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ABSTRACT 

As a highly versatile signal, Ca2+ operates over a wide temporal range to regulate many 

different cellular processes, impacting nearly every aspect of cellular life including excitability, 

exocytosis, motility, apoptosis, and transcription. While it has been well recognized that Ca2+ acts 

as both a second messenger to regulate cell-cell communication upon external stimuli and as a first 

messenger to integrate extracellular with intracellular signaling in various cell types. Molecular 

bases for such regulation and related human diseases are largely hampered by the challenges 

related to key membrane proteins. In the present study, we first investigated the regulatory role of 

intracellular Ca2+ ([Ca2+]i) on Connexin45 (Cx45) gap junction through a ubiquitous Ca2+ sensor 

protein-Calmodulin (CaM). Using bioluminescence resonance energy transfer assay, this study 



provides the first evidence of direct association of Cx45 and CaM in a Ca2+-dependent manner in 

cells. Complementary approaches including bioinformatics analysis and various biophysical 

methods identified a putative CaM-binding site in the intracellular loop of Cx45 with high 

Ca2+/CaM-binding affinity and Ca2+-dependent binding mode that is different from alpha family 

of connexins. To understand the role of extracellular calcium in regulation of gap junction 

hemichannels, we would like to prove a possible Ca2+-binding site predicted by our computational 

algorithm MUGSR in Connexin 26 (Cx26) through mutagenesis study, metal binding affinity 

measurement, conformational changes examination of purified Cx26 protein from Sf9; however, 

we failed to achieve this goal due to either the limitation of available methods or lethal effect of 

mutating the predicted Ca2+-binding ligand. Additionally, in this study, we identified a putative 

Ca2+-binding site in metabotropic glutamate receptor 5 (mGluR5) and demonstrated the 

importance of this Ca2+-binding site in activation of mGluR5 and modulating the actions of other 

orthosteric ligands on mGluR5. In addition, we successfully solved the first crystal structure of the 

extracellular domain of Ca2+-sensing receptor (CaSR) bound with Mg2+ and an unexpected Trp 

derivative. The extensive study of mechanism of CaSR function specifically through Mg2+-binding 

site and the unexpected ligand-binding site was done using several cell-based assays in wild type 

CaSR and mutants. Studies in this dissertation provides more information on how Ca2+ regulates 

gap junction channels, modulates mGluR5 activities and structural basis for regulation of CaSR 

by Mg2+ and an unexpected Trp derivative co-agonist. 
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1 INTRODUCTION  

1.1 Ca2+ in Biological System 

1.1.1 Ca2+ and Mg2+ Coordination  

Depending on the fact that Ca2+ is a hard metal ion, this divalent cation Ca2+ prefers 

coordination by oxygen atom, although, nitrogen and sulfur from sidechain groups are also 

considered as potential Ca2+-binding ligand based on observation in small molecule interactions 

(1-3). Those oxygen atoms are from side chain carboxyl groups (Asp, Glu), carboxamide groups 

(Asn, Gln), hydroxyl groups (Ser, Thr), and main-chain carboxyl oxygen atoms from most amino 

acid residues, cofactors, and water molecules. The coordination of Ca2+ usually utilizes binding 

ligands from turn/loop regions rather than α-helix or β-sheet (4,5). Typically, the coordination 

number of oxygen atoms around Ca2+ is 3-8 (6-9), however, the coordination number varies, 

depending on classes of Ca2+-binding sites (7). Class I Ca2+-binding site supply Ca2+-binding 

ligand from a continuous short sequence of amino acids. In class II Ca2+-binding site, one ligand 

originates from the amino acid sequence far away from the continuous fragment which provide 

the rest of Ca2+-binding ligands. The smallest class III Ca2+-binding site is composed of amino 

acid far away from each other in the sequence, but close in the tertiary structure (10). Ca2+ ions in 

proteins is coordinated by an inner sphere of hydrophilic groups and embedded in an outer sphere 

composed by hydrophobic groups, exhibiting a pentagonal bipyramide geometry. The average Ca-

O ligand binding distance is within the range of 2.01-3.15 Å as reported previously (11-14). Ca2+-

binding sites were recently classified by Kirberger et al. based on geometric properties (6).  

By analyzing the Ca2+-binding pocket in more than 40 crystal structures deposited in the 

protein data bank (PDB), our lab established computational algorithm named MUG to predict the 

putative Ca2+-binding site in proteins (15). Utilizing MUG, we are able to identify know the Ca2+-
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binding pockets in holo-protein structures. However, possible Ca2+-induced conformational 

change is ignored. Later on, we further improved MUG algorithm to MUGSR which allows minor 

backbone conformational changes and side chain rotations upon Ca2+-binding. This algorithm was 

verified by successful prediction of 44 Ca2+-binding sites out of 49 sites in documented X-ray 

crystal structures.   

Another abundant intracellular divalent cation is Mg2+, which is also characterized as a 

“hard” metal (16). Through binding with proteins or nucleotides, Mg2+ also exert influence on 

many biological processes (17-19). By analyzing of over thousand Mg2+-binding site, we 

summarized several major similarities and differences between Ca2+- and Mg2+-binding sites. First, 

as “hard” metals, they both prefer oxygen ligand atoms, such as Asp/Glu carboxylate oxygen and 

backbone carbonyl oxygen. However, Mg2+ also prefers other “hard” oxygen atom providers such 

as water and phosphates in addition to oxygens from protein (18,20). Second, water molecules 

have been identified as coordinating ligand in both Mg2+- and Ca2+-biding sites. However, the 

protein ligand over water ligand ratio is quite different (3:3 and 2:2 for Mg2+; 6:1 and 5:2 for Ca2+). 

In 63% of Mg2+-binding site, water ligand number exceeds or equals protein ligands; while 76% 

of Ca2+-binding site has more protein ligands than water ligand. Third, the coordination ligand 

number for Mg2+ and Ca2+ are approximately balanced at 6. However, more than 99% Mg2+-

binding sites display 6 or less ligands; while 50% Ca2+-binding site has more than 6 ligands. 

Fourth, the Ca2+-O and Mg2+-O distances are distinct. About 53% of Mg2+-O distance is in the 

range of 2.0-2.2 Å with an average of 2.1 Å. Those differences may contribute to the different 

roles of Mg2+ and Ca2+ in biological systems.    
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1.1.2 Ca2+ homeostasis 

The cellular function of calcium (Ca2+) was firstly reported by Sydney Ringer in 1883 (21). 

He found that the contraction of isolated frog hearts could be maintained in the saline solution 

prepared using London tap water which contained calcium, while not in the saline solution made 

up using distilled water without calcium. Later, Ca2+ induced contraction of frog muscle was 

further demonstrated to occur only when it was applied to their cut ends. Since then, especially 

after 1940s, the calcium signaling saga started and numerous subsequent works identified series 

of cellular processes including cell motility, gene transcription, muscle contraction, and 

exocytosis, are regulated by Ca2+.  

The extracellular Ca2+ concentration ([Ca2+]o) is about 20,000-fold higher than the 

intracellular Ca2+ concentration ([Ca2+]i). This huge difference across the plasma membrane 

creates the Ca2+ gradient from mM (extracellular) to nM (intracellular). However, the 

concentration of Mg2+, another common physiological divalent ion, is reported to have only very 

small gradients (2 or less) across the plasma or intracellular membranes (22). One important reason 

why cells reduce Ca2+ concentration in cytosol is that Ca2+ can precipitate intracellular phosphate 

and exhibit its toxic properties in cell. In the long evolutionary history, cells adapted different ways 

to exclude high [Ca2+]i, meanwhile utilize its concentration difference in signal transduction. In 

addition to extrude or compartmentalize Ca2+, another way to control Ca2+ concentration is through 

thousands of Ca2+-binding proteins with a broad range of binding affinities from nM to mM. Those 

protein could be receptors, buffer proteins, pumps or channels. 

1.1.3 Ca2+ Signaling network 

The Ca2+ homeostasis is tightly regulated by parathyroid hormones (PTH). When the 

concentration of Ca2+ in the extracellular fluid is too low, PTH synthesis and secretion from 
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parathyroid gland will significantly increase to directly act on bone and kidney by stimulating Ca2+ 

release and resorption, or indirectly work on intestine by stimulating Ca2+ absorption, respectively. 

Once the Ca2+ concentration in the extracellular fluid decrease below certain value, the PTH 

secretion will be decreased to reduce the bone Ca2+ release, kidney Ca2+ absorption and intestine 

Ca2+ absorption. The other effect of PTH secretion is to stimulate the production of 1, 25(OH)2D, 

which is the active form of vitamin D. This precursor of vitamin D could enhance the Ca2+ 

absorption in small intestine.  

The Ca2+ signaling network is complex (Fig. 1.1) where cell plasma membrane establishes 

the simplest Ca2+ compartmentalization. The extracellular Ca2+ ([Ca2+]o) concentration in 

mammalian cells ranges from 1.5 to 2 mM. [Ca2+]o could act as a first messenger through receptors 

on the cell membrane such as Ca2+-sensing receptors (CaSR). Activation of those receptors by 

[Ca2+]o leads to the transduction of extracellular signal into cytosol of cells through downstream 

signaling pathways. [Ca2+]o-binding to CaSR, for example, elicits complex intracellular signaling 

through activation of various downstream signaling proteins including G protein and protein lipase 

C (PLC), which in turn result in production of second messengers like inositol trisphosphate (IP3) 

and DAG, through decomposition of phosphatidylinositol 4,5-bisphosphate (PIP2). Subsequently, 

those second messenger further target on cytosolic molecules, leading to downstream signal 

changes, including Ca2+ release from endoplasmic reticulum (ER). Extracellular electrical, 

hormonal, and mechanical stimuli can also produce Ca2+ signals by causing influx of Ca2+ ion 

across the plasma membrane or release from intracellular Ca2+ store ER.  

The intracellular Ca2+ concentration is tightly and precisely controlled at around 100-200 

nM by proteins which can transport it in or out of the cytosol, or bind with it to limit its free 

concentration in the cytosol. Those proteins are divided into two broad categories, one of which 
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interact to regulate its free concentration, such as Ca2+-buffering and Ca2+-transporting proteins. 

The other group function as Ca2+ sensor by binding with Ca2+ to decode its signal. Residing in the 

cytosol or organelles, Ca2+-buffering proteins usually has low Ca2+-binding affinity, allowing large 

amount of Ca2+ storage. Ca2+-transporting proteins are usually channels, pumps or exchangers on 

the plasma or organelle membrane. For example, plasma membrane Ca2+ ATPase (PMCA), 

voltage-gated channel, Na2+/Ca2+ exchangers on the plasma membrane are pumps, channels and 

exchangers, respectively, mediating Ca2+ entry or exit through cell membrane. By transporting 

Ca2+ across the membranes, Ca2+-transporting proteins usually produce sharp Ca2+ signal.  

Both Ca2+-buffering protein and Ca2+ triggering proteins can bind with Ca2+. The difference 

between them is that Ca2+ triggering proteins process Ca2+ signals upon binding to Ca2+ while 

Ca2+-buffering proteins do not. Ca2+-sensing proteins firstly decode the Ca2+ signal via Ca2+-

dependent conformational change and then pass those information to targets that receive messages 

and translate them into function. The well-known Ca2+ sensor is the EF hand protein Calmodulin 

(CaM). There are one pair of EF hands with different Ca2+-binding affinity in each domain of CaM. 

Upon Ca2+ binding, CaM undergoes changes from a “closed” to an “open” conformation. This 

change result in exposing more hydrophobic surface, which provides binding sites for a large 

number of target proteins. As a multifunctional intermediate, CaM integrates different signaling 

through interaction with numerous targets and associated with them reversibly. How CaM is able 

to interact with various target proteins is not well understood. This question will be addressed in 

Chapter 3.     
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Figure 1.1 Ca2+ signaling network.  

Extracellular stimuli firstly activate receptors on the plasma membrane, leading to the 

production of second messengers from numerous downstream signaling pathways and 

resulting in [Ca2+]i elevation. In turn, elevated [Ca2+]i leads to activation of various 

Ca2+ sensor proteins such as CaM and triggers downstream events such as activation of Ca2+-

dependent protein kinase. Ca2+-permeable channels, pumps or exchangers on the membrane 
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including plasma, and organelle membranes can also be activated to allow Ca2+ mobilization 

through membrane (23).  

 

1.1.4 Ca2+, CaM, and CaM-binding modes 

CaM is a small (17 kDa) Ca2+-binding protein with ubiquitous express in eukaryotic cells. 

It is one of the famous Ca2+ sensor and adaptor protein, which contributes tremendously in 

understanding about processing of Ca2+ signals by EF-hand proteins. The crystal structure of 

parvalbumin is a historical landmark in Ca2+ signaling leading to the EF-hand-protein concept.  

Through the interaction with numerous targets, CaM transfers Ca2+ signals to regulate multitudes 

of intracellular processes such as cell growth, proliferation, motility, and apoptosis. The concept 

of EF-hand was first devised in 1973 when the parvalbumin crystal structure was solved (24). The 

canonical EF-hand in CaM is characterized by a 29-residue helix-loop-helix motif as shown in 

figure 1.2. Ca2+ in the EF-hand is coordinated by oxygens from sidechain carboxyl of amino acids 

at position 1, 3, 5 and 12, from main chain carboxyl of amino acid at position 7, and a bridged 

water at position 9. The topology of EF-hand resembles the spread thumb and forefinger of our 

hand. The EF-hands in two globular domains of CaM display different binding affinities for metal 

ions. The Ca2+-binding affinity of C domain is 3-fold higher than that of N domain. Four sites from 

two globular domains function cooperatively to bind Ca2+. In the absence of Ca2+, CaM is in a 

“closed conformation” with antiparallel EF-hand helices from two domains. Upon Ca2+-binding, 

CaM adapts to an “open conformation” in which helices are more perpendicular to each other, 

exposing more hydrophobic surface for a wide range of targets binding (25) .  
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Figure 1.2 EF hand (26) 

(a) Cartoon representation of EF hand. The canonical EF hand is formed by helix-loop-helix. 

Ca2+ ion in the EF hand is coordinated by ligands inside of this 12-residue loop region. 

Oxygen coordinating Ca2+ ions are from side chain of amino acids at position 1, 3, 5 and 12, 

main chain of amino acid at position 7, and water at position 9.  (b) Crystal structure of EF 

in CaM.  

 

Recent work involving crystallization, nuclear magnetic resonance (NMR), and 

mutagenesis studies have revealed how CaM interact with and regulate its targets in various 

different ways. Typically, before binding with its targets reversibly or irreversibly, CaM needs to 

be activated by Ca2+. However, apo-CaM can also bind to the targets in many cases. CaM-binding 

 

a                                                 b 
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proteins possess specific regions characterized with a net positive charge, moderate hydrophilicity, 

and moderate to high helical hydrophobic moment (27,28). Many target sequence are intrinsically 

disordered and undergo a disorder-to-order conformational transition as reported (29-31). Those 

CaM-binding motifs are generally divided into IQ motif which is Ca2+-independent CaM binding 

motif and Ca2+-dependent CaM binding motifs. Ca2+-dependent motifs can be further grouped 

based on the distance between hydrophobic anchor residues (28,30,32-36).  

IQ motif represents a large group of CaM-binding sequences. One of the well-known 

characteristics of IQ motif is its Ca2+-independence in CaM binding. However, recently, more and 

more work found that some IQ motifs also bind with Ca2+-loaded CaM (37,38). Studies of CaM 

interaction with unconventional myosin provide primary elucidation of characteristics of IQ motif. 

IQ refers to the first two amino acids isoleucine and glutamine in the consensus sequence 

(IQXXXRGXXXR) of IQ motifs. The first residue isoleucine can be replaced by other 

hydrophobic amino acids such as leucine and valine. Glycine at position 7 is also ambiguous in 

some CaM-binding proteins like PEP19 and some myosin protein (39). Position 11 can be either 

arginine or lysine. A more generalized IQ motif can be presented as [I, L, V]QxxxRxxx[R, K]. 

Currently more IQ motif-containing proteins have been reported. Some of them called IQ-like 

motifs ([FILV]Qxxx[RK]xxxxxxxx) which does not strictly follow the generalized IQ motif 

sequence listed above. They are incomplete IQ motifs with only the first half of the IQ motif. 

Studies of the essential and regulatory light chain of conventional myosin revealed that C-domain 

of apo-CaM interacts with the first half of IQ motif (IQxxxR), while N-domain of apo-CaM binds 

with the second half without inducing significant conformation change of N-domain. The binding 

affinity of IQ motifs to CaM varies among different IQ motifs and Ca2+ concentrations. 
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How CaM interacts with its targets and regulates its binding partners varies. Through 

analyzing the CaM complex structures deposited in protein data bank (PDB), CaM-binding could 

be grouped into two general categories: extended and collapsed (Fig. 1.3). In extended mode, two 

domains of CaM interacts with different site of targets. The distance between two domains of CaM 

is not significantly influenced. The collapsed mode is also called canonical wrap-around mode, in 

which two domains of CaM bind to the hydrophobic anchor residues in the binding motif and form 

a hydrophobic pocket which wraps the helical target inside. The distance between two domains 

could be largely shortened by the flexible linker from 50 Å to less than 10 Å. Figure 1.4 shows 

that CaM regulates various cytosolic and membrane proteins including gap junctions. How 

Ca2+/CaM regulates connexins especially Cx45 for cell-cell communication will be addressed in 

Chapter 3. 
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Figure 1.3 CaM function as an adaptor protein to interact with various target proteins.  

Ca2+-free and Ca2+-load CaM are able to bind with a wide range of targets including soluble 

cytosolic proteins and membrane proteins.  

 

Figure 1.4 Diverse CaM-binding modes. 

CaM interact with various target proteins in different binding modes. These modes can be 

divided into two groups-collapsed and extended, based on whether the distance between N- 

and C-domain of CaM is influenced or not.      
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1.2 Gap Junction  

1.2.1 Gap junction overview 

Gap Junction is a specialized membrane structure, which is spanning the membrane of two 

neighboring cells, leaving a 2-3nm characteristic gap between them (40)(Fig. 1.5). It forms a 

channel between two adjacent cells and provides a direct pathway for intercellular communication. 

Molecules up to 1kD (41), like second messenger, metabolites and so on, can pass through this 

channel. Not only the chemical coupling, but gap junction also allows the electrical coupling 

between two neighboring cells. Residing on the membrane, it offers an accurate tuning of several 

biological processes including cell differentiation, growth and development. So far, about 21 genes 

coding gap junction proteins have been discovered in human (42). Each of them has distinct 

physiological properties and regulation responses. This diversity is further amplified by expression 

of multiple gap junction protein in one cell to enable the heterologous interactions between 

different members (43). Gap junctions integrate the cellular functions of essentially every tissue 

in the body with a few notable exceptions (e.g. blood, skeletal muscle). The functional loss of gap 

junction may result in embryonic lethality (e.g. Cx45) (44,45), perinatal death due to congenital 

malformations (e.g. Cx43-/-) (46), and to disease pathologies (e.g. CMTX, Cx32; ODDD, Cx43; 

DFNA/B, Cx26, Cx30, Cx43; cataracts, Cx46, Cx50) (47). However, the molecular basis of 

dysfunction or loss of function is unclear. Connexin mutations may interfere the gene expression, 

affect the protein or DNA stability, impede protein trafficking, translocation and assembly or alter 

the regulation of gap junction.  
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Figure 1.5 Gap junction on the cell membrane.  

Hemichannels in apposed plasma membranes of neighboring cells can dock to each other 

and form gap junction channels, which enable the information and nutrients exchange 

between two adjacent cells. Hemichannel can also exist independently on the membrane and 

serves as the bridge connecting the extracellular environment and internal environment of 

cell.  

 

1.2.2 Gap junction protein family and the distribution of connexins 

Gap junctions were initially believed to be constituted by the same connexin until gap 

junction- enriched sample from different tissues displayed different bands on SDS-PAGE (48-51). 

Subsequently, more and more evidence came out to indicate that gap junction proteins harbor a 

big family. Until now, 19 connexin genes in the mouse genome and 21 connexin genes in the 
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human genome have been deposited in the mouse and human genomic databases. The widest 

acceptance of nomenclature used to distinguish connexin is word connexin abbreviation connexin 

followed by the predicted molecular mass of connexins in kilodaltons (52,53). Additionally, a 

prefix is added to label the species that connexins originate from. An alternative nomenclature was 

created to clarify some confusion met when homologous connexins have completely different 

molecular masses in distinct species (e.g., hCx46, bCx44 and cCx56). Connexins are sorted into 

subgroups (α, β and γ) based on amino acid sequence homology and evolutionary relationships.  

 

 

 

 

Figure 1.6 A molecular phylogenetic tree for human connexin protein (HCx) and rat 

connexin33 (rCx33).    
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The divergent sequence portions (the intracellular loop and the carboxyl-terminal domain) 

were removed from the multiple alignments. The connexin family can be broadly separated 

into three main subgroups, the historical, α (green) and β (blue) and a more divergent γ 

branch (54).  

 

Compared with α and β family, γ family is well known and widely divergent. On the above 

phylogenetic tree (Fig. 1.6), connexins in the γ family show larger evolutionary distances. 

Sequence alignment of hCx45, hCx26 and hCx50 result indicates that γ family Cx45 does not have 

the “MDW” amino acid at the beginning of N-termini. Besides, the CL is much longer in Cx45 

than that of Cx26 and Cx50. Compared with the β-type connexins, the α-type connexins have a 

larger M2–M3 cytoplasmic loops and a larger cytoplasmic C-terminal tails. Besides, the second 

amino acid “G” is absent in beta family amino acid. Finally, the initiation of assembly occurs in 

distinct cellular organelles (Figure 5); one of the beta family members Cx32 assembly occurs in 

the ER/ERGIC (55). In contrast, Cx43 (56)and Cx46 (57) which belong to the alpha family start 

to assemble in the trans-Golgi network (Fig. 1.7). 
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Figure 1.7 The life cycle of connexin.  

 

Connexins were synthesized in the ER first, following by oligomerization in different 

intracellular department. The initiation of assembly of Cx32 and Cx43 are from ER and 

trans-Golgi network, respectively. The hexamers were transported along the microtubules 

to the cell surface, where plasma membrane insertion occurred. Hemichannels could 

undergo lateral diffusion in plasma membrane and form gap junction plaque eventually by 

docking with hemichannels from the other cell. Microtubes participated in the stabilization 

of gap junction plaque. The degradation of gap junction protein were achieved in lysosome 

or proteasome (55).  

 

Connexins universally distribute in vertebrate tissues with the exception of several highly 

differentiated cell types: red blood cell, mature skeletal muscle cell and spermatocytes. The 

connexin expression pattern is complicated in tissues. One or even more connexins may express 

in a given tissue and a given connexin can be present in more than one tissues. The cDNA probes 

significantly contribute to the screening of connexins in different tissues. A list of connexins 
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expressed in various tissue types are listed below (Table 1.1). Cx26 can be observed in liver, skin, 

liver and cochlea, but Cx46 and Cx50 expression is exclusively in the eye. Furthermore, in the 

different stages of one given tissue, the types of connexins vary and the expression amount displays 

a great variety. Take Cx43 as an example, abundant mRNA of Cx43 and Cx38 had been identified 

in Xenopus Oocytes before ovulation and meiotic maturation, while Cx43 gradually disappears 

during the maturation of oocytes. Then Cx38 is replaced with Cx30 by the early gastrula stage 

(58,59). In summary, the regulation of connexin expression is both temporal and spatial.  

Table 1.1 Connexin gene expression pattern in human.  

 

Gene Expression Patterns 

GJB2(Cx26) Cochlea, skin, liver, placenta, breast 

GJB1(Cx32) Liver, oligodendrocytes, chawann cells 

GJA1(Cx43) Heart, lens, brain, adrenal gland, etc. 

GJCa(Cx45) Heart and brain 

GJA3(Cx46) lens 

GJA8(Cx50) lens 

 

 

Among all these characterized connexins, it is worthwhile to note that Cx26 usually 

expresses in conjunction with other connexins in the same family (60). The co-existence of 

different connexins in one cell dramatically increases the structure combinations of both connexon 

and GJ channels (Fig. 1.8).  Homomeric or heteromeric connexons can be formed by six identical 

connexins or different connexins, respectively. Another complexity is generated during the 

docking of connexons from two adjacent cells. GJ channels can be either formed by two identical 

or different hemichannels, leading the formation of homotypic or heterotypic GJ.  
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Figure 1.8 Scheme presentation of connexin and gap junction channel.  

 

(a) Connexin is compromised by four transmembrane helices, two extracellular loops, one 

cytoplasmic loop, N- and C-domains. (b) Six connexins oligomerize to form hemichannels 

called “connexons”, which then align in the extracellular space to complete the formation of 

gap junction channels. Different connexins can selectively interact with each other to form 

homomeric, heteromeric, and heterotypic channels, which differ in their content and spatial 

arrangement of connexins subunits (61). 

 

It is not certain to what extent the formation of heterotypic gap junction channels will alter 

the cell communication. The heterogeneous gap junction channels  are conducive to cells from the 

following aspects: 1)  expand the diversity of molecules exchanged between cells since different 

gap junctions exhibit unique permeability; 2) increase the options for fine regulation of gap 

junctions; 3) provide control over the assembly of hemichannels and gap junction channels (62). 

It is notable that a given connexin is only compatible to certain connexins. The heterogeneous gap 
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junction communication had been assessed using the xenopus oocyte expression system (63,64). 

So far, the compatibility of connexins has been depicted. Bruzzone and his colleagues fused one 

fragment from the N-terminus to the second transmembrane of Cx32 to Cx43 from the cytoplasmic 

loop to the C-terminus and overexpressed this mutant in xenopus oocytes. By measuring the gap 

junction conductance, they found that this mutant only paired functionally with Cx43, but not 

Cx32. The result indicates that the middle cytoplasmic loop and the C-terminus are portions 

influence the interaction between different connexins (65).  

1.2.3 The function of gap junction and its associated diseases 

Gap junctions play an indispensable role in direct electrical and chemical communication 

between cells, through the transmission of current and molecules less than 1kD, such as inositol 

triphosphate (IP3) and calcium Ca2+. It is involved in many biological processes, including 

development, differentiation, cell synchronization, neuronal activity and the immune response 

(66,67). 

This protein family is related with many diseases, like skin disease, tooth disease, and heart 

diseases (Fig. 1.9). The first inherited abnormality of a gap junction protein was reported in 1993 

with mutations in Cx32 in individuals with X-linked charcot-marie-tooth disease (68). Then in 

1997, mutations in Cx26 were identified in case of deafness (69), a finding that led to the 

significant discovery that mutations in Cx26 are in fact a common cause for several forms of 

deafness. Later, mutations were discovered in seven connexins: Cx30, 30.3, 31, 40 43, 46 and 50 

to be related with different diseases. Among them, four connexins were associated with skin 

http://en.wikipedia.org/wiki/Inositol_triphosphate
http://en.wikipedia.org/wiki/Inositol_triphosphate
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diseases: Cx26, Cx30, Cx30.3, Cx31. Cx46 and 50 have been shown to underlie cases of cataract 

(70,71).  

 

Figure 1.9 Illustration of disease phenotypes associated with abnormal gap junctions.  

Mutations in connexins lead to abnormal function of gap junction channels or hemichannels, 

resulting different diseases (47). 

 

1.2.4 The regulation of gap junction by Ca2+ 

Since communication between neighboring cells is regulated at multiple levels, the gap 

junction gating displays several different ways, like voltage gating and chemical gating, which are 

the faster regulations involved in changing the unitary conductance of single channels or altering 

their permeability of opening. The slower regulation is achieved through slowing the synthesis and 

assembly rates, thus reducing the number of gap junction present in the membrane. The slow and 

rapid regulation may overlap, for example, the rate of trafficking the connexon to the membrane 
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may be slowed down or degradation is accelerated, meanwhile, the conductance of gap junction 

channels is altered. In this dissertation, I will focus on the chemical gating, especially Ca2+ and 

CaM regulation of GAP JUNCTION channels.  

The discovery of Ca2+ in gap junction regulation can be traced back to 1970s when a 

plentiful of articles reported that extracellular calcium was required for the heart muscle “healing-

over” (72-76). When the cardiac muscle is damaged in injury, the resting membrane potential first 

depolarizes, followed by a recovery to normal. This process is called “healing-over”, which is 

initiated as a self-protection mechanism to prevent the spread of damage to neighboring cells. It is 

concluded that extracellular Ca2+ ions in the bath solution is essential for the healing over of 

mammalian heart muscle and cell uncoupling mediated through gap junction (77-83). Later on, 

structural changes induced by [Ca2+]o were observed in gap junctions isolated from calf lens fiber 

(84). As shown in figure 1.10, loosely packed junctional regions were captured in Freeze-fracture 

experiment when calf lens were incubated in EDTA solution in which Ca2+ concentration was 

buffered within a range of 10-8 to 10-6 M. The random center to center distance between each 

particles were ranging from 8 to 11 nm. In the contrast, gap junction particles were induced to 

form condensed crystalline array with a center-to-center distance of 6.5-7 nm by Ca2+.  

 

a                                               b                        
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Figure 1.10 Comparison of gap junction particles isolated from calf lens fibers in the presence 

of EDTA (a) or subsequently incubated in the presence of CaCl2 (b).  

Images were obtained from freeze-fracture replica experiments. The distribution pattern of 

gap junction particles in EDTA buffer is random and loose, on the contrary, condensed 

crystalline pattern were detected when gap junction particles were immersed in Ca2+ buffer. 

E: E face; P: P face. 

 

In 1980, Dr. Unwin proposed a Ca2+ gating model (Fig. 1.11): the helices of gap junction 

protein twist to close the channel in the presence of Ca2+ (85). Large conformation changes are 

required in this proposed model. But until now, no evidence support this model. 

 

Figure 1.11 Ca2+ regulation model from Dr. Unwin. 

Six cylinders stand for the six gap junction protein connexin. The helices of six cylinders 

twist a little to close the channel in the presence of Ca2+ (85).  

 

The rapid development in the atomic force microscopy facilitated the progress of 

visualization of conformations of gap junction channels. Back to 2002, Daniel imaged the Ca2+ 
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induced conformational change of gap junction channel (Fig. 1.12) using AFM (86).  Before the 

injection of Ca2+ solution, gap junction channels display 1.5 nm diameter entrances, while the 

injection of 0.5 mM Ca2+ reduces the diameter of entrance to 0.6 nm.  Besides, the plaque heights 

also increased from 0.6 nm to 18 nm, which suggests that Ca2+ not only alters the conformation of 

the surface of connexon (hemi-channel), but also affects the structure of intact channel. 

 

Figure 1.12 Extracellular connexin surface recorded by AFM in a Ca2+-free buffer (left) and 

a buffer with 0.5 mM Ca2+ (right).  

A is the AFM image showing single connexons. Circles in the image pointed out some 

connexons with defects. B is the average of all connexons captured in image A. The connexin 

arrangement in connexon are depicted, as well as the side view of the channel pore. C is the 

average standard deviation map calculated from connexons in image A.  

 

Recently, Julian et al. studied the effect of different divalent cations on the pore size of 

Cx43 (Fig. 1.13) (87). When there was no Ca2+ in the buffer, the addition of Mg2+ or Ni3+ could 

not close the pores. While 1 mM Ca2+ triggered the decrease of pore size and 1.4 mM Ca2+ could 
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even make some channels close. At 1.8 mM Ca2+, the pores completely closed. Figure 1.14H and 

I clearly showed the extracellular surface of the channel in Ca2+ free buffer and 1.8 mM Ca2+ 

buffer. The size distribution of Cx43 hemichannel pore analysis also clearly indicated that the 

average pore inner diameter of Cx43 hemichannels in 1.8 mM Ca2+ buffer was approximately 1nm 

smaller than that in Ca2+ free buffer. With the increase of Ca2+ concentration in the buffer, the 

population of open pores dramatically reduced from 100% to less than 5%. 

 

Figure 1.13 The diameter change of reconstituted Cx43 hemichannel pores in different cations.  

A-G shows the surface of the pore mouth in different cation concentrations. H and I are two 

zoomed connexons presented as open (H) and closed (I) hemichannels. Connexin monomers 

were numbered as 1 to 6. J is the inner pore diameter distribution graph in the absence of 

Ca2+ (black), or in the presence of 1.8 mM Ca2+ (blue) or 1.8 mM Ni2+ (red). The percentages 
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of open channels in different concentration of bath Ca2+ concentrations are plotted in the 

figure K.  

 

All the above results suggests that Ca2+ plays a crucial role in channel gating. But the exact 

mechanism is still unknown. What is the Ca2+ binding sequence? Does it directly bind with the 

gap junction or not? How does the Ca2+ regulate the opening of gap junction channel? Until this 

year, the first Ca2+-loaded crystal structure of Cx26 was published, uncovering the binding site of 

Ca2+ and its mechanism of channel closure induction (88). In this dodecamer structure, 12 Ca2+ 

ions were coordinated by 5 oxygens from residues E47, G45, and E42. Among the three binding 

ligand, G45 and E47 are from one monomer, while E42 is provided by another adjacent monomer 

(Fig. 1.14). The Ca2+-bound and Ca2+-free structures are similar. The threshold diameter of both 

pores are around 15 Å. Those two structures directly revised the old model in which Ca2+-binding 

induces major rearrangement of six helices to close the gap junction channel proposed by Unwin 

et al earlier. The comparison between Ca2+-bound and Ca2+-free structures revealed that the 

arrangement of six helices are nearly identical. The bound Ca2+ was still exposed to the aqueous 

environment and no occlusion was formed in the Ca2+-bound structure. Even though no major 

difference between Ca2+-bound and Ca2+-free structures were seen, minor deviations were 

identified. In the absence of Ca2+, the side chains of both E42 and E47 rotated ≥ 90o and formed 

intrasubunit hydrogen bond with R75 and K188, respectively. The carbonyl of Cx45 moved closer 

to E42 to result in additional interactions between subunits when Ca2+ is absent. 
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Figure 1.14 Ca2+-binding site in Cx26 gap junction channel crystal structure. 

The helices arrangement are very similar in Ca2+-bound (a, cyan) and Ca2+-free structures 

(e, orange). In the Ca2+-bound structure , Ca2+ is positioned at the interface between two 

adjacent monomers , coordinated by five oxygens from residues E42 (from monomer F), G45 

(from monomer A), and E47 (from monomer A) (b) In the Ca2+-free structure, the side chain 

of three Ca2+-binding ligands rotated and build interactions with other surrounding residues. 

Side view of Ca2+-bound hemichannel (c) or Ca2+-free hemichannel (g) with three monomers 

close to the viewer been removed. (d) Side view of the Ca2+ coordination sites in Ca2+-bound 

structure (d) or Ca2+-free structure (h).   

 

The new Ca2+-bound structure did not form steric occlusion of the pore, but it did change 

the electrostatic potential of the pore. Molecular dynamics (MD) simulations of the Ca2+-free and 

Ca2+-bound structures found that K+ permeabilization was severely impeded by Ca2+-binding. A 

positive pore surface potential is created which determines the pore selectivity when Ca2+ binds. 

Ca2+-free gap junction channels with a negative surface potential prefers the passage of anions or 
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molecule with negative charges. Based on the above evidence, Bennett et al. proposed that an 

electrostatic barrier of the pore is formed when the Ca2+ binding sites are occupied, resulting in 

significantly reduced permeability of positively charged molecules and cations.   

 

1.2.5 Structure characterization of gap junction 

The long history of gap junction structure characterization can be traced back to 1960s, 

which was several years prior to the time that gap junction protein was been identified. The 

sectional disk-like structures were visualized in cardiomyocyte plasma membrane (89), striated 

and smooth muscle cells (90,91), and synaptic membrane complex (92,93) by electron micrograph 

(EM) in the late 1960s and early 1970s. In the early EM images, gap junction was delineated as 

hexagonal nexus structures, while Stoeckenius et al. found that lipid micelles can also array to 

hexagonal structure when temperature is elevated (94). Therefore it is hard to say which one (gap 

junction or lipid) forms the hexagonal structure, but here is a possibility that the hexagonal nexus 

structure was an artefact of temperature. Until 1967, gap junction was distinguished from tight 

junction when Revel and Karnovsky observed the dense spot in the center of gap junction by EM 

(95). The dense spot indicated that gap junction had hollow and hydrophilic center, which possibly 

enable molecules to pass through. Later Payton and his colleagues (96) proved that a membrane 

impermeable dye Procion yellow M4RS can be transferred between adjacent cells via cytoplasm-

to-cytoplasm exchange. Subsequent freeze-fracture revealed GJs spanning plasma membrane of 

two neighboring cells as hexagonal subunits called “connexon”. Specimen prepared for freeze-

fracture was intact gap junctions purified using a bulk purification protocol created by 

Goodenough et al (97).  
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From then on to 1999, medium resolution structure of gap junctions was achieved. X-ray 

diffraction data further confirmed gap junctions’ hexagonal array structure (98). In the later study 

by Unwin et al, left-handed twist of connexons triggered by Ca2+ was observed. This rotation 

contributed to a wider extracellular surface and narrower cytoplasmic mouth. The advent of Edman 

degradation speeded up the identification of gap junction proteins. Nicholson first reported that 

liver and heart gap junction proteins were different but also related (99). A 32 kDa protein was 

identified in rat and human liver (100). Other gap junction proteins like 43 (52) have since been 

discovered. Considering multiple connexins expressed in one specific tissue, the molecular weight 

(52) of isoforms was used to name connexins and replaced the previous nomenclature system built 

on tissue expression (59). Later on, connexins were described as consisting of 4 helical 

transmembrane domain (TM1, TM2, TM3 and TM4), two extracellular loops (EL1 and EL2), one 

cytoplasmic loop (CL) by prediction, circular dichroism (CD), proteolysis susceptibility and site-

directed antibody localization studies.    

High resolution gap junction structure was published in 1999 (101), in which a 7.5Ǻ 

crystallographic structure of CT-truncated Cx43 turned over a new chapter of gap junction 

structure study. Truncation of Cx43 at residue 263 removed the most flexible part of Cx43 and 

increased the diffraction resolution. The crystal structure depicted a widening cytoplasmic surface 

with a diameter of 70 Å and a narrowing cytoplasmic surface with a diameter of 50 Å.  

Additionally, the crystal structure suggested that each connexin has four helical TM domains (two 

right-handed and two left-handed), which supported the hydropathy plots prediction. Atomic force 

microscopy (AFM) played significant role in visualizing conformational change induced by Ca2+ 

and pH.  Muller et al clearly captured the pore diameter drop from 1.5 nm in Ca2+ free buffer to 

0.6 nm when 0.5 mM Ca2+ was injected into the buffer (86). In 2005, the decrease of central pore 
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of 73 % Cx43 connexon from 2.5 nm to 1.8 nm upon the addition of 1.4 mM Ca2+ to the buffer 

was again published (87). Later, pH-mediated pore closure of Cx26 was identified by AFM too 

(102). The channel entrance size narrowed down from 1.7 nm to 0.6 nm when buffer pH dropped 

from 7.6 to 6.0. But Cx26 only responded to acidification in aminosulfonate buffer. In the same 

year, a 10 electron crystallographic structure of Cx26M34A was reported by Sosinsky lab (103). 

This structure is quite similar to the truncated Cx43 gap junction reported by Thimm in 2005. The 

astonishingly similarity hinted that the most distinct cytoplasmic parts may function as a regulator. 

But the flexibility of these cytoplasmic domains makes them to be invisible in this crystal structure. 

The new discovery from the projection maps of Cx26M34A is the plug-like density in the pore of 

Cx26M34A channel.  One year later, the same group compared the Cx26M34A and 

Cx26M34Adel2-7 electron cryo-crystallography at the same resolution and found a significantly 

decreased plug density in the pore of Cx26M34Adel2-7 (104). Cx26M34Adel2-7 is derived from 

Cx26 M34A by deleting amino acids 2 to 7 at the N-terminus. The difference indicates that N-

domain of Cx26 contributes to the plug revealed in the Cx26M34A projection map. A higher 

resolution (5 Å) further proved that N-terminus is the most reasonable candidate of forming the 

plug. Besides, N-domain may function as stabilizing the open state of Cx26 channel since N-

domain deletion mutation displayed no electrical activity in paired Xenopus oocytes and reduced 

dye transferring capability in Hela cells (105). The conclusion based on the 3.5 Å crystal structure 

reported by Maeda group (106) further enriched our understanding on the gap junction structure. 

The traditional Japanese drum shape channel (Fig. 1.15) shared similar size and shape with C-

terminal truncated Cx43 channel. 
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Figure 1.15 Overall structure of Cx26 gap junction channel in ribbon representation. 

The corresponding protomers in the two hemichannels, which are related by a two-fold axis, 

are shown in the same color. (a) Side view of the Cx26 gap junction channel. (b) Top view of 

the Cx26 gap junction channel showing the arrangement of the transmembrane helices TM1 

to TM4. The pore has an inner diameter of 35 Å at the cytoplasmic entrance, and the smallest 

diameter of the pore is 14Å (106). 

 

Due to the high flexibility of cytoplasmic domains, the cytoplasmic domains were not 

resolved in the crystal structure. The height of Cx26 channel is about 155 Å without accounting 

the disordered cytoplasmic loop and C-terminus.  The maximum diameter (92 Å) of Connexon 
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exists at the cytoplasmic side and the minimum at the extracellular side (51 Å). The pore diameter 

decreased from 40 Å at the cytoplasmic side to 14 Å at the extracellular membrane surface, 

followed by a widening to 25 Å at the extracellular space. The heights of intracellular, 

transmembrane and extracellular regions are 19 Å, 38 Å and 40 Å respectively. Four 

transmembrane domains of Cx26 forms the typical helical bundle structure, in which two adjacent 

helix are antiparallel. The debate here is about which membrane segment are pore-lining helix. 

Previous work (107,108) demonstrated that TM1 is the likeliest candidate, while other data 

(109,110) were inclined to TM3. In this crystal structure, TM1 was believed as the major pore-

lining domain and contribute to narrowing the pore at the extracellular side of the membrane (Fig. 

1.16).  The extracellular loop E1 starts with a 310 helix and ends with a short α–helix. E2 has a 

short antiparallel β-sheet and a flexible N-terminal half. The C-terminal half of E2 begins with a 

310 turn. Six highly conserved Cys residues on E1 and E2 form intramolecular disulfide bonds to 

stabilize themselves. It is reported that mutations in any of them cause the formation of 

nonfunctional gap junction channels (111,112). The previous functional studies also indicate that 

a number of diseases related Cx26 mutations are the ones which involve in the interactions to 

stabilize the monomer or hexamer structures (113-115).  Roberto Bruzzone and his colleagues also 

proved that EL2 can influence the interactions between connexins expressed in adjacent cells using 

the expression of chimeric connexins in Xenopus Oocytes (65). No apparent obstacle was detected 
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along the pore, thus the author considered it as an open channel. But recently Zonta et al. argued 

that this channel is more unlikely to be a fully open channel (116).  

 

Figure 1.16 Wall-eye stereo view of Cx26 monomer in ribbon representation.  

Each region is colored differently, and the upper arrows indicate the pore side and the lipid 

side. Three disulfide bonds in the extracellular region are shown in stick representation. 

Unobserved regions in the cytoplasmic loop and the C-terminal tail are represented by 

dashed lines (117). 
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Recently, another two X-ray structures of Cx26 grown in the presence or absence of Ca2+ 

were solved with a resolution of 3.3 Å and 3.8 Å, respectively (88). The overall structure of those 

two structure are very similar to the existing Cx26 structure (2ZW3) though the two structures 

were solved independently of 2ZW3 (Fig. 1.17a). The new structure is also a dodecameric channel 

with two hemichannels docked together. Cytoplasmic loop, N- and C-termini are still missing in 

the new determined structures due to their high flexibility. The channel dimensions of the new 

defined structures are all similar to 2ZW3 (Figs. 1.17a, 1.17d and 1.17e). The significant 

backbone divergence between the new structure and 2ZW3 occurs only at residues 42-46 and 56-

59 regions (Figs. 1.17b and 1.17c).   
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Figure 1.17 Structure comparison between new Cx26 crystal structures and the existing 

2ZW3. 

(a) Overlay of the Ca2+-free (orange), Ca2+-bound (cyan), and 2ZW3 (purple) structures. (b) 

Overlay of a single connexin in the above three Cx26 crystal structures. (c) A close up view 

of Ca2+-binding region. This region is where one of the major backbond deviations happens 

between 2ZW3 and new structures. (d) Overlay of bottom view of three Cx26 structures. The 

pore has an inner diameter of 28 Å at the cytoplasmic entrance.  (e) Overlay of top view of 

three Cx26 structures.  The smallest diameter of the pore is 14 Å (88). 

 

To date, the mysterious veil of gap junction structure was uncovered by researchers’ 

earnest effort, though many details are still waiting for the exposure. Take the localization of NT 

as an example, the proposed topology (118,119) believes that NT resides in the cytoplasmic region 

while the resistance to both protease and antibodies suggests it inserts into the lumen of the channel 

(120). Besides, electrophysiological studies and NMR studies suggest the involvement of NT in 

the pore lining. The most variable regions of connexins are the cytoplasmic loop (CL) and the C-

termini, both of which are not resolved in the available crystal structures due to their high 

flexibility. The CL region is suggested to be involved in CaM binding, which plays crucial role in 

gap junction regulation (121). 

 

1.2.6 Gap junction regulation by CaM 

Modulation of the cytoplasmic Ca2+ concentration ([Ca2+]i) is a ubiquitous mechanism by 

which cells transduce external signals into biological responses. The signaling cascade initiated by 

the rise in [Ca2+]i is often mediated via Ca2+-binding proteins such as calmodulin (CaM) (122,123). 
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CaM, a key multifunctional transducer of Ca2+ signals in eukaryotes, has four EF-hand Ca2+ 

binding motifs in two globular N- and C-domains that are separated by a flexible linker. Upon 

Ca2+ binding, CaM undergoes a large conformational change, exposing hydrophobic patches that 

are important in its binding to more than 300 target proteins in multiple cellular processes (124-

126). CaM uses either its N- or C-domains with different Ca2+ binding affinities to differentiate 

between local and global [Ca2+]i changes, and to regulate a diverse group of membrane 

channels/pumps that include cyclic nucleotide-gated (CNG) channels(127), N-methyl-D-aspartate 

receptor (NMDA receptor) (128), ryanodine receptors (RyR) (129), Ca2+-activated K+ channels of 

small or intermediate conductance (SK or IK) (130,131), Trp family channels (132), Ca2+ channels, 

and gap junction channels (133-137).  

Over the years, a significant body of data supports the involvement of CaM in the 

regulation of gap junctions comprised of the three connexin subfamilies. Délèze (138) first showed 

that Ca2+ is essential for the healing process in mammalian heart muscle by preventing longitudinal 

diffusion of molecules in cardiac fibers. Subsequently, Rose et al. (139) showed that in salivary 

gland cells, inhibition of cell-to-cell coupling occurs when the intracellular concentration of Ca2+ 

was increased from 0.1 μM to 50 μM. Recognizing that most Ca2+-induced phenomena are 

mediated by CaM (140), Peracchia and colleagues (141) first tested the hypothesis that gap 

junctions were regulated by CaM by examining the effect of the CaM inhibitor trifluoperazine 

(TFP) on the electrical coupling of amphibian embryonic cells exposed to CO2 to lower 

intracellular pH. While the role of CaM in mediating the action of Ca2+ on enzyme activation was 

well known in the 1980s, gap junctions represented the first membrane channels shown to be 

modulated by CaM; only a decade later was the next CaM regulated channel identified (127). 

