughly the same area for pessimism and optimism, whereas for the scrambled lottery there is 

disproportionately a bigger area for pessimism than optimism.  Note that this difference in crossover points is 

consistent with the difference in estimates for the index of pessimism, 𝜂.                                                                                                       
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with known probabilities to events with unknown probabilities.  This result is consistent with past 

studies that examine uncertainty aversion with or without using the source method (ABPW 

(2011), DKW (2015), Hey and Pace (2014), Attanasi, Gollier, Montesano and Pace (2014)).  

Furthermore, when comparing behavior under events with unknown probabilities that 

vary in the degree of uncertainty, results from the Prelec specification suggest that this 

behavioral difference is attributed to difference in pessimism, not likelihood insensitivity.   

 

C. RDU – Tversky – Kahneman Probability Weighting  

Results from the TK specification are shown in column (c) in Table C5.  The estimated γ 

for the pure risk lottery is 1.846 and is significantly different from 1 (p-value < 0.001), thus EU 

is rejected.   Figure C6.1 shows that in the pure risk lottery subjects significantly underweigh the 

low probabilities (i.e., w(p) < p), but not the high probabilities, where w(p) = p.  This is in 

contrast to the results from the Prelec specification where the decisions weights are not 

significantly different from the underlying objective probabilities over the full range of 

probaiblities.  

For the uncertainty lotteries the γ estimates are 0.672 (p-value < 0.001) and 0.683 (p-

value < 0.001), respectively, and they are significantly different from 1, which lend support to 

Hypothesis I.  Comparing each of the estimates for the uncertainty lotteries to the estimate for 

the pure risk lottery, γ in the former is significantly lower than the latter, by 1.174 (p-value < 

0.001) and 1.163 (p-value < 0.001), respectively.  This suggests that subjects behave differently 

under events with known vs. unknown probabilities.  Furthermore, this behavioral difference is 
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in the direction of likelihood insensitivity: Figures C6.2 and C6.3 show that behavior displays 

likelihood insensitivity for the uncertainty lotteries, providing support for Hypothesis II.  

However, when comparing the two uncertainties lotteries there is no significant 

difference (p-value = 0.592).  This is in contrast to the results from the Prelec specification, 

which show that the blackened lottery displays significantly more pessimism than the scrambled 

lottery.  These results suggest that when comparing behavior under events that have unknown 

probabilities, the flexible Prelec specification is better at capturing the behavioral difference due 

to varying degrees of uncertainty.  

 

D. RDU - Power Probability Weighting  

 The Power weighting function is the least flexible specification compared to the Prelec or 

TK specification, and can only accommodate the index of pessimism.  Perhaps due to its 

inability to accommodate data that is of an inverse-S or S shape, when the data of the blackened 

lottery is included the estimation experiences numerical problems.  Thus we undertake the 

estimation without the blackened lottery data, and the results that are shown in column (d) of 

Table C5 are only based on the data from the pure risk and scrambled lotteries.  Here the 

hypothesis testing is performed only for the pure risk and scrambled lotteries.   

 For the pure risk lottery γ is not significantly different from 1 with coefficient 0.811 (p-

value = 0.484); Figure C7.1 shows the weighting function for the pure risk lottery.  EU is 

therefore not rejected for the pure risk lottery.  For the scrambled lottery γ is significantly 

different from 1 with coefficient 0.789 (p-value = 0.088), which provides support for Hypothesis 
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I.  However, subjects display optimism for the best outcome (as is shown in Figure C7.2), instead 

of pessimism that the index of pessimism would predict for behavior under uncertainty.  

Comparing the scrambled lottery to the pure risk lottery, the γ estimates are not 

significantly different from each other (p-value = 0.891): 0.811 vs. 0.789 (see Figure C7.1 vs. 

C7.2), hence lending no support for Hypothesis II.  This is in contrast to the results from the 

Prelec and TK specifications, where both specifications detect a behavioral difference between 

events with known vs. unknown probabilities.  Overall, results from using the Power 

specification do not display behavior that is consistent with results from the Prelec and TK 

specifications, or from past studies at large.  

 In summary, for both the Prelec and TK specifications, the results suggest that subjects 

behave differently under events with known vs. unknown probabilities.  Relative to events whose 

probabilities are known, subjects behave in the direction of likelihood insensitivity when 

probabilities are not known, such that they overweigh low probabilities and underweigh high 

probabilities.  One should note that likelihood insensitivity, by itself, may be solely a reflection 

of diffuse perceptions and may not reflect any preferences toward uncertainty at all.  In the 

source method, it is the difference in insensitivities between two source functions that is 

considered a characteristic property of uncertainty preferences.  

 

3.6. Conclusion 

The goal of this essay is to examine uncertainty aversion between events that have the 

same underlying objective probability but are presented differently under varying degrees of 

uncertainty.  Using a within-subject design subjects are asked to complete three lottery tasks that 
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are ranked in order of increasing uncertainty.  Two presentations of uncertainty are used, one 

presumably more uncertain for the decision maker than the other.  

Based on the choices subjects make, a source function is estimated for each lottery task 

using three different specifications of the source function.  The source functions are compared 

using two uncertainty indices: pessimism and likelihood insensitivity.  Overall, the results are 

consistent with past studies that do not use the source method, in showing that behavior differs 

under events with known vs. unknown probabilities.  We report that the source function for 

events with known probabilities differ significantly from the source function for events with 

unknown probabilities.  In particular, when probabilities are not known subjects behave in the 

direction of likelihood insensitivity, such that they overweigh low probabilities and underweigh 

high probabilities. 

However, when comparing the difference in behavior between events that both have 

unknown probabilities but vary in the degree of uncertainty, the behavioral difference is better 

captured by the Prelec specification than the TK or Power specification.  Results from the Prelec 

specification suggest that as the degree of uncertainty increases, subjects display increased 

pessimism, whereas the TK and the Power specifications show no such difference.  Thus, the 

conclusion regarding uncertainty aversion are contingent on which specification is assumed for 

the source function. 
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Tables and Figures for Chapter 3 

Table C1: Prizes and Probabilities for Pure Risk Lottery 

Probability 

range 

Safe Lottery 

Low Prize 

Safe Lottery 

High Prize 

Risky Lottery 

Low Prize 

Risky Lottery 

High Prize 

0.1 – 0.9 $2 $3 $0.25 $4 

0.1 – 0.9 $2 $3 $0.25 $5 

0.1 – 0.9 $2 $3 $0.25 $6 

0.1 – 0.9 $4 $6 $0.50 $10 

 

 

Table C2: Prizes and Probabilities for the Uncertainty Lotteries 

Probability 

range 

Safe Lottery 

Low Prize 

Safe Lottery 

High Prize 

Risky Lottery 

Low Prize 

Risky Lottery 

High Prize 

0.1 – 0.9 $2 $3 $0.25 $5 
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Table C3: Demographic Subsample by Lottery Type 

N = 270 Pure Risk Scrambled Blackened 
Pool all 

lotteries 

  

Female  47% 46% 46% 47% 

Male 53% 54% 54% 53% 

 

College  80% 80% 80% 80% 

Non-college 20% 20% 20% 20% 

 

Income >  $100K 40% 41% 40% 40% 

Income ≤ $100K 60% 60% 60% 60% 

 

Ages 18-40 55% 56% 56% 56% 

Ages 41-75 45% 44% 44% 44% 

 

Each subject completes 6 lottery tasks: 4 pure risk, 1 scrambled and 1 blackened.  
 

 

 

Table C4: Proportion of Subjects Assigned to Each Objective Probability 

Objective 

probability 

of the 

higher prize 

p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5 p = 0.6 p = 0.7 p = 0.8 p = 0.9 

Pure Risk 

Lottery 
11% 13% 12% 12% 11% 11% 10% 11% 12% 

Scrambled  

Lottery 
12% 17% 10% 13% 8% 7% 9% 9% 15% 

Blackened 

Lottery 
13% 13% 12% 6% 7% 8% 8% 14% 19% 
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Table C5: Estimate Rank Dependent Utility Probability Weighting 

 

Column (a) Column (b) Column (c) Column (d) 

 RDU Prelec RDU TK RDU Power 

r 
.508*** 

(<0.001) 

.205** 

(0.034) 

.636*** 

(0.008) 

                γ  

_cons ---  
1.846***  

(<0.001) 

.811*** 

(0.003) 

Scrambled --- 
-1.174*** 

(<0.001) 

-.021 

(0.891) 

Blackened --- 
-1.163*** 

(<0.001) 
--- 

                 𝜼 

_cons 
1.171***  

(<0.001) 
---  ---  

Scrambled 
-.227  

(0.228) 
--- --- 

Blackened 
-.457** 

(0.020) 
--- --- 

                  𝝋 

_cons 
1.585*** 

(<0.001) 
---  ---  

Scrambled 
-1.297*** 

(0.002) 
--- --- 

Blackened 
-1.418*** 

(0.001) 
--- --- 

 

                μ 
.180*** 

(<0.001) 

.208*** 

(<0.001) 

.136** 

(0.041) 
 

Pure Risk Lottery is the reference lottery; Scrambled = 1 for the scrambled lottery; Blackened =1 for 

the blackened lottery.  

 

Perhaps due to the Power function’s inability to accommodate data that is of an inverse-S shaped, when 

the data of the blackened lottery is included the estimation experiences numerical issues.  Thus we 

perform the estimation without the blackened lottery data, and the results that are shown in column (d) 

of Table 5 is based on only the data from the pure risk and scrambled lotteries. 

 

The coefficients are marginal effects, computed using the delta method that takes a nonlinear 

transformation of an estimated parameter about its mean and its variance based on a Taylor 

approximation.   The p-values are in parentheses.  

*** means that the coefficient is significantly different from zero at the 1% level. 

** means that the coefficient is significantly different from zero at the 5% level.  

* means that the coefficient is significantly different from zero at the 10% level. 
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Table C6: Rank Dependent Utility Weighting Parameters in Total Effects 

 Pure Risk  Scrambled  Blackened  

Prelec  

 𝜼  
1.171 

(0.978) 

0.943 

(0.727) 

0.713** 

(0.036) 

 𝝋 
1.585 

(0.346) 

0.288* 

(<0.001) 

0.167*** 

(<0.001) 

TK 

γ 
1.846*** 

(<0.001) 

0.672*** 

(<0.001) 

0.683*** 

(<0.001) 

Power  

γ 
0.811 

(0.484) 

0.79* 

(0.088) 
-- 

 

The values are in total effects. 

 

*** means that the coefficient is significantly different from 1 at the 1% level. 

** means that the coefficient is significantly different from 1 at the 5% level.  

* means that the coefficient is significantly different from 1 at the 10% level. 

The p-values are in parentheses.  