Peracchia and colleagues demonstrated that TFP reversibly inhibits the CO2-induced electrical 
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uncoupling in amphibian embryo cells by interfering with the mechanism which closes the cell-

to-cell channels. Subsequently, more specific CaM blockers (calmidazolium and W7) were shown 

to prevent uncoupling of Xenopus embryonic cells (142) and crayfish axons (143,144), indicating 

the generalized nature of this role for CaM in regulating gap junctions. This hypothesis was 

strengthened by evidence that the gap junction protein Cx32 bound CaM in gel overlays (145-147) 

suppression of CaM expression in oocytes can also inhibit CO2 induced electrical uncoupling and 

injection of CaM into oocytes can recover it (148). Cx32 was also shown to colocalize with CaM 

using immunofluorescence microscopy (149). Later, Blodow et al. reported that CaM antagonists 

suppress gap junction coupling of Cx26 in isolated Hensen cells of the guinea pig cochlea (150). 

Louis and Lurtz first showed that the gap junction mediated cell-to-cell transfer of dye between 

lens epithelial cells was inhibited by Ca2+-CaM (151). The rapid onset of this inhibition (within 

seconds) suggested that this inhibition was mediated by the direct interaction of CaM with one or 

more of the lens connexins rather than by the action of a CaM-dependent protein kinase. They 

subsequently demonstrated in Cx43-transfected HeLa cells that cell-to-cell dye transfer was 

inhibited by Ca2+-CaM (152). Cell-to-cell communication was half-maximally inhibited at ~ 300 

nM [Ca2+]i (153), and this inhibition was prevented by pre-incubation of lens cultures with CaM 

antagonists (151). In HeLa cells transiently expressing the CaM-binding-deficient mutants 

(Cx43K146E, R148E-EYFP and Cx43M147Q, L151E, I156E-EYFP), elevated [Ca2+]i was unable 

to inhibit cell-cell dye transfer, confirming that residues 136–158 in the intracellular loop of Cx43 

contain the CaM-binding site that mediates the Ca2+-dependent regulation of Cx43 gap junctions 

(154). Direct gap junction conductance (Gj) measurements confirmed that increases in [Ca2+ ]i and 

decreases in Cx43 Gj were temporally correlated and inhibited by CaM antagonists like 

calmidazolium, CaMKII CaMi peptide, or the Cx43p136–158 peptide  (155). We have further shown 
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that inhibition of gap junction conductance by intracellular Ca2+ and CaM can be reversed by 90% 

with the addition of 10 mM EGTA and removal of external CaCl2 from the bath saline solution, 

but only if Ca2+-chelation commenced prior to complete uncoupling (155). On the other hand, 

Cx40-transfected N2a neuroblastoma cell pairs were not uncoupled by intracellular Ca2+, such lack 

of intracellular Ca2+ regulation of Cx40 was consistent with the observation that Cx40 does not 

contain the putative CaM binding site in the same cytosolic loop region (155). The inhibition of 

Cx44-mediated cell-to-cell dye transfer by Ca2+ was also shown to be regulated by CaM as this 

inhibition was prevented by prior incubation of Cx44-transfected cells with a CaM antagonist 

(156). Cx50 was also shown to colocalize with CaM (157), and by measuring gap junctional 

conductance of Cx50-transfected N2a neuroblastoma cells, the reduction of Cx50-mediated 

junctional coupling was shown to be Ca2+-dependent. Junctional coupling mediated by either Cx50 

or Cx43 was prevented by pre-incubation of transfected cells with a CaM inhibitor, indicating that 

the [Ca2+]i -dependent inhibition of Cx50 and Cx43 was CaM mediated. Furthermore, the Ca2+-

dependent inhibition of gap junction permeability in Cx50-transfected cells was prevented by 

intracellular injection of a synthetic peptide encompassing the CaM binding domain of Cx50, 

while the scrambled peptide was without effect (121). CaM regulation of the γ-connexin Cx45 was 

reported by Peracchia and coworkers by monitoring the sensitivity of Cx45 channels to CO2, and 

inhibiting CaM expression in oocytes (158). Mouse Cx36, perch Cx35 and Cx34.7 that form 

electrical synapses have also been reported to bind CaM in a Ca2+-dependent manner using surface 

plasmon resonance assays and GST fusion proteins harboring the carboxyl-domain of these 

connexins (159,160).  
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In Chapter 3, we are going to address several key questions, such as how CaM regulates 

different families of connexins. Through the same binding mode? What is the binding affinity? 

Where is the interaction site?  

 

1.3 Family C of G-protein Coupled Receptors (cGPCR) and Its Regulation by [Ca2+]o 

GPCR is the largest cell surface receptor family and can be classified into five families, A, 

B, C, D and E according to their sequence homology of the seven transmembrane domain. cGPCR 

represents a unique group which process an exceptionally large ECD and function as constitutive 

dimers on the cell membrane (161). cGPCR is composed of Ca2+-sending receptors (CaSR), 

metabotropic glutamate receptor (mGluR), γ-aminobutyric acidB receptors (GABAB), and a small 

group of olfactory , taste (sweet and amino acid taste receptors) and pheromone receptors (162).  

 

1.3.1 mGluR and Structure features of mGluR 

As mentioned above, cGPCR possess a large ECD which is also called as the Venus flytrap 

domain (VFT) (Fig. 1.18). Until 2000, Kunishima et al. solved the ECD crystal structure of 

mGluR1 in the presence or absence of its orthosteric ligand L-Glu and for the first time 

demonstrated the ECD structure of cGPCR (163). Since then multitudes of resolved crystal 

structure of mGluR ECD came out (164,165), together revealing that mGluRs containing two 

globular lobes separated by a cleft in which orthosteric ligand is bound. Both lobes are typical α/β 

folds where the central parallel β-strands are sandwiched by α-helices. Constitutive dimers formed 

through the interaction between VFT from two protomers. A pair of disulfide bond formed 

between two protomers were suggested to stabilize the dimer (166-168). Ligand binding to VFD 
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can induce tremendous conformational change, resulting in the formation of active or inactive 

receptors.  

Except GABAB receptor, most cGPCR contain a Cysteine rich domain (CRD) inside of the 

ECD. The unique feature of CRD is reflected in 9 highly conserved cysteines. The crystal structure 

of mGluR3 solved in 2003 showed that the CRD with a length of 40 Å is an independent domain 

which connects the VFT and the transmembrane domain (165). The function of CRD is not clear 

yet. Earlier mutagenesis and chimera approaches revealed that RCD is involved in signal 

transduction from the VFT to the transmembrane domain when CaSR was activated by [Ca2+]o 

(169). Replacing the third conserved Cys residue in the CRD abolished intracellular signaling 

induced by agonist (170).  
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Figure 1.18 Structure organization of mGluRs. mGluRs function as dimer on the cell surface. 

The dimerization is fulfilled by VFT interaction and stabilized by a pair of disulfide bond 

formed between two Cys residues in the VFT. mGluRs have a common structure composed 

by VFT with two lobes, CRD and TMD. The two lobes of VFT form a cleft where orthosteric 

ligand can bind.   

mGluRs have the similar heptahelical transmembrane helices termed as seven-

transmembrane domain (TMD) to other family C GPCRs, even though the TMD of mGluR shares 

a very low sequence similarity to other cGPCRs. Those transmembrane helices are connected by 

several short intracellular and extracellular loops. Allosteric modulators were reported to regulate 

mGluR function through binding to the TMD (171,172). Despite the importance of TMD in drug 

discovery, the TMD structure of mGluR has remained unclear until 2014, in which the first crystal 

structure of the TMD of mGluR was determined (173). The allosteric modulator NAM 

mavoglurant (AFQ056) (174), which is in phase III clinical trials for fragile X syndrome treatment, 

was co-crystallized with TMD of mGluR5. The extracellular loop 2 (ECL2) is on the top of the 

receptor and interacting with both N end of transmembrane domain 1 (TM1) and C end of 

transmembrane domain 3 (TM3). The helical bundles of the transmembrane regions and the ECL2 

restrict the narrow ligand entrance to be around 7 Å.  

Compared with the ECD, the C-terminus is very small (around 300 amino acids) and this 

domain is of particular importance for G protein coupling (175-178). The H8 helix in the C-

terminus show particular importance for efficient G protein coupling (179). Direct binding of H8 

with βγ dimer of the heterotrimeric G-protein has also been observed by pulldown approach (180). 

However, deletion of H8 retained the G-protein coupling capability of mGluR7 and GABAB 

receptor (181,182), which suggest other area instead of the H8 of C-terminus is involved in G-
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protein binding. The C-terminus is highly divergent and subjected to splice in many mGluRs and 

the function of alternative splicing remains elusive. The C-terminus also serves as the target for 

other intercellular protein partner binding, such as Homer protein (183,184) and the PDZ domain 

clustering protein PICK1 (185-188).  

Since mGluRs are the target of L-Glu and mediate excitatory synaptic transmission in CNS, 

extensive efforts have devoted into identification of L-Glu-binding site. By chimeric receptor 

construction, Katsu et al found that replacing half of the mGluR1 ECD with the corresponding 

amino acids in mGluR2 ECD altered the agonist selectivity from mGluR1 to a pattern more like 

mGluR2 (189). This result suggested that the ECD is involved in ligand binding. The glutamate 

binding site was first predicted by Patrick et al in 1993 using a ECD structure model built based 

on the sequence homology observed between mGluR1 and bacterial periplasmic binding protein 

(PBP) (181). In this initial prediction, they reported that Ser165, Ser164, Ser186 and Thr188 may 

be involved in glutamate binding. Replacing putative binding residues Ser165 and Thr188 to A 

significantly reduced the L-Glu and L-Quis binding affinity (Fig. 1.19). Later on more direct 

evidence also pointed out that the ECD domain is responsible for ligand binding. The first evidence 

came from a soluble mGluR1 ECD expressed and purified from Sf9 (190). This protein was 

secreted and presented in the culture medium as dimer which retained the similar ligand binding 

affinity and selectivity to the full-length mGluR1. Another example is provided by Hampson’s 

group (191). They also examined the ligand binding affinity of a soluble ECD domain of mGluR4. 

Compared with full-length mGluR4, the truncated receptor displayed higher binding affinity to 

agonist and lower binding affinity to antagonist. They concluded that the first amino acid fragment 

covering residues 1 to 548 played dominant role in determining ligand binding, and other amino 

acid following this area may also be involved in ligand binding. Mutagenesis studies in mGluR4 
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proposed that several conserved residues (Arg78, Ser159 and Thr182) are part of the fundamental 

recognition motif for agonist binding (192). Mutating those residues severely altered the agonist 

binding capability while without affecting the surface expression. The first crystal structure of 

ECD of mGluR1 shed a new light on structure basis of ligand binding (163). The complex form 

of ECD was crystalized in the presence of 1 mM L-Glu. L-Glu was found in the cleft formed 

between lobe 1 and lobe 2 of ECD. Several putative binding residues (R78, S164, S165, S186 and 

T188) proposed in the previous studies through mutagenesis directly formed hydrogen bond with 

glutamate or water-mediated hydrogen bonds to anchor L-Glu in the crevice. In the open complex 

form, L-Glu were exclusively coordinated by residues from the lobe 1 and residues from lobe 2 

involved in and contributed additional stabilization force in the closed complex form. Glutamate 

binding was proposed to change the equilibrium of open and closed conformation and to stabilize 

the closed conformation to activate the receptor (Fig. 1.20)(162).  

 

Figure 1.19 L-Glu- and L-Quis-binding affinity of mutants in predicted L-Glu-binding site. 

Cells were transfected with wild type mGluR1 or L-Glu-binding site mutants. The IP1 

accumulation inside of cells were examined after 30-minute stimulation with either L-Glu or 

L-Quis.   
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Figure 1.20 Schematic diagram of the mGluR dimer in different activity states. 

mGluRs function as dimer on the cell surface. The cleft formed by two lobes of VFT is the 

orthosteric binding site. The inactive Open-open state without any L-Glu binding can be 

stabilized by ligand binding. When one of the orthosteric ligand binding sites are occupied 

by L-Glu, mGluRs change its Open-open state to a Closed-open conformation and further 

binding of L-Glu to another protomer can achieve a fully active Closed-closed state (193).   

 

1.3.2 Cell signaling pathways through mGluRs 

The conventional downstream signaling pathway mediated through mGluRs are G-protein-

dependent. Group I mGluRs are coupled to Gq, which in turn activates the cell membrane-bound 

enzyme phospholipase C (PLC) to decompose PIP2 into IP3 and DAG, both of which are second 

messengers. IP3 further activates the IP3 receptor on the endoplasmic reticulum (ER) by direct 

binding, opening the intracellular Ca2+ store and releasing Ca2+ into the cytosol. The increase in 
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[Ca2+]o can work with DAG together to activate protein kinase C, resulting in the phosphorylation 

of many proteins and altering many cellular activities. Elevated intracellular Ca2+ can also activate 

calmodulin (CaM), which in turn activates Ca2+/CaM-dependent kinases (CAMKs). It is reported 

that active CaM can bind to the C-terminus of mGluR5 and increase the receptor cell surface 

expression (194). However, in other reported cases, group I mGluRs can mediate dual signal 

transduction pathways, PIP2 hydrolysis and cAMP accumulation, through different G-protein 

coupling in some systems (193,195-200). Group II and III mGluRs are negatively coupled to Gi, 

resulting in the inhibition of adenylate cyclase (AC) activity. Depression of AC further leads to a 

reduction of cyclic adenosine monophosphate(cAMP) production (201). cAMP is an allosteric 

activator of protein kinase A (PKA). Earlier studies revealed that activation of group II and III 

mGluRs inhibited the cAMP accumulation while activating AC when applying forskolin (202-

207), an AC activator, to activate AC.   

Although the G-protein-coupled signaling pathways mediated through mGluR are 

predominant, other alternative signaling pathways have been extensively reviewed (208-

212)(Table 1.2). Over the past decades, several reports have appeared in the literature reporting 

metabotropic responses that, surprisingly, do not involve G-proteins (213). The first evidence that 

mGluRs also function in a G-protein-independent signaling manner came from experiments 

showing that inhibition of G-proteins by a general G-protein inhibitor did not affect the slow 

excitatory postsynaptic currents (EPSCs) mediated through mGluR1 in CA3 pyramidal cells (214). 

In hippocampal pyramidal neurons derived from Gαq- and Gα11-deficient mice, mGluR agonists 

were still able to evoke the inward, depolarizing current mediated by mGluRs (215). Inhibition of 

G protein by intracellular GDPβs with or without sodium channel blocker QX-314 had shown to 

prevent mGluR-mediated cationic current, while this can be rescued by elevation of [Ca2+]i, 
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suggesting an alternative G-protein-independent signaling pathway mediated by group I mGluRs 

was activated (216). A few studies have been documented showing activation of mGluRs lead to 

activation of Src tyrosine kinase and downstream messengers such as ERK (211,214,217). The 

components involved in G-protein-independent signaling pathway mediated through mGluRs are 

unclear yet. It is also not conclusive which neuronal responses preferentially utilize G-protein-

independent pathways.   

  

Table 1.2 Key features of mGluRs. 

 

Group  Receptor Synaptic localization Coupled G protein Signaling pathways 

Group I mGluR1 Predominantly 

postsynaptic 

Predominantly 

Gαq/s 

 

PLC stimulation 

MAP kinase phosphorylation 

AC stimulation (some cases) 
mGluR5 

Group II mGluR2 Presynaptic and 

postsynaptic 

Predominantly 

Gαi 

AC inhibition 

Activation of K+ channel 

Inhibition of Ca2+ channel 
mGluR3 

Group III mGluR4 Predominantly 

presynaptic 

Predominantly 

Gαi 

AC inhibition 

Activation of K+ channel 

Inhibition of Ca2+ channel  

Stimulation of cGMP (some 

cases) 

mGluR6 Postsynaptic 

mGluR7 Presynaptic 

MGluR8 Predominantly 

presynaptic 

 

1.3.3 Distribution and function of mGluRs  

cDNA of mGluR1 was successfully cloned from rat brain and expressed in Xenopus 

oocytes with the proper function in 1991 as the first metabotropic glutamate receptor that been 

directly proved to be existed (218,219), though the existence of mGluR was hypothesized in 1985 

based on the phenomenon that L-Glu could induce the accumulation of IP3 in the CNS (220,221). 

Following the discovery of mGluR1, to date, 8 different mGluR subtypes have been identified 

(218,219,222-229). Although they all are widely spread in the neuron and glial cells, they exhibit 
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different expression patterns and different localization in the CNS. Those differences even exist 

between mGluRs from the same group and correlate to their various physiological roles in the 

CNS. As shown in figure 1.21, in general group I mGluRs (mGluR1 and mGluR5) are mainly 

localized in the postsynaptic area, and the other two groups of mGluRs are predominantly localized 

in presynaptic locations (193). However, there are many exceptions. For example, group I mGluRs 

also show presynaptically distribution and expression of mGluR2/3 in postsynaptic locations was 

also identified. In addition to neurons, mGluR5 and mGluR3 also express on glial cells to regulate 

synaptic activity. Table 1.2 summarizes the key features including the synaptic locations, coupled 

G proteins, and downstream signaling pathways of different mGluRs. 
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Figure 1.21 Localization of mGluRs in the CNS.  

The expression of mGluRs in the CNS have some overlapping, but generally, group I 

mGluRs mainly distribute in the postsynaptic area, targeted by L-glutamate. Majority of 

group II and III mGluRs express in presynaptic locations, inhibiting the release of L-Glu 

(yellow dots) or GABA (red dots). However, group I mGluRs also have been found in the 

presynaptic locations, promoting the release of L-Glu. L-Glu or GABA released from the 

presynapses target to the mGluRs, NMDA, Kainate and AMPA on the postsynapses or on 

the glial cells (mGluR3 and mGluR5), initiating the downstream signaling pathways 

mediated through them (193).   

 

The functional roles of mGluRs are diverse and complicated due to their widespread 

distribution, specific subcellular localization, and connection to broad downstream signaling 

pathways. Detailed discussion of the physiological roles of mGluRs are published in plentiful of 

reviews (210,230-234). The common roles of three subgroup of mGluRs can be summarized as: 

the short-term effects of activation of group I mGluRs are cell depolarization and neuronal 

excitability increase (235-237). Group I mGluRs also involve in long-term depression (LTD) and 

long-term potentiation (LTP) of transmission, and induction of long-term neuronal excitability 

(238-240). The general role of group II and III mGluRs is inhibiting the release of neuro 

transmitters. As mentioned above, in addition to the common role of each group, each subtype of 

mGluRs are highly specific, even mGluRs in the same group have different physiological functions 

in a single neuron. The individual role of each mGluR were extensively studied in knockout mice 

(241-266) and reviewed in multiple papers (193,201).  
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1.3.4 Allosteric and orthosteric modulation of mGluRs 

The ligand binding sites in cGPCRs are divided into two categories: orthosteric and 

allosteric binding sites (Fig. 1.22). The former sites reside in the extracellular domain of cGPCR 

where the endogenous ligand binds. The later sites are distinct binding sites which exist in either 

7TM, or the sites adjacent to the orthosteric site or the interface between VFT, CRD and 7TM. 

 

Figure 1.22 Orthosteric and allosteric site of mGluRs. 

The endogenous ligand L-Glu binds to the hinge region made by two globular lobes 1 and 2. 

Orthosteric ligands compete the same site with L-Glu, while allosteric ligands bind to 

another distinct sites other than the orthosteric site.  

 

The orthosteric agonist or antagonist binds to the same site as the endogenous ligand and 

can compete with them. The first selective agonist of mGluR receptor trans-ACPD was discover 

in 1989. Since then, numerous of orthosteric agonists and antagonists emerged due to the extensive 

effort made in the drug discovery field. Lots of orthosteric ligand resemble the glutamate structure, 

but showing different potency and efficacy. Significant conformational changes in VFT can be 

induced by orthosteric ligand binding (Fig. 1.20). A closed conformation or an open conformation 

 

Orthosteric Site 

Allosteric Site 
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can be stabilized by binding of a full agonist or antagonist, respectively (163-165,267). Partial 

agonists binding lead to a partial or a complete, but unstable, closed structure of the VFT (267,268). 

Earlier identified orthosteric agonist or antagonists displayed activity across all mGluR subtypes, 

with few exception. For example, trans-ACPD showed similar potency on all mGluR subtypes 

except for mGluR7, on which no agonist activity was observed at concentrations up to 1 mM (269). 

However, more selective agonist or antagonist that act on specific subtypes of mGluRs have now 

been discovered, providing valuable insights into the function of those receptors in vivo or in vitro.  

To date, most of the mGluR-selective orthosteric ligands are amino acids derivatives, which fail 

to be actively transported across the cell membrane and blood-brain barrier, leading to poor 

bioavailability. The potency of group I mGluR agonist display the following rank order: quisqualic 

acid > ABH x D-I > 3,5-DHPG = S-Glu >DHPMP > 1S, 3R-ACPD > L-CCG-1 > 3-HPG > CHPG 

> t-ADA (210,270). Quisqualic acid has the strongest potency on group I mGluR though it is a 

non-selective agonist. 3,5-DHPG, 3-HPG and t-ADA are group I mGluR-specific agonists which 

is inactive on ionotropic receptors or on mGluR2 and mGluR4, but the efficacy and potency are 

much lower than quisqualic acid. To date, LY393675 is the most potent and selective orthosteric 

antagonist despite of the intense efforts have been made.   

The highly conserved endogenous ligand sites (Fig. 1.23) of mGluRs contributes to the 

difficulty in discovery of highly mGluR subtype selective orthosteric ligand since orthosteric 

ligands also bind to the endogenous ligand binding site. The development of selective allosteric 

modulator brings new dawn to the treatment of CNS disorders caused by different type of mGluRs. 

Allosteric ligands target at a distinct site other than the endogenous ligand binding sites. The ones 

possessing the intrinsic efficacy without the orthosteric ligand are named as allosteric agonists or 

antagonists, while those which fail to show effects on mGluRs in the absence of orthosteric ligands 
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are allosteric modulators, either potentiating (positive modulator) or inhibiting (negative 

modulator) the effects of orthosteric ligands.  Besides, most of them are small non-amino acid 

derivatives, which can enter through the blood-brain barrier and are orally bioavailable (271-273). 

The first allosteric modulator CPCCOEt of mGluR1 was reported in 1996. This compound does 

not have the Glu pharmacophore and acts like a non-competitive antagonist with moderate potency 

(274). Later on, it is found that this compound binds to an allosteric site in the 7TM (275,276). 

The emergence of this compound lead to the high-throughput screening of allosteric ligands. SIB-

1893 and mpep were reported as the first non-competitive mGluR5 antagonists in 1999 (277,278). 

To date, more and more high potent and specific allosteric modulators of group I mGluRs have 

been reported as summarized in the following tables (Tables. 1.3 and 1.4).  

 

Figure 1.23 Conserved L-Glu binding sites in mGluRs. 

Amino acids numbering at bottom row refers to mGluR1. Sequence alignment of amino acids 

in the hinge region of all mGluRs interacting with L-Glu based on the closed mGluR1 crystal 

structure with L-Glu binding. Half of the residues are highly conserved among 8 different 

mGluR subtypes.  
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Table 1.3 Orthosteric and allosteric ligands of mGluR1. 

 

Agonists 

Ligand Sp. Action Affinity Units 

[3H]quisqualate  Rn Full agonist 7.5 – 7.7 pKd 

quisqualate  Rn Full agonist 7.5 – 8.0 pKi 

L-glutamic acid  Rn Full agonist 6.4 – 6.5 pKi 

ibotenate  Rn Full agonist 5.9 – 6.4 pKi 

(1S,3R)-ACPD  Rn Full agonist 5.5 – 6.1 pKi 

3,5-DHPG  Rn Full agonist 5.8 pKi 

L-CCG-I  Rn Full agonist 5.6 pKi 

(S)-3HPG  Rn Partial agonist 4.9 pIC50 

Antagonists 

Ligand Sp. Action Affinity Units 

AIDA  Hs Antagonist 4.2 pA2 

LY341495  Hs Antagonist 7.8 pKi 

(S)-4C3HPG  Hs Antagonist 5.8 – 6.0 pKi 

LY367385  Rn Antagonist 5.9 pKi 

(S)-4CPG  Rn Antagonist 5.4 pKi 

DCG-IV  Rn Antagonist 4.1 pKi 

AIDA  Rn Antagonist 4 pKi 

(+)-MCPG  Rn Antagonist 3.8 pKi 

3-MATIDA  Rn Antagonist 5.2 pIC50 

LY367385  Hs Antagonist 5.1 pIC50 

(S)-(+)-CBPG  Rn Antagonist 4.2 pIC50 

(S)-TBPG  Rn Antagonist 4.2 pIC50 

Allosteric Regulators 

Ligand Sp. Action Affinity Units 

[3H]R214127  Hs Negative 9 pKd 

[3H]EM-TBPC  Rn Positive 8.2 pKd 

NPS2390  Rn Negative 8.9 pKi 

R214127  Rn Negative 8.9 pKi 

9-dimethylamino-3-(4-ethylphenyl)-

3H-5-thia-1,3,6-triazafluoren-4-one  Hs Negative 8.3 pKi 

Ro67-7476  Rn Positive 7.5 – 7.9 pKi 

Ro01-6128  Rn Positive 7.5 – 7.7 pKi 
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CPCCOEt  Rn Negative 5.3 pKi 

Ro67-4853  Rn Positive 5.1 pKi 

R214127  Hs Negative 8.9 pIC50 

A841720  Hs Negative 8 pIC50 

3,5-dimethyl PPP  Rn Negative 7.8 pIC50 

DM-PPP  Rn Negative 7.8 pIC50 

YM298198  Rn Negative 7.8 pIC50 

BAY 367620  Rn Negative 6.8 – 8.0 pIC50 

EM-TBPC  Rn Negative 6.9 pIC50 

LY456236  Hs Negative 6.9 pIC50 

CPCCOEt  Hs Negative 5.2 pIC50 

 

 

Table 1.4 Orthosteric and allosteric ligands of mGluR5. 

 

Agonists 

Ligand Sp. Action Affinity Units 

quisqualate  Rn Full agonist 7.5 pIC50 

L-glutamic acid  Rn Full agonist 6.1 pIC50 

L-CCG-I  Rn Full agonist 5.8 pIC50 

(1S,3R)-ACPD  Rn Full agonist 5.7 pIC50 

ibotenate  Rn Full agonist 5.7 pIC50 

3,5-DHPG  Rn Partial agonist 5.4 pIC50 

(S)-3HPG  Rn Partial agonist 5 pIC50 

CHPG  Hs Full agonist 3.4 pIC50 

Antagonists 

Ligand Sp. Action Affinity Units 

ACDPP  Hs Antagonist 6.9 pIC50 

(S)-4C3HPG  Rn Antagonist 5.6 pIC50 

LY341495  Hs Antagonist 5.1 pIC50 

DCG-IV  Rn Antagonist 4.7 pIC50 

(S)-4CPG  Rn Antagonist 4.6 pIC50 

(+)-MCPG  Rn Antagonist 3.7 pIC50 

Allosteric Regulators 

Ligand Sp. Action Affinity Units 

[3H]fenobam  Hs Negative 7.5 pKd 
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[3H]fenobam  Rn Negative 7.3 pKd 

BOMA  Hs Negative 8.5 pKi 

MTEP  Hs Negative 7.8 pKi 

5-MPEP  Rn Neutral 6.4 pKi 

VU-1545  Hs Positive 8 pEC50 

CDPPB  Hs Positive 7.6 – 8.0 pEC50 

CDPPB  Rn Positive 7.7 pEC50 

MTEB  Hs Negative 8.7 pIC50 

[3H]M-MPEP  Hs Negative 8.4 pIC50 

[3H]M-MPEP  Hs Negative 8.3 pIC50 

[14C]MTEP  Rn Negative 7.7 pIC50 

MPEP  Hs Negative 7.4 – 7.7 pIC50 

fenobam  Hs Negative 7.2 pIC50 

PTeB  Hs Negative 7.2 pIC50 

DFB  Hs Positive 5.6 – 8.5 pIC50 

ADX-47273  Rn Positive 6.5 pIC50 

CPPHA  Hs Positive 6.3 pIC50 

SIB-1757  Hs Negative 6.0 – 6.4 pIC50 

SIB-1893  Hs Negative 5.9 – 6.5 pIC50 

 

1.3.5 Extracellular calcium sensitivity of mGluRs 

In 1993, Brown et al., successfully cloned Ca2+-sensing receptor with an apparent Ca2+-

binding affinity of 3 mM from bovine parathyroid and proposed two putative Ca2+-binding regions 

with plenty of acidic residues in this Ca2+-sensing receptor (279). The Ca2+-sensing receptor shared 

significant overall similarity with mGluRs, especially with mGluR1 (218,219) and mGluR5 (223). 

However, whether mGluR have the Ca2+ sensing capability was unknown at that time. Later on, 

in 1996, another family member of cGPCR was cloned from salmon brain and expressed in 

Xenopus oocytes (280). Both [Ca2+]o and L-Glu in the bath solution could evoke the Ca2+-Cl- 

current in oocytes without addition of external agonists. Interestingly, this bifunctional 

metabotropic glutamate receptor shared very high similarity with mGluRs, especially to mGluR1α 

(around 69 % amino acids are identical), and a slightly lower similarity to CaSR (around 24 % 
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amino acids are identical). Other polyvalent cations like Gd3+ and Mg2+ could also induce the Ca2+-

Cl- current which suggested that the activation of Ca2+-Cl- channels are not due to extracellular 

Ca2+ influx. The above phenomenon attracted researchers’ attention and started to raise the 

question of whether mGluRs can function as Ca2+-sensing receptor with extracellular Ca2+ sensing 

property.  

By monitoring the activity of Ca2+-Cl- channels in oocytes expressed mGluR1 or mGluR5, 

Kubo et al., first reported that mGluR1/mGluR5 displayed similar response to CaSR with the 

application of extracellular Ca2+  (281). Gd3+ and Mg2+ were also examined and turned out that 

Gd3+ was more effective and Mg2+ was less effective than Ca2+ in activating mGluR1 and mGluR5. 

This is also consistent with that of CaSR. A lower activation effect was also detected in oocytes 

expressing mGluR3, but not mGluR2. By replacing the entire N-terminal domain of mGluR1 with 

that of mGluR2 or mGluR3, those chimeric receptors did not change their sensitivity to L-Glu, but 

activation of chimeric mGluR2 by extracellular Ca2+ was detected. Although, the EC50 of it was 

still much higher than chimeric mGluR3 and mGluR1. The result suggested that the Ca2+-sensing 

capability relies on the N-terminal of mGluRs. In this paper, they proposed that Ser166 in mGluR1 

was the key residue determine the Ca2+-sensitivity of mGluR1. The corresponding residues in 

mGluR3 and mGluR5 are Ser, while in mGluR2 is Asp. Replacing Ser with Asp in chimeric 

mGluR3 and wild type mGluR1 significantly increased the EC50 to [Ca2+]o, while mutation D146S 

in chimeric mGluR2 significantly decreased the EC50 value to extracellular Ca2+. Though several 

crystal structures of mGluRs are deposited in the protein data bank. None of them has Ca2+ bound 

in the ECD, though Gd3+ was identified located in the dimer interface (164). Later functional 

studies of Gd3+-binding site revealed that residue Glu238 is functionally involved in activation of 

mGluR1 and modulation of agonist effect on mGluR1. Mutating this residue abolished the Gd3+ 
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sensing property while preserving the Ca2+- and L-Glu-binding ability (282). On the contrary, 

consistent with the previous report, replacing S166 with D abolished Ca2+ activation of mGluR1 

while maintaining the Gd3+- and L-Glu stimulation.   

In addition to direct activation of several cGPCRs by extracellular Ca2+, a number of 

studies have shown that extracellular Ca2+ has modulatory effect on the signaling mediated through 

some cGPCRs. Back in 1998, the [3H]-InsP1 accumulation evoked by mGluR1 agonist was 

significantly facilitated by increasing [Ca2+]o in baby hamster kidney cells (283). This modulation 

was also observed in another receptor GABAB in 2000 (284). The affinity of GABA and 3-

aminopropylphosphinic acid binding to GABAB receptors were dramatically dropped about 10-

fold when Ca2+ was removed. However, extracellular Ca2+ had little effect on another agonist 

baclofen and antagonists CGP64213 and CGP56999A. Mutagenesis studies in this paper also 

showed that replacing Ser269 to Ala abolished the Ca2+ effect on the GABAB receptor.   

Both the directive activation and modulatory effect have been observed in cells with native 

mGluR expression (285,286). In Purkinje cells, mGluR1 is predominant amongst the mGluR 

subtypes (218). [Ca2+]i rise in Purkinje cells were detected in responses to extracellular Ca2+ 

exposure (285,286). No such significant [Ca2+]i occurred in Purkinje cells coming from mGluR1 

knockout mice and such response to extracellular Ca2+ was recovered in Purkinje cells isolated 

from mGluR1 rescue mice. Application of mGluR antagonist (R,S)-α-methyl-4-carboxyphenyl-

glycine (MCPG) dramatically decreased this [Ca2+]i rise. Blocking the receptor-operated or P-type 

Ca2+ channels by antagonist SKF-96365 and ω-agatoxin IVA did not significantly affect the [Ca2+]i 

responses to extracellular calcium, which suggests that the increase of [Ca2+]i is not a result of Ca2+ 

influx through Ca2+ channels. In addition to this direct activation, extracellular Ca2+ also 

augmented the cellular responses evoked by L-Glu or its analog.  
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On the contrary, there are opposite results reporting that extracellular Ca2+ did not evoke 

the receptor activation. The basal phospholipase C activity was not altered by increase of [Ca2+]o 

from 1.3 to 4 mM in baby hamster kidney cells stably expressing mGluR1 (283). However, no 

result was shown in the paper to support this claim. In another paper published in 1998, Shigeki et 

al., analyzed the [Ca2+]i increase attributed by mGluR1 activation and found that the initial [Ca2+]i 

rise was resulted by Ca2+ mobilization from the intracellular Ca2+ stores induced by receptor 

activation, while the sustained phase of [Ca2+]i increase was related to the extracellular Ca2+ flux 

through receptor-operated Ca2+ channels. The experiment they designed to prove the above 

statement was applying Ca2+ channel blockers. A receptor-operated Ca2+ channel blocker SK & 

F96365 abolished the oscillatory Ca2+ response in the sustained phase of L-Glu activation. This 

result is opposite to the same experiment performed in Purkinje cells by Tabata et al. in 2002.  

Nash et al., concluded that mGluR1 did not function as a Ca2+-sensing receptor based on their 

observation that Ca2+ solely did not stimulate any [Ca2+]i increase and IP3 accumulation in CHO-

lac-mGluR1 cells (287). They believed that extracellular Ca2+ could prolong the activation of 

mGluR1 instead of affect the initiation of mGluR1 activation. With or without extracellular Ca2+, 

agonist L-Quis induced the similar initial response peak of IP3 accumulation, accompanied with 

[Ca2+]i due to Ca2+ release from cytosolic Ca2+ store. But in this paper, only the IP1 accumulation 

as a response to extracellular Ca2+ was shown. The [Ca2+]i response to extracellular Ca2+ was not 

presented, as well as any application of Ca2+ channel blockers. The author also argued mGluR1 

could not function as Ca2+ sensing receptor since the synaptic Ca2+ would always occupied the 

possible Ca2+ binding site if there is any. However, the Ca2+-binding site could be a weak binding 

site with low Ca2+-binding affinity. Besides, the synaptic Ca2+ concentration is actually fluctuating 

after periods of neuronal activity (288-297).  
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In addition to the above studies, extracellular Ca2+ was also suggested to play a role in 

mediating postsynaptic efficacy through its actions on mGluRs (13).    

1.3.6 (Patho)physiological process related with group I mGluRs and therapeutic potential of 

group I mGluRs 

The widespread expression of mGluRs and close correlation to variety of signaling 

pathways in the CNS contribute to its involvement in multitudes of physiological (learning, 

memory, anxiety, fear and mood) and pathological processes. Due to the rapid development of 

pharmacological agonists and antagonists, more roles of mGluRs in physiological processes and 

neurological disorders have been elucidated. In the following paragraphs, I will focus on 

summarizing the main roles of group I mGluRs in physiological processes.  

The high expression of mGluR1 in the hippocampus indicates that mGluR1 may play 

important role in memory and learning. This hypothesis was proved by studies in mGluR1 

knockout mice. Deletion of mGluR1 resulted in disability in learning an associative task and 

induction of LTP in mGluR1 knockout mice (241,298,299). mGluR5 knockout mice also had a 

poor performance in a memory-based water maze experiment. In addition, pharmacological 

evidence also proved the indispensable role of group I mGluRs in learning and memory. 

Application of MCPG (an antagonist of mGluR1 and mGluR5) to rat’s amygadala led to the 

inhibition of LTP (300-302), which is a learning mechanism (303). Injection of MCPG into the rat 

lateral ventricles, rats failed in a spatial learning version of the water maze task which indicates 

group I mGluRs are essential for spatial learning (304,305). On the other hand, the group I mGluR 

agonist trans-azetidine-2, 4-dicarboxylic acid (tADA) could prolong the maintenance of LTP 

(306). The important role of group I mGluRs in cognition provides great opportunity for drug 
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development in cognitive disorder treatment. Positive modulators which target at group I mGluRs 

are potential drugs for improving cognition.  

More and more people are facing anxiety now because of the stressful fast-paced society. 

Many experiments also suggest that group I mGluR, particularly mGluR5, has an important role 

in anxiety. A dose-dependent anxiolytic-like activities were observed in mice with direct 

hippocampus injection of group I mGluR antagonists in the conflict drinking vogel test (307,308). 

An mGluR5 specific antagonist 2-methyl-6-(phenylethynyl) pyridine (MPEP) was reported to be 

more effective in anxiety relief than (4-methoxy-phenyl)-(6-methoxy-quinazolin-4-yl)-amine HCl 

(LY456236), a mGluR1 antagonist (309). This piece of data indicates that mGluR5 may be more 

important than mGluR1 in anxiety though both of them are involved in anxiety. In 1982, Pecknold 

et al reported that non-benzodiazepine fenobam could treat anxiety in a double-blind standard 

(diazepam) placebo-controlled study (310). This compound later on was proven to be a potent, 

selective, and noncompetitive mGluR5 receptor antagonist in 2005 (311). While inhibiting group 

I mGluRs relieved anxiety, agonist of group I mGluRs were proven to induce anxiety. Direct 

injection of a group I specific agonist trans-azetidine-2,4-dicarboxylic acid (trans-ADA) into the 

dorsolateral periaqueductal gray led to anxiety-like responses like jumping (312). In summary, 

data accumulated to date suggest that group I mGluRs could be candidates of drug targets for 

anxiety treatment, though further studies need to be done to unravel the exact role of group I 

mGluRs play in anxiety.  

A wealth of experimental evidence collected to date from animal model or pharmacological 

tests demonstrate group I mGluRs’ role in diseases, such as stroke, fragile X syndrome, 

Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, epilepsy, and drug addiction 

(212). In those diseases, the expression of mGluRs might be abnormal, or the mGluR-mediated 
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signaling might be altered, or the regulation of mGluRs might be changed. Considering the 

complexity of mGluR signaling pathways, the molecular basis of mGluRs role in those diseases 

need to be further elucidated.  

1.4 Ca2+-sensing Receptor 

Calcium-sensing receptor (CaSR), belonging to the family C of G-protein-coupled 

receptors, plays vital role in the maintenance of constant blood Ca2+ levels and Ca2+ homeostasis. 

This physiological function is a result of its capability of sensing small changes in [Ca2+]o. Ca2+ is 

the primary orthosteric agonist of CaSR. However, there are numerous agonists and modulators 

which can activate and modulate the activity of CaSR, in addition to Ca2+. CaSR is also regulated 

by extracellular pH, ionic strength, and hormones. CaSR-activating or CaSR-inactivating 

mutations are tightly associated with many genetic human diseases, such as familial hypocalciuric 

hypercalcemia, neonatal severe hyperparathyroidism (FHH), and autosomal dominant 

hypoparathyroidism (ADH). Loss of CaSR or impaired CaSR expression or abnormal CaSR 

function also contributes to some acquired diseases, like chronic kidney disease, cancer, 

Alzheimer’s disease, and so on.   

1.4.1 Structure and function of Calcium-sensing receptor  

Until 1993 CaSR was firstly identified and cloned from a bovine parathyroid gland cDNA 

library by Brown et al (279), though there were compelling evidence pointing out the existence of 

a cell surface receptor with [Ca2+]o sensitivity and parathyroid hormones regulation ability before 

that (313-320). The isolated CaSR gene is around 5276 bp, encoding 1085 amino acids. As a 

cGPCR, the structure CaSR is characterized by a large extracellular domain which covers more 

than 600 amino acid. Due to the lack of crystal structure of CaSR, several groups including our 

lab generated model structure based on the X-ray structure of mGluRs (321,322). Based on the 
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mGluR1 structure, the ECD of CaSR is a bilobed Venus-fly-trap structure consisting an N-terminal 

lobe I and C-terminal lobe II connected by three strands (167). There are three pairs of 

intramolecular disulfide bonds formed between 6 Cys residues: Cys60 and Cys101; Cys358 and 

Cys395; Cys437 and Cys449. Another pair of Cys residues (Cys129 and Cys131) are proposed to 

form intermolecular disulfide bond (167). This is consistent with the finding that the corresponding 

Cys residues in mGluR1 is crucial for mGluR1 dimerization. Majority of naturally occurring 

mutations associated with disordered calcium homeostatic are identified in the ECD, highlighting 

the importance of ECD in CaSR function. Crystal structure of mGluR1 with different orthosteric 

ligand identified the orthosteric ligand binding site in the hinge region linking lobe I and lobe II. 

Ligand binding to this cleft results in a closed conformation which stabilizes mGluRs. It is 

proposed that the ECD of CaSR also contains endogenous ligand binding site. However, the 

identification of those sites are greatly hampered by the lack of crystal structure for the receptor.   

An 84-amino acids long region serves as an adaptor region connecting the VFT and 

transmembrane domains. This region is called Cys-rich domain because there are 9 conserved Cys 

residues in such a short region. The importance of Cys-rich domain to the function of the CaSR is 

highlighted by the fact that deletion of Cys-rich domain completely abolished CaSR activation 

(169). Mutagenesis studies also revealed that the expression and function of CaSR could be 

severely disrupted by replacement of Cys residues with Ser (323).  

 There are seven hydrophobic regions named as TM1-TM7 in the transmembrane domain 

linked by intracellular and extracellular loops. This is one of the signatures shared by all cGPCRs. 

Results from mutagenesis studies demonstrated that transmembrane domain is critical in the signal 

transduction from ECD to G-proteins, in dimerization through noncovalent interactions, and in 

receptor activation by allosteric ligand. Substitution of A843 with E led to a constitutively active 
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receptor (324). One naturally occurring mutation P747fs, which lacks of the fifth, sixth, and 

seventh transmembrane domains, the second extracellular loop, and the C terminus, lost its 

dimerization capability; while another mutant A877stop with TM5 preserved that (325). CaSR 

allosteric ligands calcilytic NPS 2143 and the calcimimetic NPS R-568 binding sites are reported 

to be located in the transmembrane domain (326-328). Mutations in the transmembrane helices 

could reduce the effects of them.  

Immediately following the transmembrane domain is the more divergent C terminus, which 

is around 216 amino acids with very few identified naturally occurring mutations. The function of 

C terminus had been extensively investigated by several groups through mutagenesis studies. It is 

concluded that certain mutations including truncation of C terminus could decrease cell surface 

expression level (329,330), impair CaSR’s ability to respond to [Ca2+]o (331), or alter the 

cooperativity for [Ca2+]o (332).  
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Figure 1.24 The amino acid sequence of human CaSR.  
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1.4.2 Calcium-sensing receptor stimuli 

As a “sensor”, CaSR has the ability to respond to diverse stimuli in the extracellular 

environment. Those stimuli can be divided into two types. Type I refers to those which can directly 

evoke CaSR activation and type II are called allosteric modulators which can sensitize CaSR to its 

agonists.  

CaSR was found to respond to polyvalent cations, leading to [Ca2+]i mobilization when 

firstly cloned and expressed in oocytes (279). In addition to Ca2+, CaSR also respond to a variety 

of other cations. Their order of potency ranks as La3+ > Gd3+ > Be2+ > Ca2+ = Ba2+ > Sr2+ > Mg2+ 

(333,334). It seems cations with more positive charges showing higher potency. As the primary 

orthosteric agonist of CaSR, the identification of Ca2+-binding site is greatly hindered by the lack 

of crystal structures and is available to measure Ca2+ binding to CaSR. Using the computational 

methods, our group generated a modeled structure of CaSR based on the crystal structure of 

mGluR1. One of the predicted Ca2+-binding site is located in the hinge region of CaSR, 

coordinated by residues S147, S170, D190, Y218 and E297 (321). This site is also proposed by 

another group earlier(322). Substitution of Y218 with S or E297 with K dramatically reduced 

CaSR’s response and sensitivity to [Ca2+]o (321,322). Other mutants including S147A, S170A, and 

D190A showed a significant drop in maximal response to [Ca2+]o and increased Ca2+ EC50 

values(322). Our group also identified other four possible Ca2+-binding sites in the ECD of CaSR 

(321,335). Multiple Ca2+-binding site in ECD may help to explain the high Hill number observed 

in CaSR activation by [Ca2+]o. Several residues inside of those Ca2+-binding sites are described as 

either inactivating or activating mutations. For example, both Y218S and E297K are inactivating 

mutations associated with FHH (336) (337); while E297D plays causative role in ADH (322).   
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Mg2+ and Ca2+ are the two physiological cations showing CaSR activation capability, while 

Ca2+ has almost 1-fold higher potency and binding affinity than Mg2+ (338). Similar to Ca2+, serum 

Mg2+ concentration was reported to be inversely correlated with PTH levels (339). The function 

of CaSR as a magnesium sensor is also supported by discoveries in patients with FHH or NSHPT. 

The elevated serum Mg2+ level indicates CaSR’s ability to sense extracellular Mg2+ ([Mg2+]o) 

(340). It is also noted that Ca2+ and Mg2+ may function cooperatively to enhance each other’s effect 

on CaSR (341).  

Polyamines are another big group of agonists of CaSR which showed CaSR activation 

capability. In the presence of 0.5 mM [Ca2+]o, both free [Ca2+]o concentration and IP1 production 

were significantly elevated when polyamines applied (342). A rise of background [Ca2+]o could 

shift the response curve of polyamines and lower the EC50 values of polyamines. This suggests 

that polyamine may act as endogenous agonists in physiological conditions through their 

physiological concentration is much lower than their EC50. The potency of three polyamines were 

examined and they followed this order: spermine > spermidine >> putrescine (342). This order 

again proves that agonists with more positive charges are stronger activators of CaSR. 

Polypeptides including polyarginine and polylysine were also identified as potential CaSR 

activators because they could inhibit the PTH release from bovine parathyroid cells (343). Later 

on, polypeptides were proved to act through CaSR (344). Like the polypeptides, polyvalent 

aminoglycoside antibiotics also activated CaSR and caused increase in [Ca2+]i in CaSR transfected 

HEK293 cells in a dose-dependent manner (345). The EC50 values of neomycin, gentamicin, and 

tobramycin are in the micromolar range, with the rank order gentamicin > tobramycin > neomycin.  