 

Perhaps due to the Power function’s inability to accommodate data that is of an inverse-S shaped, when 

the data of the blackened lottery is included the estimation experiences numerical issues.  Thus we 

perform the estimation without the blackened lottery data, and the results that are shown in column (d) 

of Table 5 is based on only the data from the pure risk and scrambled lotteries. 
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Figure C1: Screen Shot For Pure Risk Lottery Practice Task 
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Figure C2.1: Screen Shot For Scrambled Lottery, p = 0.1 

 

In the above figure, the objective probability of the higher prize (in dark blue) is 0.1. 
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Figure C2.2: Screen Shot For Scrambled Lottery, p = 0.7 

 

In the above figure, the objective probability of the higher prize (in dark blue) is 0.7. 
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Figure C3.1: Screen Shot For Blackened Lottery Practice Task 
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Figure C3.2: Screen Shot For Blackened Lottery Practice Task 
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Figure C4.1: Proportion of Safe Choices 

 

Figure C4.2: Difference in the Proportion of Safe Choices 
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Figure C5.1: Estimate Rank Dependent Utility Prelec Weighting for Pure Risk Lottery 

 

 

Figure C5.2: Estimate Rank Dependent Utility Prelec Weighting for Scrambled Lottery 
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Figure C5.3: Estimate Rank Dependent Utility Prelec Weighting for Blackened Lottery 

 

Figure C6.1: Estimate Rank Dependent Utility TK Weighting for Pure Risk Lottery 
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Figure C6.2: Estimate Rank Dependent Utility TK Weighting for Scrambled Lottery 

 

Figure C6.3: Estimate Rank Dependent Utility TK Weighting for Blackened Lottery 
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Figure C7.1: Estimate Rank Dependent Utility Power Weighting for Pure Risk Lottery 

 

Figure C7.2: Estimate Rank Dependent Utility Power Weighting for Scrambled Lottery  
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CONCLUSION 

The goal of Chapters 1 and 2 was to examine drivers’ perception of the risk of delay as 

one factor that influences route choice behavior in a simulated driving environment.  Both 

experiments recruited commuters from the Atlanta and Orlando metropolitan areas and present 

them with a route choice task in a driving simulator.  Subjects were required to make a binary 

choice between a route that has an uncertain level of congestion and an alternate route with no 

risk of congestion.  The task is repeated over ten periods.  Apart from some prior information 

about the frequency of congestion on the uncertain route, drivers only obtained additional 

information if they actually chose to drive on it.  Information feedback is therefore endogenous 

and high risk scenarios can lead to less belief updating than low risk scenarios, since drivers are 

more likely to avoid taking the uncertain route when it is riskier.  The experiment implements 

four risk treatments that differ in the objective risk of congestion across a range of probabilities.  

This allows the examination of belief formation and adjustment across these treatments.  

Chapter 1 examines belief formation under a discrete penalty setting, whereas Chapter 2 

examines belief formation under a continuous penalty setting.  In Chapter 1 the belief estimate 

refers to the belief of delay, and does not distinguish between the belief of congestion and the 

belief of delay with and without congestion.  Assuming the Subjective Expected Utility model, 

this belief of delay is estimated conditional on period fixed effects for the ten driving periods in 

the experiment.  In Chapter 2 separate belief estimates are derived for congestion and the 

distribution of travel times for each route and congestion scenario.  The estimation is performed 

by pooling across all driving periods.  

 Across the risk treatments, subjects appear to be able to discern the difference between 

low-congestion risk vs. high-congestion risk.  This is true for both continuous and discrete 
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penalties.  For Chapter 1, subjects in the lowest risk treatment experience significant belief 

adjustments in later periods only, whereas in the high risk treatments no belief adjustment is 

observed.  This behavior is expected: in a low risk treatment subjects are more likely to start with 

a prior belief of low congestion, and are therefore more likely to drive on the uncertain route.  

This should allow them to obtain more information about the uncertain route so to revise their 

prior belief.  

In Chapter 2, where data is pooled across periods, differences in learning is inferred by 

comparing the standard deviation of the inferred travel time distributions across risk treatments.  

We find no significant difference and conclude that there is no evidence for differences in 

learning.   

Do subjects react to changes in the toll differently across the two penalty settings?  In 

Chapter 1 in the Probit regression, the coefficient Toll has the theoretically expected positive 

effect but is only significant in the two low risk treatments, which suggests subjects in the high 

risk treatments is less responsiveness to the variations in Toll than subjects in the lowest risk 

treatments.  This difference in the responsiveness to Toll across the risk treatments is consistent 

with behavior under an endogenous information environment: subjects in the high risk treatments 

are more likely to start with a high belief of congestion for the uncertain route, so they will be 

more likely to drive on the safe route (i.e., the toll road), which means that the effectiveness of 

Toll will be smaller for these subjects.  In contrast, in Chapter 2 the effect of Toll is significant in 

all risk treatments.   

Given that subjects behave differently under these two penalty settings, what is implied 

for transportation policies?  The discrete and continuous penalty settings naturally apply to 

different types of travelers who face different penalties for late arrivals, and each type is reported 
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to have different responsiveness to variations in the toll.  This suggests that if one is able to 

identify travelers by the type of penalties they face, then one may be able to better evaluate how 

different types of travelers would react to the change in a congestion pricing policy.  

Congestion pricing policies typically employ variations in the toll as a way to redirect and 

optimize traffic flow.  When travelers have limited response to changes in the toll, it would 

render the policy ineffective in redirecting traffic flow.  In addition, if travelers are able to learn 

the underlying objective probability of different traveling outcomes and make decisions 

optimally, then it would help optimize traffic flow and improve welfare (even in the event that 

they are not responsive to changes in the toll by a congestion pricing policy).  The most 

problematic case that is identified by our experiments is when the travelers are not responsive to 

changes in the toll nor are they able to learn the underlying probabilities of different traveling 

outcomes, which would imply that policy makers will need to employ other measures to redirect 

traffic flow (e.g., by actively providing credible traffic information).  This is especially the case 

for the group of subjects who face a discrete late penalty (Chapter 1) and who are in a scenario 

where the underlying objective probability of congestion is high.  For this group of subjects, we 

observe a lack of learning across driving periods as well as a lack of responsiveness to variations 

in the toll.  On the other hand, for the group of subjects who face a continuous penalty (Chapter 

2) whichever risk scenario they are in, even though these subjects do not display learning, they 

do display a significant response to variations in the toll.  This suggests that congestion pricing 

policy will be more effective in redirecting traffic flow for this latter group of subjects than for 

the previous group. 

Following a similar line of research as in Chapters 1 and 2, Chapter 3 also examines risk 

perception for events with unknown probabilities.  Furthermore, it examines how subjects 
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perceive uncertainty between events that have the same underlying objective probability but are 

presented differently under varying degrees of uncertainty.  Using a within-subject design 

subjects are asked to complete three lottery tasks that are ranked in order of increasing 

uncertainty.  Their choices are analyzed using the “source method”.  Based on the choices 

subjects make, a source function is estimated for each lottery task using three different 

specifications of the source function.  Overall, the results are consistent with past studies that do 

not use the source method, in showing that behavior differs under events with known vs. 

unknown probabilities.  In particular, when probabilities are not known subjects behave in the 

direction of likelihood insensitivity, in the sense that they overweigh low probabilities and 

underweigh high probabilities.  The source method assumes that all behavioral differences for 

alternative sources is characterized by differences in probability weighting, and hence in the 

form and parametric values of different probability weighting functions.  

However, when comparing the difference in behavior between events that both have 

unknown probabilities but vary in the degree of uncertainty, the behavioral difference is better 

captured by a Prelec specification of the probability weighting function than the Tversky-

Kahneman (1992) or Power probability weighting function.  Results from the Prelec 

specification suggest that as the degree of uncertainty increases, subjects display increased 

pessimism, whereas the Tversky-Kahneman (1992) and the Power specifications show no such 

difference.  The implication of this result is that conclusions regarding uncertainty aversion are 

contingent on which specification is assumed for the source function (i.e., the probability 

weighting function). 
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One general conclusion regarding behavior under uncertainty is that subjects are not very 

good at learning the true probability of the uncertain events, and that under uncertainty they have 

a tendency to place equal decision weights on all possible outcomes.   
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Appendix AA: More Tables for Chapter 1 

Table AA1: Rank Dependent Utility Estimates Across Periods  

 Treatment 0.2 

N=31 

Treatment 0.4 

N=40 

Treatment 0.6 

N=32 

Treatment 0.8 

N=38 

Risk Aversion: 

r .265 

(0.333) 

.241 

(0.574) 

.975* 

(0.078) 

.643 

(0.469) 

γ 1.003*** 

(<0.001) 

.767** 

(0.040) 

1.72* 

(0.068) 

1.173 

(0.354) 

Beliefs:  

Constant  

 

.629*** 

(<0.001) 

.630*** 

(<0.001) 

1*** 

(<0.001) 

1 

(a) 

Period 2 -.233 

(0.181) 

-.052 

(0.651) 

-.00005 

(0.949) 
<.001 
(0.979) 

Period 3 -.160 

(0.331) 

.184 

(0.107) 

-.003 

(0.706) 
<.001 
(0.971) 

Period 4 -.211 

(0.169) 

-.073 

(0.418) 

-.002 

(0.738) 
<.001 
(0.975) 

Period 5 -.290 

(0.102) 

.033 

(0.540) 

-.003 

(0.728) 
<.001 
(0.977) 

Period 6 -.160 

(0.331) 

-.0004 

(0.997) 

-.004 

(0.714) 
<.001 
(0.975) 

Period 7 -.090 

(0.541) 

.040 

(0.750) 

-.003 

(0.734) 
<.001 
(a) 

Period 8  -.467*** 

(0.000) 

-.107 

(0.291) 

-.0007 

(0.842) 
<.001 
(a) 

Period 9 -.089 

(0.618) 

-.109 

(0.265) 

-.004 

(0.719) 
<.001 
(a) 

Period 10 -.199 

(0.220) 

.078 

(0.569) 

-.001 

(0.752) 
<.001 
(a) 

Prior  .010 

(0.848) 

-.029 

(0.549) 

-.0002 

(0.818) 
<.001 
(a) 

 

μRA .175*** 

(<0.001) 

μBelief .234*** 

(<0.001) 

The results are obtained using a joint estimation of risk attitudes and beliefs from the lottery data and the driving 

simulator data. p-values are in parentheses.  The coefficients are marginal effects computed using the delta 

method.  

*** means that the coefficient is significant at the 1% level. 

** means that the coefficient is significant at the 5% level.  

* means that the coefficient is significant at the 10% level. 

 (a) implies that a standard error cannot be computed by the delta method due to numeric issues, because the 

estimated probabilities approach 0 or 1. 