Type II stimuli includes both positive and negative allosteric modulators which are 

demonstrated to modulate the action of other orthosteric agonists on CaSR. GPCR are drug target 
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for approximately 40% of all drugs on the market. One of the advantages of allosteric modulators 

over orthosteric ligands is greater selectivity because they do not bind to the conserved orthosteric 

ligand binding sites (346). Amino acids and pharmacological compounds are two groups of 

allosteric modulators. L-amino acids particularly aromatic amino acids were reported to enhance 

the sensitivity of CaSR to its agonists [Ca2+]o and spermine (347), and enhance [Ca2+]o-stimulated 

ERK1/2 phosphorylation (348) though in a fine-tuning way. The precise location of L-amino acids 

binding site is also hindered by the lack of crystal structure. Two mutants (T145A and S170T) in 

the VFT of CaSR displayed impaired L-amino acid sensing capability while preserved its [Ca2+]o 

sensitivity. Later on, our lab identified an L-Phe binding site within the hinge region of ECD, 

adjacent to our predicted Ca2+-binding site (349). L-Phe occupied binding pocket was shown to 

enhance the cooperative responses of CaSR to [Ca2+]o.  

Two groups of famous synthetic allosteric modulators of CaSR are calcimimetics and 

calcilytics. Calcimimetics are positive allosteric modulator, shifting the concentration responses 

curve of [Ca2+]o to the left, while calcilytics right-shift the concentration response curve of [Ca2+]o, 

thus known as negative allosteric modulator. Phenylalkylamines, NPS R-467 and NPS R-568 are 

the first synthetic calcimimetics with potent and stereoselective modulation on CaSR (350). The 

first synthetic calcilytics is NPS 2143, which function as CaSR antagonist, blocking the elevation 

of [Ca2+]i induced by activation of CaSR and stimulating the release of PTH (351). The surface 

expression level of CaSR could also be changed by those pharmacological agents (352,353). 

In addition to the above CaSR ligands, extracellular pH and ionic strength could also alter 

the sensitivity of CaSR to its agonists (354,355).   
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1.4.3 Calcium-sensing receptor regulated intracellular signaling pathways 

The ECD of CaSR plays major function in sensing extracellular environment changes, 

whereas the intracellular portion of CaSR mainly functions as a transmitter to modulate and control 

complex downstream signaling pathways, including PLC signaling, MAPK signaling, inhibition 

of cAMP, Akt signaling, and Rho signaling.  Among them, both the PLC and MAPK signaling 

pathways were widely applied in CaSR activity studies.  

Activation of CaSR leads to activation of PLC, production of IP3 and DG, Ca2+ release 

from ER, and further activation of PKC. This signaling pathway is mediated by the trimeric G 

protein, Gαq/11. Mice without Gαq and Gα11 showed abnormal high PTH level (356). [Ca2+]i 

oscillation induced by CaSR activation have been seen in cells expressing CaSR, such as 

parathyroid cells and HEK293 transfected with CaSR (357-360). The [Ca2+]i oscillation with 

different amplitude and frequency are physiological meaningful in a variety of cell types. Take the 

human colonic epithelial cells as an example. Two types of CaSR-mediated oscillation have been 

observed in human colonic epithelial cells. The one with high frequency (around 3 to 4 peak/min) 

turned to induce inhibition of proliferation, while the one with lower frequency (around 1.5 

peak/min) do not have that function (361). Using CaSR-transfected HEK293 cells, McCormick et 

al. found that the dynamic phosphorylation and dephosphorylation of residue T888 by PKC within 

the C terminus caused sinusoidal oscillations when CaSR is activated by stimuli (362-366). 

Activated PKC through CaSR-mediated PCL pathway causes phosphorylation of T888, 

uncoupling the receptor from Gαq/11. Following this phosphorylation is the dephosphorylation of 

T888 by protein phosphatases to recover coupling of CaSR to Gαq/11 and [Ca2+]i mobilization.  
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1.4.4 The biological roles of Calcium-sensing receptor 

CaSR plays vital role in maintaining systemic Ca2+ homeostasis which is balancing the 

calcium absorption and ingestion. PTH-secreting parathyroid glands, intestines, bone, and kidney 

are the key homeostatic tissues with CaSR-expressing. Ca2+ movement is mainly controlled by 

PTH secreted by parathyroid gland where CaSR was cloned from. The function of parathyroid 

gland is affected by CaSR in different ways as reported by different groups. The PTH mRNA level 

was reduced by increased Ca2+ concentration and application of calcimimetic R-568 in the culture 

medium in bovine parathyroid cells, which indicates that CaSR-mediated signaling could 

destabilize PTH mRNA and control the PTH synthesis (367). In patient with secondary 

hyperparathyroidism, the PTH gene expression was elevated and this elevation could be inhibited 

by positive CaSR allosteric modulator calcimimetic (368). The role of CaSR in regulating 

parathyroid cell proliferation was suggested by observation that calcimimetic treatment could 

attenuate the progression of parathyroid hyperplasia and suppress PTH secretion(369). Intestine 

and kidney are tissues determining how much Ca2+ moves into or out of our body, while bone 

controls how Ca2+ moves between the extracellular fluids and bone. Together with CaSR expressed 

parathyroid glands, CaSR in those tissues is in charge of regulating the levels of [Ca2+]o by 

detecting circulating levels of Ca2+ in the extracellular fluid. When CaSR senses the drop of 

[Ca2+]o, it will stimulate the secretion of PTH and suppress the secretion of calcitonin, in turn, 

elevated PTH promotes bond and kidney resorption. Elevated [Ca2+]o will further increase the 

generation of 1,25-dihydroxyvitamin D3 which can increase Ca2+ absorption from intestine.     

CaSR is also highly expressed in non-homeostatic tissues, like nervous system (370,371), 

breast (372), heart (373), and skin (374,375), playing important roles in regulating a multitude of 

cellular processes including secretion (376,377), differentiation (378,379), proliferation (380), 
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apoptosis (381), and gene expression (367,368). How CaSR contributes to physiology and to some 

diseases in most cell types remains unclear. However, there are emerging experiment result 

reporting the function and role of CaSR in specific cell types. This has been extensively reviewed 

and highlighted in several review papers (382,383).   

As a popular and crucial drug target, CaSR also contributes to the treatment of several 

diseases linked with disorders of Ca2+ homeostasis. The generation of CaSR allosteric modulators 

allows CaSR-based treatment of disorders of Ca2+ homeostasis. For example, positive allosteric 

modulator cinacalcet hydrochloride was the first allosteric modulator of GPCR entering the 

market, approved by FDA in 2004 for treatment of severe secondary hyperparathyroidism (SHPT) 

and hypercalcemia.  

1.5 Challenges Associated with Membrane Protein and Weak Ca2+-binding Affinity 

Challenges encountered in my Ph.D. study, although multifaceted, are mainly associated 

with membrane protein and the characterization of Ca2+-binding in those membrane proteins.  

All three proteins I worked on including gap junction protein, metabotropic glutamate 

receptor, and Ca2+-sensing receptor are membrane proteins with oligomerization preference. The 

first challenge associated with eukaryotic membrane protein is expression. There are several 

factors which may affect the success of expression of eukaryotic membrane protein. To begin with, 

eukaryotic membrane proteins need different machinery for protein folding, trafficking, 

translocation, and facilitating disulfide-bond formation, which may be due to lack or difference in 

other expression systems including E.coli, insect cell and yeast. Second, the lipid composition of 

cell membrane varies in different host. This variation may cause instability of membrane proteins. 

Third, eukaryotic membrane proteins usually undergo many post-translational modifications 

including phosphorylation, glycosylation and so on. However, only higher eukaryotes process the 
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corresponding machinery for those post-translational modifications. Mammalian expression 

systems resemble the native membrane protein environment best, however, expression cost is not 

in direct proportion to yield. 

Another concern associated with membrane protein is purification and solubilization. 

Membrane proteins are embedding in the lipids bilayers. Detergent extraction is the standard 

purification method for membrane proteins. They can cover the hydrophobic surface of membrane 

protein and solubilize membrane proteins. However, researchers need to test a series of detergents 

to find out the one which not only have strong solubilization capability and high extraction 

efficiency but also can provide the most stable membrane protein. There are lots of detergents with 

high extraction power, but they are too harsh for membrane proteins, while mild detergents usually 

show low efficiency. Membrane proteins in detergent micelles are not quite stable which will 

influence the crystallization and further studies. In addition, maintaining the native and functional 

state of membrane protein in the detergent is of particular difficulty.   

Membrane protein crystallization has set another challenge before researchers. In human, 

around 30% gene codes for membrane proteins, however, only a very low number of full-size 

membrane protein structures have been solved and deposited in the PDB. This phenomenon 

reflects how difficult it is to obtain membrane protein crystal structures. Many factors including 

heavy glycosylation, huge flexibility, high instability, oligomerization, or large molecular size 

could contribute to the failure of membrane crystallization. The structure and function study of 

membrane is largely hampered by the lack of crystal structure information.     

      To study the Ca2+-binding or Ca2+-regulation of those membrane proteins, we are 

facing another problem regarding the weak Ca2+-binding affinity and invisibility of Ca2+-binding 

pocket. Due to high on and off rate of Ca2+-binding, it is extremely hard to capture Ca2+ in the 
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crystal. This weak-binding affinity also cause problems in direct measurement of Ca2+-binding 

affinity in those membrane proteins. Thus, indirect methods has to be established to study Ca2+-

binding to study regulation of those receptors and channels. 

1.6 Major Questions to Be Addressed in This Dissertation 

There are several major questions need to be addressed in each projects: 

In project “Direct Visualization of Interaction between CaM and Cx45”, the following 

questions need to be addressed:  

1. Can CaM interact with Cx45 in living cells? If yes, is it Ca2+-dependent?  

2. Where is the Ca2+/CaM binding site in Cx45?  

3. How can we determine the binding of Ca2+/CaM to Cx45 and detect the potential 

conformational change induced by such interaction?   

4. What is the effect of Cx45-binding effect on Ca2+-binding affinity of CaM?  

In project “Cx26 Gap Junction Hemichannel Regulation by Extracellular Ca2+”, the 

following questions need to be addressed: 

1. Where is the Ca2+-binding site in Cx26? 

2. What is the Ca2+-binding affinity of Cx26? 

3. What is the effect of mutating predicted Ca2+-binding ligands? 

4. How does [Ca2+]o regulate Cx26 hemichannles? 

 In project “Is mGluR5 a Calcium-sensing Receptor?”, the following questions need to 

be addressed: 

1. Can mGluR5 sense the [Ca2+]o?  

2. If mGluR5 has the Ca2+-sensing capability, where is the Ca2+-binding site?  

3. What is the Ca2+-binding affinity? 
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4. How does [Ca2+]o
 regulate the activity of mGluR5? 

5. What is the effect of [Ca2+]o on the actions of other agonist of mGluR5? 

In project “Structural Basis for Regulation of Human Calcium-Sensing Receptor by 

Magnesium Ions and an Unexpected Tryptophan Derivative Co-agonist”, the following 

questions need to be addressed: 

1. What is the function of extracellular Mg2+ on CaSR?  

2. Where is the Ca2+- and Mg2+-binding sites in CaSR?  

3. What is the structure of CaSR-ECD? 

4. What is the unexpected tryptophan identified in CaSR-ECD? 

5. What is the function of the unexpected ligand? 

 

1.7 The Objectives and Overview of This Dissertation 

The objective of this research is to understand how Ca2+/CaM regulate gap junction 

proteins, to investigate how [Ca2+]o modulate the activity of metabotropic glutamate receptors, and 

to probe the structural basis of CaSR-mediated signaling. Specifically, to reach the goals and 

address the above questions, I will review the background of Ca2+ signaling, gap junction, 

metabotropic glutamate receptor and Ca2+-sensing receptor in Chapter 1.  

Chapter 2 describes the materials and methods applied in my Ph.D. study to achieve goals 

described above. 

Chapter 3 investigates the interaction of CaM and Cx45 both in vivo and in vitro.  

A1. Examine the interaction of CaM and Cx45 in living cells.  

In order to visualize the direct interaction between CaM and Cx45 in living cells, 

bioluminescence resonance energy transfer (BRET) assay will be performed to monitor the 
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interaction between two proteins. The Ca2+-dependence or CaM-dependence will also be 

investigated through monitoring BRET signal changes in the presence of BAPTA-AM, 

[Ca2+]o/ionomycin, or CaM inhibitor W7.  

A2. Predict the CaM-binding site in Cx45 and characterize the interaction between CaM 

and Cx45 using peptide model.  

To identify the putative CaM-binding site in Cx45, we will analyze the sequence of Cx45 

and predict the possible CaM-binding site using the CaM target database. To confirm the binding, 

peptide derived from the putative CaM-binding site will be synthesized and utilized in series 

biophysical studies to probe the characteristics of the interaction between CaM and Cx45-derived 

peptide.  

Chapter 4 unravels the [Ca2+]o regulation of Cx26 gap junction hemichannels.  

To identify the putative Ca2+-binding site in Cx26, we will first predict the putative Ca2+-

binding site using our computational algorithm MUGSR. We will also purify enough Cx26 protein 

from insect cell using detergent extraction. The Ca2+-binding characteristics of Cx26 will be 

examined by biophysical studies. Cx26 regulation by [Ca2+]o will also be assessed using the oocyte 

by injection of Cx26 proteo-liposome.      

Chapter 5 elucidates the modulatory effect of [Ca2+]o on mGluR5 and identifies the Ca2+-

binding site.  

A1. To test the effect of [Ca2+]o-sensing capability of mGluR5, we will monitor the mGluR5 

activity by monitoring [Ca2+]i immobilization and extracellular signal-regulated protein kinases 1 

and 2 (ERK1/2) phosphorylation upon [Ca2+]o stimulation. The modulatory effect of [Ca2+]o on 

other mGluR5 agonists will also be examined by monitoring the same phenomenon when eliciting 

cell presented in various concentrations of [Ca2+]o using agonist. 
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A2. To verify the putative Ca2+-binding site, we will firstly mutate the predicted Ca2+-

binding residues and then compare the [Ca2+]o effect on wild type and mutated mGluR5.    

Chapter 6 explores the structure basis for regulation of CaSR by divalent cations and other 

extracellular stimuli.  

A1. To solve the structure of CaSR-ECD, we will purify CaSR-ECD from mammalian cells 

and crystalize CaSR-ECD in different cations.  

A2.  To probe the function of any CaSR-ECD-bound ligands found in the crystal, we will 

perform cell experiment to investigate the function of those ligands. We will also mutate the amino 

acids associated with ligand-binding and compare the effect of ligand on wild type and mutated 

CaSR.  

Chapter 7 summarizes major conclusions and the significance of all discoveries in this 

dissertation.  
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2     MATRERIALS AND METHODS 

2.1 Direct Visualization of Interaction between Cam and Cx45  

2.1.1 BRET assay related mouse Cx45 and rat CaM construction 

The yellow fluorescent protein fusion protein expression vector pVenus-N/pVenus-C1 and 

the Renilla luciferase (RLuc) protein fusion protein expression vectors were received from Dr. 

Hepler (Emory University, GA) as gifts. The mouse Cx45 plasmid in pcDNA3.1/Hygro (+) was a 

gift from Dr. Veenstra (SUNY Upstate Medical University, NY). Cx45-pVenus was synthesized 

by insertion of the PCR product of the mouse Cx45 into vector pVenus-N1 at Nhe I and Xma I 

enzyme sites upstream of eYFP. Forward and reverse primers were CTA GCT AGC ATG AGT 

TGG AGC TTC CTG ACT and TCCC CCC GGG AAT CCA GAC GGA GGT CTT CCC. CaM-

RLuc8 was generated by insertion of rat CaM gene into vector RLuc8-N1 at Xho I and BamH I. 

Forward and reverse primers for generation of CaM-RLuc8 were CCG CTC GAG ATG GCT GAC 

CAG CTG ACC and CGC GGA TCC CTT GCG AGT CAT CAT CTG. All DNA sequences were 

verified by GENEWIZ.INC (www.genewiz.com).  

2.1.2 CaM and its mutants expression in E.coli 

Unlabeled or 15N isotopically labeled recombinant rat CaM and CaM half domains (N-

CaM: resides from 1 to 75 and C-CaM: resides from 76 to 148) were expressed in Escherichia coli 

and were purified as described elsewhere (154,384). Protein concentrations were determined using 

the molar absorption coefficients ε277 of 3,030 M-1cm-1, ε277 of 2,666 M-1cm-1 or ε258 of 1,073 

M-1cm-1 for  wild type CaM, C-CaM and N-CaM, respectively.  

Dansylated CaM (D-CaM) and CaM half domains (D-N-CaM and D-C-CaM) were 

synthesized according to the method described previously (385). The dansylation of CaM was 

http://www.genewiz.com/
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confirmed by ESI-MS. Concentrations of D-CaM, D-N-CaM and D-C-CaM were measured by 

using the ε335 of 3980 M-1cm-1.     

15N isotopically labeled recombinant rat CaM and CaM half domains were expressed in a 

minimum medium consisting of K2HPO4, KH2PO4, MgSO4 and (NH4)2FeSO4 and purified using 

the same method as unlabeled proteins.  

2.1.3 Circular dichroism spectroscopy 

CD spectra were recorded on a Jasco-810 spectropolarimeter at ambient temperature using 

a 0.1 cm path length quartz cuvette, an integration time of 1s and a scan rate of 100 nm/s. The far 

UV CD spectra of CaM (8 µM) and CaM-peptide complex (8 µM) were obtained in 10 mM Tris, 

100 mM KCl, at pH 7.5 with 5 mM CaCl2 or 5 mM EGTA. The far UV CD spectra of the peptide 

in different percentages of trifluoroethanol (TFE) were obtained using a concentration of 20 µM 

peptide in the same buffer. Multiple scans (10) were averaged and baselines were subtracted. The 

secondary structure contents of the peptides were calculated with the online secondary structure 

prediction server DICHROWEB (http://dichroweb.cryst.bbk.ac.uk/html/home.shtml). 

2.1.4 Dansylated CaM fluorescence change induced by peptides derived from connexins 

Steady-state fluorescence measurements were carried out in triplicate with a QM1 

fluorescence spectrophotometer (PTI) at ambient temperature using a cell path length of 1 cm. 

Dansylated CaM samples (0.25-1 µM D-CaM or 1 µM D-C-CaM or 1 µM D-N-CaM) were 

prepared in 10 mM Tris-HCl buffer (pH 7.5) containing 100 mM KCl, 5 mM Ca2+ or 5 mM EGTA. 

Titration was carried out by gradually addition of the peptide stock solution (25-100 µM) prepared 

in the same buffer. The excitation wavelength was 335 nm, with fluorescence emission intensity 

recorded between 400-600 nm. The binding constant of the synthetic peptide to modified CaM 

http://dichroweb.cryst.bbk.ac.uk/html/home.shtml
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was obtained with a 1:1 binding model by fitting normalized florescence data as described 

previously (154).  

2.1.5 Equilibrium Calcium titrations 

Equilibrium calcium titrations were performed at room temperature using a QM1 

fluorescence spectrophotometer. CaM alone (8 µM) or with Cx45164-186 peptide (molar ratio of 

1:1.2) in 50 mM HEPES (pH 7.4), 100 mM KCl, 5 mM (NTA) and 0.05 mM EGTA was titrated 

with 15 mM or 50 mM calcium solution prepared in the same buffer. The intrinsic fluorescence of 

tyrosine (λex = 277 nm, λem= 320 nm) or phenylalanine (λex = 250 nm, λem= 280 nm) was used 

to monitor the calcium binding to C- and N-domain respectively (386). The fluorescent calcium 

indicator dye (0.2 μM) Oregon Green 488 BAPTA-5N (Oregon Green) was used to determine the 

free calcium concentration at each titration point using the following equation as previously 

described. Calcium titrations of CaM samples were repeated at least three times.   

2.1.6 15N-1H heteronuclear single quantum coherence (HSQC) 

All 15N-1H HSQC spectra were recorded on either Varian Inova 600 or 800 MHz 

spectrometer.  CaM NMR samples were prepared by diluting protein samples to 250 or 500 µM 

using buffer with the following composition 10% D2O, 5 mM MES, 10 mM Bis-Tris, 100 mM 

KCl, 0.02 % NaN3 with 10 mM Ca2+ or 10 mM EGTA. The pH values were adjusted to 7.4. NMR 

spectra were acquired at 37 C. 15N uniformly-labeled CaM was titrated with different amount of 

peptides derived from connexins to reach series of peptide/CaM ratios (0, 0.5, 1, 1.5, 2).  NMR 

data were processed using NMRPipe and analyzed using SPARKY software package.  
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2.1.7 Pulse-field-gradient diffusion NMR 

The pulse-field-gradient diffusion NMR was performed on a 600 MHz Varian Inova 

spectrometer using a modified PG-SLED pulse sequence (387).  

2.1.8  Bioluminescence resonance energy transfer (BRET) assay 

2.1.8.1 HEK293 cell culture and transfection 

HEK 293 cells were cultured at 37 °C in a humidified incubator with 5% CO2 and fed with 

colorless DMEM medium (Invitrogen) supplemented with 10 % FBS, 100 units/ml penicillin, 100 

mg/ml streptomycin 25 mM glucose and 4 mM glutamine.  

Transfection was performed with the aid of reagent polyethylenimine (PEI) (Polyscience. 

Inc). 8 µl of 1 mg/ml PEI was diluted in 100 µl unsupplemented DMEM medium (Invitrogen). 

The diluted PEI was incubated at room temperature for 3 minutes. Appropriate amount of DNA 

was also prepared in another 100 µl of unsupplemented DMEM medium. PEI and DNA were 

mixed to generate solution T by 3-second vortex, followed by 15-minute incubation at room 

temperature. Complete DMEM medium was replaced by low serum (5 %) transfection medium 

and appropriate amount of solution T was added into cell in a drop-wise manner. Cells were 

allowed to grow for 24 hours.  

2.1.8.2 Donor/Acceptor ratio optimization 

HEK293 cells were seeded to two 6-well plates in colorless DMEM medium with 

supplement one day before transfection. Cells in one 6-well plate was transfected with increasing 

amount (0, 2, 5, 10, 25, 100 ng) of donor plasmid Cx45-Rluc and cells seeded in another plate was 

transfected with increasing amount (0, 25, 50, 100, 500, 1000 ng) of acceptor pVenus-CaM. 

Besides, DNA amount in each well was adjusted to 1.5 µg by the addition of empty pc DNA 3.1 

plasmid. After 24-hour transfection, the transfection medium was removed and replaced with 750 
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µl of sterilized BRET buffer (140 mm NaCl, 2.7 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 0.37 mM 

NaH2PO4, 24 mM NaHCO3, 25 mM HEPES, 0.1 % Glucose). Cells were detached from the dish 

by gently pipetting. 90 µl of the cells in triplicate from each well were placed into white-bottomed 

96-well plates. The fluorescence intensity (excitation at 485 nm, emission at 530 nm) of pVenus-

CaM was measured by TriStar LB 941 microplate reader. For donor (Cx45-Rluc) luminescence 

detection, 10 µl of 50 µM benzyl coelenterazine were added into each well and incubated at room 

temperature for 2 minutes before measuring luminescence at 485±20 nm. 

2.1.8.3 BRET assay 

Culture medium in each well was replaced by 750 µl sterilized BRET buffer and cells 

cotransfected with pVenus-CaM/CaM-pVenus and Cx45-Rluc were detached by pipetting. In each 

well, 90 µl of cells were distributed. Fluorescence measurements were acquired using a TriStar 

LB 941 Multimode microplate reader. Before measurement, coelenterazine was added to a final 

concentration of 5 µM and sequential measurements were performed at 460 ± 25 nm and 525 ± 25 

nm. The BRET signal was defined as the ratio of light emitted at 525 nm over the light emitted at 

460 nm. In some cases, cells were treated either with BAPTA-AM (50 μM) or CaCl2 (5 mM CaCl2 

and 10 μM Ionomycin) or N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride 

(W7, 50 μM) for 20 min, 10 min and 30 min respectively before BRET measurement. The average 

BRET signals were from three experiments.  

2.1.9  Surface plasma resonance (SPR) 

2.1.9.1 CM5 chip activation 

Using a BIAcore T200 SPR system, we analyzed the interaction of CaM to Cx45 peptide 

corresponding to CaM-binding site. CM5 chips were activated by injecting a 1:1 ratio mixture of 

0.4 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and 0.1 M N-hydroxysuccinimide 
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(NHS). The injection was lasting about 7 minutes at 10 µl/ min and followed by a wash with HBS-

EP buffer (0.01 M HEPES, 0.15 M NaCl, 3 mM EDTA, 0.005 % v/v Surfactant P20).  

2.1.9.2 Cx45 peptide immobilization 

100 µM Cx45 peptide in water was injected for 1 minute at a speed of 5 µl/min twice to 

immobilize Cx45 peptide to the CM5 sensor chip by NH2 coupling with the carboxyl group.  

2.1.9.3 Deactivation of the excessive reactive groups 

The excessive reactive carboxyl groups were blocked by a 10-minute injection of 

ethanolamine at a speed of 10 µl/min. A following wash using HBS-EP buffer was applied to 

remove any remaining ethanolamine.   

2.1.9.4 Detection of the interaction between CaM and Cx45 peptide by monitoring the response 

unit change 

Various concentrations of purified full length CaM or CaM half domains in HEPES buffer 

(10 mM HEPES, 150 mM KCl, 5 mM CaCl2, pH 7.5) were injected for 10 minutes at 15 µl/min 

and this injection was followed by a 16 minutes buffer wash. The sensor chips were regenerated 

by 10 times 30-s injection of 30 mM NaOH. The background signal obtained from the reference 

flow cell was subtracted from the binding curves before data processing. 

2.2      Cx26 Gap Junction Hemichannel Regulation by Extracellular Ca2+  

2.2.1 Plasmid construction and protein engineering  

Mouse Cx26 gene was amplified by PCR using the mouse Cx26 DNA in pcDNA6/V5-His 

(A) vector (a gift from Dr. Eric Lin, Emory University, GA) as template with Bam H I and Hind 

III restriction sites added at the 5’ and 3’ ends and ligated into the modified Baculovirus donor 

plasmid pFastBac HT A vector (with C-terminal his tag). Site-directed mutagenesis was performed 
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using the QuickChange TM kit (Stratagene, Cedar Creek, TX) by following the manufacturer’s 

instructions. All the DNA sequences were verified by GENEWIZ.INC (www.genewiz.com).  

Human Cx26 in pTrcHis 2 A vector was a received as a gift from Dr. James Prestegard 

(University of Georgia, GA) and was used for bacterial expression. The codon of human Cx26 was 

optimized by GenScript (www.genscript.com) to replace rare codons.  

Human Cx26 in pEGFP-N1 vector was obtained from Dr. Eric Lin (Emory Univeristy, 

GA) as a gift and was used for mammalian cell expression. Its mutants were generated by using 

QuickChange TM kit (Stratagene, Cedar Creek, TX) according to the manufacturer’s instructions. 

All the DNA sequencing was done by GENEWIZ.INC. 

2.2.2 Protein expression and purification/isolation 

2.2.2.1 Cx26 isolation from liver 

All the isolation processes were done on ice or in the 4 C cold box. All the different 

percentages of sucrose were prepared in Tris-HCl buffer (10 mM Tris-HCl, 1 mM EGTA, 5 mM 

PMSF, 0.2 % NaN3, pH 7.5). 150 g of fresh pig liver were chopped into small pieces and washed 

with Tris-HCl buffer for several times to remove the blood. Then the small pieces of pig liver in 

500 ml Tris-HCl buffer were homogenized using the homogenizer and the homogenate was diluted 

to 2.5 L before filtered through four layers of cheesecloth. Pellet was separated from solution by 

centrifugation at 7000 rpm for 30 minutes at 4 C and suspended in 300 ml Tris buffer before 

repeating the centrifugation. Pellet obtained from last step was suspended in 50 % sucrose. In each 

ultra-clear ultracentrifugation tubes, 2 ml of sample/50 % sucrose was loaded at the bottom, 

followed by the 5 ml of 41 % sucrose in the middle and 3 ml of 25 % sucrose on the top. 

Ultracentrifugation was performed at 27000 rpm for 1.5 hours at 4 C using SW-28 Ti rotor. No 

brake was allowed and the lowest acceleration and deceleration rates were used for sucrose 

http://www.genewiz.com/
http://www.genscript.com/
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gradient ultracentrifugation to avoid sucrose gradient disturbance. Any materials at the interface 

of 25 % and 41 % sucrose were collected using a 1 ml pipet and diluted four times with ice-cold 

Tris-HCl buffer. The diluted sample was applied to centrifugation at 7000 rpm for 30 minutes at 4 

C. After the centrifugation, pellet was suspended in a minimum amount of Tris-HCl buffer and 

sonicated for 10 minutes using the water bath sonicator. 0.6 % Sarkosyl was added to the mixture, 

followed by room temperature incubation for 30 minutes. Centrifugation at 7000 rpm was applied 

again for 30 minutes before re-suspending the pellet using 0.6 % Brij 58. The mixture was 

subjected to room temperature incubation for 30 minutes again and pellet obtained from the 

mixture using 30-minute centrifugation at 7000 rpm was suspended in 0.6 % Brji 58.        

2.2.2.2 Human Cx26 expression in bacterial system 

The bacterial expression was carried out in Escherichia coli C43 (DE3) cells in M9 medium 

with 100 mg/L of ampicillin at 28 C. 1 mM Isopropyl-β-D-thiogalacto- pyranoside (IPTG) was 

added to induce the protein expression for 17 hours when the absorbance at 600 nm arrives at 1. 

The bacterial pellet was harvested by centrifugation at 7000 rpm for 10 minutes and be lysed in 

lysis buffer (10 mM HEPES, 500 mM NaCl, 1 mM phenylmethylsulfonyl fluoride (PMSF), pH 

8.0) using a cell disruptor.  

The supernatant was separated from pellet by ultracentrifugation at 30000rpm for 1 hour 

at 4 C. 0.1% n-dodecyl-β-D-maltoside (DDM) was added into the supernatant to increase the 

solubility of soluble form of Cx26 and the mixture was filtered through a 0.45 μm filter (Millipore, 

Billerica, MA) before loading to a 16/10 HisPrep HP column (GE Healthcare), which is pre-

equilibrated with buffer A (10 mM HEPES, 500 mM NaCl, 40 mM Imidazole, 0.1% DDM, pH 

8.0). A linear segmented gradient of 0-100% buffer B (10 mM HEPES, 500 mM NaCl, 500 mM 

imidazole, 0.1% DDM, pH 7.5) was run using FPLC to elute the protein.  



82 

The pellet from the lysate was re-suspended in HEPES buffer (10 mM HEPES, 500 mM 

NaCl, 1 mM PMSF, 2% DDM, pH 8.0) and the mixture was tumbled overnight at 4 C. Next day 

morning the pellet mixture was subjected to ultracentrifugation at 30000 rpm for 1 hour at 4 C. 

The supernatant obtained from ultracentrifugation was filtered through a 0.45 0.45 μm filter 

(Millipore, Billerica, MA) and applied to 2 ml Cobalt resin (Thermo Scientific) pre-equilibrated 

with buffer A (10 mM HEPES, 500 mM NaCl, 10 mM imidazole, 0.1% DDM, pH 8.0). 20 ml of 

washing buffer (10 mM HEPES, 500 mM NaCl, 40 mM imidazole, 0.1% DDM, pH 8.0) was 

utilized to remove any non-specific binding protein on the beads. Elution was fulfilled by the 

application of elution buffer (10 mM HEPES, 150 mM NaCl, 300 mM imidazole, 0.1% DDM, pH 

7.5). Imidazole removal was accomplished by further dialysis in HEPES buffer (10 mM HEPES, 

150 mM NaCl, 0.1% DDM, pH 7.5) overnight at 4 C.  

2.2.2.3 Mouse Cx26 expression in insect system 

Recombinant baculoviruses were prepared following the instructions of Bac-to Bac 

Baculovirus Expression System (Invitrogen). Insect Sf9 cells were cultured in the Sf-900™ II SFM 

media. Sf9 cells were infected at a density of ~ 2x106 cells/ml for expression and harvested 72 h 

post-infection by centrifugation at 7,000 rpm at 4 C for 10 min. For purification, cells were 

washed by phosphate buffered saline (PBS) buffer and lysed by sonication in 1mM bicarbonate 

and 1mM phenylmethylsulfonyl fluoride (PMSF) buffer. Cell membrane was enriched by 

ultracentrifugation and was solubilized with 2% n-dodecyl-β-D-maltoside (DDM) in HEPES 

buffer (10 mM HEPES, 500 mM NaCl, pH 8.0) overnight at 4 C. Solubilized mCx26 was applied 

to 2 ml of Cobalt resin (Thermo Scientific). The resin was then wash with 20 ml washing buffer 

(10 mM HEPES, 500 mM NaCl, 40 mM imidazole and 0.1% DDM, pH 8.0). 300 mM imidazole 

was added into the washing buffer to elute mCx26. Pure mCx26 protein was verified by 
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chemiluminescence western blot and mass spectrometry (MS). The oligomers of mCx26 was 

visualized by both Native PAGE Novex 4-16% Bis-Tris Gel (Invitrogen) and electron microscopy 

(EM). Protein was dialyzed in dialysis buffer (10 mM HEPES, 150 mM NaCl, 0.1% DDM, pH 

7.5) overnight at 4 C to remove imidazole.   

2.2.2.4 Connexin 26 splitting  

Pure Connexin26 protein was mixed with buffer (10 mM Tris, 8 M urea, 6 mM EGTA, 10 

mM DTT, pH8.0) at 1:1 ratio. The mixture was placed in 37 °C for 1 hour before storing at 4 °C 

for 5 days. Native gel was run to test the splitting result.  

2.2.3 Mammalian cell culture and transfection  

To study the Cx26 hemichannel Ca2+ permeability, HeLa cells from ATCG (Manassas, 

VA) were fed on a Dulbecco’s Modified Eagle Medium (DMEM) and 10% fetal bovine serum 

(Invitrogen). The cells were cultured at 37 °C in a humidified incubator with 5% CO2. One day 

before transfection, HeLa cells were grown on 13.5 × 20 mm or 22 × 40 mm coverslips based on 

the experiment design and then were transfected with Cx26-eGFP plasmid with the aid of 

lipofectamine2000 (Invitrogen).  

2.2.4 Permeability measurement of Cx26 hemichannel using dye loading assay  

HeLa cells cultured on 22 × 40 mm coverslip were transiently transfected with Cx26-eGFP 

or its mutants. After 48-hour post-transfection, cells were incubated with 0.5 mg/ml propidium 

iodide (PI) in the presence of 5 mM Ca2+ or EGTA for 20 minutes at 37 C. The excessive dye 

was removed and washed away after incubation. The coverslips were mounted in a bathing 

chamber on the stage of a fluorescence microscope. PI loading was visualized utilizing a Leica 

DM6000 fluorescence microscope. At least 6 different views were examined to achieve statistical 
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analysis. Percentage of cells loaded with PI was calculated using this equation: Percentages of 

cells loaded with PI=Number of cells loaded with PI/ Total cell number in each view.  

2.2.5 Liposome preparation 

All lipids including synthetic and E.coli total lipids extraction were purchased from Avanti 

Polar Lipids, INC and stored in -20 oC freezer. When preparing liposome with mixed lipid 

composition, lipids dissolved in an organic solvent were first mixed before drying. Single lipid or 

mixed lipid were firstly dried using the lyophilizer at 4 oC. Then the thin lipid film was resuspended 

in TAK buffer (50 mM Tris-HCl, 20 mM NH4Cl, 25 mM KCl, pH 7.5). The suspension was 

subjected to sonication (Fisher Scientific Sonic Dismembrator Model 500) at the amplitude of 70% 

in ice cold water bath for proper time with two minute pause until the suspension became light 

permeable. The liposomes were aliquoted and stored at -80 oC for future use.  

2.2.6 Proteo-liposome preparation 

1% DDM was firstly added into liposome prepared above and then the liposome was mixed 

with purified Cx26 protein at 5:1 ratio. The mixture was dialyzed in buffer (pH 7.5) containing 

0.25 M sucrose, 0.4 M KOAC, 20 mM triethanolamine hydrochloride, 1.5 mM Mg(OAC)2, 1 mM 

EDTA for overnight at 4 oC to reconstitute the Cx26 proteoliposomes. Second day morning, the 

mixture were centrifuged at 40000 rpm for 40 minutes at 4 oC. Supernatant was discarded and the 

yellowish pellet tightly attached at the bottom of centrifuge tubes was resuspended in TAK buffer. 

Proteo-liposome must be stored at -80 oC for future use. The concentration of proteo-liposome was 

measured by UV at 280 nm.  

2.2.7 Oocyte preparation 

Frogs were anesthetized by culture in fresh water with 0.3% 3-aminobenzoic acid 

ethylester for 30-40 minutes until no response when poked using finger. A small abdominal 
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incision was made by surgery scissors and ovaries were taken out. The oocytes clusters were firstly 

separated simply by pull. Then smaller oocyte clusters were digested in the OR2 solution (82 mM 

NaCl, 2 mM KCl, 1 mM MgCl2, and 5 mM HEPES, pH 7.4) supplemented with 2 mg/ml of Type 

IA collagenase with gentle shaking until 70% of the tissue was digested. Next, the oocytes were 

subjected to the second time digestion for 5 minutes to achieve 90% digestion after washed with 

OR2 solution for 3 times. Digestion solution was carefully decanted and remaining collagenase 

was removed by OR2 solution wash for at least 5 times. Oocytes were then maintained in ND96 

buffer (96 mM NaCl, 2 mM KCl, 1 mM MgCl2, 1.8 mM CaCl2, 5 mM HEPES, pH 7.4, 40 mg/L 

sodium pyruvate, 100 mg/L gentamicin, and 100 mg/L tetracycline ) at 16 oC for 2 days with gentle 

shaking. 

2.2.8 Proteo-liposome injection 

Before injection, oocytes were examined under the microscope and good oocytes with clear 

separation of two pores and good pigment accumulation were picked up one by one for injection. 

Good oocytes were placed on a home-made holder with small wells. Then 60 ng of proteo-

liposome or same amount of control liposome were injected into the oocytes by a sharp needle. 

The injected oocytes were incubated with 1.8 mM CaCl2 to suppress budding at 23 °C for 30 mins. 

Recording bath solution was 90K buffer (90 mM KCl, 5 mM HEPES) with different regulators, 

such as 5 mM EGTA, or 5 mM Ca2+.  

2.2.9 Two electrons whole cell recording 

The oocytes were placed in a recording chamber (BSC-HT, Medical System, Greenvale, 

NY) on a supporting nylon mesh to guarantee both the top and bottom surfaces of oocytes could 

be immersed in perfusion solution. Two electrode voltage clamping was performed using an 

amplifier (Geneclamp 500, Axon instruments Inc., Foster City, CA) at room temperature (23-25 
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°C) as described previously (165). Both the highest and lowest current in each group (30 oocytes) 

were discarded. The mean value was presented.  

2.3 Is mGluR5 a Calcium-sensing receptor? 

2.3.1 mGluR5 and its mutants construction  

Rat mGluR5 in pRK5 vector received as a gift from Dr. Randy Hall (Emory Univeristy, 

GA) was used for mammalian cell expression. All mutants were generated using QuickChange 

TM kit (Stratagene, Cedar Creek, TX) according to the manufacturer’s instructions. A flag tag was 

inserted after signal peptide (1-21) by PCR using rat mGluR5 as template. Forward and reverse 

primers are GAC GAT GAC AAG CAG TCC AGT GAG AGG AGG and ATC CTT GTA GTC 

TGC ACT CCC TCG TAC ATC. The extracellular domain gene of rat mGluR5 was amplified by 

PCR and inserted between BamHI and EcoR I enzyme cleavage site in pFastBac 1 plasmid. 

Forward and reverse primers are CGC GGA TCC ATG GTC CTT CTG TTG ATC CTG and CGG 

GAA TTC CTA GTG ATG GTG ATG GTG GTT ATT TTT CTT GGA CCA CAC. The 

recombinant pFastBac 1 donor plasmid was subsequently transformed into MAX Efficiency 

DH10Bac competent cell (Invitrogen) to generate the recombinant bacmid. This bacmid was 

confirmed by sequencing its PCR product.  

All mGluR5 single and double mutations were generated using the QuikChange II Site-

directed Mutagenesis Kit (Agilent Technologies). All the DNA sequencing was done by 

GENEWIZ.INC.   

2.3.2 Cell culture and transfection  

HEK293 cells from ATCG (Manassas, VA) were fed on a Dulbecco’s Modified Eagle 

Medium and 10% fetal bovine serum. The cells were cultured at 37 °C in a humidified incubator 



87 

with 5% CO2. Cells were transfected with either mGluR5 WT or mutant using Lipofectamine 

2000 (Invitrogen) by follow the manufacturer’s instructions.  

2.3.3 mGluR5 cell surface expression visualization by immunostaining  

mGluR5 constructs contain a flag-tag right after the signal peptide were used in 

immunostaining experiment. After 48 hour transfection, cells were fixed with 3.7 % formaldehyde 

for 15 minutes at room temperature, followed by 3 times PBS wash. Mouse anti-flag monoclonal 

antibody was diluted 3000 times and incubated with cell overnight at 4 °C to stain the cell surface 

mGluR5. Next day after washing the cell with PBS, cells were stained with goat anti-mouse 

Alexa488-conjugated secondary antibody for 1 hour at room temperature. Nuclei were stained 

with DAPI. Fluorescence was visualized using a Zeiss LSM700 confocal microscope. 

2.3.4 Quantitatively analysis of mGluR5 and its mutants’ cell surface expression  

PierceTM Cell surface protein isolation kit (ThermoFisher Scientific) was used to analyze 

the surface expression of WT and mutated mGluR5. Briefly, WT or mutated mGluR5 transfected 

HEK293 cells were treated with 30 μg/ml cell-impermeable and cleavable sulfo-NHS-SS-Biotin 

for 30 min at 4 ºC. The cells were subsequently washed by PBS extensively to remove any unbound 

biotin before lysis with RIPA buffer containing protease inhibitor. All biotinlysated cell surface 

protein were mixed with streptavidin agarose beads overnight to be further isolated. Next day, the 

beads were washed three times in RIPA buffer and the biotinylated surface proteins were eluted 

with SDS-Page sample buffer (62.5 mM Tris-HCl, 2.5 % SDS, 0.002 % Bromophenol blue, 10 % 

glycerol and 5 % β-mercaptoethanol, pH 6.8). The elutions were further separated by SDS-Page 

and transferred to a nitrocellulose membrane. The membranes were probed with anti-FLAG 

antibody by following the standard western blot protocol. The western blot films were analyzed 

by Image J. GADPH was used as an internal control.  



88 

2.3.5 Measurement of [Ca2+]i response to [Ca2+]o in single cells transfected with WT or mutant 

mGluR5 

HEK293 cells grown on coverslip were transiently transfected with mGluR5 WT or mutant 

for 48 hours. Loading cell with Fura-2 AM was done by incubating with 4 μM Fura-2 AM in 

HEPES buffer (pH 7.4) with 0.5 mM CaCl2, 140 mM NaCl, 5 mM KCl and 1.0 mM MgCl2. Then 

the coverslips were mounted in a bath chamber on the stage of a Leica DM600 fluorescence 

microscope. The ratio of emission fluorescence intensity from both 340 nm and 380 nm was 

recorded in real time when extracellular Ca2+ was added and utilized as an indicator for 

intracellular Ca2+ concentration changes. [Ca2+]i oscillations in individual cells were defined as 

three or more successive fluctuations peaks from the baseline after the initial peak. The [Ca2+]i 

increase was obtained by subtracting the baseline from the first peak and was an average value 

from more than 30 cells. When analyzing the [Ca2+]i oscillation frequency, cells that did not 

respond to [Ca2+]o were excluded.  

2.3.6 Exploration of [Ca2+]o effect on mGluR5 response to L-Glu or L-Quis stimulation  

The methods for measuring [Ca2+]i release were as described above. The concentration of 

L-Glu or L-Quis was increased stepwise and applied to stimulate mGluR5 in the presence of 

different concentrations of [Ca2+]o (0, 0.5 and 1.8 mM). For single cell, the [Ca2+]i release was 

reflected by recording the ratiometric change of Fura-2 AM in real time. The [Ca2+]i oscillation 

frequency and starting concentration at which cells start to respond was analyzed to determine the 

effect of [Ca2+]o on the sensitivity of mGluR5 to L-Glu or L-Quis.   

To compare the mGluR5 and its mutants’ response to L-Glu or L-Quis, cells were kept in 

1.8 mM [Ca2+]o environment during L-Glu or L-Quis stimulation.  
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2.3.7 Determination of [Ca2+]o effect on ERK1/2 phosphorylation mediated by mGluR5 

Cells transfected with mGluR5 were starved in serum-free high glucose DMEM medium 

supplemented with 0.2% (W/V) BSA overnight. On the next day, following 10-minute HBSS 

wash, cells were stimulated by various concentrations of [Ca2+]o for 5 minutes and subsequently 

lysed with RIPA lysis buffer. 90 µg of total lysate protein were loaded into 4-20 % gradient gel. 

Total protein amount for each sample was determined by BSA assay. Anti-phospho-p44/42 ERK 

and Anti-p44/42 ERK polyclonal antibodies (Cell Signaling Technology, Beverly, MA, USA) 

were utilized  in western blot to detect the phosphorylated and total ERK respectively. Quantitative 

analysis of the ratio of phosphorylated/total ERK was performed using ImageJ software. The EC50 

of [Ca2+]o-dependent response was obtained by fitting the [Ca2+]o concentration –response curves 

with the Hill equation.  

To investigate the [Ca2+]o effect on L-Quis/L-Glutamate stimulated ERK phosphorylation, 

varying levels of L-Quis or L-Glutamate were used to stimulate the cells in the presence of 1.8 

mM Ca2+ or in the absence of Ca2+.  

2.3.8 mGluR5-ECD expression in Sf9 

The correct recombinant bacmid containing mGluR5-ECD gene was chosen by white-blue 

plaque selection and confirmed by sequencing. The pure bacmid was transfected into Sf9 cells at 

2 x 106 densities by following the manufacturer’s instruction of Cellfectin II reagent (Invitrogen). 

First generation of baculovirus particles were harvest the cell culture medium after 5-day post-

transfection by low-speed centrifugation at 1000 rpm for 5 minutes. The titer of the virus was 

significantly increased by amplifying twice. After determining the titer of the 3rd generation of 

virus by plaque assay (Protocol xx), Sf9 cells were infected at a density of ~ 2x106 cells/ml at MOI 

of 2 for expression and culture medium was harvested 72 h post-infection by centrifugation at 
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7,000 rpm at 4 C for 10 min. After pH adjustment and filtration, the culture medium was mixed 

with Ni sepharose excel beads and stirred for 3-4 hours to allow the protein to bind to beads. 10-

fold beads volume of HEPES buffer (10 mM HEPES, 150 mM NaCl, pH 7.5) with 40 mM 

Imidazole was applied to wash away any non-specific binding. mGluR5-ECD was eluted by 

HEPES buffer containing 300 mM Imidazole. Gel filtration was further ran to remove the 

Imidazole in the elution fractions. Protein concentration was determined by UV using a molar 

absorption coefficient ε280 of 74425 M-1cm-1. 

2.3.9 Trp-Tb3+ fluorescence energy transfer 

A Photon Technology International (Edison, NJ) Lifetime Fluorimeter was used to record 

the fluorescence spectra at room temperature using a 1-cm path length cuvette. 2 M mGluR5-

ECD protein sample was prepared in HEPES buffer (10 mM HEPES, 100 mM NaCl, pH 6.8). 

The emission spectra were recorded from 500 to 600 nm with the excitation at 280 nm. 

Secondary Rayleigh scattering was circumvented by using a glass filter with a cutoff of 320 nm. 