μRA is the Fechner error for the lottery data; μBelief is the Fechner error for the belief data. 
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Table AA2: Rank Dependent Utility Estimates Across Periods and Demographic Effects  

 Treatment 0.2 

N=31 

Treatment 0.4 

N=40 

Treatment 0.6 

N=32 

Treatment 0.8 

N=38 

Risk Aversion: 

r .309 

(0.265) 

.149 

(0.762) 

.198 

(0.850) 

.769 

(0.481) 

γ 1.053*** 

(<0.001) 

.693* 

(0.073) 

.691 

(0.441) 

1.366 

(0.436) 

Beliefs:  

Constant  .850*** 

(<0.001) 

.543*** 

(0.007) 

.971*** 

(<0.001) 

.758** 

(0.028) 

Period 2 -.255 

(0.127) 

-.054 

(0.659) 

-.044 

(0.762) 

.092 

(0.762) 

Period 3 -.169 

(0.200) 

.208 

(0.113) 

-.125 

(0.567) 

-.119 

(0.754) 

Period 4 -.221 

(0.230) 

-.077 

(0.427) 

-.175 

(0.561) 

-.202 

(0.582) 

Period 5 -.290* 

(0.064) 

.035 

(0.562) 

-.162 

(0.474) 

-.355 

(0.517) 

Period 6 -.169 

(0.200) 

.001 

(0.996) 

-.055 

(0.713) 

.078 

(0.829) 

Period 7 -.102 

(0.329) 

.052 

(0.698) 

-.281 

(0.463) 

-.089 

(0.770) 

Period 8  -.536** 

(0.018) 

-.113 

(0.290) 

-.104 

(0.456) 

.100 

(0.745) 

Period 9 -.106 

(0.428) 

-.113 

(0.298) 

-.055 

(0.713) 

-.202 

(0.561) 

Period 10 -.202 

(0.132) 

.097 

(0.485 

-.137 

(0.425) 

.096 

(0.764) 

Female  .065 

(0.295) 

.012 

(0.951) 

.029 

(0.829) 

-.475 

(0.719) 

College 

Education 

-.093 

(0.470) 

-.014 

(0.948) 

-.087 

(0.779) 

.234 

(0.518) 

High income 

(>$100K) 

-.212 

(0.131) 

-.078 

(0.703) 

-.053 

(0.770) 

.242 

(0.483) 

 

μRA .173*** 

(<0.001) 

μBelief .225*** 

(<0.001) 

p-values are in parentheses.  The coefficients are marginal effects.  

*** means that the coefficient is significant at the 1% level. 

** means that the coefficient is significant at the 5% level.  

* means that the coefficient is significant at the 10% level. 

(a) implies that a standard error cannot be computed by the delta method due to numeric issues, because the 

estimated probabilities approach 0 or 1. 

μRA is the Fechner error for the lottery data; μBelief is the Fechner error for the belief data. 
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Figure AA1: Distribution of Wage by Congestion Risk  

 

Figure AA2: Distribution of Penalty by Congestion Risk  
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Figure AA3: Distribution of Toll by Congestion Risk  

 

Figure AA4: Distribution of Time Threshold by Congestion Risk  
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Appendix BB: More Figures for Chapter 3 

Figure BB1.1: Rank Dependent Utility Prelec Weighting, 𝜼 =1 and 𝝋 =1 

 

Figure BB1.2: Rank Dependent Utility Prelec Weighting, 𝜼 =1 and 𝝋 =0.50 
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Figure BB1.3: Rank Dependent Utility Prelec Weighting, 𝜼 =1 and 𝝋 =1.50 

 

Figure BB1.4: Rank Dependent Utility Prelec Weighting, 𝜼 =0.50 and 𝝋 =1 
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Figure BB1.5: Rank Dependent Utility Prelec Weighting, 𝜼 =1.50 and 𝝋 =1 

 

Figure BB2.1: Rank Dependent Utility TK Weighting, γ = 1 
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Figure BB2.2: Rank Dependent Utility TK Weighting, γ = 1.8 

 

Figure BB2.3: Rank Dependent Utility TK Weighting, γ = 1.5 
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Figure BB2.4: Rank Dependent Utility TK Weighting, γ = 1.2 

 

Figure BB2.5: Rank Dependent Utility TK Weighting, γ = 0.8 
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Figure BB2.6: Rank Dependent Utility TK Weighting, γ = 0.5 

 

Figure BB2.7: Rank Dependent Utility TK Weighting, γ = 0.2 
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Figure BB2.8: Rank Dependent Utility TK Weighting, γ = 2.5 

 

Figure BB3.1: Rank Dependent Utility Power Weighting, γ = 1 
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Figure BB3.2: Rank Dependent Utility Power Weighting, γ = 1.5 

 

Figure BB3.3: Rank Dependent Utility Power Weighting, γ = 0.5 
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Appendix CC: More Literature Review for Chapter 3 

 This appendix provides a review of a number of recent ambiguity experiments.67  The 

implementation of ambiguity varies, such as the use of a bingo blower or an urn containing balls 

with unknown proportions.  The choice tasks may include allocating tokens across events with 

known or unknown probabilities, stating a reservation price for a lottery using the Becker–

DeGroot–Marschak method, or choosing between prospects in a list format to elicit certainty 

equivalents.  An overview is provided with respect to experimental design, model specifications 

and findings, and followed by a more detailed description of each study.  