The Tb3+ titration was performed by adding various volumes of Tb3+ stock solution (1 mM) 

stepwise into the cell. The same amount of Tb3+ was also titrated into the same buffer without 

protein as a buffer control. The fluorescence intensity of buffer control was subtracted from the 

protein sample and the Tb3+ binding affinity of the protein sample was calculated by fitting 

normalized fluorescence intensity data using the Hill equation, 

               Equation 1 

Where ΔS is the total signal change of fluorescence intensity, Kd is the apparent binding 

affinity, n is the Hill coefficient, and [M] is the free metal concentration.  

nn

d

n

MK

M
S

][

][






91 

2.3.10 Ca2+-Tb3+ competition 

The Ca2+-Tb3+ competition experiments were performed in solutions containing 30 mM 

Tb3+ and 2 mM protein as the starting point. The stock solution of 100 mM Ca2+ with the same 

concentration of Tb3+ was gradually added in to compete with the Tb3+. By assuming that the 

protein is saturated with Tb3+ at the starting point of the competition experiment, the Ca2+ binding 

affinity is further obtained using Equation 2,  
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                 Equation 2 

Where Kd, ca and Kd, Tb are the dissociation constants of Ca2+ and Tb3+, respectively. Kapp is 

the apparent dissociation constant.  

2.4 Structural Basis for Regulation of Human Calcium-Sensing Receptor by Magnesium 

Ions and an Unexpected Tryptophan Derivative Co-agonist  

2.4.1 Purification of the extracellular domain of the human CaSR (hCaSR-ECD) secreted 

from HEK293s GnTI-cells 

hCaSR-ECD (from residue Tyr20 to Phe612) was expressed in suspension culture 

HEK293S GnTI-cells and purified from the culture medium by Ni2+-NTA chromatography as 

previously described. To deglycosylate the purified protein, hCaSR-ECD was incubated with 

recombinant endoglycosidase F1 (Endo F1) at a 1:100 mass ratio of Endo F1 to hCaSR-ECD (388) 

overnight at 4 °C in 10 mM Tris buffer, pH 7.4. Further separation of hCaSR-ECD from Endo F1 

was achieved by size exclusion chromatography (SEC) in 10 mM HEPES (pH 7.3) buffer.  

2.4.2 Crystallization, data collection and structure determination 

The dimeric hCaSR-ECD was concentrated to 10 mg/mL and crystallized in 10% PEG 

8000, 200 mM MgCl2, 10 mM CaCl2 and 100 mM Tris-HCl, pH 7.0, using a sitting drop approach 
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at 21°C. No crystals were formed in the absence of Ca2+ or Mg2+. The plate-shaped crystals were 

cryo-protected using 25% glycerol and flash-frozen in liquid nitrogen. Dehydration by soaking the 

crystal in 12% PEG 8000 overnight improved the resolution from 3.5~4 Å to 2-3 Å. The diffraction 

data of the crystals were collected on the beamline of 21-ID-D at LS-CAT in APS, and indexed, 

integrated and scaled in HKL2000 (389). The structure was solved at 2.1 Å by molecular 

replacement using Auto-MR in PHENIX (390). The structure of chain A of mGluR2 with a bound 

agonist (PDB code: 4XAQ) was used as the search template (391). The electron density map after 

molecular replacement is clear enough to identify the unique features of hCaSR-ECD, and iterative 

model building and refinement were performed using COOT (392) and Refmac5 in the CCP4(393) 

suite, respectively. The restraints of CaSRL were generated by JLigand in COOT. 

To generate the Gd3+ derivative, the native crystals were soaked with a solution containing 

12% PEG 8000, 200 mM MgCl2, 10 mM CaCl2, 100 mM Tris-HCl pH 7.0, and 0.5 mM GdCl3 

overnight at 21°C. The anomalous signals of a dataset at 2.7 Å collected at the wavelength of 

1.6985 Å were used to locate Gd3+ in the structure. The structure was solved by molecular 

replacement using the previously determined structure as the search template. All the figures of 

protein structures were generated by PyMOL v1.3 (Schrodinger LLC). 

Using local geometric constraints and electron density intensity as major criteria, Mg2+ 

bound at site 1 and site 2 were unambiguously identified.  

2.4.3 High-resolution LC-ESI-MS and identification of CaSRL 

There is an unidentified ligand (CaSRL) bound at the putative orthosteric ligand binding 

site of CaSR-ECD. We examined the known CaSR ligands, including phenylalanine, tryptophan, 

glutathione (GSH), and polyamines, as well as the reagents used in sample preparation and 

crystallization, but none of them fit the density well. Among these initial trials, tryptophan 
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appeared to be the best fit to the electron density of the unknown ligand, but an additional density 

was unaccounted for when tryptophan was used fit the electron density. The size of the density 

suggests that CaSRL contains 14-18 heavy atoms (C/N/O/S/P), and the absence of anomalous 

signal indicates that it does not contain sulfur or phosphate. Accordingly, the Mr of CaSRL must 

be within the range of ~180-250 Da.  

Considering CaSRL is tightly bound with hCaSR-ECD, it is conceivable that hCaSR-ECD 

has to be denatured to release CaSRL. To extract CaSRL, 50 μL of purified hCaSR-ECD (10 

mg/mL) was mixed with 120 μL acetonitrile and vortexed. After high speed centrifugation, 10 μL 

of the CaSRL extract was injected onto a reverse-phase ACQUITY UPLC BEH C18 column (2.1 

mm × 100 mm, 1.7-µm particle size; Waters). Column temperature was maintained at 40°C. The 

flow rate was 0.3 mL/min with starting conditions at 99% solvent A (water + 0.1% formic acid) 

and 1% solvent B (acetonitrile). The 15-min gradient profile for elution was as follows: starting at 

1% solvent B and hold for 1 min, then ramping to 98% B at 10 min, hold at 98% B to 12 min, at 

12.01 min return to 99% A/1% B and maintain until 15 min. The samples were analyzed by using 

a Waters Xevo G2-XS QToF LC-MS interfaced to a Waters Acquity UPLC system. The MS 

settings were as follows: electrospray ionization in negative-ion mode, 2.00 kV capillary voltage, 

100°C source temperature, 350°C desolvation temperature, 600 liters/h desolvation nitrogen gas 

flow rate, 35 V cone voltage, and mass range of m/z 50 to 1500 with spectra accumulated at 0.1 

seconds/function. Three separate acquisition functions were performed to generate spectra at 

different collision energies (5, 25, and 60 eV) providing both non-fragmenting and fragmenting 

conditions. Analyses of samples by electrospray ionization in positive-ion mode were performed 

under the same conditions as negative-ion mode except the collision energies (5, 20, and 40 eV). 

Fragmentation, formula, and abundances were analyzed with Waters MassLynx Software.  
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Using the above approach, we identified a species eluting at ~4.65 min, detected by MS in 

both positive-ion mode (m/z=217.0990) and negative-ion mode (m/z=215.0824), exclusively 

present in protein samples from several different batches, but not in sample buffer. The predicted 

elemental compositions based on mass are C12H13N2O2 (calculated mass = 217.0977) for positive-

ion mode and C12H11N2O2 (calculated mass = 215.0824 Da) for negative-ion mode. A thorough 

search in the PubChem database led to a list of candidates containing of up to 200 compounds with 

the same Mr and formula. By manually fitting the density map with these compounds, only L-

1,2,3,4-tetrahydronorharman-3-carboxylic acid (TNCA) fit the density perfectly. The synthetic 

CaSRL dissolved in the SEC buffer was treated in the same way as the protein samples in the LC-

ESI-MS experiment and resulted in a peak detected at the same retention time and having the same 

mass spectrum. In LC-ESI-MS experiment, we also noticed a minor species eluted at ~4.57 min 

(Figure S10), which is detectable only in the positive-ion mode (m/z=215.0836) and having a 

predicted elemental formula of C12H11N2O2. The 2 Da smaller Mr for this related compound 

suggests that it is a derivative of CaSRL, likely due to a double bond formation between the 

backbone N and a neighboring C. As it is also likely to be a tryptophan derivative, we cannot 

exclude the possibility that it binds hCaSR-ECD with high affinity. This compound may also form 

during CaSRL extraction. Nevertheless, CaSRL perfectly fits the electron density at 2.1 Å and any 

extra double bonds in the CaSRL structure would likely be detrimental to fitting the density. 

A phenylalanine replacement experiment was carried out by mixing purified hCaSR-ECD 

protein (0.26 mg/mL) with phenylalanine (final concentrations are 0, 50 and 150 mM, 

respectively). After overnight incubation at room temperature, hCaSR-ECD in each sample was 

re-purified with Ni-NTA beads. The protein samples were adjusted to the same concentration using 

SEC buffer and analyzed by LC-ESI-MS. 
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2.4.4 Monitoring Mg2+- binding to CaSR-ECD by fluorescence spectroscopy 

The imidazole in fractions of hCaSR-ECD eluted from the Ni2+-NTA column was removed 

by passing the protein through desalting columns in HEPES buffer (10 mM HEPES, pH 7.2). The 

Trp fluorescence spectra of hCaSR-ECD were recorded on a QM1 fluorescence spectrophotometer 

(PTI) in a 1-cm-pathlength cell with a xenon short-arc lamp at ambient temperature. The emission 

between 300-400 nm was acquired during excitation at 282 nm. A solution containing 2 μM 

hCaSR-ECD in 10 mM HEPES (pH 7.2), 120 mM NaCl, and 10 mM KCl was gradually titrated 

by addition of Ca2+ prepared in the same HEPES buffer. The binding constants of Mg2+ to CaSR-

ECD were calculated by fitting the titration curve with the Hill equation. The Ca2+-Tb3+ 

competition experiments were performed in solutions containing 35 µM Tb3+ and 2 µM hCaSR-

ECD as the starting point. MgCl2 was added to the mixture from a 1 M stock solution while 

maintaining a constant Tb3+ concentration in the solution. The Mg2+-binding affinity of the protein 

was calculated by fitting normalized fluorescence intensity data using the Hill equation:                                  

                                                                               (Eq. 1)  

 

Where ΔS is the total signal change in the equation, Kd is the apparent binding affinity, n 

is the Hill coefficient, and [M] is the free metal concentration.  

2.4.5 CaSRL and Mg2+ binding site mutation design 

All of the full length CaSR mutants were generated by site-directed mutagenesis based on 

the sequence of the human CaSR in the pcDNA3.1(+) expression vector (provided by Dr. Edward 

Brown). Site-directed mutagenesis was performed using the QuikChangeTM kit (Stratagene, Cedar 

Creek, TX) according to the manufacturer’s instructions. Briefly, a pair of complementary primers 

of 27–35 bases was designed for generating each mutant with the mutation placed at the middle of 

the primers. The template human CaSR in pcDNA3.1(+) was amplified using Pfu DNA 
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polymerase (Stratagene) with these primers for 16 cycles in a PCR instrument (TECHNE). After 

digestion of the template DNA with DpnI (New England Biolabs), the amplified mutant DNA was 

transformed into XL10-Gold Ultracompetent cells. All the DNA sequences were verified by 

Genewiz (www.genewiz.com).  

2.4.6 Cell culture and transfection 

Monolayer cultures of human embryonic kidney cells (HEK293) were purchased from 

ATCC (ATCC® CRL-1573™) and maintained in DMEM supplemented with 10% FBS and high 

glucose (4.5 g/L) at 37 °C. Wild type CaSR or its mutants were transfected into HEK293 cells 

using Lipofectamine 2000 (Life Technology) by following the manufacturer’s instructions.  

2.4.7 Immunostaining 

Cells transfected with hCaSR-pcDNA3.1(+) were used in the immunostaining 

experiments, and this construct contains a FLAG-tag between Asp371 and Thr372. After 48 h post 

transfection, cells were fixed with 3.7 % formaldehyde for 15 minutes at room temperature, 

followed by washing 3 times with PBS. Mouse anti-FLAG monoclonal antibody was diluted 500 

times and incubated with cell overnight at 4 °C to stain the cell surface CaSR. The cells were 

subsequently washed with PBS and stained with goat anti-mouse Alexa488-conjugated secondary 

antibody for 1 hour at room temperature. Nuclei were stained with DAPI. Fluorescence was 

visualized using a Zeiss LSM780 confocal microscope. 

2.4.8 Measurement of [Ca2+]i changes triggered by [Mg2+]o in single CaSR-transfected cells 

Measurement of intracellular free Ca2+ was assessed as described by Huang, et al (394). 

Briefly, wild type CaSR, or its mutants, were transiently transfected into HEK293 cells grown on 

coverslips and cultured for 48 h. The cells were subsequently loaded for 15 min using 2 μM Fura-

2 AM in 2 mL physiological saline buffer (10 mM HEPES, 140 mM NaCl, 5 mM KCl, 1.0 mM 

http://www.genewiz.com/
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MgCl2 and pH 7.4). The coverslips were mounted in a bath chamber on the stage of a Leica 

DM6000 fluorescence microscope. The cells were alternately illuminated with 340 or 380 nm 

light, and the fluorescence at an emission wavelength 510 nm was recorded in real time as the 

[Ca2+]o and/or [Mg2+]o was increased in a stepwise manner in the presence or absence of 0.25 mM 

CaSRL in buffer (10 mM HEPES, 155 mM NaCl, 5 mM KCl, 2 mM NaH2PO4, 0.5 mM MgCl2 

and pH 7.4). The ratio of the emitted fluorescence intensities resulting from excitation at both 

wavelengths was utilized as a surrogate for changes in [Ca2+]i and was further plotted and analyzed 

as a function of [Ca2+]o. All experiments were performed at room temperature. The signals from 

20 to 100 single cells were recorded for each measurement. Oscillations were identified as three 

successive fluctuations in [Ca2+]i after the initial peak. 

2.4.9 Determination of the effect of CaSRL on Mg2+-evoked [Ca2+]i signaling by stimulation 

of CaSR in cell populations 

Changes in the intracellular Ca2+ concentration [Ca2+]i elicited by extracellular Mg2+ 

([Mg2+]o) in a population of cells were measured by fluorimetry as described previously(394). A 

cell line stably expressing CaSR (5001) was seeded on 13.5 x 20-mm coverslips and cultured in 

DMEM. After reaching 95% confluence, cells were washed three times using loading buffer (20 

mM HEPES (pH 7.4), 125 mM NaCl, 5 mM KCl, 1.25 mM CaCl2, 1 mM MgCl2, 1 mM NaH2PO4, 

1% glucose, and 1% BSA) and subsequently incubated with 4 μM Fura-2 and 4 μM pluronic F127 

for 20 minutes at 37 °C to enable sufficient dye loading in the same buffer. After removing the 

excess Fura-2, coverslips with cells were diagonally positioned in a quartz cuvette filled with 3 ml 

experimental buffer (125 mM NaCl, 5 mM KCl, 0.5 mM CaCl2, 0.5 mM MgCl2, 1% glucose, and 

1% BSA). Measurements of Fura-2 fluorescence at 510 nm when excited at 340 or 380 nm were 

performed on a QM1 fluorescence spectrophotometer (PTI). The emission ratio of 340/380 was 
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calculated and used to reflect the changes in [Ca2+]i when different concentrations of [Mg2+]o were 

applied to the cells.  

To examine the co-activation of CaSR by CaSRL and [Mg2+]o or [Ca2+]o, different 

concentrations of CaSRL were placed in the experimental buffer with a fixed concentration of 

[Ca2+]o and varying concentrations of [Mg2+]o, or vice versa, as described in the results section. 

The effects of other ligands were analyzed by comparing the changes in [Ca2+]i produced by 

[Mg2+]o alone or by co-application of Mg2+ with other ligands. The EC50 of [Mg2+]o obtained 

during incubation with various concentrations of CaSRL is compared with that observed in the 

presence of [Mg2+]o alone. The EC50 changes were plotted as a function of CaSRL concentration 

and the curve was fit to the Hill equation. The activation of CaSR by the CaSRL, functioning as a 

co-agonist with [Mg2+]o, is indicated by the increasingly leftward-shifted EC50 for [Mg2+]o as the 

concentration of CaSRL increases (Supplementary Table 5). 

2.4.10 Determination of ERK1/2 phosphorylation 

The 5001 cell line stably expressing hCaSR was starved in serum-free DMEM medium 

supplemented with 0.2% (w/v) BSA overnight, followed by washing 3-times with HBSS and a 

subsequent 10 minute HBSS incubation after 12 hours. To induce ERK1/2 phosphorylation, 

varying concentrations of [Mg2+]o (0-50 mM) or [Ca2+]o (0-30 mM) with or without 0.5 mM 

CaSRL were added to cells and incubated for 10 minutes at 37 °C. The cells were then lysed with 

Pierce RIPA buffer (ThermoFisher Scientific). Total protein concentration was measured using 

the BioRad assay. Lysates containing 100 µg of total protein were loaded onto 4-20 % gradient 

SDS-PAGE gels for separation. After electrophoresis, proteins on the gel were transferred to 

nitrocellulose membranes and further analyzed by western blotting. Anti-phospho-p44/42 ERK 

(1:1000 dilution) and anti-p44/42 (1: 2000) polyclonal antibodies were utilized as probes to detect 
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the phosphorylated ERK1/2 and total ERK1/2 respectively. A chemiluminescent detection method 

(AP Conjugate Substrate Kit, Bio-Rad) was applied to detect phosphor-ERK1/2 and total- 

ERK1/2. The respective bands on western blots were evaluated by densitometry. The EC50 of 

[Mg2+]o- or [Ca2+]o-dependent responses were obtained by fitting the [Mg2+]o or [Ca2+]o 

concentration-response curves with the Hill equation (Eq.1).  
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3     DIRECT VISUALIZATION OF INTERACTION BETWEEN CALMODULIN 

AND COONEXIN45 

3.1 Introduction 

As discussed in Chapter 1, gap Junction is a specialized membrane structure, which is 

spanning the membrane of two neighboring cells and leaving a 2-3nm characteristic gap between 

them (40). It forms a channel between two adjacent cells and provides a direct pathway for cell 

communication. Gap junctions integrate the cellular functions of essentially every tissue in the 

body with a few notable exceptions (e.g. blood, skeletal muscle). It plays an indispensable role in 

accurately tuning of several biological processes including cell differentiation, growth and 

development. So far, about 21 genes coding gap junction proteins have been discovered in human 

(42). Cx45 is a member of this multigene family. Its expression was firstly identified in chick 

embryos and it is notable that its expression fell 10-fold from the early embryonic heart to the adult 

(395). Subsequently, Cx45 was reported as one of the main three connexin isoforms found in the 

heart and it was mainly detected in the sinoatrial node (SAN), the atrioventricular node (AVN), 

His-bundle and bundle branches (396-400). Cx45 is expressed in other tissues like smooth muscle 

and brain (396,401,402). Recently, the role of Cx45 in heart has been extensively studied in 

genetically modified mouse models. Cx45-deficient mice died at around embryonic day 9 and 10 

due to heart abnormality (44,45). These observations illustrate that Cx45 is one of the unique 

necessary component for heart development.   

Alteration of regulation of connexins has been shown to be involved in various types of 

diseases (403-405). Multiple factors including [Ca2+]i, calmodulin (CaM), H+, voltage, and 

phosphorylation of the connexin subunits have been reported to regulate intercellular 

communication mediated by gap junctions (406,407).  
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Modulation of the cytoplasmic Ca2+ concentration ([Ca2+]i) is a ubiquitous mechanism by 

which cells transduce external signals into biological responses. The signaling cascade initiated by 

the rise in [Ca2
+]i is often mediated via Ca2+-binding proteins such as calmodulin (CaM) 

(122,123,408). CaM is a key multifunctional transducer of Ca2+ signals in eukaryotes which has 

four EF-hand Ca2+ binding motifs in two globular N- and C-domains that are separated by a 

flexible linker. When it binds to Ca2+, CaM undergoes a large conformational change, exposing 

hydrophobic patches that are essential in its binding to more than 300 target proteins in multiple 

cellular processes (124-126). CaM can differentiate between local and global [Ca2+]i changes using 

its N- or C-domains with different Ca2+ binding affinities and kinetic properties. It regulates a 

diverse group of membrane channels/pumps with different binding modes depending on nature of 

binding sequences including IQ motifs (133-137). The first intriguing result of Kink et al. reporting 

that CaM can function as a modulator on Ca2+-dependent Na+ current or K+ current (409) opened 

a Pandora’s box of similar regulation on other ion channels (410-415).    

The involvement of CaM in the regulation of gap junctions comprised of all three connexin 

subfamilies has been proposed and reported over the years (416,417). The first evidence of CaM 

role in regulation of Cx45 was reported by Peracchia and coworkers by monitoring the sensitivity 

of Cx45 channels to CO2, and inhibiting CaM expression in oocytes (158). It remains a hot debate 

for the direct interaction of CaM to connexin due to versatile capability of CaM in regulating 

various cellular target proteins and limitations of current commonly used pharmacological 

approaches with CaM inhibitors.  To date, there has been no evidence of direct binding between 

CaM and full length Cx45 and subsequently the mechanism of the regulation remain obscure.  

Cx45 shares the same structure topology with other connexins (Fig. 1.8). Four α-helical 

transmembrane domains are connected by two extracellular loops and one intracellular loop. The 
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transmembrane domains, as well as the extracellular loops and the N-terminal, are conserved 

among different connexins. On the other hand, as a γ family connexin, Cx45 possesses sequence 

characteristics which are divergent from that of α or β family connexin isoforms. Sequence 

alignment of Cx26 (β), Cx50 (α) and Cx45 (γ) indicates Cx45 has a much longer cytoplasmic loop 

region, which may offer binding sites for other protein partners in the cytosol. Our lab has 

previously reported a direct role for CaM in regulation of different connexins from α-subfamily 

such as Cx43, Cx44, and Cx50 and demonstrated (418)such interaction of CaM to these alpha 

family connexins using peptide models (121,154,156). Largely due to challenges related to 

intrinsic disorder in cytosolic intracellular loop and carboxyl terminus of connexins, they remain 

“invisible” even in the determined X-ray structure (106,419).  

In the present work, for the first time, we have demonstrated that there is direct interaction 

between Ca2+/CaM and full-length Cx45 (from γ-subfamily) in HEK293 cells co-transfected with 

Cx45 and CaM using bioluminescence resonance energy transfer assay. We then revealed the CaM 

binding site using peptide model and probed the molecular action of such interaction of CaM to 

Cx45 using various spectroscopic methods including high resolution nuclear magnetic resonance 

(NMR). We further report here the differential action of Ca2+/CaM on the cytosolic loop of Cx45 

with an extended conformation that is different from that of alpha family Connexins, which 

provide novel insight into CaM regulation of Connexins related to heart development and 

pathological diseases.   

3.2 Results 

3.2.1 Establishing a BRET cellular assay to probe CaM and Cx45 direct interaction in cells 

Bioluminescence resonance energy transfer has been applied to study protein-protein 

interaction in both living cells and in vitro (418). BRET is based on the energy transfer between 
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fusion proteins containing GFP mutant (usually is eYFP or Venus) and Rerilla luciferase. In 

BRET, luciferase serves as the donor because its emission spectrum is broad enough to provide 

good excitation of eYFP. Luciferase does not naturally interact with eYFP. When the substrate of 

luciferase is provided, luciferase will oxidize the substrate and result in an emission peak at 482 

nm. This emission is well overlapping with the excitation spectrum of eYFP, of which the 

excitation peak is 514 nm. If two fusion proteins are in close proximity, energy generated from the 

reaction will be transferred to the eYFP and yield yellow fluorescence light with an emission peak 

of 527 nm. If no interaction between two fusion proteins occurs, luciferase and eYFP will be too 

far apart for sufficient energy transfer (Figure 3.1). In most resonance energy transfer based 

assays, the typical effective distance between the donor and the acceptor is 10 to 100 angstroms. 

For BRET, we can expect significant signal between luciferase and eYFP as a result of protein-

protein interaction if the distance is less than 10nm. Compared with its homologue FRET 

(fluorescence resonance energy transfer), BRET is non-destructive because it does require external 

illumination. In FRET, tissue or cells may be easily damaged by the excitation light. Besides, the 

external illumination may cause photobleaching, autofluorescence and direct excitation of the 

acceptor 
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Figure 3.1 Bioluminescence resonance energy transfer. 

This widely used technique is based on the resonance energy transfer between the donor 

luciferase and acceptor YFP. Luciferase can oxidize the membrane permeable substrate 

Coel.H to produce light emission at 460 nm. If two fusion proteins do not interact with each 

other in the cell, no energy transfer occurs and the yellow fluorescence protein can’t be 

lighted up (a) However, if two fusion proteins have association in cell, their close proximity 

can meet the prerequisite for successful energy transfer between donor and acceptor (b) An 

emission at 527 nm from YFP will display.  

 

We aim to capture the in vivo interaction between Cx45 and CaM in the natural cellular 

environment instead of in the test tube. Luciferase was fused to the C-terminal of Cx45 and Venus 

was tagged to either the N- or C-terminal of CaM to form a donor/acceptor pair. If no interaction 

occurs in the living cell (Figure 3.2a), upon the addition of the substrate ctz, only the emission of 

oxidization product at 482 nm can be detected; on the other hand, if two fusion proteins are close 

enough (Figure 3.2b) to allow the sufficient energy transfer, the neighboring acceptor will be 

excited and emits yellow fluorescence at 527 nm. 
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Figure 3.2 Probing interaction between Cx45 and CaM in HEK293 cells by BRET. 

Luciferase was tagged to the C-terminal of Cx45 and Venus was fused either to the N- or C-

domain of CaM to form the donor/acceptor pair. If no interaction between Cx45 and CaM 

in co-transfected HEK293 cells, the Venus tagged to CaM will not be illuminated (a); while 

CaM binding to Cx45 will lead to the sufficient energy transfer from donor Cx45-Rluc to 

CaM-Venus, resulting in an emission of yellow fluorescence (b).  

 

In our experiment, we used a mutant of eYFP (Venus) as an acceptor. Venus, a novel 

mutation of eYFP, improves the maturation and brightness at 37 °C of eYFP (420). Because the 

orientation of the fusion linkage and the composition of the fusion protein may affect the protein 

expression and activity which in turn significantly affect the signal of BRET, therefore creating 

two vectors for each protein is necessary to test the orientation of N- or C-terminal fusions. 

However, previous research reported that N-terminal tags has various of effect on different 

connexin isoforms, including channel gating, channel conductance and functional channel 

formation or plaque formation (421-424). So in the BRET assay, we avoided using the Cx45 

construct with N-terminal tag. Besides, cells transfected with Cx45 construct tagged with Venus 

displayed a relatively dim yellow fluorescent emission under the fluorescence microscope when 

compared with CaM constructs fused with Venus. Therefore, in the following BRET experiments, 

only three constructs (CaM-Venus, Venus-CaM and Cx45-Rluc) has been utilized. A wrong clone 

with frame shift of Venus-CaM was initially used for the BRET experiment. The yellow 

fluorescence was observed under the fluorescent microscope and by fluorimeter. However, no 

BRET signal was observed when performed the BRET assay.   
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The best BRET signal is obtained when luciferase fusion protein interacts with Venus 

fusion protein at 1:1 ratio, because excessive luciferase will result in a decrease of the BRET signal. 

Therefore, in the experiment design, overexpression of Venus fusion protein is desirable for 

saturating the luciferase fusion protein. Before performing the BRET assay, the ratio of 

donor/acceptor needs to be optimized.  

Firstly, either a series of donor only or acceptor only DNA were transfected into HEK293 

cells. The donor expression was reflecting by the luminescence intensity at 485 nm (Table 

3.1).The fluorescence intensity of Venus at 530 nm was shown below (Table 3.2 and 3.3). 

Typically, a relative luminescence units (RLU) of 100,000 – 350,000 and a relative fluorescence 

unit (RFU) of Venus is around 30,000-200,000 are desirable for the micro-plate reader.  

Table 3.1 Luminescence of donor Cx45-Rluc. 

 

Cx45-Rluc(ng) 0 2 10 50 100 500 

Luminescence 157 37681 111827 450486 608433 1239209 

Luminescence 157 28850 121639 340622 617932 1176790 

Luminescence 157 34207 100051 335097 669272 1208927 

Average 157 33579 111172 375402 631879 1208309 
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Table 3.2 Fluorescence of acceptor CaM-Venus. 

 

CaM-Venus(ng) 0 25 50 100 250 500 

Fluorescence 301106 301675 316178 337462 374692 434393 

Fluorescence 296180 301253 311233 335068 376252 433951 

Fluorescence 297720 303657 311900 337050 378882 438328 

Average 298335 302195 313104 336527 376609 435557 

 

Table 3.3 Fluorescence of acceptor Venus-CaM. 

 

Venus-CaM (ng) 0 25 50 100 500 1000 

Fluorescence 295032 389028 475518 702361 1486355 1939991 

Fluorescence 297004 396162 500060 710888 1532563 1951511 

Fluorescence 297691 394808 511286 714961 1491712 2044762 

Average 296576 393332 495621 709403 1503543 1978755 

 

 

To determine whether CaM associates directly with full-length Cx45 channels inserted into 

the membrane, we used an energy transfer based technique BRET, in which the energy is 

transferred between bioluminescent and fluorescent tags. A close proximity of 50 Å between the 

tags is the essential prerequisite of this energy transfer. The energy transfer is undetectable if the 

distance between them is larger than 100 Å. In our study, we tagged the bioluminescent donor 

Renilla reniformis luciferase (Rluc) to the C-tail of Cx45 and the yellow fluorescent acceptor 

Venus to the N- or C-end of CaM. HEK293 cells were cotransfected with a fixed amount of Cx45-
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Rluc and an increasing amount of Venus-CaM or CaM-Venus. Fluorescence intensity of Venus-

CaM or CaM-Venus was measured before BRET assay to verify increasing expression of acceptor 

Venus-CaM/CaM-Venus and western blot was run after experiment to further confirm the same 

expression level of donor Cx45-Rluc. The BRET signal was determined as the ratio of light emitted 

at 525 nm over the light emitted at 460 nm. As shown in Fig. 3.3a, a significant BRET signal 

enhancement was observed in cells transfected at an increasing ratio of acceptor/donor in both two 

constructs. Venus-CaM showed a slightly higher BRET signal compared with CaM-pVenus. 

Therefore, Venus-CaM was used for future BRET experiments. The application of CaM inhibitor 

W7 abolished the interaction between Cx45-Rluc and Venus-CaM. Taken together, these data 

indicate that CaM can physically interact with Cx45 in living cell. The wrong clone with frame 

shift served as a negative control and no BRET signal was detected for this clone.  

3.2.2 Ca2+-dependent interaction between Cx45 and CaM 

Next, we reasoned that the interaction between Cx45 and CaM in living cell may need the 

external Ca2+ stimulation. Our in vitro experiments revealed that the interaction between Cx45 and 

CaM is in a Ca2+-dependent manner. To access the Ca2+ effect on the Cx45-CaM association in 

living cell, 10 μM ionomycin plus 5 mM Ca2+ was added to the BRET bath solution and 10-miunte 

incubation was allowed before BRET measurement. Ionomycin can form the ionomycin calcium 

salt and act as a motile Ca2+ carrier. The enhanced Ca2+ influx is expected to activate CaM, and 

the latter will further associate with Cx45 located on the cytoplasmic membrane. Indeed the 

enhancive increase of intracellular Ca2+ did double the BRET signal in both two construct 

combinations we tried (Figure 3.3b). While, cells treated with BAPTA-AM for 20 minutes before 

BRET measurement displayed a remarkable BRET ratio decrease. BAPTA with the ester can 

penetrate the cell membrane and chelates the intracellular Ca2+ ions. Without the Ca2+ activation, 
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the interaction between Cx45 and CaM was almost abolished. These data together indicates that 

intercellular Ca2+ is required for the CaM-Cx45 interaction in living cells.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Interaction of Cx45 and CaM in live cells as measured by BRET. 

(a) Interaction between Cx45-Rluc and CaM-Venus/Venus-CaM was determined by BRET. 

HEK293 cells were co-transfected with a fixed amount of Cx45-Rluc and with increasing 

DNA concentrations of Venus-CaM or CaM-Venus (expression level was verified by 

fluorescence intensity measurement). BRET assays were performed 24 h after transfection. 

(b) Cells were treated with only BRET buffer, or 5 mM Ca2+, or 50 µM BAPTA-AM for 20 

minutes or 50 μM W7 for 30 minutes before BRET measurement. The net BRET ratios 

comparison is presented as BRET signal saturation curves. The data shown above are the 

mean ± S.E.  
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3.2.3 Identification of putative CaM binding region in the single cytoplasmic loop of Cx45 

Based on the characteristics including the hydropathy, alpha-helical propensity, residue 

weight, residue charge, hydrophobic residue content and helical class of Cx45, we predicted a 

potential CaM binding site within Cx45 using the CaM target database. This site in the intercellular 

loop covering residues 164-186 was assigned with the highest predictive score.  

As a key multifunctional transducer of calcium signals in eukaryotes, CaM is capable to 

bind with diverse sequences in CaM-regulated proteins through conformation adaptation. These 

sequences were classified into different motifs (1-14, 1-10, 1-16 and IQ motif) based on the 

distance between key hydrophobic residues. In Cx45 164-186 region, we predicted a possible 

CaM-binding motif, GRRRIREDGLMKIYVLQLLARTV, which fits the IQ like motif 

((FILV)Qxxx(RK)xxxxxxxx). The IQ like motifs feature that the hydrophobic residue preceding 

the highly conserved Q residue is mainly I, L and V and the basic residue which is 3 residues away 

from Q is always residue R or K. The putative CaM-binding motif in Cx45 possesses the 

characteristics of IQ like motif. In our predicted CaM binding sequence, the residue before Q is 

the hydrophobic L and the conserved basic residue is R. Further analysis of Cx45 CaM binding 

region (Figure 3.4) revealed that it could be aligned with previously identified IQ like motifs 

(38,425,426) from other proteins.   
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Figure 3.4 Membrane topology of Cx45 and the putative CaM-binding site. 

Cx45 has four transmembrane domains connected by two extracellular loop and one 

intracellular loop, which is longer than α- and β-class of connexins. The CaM-binding site is 

located in the second half of the intracellular loop. Sequence alignment of the predicted CaM-

binding site in Cx45 with other voltage-gated calcium and sodium channels was performed 

with ClustalW.  
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3.2.3.1 Revealing CaM-Peptide interactions with CD spectroscopy 

Studies revealed that peptides corresponding to the CaM-binding domains has high 

propensity for helix formation or adopt a helical conformation upon binding to CaM (427-430). 

The helical formation propensity was evaluated by monitoring its secondary structure using far 

UV CD in the presence of increasing percentages of tetrafluoroethylene (TFE). TFE has proven 

useful to induce and stabilize the intrinsic secondary structures of peptides (431-434). In the 

aqueous environment, Cx45 peptide displayed little ellipticity at 222 nm and 208 nm. However, 

the alpha helix content dramatically rose from 45% (0 TFE) to 75% when 20% TFE was 

presenting. The increment was further enhanced by adding more TFE (Figure 3.5a). These data 

suggest Cx45 peptide has high helical propensity. 

CD was further used to capture the structure and conformation change in the process of 

CaM-Cx45p complex formation. A 10.8 % increase of alpha helix was observed after the addition 

of Cx45 peptide to holo-CaM, while the addition of Cx45 peptide to apo-CaM resulted in a slight 

decrease (Figure 3.5b). One possible explanation for the helix increase of holo-CaM is that the 

Cx45p-binding pocket of CaM provides the hydrophobic environment needed for the formation of 

stable helical secondary structure in Cx45 peptide. While in the presence of EGTA, the 
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hydrophobic surface of CaM disappeared and the hydrophilic environment further decreases the 

stability of helix structure of Cx45 peptide. 

 

Figure 3.5 Revealing CaM-peptide interaction with CD spectroscopy. 

(a) Far UV spectra of Cx45p164-186 were obtained in the presence of 0% (dotted line), 20% 

(thin solid line) and 60% (bold solid line) TFE (v/v). (b) Far UV circular dichroism spectra 

of CaM in the presence of 5mM EGTA (□) or CaCl2 (○) and a 1:1 CaM/Cx45p164-186 complex 

with 5mM EGTA (■) or CaCl2 (●).  

 

3.2.4 Fluorometric Measurements with Dansyl-CaM 

To evaluate the binding affinity of Cx45 peptide with CaM in solution, we measured 

changes in the fluorescence emission spectrum of dansyl-CaM (D-CaM). The dansyl emission 

spectrum is greatly sensitive to the local environment. The intensity is enhanced when dansyl is 

 

 

a                                             b       
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exposed to a more hydrophobic environment. The maximum emission window of dansyl moiety 

is around 500 nm, which is far away from the emission of intrinsic aromatic residues. Thus dansyl 

derivate, with negligible interference from intrinsic aromatic residues, is an ideal tool to detect 

conformational changes as a result of protein-ligand interactions (385,435,436). The emission of 

D-CaM shifts from 520 nm to 500 nm when binding with Ca2+. This blue shift can be interpreted 

as a consequence of Ca2+-induced conformational change of CaM. In the presence of Ca2+, addition 

of Cx45 peptide further enhanced the intensity of D-CaM and shifted the emission peak to be lower 

than 500 nm, whereas the peptide was completely ineffective when Ca2+ was absent. Together, the 

data imply that the interaction between D-CaM and Cx45 peptide is in a Ca2+-dependent manner. 

Figure 4.6 shows the fluorescence emission of D-CaM incubated with increasing amount of Cx45 

peptides. The fluorescence enhancement was plotted against the concentration of D-CaM (Figure 

3.6a). The data points were fit with 1:1 binding model, yielding a Kd of 5.0 ± 0.6 nM.  
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Figure 3.6 Steady-state fluorescence studies of interaction between D-CaM and Cx45p164-186. 

(a) The titration curve of D-CaM (0.25µM) with Cx45p164-186 in the presence of 5mM Ca2+. 

The fluorescence spectra of D-CaM with (solid line) or without Cx45p164-186 (dotted line) were 

shown in the inset. (b) The fluorescence spectra of D-CaM (1µM) with varying 

concentrations of Cx45p164-186 in the presence of 5mM EGTA. All experiments were repeated 

in triplicate. 

 

To probe which domain of CaM contributes more to the Cx45p164-186 binding, we also 

carried out titrations of Cx45p164-186 to dansylated CaM half domains (D-N-CaM and D-C-CaM) 

with EGTA or Ca2+ respectively. Addition of increasing amount of Cx45 peptide to D-N-CaM 

resulted in fluorescence intensity enhancement accompanied by peak shift in the presence of Ca2+, 

but not the D-C-CaM. Affinity calculation yielded Kd value of ~2.4 µM, which indicates the 

binding of Cx45 peptide to the N-domain of CaM is much weaker once C-domain is missing. No 

Cx45 peptide induced fluorescence change of D-N-CaM was detected when 5 mM EGTA was 

added. These results are consistent with our NMR studies. No significant fluorescence change of 

D-C-CaM was detected when incubation with various concentrations of Cx45 peptide. It is 

tempting to speculate that C-domain of CaM alone may not interact with CaM. However, it is 

impossible to get rid of the possibility that the fluorescence spectroscopy is not sensitive enough 

to capture the tiny change caused by interaction.   

3.2.5 Surface Plasmon Resonance 

The interaction between CaM and the Cx45 peptide was further investigated by surface 

plasmon resonance (SPR) assay using BIAcore 2000 sensor technology. The Cx45 peptide was 

immobilized to a CM5 sensor chip. In contrast with the above fluorometric measurement, SPR 
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allows real-time and label-free detection of biomolecular interactions. In some cases, chemical 

modification of CaM may hinder its binding to the partners. SPR can reduce the risk that labeling 

may bring. No significant binding was observed between CaM peptide and the chip surface. 

Figure 3.7 shows the rapid and reversible association of CaM to Cx45 peptide in the presence of 

5 mM Ca2+, but not in the presence of 5 mM EGTA. Rapid dissociation was also observed when 

using CaM-free buffer to wash the chip. The binding constants for Cx45 peptide are 21μM. The 

binding constants determination was obtained after subtraction of the reference and the buffer 

signals. These observations further illustrate that the interaction between CaM and Cx45 is Ca2+-

dependent, strong and specific. 

 

 

Figure 3.7 SPR analysis of Cx45p164-186 and CaM interaction. 
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The response unit was recorded with Cx45 peptide immobilized on CM5 sensor chip in Ca2+-

supplemented condition using a sensitivity enhanced BiAcore T100 SPR system. The 

concentrations of CaM were 5-100 μM.  

 

Table 3.4 Binding kinetics determined by SPR. 

 

Kon (M-1S-1) Koff  (S-1) Kd (M) 

335.4 0.0071 2.117e-05 

 

3.2.6 Ca2+-dependent specific interaction between Cx45p and CaM revealed by NMR 

Interaction between CaM and the Cx45 peptide was first examined by mass spectrometry. 

A 19.69 kDa complex formed by CaM and Cx45 peptide in the presence of 5 mM Ca2+ was 

detected by MALDI (Figure 3.8a). The theoretical molecule weight of the CaM-Cx45p complex 

is around 19.59 kDa, which is extremely close to 19.69 kDa. No such a complex was detected 

when incubation was in 5 mM EGTA (Figure 3.8b).  
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Figure 3.8 Monitoring CaM-Cx45p164-186 complex formation by MS. 

(a) The MALDI-MS spectrum of the free form of CaM and the CaM-Cx45p164-186 complex 

formed in the presence of Ca2+.  (b) In the presence of EGTA, free form of CaM and around 

10 % of CaM-Cx45p164-186 complex were observed in the MS spectrum.  

 

To further identify the direct Ca2+-dependent interaction and residue-specific alteration,   

(1H, 15N) HSQC experiment was performed. Unlabeled Cx45p was gradually added into 15N-

labeled CaM in the presence of 5mM EGTA or 5mM Ca2+.  Significant chemical shift changes 

were observed in the HSQC spectrum of holo-CaM (Figure 3.9a), while spectra of apo-CaM with 

or without Cx45p were overlapping with each other (Figure 3.9b). This further confirmed that the 

interaction between CaM and Cx45 peptide is in a Ca2+ dependent manner.  

 

a                                                  b 
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A global conformation change has been captured by HSQC during the formation of 

Ca2+/CaM-Cx45p complex (Figure 3.9c). Residues at the N- or C-domain or the linker region 

exhibited chemical shift changes greater than 0.05 ppm. However, the overall change of the N-

lobe residues (4.68 ppm) was greater than in the C-lobe residues (2.30 ppm). The weight average 

chemical shift change was plotted as a function of residue number in Figure 4.8. In the NMR 

titration spectra, simultaneous appearance of two peaks representing the same residue was 

observed. This progressive disappearance of the amide signal from a specific amino acid was 

representing unbound form of CaM, being accompanied by the concomitant emergence of a new 

set of peaks from the Cx45p-CaM complex. This slow exchange phenomenon can be explained by 

slow exchange rate of the bound and unbounded status and often appears when this rate is slower 

than the amide frequency difference, indicating a submicromolar strong protein-peptide interaction  

(156,437).    
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Figure 3.9 NMR studies characterizing the residues of CaM affected upon Cx45p164-186 binding. 
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(a) Overlay of HSQC spectra of holo-CaM (red) with the spectra of holo-CaM-Cx45p164-186 

complex (green). Framed box highlight residues displaying significant chemical shift 

changes. (b) Overlay of HSQC spectra of apo-CaM with the spectra of apo-CaM-Cx45p164-

186 mixture. (c) Chemical shift changes in CaM induced by addition of 2-fold molar excess of 

Cx45p164-186.  

 

3.2.7 Calcium equilibrium titration 

To examine whether Cx45p164-186 contributes to the calcium binding affinity of CaM, 

calcium binding affinity of both N- and C-domain of CaM was determined by monitoring the 

intrinsic fluorescence intensity change of Phe and Tyr respectively. Binding of Ca2+ to the N-

domain (Site I and II) induced the decrease of Phe fluorescence intensity in the absence of 

Cx45p164-186 (Figure 3.10). The Phe fluorescence intensity upon addition of Ca2+ was plotted as a 

function of free calcium concentration determined by calcium indicator Oregon Green 488 

BAPTA-5N and fitted by Hill equation. In the presence of Cx45p164-186 (molar ratio of CaM: 

Cx45p164-186=1:1.2), the Kd decrease from 11 to 0.7 µM indicated that calcium binding affinity to 

N-domain of CaM was significantly enhanced (Figure 3.11 and Table 3.5).  
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Figure 3.10 Changes in CaM Phe-fluorescence emission spectra upon addition of Ca2+ in the 

absence (a and b) or presence of Cx45p164-186 (c and d). 

8 μM CaM prepared in 50 mM HEPES, 100 mM KCl, 5 mM NTA and 0.05 mM EGTA was 

gradually saturated by titrating Ca2+ in, with the decrease of Phe fluorescence intensity. Phe 

fluorescence emission at 279 nm was plotted as a function of wavelength.  
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Figure 3.11 Equilibrium calcium titrations of CaM with (solid cycles) or without (open cycles) 

Cx45p164-186 by monitoring Phe fluorescence emission. 

Free calcium concentration was determined by calcium indicator Oregon Green.   

 

Enhancement of Tyr fluorescence intensity was used to determine the Ca2+-binding affinity 

of C-domain of CaM (Figure 3.12). The Ca2+-dependent Tyr fluorescence increase was fitted 

using Hill equation. Addition of excess of Cx45p164-186 to the CaM shifted the Ca2+ titration 

saturation curve to the left and the binding affinity was increased by 1 fold (Figure 3.13 and Table 

3.5). 
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Figure 3.12 Changes in CaM Tyr-fluorescence emission spectra upon addition of Ca2+ in the 

absence (a and b) or presence of Cx45p164-186 (c and d). 

8 μM CaM prepared in 50 mM HEPES, 100 mM KCl, 5 mM NTA and 0.05 mM EGTA was 

gradually saturated by titrating Ca2+ in, with the increase of Tyr fluorescence intensity. Tyr 

fluorescence emission at 306 nm was plotted as a function of wavelength.  

 

 

a                                          b   

 

 

 

c                                         d 
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Figure 3.13 Equilibrium Calcium titrations of CaM with (solid circles) or without (open circles) 

Cx45p164-186 by monitoring Tyr fluorescence emission. 

Free calcium concentration was determined by calcium indicator Oregon Green. 

 

These data together demonstrate that Cx45p164-186 reduced the Kd of Ca2+ to both domains 

of CaM and enhanced the calcium binding affinity of both the N- and C-domain of CaM. 
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Table 3.5 Effects of Cx45p164-186 Binding on the Ca2+-binding Properties of CaM. 

 

 N-domain  C-domain 

 Kd(µM) Hill  Kd(µM) Hill 

CaM 11 ± 0.003 1.6 ± 0.07  2.8 ± 0.002 2.3 ± 0.03 

CaM-Cx45p 0.7 ± 0.002 1.0 ± 0.03  1.2 ± 0.002 1.9 ± 0.06 

 

3.2.8 Probing the CaM-Peptide complex state by diffusion NMR 

Pulse-field gradient NMR was used to measure the self-diffusion rate of CaM or CaM- 

Cx45p164-186 complex. The self-diffusion constant is larger for smaller molecules and less viscous 

solvents. Therefore, the size of CaM and Cx45p164-186 complex can be calculated from the 

information acquired from self-diffusion rate. The diffusion constant for CaM and CaM-Cx45p 

was determined to be very close (Figure 3.10). The hydrodynamic radius of CaM (22.6 ± 0.6 Å) 

almost remained the same after formation of the CaM-Cx45p complex. Alpha family connexins 

previously studied by our lab all showed decrease in term of hydrodynamic radius, because a 

collapsed complex was formed to embrace the peptide. But in this case, Cx45 binding did not 

change the size. This result suggests the binding of Cx45p to CaM is different from that of alpha 

connexins-Cx43, Cx44 and Cx50.   
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Figure 3.14 Determination of hydrodynamic of holo-CaM-Cx45p164-186 complex using pulse-

field gradient NMR. 