 For the purpose of this review, models of uncertainty or ambiguity are categorized into 

two general specifications: the smooth specification (Klibanoff, Marinacci and Mukerji (2005)) 

and the kinked specification.  The smooth specification (or the smooth model) considers a set of 

priors for the possible outcomes, plus separate utility parameters to capture attitudes toward risk 

and attitudes toward uncertainty.  In evaluating any two-stage lotteries, the smooth model takes 

the EU of each one-stage lottery within each prior and then takes the Expected Value of all EUs 

across the possible priors.  The kinked specification also considers a set of priors but the 

unknown probabilities are skewed by decision weights.  The kinked specification includes 

models such as Choquet EU (Gilboa (1987) and Schmeidler (1989)), Rank Dependent Utility 

(Quiggin (1982)), 𝛼-MEU (Ghirardato et al. (2004)),68 Vector EU (Siniscalchi (2009)), and 

Contraction EU (Gajdos et al. (2008)).   

                                                           
67 For the experiments that are described in this appendix, subjects are provided with some information about the 

probability distribution on the unknown events, instead of a complete lack of information.  By definition, these 

experiments should be categorized as uncertainty experiments (instead of ambiguity experiments).  However, since 

these authors refer to their experiments as testing ambiguity instead of uncertainty, for purpose of discussing their 

studies we use the term ambiguity so to be consistent with the labeling.  
68 An alternative name is the Alpha-Maxmin EU model or Alpha EU (Ghirardato et al. (2004)).  We use the name 𝛼-

MEU throughout this essay.  
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The descriptive power of the specifications is contingent on the data set that is used to fit 

the models and the types of questions that are asked in the experiment.  For example, in 

experiments that involve one-stage probabilities (or simple lotteries), the 𝛼-MEU model 

performs better relative to the smooth model; in experiments that involve two-stage lotteries (or 

compound lotteries) where the second-order probability distribution may or may not be known, 

the smooth model performs better.  For these findings, see Ahn et al. (2010), Bossaert et al. 

(2010), Cubitt et al. (2012) and Attanasi et al. (2014).  

A number of studies report that SEU outperforms many ambiguity models in explaining 

choices.  For example, Hey and Pace (2014) report that SEU is just as good a predictor of 

observed choices as the more complicated ambiguity models (such as Choquet EU, 𝛼-MEU, 

Vector EU, and Contraction EU); Ahn et al. (2010) report that SEU explains the majority of the 

observed choices better than the kinked or smooth specification; Mangelsdorff and Weber (1994) 

report that SEU, assuming the principle of insufficient reason,69 is a better predictor of the 

observed choices than Choquet EU.   

The proportion of subjects who are ambiguity averse varies widely across experiments, 

relative to the proportion of subjects who are ambiguity neutral or ambiguity seeking.  This may 

not come as a surprise given that experiments vary with respect to the implementation of 

ambiguity, elicitation approach, and econometric specifications.  Furthermore, when examining 

the correlation between risk premium and ambiguity premium (i.e., when comparing the risk 

aversion and ambiguity aversion parameters), some studies report a positive correlation whereas 

                                                           
69 “Principle of insufficient reason” or the “principle of indifference” states that if one is ignorant of the ways an 

event can occur, the event will be assumed to occur equally likely in any way (first enunciated by Jakob Bernoulli).  

Mangelsdorff and Weber (1994) use the term “principle of insufficient reason” when referring to the assumption of 

equal probabilities for all outcomes.  
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others report a negative correlation.  For instance, see Bossaert et al. (2010), Cubitt et al. (2012), 

and Attanasi et al. (2014).  

  The rest of the appendix describes in detail several selected studies. The first group of 

studies consists of experiments with one-stage probability (Ahn et al. (2010) and Bossaert et al. 

(2010)), and the second group consists of experiments with two-stage probabilities (Conte and 

Hey (2013), Cubitt et al. (2012) and Attanasi et al. (2014)).70  

 

C1 Ahn, Choi, Gale and Kariv (2010) 

In this study subjects are presented with a portfolio choice task where they are asked to 

allocate tokens across three accounts given a fixed number of tokens, and each account 

corresponds to a state of nature that is to be selected at random.  The first account has 1/3 

probability of success, and the other two have probability of success that sum up to 2/3.  The 

allocation across the three account is made in one choice.  Subjects are asked to complete 50 

allocation choice tasks.  One of the choices is randomly selected for payment, and tokens are 

converted to real money.  The data are fit using three models: SEU, a kinked specification using 

the 𝛼-MEU model, and the smooth model.  For each subject and for each model specification, 

the parameters are estimated using nonlinear least squares.  SEU explains a majority of the 

observed choices, next is the 𝛼-MEU model, and last is the smooth model.   

 

 

                                                           
70 For more review of ambiguity experiments, see Hey (2016) and Etner, Jeleva and Tallon (2010).  
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C2 Bossaerts, Ghirardato, Guarnaschelli and Zame (2010) 

 In a competitive market setting, subjects are presented with an opportunity to buy or sell 

securities.  They may choose from two types of securities.  One type is a bond that pays a fixed 

dividend.  Another type is stocks, three of them (x, y, and z), that pay dividends randomly but 

that are negatively correlated, such that in the experiment if state x is realized, stock x pays $0.50 

and stocks y and z pay nothing.71  The payout is determined by a draw from an urn that contains 

eighteen balls of red, green and blue.  The composition of the urn may or may not be known to 

the subjects depending on which treatment they are assigned to.  If they are assigned to the risky 

treatment, they are told the composition of the urn; if they are assigned to the ambiguous 

treatment, they are told only the proportion of red balls and the number of balls in total.  The 

experiment consists of eight trading periods, and in each period a ball is drawn without 

replacement to determine the payout, thus the total number of balls as well as the composition of 

balls in the urn changes throughout the course of the experiment.  Subjects are paid their 

cumulative earnings.  