(a) The NMR signal decay of holo-CaM (○) and holo-CaM-Cx50p (●) were plotted as a 

function of field strength. (b) The holo-CaM (○) NMR signal decay curve did not change 

upon the addition of Cx45 peptide (●), which indicates the hydrodynamic radius was not 

altered.  

 

3.3 Discussion 

3.3.1 The unique features of Cx45 

In addition to the common characteristics shared by all connexins, Cx45 processes some 

unique features. To begin with, Cx45 has very small pore which only allow small molecules to 

pass through. The permeability of gap junction channels were examined using dye transfer in 

oocytes (438). The effective exclusion limits of gap junction channels formed by different 
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connexins ranks as following: Cx32 ≧ Cx43 >> Cx26 ≧ Cx40 ≈ Cx45≧ Cx37. This limited 

pore size restraints the application of some dyes in Cx45 formed gap junction channel study. For 

example, Lucifer yellow, which is widely used to study gap junction channel permeability in the 

field, showed restricted dye transfer to only 1 or 2 neighboring cells (439). We attempted to 

perform the dye scrape loading assay to investigate the function of Cx45 gap junction channels in 

the presence of different regulators, such as CaM inhibitors and Ca2+ chelators. However, the dye 

transfer between cells is hard to be detected. In our dye scrape loading assay, HeLa cells with 

stable expression of Cx45 were cultured to reach a very high confluence to ensure the formation 

of gap junction channels between neighboring cells. Different dyes such as Lucifer yellow (LY) 

(443 g/mol) and propidium iodide (PI) (668 g/mol) were tested and could not successfully pass 

through Cx45 gap junction channels. In addition to the size limitation, another reason accounting 

for the failure is that fact that Cx45 prefers positively charged species. Cationic probes such as 

NBD-m-TMA and ethidium bromide (EthBr) showed slightly higher permeability. Second, the 

intracellular Ca2+-induced uncoupling of Cx45 gap junction channels are very slow when 

compared with Cx43 gap junction channels. Besides, only 80% of the conductance of Cx45 gap 

junction channels dropped when the conductance reached the plateau at the end. The reason behind 

this remains unclear.  

3.3.2 Interaction of CaM with connexins 

Our observed interaction of CaM provide the direct evidence to support the long standing 

hypothesis for the role of CaM in regulation of connexin channels proposed 35 year ago by 

Peraccia and co-workers (141). To test this hypothesis, they (440) reported the effect of the CaM 

inhibitor trifluoperazine (TFP) on the electrical coupling of amphibian embryonic cells. They 

subsequently applied more specific CaM blockers (calmidazolium and W7) to prevent uncoupling 
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of Xenopus embryonic cells (142) and crayfish axons (441,442), suggesting the generalized nature 

of CaM’s role in regulating gap junctions. The gap junction protein Cx32 bound CaM was later 

shown in gel overlays (145-147). The suppression of CaM expression in oocytes can also inhibit 

CO2 induced electrical uncoupling and injection of CaM into oocytes can recover it (148). Cx32 

was also shown to colocalize with CaM using immunofluorescence microscopy (149). Later, 

Blodow et al. reported that CaM antagonists suppress gap junction coupling of Cx26 in isolated 

Hensen cells of the guinea pig cochlea (150). The effect of inhibiting CaM expression on CO2-

induced electrical uncoupling of Xenopus oocyte pairs expressing Cx45 demonstrated that both 

chemical and Vj sensitivities of Cx45 channels are reduced predominantly by inhibition of CaM 

expression oligonucleotides antisense to CaM mRNAs (158). To the best of our knowledge, all in 

cells experiments concerning the role of CaM in regulation of gap junction channels were collected 

by applying CaM inhibitors. The possibility in perturbing other multiple targeting processes by 

CaM inhibitors cannot be excluded due to the nature of such indirect assay. Largely due to 

challenges associated with membrane proteins and sensitivity of applied methods, the direct 

visualization of CaM in Connexins and Ca2+ dependence of this regulation in cells have yet to be 

achieved.  

In this study for the first time, we report the direct interaction of CaM to Cx45 expressed 

in the HEK293 cells using BRET-based assay. BRET process, comprised of nonradioactive 

(dipole-dipole) transfer of energy from a donor enzyme to a suitable acceptor molecule after 

oxidation of substrate, has been applied to study many proteins in various cellular compartments, 

from G protein–coupled receptors (GPCRs) (443-445) to nuclear cofactors (446). In BRET, 

resonance energy transfer efficiency depends on several factors based on the Förster rate equation, 

such as donor lifetime, distance between donor and acceptor, relative orientation and degree of 
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spectral overlap (447) and this technique overcomes problems such as photobleaching, 

autofluorescence and simultaneous excitation of both donor and acceptor fluorophores (447). The 

advantage of BRET over FRET is that no external excitation is required, thus photobleaching and 

autofluorescence which are common problems seen in FRET assay. Compared with co-

immunoprecipitation experiment, BRET can avoid the detergent solubilization. On the other hand, 

the disadvantages of BRET assay is also quite clear. Firstly, the fusion donor and acceptor should 

not severely affect trafficking and function of target proteins. To successfully perform the BRET 

assay, the interaction site cannot be disrupted by the tags and the ER retention of fusion proteins 

cannot occur. When generating the fusion protein constructs, the proper location of Venus and 

luciferase has to be tested. Second, the donor over acceptor ratio need to be optimized. In order to 

capture all the emission from donor, the acceptor amount needs to over the donor fusion protein to 

completely statured the donor. However, when expressing those exogenous fusion proteins, the 

expression level needs to low enough for physiological relevance. All those steps are time-

consuming. We have shown that the interaction between CaM and Cx45 can be monitored by 

tagging YFP (Venus) at either end of CaM. Such BRET ratio can be completely eliminated by 

either addition of CaM inhibitor W7 or removal of intracellular calcium using BAPTA (~ 0.27 

nM). It is interesting to note that the detected BRET ratio for CaM-Cx45 complex in HEK293 cells 

is about half of the max value in the presence of excess calcium with ionomycin. It is strongly 

calcium dependent. Such strong calcium dependent result suggests that CaM is well sit at the 

sensitive status to readily regulate Cx45 upon any changes of cellular conditions.    

3.3.3 Key factors in CaM contributing to interaction with Cx45p164-186 

Using fluorescence spectroscopy, we have demonstrated that Cx45p164-186 binds to wild 

type CaM with the Kd of 5.0 ± 0.6 nM in the presence of Ca2+. Compared to dissociation constants 
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of different connexins from the same family (γ family) that has been previously reported (160), 

Cx45p164-186 which covers the intercellular loop has stronger binding affinity for CaM than high-

affinity sites of C-terminal domains in Cx34.7 (Kd = 29 ± 2 nM), Cx35 (Kd = 72 ± 9 nM), and 

Cx36 (Kd = 11 ± 3 nM) in the presence of Ca2+. Comparison between Cx45p164-186 and connexins 

from α family also suggest that the binding affinity of this peptide is stronger than Cx43p136–15 

(860 ± 20 nM) and Cx44p132–153 (49 ± 3.0 nM) and similar to Cx50p141-166 (4.9 ± 0.6 nM) which is 

also in the presence of Ca2+ (448). In addition, Cx45p164-186 binds much stronger to CaM than the 

N-terminal domain (Kd = 27 nM) and C-terminal region (Kd = 1200 nM) of Cx32 from the β family 

(160).  

The stronger binding affinity of Cx45p164-186 compared to other connexins may originate at 

least in part from the relative helical content of the peptide in solution without formation of 

complex with CaM as shown by CD spectroscopy (Fig x). Such strong helical content is much 

greater than connexins from alpha-family Cx50, Cx44 and Cx43. On the other hand Cx50, Cx44 

and Cx43 exhibit 94, 55 and 33% helical conformation, respectively in the presence of 30%TFE 

(121).  Cx45 has also demonstrated to have the highest α-helical content induced by TFE and is 

similar to Cx50 indicating that the intrinsic helicity of the peptide may also contribute to this strong 

binding affinity of Cx45. Such observation is consistent with previous report that CaM binds to 

various target proteins whose binding domains have strong α-helical propensity (429). CaM can 

also bind with high affinity to a relatively small α-helical region of many target proteins (28).   

We have identified a CaM-binding motif from residues 164 to 186 

(GRRRIREDGLMKIYVLQLLARTV) in Cx45 which follows the IQ motif pattern in a more 

generalized form ((FILV)Qxxx(RK)xxxxxxxx). To the best of our knowledge, we have reported 

the first Ca2+-dependent gap junction regulation by CaM via IQ motif. The conventional complete 
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IQ motifs represented by sequence (IQXXXRGXXXR) primarily associate with CaM in a Ca2+-

independent manner. The nature of this Ca2+-independent interaction has been extensively 

investigated in myosin. One of the important characteristic of the IQ motif is that it binds relatively 

tightly to CaM at basal levels of intracellular calcium and the interaction changes when calcium 

levels are increased (449) (39). However, in some instances, IQ motif-containing proteins 

(including utrophim, Ras GRF1, Nina C myosins and other proteins) have been reported to bind 

CaM in a Ca2+-dependent manner. In those proteins, CaM can maintain its interaction with the IQ 

domains both in the presence or absence of Ca2+ with dissociation constants ranging from sub-

nanomolar to micromolar levels, however, the IQ-motif-binding affinity of CaM varies with the 

Ca2+ concentration and the particular IQ motif in the target protein (28). It is also revealed that 

Ca2+-free CaM interact with IQ motif through the C lobe (450) while Ca2+-loaded CaM utilizes 

both N- and C-domain (451).  The IQ motif identified in Cx45 cytosolic loop is not a complete IQ 

motif; instead it has only the first part of an IQ motif (IQXXXR). When bound with a complete 

IQ motif, the C-terminal lobe of CaM is estimated to be in a semi-open conformation, while the 

N-terminal lobe is in a closed conformation. In contrast, it is suggested that the N domain of CaM 

would adopt an open conformation when only the first part of IQ motif is present (452). The 

Cx45p164-186 binding affinity to CaM is also comparable to other IQ motifs found in channel 

proteins. For example, the disassociation constant of neuronal voltage-dependent sodium channel 

type II IQ motif for interaction with CaM is reported to be less than 10 nM.  
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The CaM-binding affinity of Cx45 is similar to Cx50 and much higher than peptides 

derived from other α family connexins. The CaM-binding Kd ranks as following: Cx50p (4.9 nM) 

≈Cx45p (5.0 nM) < Cx44p (49 nM) < Cx43p (860 nM). This order correlates well with the order 

of maximum helicity of those peptides formed in the presence of TFE (Fig. 3.15a). Many identified 

CaM target peptide initially are disordered and form α helices upon CaM-binding. Those peptide 

show high propensity of α helices formation when induced by TFE. In addition to the maximum 

helicity induced by TFE, it seems that intrinsic helicity also contributes to the CaM-binding affinity. 

CD result indicated that Cx45 has more intrinsic α helical content than Cx50 (Fig. 3.15b). This 

may explain why Cx45 has similar CaM-binding affinity than Cx50 though Cx50 peptide has 

higher maximum helicity than Cx45.  

 

Figure 3.15 CaM-binding affinity correlated to connexin helicity.  

(a) Maximum helicity of peptide derived from different connexins. Various percentages of TEF 

were added into peptide to induce the formation of secondary structure. The α helical content was 

revealed by CD. (b) The intrinsic helicity of Cx45 and Cx50 were measured by CD.  
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3.3.4 CaM uses different action mode to regulate different connexins 

Structural characterization of CaM by NMR illustrated that in the Ca2+-bound state (holo-

CaM), CaM exists in a dynamic equilibrium of two major conformations, extended and semi-

compact which it gives enough flexibility for CaM to bind targets in variably extended 

conformations and to form interdomain connections (453).Various target recognition modes have 

been attributed to CaM which can be classified into two general binding styles: extended and 

collapsed (449). Our previous pulsed field gradient NMR results showed that the dynamic radius 

of holo-CaM decreased significantly upon Cx50-derived peptide binding (121). As α family 

connexins, the CaM-binding site in Cx43, Cx44, and Cx50 follows the 1-5-10 binding motif, while 

the Cx45 seems utilize a different CaM-binding motif though the CaM-binding site locates at a 

similar position in both α and γ family connexins. Addition of Cx45-derived peptide to holo-CaM 

did not change the dynamic radius of CaM, which suggests CaM interacts with Cx45 in a more 

extended mode.  

We also tried to compare the residues with chemical shift changes with other reported 

CaM-binding proteins. However, only a small portion of peaks (54 out of 148) can be assigned 

based on the previous published CaM NMR spectrum. Among them, only partial of them (31 out 

of 54) showed chemical shift changes. Some residues with significantly changes here also show 

chemical changes in CaM when interacting with targets with different binding motifs. Thus, more 

studies need to be perform to come out conclusions based on chemical shift changes. 

3.3.5 Effects of Cx45p164-186 on calcium binding 

The Ca2+-affinity of two domains of CaM can be differentially and dramatically affected 

by association with various target proteins, either enhanced by some targets (37,454-456)   or 

decreased by other binding partners(426,457). Ca2+-binding data measured in the presence and 
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absence of Cx45p164-186 peptide indicates that addition of Cx45p164-186 peptide to CaM increased 

the Ca2+-binding affinity of both domain of CaM; however, the N-domain of CaM experienced a 

much greater dissociation constant decrease from 11 to 0.7 μM, a more than 10-fold drop. C-

domain of CaM also experienced a relatively smaller dissociation constant change (from 2.8 to 1.2 

μM) when Cx45p164-186 peptide was applied. This result is well in agreement with the observations 

in HSQC. As shown in (1H, 15N) HSQC experiment, the overall chemical shift change in the N-

lobe residues is greater than in the C-lobe residues which suggest that in the case of an incomplete 

IQ motif, the conformational change of the N-terminal lobe is higher than the C-lobe upon binding 

to Cx45p164-186. The BRET signal for Venus attached to the N-terminal of CaM (Venus-CaM) slightly 

higher than CaM-Venus (Venus tagged to the C-terminal) also correlates with the (1H, 15N) HSQC 

experiment demonstrating higher chemical shift change in the N-lobe residues than in the C-lobe residues.  

3.3.6 Implication for regulation of connexins 

Based on our current result and previous published results, we hypothesize that Ca2+/CaM binding 

to Cx45p164-186 region induces a gating response that closes the Cx45 gap junctions and follows the gating 

mechanism of closure proposed by our lab in the past (416). Briefly, elevated [Ca2+]i is firstly sensed by 

CaM and promotes interaction between CaM and CL domain of Cx45 to inhibit gap junction mediated 

intercellular communication. The gating mechanism behind this remains to be fully elucidated. It is possible 

that Ca2+/CaM together with CL domain of Cx45 function as a “cork” to block the gap junction channel. 

Another alternative gating mechanism is that Ca2+/CaM association with CL domain of Cx45 induced a 

conformational change of CL domain which then acts to occlude the cytoplasmic vestibule of Cx45 gap 

junction channel.  
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4 CX26 GAP JUNCTION HEMICHANNEL REGULATION BY EXTRACELLULAR 

CA2+ 

4.1 Introduction 

Human Cx26, coded by gene GJB2, belongs to beta family of gap junction. It widely 

distributes in human, including cochlea, skin, liver, placenta and breast. Cx26 is co-expressed with 

Cx30 in the inner ear (458,459), forming homo-or hetero-gap junctions in the cochlea. The gap 

junction channels in the cochlea play critical role in sound generating. During the sound 

transduction, the K+ current flows through the organ of corti to the perilymph, generating the 

sound. Then this K+ current is recycled back to the endolymph by gap junction. Mutations in Cx26 

and Cx30 are known to be associated with deafness. According to a survey performed by Florida 

University, about 14% deafness is caused by Cx26 mutations. Now over 100 mutations in Cx26 

have been identified to be linked with nonsyndromic sensorineural deafness.  

Many of these syndromic deafness mutations localize to the amino-terminal and first 

extracellular loop (EL) domains. Studies of mutations in the EL using mammalian cells or oocytes 

revealed altered [Ca2+]o regulation and permeability in Cx26 hemichannels formed by those 

mutations. It has been reported that G45E transfection to HeLa cells resulted in cell apoptosis and 

death within 24 hours of transfection (460). G45E transfection into Xenopus laevis oocytes led to 

huge hemichannel currents and cell lysis (461) (Fig. 4.1). Elevated concentration of [Ca2+]o  in the 

culture medium could rescue those aberrant hemichannels. It was proposed that Cx26 
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hemichannels formed by mutation G45E could not be properly regulated by [Ca2+]o and those 

leaky hemichannel caused cell apoptosis and death. In the EL1, other mutations such as A40V, 

E47K, and D50N are also reported to show impaired channel permeability, altered [Ca2+]o 

sensitivity and disturbed regulation by [Ca2+]o (460,462,463).  

 

Figure 4.1 Hemichannel activity-dependent cell death can be rescued by elevated Ca2+.  

Wild type Cx26 or its mutant RNA was injected into oocyte for hemichannel expression on 

surface of oocytes. Both D50N and G45 caused early cell lysis as indicated by red arrow. 

Increase the concentration of [Ca2+]o in bath solution could prevent oocyte “budding” and 

successfully rescued oocyte with mutants expression. Water injection was used as negative 

control.  

 

It is well know that gap junction hemichannels are regulated by [Ca2+]o. However, the 

mechanism behind it is unclear. The available crystal Cx26 crystal structure when we started this 
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project is an open structure without any bound Ca2+ ions. Using our computational algorithm, we 

predicted one Ca2+ binding site formed by residues from EL1 and EL2. Interestingly, many 

mutation sites are in our predicted Ca2+-binding site (Table 4.1). It is definitely not a coincidence 

since several functional studies have already revealed abnormal [Ca2+]o regulation on mutants from 

the predicted Ca2+-binding site. 

Table 4.1 Disease mutations in the predicted Ca2+-binding site. 

 

 Calcium-binding 

 I II 

Possible Function Hemichannel protection Plaque formation 

Locations EL1 EL2 

Involved Residues E42, D46, E47, D50 N170, D179, E187 

Deafness Mutations W44C2/S2, G45E4, D46E3, 

E47K2, D50Y1/N1,4, N54K5, 

T55N1, T55G5 

P173R1, D179N1, W172R2, 

P173S5, K168R5 

1. Mutations prevent the formation of gap junction channels.  

2. Mutations do not affect formation of gap junction channels, but the mutated gap junction 

channels display null function.  

3. Mutations specifically impair the gap junction channel-mediated biochemical coupling. 

4. Mutations cause a gain-of-function effect due to abnormal hemichannel opening. 

5. Mutations that have not been thoroughly studied in vitro. 

 

Challenges associated with large mammalian membrane protein expression and 

purification also greatly hampered the study of Ca2+ regulation of gap junction channels. The 
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dodecamer of Cx26 gap junction is a 312 kDa eukaryotic oligomer on the cell surface. Lower host 

such as E.coli and yeast may not harbor the capability of handling the post-translational 

modification, trafficking, folding, and translocation of it. The extraction of this protein form higher 

host also brings another challenge for purification. How to preserve the native structure of this 

protein as much as possible during the detergent extraction and how to prevent aggregation after 

detergent extraction are all problems need to be addressed. Besides, the physiological extracellular 

Ca2+ concentration remains at mM level, which indicates that the Ca2+-binding site in Cx26 are 

weak sites with mM Ca2+ binding affinity. How to directly monitor the fast on and off rate Ca2+ 

binding with Cx26 at molecular level present another big challenge in front of us. We need to 

establish direct methods which is sensitive enough to capture the interaction between Ca2+ and 

Cx26 proteins. All these challenges greatly hindered the study to understand the role of Ca2+ in 

Cx26 regulation and the molecular basis for related diseases. 

In this chapter, I will report our effort in obtain purified membrane protein Cx26 using 

three different methods including animal tissue isolation, E.coli expression, and baculovirus 

expression system. After establishing high level expression of Cx26 and developing of purification 

method, the metal-binding properties of Cx26 and conformation change induced by metal-binding 

were also investigated using various spectroscopic methods. Cx26 hemichannel regulation by 

[Ca2+]o was also probed using dye uptake assay in mammalian cells and using electrophysiological 

measurement in oocytes. I will summarize all work I have done on this project, and the advantages 

and limitations of methods used. Then I will report some new discovery about Ca2+ regulation in 

this filed recently in the discussion section.  
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4.2 Result 

4.2.1 Ca2+-binding site prediction and comparison with reported sites 

The identification of putative Ca2+-binding sites in Cx26 was performed using MUGSR, a 

graph theory-based algorithm (464) developed by our laboratory in 2010. The Ca2+-binding site 

was predicted based on the Cx26 crystal structure solved by Maeda (106). This predicted Ca2+-

binding site is located at the mouth of extracellular side of Cx26 gap junction channel (Fig. 4.2 a), 

comprising the carboxyl side chains of E42, D46, and E47 in the flexible extracellular loop 1, and 

E187 in the extracellular loop 2 (Fig. 4.2 b). E42, D46 and E187 are from one monomer, while 

E47 is from the adjacent monomer. This predicted Ca2+-binding site is highly conserved in both α 

and β family connexins (Fig. 4.2c), suggesting this site plays important structural or functional 

roles even after the long evolution. A sequence alignment of bovine, sheep, rat, mouse and human 

Cx26 carried out using the Clustal Omega program (465,466) also reveals the predicted Ca2+-

binding site (highlighted in red) is identical in all species (Fig. 4.3).   
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Figure 4.2 Prediction of a Ca2+-binding site at the extracellular mouth of Cx26 gap junction 

channel. 

(a) The putative Ca2+-binding site resides at the extracellular mouth of Cx26 gap junction 

channel, formed by residues from extracellular loop 1 and loop 2. 6 Ca2+-binding sites were 

depicted in red in one Cx26 hemichannel. (b) The predicted Ca2+-binding site comprises by 

E42, D46, and E187 from one protomer, and E47 from the adjacent protomer. (c) Sequence 

alignment revealed that this predicted Ca2+-binding site in all α and β connexins are very 

similar, especially D46, E47 and E187.  

 

 

a                                 b 

 

 

 

c 



143 

 

 

Figure 4.3 Sequence alignment of mouse, rat, bovine, sheep and human Cx26. 

Mouse, rat, bovine, sheep and human Cx26 were aligned by Clustal Omega program. The 

putative Ca2+-binding ligands (highlighted in red) are identical in all five species aligned 

here.   

 

4.2.2 Cx26 isolation from pig liver 

At our initial stage of gap junction study, we attempted to isolate Cx26 from pig liver and 

simultaneously to set up the insect cell expression system. Fresh pig liver was picked up in the 

 

Mouse       MDWGTLQSILGGVNKHSTSIGKIWLTVLFIFRIMILVVAAKEVWGDEQADFVCNTLQPGC 

Rat         MDWGTLQSILGGVNKHSTSIGKIWLTVLFIFRIMILVVAAKEVWGDEQADFVCNTLQPGC 

Bovine      MDWGGLHTILGGVNKHSTSIGKIWLTVLFIFRIMILVVAAKEVWGDEQADFVCNTLQPGC 

Sheep       MDWSALQTILGGVNKHSTSIGKIWLTVLFIFRIMILVVAAKEVWGDEQADFVCNTLQPGC 

Human       MDWGTLQTILGGVNKHSTSIGKIWLTVLFIFRIMILVVAAKEVWGDEQADFVCNTLQPGC 

            ***. *::**************************************************** 

 

Mouse       KNVCYDHHFPISHIRLWALQLIMVSTPALLVAMHVAYRRHEKKRKFMKGEIKNEFKDIEE 

Rat         KNVCYDHYFPISHIRLWALQLIMVSTPALLVAMHVAYRRHEKKRKFMKGEIKNEFKDIEE 

Bovine      KNVCYDHYFPISHIRLWALQLIFVSTPALLVAMHVAYYRHEKKRKFIRGEIKTEFKDIEE 

Sheep       KNVCYDHYFPISHIRLWALQLIFVSTPALLVAMHVAYYRHEKKRKFIRGEIKTEFKDIEE 

Human       KNVCYDHYFPISHIRLWALQLIFVSTPALLVAMHVAYRRHEKKRKFIKGEIKSEFKDIEE 

           *******:**************:************** ********::****.******* 

 

Mouse       IKTQKVRIEGSLWWTYTTSIFFRVIFEAVFMYVFYIMYNGFFMQRLVKCNAWPCPNTVDC 

Rat         IKTQKVRIEGSLWWTYTTSIFFRVIFEAVFMYVFYIMYNGFFMQRLVKCNAWPCPNTVDC 

Bovine      IKKQKVRIEGSLWWTYTGSIFFRVIFEAAFMYVFYVMYDGFAMQRLVKCNAWPCPNTVDC 

Sheep       IKNQKVRIEGSLWWTYTGSIFFRVIFEAAFMYVFYVMYDGFAMQRLVKCNAWPCPNTVDC 

Human       IKTQKVRIEGSLWWTYTSSIFFRVIFEAAFMYVFYVMYDGFSMQRLVKCNAWPCPNTVDC 

            **.************** **********.******:**:** ****************** 

 

  Mouse       FISRPTEKTVFTVFMISVSGICILLNITELCYLFVRYCSGKSKRPV 

  Rat         FISRPTEKTVFTVFMISVSGICILLNITELCYLFIRYCSGKSKRPV 

  Bovine      FVSRPTEKTVFTVFMIAVSGICILLNVTELCYLLIRFCSGKSKKPV 

  Sheep       FVSRPTEKTVFTVFMIAVSGICILLNVTELCYLLIRFCSGKSKKPV 

  Human       FVSRPTEKTVFTVFMIAVSGICILLNVTELCYLLIRYCSGKSKKPV 

        *:**************:*********:******::*:******:** 
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early morning from university of Georgia meat science technology center and frozen on dry ice. 

Small pieces of pig liver was homogenized manually by a glass homogenizer and connective tissue 

was discarded. Further plasma membrane enrichment was achieved by sucrose gradient ultra-

centrifugation. Different percentages of sucrose formed sucrose gradient, in which sample with 

different density re-distributed into the corresponding sucrose layer with the same density. Non-

gap junction membrane protein was extracted from the enriched plasma membrane by detergent 

or strong alkali since connexins have relative resistance to solubilization by nonionic detergents 

or to extraction with strong alkali. The rest plasma membrane enrichment was further separated 

by sucrose gradient ultra-centrifugation again. The brief isolation procedure was depicted in figure 

4.4.  
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Figure 4.4 Brief procedure describing the isolation of Cx26 from pig liver. 

Plasma membrane were enriched from the homogenized pig liver by sucrose gradient ultra-

centrifugation. Non-gap junction protein were washed away be either strong alkali or 

detergent. The rest was further by sucrose gradient centrifugation or FPLC if large amount 

of liver was used.   

 

To enrich the plasma membrane, we tried two different sucrose gradients (Fig. 4.5). In the 

first sucrose gradient, liver in 8.7 % sucrose sample was placed on the top of the centrifugation 

tube, followed by 27 % and 50 % sucrose. In the second sucrose gradient, liver sample in 50 % 

sucrose was placed at the bottom of the centrifuge tube, with 41 % and 25 % sucrose above it. As 

shown in figure 4.5a, sample collected from the first gradient has less plasma membrane (sample 

collected at the interface between 27 % and 50 % sucrose were plasma membrane portion). In the 

corresponding SDS-Page gel, lane 2 was the plasma membrane portion. Besides, sample with 

different density was not well separated since 90 % of the sample were at the surface between 8.7 

% and 27 % sucrose. In the second gradient (Fig. 4.5b), liver sample was better separated by the 

gradient since majority protein were distributed in the different layers of the sucrose instead of 

concentrate in the surface between 25 % and 41 % sucrose. Besides, much more membrane protein 

were isolated and enriched in the surface between 41 % and 50 % sucrose. Thus, the second 

gradient was used in the Cx26 isolation experiment.  

Cx26 isolated from 300 g of pig liver could be only clearly detected by western blot, but 

not SDS-Page (Fig. 4.6). In addition to the low yield, it was impossible to separate Cx26 and Cx32, 



146 

which co-expressed in the pig liver. In the western blot (Fig. 4.6b), an upper band below 34 kDa 

show up.  

 

 

Figure 4.5 Sucrose gradient optimization. 

(a) The first sucrose gradient was comprised of 8.7, 27, and 50 % sucrose. Liver sample was 

mixed with sucrose to obtain 8.7 % sucrose and the mixture was placed on the top of the 

centrifugation tube. Samples collected from the interface between 8.7 and 27 % (Lane 1) or 

27 and 50 % (Lane 2) were loaded to the SDS-Page gel. (b) The second sucrose gradient was 

comprised of 25, 41, and 50 % sucrose layers. Liver sample was mixed with sucrose to achieve 

 

a 

 

 

 

b 

a 

 

 

 

b 

b 
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50 % sucrose and placed underneath the 41 % sucrose layer. Samples collected from 

interface between 25 and 41 % (Lane 1) or 41 and 50 % (Lane 2) were further separated by 

SDS-Page gel.  

 

Liver, lens and heart tissue have classically been the organs of choice for isolating gap 

junctions because the majority of the tissue contains only one or two types of connexins and 

starting material can be obtained in large quantities. Besides, it is a relative inexpensive way to 

obtain protein, compared with the cell expression. However, despite these advantages, its 

unavoidable defects make it not to be adopted widely. The key issues are its impurity and low 

yield. Take the liver as an example, it contains at least two major connexins: Cx26 and Cx32. 

Using the isolation methods, we could not successfully get rid of the other one. The estimated gap 

junctions cover only 0.1 % of the surface area of a hepatocyte. Large amounts of starting material 

will end up with a tiny quantity of gap junction after miscellaneous and toilsome purification 

procedures. Moreover, mutated protein cannot be obtained from tissue isolation. This handicap 

will restrict the application of mutagenesis in gap junction study. Taken together, we decided to 

move to bacterial expression from liver isolation. 
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Figure 4.6 Cx26 isolated from liver had low yield and low purity. 

(a) Cx26 isolated from 300 g of pig liver were loaded into the SDS-Page gel.  (b) Cx26 isolated 

from pig liver was probed by anti-Cx26 monoclonal antibody using western blot. The upper 

and darker bands between 26 and 34 kDa were Cx32 co-expressed with Cx26 in liver.  

 

4.2.3 Expression and purification of Cx26 in E.coli 

Next, we attempted to express Cx26 in E.coli after we failed to isolate pure and large 

amount of Cx26 from pig liver. Though E.coli is an attractive host for lots of homologous or 

heterologous protein expression due to its advantages, the lack of one or more tRNAs in E.coli 

caused by rare codons significantly impedes some heterologous gene expression (467,468). Most 

amino acids are corresponding to multiple codons and each organism has their preference in using 

 

 

a                                                 

b   
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codons. The population of tRNA directly reflects the codon usage preference. Limited tRNA 

amount and categories lead to translation inhibition, frameshifting, termination and so on (469). 

Human Cx26 gene contains a large number of rare codons which are much less preferred by E.coli. 

To overcome the codon bias of E.coli for enhanced protein expression, we therefore replaced all 

rare codons in the human Cx26 gene and purchased a synthetic optimized human Cx26 gene (Fig. 

4.7) from GeneScript.  
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Original   atggattggggcacgctgcagacgatcctggggggtgtgaacaaacactccaccagcatt        

Optimized atggattggggcacCctgcagacCatcctgggTggtgtTaacaaacactccaccTCTatt      

           ************** ******** ******** ***** ***************:  *** 

 

Original   ggaaagatctggctcaccgtcctcttcatttttcgcattatgatcctcgttgtggctgca        

Optimized  ggCaagatctggctGaccgtActGttcatCtttcgcattatgatcctGgttgtggctgca       

           **.*********** *****.** ***** ***************** ************ 

 

Original   aaggaggtgtggggagatgagcaggccgactttgtctgcaacaccctgcagccaggctgc         

Optimized  aaAgaAgtTtggggCgatgagcaggcAgactttgtAtgcaacacTctgcaAccGggctgc      

           **.**.** *****.***********.********.******** *****.**.****** 

 

Original   aagaacgtgtgctacgatcactacttccccatctcccacatccggctatgggccctgcag         

Optimized  aaAaacgtgtgTtacgatcaTtaTttcccGatctcccacatTcgTctTtgggcActgcaG      

           **.******** ******** ** ***** *********** ** **:*****.****** 

 

Original   ctgatcttcgtgtccacgccagcgctcctagtggccatgcacgtggcctaccggagacat       

Optimized  ctgatcttcgtgtcTacCccGgcgctGctCgtggcTatgcaTgtAgcctaTcgTCgCcat      

           ************** ** **.***** **.***** ***** **.***** ** .*.*** 

 

Original   gagaagaagaggaagttcatcaagggggagataaagagtgaatttaaggacatcgaggag        

Optimized  gagaaAaagCgTaaAttcatcaaAggTgaAatTaagTCtgaatttaaAgacatcgaggaA      

           *****.***.* **.********.** **.**:***: *********.***********. 

 

Original   atcaaaacccagaaggtccgcatcgaaggctccctgtggtggacctacacaagcagcatc        

Optimized  atcaaaacTcagaaggtTcgTatcgaaggctccctgtggtggacctacacTagcTCAatc 

           ******** ******** ** *****************************:***: .*** 

 

Original   ttcttccgggtcatcttcgaagccgccttcatgtacgtcttctatgtcatgtacgacggc         

Optimized  ttcttTcgTgtAatcttcgaagcTgcAttcatgtaTgtTttTtaCgtAatgtaTgacggc     

           ***** ** **.*********** **.******** ** ** ** **.***** ****** 

 

Original   ttctccatgcagcggctggtgaagtgcaacgcctggccttgtcccaacactgtggactgc        

Optimized  ttctccatgcagcgTctggtgaagtgcaacgcctggccGtgtccGaacactgtggactgc    

           ************** *********************** ***** *************** 

 

Original   tttgtgtcccggcccacggagaagactgtcttcacagtgttcatgattgcagtgtctgga 

Optimized  tttgtTtcccgCccGacCgagaaAactgtTttcacCgtgttcatgattgcagtTtctggT     

           ***** ***** ** ** *****.***** *****.***************** *****: 

 

Original   atttgcatcctgctgaatgtcactgaattgtgttatttgctaattagatattgttctggg        

Optimized  atttgcatcctgctgaatgtAactgaaCtgtgttatttgctGatCCgCtaCtgttctggT 

           ********************.****** *************.** .*.** ********  

 

Original   aagtcaaaaaagccagtttaa 

Optimized  aagtcaaaaaaAccagtttaa 

           ***********.********* 
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Figure 4.7 Optimization of human Cx26 for E.coli expression. 

The original human Cx26 gene was optimized by replacing the rare codons with codons 

E.coli prefers to use. The changes are highlighted in red and capital letters.  

 

The major issue associated with Cx26 expression in E.coli is the low yield. Efforts have 

been made to optimize the expression conditions using different E.coli strains, temperatures, 

expression vectors, mediums as well as expression time. Some E.coli strains could not grow after 

hCx26 transformation, some grew very slowly, and some did express this eukaryotic protein at all. 

Among all E.coli strains we tested, C43(DE3) was the best candidate due to its better capability of 

handling challenge membrane proteins. Finally, optimized hCx26 inserted in pTrcHis2A vector 

had the best expression in E.coli strain C43(DE3) at 20 °C for 16 hours, however, the expression 

level was still a problem. As shown in figure 4.8, after IPTG induction, hCx26 expressed in 

C43(DE3) could only be detected by western blot, while it was hard to be detected in SDS-Page 

gel since no band was much darker at around 26 kDa after applying IPTG. In addition to the 

monomer band at around 25 kDa, a dimer band below 55 kDa was also visualized in the western 

blot, indicating E.coli expressed hCx26 has the potential to form oligomers.  

To obtain enough hCx26 from E.coli when considering the low expression level, we scaled 

up our starting material for purification from 2 L to 9 L E.coli. As described in Methods section, 

E.coli pellet was first sonicated, followed by 3.5 % Empigen solubilization and extraction. The 

supernatant after solubilization was passed through Ni2+ column and protein with his tag was eluted 

by imidazole. We also tried different detergent in the purification process, like Octyl-beta-

Glucoside (OG) and n-Dodecyl-beta-Maltoside (DDM). Both of them were too gentle and 

Empigen was the most efficient one. The elution factions 1 and 2 (Fig. 4.9a) had two bands at 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjgxJbP3P_LAhVH2yYKHUwmBPMQFgg0MAE&url=https%3A%2F%2Fwww.thermofisher.com%2Forder%2Fcatalog%2Fproduct%2F28310&usg=AFQjCNHv3cEiytQPB7UbnF3ScNbtdENsfQ&sig2=LsuTyDI10YTJ6x0xkS0x-A&bvm=bv.118817766,d.eWE
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjgxJbP3P_LAhVH2yYKHUwmBPMQFgg0MAE&url=https%3A%2F%2Fwww.thermofisher.com%2Forder%2Fcatalog%2Fproduct%2F28310&usg=AFQjCNHv3cEiytQPB7UbnF3ScNbtdENsfQ&sig2=LsuTyDI10YTJ6x0xkS0x-A&bvm=bv.118817766,d.eWE
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwjvjvnt3P_LAhVEwiYKHe7YB-AQFggjMAE&url=https%3A%2F%2Fwww.thermofisher.com%2Forder%2Fcatalog%2Fproduct%2F89902&usg=AFQjCNFERyAvtx-CeRfRllG0QHhTYjRcrw&sig2=IYZ9UQqqZ08cQl5TVddLXA&bvm=bv.118817766,d.eWE
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around 25 kDa and only the lower band could be recognized by anti-His tag antibody (Fig. 4.9b). 

The upper bands was too close to the lower band and it is impossible to get rid of it by gel filtration. 

Besides, anti-hCx26 antibody could not recognize both bands though we tried four different anti-

hCx26 antibodies. Mass spectrometry only detected few peptides from the elution fractions with 

very low coverage (less than 5 %). Most of the protein detected in the elution fractions were other 

E.coli proteins with similar molecular weight. In summary, E.coli was not considered as a good 

candidate to express this eukaryotic membrane protein.  

 

 

a                                                     b 
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Figure 4.8 hCx26 expression in C43(DE3). 

(a) Monitoring hCx26 expression in C43(DE3) before and after IPTG induction. (b) Western 

blot gel corresponds to the SDS-Page gel.  

 

 

Figure 4.9 Expression of hCx26 from C43(DE3). 

(a) Elution fractions were further separated by 12.5 % SDS-Page gel. Two bands at around 

25 kDa showed up in elution fraction 1 and 2. The lower bands were recognized by anti-his 

tag antibody (b) when performed western blot.    

 

4.2.4 Expression and purification of mCx26 in Sf9 

The whole procedure for expression and purification of mCx26 in insect cell Sf9 is 

described in detail in appendix A. mCx26 purified from insect cell Sf9 using his tag column 

 

a                                         b 



154 

exhibited typical donut shape under the electron microscope, suggesting the formation of hexamer 

(Fig. 4.10a). However, in the electron microscope image, the sideview of mCx26 was invisible 

since all of the mCx26 presented their top or bottom view. To check weather mCx26 formed 

dodecamer, we ran native blue gel in which mCx26 protein mobilized in their native states. As 

shown in figure 4.10b, without denaturing and reducing reagent, mCx26 purified from Sf9 

displayed two bands at around 160 and 247 kDa, corresponding to hexamer and dodecamer, 

respectively. Anti-mCx26 monoclonal antibody also exhibited immunoreactivity to both bands. 

The bands with higher molecular weight may be oligomers larger than dodecamer due to the 

formation of gap junction plaque on the Sf9 membrane.  

 

 

 

 

a                                             b  
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Figure 4.10 mCx26 purified from Sf9. 

(a) mCx26 purified from Sf9 showed typical donut shape under the electron microscope, 

indicating the formation of hemichannels. rCx26 from Dr. Gina Sosinsky’s group was used 

as our golden standard. (b) mCx26 purified from Sf9 formed both hemichannel (hexamer) 

and gap junction channel (dodecamer) under native conditions as shown in the native page 

gel and its western blot.  

 

To obtain homogeneous hemichannels which are suitable for biophysical studies, different 

detergents were tested. However, none of them showed successful splitting. In addition, a various 

percentages of DDM were also tested and did not give us any promising result. So finally we 

decided to use more harsh conditions, such as urea. This splitting method was first reported by 

Gina Sosinsky’s to split gap junction plaques formed between adjacent cell mammalian cell 

membranes. In the present study, we applied the same method to the pure mCx26 and tried to 

manipulate the population of different oligomers.  

After 5 days incubation at 4 °C in 5 mM Tris, 4 M urea, 3 mM EDTA, 5 mM DTT, no 

significant difference was observed between sample with or without splitting (Fig. 4.11).  The 

major bands from two samples appeared at the same locations, which were highlighted by red 

boxes. However, at location 2, there were two oligomer status existing which can be judged from 

the two clear separate bands on the native gel. After performing the splitting experiments, only 

one band showed up at location 2 and the bands at location 1 were much darker.  The splitting 

result indicated that there are one or more strong forces allowing the monomers to form stable and 

tight oligomers. Once they are formed, it is very difficult to separate them.  Apparently, 4 M urea 
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was not sufficient enough to split. Purified mCx26 was heterogeneous sample containing hexamer, 

dodecamer or even bigger oligomers.  

 

 

Figure 4.11 Cx26 Splitting by Urea. 

mCx26 were incubated with 5 mM Tris buffer (pH 8.0) containing 4 M urea, 3 mM EGTA, 

and 5 mM DTT for 1 hour at 37 °C first and then for 4 days at 4 °C. Different amount of 

aqueous was loaded to the native gel. Position 1 and 2 highlighted by red box were the 

hexamer and dodecamer, respectively.  

 

Gap junction hemichannels from neighboring cells are held together to form gap junction 

channels spanning the membrane of adjacent cells by hydrophobic forces. Dr. Sosinsky’s group 
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developed a biochemical method to split the gap junction channels using urea and EGTA(470). 

The function of urea is to destroy the hydrophobic interactions. DTT is added to inhibit the 

formation of any possible disulfide bond and EGTA is applied to chelate Ca2+ ions since Ca2+ is 

also important for the assembly of the membrane pair. This protocol is adapted from a splitting 

procedure designed earlier by Manjunath et al (471). The protocol we used is the same protocol 

modified by Dr. Sosinsky’s group. They reported that the splitting efficiency is as high as 60-90%. 

However, the starting material they used was not purified gap junction protein, instead it was the 

membrane fragment with gap junction proteins which could not be dissolved by alkali or detergent 

Sarkosyl and Brij 58. They stained the membrane sample and used electron microscopy to analyze 

the efficiency of gap junction splitting by scoring micrographs for numbers of single membranes, 

double membranes, and partially disrupted membranes. The following SDS-Page gel was showed 

to compare the protein composition in both intact junctions and split junctions. However, there is 

no band differences. After splitting, there were still the same amount of oligomer band.  

 

Figure 4.12 SDS-Page gel and western blot for analyzing intact and split junctions. 
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Cx32 and Cx26 were the two major gap junction proteins in rat heart. IJ represents 

membrane preparation before splitting and SJ stands for membrane preparation after 

splitting.  

 

4.2.5 Tb3+ titration 

Steady-state fluorescence spectrum was recorded using a QM 1 fluorescence 

spectrophometer at room temperature. For Tb titration, 1-cm-pathlength curvet was used to acquire 

a 500-600 nm spectrum with an excitation wavelength at 285 nm. The slit widths were set at 1.3mm 

for excitation and 2.8mm for emission. 2 uM mCx26 in 10 mM HEPES (pH 6.8), 100 mM NaCl 

and 0.01% DDM  was titrated by gradually adding 200 uM Tb3+  stock solution in the same buffer. 

The binding affinity of the Tb3+ to mCx26 was obtained by fitting normalized fluorescence data 

with two separate equations: 1:1 binding equation and hill equation. The equilibrium Tb3+ binding 

constant to mCx26 was determined by monitoring Tb3+ fluorescence.  

The experiment is designed based on the fluorescence resonance energy transfer, which 

describes energy transfer between two chromophores. When the initial chromophore is excited, it 

can transfer its energy to other nearby chromophores. In this experiment, aromatic amino acids, 

mainly Trp, was excited by a wavelength of 285 nm and its emission wavelength will excite Tb3+ 

close to it. The electronic excited Tb3+ will emit fluorescence between 500-600 nm while returning 

to its ground energy state. The efficiency of this energy transfer depends on the distance between 

two chromophores, the shorter the higher. The final purpose of this experiment is to obtain the 

binding affinity of Ca2+ to mCx26 indirectly using the competition methods, because Ca2+, unlike 

Tb3+, cannot be observed directly. So if the protein can bind with Tb3+, Ca2+ can be gradually added 



159 

to compete with Tb3+ for the binding sites. Usually Tb3+ and Ca2+ share similar binding sites in 

many proteins.  

In figure 4.13, Tb3+ fluorescence has the maximum emission peak at 545 nm. The increase 

of Tb3+ concentration contributes to the enhancement of fluorescence intensity. Plateau phase 

appeared when Tb3+ concentration is about 36 uM. Then we plotted the normalized fluorescence 

intensity as a function of Tb3+ concentration (Fig. 4.13b) and found that the interaction between 

Tb3+ and mCx26 is a two-phase binding: a stronger one and a weaker one. The dissociation 

constants are 0.27 ± 0.21 µM and 15.4 ± 0.2 µM respectively. The first binding phase is a 1 to 1 

binding model, while the second phase is a cooperative model with a hill number of 4.2. These 

indicate that the mCx26 purified from Sf9 is more like a hexamer structure.  

 

 

Figure 4.13 Tb3+ titration. 

(a) mCx26-Tb3+ fluorescence spectrum was recorded by fluorometer when free Tb3+ was 

titrated into mCx26. Buffer without any protein was used as control and subtracted from the 

 

 

a                                             b 
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mCx26-Tb3+ fluorescence spectra. (b)  The mCx26-Tb3+ fluorescence intensity change at 545 

nm were plotted against the concentration of free Tb3+ that added in. Two binding phases 

were observed. The stronger binding site of 2 µM mCx26 was saturated by around 2 µM 

Tb3+, which suggests the binding model is 1 to 1 binding. Therefore, the first phase of binding 

was fit to 1 to 1 binding equation as described in the Methods section. The relative weaker 

binding site of mCx26 is also saturated by Tb3+ at a higher concentration, around 20 µM. By 

fitting the curve with 1 to 1 binding and hill equations, we obtained the two dissociation 

constants: 0.27 ± 0.21 µM and 15.4 ± 0.2 µM. The Tb3+ titration experiment was repeated 

three times and the data presented here was the average value.  

 

4.2.6 Ca2+-Tb3+ competition and Ca2+ induced conformation change 

To obtain the Ca2+-binding affinity to mCx26, we performed Ca2+-Tb3+ competition 

experiment. The experiment was based on the assumption that Ca2+- and Tb3+-binding sites are the 

same and Ca2+ could kick out Tb3+ from the pocket of mCx26. Mouse Cx26 (2 µM) was first mixed 

with appropriate amount (25 µM) of Tb3+. After 15 minute-incubation, the sample in the quartz 

cuvette were mixed by inverting cuvette several times before fluorescence measurement. We 

allowed another 10 minute-incubation before Ca2+ (1 M stock) was gradually added into the 

cuvette. The fluorescence intensity of mCx26-Tb3+ was monitored by fluorometer. Duplicate was 

done in this competition experiment. Ca2+ up to ~ 30 mM did not lower the fluorescence intensity 

of mCx26-Tb3+. Almost no change occurred during the Ca2+ titration, though some fluorescence 

intensity fluctuations (within less than 3% change) happed during titration (Fig. 4.14). In summary, 

the result indicated that Ca2+ was unable to compete with Tb3+ for the binding site in mCx26. 
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Possible reasons accounting for this result are that Tb3+ binding affinity is much stronger than that 

of Ca2+ or Ca2+ and Tb3+ do not share the similar binding pocket.  