 An 𝛼-MEU model is used for the observed choices, and the population appears to be 

heterogeneous with some being quite ambiguity averse.  Furthermore, a positive correlation 

between risk and ambiguity premiums is reported; i.e., a positive correlation between the risk 

aversion and ambiguity aversion parameters.  

 

 

                                                           
71 If two stocks are negatively correlated, when the earnings of one increases, the other is likely to decrease, thus the 

gain in one stock is likely to offset the loss in the other.  If the stocks are positively correlated, on the other hand, 

they tend to rise and fall together.  
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C3 Conte and Hey (2013) 

 In this study subjects are presented with two compound lotteries.  Each compound lottery 

is made up of a number of simple lotteries with binary outcomes (red or blue), and the 

compositions of the simple lotteries are known to the subjects.  The subject’s first decision is to 

choose whether they want to bet on red or blue.  The next decision is to choose which of the two 

compound lotteries they prefer to play out the color they choose.  For example, supposed in the 

first decision a subject choose the color ‘red’ to bet on, and supposed that the left-side compound 

lottery has 5 simple lotteries, and each simple lottery consists of majority red, whereas the right-

side compound lottery has 3 simple lotteries, and each simple lottery consists of majority blue.  

In this scenario, the subject would be more inclined to choose the left-side compound lottery to 

play out his or her chosen color (red), because the left-side compound lottery will have a higher 

chance of drawing a red relative to the right-side compound lottery.  

 An interesting design feature in this study is that one compound lottery is designated as 

the “changing lottery” whereas the other is the “unchanged lottery”.  After the subject makes a 

pairwise decision, one of the simple lotteries inside the “changing lottery” disappears.  Then in 

the next round the subject is asked again to make a pairwise decision, except this time the choice 

is between the updated “changing lottery” and the “unchanged lottery”.  This iterative process 

continues until the “changing lottery” is left with only one simple lottery.  In this way, as the 

distribution in the “changing lottery” becomes narrower, one can study how the narrowing of 

possible states affects subject’s pairwise decisions.  

 The experiment consists of 49 tasks with a total of 256 pairwise decisions.  To determine 

the payout, one of the 49 tasks is randomly selected, then conditional on that task a pairwise 

decision is chosen.  If the subject has chosen the left (right) compound lottery, then within that 
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left (right) compound lottery one of the simple lotteries is played out.  Observed choices are used 

to estimate four models (i.e., EU,72 the smooth model, RDU, and 𝛼-MEU).  The smooth model 

fares the best and 𝛼-MEU the least.   

 

C4 Cubitt, Kuilen and Mukerji (2012) 

In this study subjects are presented with a number of gambles, and the gambles are 

played out by a deck that has 10 playing cards.  An example of a gamble is: if a spade is drawn 

from a particular deck then the subject wins $20, otherwise nothing.  The drawing is performed 

using three decks of cards that are ranked by degree of ambiguity: deck #1 has 7 spades and 3 

hearts; deck #2 takes on two possible compositions, and deck #3 takes on four possible 

compositions. 

For each gamble the subjects are asked if they want to keep the gamble or choose a sure 

amount of money instead; if they keep the gamble then it is played out by deck #1.  Subjects go 

through a series of these choices in a list format and their certainty equivalent for deck #1 is 

elicited in this way.  In the next part of the experiment, deck #2 is used to play out the gambles.  

In contrast to deck #1 (whose composition is known), subjects are told that deck #2 can take on 

two possible compositions but the probability of each composition is unknown.  For each gamble 

the subjects face they are asked if they want to keep the gamble or to choose a sure amount of 

money instead; if they keep the gamble then it is played out by deck #2.  Using the same 

elicitation procedure as before, subjects go through a series of these choices in a list format that 

elicits their certainty equivalent for deck #2.  In the next part of the experiment, a different deck 

                                                           
72 Conte and Hey (2013) use the term EU instead of Subjective EU.  
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of 10 cards (decks #3) is used to play out the gambles. Deck #3 can take on four possible 

compositions but subjects are not told the probability of each composition.  The subjects, again, 

go through a series of choices in a list format that elicit their certainty equivalent for deck #3. 

At the end of the experiment, one of the choice tasks is randomly selected for payment.  

The data are used to estimate the smooth model and the 𝛼-MEU model, with stronger support for 

the former.  Each subject is categorized into ambiguity-seeking, ambiguity-neutral, or ambiguity-

averse, and ambiguity-neutral preference holds the largest group of subjects.  Pooling across 

subjects, the estimation results show some ambiguity-aversion for the average subject.   

 

C5 Attanasi, Gollier, Montesano and Pace (2014) 

 This study involves two-stage lotteries, which is the feature of the smooth model 

(Klibanoff, Marinacci and Mukerji (2005)).  Three types of lotteries are implemented: a lottery 

with a known one-stage probability, a lottery that is partially-ambiguous, and a lottery with a 

second-stage probability that is either known or unknown.  Certainty equivalents are elicited for 

each type of lotteries and comparisons made between these elicited certainty equivalents.  

The experiment consists of ten tasks.  In the first part of the experiment (tasks 1 – 4), 

each subject is presented with four simple lotteries with known probabilities.  Each lottery has 

binary outcomes and the outcome is determined by an urn that has 5 white balls and 5 orange 

balls (thus a 50/50 chance).  These four lottery tasks are used to elicit risk preferences.  Next, the 

subjects is asked to choose one out of the four lotteries.  In task 5, the subject states a reservation 

price for the simple lottery that she chooses among tasks 1 – 4.  This reservation price is elicited 

using the BDM procedure.  In a latter part of the experiment, the elicited certainty equivalent for 
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this risky lottery is compared to the certainty equivalents for the ambiguous lotteries in tasks 6, 7, 

8, 9 and 10.   

In task 6, the chosen lottery from tasks 1 – 4 is changed from a risky distribution (of 

50/50) to an ambiguous distribution described as follows: instead of the chosen lottery (from 

tasks 1 – 4) being determined by a one-stage 50/50 distribution, the lottery is now determined by 

a distribution that has a second-order probability.  If a subject is assigned to the binomial 

treatment, the lottery is played out by an urn that has 10 balls, and these 10 balls are assembled 

by randomly selecting balls from a “construction” urn that has 50 white balls and 50 orange 

balls.  If the subject is assigned to the uniform treatment, there are 11 urns each containing 10 

balls that encompass all possible combinations of whites and oranges, and one of the 11 urns is 

chosen to play out the lottery (with equal probability).  If the subject is assigned to the unknown 

treatment, the lottery is played out by an urn containing 10 balls, and these 10 balls are 

assembled by randomly selecting balls from a construction urn that has 100 balls of unknown 

proportions of whites and orangs.  After a subject is assigned to one of the three treatments, she 

is asked to state a reservation price for this revised lottery that originally is chosen from tasks 1 – 

4, since now the original chosen lottery has become two-stage instead of one-stage.   

Next, the urn constructed in task 6 is used in tasks 7, 8 and 9.  As a test for partial 

ambiguity, the proportions for white and orange balls are narrowed down.  For example, in task 7 

the subject is told that there are between 3 to 7 white balls in the urn; in task 8 the subject is told 

that there are between 3 to 10 white balls in the urn; in task 9 there are between 3 to 10 orange 

balls in the urn.  Conditional on this new information, the subject is asked to state a reservation 

price for each revised lottery.  The certainty equivalents elicited for these (partially) ambiguous 
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lotteries is compared to the risky lottery in task 5.  At the end of the experiment, one of the ten 

tasks is randomly selected for payment.  Subjects are paid a fixed show-up fee.   

Roughly 90% of the subjects can be classified as averse, neutral or loving according to 

their operational definition of coherent-ambiguity attitudes, whereas the rest cannot be classified 

because they are incoherent.  Furthermore, when the distribution is unknown, subjects behave as 

if the probabilities are uniformly distributed, in line with the principle of insufficient reason.73  

This result is consistent with Hey and Pace (2014),74 who report that the estimated beliefs are 

closer to equal probabilities in the more ambiguous treatment than in the least ambiguous 

treatment.  

 

C6 Andersen, Fountain, Harrison, Hole and Rutström (2011) 

Recall that SEU assumes the axiom of ROCL such that any prior probability distribution 

for an event is reduced to a single (degenerate) probability estimate.  In contrast, uncertainty 

models do not assume ROCL and thus a probability distribution is not reducible to a single 

probability estimate.  In theory an uncertainty model preserves the characteristics of the 

subjective probability distribution whereas the SEU model doesn’t.  Keeping to the SEU 

framework, Andersen, Fountain, Harrison, Hole and Rutström (2011) perform an estimation 

procedure that allows one to preserve some distributional characteristics of the estimated belief.  

To do so, they estimate a distribution of beliefs, instead of a single probability estimate, by 

                                                           
73 Attanasi, Gollier, Montesano and Pace (2014) use the term “principle of insufficient reason” when discussing the 

assumption that subjects behave as if the probabilities are uniformly distributed when the distribution is unknown.  
74 Hey and Pace (2014) do not use the term “principle of insufficient reason” to describe the estimated beliefs being 

closer to equal probabilities in their most ambiguous treatment.  
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estimating the parameters that give rise to the shape of the belief distribution.  In this way, one is 

able to obtain more information about the underlying belief. 

Andersen, Fountain, Harrison, Hole and Rutström (2011) present each subject with a 

range of bookies offering odds on the outcome of some unknown event.  As the subject allocates 

earnings over the range of offering odds, the individual probability distribution of the unknown 

event is elicited.  The study is conducted with stationary probabilities, and subjective 

probabilities are corrected for risk attitudes by including a lottery choice task and inferring 

probabilities with joint estimation methods.  Each subjects completes 9 betting tasks in total and 

one of them is randomly selected for real payment.  

The study examines events that have underlying objective probabilities that differ across 

a range of probabilities, and reports that in the low-probability treatment where the objective 

probability is 0.1 or 0.2, in each case the mode and the mean of the subjective distribution are 

significantly greater than the objective probability.  As for the medium- and high- probability 

treatments, where the objective probabilities are 0.5 or 0.55, and 0.75 or 0.8, respectively, the 

mean of the subjective probability distributions are virtually the same as the objective 

probabilities.  Thus, results for the low probability range appears to be consistent with past 

studies (ABPW (2011); KSW (2014)) that report a concave probability region, but not for the 

high probability range.  
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