Next, we attempted to investigate the possible conformation changes induced by Ca2+-

binding. A large group of Ca2+-binding protein adapt to a different conformation upon Ca2+-

binding. The most famous one among them is CaM. Ca2+ binding to each globular domain of CaM 

alters interhelical angles in the EF-hand motifs, leading a conformation change from a “closed” to 

an “open” state. Thus, we first monitored intrinsic Trp fluorescence change upon Ca2+ binding. 

Interestingly, the intrinsic Trp fluorescence intensity was keeping to decrease while inverting the 

cuvette even when the protein was gently inverted overnight before we started the experiment. To 

avoid this decrease, corvette was inverted lots of time until the fluorescence intensity became 

stable. The instability of Trp fluorescence may be caused by the heterogeneity of the protein 

sample and the re-assemble of protein-DDM vesicles.  
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Figure 4.14 Ca2+-Tb3+ competition. 

(a) and (b) are duplicates. To start with, 1 µM mCx26 was incubated with 25 µM Tb3+ for a 

total of 25 minutes before recording the fluorescence intensity of mCx26-Tb3+ at 545 nm. The 

fluorescence intensity of protein without Tb3+ (dark red line) was checked to set up the slit 

width properly. Titrating Ca2+ into the cuvette did not significantly altered the fluorescence 

intensity of mCx26-Tb3+. 

 

a 

 

 

 

 

b 
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There are several Trp inside or close to the predicted Ca2+-binding site. Significant 

conformational change usually cause Trp to be more exposed or buried, resulting in the 

characteristics of Trp fluorescence change. In my Ca2+ titration experiment, adding Ca2+ into 

mCx26 did not lead to any fluorescence change that could be detected by fluorometer. In addition 

to the sensitivity, there are several possibilities. First, Ca2+ did not bind to the predicted pocket 

since purified protein was wrapped by detergent DDM to stay as soluble state. Second, Ca2+ did 

not bind to mCx26. Third, Ca2+-binding did not induce significant conformational change. In 2016, 

the resolved Ca2+-bound Cx26 crystal structure proved that the third hypothesis was right (88). 

Ca2+ ion indeed bound to the predicted pocket without altering the conformation significantly; only 

tiny conformation change involving several amino acid was affected. 

In addition of monitoring Trp fluorescence, the secondary structure of mCx26 in the 

presence or absence of Ca2+ was recorded in the far UV (190-260nm) on a Jasco-810 

spectropolarimeter. The measurements were made in 10 mM HEPES, 100 mM NaCl, 0.01% 

DDM, at pH 7.5 with 5 mM EGTA or 5 mM Ca2+. The background signals from the corresponding 

buffer were subtracted from the sample signals. All spectra were an average of at least 8 scans. 

The far UV CD spectrum can reveal the secondary structure like alpha helix, beta sheet and random 

coil of proteins or peptides. From the CD spectrum, the percentage of different secondary 

structures can be estimated by software. To elucidate the influence of Ca2+ on the secondary 

structure of mouse Cx26, we monitored the secondary structure in Ca2+ free buffer and in 5 mM 

Ca2+ buffer. As seen in figure 4.15, mCx26 displays the typical alpha helix structure characterized 

at 222 and 208 nm. When 50 M EGTA was added to chelate the Ca2+ which may bind with the 

protein during the whole purification process, the residue weighted molar absorption coefficient 
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becomes less negative, which indicates the extent of helical structure is decreased. The result 

suggests that there are metals binding with the protein and the release of this metal can change the 

secondary structure of mCx26. We are not clear about which metal it is. Then 5 mM Ca2+ was 

added to see whether the increased concentration of Ca2+ will affect the secondary structure of 

mCx26 or not. But the CD spectrum is overlapping with the one after adding 50M EGTA. Our 

hypothesis deduced from this consequence are that: 1)Other metals instead of Ca2+ occupy the 

binding sites of mCx26 and Ca2+ cannot bind with mCx26 to alter its secondary structure; 2)the 

release of Ca2+ from the binding sites of mCx26 by 50 µM EGTA causes the disassemble of 

hexamers and this process is not a reversible process. Both two cases, adding of Ca2+ cannot 

generate any differences on secondary structures. Considering the secondary structure change may 

be a slow step, we incubated the protein with 5 mM Ca2+ for about 1 hour. But no difference can 

be observed. 10 mM EGTA was continued to add to the mCx26 and incubated for 1 hour. The 

secondary structure did not change. 
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Figure 4.15 Secondary structure of mCx26 in the presence or absence of Ca2+. 

The secondary structure of mCx26 in the presence or absence of Ca2+ was monitored using 

CD. The negative peaks at 222 and 208 nm indicate mCx26 is a α-helical protein. Open circle: 

mCx26 only; closed circle: mCx26 with 50 µM EGTA; open square: mCx26 with 50 µM 

EGTA and 5 mM Ca2+; open triangular: mCx26 with 5 mM Ca2+ and 10 mM EGTA. 
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Temperature-dependent CD is also performed to compare the melting temperature and 

stability of mCx26 in Ca2+ and EGTA buffer. Temperature gradually increased from 4 to 94 °C 

and CD signal at 222nm was recorded as in figure 4.16. A more negative CD signal of mCx26 in 

5mM Ca2+ buffer can be observed when it is compared with mCx26 in 5mM EGTA buffer. It 

suggests that protein in 5mM Ca2+ has higher stability and needs higher temperature to cause the 

loss of secondary structure. This experiment indirectly proves that Ca2+ serves to stabilize the 

mCx26.  

 

 

Figure 4.16 Thermal stability of mCx26 in the presence or absence of Ca2+. 

The molar ellipticity of mCx26 at 222 nm in the presence or absence of Ca2+ was monitored 

when temperature increased from 4 to 94 °C. At each temperature, mCx26 was scanned for 

10 times to obtain the average value. Open circle: with 5 mM EGTA; solid circle: with 5 mM 

Ca2+.  

 



167 

4.2.7 Dye uptake assay 

To study the regulation effects of [Ca2+]o on wild type Cx26 and predicted Ca2+-binding 

ligand mutants, we firstly checked the expression of Cx26 and its mutants in HeLa cells. The 

transfection and expression of exogenous connexins in HeLa cell have been previously described 

by Dieter Manthey and Klaus Willecke (472). The cell line HeLa used in my study showed 

minimal levels of endogenous connexins expression. Electrophysiological characterization of 

human HeLa cells yielded very low electrical conductance (473). Though in the non-transfected 

Hela cell a major single class of intercellular channel with a conductance of 30 pS which is 

comparable to the Cx45 channel conductance (473,474) have been identified by Eckert in 1993, 

no immunofluorescent signal had been detected in non-transfected Hela cell (475). Human Cx26-

eGFP showed punctate surface on the plasma membrane surface. Additional green fluorescence 

signal was also evident in the cytosol, which may be the consequence of overexpression of 

exogenous connexin 26 (439). Several diseases-related mutants that also reside at our predicted 

Ca2+ binding pocket had been transfected into HeLa cell. Among them, four mutants (A40V, 

G45E, D50N, and D50Y) cannot be successfully expressed in HeLa cell like the wild type hCx26. 

Only few dots with green fluorescence could be detected under microscope. Besides, a majority of 

these round shape dots are dead Hela cells. Previously work done by other group in the xenopus 

oocyte or mammalian cells also reported that cell death or degradation or apoptosis occurred with 

the expression of these mutants. G45E was reported to induce the apoptosis in HEK 293 cell and 

higher extracellular Ca2+ was required to rescue cells (460,461). A40V (462) was described that it 

produced leaky hemichannels in xenopus oocytes and is less sensitive to extracellular Ca2+ 

compared with wild type hCx26. These altered properties alone or in combination increase the cell 

death rate. D50N (476) displayed obvious blebbing and an increased rate of cell death compared 
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to wile type Cx26 cells. The hCx26 utilized in my experiments was tagged with eGFP at the C-

end. hCx26 and its mutants expression was checked under the fluorescent microscope by 

monitoring the green fluorescence emitted by eGFP. As previous reported, A40V, G45E, D50N, 

and D50Y led to severe cell death. Cells with green fluorescence all displayed as small round dots 

without normal cell shape. Other two mutants (D46N and D46E) displayed the same expression 

pattern as the wild type hCx26 in HeLa cell (Fig. 4.17).  

Dye uptake assay is a convenient and effective way to study the permeability properties of 

gap junction hemi-channels (460,477,478). No special devices are needed to perform this assay. 

Besides, extracellular environment can be easily manipulated and controlled. With the aid of 

different gap junction dyes, the permeability can be reflected under the fluorescent microscope. In 

my study, PI was chosen because its bright red fluorescence color which can be clearly 

distinguished with eGFP. Its molecular mass is 668.6 Da and can bind with the nucleic acids. Once 

excited with its maximum excitation wavelength 535 nm, it will emit the maximum light at 617 

nm.  

Non-transfected HeLa cell was used as negative control here. To examine the permeability 

properties of Cx26 hemichannels to larger molecules propidium iodide (PI), non-transfected or 

transfected Hela cells were incubated in bath solution (with 2mM Ca2+) containing 0.5 mg/ml PI 

for 10 minutes at 37 0C. No significant dye uptake was detected in control cell and transfected 

cells. Then new bath solution (with 2 mM EGTA) containing 0.5 mg/ml PI was added to replace 

the old bath solution with 2 mM Ca2+. In the same view, no dye uptake occurred in control cells, 

however, significant dye uptake was observed in hCx26-transfected cells (Fig. 4.18). Taken 

together, PI uptake was through Cx26 gap junction hemichannels expressed on the cell surface and 
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PI could not pass through Cx26 gap junction hemichannels in the presence of [Ca2+]o which 

induced closure of Cx26 hemichannels. 
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Figure 4.17 Expression of hCx26-eGFP and its mutants in HeLa cells.  

Human Cx26 or its mutants were tagged with eGFP at the end of C-terminal and transfected 

into HeLa cells. After 2-day post-transfection, the fluorescence of eGFP was checked under 

the fluorescence microscope with different magnifications. BF represents bright filed; 10x 

represents objective with 10 times magnification; 40x represents objective with 40 times 

magnification.  

 

 

Figure 4.18 hCx26 dye uptake in the presence of Ca2+ or EGTA.  
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hCx26 tagged with eGFP was transfected into HeLa cells and non-transfected cells were 

negative control. Cells were incubated with bath solution containing 2 mM Ca2+ and 0.5 

mg/ml PI for 10 minutes and checked under fluorescence microscope. Then the bath solution 

was replaced by new bath solution with 2 mM EGTA and 0.5 mg/ml PI for another 10 

minutes.  

 

We also compared the dye uptake in wild type Cx26 and one mutant D46N (Fig. 4.19). In 

the presence of [Ca2+]o, both wild type Cx26 and D46N could not be loaded with PI dye. 

Replacement of [Ca2+]o with EGTA, cells transfected with wild type Cx26 was loaded with PI dye, 

while no PI dye uptake was observed in cells expressing mutant D46N. There are two possible 

reasons accounting for this phenomenon: 1) hCx26-D46N cannot be transported to the membrane 

and cannot assemble to hemichannels on the cell surface. The so-called surface observed in the 

image with 40 times magnification may not be the true membrane. Besides, even though it is cell 

surface, no evidence can prove hemichannels are formed. 2) D46N harbors altered channel 

permeability compared with wild type hCx26. Thus, dye uptake could not be used to study all 

those Cx26 mutants resided inside of the predicted Ca2+-binding pocket. Most mutants in the 

predicted Ca2+-binding pocket are lethal. Expression of those mutants led to cell apoptosis and 

death. Mutants which expressed well in HeLa cells either have disturbed surface expression, or 

have altered hemichannel permeability, or have impaired hemichannel assemble capability. We 

could not find a proper way to study those mutants using the instruments we own in our lab.  

  

 

 



173 

 

Figure 4.19 Dye uptake comparison between wild type Cx26 and mutant D46N. 

Wild type Cx26 and mutant D46N tagged with eGFP were transfected into HeLa cells. After 

2-day post-transfection, cells were placed in bath solution with 0.5 mg/ml PI dye and 2 mM 

Ca2+ for 10 minutes and dye uptake was monitored under fluorescence microscope 

simultaneously. Without moving the view under microscope, bath solution with Ca2+ was 

removed and new bath solution with 2 mM EGTA and PI dye was added. Dye uptake inside 

of same cells were examined.  

 

In summary, Cx26 hemichannels have high permeability of PI dye in the absence of Ca2+. 

Addition of 2 mM Ca2+ into the dye solution completely blocked the dye permeability through 

Cx26 hemichannels, which indicates that [Ca2+]o can induce the closure of Cx26 hemichannels. 

Mutating the predicted Ca2+-binding coordination ligand or residues in the pocket led to cell 
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apoptosis which may be caused by abnormal Ca2+ regulation. Although D46N mutants did 

significantly influence the cells death, this mutant was not loaded by PI dye in the absence of Ca2+, 

which indicated that either the surface expression was severely impaired or this single mutation 

resulted in closed conformation of Cx26 hemichannels. 

4.2.8 Monitoring Channel Activity of Proteo-liposomes with Cx26 Gap Junction in Single 

Oocytes 

To examine the hemi-channel activity of the reconstituted gap junction protein Cx26 and 

the extracellular Ca2+ effects on it, we performed two electrons whole cell voltage clamp 

experiment to measure the opening of protein conducting channels. Oocytes are considered as a 

valuable tool for study of external channels since oocytes do not have significant expression of ion 

channels or receptors (479). The study of exogenous channels will not be affected, though oocytes 

do express some channels and receptors (480,481), due to the low current of those endogenous 

channels. The conventional way to study channels in oocytes is through mRNA or cDNA injection. 

The target channels are firstly expressed and assembled into the oocyte membranes, allowing 

channel activity measurement by different biochemical or electro-physiological methods when 

they respond to different intracellular or extracellular stimuli. The cell surface of oocytes is much 

bigger than mammalian cells, thus they can allow the accommodation of many channel proteins to 

ensure huge total channel activities.  

There are some limitations to perform channel studies in oocytes. To begin with, mRNA 

or cDNA may be not available in some cases. Second, some eukaryotic membrane proteins cannot 

successfully expressed in oocyte or inserted on the oocyte membrane due to the different 

translation machinery or lipid component. Third, if our interest is not a single membrane protein, 

but a membrane complex with multiple membrane proteins, simply by injecting mRNA or cDNA 



175 

of different membrane proteins into oocytes, we cannot guarantee the formation of complex inside 

of oocytes. On the other hand, by injecting proteo-liposomes into oocytes, we can overcome some 

challenges that faced by the conventional method. Firstly we can reconstituted membrane protein 

or membrane protein complex into the liposome to form proteo-liposomes, which is subjected into 

oocyte injection. If we want to study the effect of different modulators, we can inject the proteo-

liposomes with different modulators. This methodology avoid problems associated with 

eukaryotic membrane proteins, such as protein folding, assembly, post-translational modification, 

and trafficking. We can easily study the membrane protein complex by simply reconstitution of 

membrane protein complex into liposome. For example, as shown in figure 4.20, bacterial ATPase 

SecA and SecYEG complex are reconstituted into liposome together to form proteo-liposomes 

with both protein inside. This method also provide such a good way to study lipid effect on channel 

activity. 

Using this method, here we demonstrated the importance of lipids on Cx26 channel activity 

and identified several lipoid composition in which Cx26 channels showed much higher activity. 

Besides, this system was turned out to be an efficient way to study Cx26 channel activities in the 

presence of different regulators.  
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Figure 4.20 Working model: injection of proteo-liposomes in oocyte 

Membrane protein or membrane protein complex were firstly reconstituted into liposome to 

form proteo-liposome. Proteo-liposomes were injected into oocytes at dark side animal pole 

for whole cell channel activity measurement. Cx26 proteo-liposome and SecA proteo-

liposomes were used as two examples here to demonstrate how this system works.  

 

To study the extracellular Ca2+ effects on Cx26, we inserted the reconstituted Cx26 

liposomes into the oocytes, allowing the study of Cx26 channel activity with its regulatory 
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molecules. The interaction between membrane protein and membrane lipids play important role in 

the structure and function of membrane proteins (482-487). We first tested the effects of lipid 

composition on Cx26 channel activity. The endogenous phospholipids that tightly associated with 

hCx26 hemichannel or gap junction plaque were identified by Tandem electrospray-mass 

spectrometry and the proportion of them was analyzed, respectively, in earlier work (488). For our 

mCx26 purified from Sf9, different lipid combinations including PC, PS, PE, PG, 2PC/PS, 3PE/PG 

and E.coli total lipid were tested (Fig. 4.21). The channel activity was reflected by the channel 

current. It is surprised that Cx26 reconstituted in E.coli total lipids displayed the highest channel 

activity, as indicated by the channel current, followed by 2PC/PS and 3PE/PG. Single category of 

lipid like PC, PS, PE and PG only dramatically decreased the channel activity by more than 50 %. 

Thus, in the following experiments, we reconstituted Cx26 into the 2PC/PS liposome.  
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Figure 4.21 Effects of lipid compositions on Cx26 channel activity. 

Cx26 purified from Sf9 were reconstituted into liposome and injected into the oocytes. The 

current of Cx26 inserted on the oocyte membrane were recorded. The ratios of PC/PS and 

PE/PG were 2:1 and 3:1, respectively. 

 

The “expression” time course of Cx26-proteoliposome was firstly examined by measuring 

the channel currents at different time points after injection of Cx26-proteoliposome with 5 mM 

EGTA. The channel current reached its maximum after half hour post-injection (Fig. 4.22a). The 

low background current coming from the endogenous protein expressed in oocytes could be seen 

in oocytes without any liposome injection (Fig. 4.22b). Liposomes alone elicited very small 

background current, and EGTA slightly increased this current, indicating there was small 

endogenous channel activity (Fig. 4.22b, lanes 2 and 3), however this endogenous current was 

Ca2+-independent (Fig. 4.22b, lane 4) since CaCl2 did not make any changes regarding to the 

current. A small ionic channel activity around 2 A was produced with the injection of Cx26-

proteo-liposomes. This low activity may be caused by the inhibition of cytosolic Ca2+. The activity 

of Cx26-proteoliposomes was slightly inhibited by co-injection with 2 mM CaCl2 (Fig. 4.22b, 

lanes 5 and 6). In contrast, this activity was increased greatly to 7 µA by co-injection with 5 mM 

EGTA (Fig. 4.22b, lane 7); addition of CaCl2 reduced the current back to less than 2 µA (Fig. 

4.22b, lane 8).  

Addition of 10 mM EGTA into the bath solution in which oocytes with injection of Cx26 

proteo-liposome were immersed alone generated an increase of ion current from 2 to 7 μA within 

2 minutes (Fig.4.23a). Further addition of 30 mM CaCl2 immediately decreased this current from 

7 back to 2 μA within 2 minutes (Fig. 4.23a and b inset). We also tested how much CaCl2 is 
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needed to decrease the channel current after injection Cx26-proteo-liposomes with 10 mM EGTA. 

Various concentrations of CaCl2 were added into the extracellular bath solution and channel 

currents were recorded. The channel activity dramatically dropped when 0.1 mM CaCl2 was 

applied and 0.2 mM CaCl2 addition allowed current decreased back to around 2 μA. We also tested 

liposome alone. The ion current change in oocytes injected with liposome was not CaCl2 dependent, 

through EGTA could slightly evoked an increase of ion current. Taken together, the observation 

that Ca2+ regulates Cx26 channel activity are compatible with other earlier studies done by 

injection of cDNA into oocytes.  
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Figure 4.22 Channel activity of Cx26-liposomes in the oocytes.  

(a) Time course of Cx26 channel expression injected with 5 mM EGTA. The current was 

checked every half hour post-injection and the recordings were for 1 min. Number of oocytes 

were around 15-20. (b)Liposome or Cx26-liposome were injected into oocytes with or without 
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co-injection of EGTA, and CaCl2 as indicated. The lanes 4 and 6 were with 2 mM CaCl2; lane 7 

with 5 mM EGTA, and lane 8 was with 5 mM EGTA and 10 mM CaCl2.  Around 60 oocytes were 

examined for each condition.  

 

 

 

 

 

 

 

 

 

Figure 4.23 Cx26 channel activity regulated by CaCl2.  

(a) Cx26 proteo-liposomes were injected into oocytes. The ion current were monitored after 30 

minutes. Then 10 mM EGTA was applied to the bath solution, followed by addition of 30 mM 

CaCl2. Ion currents were monitored at different time points. (b) Cx26-proteo-liposomes were 

injected into oocyte with 10 mM EGTA. After 30 minutes, current recorded was around 7 μA. 

Then various concentration of CaCl2 were added into bath solution before measuring currents. 

Number of oocytes was around 15-20.   

 

4.3 Discussion 

In this study, we predicted a putative Ca2+-biding site residing at the mouth of extracellular 

side of Cx26 hemichannel channel using MUGSR. MUGSR is an updated based on our previous 

algorithm MUG which utilizes multiple geometries in the Ca2+-binding pockets of holo-proteins 

 

a                                          b 
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to identify possible Ca2+-binding site. One of the drawback of MUG is that it does consider the 

possible conformational change induced by Ca2+-binding. The new MUGSR will first predict the 

Ca2+-binding pocket as MUG does and then allow minor localized backbone conformation change 

or side chain rotation. Our prediction revealed that Ca2+ ion could be coordinated by oxygen atoms 

from residues E42, D46, E47, and E187. Among them, E47 is from adjacent Cx26 monomer. Thus, 

6 possible Ca2+-binding site exist in one hexamer (Hemichannel). Recently, a Ca2+-bound Cx26 

crystal structure was deposited in PDB with a refined resolution of 3.3 Å (88)(Fig. 1.6). Ca2+ ion 

was coordinated by residues E42, G45, and E47. E42 is from monomer A and the rest two residues 

are from adjacent monomer B. By comparing the “apo-Cx26” structure with this bound form, they 

concluded that only little conformational change without physical closure of the channel upon 

Ca2+-binding was observed as reviewed in the first chapter. By further investigating the 

electrostatic surface of the channel pore of Ca2+-free and Ca2+-bound Cx26, they believed that the 

strongly negative potential in the Ca2+-binding pockets of Ca2+-free Cx26 enables the rapid enter 

of positive ions like K+, while Ca2+-occupied Cx26 will exclude all those ions with positive 

charges. Finally they drew the conclusion that it is the electrostatic surface difference between 

Ca2+-free and Ca2+-bound Cx26 regulating the ion permeation. However, I have a few concerns 

about their conclusions. First, when they tried to obtain the Ca2+-free Cx26 crystal, they did not 

use chelators like EGTA or EDTA in the buffer to completely remove Ca2+, instead they just 

simply omitted CaCl2. It is highly possible that the Ca2+-free structure they believe is not the real 

free structure. It is hard to get rid of Ca2+ in the buffer since Ca2+ could exist in water used to 

prepare all buffers if chelator is not used. In this case, the comparison is of less meaning. Second, 

a very high concentration of Ca2+ (20 mM), far beyond the physiological level, was applied when 

they grew the Cx26 crystals. It is hard to believe the regulation mechanism they proposed here is 
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a physiologically relevant mechanism. It will be more persuasive if the Ca2+ concentration they 

used is more close to physiological extracellular Ca2+ concentration (around 1.8 mM). However, 

on the other side, this Ca2+-bound crystal structure is almost overlapping with our predicted Ca2+-

binding pocket, indicating high accuracy of our computational algorithm   

Due to the synthesis, trafficking, and translocation machinery difference between 

prokaryotic and eukaryotic organisms, high level expression of Cx26 in E.coli was not successful. 

This eukaryotic channel protein caused high toxicity to many E.coli stains as indicated by death 

of E.coli after transformation. Insect cell expression is a better candidate for Cx26 expression than 

E.coli in terms of yield, post-translational modification, trafficking, and translocation. Cx26 were 

located on insect cell surface and formed oligomers with proper shape under electron microscope. 

However, protein purified from Sf9 using detergent is not homogeneous and stable. Oligomers 

with different molecular size were detected by both SDS-Page gel, Western blotting, and native 

gel. This heterogeneity of Cx26 protein sample caused lots of problem when we tried to investigate 

the metal-binding property and Ca2+-regulation characteristics. For example, the consistency for 

all experiment could not be maintained well. Cx26 wrapped by detergent is also not very stable. 

Gentle mixing or shaking when performing the titration experiment also caused signal 

inconsistency. The instability also brings lots of difficulty in storing the protein. We could not 

store Cx26 for over a week without precipitation. Moderate content of concentration also led to 

heavy precipitation. However, if we want to perform NMR experiment, we need homogeneous 

and high concentration of Cx26.  

Tb3+ titration showed a two-phase binding status with different binding affinity and hill 

number. The first one binding state was well fit to 1 to 1 binding equation which assumes only one 

binding site exists. The second binding phase was fit to hill equation and yielded a hill number of 
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4.2, which indicates the existence of more than 4 binding site and cooperative binding property 

between them. This observation could be explained by the number of Tb3+-binding site in Cx26 

hexamer. Each Cx26 monomer harbors one Tb3+ binding site and there will be 6 of them in total 

in the hexamer. However, no significant change was detected in either Ca2+ titration experiment 

or Ca2+-Tb3+ competition experiment. It seems the recent published Cx26 crystal structure with 

Ca2+ bound provides us with some clues. Upon Ca2+ binding, only very tiny conformation change 

was induced. Those localized changes occur in Ca2+-binding ligand and residues inside of the Ca2+-

binding pocket. This result is consistent with our CD data and Ca2+ titration result in which no 

significant conformation changes were observed. The Ca2+-binding affinity in Cx26 must be weak 

since Cx26 extracellular loops are exposed to [Ca2+]o with a concentration in the mM range. This 

weak Ca2+-binding may account for the unsuccessful Ca2+-Tb3+ competition. The Ca2+-binding site 

was also only observed in Cx26 crystals soaked in 20 mM CaCl2.  

Using mammalian cells, we proved that Cx26 hemi-channel permeability is regulated by 

[Ca2+]o. The expression pattern of Cx26 is not similar to other membrane proteins like cGPCRs. It 

presents on cell surface as punctate distribution. This phenomenon is associated with gap junction 

plaque. Gap junction plaques contains thousands of gap junction channels. Thus, Cx26 channels 

are not evenly distributed on cell surface, instead they gather together, showing as the punctate. 

When replacing the key residues inside of our predicted Ca2+-binding pockets, most mutants led 

to cell apoptosis and death after transfection. This may be caused by the aberrant channel 

permeability and interrupted channel regulation by [Ca2+]o. Although D46 mutations did not led 

to lethal effect on HeLa cells, hemichannels formed by D46 mutants are not functional. Cx26 

permeable dye PI could not enter the channel even in the absence of [Ca2+]o. Taken together, those 
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highly conserved residues inside of putative Ca2+-binding site are of importance in structure and 

function.           
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5 ELUCIDATION OF A NOVEL EXTRACELLULAR CALCIUM-BINDING SITE ON 

METABOTROPIC GLUTAMATE RECEPTOR 5 

5.1 Introduction 

Metabotropic glutamate receptors, belonging to the family C G-protein coupled receptor 

(GPCR) family, can be categorized into three subgroups, group 1 (mGluR1 and mGluR5), group 

2 (mGluR2 and mGluR3) and group 3 (mGluR4, 6, 7, and 8), based on sequence homology, G-

protein coupling and ligand selectivity and the downstream signaling pathway 

(209,219,222,223,489). Sequence similarity can achieve as high as around 70% within each group, 

while between groups, this number decrease to 45% (209). They are well recognized as the targets 

of the major excitatory neurotransmitter L-Glu in mammalian central nervous system. Their 

involvements in numerous (patho)physiological processes by responding to extracellular stimuli 

are well documented (193,210,270,490,491). mGluR family members share a similar structural 

topology. They have a large extracellular domain (ECD) at the amino terminal, which is connected 

to seven classic alpha-helical transmembrane domains by the Cys-rich domain. The ECD is also 

referred as the Venus flytrap domain (VFD) due to its unique shape (163). Ligand binding to the 

VFD induces large conformation changes, resulting in the closure of the VFD and activation of 

mGluR (164). Two protomers form the functional dimer through the interaction between two 

VFDs (163). The carboxyl terminal facing the cytosol undergoes alternative splicing in several 

mGluRs, generating several variants (200,492-497), although the function of them still needs to 

be further elucidated. The widespread distribution of mGluRs in the central nervous system (CNS) 

and its extensive involvement in an array of signaling pathways attract considerable attention as 

drug targets for therapeutic remediation of a wide variety of CNS disorders.  
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Group I mGluRs (mGluR1 and mGluR5) are preferentially coupled to Gq/11, though in 

some cases Gi/o activation by group I mGluRs was observed (197,498) (Fig. 5.1). Activation of 

mGluR5 by extracellular stimuli subsequently stimulates phospholipase C, leading to the 

decomposition of PIP2 into IP3 and DAG. IP3 binds to IP3 receptors on the endoplasmic reticulum 

(ER), resulting in calcium release from intracellular calcium store. DAG on the cell membrane in 

turn activates protein kinase C, which has been proposed to be involved in activation of many 

enzymes by phosphorylation. In addition to this conventional pathway, alternative group I 

mGluRs-associated signaling pathways have also been identified (211).  

Group I mGluRs share around 30% homology with calcium sensing receptor (CaSR) and 

69 % homology with salmon bifunctional metabotropic (sBim) receptor. Belong to the same GPCR 

family, both CaSR and sBim receptor showed extracellular calcium [Ca2+]o sensing 

capability(280,499,500). Therefore, the homology raised the question whether mGluR1 and 

mGluR5 can respond to [Ca2+]o changes decades ago. Multitudes of studies using either 

heterologous systems or cells with native mGluRs suggested that extracellular Ca2+ directly 

activate or modulate the actions of agonist on some type of mGluRs, although there are some 

contrary results (287). By monitoring the activity of Ca2+-Cl- channels in oocytes expressed 

mGluR1 or mGluR5, Kubo et al., first reported that mGluR1/mGluR5 displayed similar response 

to CaSR with the application of extracellular Ca2+ (281). The ECD was identified as the key player 

for sensing extracellular Ca2+ by constructing chimeric molecules and S166 in the ECD of mGluR1 

was proposed as the structural determinant for Ca2+ sensitivity. Purikinje cells from wild type 

mouse with predominant mGluR1 expression could sense [Ca2+]o, whereas the Ca2+-sensing 

capability was lost in Purikinje cells derived from mGluR1 knockout mouse and regained in cells 

from mouse with mGluR1 re-introduced (286). In addition to direct activation, [Ca2+]o also exerted 
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modulatory effect on various compounds which act on mGluRs. Sunders et al. reported that the 

[3H]-InsP1 accumulation evoked by mGluR1 agonist was significantly facilitated by increasing 

[Ca2+]o in baby hamster kidney cells (283). [Ca2+]o also exerted marked broadening effect on the 

dynamic range of DHPG-evoked responses mediated through mGluR1 in Purikinje cells (286). 

Our lab also reported the modulatory effects of [Ca2+]o on orthosteric or allosteric ligands observed 

in HEK293 cells expressing mGluR1 (501,502). The molecular elucidation of how [Ca2+]o activate 

or modulate mGluRs remains controversial, although tremendous effort have been made to address 

this question since it was first raised. Advances in solving the crystal structure of mGluR have 

uncovered important structural characteristics of mGluRs, however, the invisibility of Ca2+-

binding site in solved mGluR crystal structures greatly hampered the study of Ca2+’s role in 

modulating activity of mGluRs.    

In the present study, we predicted a conserved Ca2+-binding site in the hinge region of 

mGluR5 using our computational algorithm MUG. To investigate the connectivity between 

[Ca2+]o-binding site and function of mGluR5, and how [Ca2+]o modulates the activity of mGluR5, 

we monitored the downstream intracellular signal changes in HEK293 cells expressing wild type 

and mutated mGluR5. We first demonstrated that mGluR5-ECD purified from insect cell Sf9 is 

able to bind with both Tb3+ and Ca2+ with µM and mM affinities, respectively. We further found 

that [Ca2+]o could solely elicits mGluR5, leading to [Ca2+]i oscillation and ERK1/2 

phosphorylation. Higher [Ca2+]o could induce broader dynamic changes in terms of oscillation 

frequency, amplitude of oscillation peaks, and amount of phosphorylated ERK1/2 accumulation. 

Mutating key residues in the predicted Ca2+-binding pocket impaired the Ca2+-sensing capability 

of mGluR5, though the surface expression level of mutants were maintained at similar level as 

wild type mGluR5, suggesting those putative residues are involved in Ca2+-binding. In addition, 
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we examined the role of [Ca2+]o in modulating the actions of L-Glu on mGluR5 in wild type or 

mutated mGluR5 transfected HEK293 cells, and also the effects of L-Glu on [Ca2+]o in activating 

mGluR5.        

 

 

Figure 5.1 Signal transduction pathways activated by mGluR5 stimulation. 

Agonist binding to mGluR5 activates G-protein signaling and downstream second messenger 

pathways including PKC, PLC and Ca2+ signaling. The conventional signal pathway 

mediated through mGluR5 is G-protein- and PLC- dependent. Activation of mGluR5 

initiates Gα/q protein signaling that activates PLC. In turn, activation of PLC results in the 
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hydrolysis of phosphatidylinositol-4, 5-bisphosphate (PIP2) to release the second messengers 

1,2-Diacylglycerol (DAG) and IP3. DAG is the physiological activator of PKC, which in turn 

plays important roles in various intracellular signaling cascades. IP3 binds to intracellular 

IP3 receptors on the ER membrane initiating Ca2+ release from the ER lumen into the 

cytoplasm, generating complex downstream Ca2+ signals and intracellular Ca2+ oscillation. 

The other signaling pathway will be monitored in my study is the Ras-Raf-MEK-ERK 

pathway. Activation of PKC will also activate Ras, initiating the PLC-dependent 

conventional Ras-Raf-MEK-ERK pathway. In addition to this conventional ERK signaling 

pathway, other novel PLC-independent pathway involving some small adapting proteins. 

 

5.2 Result 

5.2.1 Prediction of Ca2+-binding site in the extracellular domain (ECD) of mGluR5 

In the previous study, we identified a Ca2+-binding site in the mGluR1 which is a group 1 

mGluR using our graph theory-based algorithms MUG (501,503). The binding site is located in 

the hinge region of the ECD adjacent to the L-Glu binding site (Fig. 5.2). Residues D318, D322, 

D325 and the carboxyl group of the receptor’s agonist Glu comprise the whole Ca2+-binding site. 

D318 is shared by both the Ca2+-binding and L-Glu binding site. When all the mGluRs are aligned 

together, it is notable that the putative Ca2+-binding site we reported in mGluR1 is also very 

conserved in mGluR5, but not in the group II and III mGluRs. The conserved Ca2+-binding site in 

mGluR5 constitutes residues D305, D309, D312 and the carboxyl group of agonist L-Glu. We 

hypothesize that Ca2+ binding to this region will activate mGluR5 and further induce the cytosolic 

Ca2+ concentration change.  
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Figure 5.2 Putative Ca2+-binding site in mGluR 1 and 5. 

Our reported Ca2+-binding site in mGluR1 is coordinated by amino acids D318, D322, D325 

and adjacent agonist L-Glu. This site is located in the interface between lobe 1 and lobe 2 of 

mGluR1, adjacent to the L-Glu-binding site. Sequence alignment of all mGluRs shows that 

this pocket is highly conserved in group I mGluRs (mGluR1 and mGluR5), but not the rest 
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of mGluRs, although partial pockets exist in group II mGluRs (mGluR2 and mGluR3). The 

corresponding residues of the predicted binding site in mGluRs are highlighted in red.  

 

5.2.2 Monitoring Ca2+ binding to mGluR5-ECD by fluorescence 

We first evaluate the Ca2+ binding ability of mGluR5-ECD purified from the Sf9 culture. 

The purification of mGuR5-ECD from Sf9 culture is achieved through a special Ni sephorase 

beads, named as Ni sepharose Excel, which can tolerate high concentration of chelating ligand 

without Ni stripping even after incubation with10 mM EDTA for 24 hours. This beads allow direct 

medium loading without extensive and time-consuming pretreatment of medium containing 

chelating ligand, which is required to maintain well separated cells in suspension Sf9 culture. The 

purified mGluR5-ECD forms a dimer as indicated by the native gel (Fig. 5.3). The electrophoretic 

mobility in reducing SDS-Page and native gel are different. The band position in reducing SDS-

Pages correlates well to the monomer (Fig. 5.3a), while the intermolecular disulfide bonds were 

not completed broken by the reducing reagent as indicated by the dimmer bands in western blot 

(Fig. 5.3b).  Figure 4.2c shows that mGluR5-ECD exists as a dimer under native conditions (Fig. 

5.3c).  
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Figure 5.3 mGluR5-ECD forms a dimer. 

(a) 5% β- mercaptoethanol was added in the SDS-PAGE sample buffer to break the disulfide 

bounds in mGluR5-ECD and the protein sample was subjected to SDS-PAGE. Monomer 

bands show between 55 and 72 kDa. (b) Anti-mGluR5 antibody was applied as mGluR5-

ECD probe in western blot. In addition to the monomer as shown in SDS-PAGE gel, a weak 

dimmer band between 100 and 130 kDa also show up. (c) Under the native condition, 

mGluR5-ECD mobilize as a dimmer in the native gel. (d) Secondary structure of mGluR-

ECD with or without the addition of 5 mM Ca2+ measured by CD. The peak at 208 and 222 

nm confirms the helical structure of mGluR5-ECD purified from Sf9. Ca2+ did not induce 

significantly secondary structure change of mGluR5-ECD. Open circle: without addition of 

a                            b                       

c  
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5 mM Ca2+; solid circle: with addition of 5 mM Ca2+.  (e) Thermal stability of mGluR-ECD 

in the presence or absence of Ca2+. Signal at 222 nm was monitored while temperature was 

raised. Protein with Ca2+ was subjected heavy precipitation when temperature approached 

45 °C, leading to inaccurate measurement of the thermo stability of mGluR-ECD. Open 

circle: with EGTA; solid circle: with Ca2+. 

 

The secondary structure of mGluR5-ECD was analyzed through circular dichroism (CD) 

measurement. The typical far UV CD spectrum of mGluR5-ECD was shown in Figure 4.2d. 

Analysis of the spectrum indicates mGluR5-ECD has a typical helical secondary structure, which 

is characterized by negative peaks at 222 and 208 nm. The addition of 5 mM Ca2+ to the protein 

sample produced minimal secondary structure change to the mGluR5-ECD. mGluR5-ECD was 

subjected to a stepwise increases in the temperature to measure the thermal stability in the presence 

of 5 mM EGTA or Ca2+.  The ellipticity signal was monitored from 4 to 90 °C at 222 nm (Figure 

5.3e). During the experiment, protein with 5 mM Ca2+ started to form precipitation when 

temperature arrived above 45 degree. The reason behind this phenomenon is unclear to us.  

Tb3+ is a common probe to study the Ca2+ binding to protein as a Ca2+ analog due to its 

high similarity with Ca2+ in radii and metal coordination chemistry.  Sequence analysis of 

mGluR5-ECD revealed that a Trp residue is in the predicted Ca2+-binding, therefore enabling the 

energy transfer between excited Trp and bound Tb3+. As shown in Figure 5.4a, titration of Tb3+ 

into mGluR5-ECD induced an enhanced energy transfer between Trp and Tb3+, consistent with 

Tb3+ binding to the predicted Ca2+-binding pocket. In reverse, addition of Ca2+ to the Tb3+-bound 

mGluR5-ECD led to the fluorescence intensity decrease, indicating competition between two 

metals (Fig. 5.4c). The normalized fluorescence change was plotted as a function of Tb3+ 
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concentration in Figure 5.4b. The Tb3+ binding affinity was yield by fitting the curve using a 1:1 

binding equation. The well fitted titration curve suggests a 1:1 binding mode of the interaction 

between Tb3+ and mGluR5-ECD. The Ca2+-Tb3+ competition experiment yielded the apparent 

dissociation constant from which the binding constant for Ca2+ was deduced (Fig. 5.4d). The Ca2+-

binding constant calculated from the Ca2+-Tb3+ competition assay was 2.7 mM.  

 

 

Figure 5.4 Determining Ca2+ binding capability using mGluR5-ECD purified from Sf9 culture. 

(a) The calcium titration was performed in HEPES buffer (10 mM HEPES, 120 mM NaCl 

and 10 mM KCl, pH 7.2) with a protein concentration of 2.0 µM. The emission of internal 
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c                                            d 
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Trp was monitored while titrating calcium. The arrow indicates the increase of Tb3+ 

fluorescence. (b) Magnesium titration curve of mGluR5-ECD. (c)Tb3+-mGluR5-ECD 

fluorescence intensity change while titrating Ca2+. The arrow indicates the decrease of Tb3+ 

fluorescence. (d) Ca2+-Tb3+ competition curve of mGluR5-ECD.    

 

5.2.3 Immunofluorescence analysis of surface expressed WT and its mutants in HEK293 cell 

To evaluate the effects of mGluR5 mutations on cell surface expression in detail, HEK293 

cells transfected with WT or mutated mGluR5 were fixed, stained with anti-FLAG antibody and 

examined by immunofluorescence microscopy. Without triton permeabilization, anti-FLAG 

antibody only detects the surface-expressed mGluR5. In cell that express the mGluR5 or mutants, 

anti-FLAG antibody detected similar intensity of signals on the cell surface (Fig. 5.5a). To further 

quantify the effect of these mutations on cell surface expression, cell surface protein isolation kit 

was used to isolate surface-expressed mGluR5 and compare the cell surface expression of WT 

mGluR5 and mutant mGluR5 (Fig. 5.5b and 5.5c). Cell surface proteins were labeled by a cell-

impermeable, cleavable biotinylation reagent (Sulfo-NHS-SS-Biotin). After lysing the cells, all 

biotinylated surface proteins were isolated by streptavidin affinity chromatography. Using western 

blot with anti-FLAG antibody, we detected similar amount of biotinylated WT and mutated 

mGluR5, though D305A and D309A displayed a slightly lower amount of surface expression. 

Therefore, all mutants are properly expressed on the cell surface at similar levels.  
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Figure 5.5 Analysis of cell surface expression of mGluR5 and its variants. 

(a) Immunostaining of cell surface-expressed mGluR5 and its mutants. Immunostaining of 

non-permeabilized HEK293 cells expressing mGluR5 was done with monoclonal antibody, 

which recognizes the FLAG tag inserted in the ECD of mGluR5, and detection was carried 

out with Alexa Fluor conjugated, anti-mouse secondary antibody. Blue: DAPI staining cell 

nuclei. Green: mGluR5 immunoreactivity. (b) Cell surface protein biotinsylation and 

analysis. To specifically isolate and quantify mGluR5 on the cell surface, we labeled cell 

surface proteins with non-permeable but cleavable biotin first and isolated these tagged 
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proteins by streptavidin pull down. Then, the sample are subjected to SDS-PAGE 

separation, transferred to nitrocellulose membrane and probed with anti-FLAG antibody. 

GAPDH was used as an internal control. HEK293 cells without transfection was a negative 

control. (c) Quantification of cell surface expression was accomplished by densitometric 

measurement of the mGluR5 bands and subsequent normalization by GAPDH. 

 

5.2.4 Extracellular Ca2+ solely elicits mGluR5-mediated [Ca2+]i responses 

We first examined whether [Ca2+]o solely activates mGluR5 and elicits mGluR5-mediated 

[Ca2+]i responses, monitoring the [Ca2+]i concentration change by the ratiometric calcium dye Fura-

2. Fura-2 is excited at 340 nm and 380 nm of light, and the ratio of the emissions at those 

wavelengths is directly related to the amount of intracellular calcium. mGluR5 transfected cells 

were loaded with Fura-2 before placed under the fluorescence microscope. Cells were bathed in 0 

mM [Ca2+]o solution, and then [Ca2+]o was increased. As shown in Figure 5.6a, [Ca2+]o stimulus 

induced [Ca2+]i rise and oscillation similarly to the response of CaSR, as reflected by the emission 

ratio change of Fura-2, while no significant [Ca2+]i responses could be detected in non-transfected 

HEK293 cells (Fig. 5.6b). In the single cell imaging experiment, three concentrations (0.5, 1.8 and 

5.0 mM) of [Ca2+]o were tested and applied to HEK293 cells transfected with mGluR5, 

respectively. All tested concentrations can elicits [Ca2+]i responses in the manner of intracellular 

calcium oscillation, while the oscillation frequency varies (Fig. 5.6c). The centralized oscillation 

frequency range of cells exposed to 0.5 mM [Ca2+]o stimuli was between 1 and 1.5 peak/min. The 

highest oscillation frequency that 0.5 mM [Ca2+]o can achieve is 2.5-3 peak/min, while 5 mM 

[Ca2+]o can even push this number to 3-3.5 peak/min. Higher concentrations of [Ca2+]o further 

shifted the centralized oscillation distribution area to the right high oscillation frequency side in 

https://en.wikipedia.org/wiki/Nanometer
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addition to the decrease of percentages of cells oscillating at low frequency. To make a quantitative 

comparison of the mGluR5 responses to three [Ca2+]o concentrations, we indirectly assayed the 

increment of [Ca2+]i by measuring the F340/F380 ratio change. Figure 5.6d shows that the [Ca2+]i 

rise in cells exposed to 5 mM [Ca2+]o doubled when compared with cells stimulated by 0.5 mM 

[Ca2+]o. Cells elicited by 1.8 mM [Ca2+]o show significantly higher [Ca2+]i raise than 0.5 mM, but 

significantly lower than that of 5 mM [Ca2+]o.  However, in HEK293 cells without mGluR5 

transfection, [Ca2+]o stimuli did not induce any significant [Ca2+]i rise. Taken together, the result 

suggests [Ca2+] can solely activate mGluR5-mediated response and have [Ca2+]o sensing capability 

to CaSR. 
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Figure 5.6 [Ca2+]o-sensing capability of mGluR5. 

(a) [Ca2+]i oscillation elicited by [Ca2+]o. mGluR5 transfected HEK293 cells were first loaded 

with 2 µM Fura-2 preceding the [Ca2+]i measurement under fluorescence microscope. Cells 

were fist washed by 0 mM [Ca2+]o bath solution before the application of 1.8 mM [Ca2+]o at 

200 sec (red arrow). (b) HEK293 cells without transfection has no significant [Ca2+]i raise 

when 5 mM [Ca2+]o was applied.  (c) Oscillation frequency distribution of cells elicited by 0.5, 

1.8 or 5 mM [Ca2+]o. Under each condition, total cell number is the sum of cells with 

oscillation. (d) Comparison of [Ca2+]i rise induced by 0.5, 1.8 or 5 mM [Ca2+]o. The [Ca2+]i 
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rise upon activation by different concentration of [Ca2+]o was reflected by the increase of 

F340/F380. N stands for the number of cells we examined. *, p < 0.05 ; **, p < 0.01; and ***, 

p < 0.001.   

 

5.2.5 Effects of mGluR5 mutating proposed Ca2+-binding residues on [Ca2+]o sensing 

capability 

To identify the structural determinant of Ca2+ sensitivity within the ECD, we mutated three 

of our predicted Ca2+-binding residues and compared their response to [Ca2+]o with WT 

mGluR5(Fig. 5.7a). Figure 5.7b shows that substitution of Ala for Asp-305 abolished the [Ca2+]o 

sensing capability in single cell imaging experiments. When 1.8 mM [Ca2+]o was introduced to the 

bath chamber, no [Ca2+]i oscillation was observed in cells transfected with D305A; instead a tiny 

transient peak was detected suggesting an insignificant [Ca2+]i rise. The other two mutants (D309A 

and D305A) exhibited altered [Ca2+]i responses with delayed oscillation and lower [Ca2+]i increase. 

A 10-minute delay occurred in cells transfected with D309A (Fig.5.7c) and D312A (Fig. 5.7d), 

while WT mGluR5 started to oscillate immediately upon the addition of [Ca2+]o (Fig.5.7a). The 

[Ca2+]i enhancement elicited by [Ca2+]o was strikingly reduced in D309A (about % decrease) and 

D312A (about % decrease) (Fig.5.7f) compared with WT, though D305A and D309A only 

displayed slightly lower cell surface expression as revealed above. Together, our results suggest 

that disturbance of the intact Ca2+-binding pocket lead to impaired [Ca2+]o sensing capability. 
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Figure 5.7 Disturbance of the intact Ca2+-binding pocket lead to impaired [Ca2+]o sensing 

capability. 

(a) [Ca2+]i oscillation evoked by 5 mM [Ca2+]o in WT mGluR5-transfected HEK293 cells. (b) 

HEK293 cells transfected with D305A abolished the extracellular Ca2+-elicited [Ca2+]i 

oscillation. A small transient peak was observed in D305A mutant. (c) HEK293 cells 

transfected with D309A displayed delayed [Ca2+]i oscillation when 5 mM Ca2+ was applied. 
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The amplitude of [Ca2+]i oscillation peaks were also significantly dropped. (d) HEK293 cells 

transfected with D312A also displayed impaired [Ca2+]o-sensing capability when compared 

with WT mGluR5. (e) No significant [Ca2+]i response stimulated by extracellular Ca2+ were 

detected in non-transfected HEK293 cells. (f) [Ca2+]i rise triggered by extracellular Ca2+ 

comparison between WT mGluR5 and three mutants. [Ca2+]i increase in WT were 

dramatically higher than that in three mutants. ***, P < 0.001.  

 

5.2.6 ERK1/2 phosphorylation in WT and point mutant of mGluR5 induced by [Ca2+]o 

We further examined the effects of mutating proposed Ca2+-binding residues on other 

signaling pathways, like the mitogen-activated protein kinases (MAPK) (ERK1/2) activation. 

Activation of group I mGluRs by various extracellular stimuli could result in phosphorylation of 

ERK1/2 (504-506). The conventional pathway transmitting signals from mGluR5 to ERK1/2 is 

linked with PIP2 hydrolysis/Ca2+ release. However, it is reported that ERK1/2 phosphorylation 

involves the simultaneous participation of both PIP2 hydrolysis/Ca2+ and Homer pathways (506). 

In this study, the post-receptor signaling cascades on the signal pathway are not discussed. The 

activation of ERK1/2 mediated through mGluR5 is monitored to reflect the activation of mGluR5 

by extracellular stimuli. Cells transfected with WT or mutated mGluR5 were exposed to increasing 

concentrations of Ca2+ (0-10 mM) for 5 minutes and the formation of phosphorylated ERK1/2 was 

detected by western blot as described in the methods. Exposure to WT mGluR5-transfected 

HEK293 cells to increasing concentrations of [Ca2+]o in the range of 1.0-10.0 mM for 5 minutes 

resulted in significant accumulation of p44/42 ERK, reaching a response plateau at around 5 mM 

[Ca2+]o (Fig. 5.8). The western blot result were further analyzed using Image J. The ration of 

phosphorylated ERK over total ERK were plotted as a function of [Ca2+]o and fit to Hill equation, 
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yielding an EC50 of 2.8 mM. D305A dramatically impaired the [Ca2+]o-evoked ERK activation 

mediated through mGluR5. [Ca2+]o in the range of 0.0-5.0 mM had little effect on the 

phosphorylation of p44/42 ERK. Mutants D309A and D312 A requires slightly higher (above 3 

mM) [Ca2+]o to trigger ERK phosphorylation. EC50 of [Ca2+]o in three mutants were higher than 

WT, especially D305A (Table 5.1). In summary, mutating putative Ca2+-binding ligands in 

mGluR5 impaired the ERK signaling mediated through mGluR5.     

 

 

Figure 5.8 [Ca2+]o-activated ERK signaling in mGluR5-transfected HEK293 cells. 

mGluR5- or its mutant-transfected HEK293 cells were starved in serum-free DMEM 

containing 0.2 % BSA overnight. Cells were treated with various Ca2+ concentrations (0.0 to 

10 mM) for 5 minutes at 37 °C. The treatments were stopped by applying RIPA lysis buffer. 

The amount of phosphorylated ERK and total ERK were determined and analyzed using 

SDS-Page and western blot as described previously in the Methods section. (a) 

 

 

a                            b  
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Phosphorylated ERK and total ERK were probed by Anti-phospho-p44/42 ERK and Anti-

p44/42 ERK polyclonal antibodies respectively during western blot. (b) The western blot 

resulted were further analyzed using Image J and the ration of phosphorylated ERK over 

total ERK were plotted against [Ca2+]o and fit to Hill equation.  

 

Table 5.1 Summary of EC50s from experiments measuring [Ca2+]i response and ERK1/2 

phosphorylation. 

Mutants EC50 (ERK1/2 activity) 

WT 2.8 ± 0.1 mM 

D305A 6.1 ± 0.3 mM 

D309A 3.3 ± 0.1 mM 

D312A 3.0 ± 0.2 mM 

 

5.2.7 Enhancement of mGluR5 sensitivity and response to L-Glu by extracellular Ca2+ 

Previous studies reported that [Ca2+]o dramatically broaden the dynamic range of mGluR1-

mediated responses to agonist DHPG (286) and [Ca2+]o modulates the effects of many agonists 

and antagonists (280,281,283,502). We next examined the effects of [Ca2+]o on the oscillation 

pattern of [Ca2+]i induced by L-Glu in mGluR5-transfected HEK293 cells. An increasing 

concentrations of L-Glu were introduced to cells exposed to different concentrations of [Ca2+]o 

and the [Ca2+]o fluctuations were recorded by measuring the Fura-2 F340/F380 ratio through the 

fluorescence microscope. Cells with higher concentrations of [Ca2+]o exposure exhibited faster 

frequency when the same concentration of L-Glu was applied (Fig. 5.9). Without the addition of 

[Ca2+]o, the oscillation frequency is always confined in the range of 0-0.5 peaks/min even when L-

Glu concentration approached 10 µM. The centered oscillation frequency shifted from the left to 

the right side under the same concentration of L-Glu when comparison occurs between cells 

exposed to lower and higher [Ca2+]o. In addition, the sensitivity of mGluR5 to L-Glu also enhanced 
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by higher [Ca2+]o as indicated by the oscillation starting point. In the absence of [Ca2+]o, 5 µM L-

Glu is required to induce any response, while cells started to oscillate at lower concentration of L-

Glu (1 µM) when [Ca2+]o was present. These data suggest that increases in [Ca2+]o raise both the 

potency and the efficacy of L-Glu, whereas reductions in [Ca2+]o has the opposite modulation 

effect.   

Next, we examined the modulatory effects of extracellular Ca2+ on L-Glu in HEK293 cells 

expressing mutated putative Ca2+-binding residues. Cells transfected with mGluR5 mutants were 

placed in the same 1.8 mM [Ca2+]o environment while stimulated with various concentrations of 

L-Glu. Replacing D305 with A completely abolished L-Glu-evoked intracellular responses of 

mGluR5 since D305 is one of the L-Glu coordinating ligand. In cells transfected with D305A, no 

intracellular Ca2+ mobilization was detected as shown in figure 5.10a. Mutation D309A and 

D312A responded similar to WT mGluR5 to L-Glu in addition to the oscillation starting point 

(Fig. 5.10b). In the presence of same concentration of [Ca2+]o, all cells with WT mGluR5 

expression could respond to lower concentration of L-Glu ( 1 µM ), while in contrast, less than 20 

% of cells exprssing D309A and D312A showed responses to 1 µM L-Glu and majority of cells 

(70 %) oscillated at 3 µM  L-Glu. The oscillation frequence of those two mutants were not 

significantly changed when compared with WT mGluR.  
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Figure 5.9 [Ca2+]o potentiates L-Glu-activated [Ca2+]i signaling in mGluR5-transfected HEK293 

cells. 

HEK293 cells transfected with mGluR5 were placed in bath solution containing 0 (a), 0.5 (b) 

or 1.8 (c) mM extracellular Ca2+ during the single cell imaging experiment. The [Ca2+]i 

alternation were monitored by Fura-2 in single cells and recorded while applying various 

 

a                                          d 

b                                          e 

c                                          f 
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concentration of L-Glu (1, 3, and 5 µM). For each extracellular Ca2+ concentration, the 

[Ca2+]i-oscillation pattern of one single cell were presented as an example and the oscillation 

frequency of over 100 cells were analyzed under each concentration of L-Glu and plotted as 

bar chart (d, e and f). Red, cells in 0 mM [Ca2+]o; black, cells in 0.5 mM [Ca2+]o; blue: cells 

in 1.8 mM [Ca2+]o. The color gradient of wedge block stands for L-Glu concentration, the 

darker the blue color, the higher the L-Glu applied.  

 

 

Figure 5.10 mGluR5 mutants' response to L-Glu in the presence of 1.8 mM Ca2+. 

(a) Cells expressing D305A lost its L-Glu sensitivity. (b) HEK293 cells transfected with WT 

and two mutants were stimulated with various concentrations of L-Glu in the presence of 1.8 

mM [Ca2+]o. The oscillation starting point was analyzed for each cell. For WT and each 

mutated mGluR5, around 120 cells were analyzed.  

 

 

a                                        b 
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5.3 Discussion 

5.3.1 The putative Ca2+-binding site is conserved in group I mGluRs 

The predicted Ca2+ binding site we reported here, together with our earlier work, revealed 

the “invisible” binding pockets in the group I mGluRs. The ubiquitous actions of Ca2+ on cGPCRs 

have been extensively reported in the past; however, no Ca2+-bound form of crystal structure was 

solved until now due to the challenges in membrane protein crystallization and the weak Ca2+-

binding property. The putative Ca2+-binding pocket predicted by our computational algorithm, is 

sharing one ligand D305 with L-Glu-binding site. Replacement of D305 with A completely 

abolished both L-Glu- or Ca2+-evoked intracellular Ca2+ response as suggested by our mutation 

data. D305 is corresponding to E297 of CaSR and D318 of mGluR5. E297 is one of the putative 

Ca2+-binding ligand in the hinge region of CaSR and E297 mutations are associated with autosomal 

dominant hypocalcaemia and familial hypocalciuric hypercalcaemia which are two genetic 

diseases caused by disruption in Ca2+ homeostasis (322). Mutation E297I is reported significantly 

perturbed the Ca2+ sensitivity of CaSR (335,507) (322). D318I in mGluR1 showed similar surface 

expression as WT mGluR1, while abolished sensitivity to both L-Glu and [Ca2+]o (501). The 

intracellular Ca2+ oscillation pattern and amplitude had been altered in other mutants D309A and 

D312A too. This site is highly conserved in both mGluR1 and mGluR5 (Fig. 5.2), suggesting those 

residues may play important role in structure or function. The equivalent surface expression of 

both WT and mutated mGluRs suggests that the difference between WT and mutants are due to 

the impaired receptor functions rather than the perturbation of receptor trafficking to the cell 

surface. 
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5.3.2 Ubiquitous actions of extracellular Ca2+ on mGluR5 

The mGluR5-ECD we purified from insect cell stays as dimer in solution as suggested by 

native gel result. Though it cannot resemble the entire mGluR5 protein and the local environment 

is different from in vitro, the mGluR5-ECD allows us to obtain some information about metal 

binding. The Ca2+-binding affinity of mGluR5-ECD determined by Ca2+-Tb3+ competition 

experiment in vitro is around 2.1 mM, which is slightly higher than the physiological concentration 

of [Ca2+]o in most tissues (1.8 mM); however, the [Ca2+]o in the nervous system changes  after 

periods of neuronal activities (288-297). This weak Ca2+-binding property of mGluR5 can also 

avoid occupying the Ca2+-binding site all the time, thus, the receptors are not always kept activated. 

We demonstrated that mGluR5 could be activated by either L-Glu or [Ca2+]o. The activation 

response of mGluR5 to [Ca2+]o is as fast as to L-Glu, indicating that [Ca2+]o is also an agonist of 

mGluR5. In our earlier report, L-Glu and [Ca2+]o synergistically elicited mGluR1 to reach its 

maximum activity (501). Mutating either the residues in the L-Glu-binding or Ca2+-binding 

pockets affected the sensing capability of mGluR5 to both L-Glu and Ca2+ in different extent. 

However, in the present study, no synergistic effect have been identified between L-Glu and 

[Ca2+]o, though [Ca2+]o enhanced the L-Glu potential to mGluR5, in reverse, no such effect has 

shown (Fig. 5.11) when monitoring the intracellular Ca2+ responses evoked by [Ca2+]o under 

different concentrations of [Ca2+]o. This phenomenon was also observed in another member of 

cGPCR, CaSR (349). A L-Phe-binding site adjacent to the predicted Ca2+-binding site in CaSR 

was found to enhance the responses of CaSR to [Ca2+]o. L-Phe itself cannot solely elicits CaSR, 

but function as a co-agonist to further induce conformational change initiated by [Ca2+]o. In 

addition to the intracellular Ca2+ response, the accumulation of phosphorylated ERK1/2 also have 

been observed when treated with [Ca2+]o. Higher [Ca2+]o were required to achieve the maximum 
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accumulation of phosphorylated ERK1/2 in three predicted Ca2+-binding ligand mutations than in 

WT mGluR5 as indicated by the EC50 comparison table 5.1. Taken together, Ca2+ could function 

as both direct activator of mGluR5 or exhibit modulatory effect on other agonist as extensively 

reported in the past. 

 

Figure 5.11 L-Glu did not influence the [Ca2+]o sensitivity of mGluR5. 

The [Ca2+]i mobilization evoked by [Ca2+]o in the presence of different concentrations of L-

Glu were monitored using single cell imaging assay. No significant difference were observed 

when L-Glu were applied.  
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5.3.3 Possible physiological significance of [Ca2+]o effects on mGluR5 in neuron system 

Under physiological conditions, native mGluR5 receptors in mammalian neurons are 

exposure to a millimolar range of [Ca2+]o; thus, the function of mGluR5 may be modulated by 

[Ca2+]o in several possible ways (Fig. 5.12) 

Frist, the [Ca2+]o fluctuations at where mGluR5 localized may activate this receptor. 

Though the data about [Ca2+]o fluctuation in single synaptic clefts are not available due to the lack 

of experimental techniques which allows rapid Ca2+ measurement in synaptic cleft, there are some 

large spatiotemporal scale studies suggested that [Ca2+]o in the synaptic cleft could change greatly 

as discussed in the first chapter. On the other hand, some studies at the mathematical and 

simulation level also indicated that large fluctuations in [Ca2+]o in synaptic cleft may be part of 

normal neural activity (293). Thus, it is highly possible that mGluR5 can be activated by abrupt 

changes in [Ca2+]o in the synaptic cleft during neural activities. The second possible way is through 

enhancing the sensitivity of other orthosteric ligand, such as L-Glu and L-Quis. Native group I 

mGluRs are rarely statured by L-Glu under physiological conditions, instead they are exposed to 

insufficient L-Glu as suggested by other studies (285,508). Therefore, [Ca2+]o could exert 

modulatory effects on L-Glu and other orthosteric ligands by increasing mGluR5’ sensitivity to 

them.  
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Figure 5.12 mGluR5 localization in neural system.  

 

5.3.4 The response of mGluR5 to extracellular Ca2+ resemble CaSR more than mGLuR1 

The intracellular Ca2+ response pattern of mGluR5 is similar to that of CaSR when 

activated. Both receptor activation accompany with intracellular Ca2+ oscillations (357-

360,509,510); but not mGluR1 in which a simple transient peak occurs when evoked (511). The 

intracellular Ca2+ oscillation induced by activation of mGluR5 and CaSR arise from the dynamic 

phosphorylation and dephosphorylation of receptors by PKC, which is activated upon activation 

of receptors. Amino acids T840 and T888 in mGluR5 and CaSR (Fig, respectively, are the primary 

PKC phosphorylation sties (362-364,366,511); while this phosphorylation site in mGluR1 is 

substituted by D854 (511). Oscillation of [Ca2+]o plays important role in signal transduction and 
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the regulation of gene expression. Different specific information can be decoded from the 

amplitude or frequency or duration of Ca2+ oscillation and transmitted into cells for various cell 

responses (512). Extracellular stimuli amount like the agonist concentration is proportional to the 

Ca2+ oscillation frequency or amplitude in most cases (513-516). Cells evoked by higher 

extracellular Ca2+ indeed displayed higher oscillation frequency and [Ca2+]o rise than those 

exposed to lower extracellular Ca2+. Besides, cells elicited by same concentration of L-Glu, but 

placed in various [Ca2+]o showed different [Ca2+]i oscillation frequency and sensitivity to L-Glu. 

The responses to L-Glu were altered in mutated mGluR5 with predicted Ca2+-binding ligands 

replaced, showing lower sensitivity to L-Glu as suggested by the oscillation starting point (Fig. 

5.13). 

From the aspect of oscillation pattern, mGluR5 resembles CaSR more than mGluR1. More 

quantitative analysis such as monitoring the IP accumulation or EK1/2 phosphorylation using 

Cisbio kits need to be performed to compare the EC50 difference between mGluR1, wild type or 

mutated mGluR5 elicited by L-Glu in the presence of various [Ca2+]o. 

 

  

 

a                                         b 
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Figure 5.13 Impaired L-Glu sensitivity of mGluR5 variants.  

(a) The [Ca2+]i responses of D305A evoked by L-Glu in the presence of 1.8 mM [Ca2+]o. (b) 

The oscillation starting concentration of L-Glu at which mGluR5 wild type and mutants 

started to respond was plotted as bar chart. Total cells with responses were divided by 

number of cells which respond to each concentration of L-Glu and then plotted as y axis. 

 

Taken together, we proved that [Ca2+]o activates mGluR5 to induce [Ca2+]i oscillation and 

ERK1/2 phosphorylation in the absence of Glu. A Ca2+-binding site formed by residues D305, 

D309, and D312 at the hinge region of the extracellular domain of mGluR5 has been identified by 

site-directed mutagenesis. Our studies revealed an additional regulation of mGluR5-mediated 

signaling and provided a new avenue to design therapy with improved selectivity. 
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6 STRUCTURAL BASIS FOR REGULATION OF HUMAN CALCIUM-SENSING 

RECEPTOR BY MAGNESIUM IONS AND AN UNEXPECTED TRYPTOPHAN 

DERIVATIVE 

6.1 Introduction 

The discovery of the parathyroid Ca2+-sensing receptor (CaSR) established a new paradigm 

that extracellular Ca2+ ([Ca2+]o) can act as a first messenger for regulation of diverse cellular 

processes, in addition to its well-known roles as a second messenger (279,517). Extracellular 

divalent cations, particularly [Ca2+]o and magnesium [Mg2+]o, along with amino acids and 

neurotransmitters, regulate numerous cellular processes via CaSR and 14 other family C, G 

protein-coupled receptors (cGPCRs), including metabotropic glutamate (mGluRs) and γ 

aminobutyric acid (GABA)B receptors (518-522). CaSR have been reported to be present not only 

in the key tissues involved in extracellular Ca2+ and Mg2+ hemostasis (e.g., parathyroid, thyroid, 

kidney, bone) but also in diverse other non-homeostatic tissues (e.g., brain, skin, et.) 

(372,377,500,523-533). Small changes in [Ca2+]o or [Mg2+]o trigger CaSR-mediated intracellular 

Ca2+ signaling and activate ERK1/2 (534). CaSRs play a central role in regulating [Ca2+]o and 

[Mg2+]o homeostasis by activating intracellular Ca2+ signaling (535),  in turn, inhibiting PTH 

release, stimulating calcitonin secretion and promoting renal Ca2+ excretion (536). L-amino acids, 

especially those with aromatic side chains, potentiate high [Ca2+]o–elicited activation of CaSR via 

positive heterotropic functional cooperativity (520). Like other cGPCRs, CaSR functions as a 

dimer (537,538) with a long (~600 amino acids) N-terminal ECD playing an important role in the 

receptor’s cooperative responses to its agonists (522). Over 400 mutations in CaSR cause human 

disorders with abnormal [Ca2+]o and [Mg2+]o homeostasis, including familial hypocalciuric 
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hypercalcemia (FHH), neonatal severe hyperparathyroidism (NSHPT) and autosomal dominant 

hypocalcemia (ADH); 225 of the mutations map to the ECD, highlighting its critical role (539).  

To date, how extracellular Ca2+, Mg2+ and amino acids cooperatively modulate intracellular 

Ca2+ signaling is a long-standing unanswered question. Unfortunately, there are no determined 

CaSR structures reported thus far despite extensive effort. The ECD has been shown to play an 

important role in the cooperative responses of the receptor to changes of [Ca2+]o, amino acids, 

metabolites, and neurotransmitters (499,530,540-544). Determination of the X-ray structure of the 

ECD of CaSR is largely hampered by difficulty in crystallization due to heterogeneous and 

extensive glycosylation (11 N-glycosylation sites) as well as challenges associated with membrane 

proteins with large molecular size. Further, Ca2+ and ligand-binding sites with weak binding 

affinities and rapid off rates are often not occupied in determined X-ray structure. For example, no 

bound Ca2+ has been observed in all the reported X-ray structures of the ECD of mGluRs, despite 

the clear modulatory effect of [Ca2+]o on this receptor.  

To clarify the mechanism for cooperative activation of CaSR by [Ca2+]o, [Mg2+]o, and 

amino acids, we solved the first crystal structure of human CaSR-ECD bound with Mg2+ ions and 

a high-affinity tryptophan derivative at 2.1 Å using mammalian expressed dimer with reduced 

glycosylation. An unexpected Trp derivative bound at the putative ligand binding site is present in 

this crystal structure. The ligand shows an unusual high affinity and potentiates Mg2+ binding and 

activation of CaSR. We also identified Mg2+ binding sites at the hinge region and the lobe 2 

dimerization interface. The structural information, together with structure-guided mutagenesis and 

cell-based functional assays, reveals the structure basis of agonist/co-agonist binding to CaSR and 

lays out a solid foundation for further clarification of the activation mechanism by ligands in a 

highly cooperatively way.   
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6.2 Results 

6.2.1 Purified hCaSR-ECD from HEK293 cells forms a homodimer 

Purified hCaSR-ECD was deglycosylated by Endo F1 incubation and the separation of 

hCaSR-ECD from Endo F1 was achieved by size exclusion chromatography. To roughly analyze 

the size of purified hCaSR-ECD, we mixed purified hCaSR-ECD with SEC standard proteins first 

and loaded the mixture to the SEC column. hCaSR-ECD was eluted out in the same position as 

the standard protein with a molecular weight of 158 kDa. This comparison of elution volumes of 

hCaSR-ECD and stand proteins suggests that the purified hCaSR-ECD forms a homodimer (Figure 

5.1).  Meanwhile, the SDS-Page gel of purified hCaSR-ECD in reducing and non-reducing 

conditions also clearly shows the electrophoretic mobility difference when reducing reagent was 

present or absent (Figure 6.1 inset). In the presence of reducing reagent, the hCaSR-ECD band 

showed between 50 and 75 kDa, while it appeared at 150 kDa when reducing reagent is absent. 

Taken together, those phenomena indicate that intermolecular disulfide bonds contribute to 

hCaSR-ECD dimerization. Structure-based sequence alignment of CaSRs and mGluRs showed 

that there are 6 highly invariant Cys residues in the ECD of both CaSRs and mGluRs.  
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Figure 6.1 Size exclusion chromatography of purified hCaSR-ECD. 

The elution volumes of the standard proteins are indicated by arrows. The inserted figure 

shows a SDS-PAGE of purified protein sample in reducing (lane 1) and non-reducing (lane 

2) conditions, respectively. hCaSR-ECD forms a homodimer as determined by the elution 

volume observed in size exclusion chromatography and non-reducing SDS-PAGE. The 

intermolecular disulfide bonds contribute to dimerization. 

 

6.2.2 Crystal structure of hCaSR-ECD 

The Venus flytrap (VFT) domain of the human calcium-sensing receptor ECD (hCaSR-

ECD, residues 20-541) was expressed in HEK293S (GnT1-) cells and purified by Ni2+-NTA 

chromatography followed by treatment with EndoF1 and further purification by size exclusion 

chromatography. Only in 200 mM Mg2+ and 10 mM Ca2+, we saw crystal formation that yields 

diffraction better than 4 Å. A mild dehydration significantly improved the resolution to 2.1 Å and 
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the structure was solved by molecular replacement using the structure of mGluR2 (PDB ID 4XAQ) 

as the search template (Fig. 6.2 and Table. 6.1). 

 

 

Figure 6.2 Crystal structure of hCaSR-ECD. 

(a) Monomeric hCaSR-ECD with labeled secondary structural elements. (b) Structural 

overlap of hCaSR-ECD with rat mGluR1 in the closed conformation (PDB code: 1EWK).  

(c) Homodimer of hCaSR-ECD. 
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Table 6.1 Crystallographic statistics of hCaSR-ECD and hCaSR-ECD/Gd3+. 

  

Crystal hCaSR-ECD hCaSR-ECD/Gd3+ 

Data Collection    

Wavelength (Å) 0.9785 1.6985 

Space group C2 C2 

Cell Dimensions (Å) 
a=170.9, b=82.9, c=94.3 

α=γ=90°, β=105.1° 

a=172.1, b=83.1, c=94.5 

α=γ=90°, β=105.2° 
*Resolution (Å) 40-2.1 (2.18-2.1) 40-2.7 (2.8-2.7) 
*Redundancy 3.8 (3.8) 3.6 (3.6) 
*Completeness (%) 100.0 (100.0) 98.9 (99.9) 
*I/σI 18.1 (1.5) 12.0 (2.8) 
*,†Rmerge 0.072 (0.913) 0.093 (0.772) 
*,‡Rpim 0.043 (0.541) 0.058 (0.468) 
§CC1/2 of the highest resolution shell 0.631 0.645 

Refinement     

Unique reflections 74,544 34,777 

Number of Atoms   

     Protein 7,449 7,264 

     CaSRL 32 32 

     Mg2+ 3 3 

     Gd3+ - 2 

     Other ligands/ions 94 90 

     Water 323 17 
||Rwork/Rfree 0.190/0.223 0.188/0.245 

Wilson B-factor (Å2) 38.5 69.2 

B-factors (Å2)   

     Protein 45.8 68.2 

     CaSRL 34.9 61.8 

     Mg2+ 53.1 74.5 

     Gd3+ - 110.6 

     Other ligands/ions 62.9 108.3 

     Water 46.1 51.6 

R.m.s. deviations   

    Bond lengths (Å) 0.010 0.012 

    Bond angles (°) 1.39 1.52 

Ramachandran plot (%)   

    Favored  97.0 95.0 

    Allowed 3.0 4.6 

    Outliers 0.0 0.4 

 

‡Rpim=∑hkl [1/(N-1)]1/2∑j |Ij(hkl)-<I(hkl)>| / ∑hkl ∑j Ij(hkl), where N is the redundancy of the 

dataset. 

§CC1/2 is the correlation coefficient of the half datasets. 
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||Rwork = ∑hkl | |Fobs| – |Fcalc| | / ∑hkl |Fobs|, where Fobs and Fcalc is the observed and the calculated 

structure factor, respectively, Rfree is the cross-validation R factor for the test set of reflections 

(10% of the total) omitted in model refinement. 

 

hCaSR-ECD contains two globular lobes with an overall structure similar to other cGPCR 

family members. Both the large lobe (subdomain 1) and the small lobe (subdomain 2) are typical 

α/β folds where the central parallel β-strands are sandwiched by α-helices (Fig. 6.2). In crystal 

packing, two hCaSR-ECD molecules associate with each other in one asymmetrical unit. Analysis 

of the dimerization interface shows that both dydrophobic residues and polar residues are involved 

in lobe 1 dimerization whereas the dimeric associations of lobe 2 are predominantly through 

hydrogen bonds, salt bridges and water molecules.  

6.2.3 Identification of a tryptophan derivative tightly bound at the putative ligand binding site 

of hCaSR-ECD 

Unexpectedly, a large, flatted and strong electron density was observed at the cleft between 

two lobes (Fig. 6.3a). Very interestingly, compared with the structure of mGluR with bound 

glutamate, this location of density largely overlaps with the Glu binding site of mGluR. We 

checked the size/shape of the known CaSR ligands, including Phe, Trp, GSH, as well as the 

reagents used in sample preparation and crystallization, but none of them fits the density well. 

Among these initial trials, Trp appears to be the best fit, but there is still unaccounted for density 

relative to the bound ligand observed here. Therefore, we suspected that this density corresponds 

to an unknown ligand of CaSR (denoted as CaSRL).  
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Figure 6.3 Identification and characterization of a tryptophan derivative bound to hCaSR-ECD. 

(a) Fo-Fc omit map of CaSRL at σ=4.5. The protein is shown in ribbon mode and the ligand 

shown in stick mode. The residues around CaSRL are labeled in the zoomed-in figure. (b) 

LC-ESI-MS of protein sample (top), buffer (middle) and the standard compound (bottom) 

in negative-ion mode. The high resolution isotopic MS spectra of the indicated peaks are 

shown in the inserted figures. 

To identify this ligand, we conducted experiments using high resolution mass 

spectrometry. The size of the density suggests that this ligand contains 14-18 heavy atoms 

(C/N/O/S/P) and the absence of anomalous signal indicates that it does not contain S or P. 

Accordingly, the molecular weight of this ligand must be within the range of 180-250 Da. In mass 

experiments, we focused on the compounds within this range and looked for the candidates 

exclusively showing up in protein sample but not in the sample buffer. As shown in figure xx, LS-

ESI-MS experiment identified a species eluting at ~ 4.65 min with a strong signal in negative 

mode. The high resolution isotopic MS data indicated that the molecular weight (M.W.) is 215.08 

(m/z=215.08 and Z=-1). The formula best matching the M.W.is C12H11N2O2 (calculated mass = 

215.0821, m = 1.4 ppm) (Figs. 6.3b and 6.4). A search of PubChem identified a tryptophan 

derivative, L-1,2,3,4-tetrahydronorharman-3-carboxylic acid (TNCA) with the predicted Mr and a 

shape of the observed density. When compared to tryptophan, TNCA contains one extra carbon 

atom linking the amine nitrogen atom and the C2 atom of the indole ring. TNCA can be detected 

in a various foods and biological systems likely due to tryptophan reacting with formaldehyde 

(545), and perhaps is generated during mammalian cell production of the recombinant protein. 

Elution time, molecular weight and MS fragmentation of synthetic TNCA matched those of 

CaSRL, confirming the identity of CaSRL (Figs. 6.3b and 6.4). 
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Figure 6.4 Identification of CaSRL. 
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(a) LC-ESI-MS in positive-ion mode. Only the zoomed-in regions are shown. The species 

eluted at 4.57 min with a M.W. of 215.08 in positive mode is an unidentified compound in the 

protein sample. A corresponding m/z 213.06 ion is not detected in negative-ion mode. (b) 

Fragmentation of CaSRL in positive-ion mode by application of increased collision energy 

in protein sample (upper two panels) and in standard sample (synthetic compound, lower 

two panels). 

 

6.2.4 Mg2+ elicits CaSR-mediated [Ca2+]i signaling pathways and ERK1/2 phosphorylation 

Mg2+ homeostasis shares common regulatory hormones including parathyroid hormone 

and vitamin D to calcium homeostasis. Small changes in extracellular Ca2+ or Mg2+ in the presence 

of elevated concentrations of the other divalent cation are able to trigger CaSR mediated 

intracellular Ca2+ transients in mouse distal convoluted tubule cells (MDCT). There are relatively 

sparse functional data for the activation of the cloned CaSR by Mg2+, to document that the receptor 

expressed in a heterologous expression system (HEK293 cells) could be activated by Mg2+. We 

examined the effects of increasing Mg2+ concentrations on two commonly studied CaSR signaling 

pathways, changes in [Ca2+]i and EKR1/2.  

Activation of CaSR by extracellular stimuli leads to the activation of phospholipase C, 

resulting the decomposition of PIP2 into IP3 and DAG which is followed by Ca2+ release from 

intracellular Ca2+ store ER upon IP3 receptor activation by IP3. Here we used cell population assay 

to monitor changes in [Ca2+]i. Cell population assay is monitoring the average [Ca2+]i change in a 

large cell population. Briefly, cells on coverslip were firstly loaded with Ca2+ indicator Fura-2 for 

20 minutes before measuring the fluorescence intensity using the fluorometer. Fura-2 is a 

ratiometric dye which emits at 510 nm when excited at 340 or 380 nm. The emission ratio change 
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at 340 over 380 nm reflects the [Ca2+]i change as described in chapter 4. Figure 6.5 shows Mg2+ is 

able to mobilize intracellular Ca2+ by activating CaSR though the potency of Mg2+ (Fig. 6.5a) is 

much lower than that of extracellular Ca2+ (Fig. 6.5b). It is consistent with the earlier report that 

compared with Ca2+, Mg2+ initiated a much weaker Ca2+-activated Cl- current in oocytes injected 

with CaSR RNA (279). The normalized intracellular Ca2+ responses were normalized and plotted 

against the concentration of extracellular Ca2+ or Mg2+ (Fig. 6.5c). In the presence of 0.5 mM or 

1.5 mM extracellular Ca2+, we further show that Mg2+ activation can be potentiated by Ca2+ since 

1.5 mM Ca2+ largely reduced the EC50 for Mg2+ from 7.2 to 4.5 mM (Fig. 6.5d). This observation 

suggests that the two metals share a similar activation mechanism and two metals exhibit 

cooperativity in binding as reported earlier by other groups (336,341,546). 

 

 

 

 

a                                         b 

 

  

 

 

                                                       

c                                         d 
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Figure 6.5 Mg2+ or Ca2+ elicited CaSR-mediated intracellular Ca2+ response. 

(a) [Ca2+]i was monitored using Fura-2 during cell population assay. The ratio of the intensity 

of light emitted at 510 nm upon excitation with 340 or 380 nm was normalized to its 

maximum response. [Ca2+]i rise in cells stably expressing CaSR (5001) evoked by a step wise 

increase of extracellular Mg2+ was plotted aginist time. (b) [Ca2+]i rise in 5001 cells elicited 

by a step wise increase of extracellular Mg2+ measured by cell population assay. (c) The 

normalized intracellular Ca2+ responses were plotted as a function of [Mg2+]o or [Ca2+]o and 

fit to the Hill equation. (d) In the presence of 0.5 mM (circles) or 1.5 mM (squares) [Ca2+]o, 

[Ca2+]i was monitored using Fura-2 during stepwise increases of [Mg2+]o. The [Mg2+]o 

concentration response curves were fitted using the Hill equation.  

 

The downstream signaling pathways induced by CaSR are complicated (529,547), 

including Gq-mediated activation of phospholipase C (PLC) leading to production of IP3 and DAG 

(317,318), Gi-mediated inhibition of AC (548), cytosolic phospholipase A2 (cPLA2) activation 

leading to arachidonic acid (AA) release (549), phosphatidylinositol 3-kinase (PI3 K)-mediated 

Akt activation, protein kinase C (PKC) activation, phosphatidylinositol 4-kinase (PI4 K) activation 

leading to PIP2 production, activation of the MAP kinases including p38 MAP kinase, Jun amino-

terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) and G12/13-mediated 

phospholipase D (PLD) activation leading to phosphatidic acid (PA) production (550). In my 

study, in addition to the Gq pathway, I also examined another CaSR effector, ERK1/2. Typically, 

CaSR activation through extracellular stimuli lead to phosphorylation of ERK1/2 via Ras-

dependent activation of MAP kinase kinase (MEK) (Fig. 6.6), inactivation of MEK by specific 
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inhibitors suppresses high extracellular Ca2+-induced ERK1/2 activation in both bovine 

parathyroid and HEK-CaSR cells (551).  

 

 

Figure 6.6 Schematic overview of CaSR effectors. 

Extracellular stimuli (like Ca2+, red dots; Phe) stimulates the activation of CaSR, leading to 

the downstream signaling changes (552). Gq-mediated activation of phospholipase C (PLC) 

leading to production of IP3 and DAG, in turn, IP3 activates IP3 receptors to release Ca2+ 

from the intracellular Ca2+-store. ERK1/2 can also be activated via Ras-dependent activation 
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of MEK. Thus, the [Ca2+]i and amount of phosphorylated ERK1/2 could reflect the activity 

of CaSR.  

 

5001 cells were treated with a series concentration of extracellular Mg2+ (0-30 mM) for 10 

minutes before lysis. The amount of total ERK1/2 and phosphorylated ERK1/2 were measured by 

western blot and subsequently analyzed by Image J. Exposure to higher extracellular Mg2+ resulted 

in more accumulation of phosphorylated ERK1/2, which reached its maximum at round 30 mM 

Mg2+ (Fig. 6.7a). The percentage of phosphorylated ERK1/2 over total ERK1/2 were plotted as a 

function of extracellular Mg2+ and fit to Hill equation to obtain the EC50 for Mg2+. A comparison 

between Mg2+ and Ca2+ was shown in Figure 6.7b. Ca2+ obviously displayed a much higher 

potency on CaSR than Mg2+ since the accumulation of phosphorylated ERK1/2 exhibited its 

maximum at around 8 mM Ca2+, almost 3-fold lower than that of Mg2+.  

 

 

Figure 6.7 Extracellular Mg2+ evoked phosphorylation of ERK1/2. 

(a) [Mg2+]o-activated ERK1/2 signaling in HEK293 cells stably transfected with CaSR. (b) 

ERK1/2 activities upon agonists’ stimulation were detected using western blot and further 

 

a                                         b 
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quantified using ImageJ. The measurements were plotted against different concentrations of 

[Ca2+]o or [Mg2+]o  and fit to the Hill equation. 

 

6.2.5 Identification of metal binding sites 

In the crystal structure, two Mg2+-binding sites were identified at positions designated site 

1 and site 2 (Fig. 6.8). No bound Ca2+ ions were observed since concentration of Mg2+ is 20-fold 

higher than Ca2+ and Mg2+ is expected to displace Ca2+. Site 1 is located at the dimerization 

interface of subdomain 2 and the bound Mg2+ coordinates with S240 and four water molecules 

with an ideal geometry for an Mg2+ ion. Notably, site 1 is surrounded by highly conserved residues 

(E228, E231 and E241*) (“*” means from the other protomer) within 5 Å from the “acidic patch” 

composed of negatively charged residues on subdomain 2 (Fig. 6.9). Site 2 is found on the 

periphery of subdomain 1 and an equivalent cation-binding site has been observed in mGluR (163) 

and likely plays a structural role. To locate additional high off-rate metal binding sites, we 

generated Gd3+-derivatized crystals and identified another metal-binding site (site 3) on the “acidic 

patch” in the proximity of subdomain 2 dimerization interface (Fig. 6.8b) and adjacent to the Mg2+-

binding site 1. Site 3 largely overlaps with a previously predicted Ca2+-binding site III (335).  
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Figure 6.8 Structural Basis for Mg2+/Ca2+ modulated CaSR activities. 

(a) Identified metal binding sites in the structure of hCaSR-ECD homodimer. Mg2+ and Gd3+ 

are depicted as a hot pink and dark blue sphere, respectively. Anomalous difference map of 

Gd3+ (σ = 8.0) is shown in purple. W represents water molecules. Both site 1 (c) and site 3 (b) 

are on the “acidic patch” at the dimerization interface of subdomain 2 (Supplementary Fig. 

7), whereas Mg2+ at site 2 in subdomain 1 (d) is primarily coordinated by the backbone 

carbonyl oxygen atoms. 

 

a 

b 

c 

d 
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Figure 6.9 Metal binding at the “acidic patch”. 

The electrostatic potential map of hCaSR-ECD is colored in accordance to electrostatic 

potential- red indicates negative potential, and blue positive potential. Mg2+ is represented 

by hot pink spheres, while Gd3+ is shown as blue spheres. The large surface with negative 

potential at the dimerization interface of subdomain 2 is referred as to “acidic patch”, where 

both Mg2+ and Gd3+ bind.  

 

Mutation of site 3 coordinating residue (E228I or E228I/E229I double mutant) reduced 

Ca2+/Mg2+-sensing as well as Mg2+-evoked intracellular Ca2+ mobilization. The EC50 for Mg2+ 

were remarkably increased when E228 and E229 were replaced by I. These results suggest the 

critical role of these metal-binding sites at the “acidic patch” in both metal-sensing (335) and in 

regulation of CaSR function (Figs. 6.10, Table 6.2).  
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Figure 6.10 Mutations of site 3 coordinating residue (E228I or E228I/E229I double mutant) 

reduced Mg2+-evoked intracellular Ca2+ mobilization. 

(a) Single mutation of E228I and double mutation of E228/229I on the “acidic patch” 

significantly reduce CaSR mediated [Ca2+]i responses in cell population assay. (b) Membrane 

expression of CaSR, mutant E228I and double mutant E228I/E229I. Blue: DAPI staining cell 

nuclei. Green: hCaSR immunoreactivity. NC is the non-transfected cell.  

 

 

Table 6.2 EC50 of [Mg2+]o for stimulation of [Ca2+]i signaling in cell population assay. 

 

(0.5 mM Ca
2+

) EC
50                                          

Hill number 

WT 7.2 ± 0.4 4.0 ± 1.0 

E228I 10.8 ± 0.3 3.9 ± 0.4 

E228/229I 10.0 ± 0.5 4.6 ± 0.5 

 

 

a                                                    b 
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6.2.6 The unexpected Trp derivative function as a co-activator and potentiates the actions of 

extracellular divalent cations 

To investigate the biophysiological function of CaSRL, we first want to address the 

question whether CaSRL solely acts on CaSR. The intracellular Ca2+ responses were examined in 

both single cell and cell population. Both of methods are monitoring the change of [Ca2+]o by 

utilizing Fura-2. Fluorescence microscope allows us to measuring the [Ca2+]o changes in single 

cell in the single cell image assay, while in cell population assay, the fluorometer measures the 

average [Ca2+]o change in a large population of cell.  

As shown in figure 6.11, in single cell image assay, addition of CaSRL up to 0.5 mM, 

which is the highest concentration we can achieve due to the poor solubility of this compound, to 

5001 cells did not lead to any intracellular Ca2+ responses mediated through CaSR. Using the cell 

population assay, a step wise increase of CaSRL to the cuvette also did not evoke significant 

intracellular Ca2+ responses, which is consistent to the single cell image result (Fig. 6.11).  

 

 

 

 

 

 

 

 

Figure 6.11 CaSRL does not function solely 
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The next question we asked is that whether CaSRL function in a similar way to the amino 

acids which can potentiate extracellular Ca2+-elicited CaSR activation since it shares a very similar 

structure with Trp. It is reported that L-amino acids, especially aromatic amino acids (including 

L-Trp), enhance the sensitivity of CaSR to its agonist, like extracellular Ca2+ (347,349,553). We 

performed similar cell population assay. Cells were placed in bath solution containing basal 

CaSRL and elicited by either extracellular Ca2+ or Mg2+. The control group were immersed in bath 

solution without any CaSRL. A comparison of EC50 of Ca2+ or Mg2+ for CaSR in the presence or 

absence of CaSRL shows that CaSR decreased the EC50 of both Ca2+ and Mg2+ significantly, 

suggesting CaSRL potentiated the actions of Ca2+ or Mg2+ on CaSR activation (Fig. 6.12). We also 

compare the potency of CaSRL and L-Phe. Though the structure of CaSRL is much closer to L-

Trp than L-Phe, we have reported the EC50 of L-Phe in 2014 (349) and a comparison of EC50 

between them will allow us to have a brief idea about how strong CaSRL is. In the presence of 10 

mM L-Phe, the same concentrations of extracellular Mg2+ were applied. The response curves 

against the concentration of Mg2+ shifted to the right compared with that of CaSRL and the EC50 

of Mg2+ for CaSR was higher when Phe instead of CaSRL was present. This result suggests that 

CaSRL is a more power and potent co-activator than L-Phe.  

 

 

a                                          b 
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Figure 6.12 CaSRL function as a novel high-affinity co-agonist of CaSR. 

(a) CaSRL potentiates [Mg2+]o evoked [Ca2+]i response in a population assay in 5001 cells 

measured by  Fura-2 AM in the absence (black square) or presence of Phe (blue triangular) 

or CaSRL (red closed circle). (b) CaSRL potentiates [Ca2+]o elicited [Ca2+]i response in a 

population assay in 5001 cells measured by  Fura-2 AM in the absence (black square) or 

presence of CaSRL (red closed circle). 

In addition to potentiate divalent cations evoked [Ca2+]i response, CaSRL also enhanced 

the phosphorylation of ERK1/2 elicited by extracellular Mg2+. In the presence of CaSRL, more 

phosphorylated ERK1/2 accumulated at the same [Mg2+]o (Fig. 6.13). 

 

 

Figure 6.13 CaSRL potentiate CaSR mediated ERK1/2 activation. 

(a) [Mg2+]o-activated ERK1/2 signaling in HEK293 cells stably transfected with CaSR in the 

presence of 0.5 mM CaSRL. (b) ERK1/2 activities upon stimulation by series concentrations 

of [Mg2+]o in the absence or presence of CaSRL in CaSR stably expressed HEK293 cells (5001 

cells) were plotted against [Mg2+]o and fit with the Hill equation.  

 

a                                              b       
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To measure the binding affinity of CaSRL to CaSR, we performed different experiments, 

including surface plasma resonance (SPR). However, none of the work well. The mechanism of 

SPR was described in detail in chapter 3. Basically we first immobilized hCaSR-ECD on the chip 

surface and then flow the CaSRL on the surface of chip. However, flowing CaSRL on the chip 

surface with hCaSR-ECD mobilized did not cause the response unit increase which indicated that 

no binding of CaSRL to the chip surface (Fig. 6.14). Several reasons accounted for the failure of 

this experiment. First, the hCaSR-ECD was fully occupied by CaSRL since this endogenous ligand 

was co-crystallized with hCaSR-ECD even after so many steps of purification or treatment. This 

suggested that it bond strongly. Second, CaSRL is very small compared with hCaSR-ECD. 

Binding of CaSRL to hCaSR-ECD may not cause any significant mass change and thickness 

alteration of the sensor chip. Therefore, we decided to briefly estimate the binding affinity or EC50 

of CaSRL indirectly. During cell population assay, we elicited CaSR using a step wise increase of 

extracellular Mg2+ in the presence of different concentration of basal CaSRL. The EC50 of Mg2+ 

when co-applied with various concentrations of CaSRL were determined by fitting to Hill 

equation. The EC50 changes of Mg2+ were plotted agonist the CaSRL concentration and fit to Hill 

equation to estimate the EC50 of CaSRL. As shown in figure 6.15, higher concentration of CaSRL 

shifted the response curve of Mg2+ from right side to the left and decreased the EC50 of Mg2+ from 

7.2 mM to 3.3 mM (Table. 5.3). The estimated EC50 of CaSRL indirectly obtained from response 

to Mg2+ was around 15 µM, thousand-time lower than that of L-Phe. 
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Figure 6.14 Monitoring CaSRL binding to hCaSR-ECD by SPR. 

(a) Immobilization of hCaSR-ECD to CM5 chip surface. Injection of hCaSR-ECD resulted 

in response unit increase from 35000 to ~60000. (b) 0.5 mM CaSRL was injected for 300s 

and flowed on both channel 1 (control channel without hCaSR-ECD immobilization) and 

channel 2 (experimental channel with hCaSR-ECD immobilization). Red: control channel 1; 

Blue: experimental channel 2; Black: real response curve after background extraction. 

 

 

 

 

a                                             b 

 

a                                           b    
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Figure 6.15 Indirectly measuring EC50 of CaSRL. 

(a) [Mg2+]o-evoked [Ca2+]i response in the presence of different concentrations of CaSRL in 

5001 cells using cell population assay. (b) A maximally active concentration of 0.1 – 0.5 mM 

CaSRL dramatically reduces the EC50 for activation of [Ca2+]i signaling by [Mg2+]o in the 

presence of 0.5 mM [Ca2+]o. CaSRL displays an apparent Kd of 15 uM using whole curve 

fitting.  

 

Table 6.3 EC50 of [Mg2+]o for elicitation of [Ca2+]i rise in cell population assay when different 

concentrations of CaSRL co-applied. 

Co-activators EC50 of [Mg2+]o 

0.5 mM [Ca2+]o 7.2 ± 0.39 

0.5 mM [Ca2+]o + 0.0001 mM CaSRL 6.7 ± 0.25 

0.5 mM [Ca2+]o + 0.001 mM CaSRL 5.7 ± 0.47 

0.5 mM [Ca2+]o + 0.01 mM CaSRL 5.5 ± 0.27 

0.5 mM [Ca2+]o + 0.1 mM CaSRL 4.8 ± 0.24 

0.5 mM [Ca2+]o + 0.5 mM CaSRL 3.3 ± 0.70 

 

The strong binding of CaSRL to CaSR was also proved by Phe replacement experiment. 

150 mM Phe only partially replaced CaSRL in the purified hCaSR-ECD (Fig. 6.16). The peak of 

CaSRL in hCaSR-ECD detected by MS only decreased one fifth when 50 mM Phe were mixed 

with hCaSR-ECD overnight. The signal of CaSRL decreased half when 150 mM Phe was applied. 

The result suggest that Phe and CaSRL share the same binding site in hCaSR-ECD. Taken 
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together, CaSRL is a novel, high affinity co-agonist of CaSR in activation of both [Ca2+]i signaling 

and ERK activity. 

 

 

Figure 6.16 Replacement of CaSRL by phenylalanine. 

With the increase of phenylalanine concentration (from 0 to 150 mM), the signal of CaSRL 

(the peak eluted at 4.64 min) detected by MS decreases correspondingly, indicating that the 

binding site of Phe and that of CaSRL are overlapping. The areas under the peaks are 838, 

180 and 76, respectively. 
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6.2.7 Determining Mg2+ binding capability using hCaSR-ECD 

To determine the Mg2+-binding affinity to hCaSR-ECD, we performed Mg2+ titration 

experiment. The intrinsic Trp fluorescence emission was monitored using the fluorometer. 

Addition of Mg2+ into the curvet led to significant decrease of Trp fluorescence intensity until 

hCaSR-ECD was saturated at 24 mM Mg2+. The fluorescence intensity changes were plotted 

against the concentration of Mg2+, yielding a Kd of ~ 7 mM. We also performed Mg2+-Tb3+ 

competition experiment to indirectly reflect the Mg2+-binding capability to hCaSR-ECD. 30 µM 

Tb3+ was mixed with 2 µM hCaSR-ECD to allow Tb3+-binding to hCaSR-ECD, followed by 

titrating high concentration of Mg2+ in to compete the pocket with Tb3+. Tb3+ fluorescence intensity 

was decreased when the free Tb3+ concentration increased. As shown in figure 6.17, high 

concentration of Mg2+ was required to kick out the Tb3+ from the pocket, which suggests that Mg2+ 

binding is a weak binding. 
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Figure 6.17 Determining Mg2+ binding capability using hCaSR-ECD. 

The magnesium titration was performed in HEPES buffer (10 mM HEPES, 120 mM NaCl 

and 10 mM KCl, pH 7.2) with a protein concentration of 2.0 µM. (a) Magnesium titration 

curve of hCaSR-ECD (squares). Insert, Trp fluorescence spectra of hCaSR ECD in the 

presence of 0 (---) and 24 mM Mg2+ (—). (b) Tb3+-hCaSR-ECD fluorescence intensity in the 

presence of 0 (white bar) or 91 mM Mg2+ (gray bar).  

6.3 Discussion 

The CaSR-ECD in the crystal structure is present as homodimer. This stable dimer 

structure of hCaSR-ECD is further supported by the elution volume observed in size exclusion 

chromatography and the molecular weight found in reducing/non-reducing page gel, which 

indicates that intermolecular disulfide bonds also contribute to dimerization (Fig. 6.1). In the 

crystal structure, both protomers in a closed conformation (Fig. 6.2c) similar to the equivalent 

closed conformation of mGluR1 bound with glutamate (r.m.s.d. of 1.24 Å for C (Fig. 6.2b) despite 

a low sequence similarity between members of family C (20-30%) (Fig. 6.18)(163). In addition, 

the direct and extensive homodimeric subdomain 2 interactions in the hCaSR-ECD are analogous 

to those observed in the mGluR2 dimer with a bound agonist (PDB code: 4XAQ), strongly 

suggesting that the hCaSR-ECD crystal structure represents an active conformation (Fig. 6.19) 

(391). 

 

 

 



244 
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Figure 6.18 Structure-based sequence alignment of CaSRs and mGluRs (by PROMALS3D) 

(439)). 

α-helixes and β-strands are depicted as red cylinders and blue arrows, respectively. The 

invariant Cys residues are highlighted in black boxes. The following symbols indicate the 

residues involved in ligand/ion binding: ● CaSRL; † Glutamate; × Bicarbonate; # the site of 

glycosylation. hCaSR: Homo sapiens (AAI12237); mCaSR: Mus musculus (AAD28371); 

fCaSR: Xenopus (Silurana) tropicalis (XP_004919842); sCaSR: Salmo salar 

(NP_001119703); rmGlR7 (PDB code: 2E4Z); rmGluR2 (PDB code: 4XAQ); rmGluR1 (PDB 

code: 1EWK).  

 

 

 

Figure 6.19 Comparison of CaSR and mGluR2 structures. 

Structural overlapping of hCaSR-ECD dimer (blue) with mGluR2 dimer ECD (pink) with 

bound agonist (PDB code: 4XAQ) with a Cα r.m.s.d. of 2.8 Å. The proteins are depicted in 

ribbon mode, and CaSRL (cyan) and the mGluR agonist (yellow) are in stick mode. 
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A close inspection of the structure reveals two major differences between hCaSR-ECD and 

mGluR1-ECD. Firstly, loop 1 which connects β2 and α1, is significantly longer than those in 

mGluRs. Interestingly, loop 1 adopts a fairly extended conformation and forms a direct contact 

with α13*, the corresponding structural element from the other protomer. Importantly, Pro55, 

whose mutation to Lys leads to inactivation of CaSR in the human disorder Familial Hypocalciuric 

Hypercalcemia (FHH), is associated with Leu51 and Trp458* through hydrophobic interaction at 

the dimerization interface. As Leu51, Pro55 and Trp458 are highly conserved in CaSR across 

species. Loop 1-mediated contacts with α13 are presumed to be critical for the function of CaSR. 

Secondly, our structure reveals that loop 2, which link α2 and β4, also contributes to dimerization. 

Although disordered in one protomer, we can build the backbone structure of loop 2 in another 

protomer, which was not visible in mGluR structure due to high flexibility. The N-terminus of 

loop 2 is an alpha helix (α2a) extended from α2 with a 60o kink at Asn118. The two α2a extensions, 

together with the two α2 helical segments embrace each other, likely stabilizing dimerization. 

Loop 2 contains two conserved Cys residues (Cys 129 and Cys131), and the approaching of the 

loop 2 from the two protomers provides a structural basis supporting the formation of the 

intermolecular disulfide bonds.  

CaSR strongly prefers aromatic amino acid ligands, such as Phe and Trp, over negatively 

charged Glu, the ligand for mGluR. Structural comparison of the ligand-binding pocket in the 

hinge region between subdomains 1 and 2 of the hCaSR-ECD with that of mGluR1 reveals the 

structural basis of ligand selectivity (Fig. 6.20). Although the amino acid backbone of CaSRL 

adopts a similar conformation as Glu in mGluR1 through extensive interactions with S147, A168, 

S170, and Y218 (S156, S186, T188 and Y236 in mGluR1) (163). However, hCaSR and mGluR1 

recognize the side chains of their preferred ligands differently: (1) Two positively charged residues 
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in mGluR1 (R78 and K409) that associate with the carboxylate group of the Glu ligand are replaced 

in hCaSR by W70 and I416 interacting with the indole ring of CaSRL. (2) Bulky residues (Y74, 

W110 and R323) limiting the mobility of the Glu side chain are replaced by smaller residues in 

hCaSR 9G67, N102 and S302). As a result, the size of the ligand binding pocket of hCaSR is 

significantly greater than that of mGluR1, consistent with the preference of CaSR for larger 

ligands. 

 

 

Figure 6.20 Structural comparison of CaSR ligand binding site with that of mGluR1. 

The ligands (a) CaSRL in hCaSR-ECD and (b) Glu in mGluR1 are highlighted in yellow. 

The red balls represent water molecules. The hydrogen bonds are depicted by dashed lines. 

(B, PDB code: 1EWK). 

 

Mapping of disease-associated mutations on the structure of hCaSR-ECD shows that the 

mutations are clustered in two regions: the hinge region between subdomains 1 and 2, and the 

dimerization interface (Fig. 6.21) (554,555). Indeed, our structural and functional data strongly 
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support the pivotal roles of these two regions in CaSR function. The hinge region between 

subdomains 1 and 2 harbors the binding site of TNCA supporting its role as a co-agonist of CaSR. 

Two other co-agonists of CaSR, Phe and Trp, likely bind in the same position (Fig. 6.22). We did 

not observe metal binding at the previously proposed “site 1” for Ca2+ (335,394,556). A close 

inspection of the structure reveals that the side chain of E297, a critical residue predicted for Ca2+ 

binding in the proposed “site 1”, swings away from the other residues in “site 1” (S170, D190, 

Q193 and Y218), probably due to the extra carbon atom and the rigid structure of TNCA, 

ultimately resulting in its failure to capture the Ca2+ ion in combination with other “site 1” residues. 

(Fig. 6.23). Nevertheless, the essential role of E297 in Ca2+ sensing has been supported by previous 

mutational studies (335,522) and in the abrogated Mg2+ sensing of the E297I mutant (Table 6.2). 

Interestingly, a bicarbonate anion was also identified at the hinge region in the proximity of TNCA, 

coordinated by the side chains of R66, R69, W70, and S417 and the backbone amide nitrogen 

atoms of I416 and S417 (Figs. 6.20 and 6.24), potentially contributing to the known pH sensitivity 

of the CaSR (557). 
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Figure 6.21 Disease related mutations on CaSR ECD. 

Blue: loss-of-function associated with familial hypocalciuric hypercalcemia (FHH). Red: 

gain-of-function mutations associated with autosomal dominant hypocalcemia (ADH).  

 



250 

 

 

Figure 6.22 Replacement of TNCA by phenylalanine.  

With the increase of phenylalanine concentration (from 0 to 150 mM), the signal of CaSRL 

(the peak eluted at 4.64 min) detected by MS decreases correspondingly, indicating that the 

binding site of Phe and that of CaSRL are overlapping. The areas under the peaks are 838, 

180 and 76, respectively. 
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Figure 6.23 Structure of the proposed calcium binding "Site 1". 

The residue of the proposed “site 1” and CaSRL are depicted in stick mode. The arrow 

indicates that the side chain of E297 swings away from the proposed calcium-binding site, 

due to steric hindrance imposed by CaSRL. As a result, E297 cannot join with other residues 

in “site 1” to capture the metal ion. Instead, E297 forms a hydrogen bond with the nitrogen 

atom on the indole ring of CaSRL. In the crystal structure, the proposed calcium-binding 

“site 1” is occupied by a water molecule (red sphere).   
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Figure 6.24 Identification of a bicarbonate anion near the ligand binding site. 

The triangular planar-shaped electron density (Fo-Fc map at σ=4) is a bicarbonate anion, as 

there is no nitrate in the crystallization solution and the pH in the crystallization drop is 7.0. 

The bicarbonate anion is coordinated by the side chains of R66 (mutated in FHH and ovarian 

cancer), R69 (mutated in lung and endometrial cancer), W70 and S417, and the backbone 

amide nitrogen atoms of I416 and S417. Remarkably, R66, R69 and W70 are highly 

conserved in CaSR across species, but replaced by other residues in mGluRs. R66 and R69 

are disease-related residues. Alterations in pH over the range of 5.5-6.0 to 9 are known to 

modulate the activity of the CaSR, and the bound bicarbonate identified here could 

potentially contribute to the pH sensitivity of the CaSR. 

 

Evidence also suggested a potential Mg2+ binding site at the hinge region in the proximity 

of the bound TNCA (Fig. 6.25). Modeling a water molecule at this position led to a B factor (26-

32 Å2) substantially smaller than the coordinating atoms (35-40 Å2), suggestive of a slightly 
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heavier atom occupying this position. Considering the negatively charged coordination sphere 

(A214, D216, Y218, S272, D275 and water), it was possible that this density corresponded to a 

bound Mg2+. Mutations such as Y218K and D275I resulted in diminished intracellular calcium 

responses using both the cell population and single cell calcium imaging assays, although these 

mutations retained their surface expression (Fig. 6.25b). Alternatively, it may be a highly ordered 

water molecule trapped at the hinge region, as the distances to the coordinating oxygen atoms (2.5-

2.8 Å) were significantly greater than typically observed Mg-O distance in biomolecules (2.1 Å) 

(558). Nevertheless, the low occupancy of Mg2+ due to its weak affinity may also cause a distorted 

geometry. At this stage, we have placed a water molecule in the model; however, given the 

importance of the hinge region in CaSR function and regulation, more functional and structural 

studies are warranted to further investigate this potential Mg2+ binding site identified here. 
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Figure 6.25 Identification of a potential Mg2+ binding site at the hinge region. 

(a) Putative Mg2+ ion (large hot pink sphere) is coordinated by the side chains of D216, D275, 

S272 and a water molecule. The 2Fo-Fc electron density map (σ=1) is shown in light blue. W 

indicates the water molecule (small red sphere) bridging the putative Mg2+ and CaSRL. The 

dashed lines in grey indicate the potential Mg-O interaction, and the distances (in Å) between 

Mg2+ and oxygen atoms are shown on the dashed lines. (b) Membrane expression of CaSR 

and its variants. Immunostaining of non-permeabilized HEK293 cells expressing hCaSR was 

done with anti-FLAG monoclonal antibody, which recognizes the FLAG tag inserted in the 

CaSR ECD, and detection was carried out with Alexa Fluor 488-conjugated, goat anti-mouse 

secondary antibody. Blue: DAPI staining cell nuclei. Green: hCaSR immunoreactivity. 

 

Several lines of evidence indicate a critical role of CaSR-ECD dimerization in CaSR 

function (Figs. 6.2 and 6.27). First, two metal binding sites (site 1 and site 3) are identified within 

the “acidic patch” at the dimerization interface of subdomain 2 (Figs. 6.8 and 6.9). A double 

mutant of CaSR (E228I/E229I) in site 3 showed a significantly decreased responsiveness to 

[Ca2+]o, and the E228I mutation also reduced activation of [Ca2+]i oscillations induced by [Mg2+]o 

as well as reduced Mg2+ binding, despite a similar level of membrane expression as WT CaSR 

(Figs. 6.8, 6.10, Table 6.2) (394). These data strongly suggest a role of metal binding at the “acidic 

patch” in metal sensing and signal transduction. Second, two loops (loop 1 and loop 2, Fig. 6.2) 

that mediate subdomain 1 dimerization, are functionally important (Fig. 6.27a). Loop 2, following 

α2, is largely disordered in mGluR structures, but is known to participate in two intermolecular 

disulfide bonds in CaSR through two conserved cysteine residues (C129 and C131) (537,559) 

(Fig. 6.27b). The N-terminal part of loop 2 forms a short α-helix (α2a) extended from α2 with a 
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kink at N118. The α2a segments from each protomer embrace each other, likely stabilizing 

dimerization (Fig. 6.27a). As several activating ADH mutations (L125P/F, E127G/A/K, 

C129Y/F/S/R, and N118K) and one inactivating FHH mutation are present on loop 2, subdomain 

1 dimerization that is facilitated by loop 2 appears to be crucial in regulating the function of CaSR. 

Moreover, the highly conserved loop 1, which is significantly longer than the corresponding loop 

in mGluRs (Fig. 6.26), reaches across the dimerization interface to a hydrophobic surface on α13*. 

The hydrophobic interaction, primarily mediated by P55, L51 and W458*, stabilizes an extended 

conformation of loop 1, and a conserved positively charged patch also appears to contribute to 

dimerization of subdomain 1 (Fig. 6.27a). Notably, mutation of P55 causes FHH, indicative of a 

critical role of loop 1. 

 

 

Figure 6.26 A positively charged pocket for loop 1 association.  

Loop 1 for CaSR (a) and the corresponding loop in mGluR1 (b, PDB code 1EWK) are 

highlighed in yellow. The electrostatic potential map is colored in accordance to charge, with 

red representing negative potential, and blue positive potential. Loop 1 in CaSR is 

 

a                                              b 
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significantly longer than the counterpart in mGluR1, reaching across the dimer interface to 

nestle into a positively charged pocket which is absent in mGluR1.  

 

Where does this novel ligand come from puzzled us. We first checked fresh mammalian 

cell culture medium which was purchased from Invitrogen. We also checked medium when we 

purified hCaSR-ECD from cell culture and all purification buffer utilized in the purification 

procedure using mass spectrometry. However, we did not detect any TNCA in any of them. From 

the result, we could not draw conclusion that TNCA did not exist in culture medium since we did 

not enrich the medium. Human CaSR-ECD was firstly enriched by affinity column and then 

enriched again during crystallization. TNCA was tightly grabbed by hCaSR-ECD and was 

enriched simultaneously. However, when we checked cell culture medium, we did not enrich it. 

The TNCA amount in the culture medium may be below the limit of detection and resulted in the 

immeasurability. But it is also possible that TNCA is synthesized inside of cell during metabolism. 

It is likely produced by tryptophan reacting with formaldehyde in human. Next, we need to check 

the human blood sample and measure its concentration in blood since TNCA can be detected in 

various food and biological systems.  

Figure 6.27 summarizes our present model for receptor activation and subsequent signal 

transduction that occurs via a conformational change induced by binding of ligand and 

calcium/magnesium at the cleft region between subdomains 1 and 2 as well as bridging interactions 

provided by metal ions binding at the “acidic patch” at the interface between the two subdomain 

2 regions of the respective protomers. Initial dimerization of the CaSR ECD is facilitated by a 

unique “charged lock” between subdomains 1 of the two protomers orchestrated by conserved loop 

1 and the charged pocket that embraces the two monomers and leads to a significantly greater 
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dimer interaction surface. Mutations at these key determinants in the ECD of CaSR cause human 

disorders with abnormal [Ca2+]o and [Mg2+]o homeostasis. The presumed conformational change 

induced by ligand/metal binding at the hinge region between subdomains 1 and 2, together with 

homodimerization of protomer subdomains 1 and 2 via loops 1 and 2, respectively, facilitates the 

approach of subdomains 1 and 2 from the two respective protomers. By neutralizing the repulsive 

effects of the negatively charged conserved “acidic patch”, metal binding would stabilize 

subdomain 2 interactions. Dimerization of subdomain 2 is also critical for activation of mGluRs 

and GABAB receptors, and therefore it appears to be a common activation mechanism among 

cGPCRs that presumably leads to conformational changes of the transmembrane and intracellular 

domains, through which the intracellular signal cascades are initiated.  Consistent with this model, 

mutations at these key determinants in hCaSR-ECD cause human disorders with abnormal [Ca2+]o 

and [Mg2+]o homeostasis. Thus, our proposed model, which is based on structural and associated 

biochemical and cellular studies on wild type and mutant proteins, reveals the structural basis of 

agonist/co-agonist binding to CaSR and provides a framework for further studies on the 

mechanism of receptor activation. The discovery of and unexpected tryptophan derivative ligand 

with unusually high affinity in potentiation of activation of CaSR by [Ca2+]o and [Mg2+]o also opens 

new avenues for development of agonists and antagonists as therapeutics for CaSR-related 

diseases. 
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Figure 6.27 Key determinants for the molecular basis of disease-associated mutations and 

regulation.  

(a) Involvement of loop 1 (Yellow) and loop 2 (Gold) in dimerization. (b) Working model for 

activation occurs via a conformational change induced by ligand binding at the hinge region 

between subdomains 1 and 2 as well as bridging interactions provided by metal ions binding 

at the “acidic patch” at the interface between the two subdomain 2 regions of the respective 

protomers. Mutations at these key determinants in the ECD of CaSR cause human disorders 

with abnormal [Ca2+]o and [Mg2+]o homeostasis.  

 

 

 

 

 

 

 

a                                   b 
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7 MAJOR CONCLUSIONS AND SIGNIFICANCE 

In summary, using different biophysical methods and cell-based assays, we performed a 

series of experiments elucidating the indispensable role of [Ca2+]o in regulation of gap junction 

channel and mGluR5 activity, and revealing the structure of Ca2+-sensing receptor with Mg2+ and 

unexpected ligand bound. The issue associated with large mammalian membrane protein 

expression and purification presented huge challenge in my studies, especially for the gap junction 

project. The codon preferred by eukaryotic hosts are quite different from the one used by E.coli. 

The low popularity of those tRNA matching the rare codons leads to the abortion of transcription 

and failure of protein expression. The large amount expression of exogenous proteins also caused 

huge toxicity for expression hosts. Exclusion bodies are usually formed to decrease this toxicity. 

However, this brings new problems associated with refolding the membrane proteins to the protein 

purification process. The purification of membrane protein usually starts with detergent extraction 

from membrane. The selection of detergent is crucial. The selection criteria is to extract as much 

protein as possible without destroy the membrane protein structure. Membrane protein are highly 

hydrophobic and tend to form aggregates following solubilization. Thus, the selected detergent 

needs to be efficient enough to warp the membrane protein and prevent the aggregation. I have 

struggled in the membrane protein expression and purification for a long time, from tissue isolation 

and E.coli expression to insect and mammalian cell expression. However, I am armed with rich 

membrane protein expression and purification experience after coming through all difficulties.  

I am also so proud that we are the first group to provide more evidence for the debate in 

gap junction field. The role of CaM in regulation of gap junction has been came out for a long time 

and experienced spirited debate for a long time. However, so far no indecisive result came out to 

prove the direct interaction between gap junction protein and CaM. Using BRET assay, we 
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successfully detected the direct association between them. Different gap junction proteins 

distribution show tissue preference and the free [Ca2+]i amount also varies in different tissue cells. 

Our finding that different connexins interact with CaM in different mode may relate with this 

[Ca2+]i concentration variation and expression preference. [Ca2+]i activates CaM to regulate cell-

cell communication via gap junction proteins and differential interaction of CaM to vary connexins 

directly control their biological and physiological activities. 

The first CaSR-ECD crystal structure provide the structure information for the whole CaSR 

field. The structure and function studies also revealed that Ca2+/Mg2+ work cooperatively to active 

CaSR via ECD. The discovery of co-agonist TNCA with high affinity that potentiates the 

activation of CaSR by [Ca2+]o and [Mg2+]o opens new avenues for development of agonists and 

antagonists as therapeutics for CaSR-related diseases.  

In summary, although the whole pass was covered with grass and thorns, we were able to 

achieve the following goals:  

In Chapter 3, the studies on CaM and Cx45 association for the first time have revealed a 

Ca2+-dependent interaction between them in living cells. Though previous studies reported that 

CaM was involved in Cx45 gap junction channel regulation, the evidence through CaM expression 

control were all indirect. No direct binding data are available. After successfully visualizing the 

interaction in living cell, we proceeded to identify the putative CaM binding site in Cx45. Using 

peptide mode, we proved that CaM binds with Cx45-derived peptide with a high affinity in the 

presence of Ca2+. These finding advanced our understanding about Ca2+/CaM gating of gap 

junction channels.  

In Chapter 4, the studies on Cx26 regulation by [Ca2+]o was hampered by lots of difficulties 

and challenges associated with this membrane protein and its mutants. We successfully predicted 
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a possible Ca2+-binding pocket formed by extracellular loops of Cx26. This coordination ligand in 

Ca2+-binding site is almost overlapping with the residues in the solved Ca2+-bound Cx26 crystal 

structure published recently. To obtain enough Cx26 protein for biophysical studies, we 

successfully established baculovirus expression system which was also used for other membrane 

protein expression in our lab later. Besides, we also proved the gating effect of [Ca2+]o on Cx26 

hemichannels in HeLa cells using dye uptake assay. However, we could not successfully perform 

the same experiment in mutants which are predicted Ca2+-binding ligand. Mutants in the putative 

Ca2+-binding site caused cell death due to aberrant [Ca2+]o regulation and some mutants formed 

non-functional hemichannels.  

In Chapter 5, the studies on [Ca2+]o modulation of mGluR5 further proved the conserved 

Ca2+-binding site in group I mGluRs. This site was firstly reported by our group in mGluR1. Using 

the same computational algorithm and further sequence analysis, we reported a similar Ca2+-

binding site located in the hinge region of mGluR5. We further confirmed the regulatory function 

of this predicted Ca2+-binding site through single cell imaging and mutagenesis studies. The 

response pattern of mGluR5 to [Ca2+]o highly resemble Ca2+-sensing receptor. On the other hand, 

[Ca2+]o also found to enhance the action of orthosteric agonists (L-Glu and L-Quis) on mGluR5 by 

increasing their sensitivity and maximum responses. These discoveries may provide other 

opportunities for designing drugs with subtype selectivity.   

In Chapter 6, the studies on Ca2+-sensing receptor reported the first available crystal 

structure for CaSR, although this receptor have been identified more than 20 years ago. First, we 

successfully solved the crystal structure of hCaSR-ECD using crystals obtained in 200 mM Mg2+. 

It was found that hCaSR-ECD formed dimer and both protomers were in open states. Besides, 

Mg2+ ions were identified in the hCaSR-ECD crystals. Using cell population assay and 
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mutagenesis studies, we further proved the function of those Mg2+-binding sites in regulation of 

CaSR activity.  In addition, we found an unexpected ligand in the hinge region of CaSR-ECD. It 

could function as co-agonist with Ca2+ or Mg2+ to decrease their EC50. This ligand was identified 

as TNCA and was confirmed by MS. This ligand bound hCaSR-ECD very tight since 150 mM 

Phe could only replace partial of them from the pocket. The structure of hCaSR-ECD provided 

structural basis for Mg2+ regulation and drug development. Serving as a lead compound, the 

unexpected TCNA will facilitate the design of drugs targeting at CaSR. 
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APPENDICES  

Appendix A: Expression of mCx26 using Bac-to-Bac baculovirus expression system 

Appendix A.1 Introduction 

The baculovirus-insect cell expression system is widely used in and has proven 

successfully for production of many recombinant proteins, since when it was first described in the 

early 1980s (560). Baculovirus is a rod-shaped and enveloped virus, which can infect insect cells 

and replicate in the nucleus of insect cells (Fig. A.1). Two virion phenotypes have been found in 

most baculovirus. They are the budded virions and occlusion-derived virions (561). Occlusion-

derived virions are occluded as occlusion body and ensure the survival of the virus in the external 

environment. In the alkaline environment, the protein matrix of occlusion body will be lysated and 

virus particles inside will initiate the infection of the insect host midgut cells. Virus will fulfill its 

replication in the host nucleus by taking control of the gene expression machinery. In the late 

infection stage, newborn virus are released from the cell via budding through the plasma membrane 

to infect other cells. In the very late stage, the coat protein polyhedron, a component of viral 

envelop to protect virus from dangerous environment, is the predominant protein that largely 

expressed-more than 50% virus protein are polyhedron. This polyhedron gene is non-essential 

gene. Without it, virus can still successfully infect the insect cells and finish the replication in the 

host cells. The Bac-to-Bac baculovirus expression system takes the advantage of this point and 

replaces the polyhedron gene with our target gene. Under the control of polyhedrin protomer, the 

foreign gene will be expressed in large scale.  Besides, it has high potential of eukaryotic protein 

processing capability, like post-translational modifications, including folding, disulfide bond 

formation, oligomerization, glycosylation, acylation, and proteolytic cleavage and so on.  In most 

cases, the recombinant protein is soluble. Inclusion body is hardly seen, while it frequently occurs 
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in the bacterial expression. In addition, expression of hetero-oligomeric protein complexes can be 

easily achieved by simultaneously infecting insect cell with two or more virus containing different 

target genes or with recombinant viruses containing two or more expression cassettes. Which is 

also appealing is that insect cell does not need CO2 to grow, which is different from mammalian 

cells. They are also anchorage independent and can be readily adapted to high-density suspension 

culture for large-scale expression. Last, baculovirus have a restricted host range, limited to specific 

invertebrate species. They are safer to work with than most mammalian viruses since they are 

noninfectious to vertebrates. A comparison between baculovirus expression systems and others 

were compared in the following table (Fig. A.2). The combination of all these merits makes this 

expression system is popularly used to express more than 1000 eukaryotic, prokaryotic and viral 

recombinant proteins.  

 

 

Figure A. 1 The replication cycle of baculovirus.   
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Occlusion bodies ingested by an insect dissolve in the midgut, and occlusion bodies are 

released which then infect midgut epithelial cells, in which baculovirus utilize the replication 

machinery of epithelial cells to generate copy of themselves. Those virus were budded out of 

the cell in a basal direction and initiate a systemic infection. In the early stage of infection, 

more rod virus were budded out, spreading the infection through surrounding insects. In the 

late stage of virus infection, occluded virus were produced, which cause the cell lysis and 

virus releases as occlusion bodies (562).  

 

Figure A. 2 Expression system comparison.  
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Mammalian, insect cell, yeast and bacteria expression systems were compared in term of 

expression speed, cost, typical yield, post-translation medication and the chance of drug 

produced by those systems be approved by FDA.  

 

Appendix A.2 Methods 

Generating the recombinant pFastBacTM vector 

Mouse Cx26 gene was amplified by PCR using the mouse Cx26 DNA in pcDNA6/V5-His 

(A) vector (a gift from Dr. Eric Lin, Emory University, GA) as template with Bam H I and Hind 

III restriction sites added at the 5’ and 3’ ends and ligated into the modified Baculovirus donor 

plasmid pFastBac HT A vector (with C-terminal his tag). The mouse Cx26 gene was sequenced 

by GENEWIZ.   

Generating the recombinant bacmid 

The recombinant donor plasmid with inserted mouse Cx26 gene was transformed into 

DH10Bac competent cell. In brief, DH10Bac competent cells were gently mixed with around 1 ng 

of pFastBac HT A recombinant plasmid and placed on ice for 30 minutes before proceeding to 45-

second heat shock at 42 oC. The mixture then was immediately transferred to ice and chilled for 2 

minutes. Next, around 900 ml of room temperature S.O.C medium was added into the tube, which 

was subjected to 4-hour shaking at 37 oC with a speed of 225 rpm. The E.coli culture was diluted 

for 10, 100 and 1000 times, respectively. Around 100 µl dilutions were plated on LB agar plates 

containing 50 g/ml kanamycin, 7 g/ml gentamicin, 10 g/ml tetracycline, 100 g/ml X-gal, and 

40 g/ml IPTG. After 48-hour incubation at 37 oC, white colonies were picked up for further 

analysis.  
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Analyzing the recombinant bacmid  

White colonies were picked up from the agar plate and inoculated into 5 ml of LB medium. 

Next day morning, recombinant bacmid extracted from E.coli were used as PCR template. 

pUC/M13 forward and reverse primers (forward: 5’-CCCAGTCACGACGTTGTAAAACG-3’; 

reverse: 5’-AGCGGATAACAATTTCACACAGG-3’) which hybridize to sites flanking the mini-

attTn7 site within the lacZ-complementation region is used to facilitate PCR analysis. 

Cationic Liposome-Mediated Transfection Using Cellfectin II Reagent 

Transfection of recombinant bacmid into insect cell Sf9 was achieved by following the 

instructions of Cellfectin II (Invitrogen). In general, to start with, Sf9 cells in Grace’s medium with 

a density of 2x106 were seeded into 30 mm petri dish. Eight microliter Cellfectin II reagent was 

diluted in 100 µl unsupplemented Grace’s medium without serum and antibiotics. Two 

micrograms of recombinant bacmid was diluted in 100 µl Grace’s medium and then gently mixed 

with diluted Cellfectin. The mixture was incubated at room temperature for 20-30 minutes and 

added into Sf9 cells drop by drop. After 3-5 hours, the transfection mixture was removed and 

replaced with 2 ml of complete growth medium with 5% serum.  

Virus plaque assay  

To determine the infectious potency of the virus generated, virus plaque assay is performed 

to count the plaque formations in an immobilized monolayer culture to estimate the virus titer, 

which is a term used in virology to define the virus infectious efficiency (Fig. A.3).  Firstly, Sf9 

cells were seeded into 6-well plates with 1x106 cells per 2 ml per well and allowed to attach for at 

least 1 hour. Overnight-seeding is also preferred. To remove the old medium from each well, the 

plate was tilted and medium was carefully sucked out along the side wall of dish. Serial dilutions 

(from 10-1 to 10-8) of virus were diluted using culture medium containing 5% serum and 1 ml of 
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each dilutions were added into each well. One milliliter of culture medium instead of virus dilution 

was added to one well as a negative control. After 1-hour incubation, solution in each well was 

removed and replaced by 2 ml of 1% agarose overlay. Before adding 0.5 ml of fresh medium on 

top of the agarose, we allowed the agarose to solidify for 10-15 minutes in the incubator. After 4-

5 days incubation in the 27 oC humidified incubator, 1 ml of 0.03% neutral red was applied to each 

well and incubated for 3 hours at room temperature. Then, the stain was removed from each well 

by suction and the plates which were covered by aluminum foil first and leaved upper side down 

for overnight at room temperature. Second day morning, we counted the plaques and calculated 

the titers using the following equation. The unit of titer is pfu/ml.   

Number of Plaques / (Dilution factor x Volume of diluted virus/well) = pfu/ml 

 

Figure A. 3 Plaque assay. 

Series virus dilutions (10-1 to 10-8) were prepared by mixing 0.1 ml of virus stock with 0.9 ml 

of fresh medium containing 5 % serum and applied to each dish to infect monolayer Sf9 cells. 

After 3-day infection, neutral red was applied to aid the visualization of plaque. Virus 
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plaques displayed as white dots on the red background. When count the plaques, dish with 

moderate amount of plaques was chose to gain more accurate titer.   

 

Amplifying the baculovirus stock   

To amplify the baculovirus, we used P1 viral stock to infect insect cell Sf9 twice to obtain 

baculovirus with higher titer. In brief, insect cells were seeded in 30 mm dish for 1 hour to allow 

attachment before infection. We inspected cells under an inverted microscope to verify attachment 

each time. Then appropriate amount of P1 viral stock was added to each dish to keep the 

multiplicity of infection value (MOI) between 0.1-0.5. MOI was calculated based on the following 

equation.  

MOI = (volume of virus) (dilution) (number of plaques) / (total volume * cells / ml)    

Optimizing heterologous protein production 

To achieve the maximum expression of heterologous protein in Sf9, we optimized the 

infection time and MOI. We firstly performed a time course study to determine the point of 

maximum expression. Then different MOIs were used to determine which one could achieve the 

synchronous infection, which is defined as the infection of all cells in a culture at the same time 

point. The protein expression was compared using western blotting when different MOI or 

expression time were used.  

Large scale recombinant protein expression  

 Suspension cells cultured in serum free Sf900 medium were first cultured to reach a 

density of 2x106 and then infected by addition of proper amount of baculovirus. After 3-day 

infection, cells were sedimented down by centrifugation at 6x1000 rpm for 5 minutes at 4 oC. 

Pellet were frozen at -80 oC for further purification.  
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Appendix A.3 Results 

Generation of recombinant bacmid 

The recombinant pFastBacTM H TA plasmid contains two arms of Tn7 transposon: Tn7L 

and Tn7R. When it is transformed into the competent cell DH10BacTM E.coli, which contains the 

virus bacmid with Tn7 target sequence miniattTn7, the DNA fragment between left arm and right 

Tn7 arm will be cleaved and integrated into the miniattTn7 sequence in the bacmid under the help 

of transposonase. This enzyme is coded by another relatively smaller plasmid in the competent 

cell. Once the transition is successful, the lac Z gene inside of the miniattTn7 sequence will be 

deleted. When we streak the transformed competent cell on the LB plates with antibiotics, IPTG 

and X-gal, colonies without lac Z gene will show white color, indicating successful recombinant 

bacmid generation. Twelve white colonies were picked up and re-streaked on 12 LB plates with 

antibiotics, IPTG and X-gal, no blue colonies show up again in all plates. To further verify the 

recombinant bacmid, 1 single colony from each plate were picked up and cultured in 5 ml LB 

medium overnight. Recombinant bacmid were extracted using of HiPure kits (Invitrogen). Target 

gene in recombinant bacmid was amplified by PCR. The bacmid contains M13 forward and M13 

reverse priming sites flanking the min-attTn7 site within the lac Z complementation region to 

facilitate PCR analysis. The size of PCR product was around 3 kbp, which was the sum of target 

gene and the DNA fragment between two priming sites. The sequence of PCR product was also 

checked. As shown in figure A.3, PCR product sequence matched mCx26 gene well.  
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Figure A. 4 Generation of recombinant bacmid.  

(a) Transformation of recombinant donor plasmid into DH10Bac competent cell. White color of 

colonies grown on LB plates with IPTG, antibiotics and X-gal indicated the successful insertion 

c 

d 

a    b  
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of target gene into bacmid. On the contrary, blue colonies had the complete Lac Z gene without 

insertion. (b) White colonies were re-steaked on LB plates to avoid fake colony. (c) Target gene 

was amplified by PCR using the bacmid extracted from white colony as template, and M13 forward 

and reverse primers. The PCR product was separated by DNA gel. (d) PCR product was also sent 

for sequencing in GENEWIZ. The sequence result was aligned with DNA of mouse Cx26.   

Generation of P1 baculovirus 

Pure recombinant bacmid was transfected into Sf9 cells using CellFectin II reagent. Virus 

infected cells always display the following characteristics (Table A.1) as observed from virus 

inspection using an inverted microscope at 250-400 magnification. These characteristics at 

different time points provide us the criterion for determination the stages of virus generation. 

During the first two days, the difference between transfected cells and negative control cells were 

not very clear. Only when cells were checked under microscope with 40 times magnification, very 

few swollen cells, termed as “CPE”, could be distinguished in the transfected cells. On the third 

day of post-transfection, significant differences were revealed by the microscope in terms of cell 

number, cell size and shape (Fig. A.4). Negative control cells (Fig. A.4a) had regular round shape 

and uniform size. Compared with the transfected cells (Fig. A.4b), cell confluence is much higher, 

about 90%. The diameters of cells with transfection greatly increased, some even doubled, which 

was caused by generation of virus particles inside of Sf9 cells. Cells debris also spread in the dish 

with transfection and some small vesicles were around the surface of transfected cells. Those 

bubbles were filled with virus particles inside. Once the cell plasma membrane was liquefied  

by the virus lyase, these inclusion bodies were released. The adjacent cells would be infected by 

newborn virus to produce more virons. Once 70 % host cells detached the bottom of plates, viruses 

were harvested by centrifugation at 500 g for 5 minutes at 4 oC. Longer expression would lead to 
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loss of infection capability due to exposure of virus under the attacks of enzymes released from 

cells liquefied. Cx26 expression was examined by western blotting (Fig. A.4c).   

Table A. 1 Characteristics of baculovirus infection.  

 

 

 

 

 

Signs of Infection Phenotype Description 

Early (first 24 hours) Increased cell diameter A 25-50% increase in cell diameter may 

be seen 

Increased size of cell 

nuclei 

Nuclei may appear to “fill” the cells 

Late (24-72 hours) Cessation of cell growth Cells appear to stop growing when 

compared to a cell-only control 

Granular appearance Signs of viral budding, vesicular 

appearance to cells 

Detachment Cells release from the plate or flask 

Very late (> 72 hours) Cell lysis Cells appear lysed, and show signs of 

clearing in the monolayer 
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Figure A. 5 P1 virus generation. 

 (a) Non-transfected Sf9 cell were served as negative control. (b) Cells with bacmid 

transfection displayed large cell size, less cell confluence, and lots of cell debris. (c) Cx26 

expression was detected in transfected cells using western blotting.  

 

The dead cell was stained by 0.4% Trypan blue, which is a vital stain used to selectively 

color dead cells blue. Trypan blue is not cell membrane permeable and live cells won’t absorb it, 

however, it can cross the plasma membrane in a dead cell. The cell death rate was calculated based 

on the dead cell number and total cell number. After 3-day post-transfection, the death rate was 

almost 3-fold higher than non-transfected cells (Table A.2).  

Table A. 2 Cell death rate comparison between non-transfected and transfected cells. 

 

  Total cell /ml Viable cell /ml Dead cell /ml Death rate 

Non-transfected cell 3.1x106 2.4x106 7.4x105 23.9% 

Transfected cell 1.2x106 1.0x105 1.1x106 91.7% 

    

 

Determination of viral titer by plaque assay 

Before the viral stock is used to infect the insect cells, the viral plaque assay is 

recommended to determine the titer of baculovirus stock. Titer is a very important parameter to 

estimate the quality of virus. During the expression, the amount of virus added into the insect cell 

is a key factor that can influence the expression level. If there are too many virus particles per cell, 

the host cell cannot put up with them and will die immediately even without expression of the 
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virus proteins. While if the virus amount applied is too little, the yield of protein will be low. Thus 

appropriate amount of virus is indispensable for protein expression. Here the viral plaque assay 

can determine the viral infection efficiency and provides important data for following experiments. 

A number of factors can influence the viral titer: 1) the size of your gene of interest. 

Generally titers will decrease as the size of the insert increases; 2) transfection efficiency. Higher 

transfection efficiency will dramatically increase the titer. For the highest efficiency, Cellfection 

reagent and unsupplemented Grace’s insect medium are recommended. Since the unsupplemented 

medium does not contain antibiotics and serum which will interfere the transfection by interacting 

with transfection reagent; 3) the age of your baculoviral stock. Viral titer may decrease with long-

term storage at 4 oC or -80 oC. If the baculoviral stock has been stored for 6 months to 1 year, re-

titering is recommended prior to use in an expression experiment; 4) number of freeze/thaw cycle. 

If you are storing your virus at -80 oC, viral titer can decrease as much as 10% with each 

freeze/thaw cycle; 5) improper storage of your baculoviral stock. For routine use, baculoviral 

stocks should be aliquoted and stored at 4 oC, protected from light.  

For the plaque assay experiment, there are some mistakes usually happening to beginners. 

The common one is using the wrong agarose, like agarose for DNA gel. Agarose for plaque assay 

is a kind of low melting gel, while agarose for DNA gel can harden quickly. When you placing the 

agarose layer over the cells, low melting gels can give you enough time to evenly put it on the 

cells. The second is that cell confluence is either too high or too low. For successful viral plaque 

assay, monolayer is required. In addition, the humidity of the incubator is of great importance. If 

there is no water bath inside the incubator, long-time incubation will lead to shrinking of the 

agarose layer.  To avoid, an alternative way is to put 1 ml fresh medium above the agarose layer. 

But this way usually is more likely to cause contamination. 
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When infected by baculovirus, Sf9 was liquefied at the late stage, leading to empty area 

without cells on the Sf9 monolayer. Upon application of neutral red, those areas were not stained 

by this red dye, while the rest area with cells absorbed red dye and presented as red background 

(Fig. A.6). We amplified the P1 virus twice since the titer of P1 virus was not high enough (5 x 

105) for recombinant protein expression. After amplification, P3 virus titer reached 108 range 

which could be used for efficient infection during protein expression.  
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Figure A. 6 P1 virus titer determination by plaque assay.  

Four dishes were presented here to illustrate what does plaques look like after neutral red 

staining. The first dish labeled as NC was negative control cells without addition of P1 virus. 

Second dish labeled with the dilution factor 10-6 was cells infected by virus with 106 times 

dilution. This dish was chose for titer calculation since virus with 107 times dilution did not 

generate enough plaques, while cells infected by virus with 105 dilution produced excessive 

plaques which could not be distinguished clearly from each other.   

 

Expression optimization 

A number of factors can influence determination of optimal expression conditions 

including the cell line, MOI, application of interest, and the nature of gene of interest. Here we 

would perform the MOI and time course to determine the optimal conditions to use to express the 

recombinant protein of interest. 

As discussed before, MOI is a key factor affecting protein expression. Different from 

generation of virus, in which 0.05-0.1 MOI is applied, a wide range of MOIs can be tested to 

determine which will induce the best kinetics of infection for maximum protein expression. An 

MOI of 1-20 is generally recommended for protein expression. Higher MOIs are preferable 

because they result in synchronous infection where all the cells become infected at time zero. As 

a result, theoretically all cells should be expressing protein at the same time so that the maximal 

amount of recombinant protein can be harvested at a given time point. Lower MOIs may result in 

only a small portion of the cell population being infected, while the rest of the cells continue to 

divide. These cells in turn become infected later on when the first group cells lyse. This results in 

a protein expression curve that is spread out over the time course, rather than peaking at a given 
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time point. Then the MOI that provides the optimal level of recombinant protein expression is 

used. Here I showed one example when I compared two different MOIs: 1 and 7 to have a rough 

estimation of the optimal MOI range. By analyzing the protein level in Sf9 cells by western 

blotting, we could concluded that 1 had a higher protein yield compared with 7 (Fig. A.7).  

Time points taken at 24 hours intervals are recommended initially to get a general idea of 

when your protein is being expressed. Once we have determined a time frame where optimal 

protein expression occurs, we can perform a second time course with selected intermediate time 

points. This will allow us to further optimize our expression levels. In the initial phases of 

expression, when we are attempting to determine the optimal conditions for maximal expression, 

we should not rely only on SDS-PAGE analysis for detection of protein. Levels may be suboptimal 

and other more sensitive assays may be necessary. In my experiments, western blotting was used 

for determination of recombinant protein expression. I collected at different time points, 12, 24, 

48, 72, and 84 hours and analyzed the yield of my protein by western blotting. As figure A.7 shows, 

the production at 72 hours is the most among all time points.  

 

 

 

 

 a                                    b   
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Figure A. 7 mCx26 expression optimization.  

(a) Protein expression using MOI of 1 and 7. NC is the negative control cells. 1 and 7 stand 

for different MOIs. (b) Time course for expression of recombinant protein. In both 

experiment, western blotting was used to analyze the mCx26 expression level.  

 

Large scale mCx26 expression in Sf9 

Suspension Sf9 cell were infected by P3 virus for large scale expression of mCx26. Serum 

free medium was utilized for cell culture to simply purification work. The location of mCx26 

expressed in Sf9 was checked by immunostaining (Fig. A.8). mCx26 were successfully 

translocated on the cell surface of Sf9.   
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Figure A. 8 mCx26 is located on Sf9 surface. 

Both transfected and non-transfected Sf9 cells were firstly fixed with 4% methanol-free 

formaldehyde, followed by 5% BSA blocking for 1 hour at room temperature. The primary 

antibody was further probed with goat anti-mouse IgG secondary antibody conjugated with 

Alexa Fluor 488. DAPI was applied to stain the nuclei. The fluorescence emission of Alexa 

Fluor 488 was captured under the confocal microscope.    
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