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ABSTRACT

Essays on Computational Problems in Insurance BY

Hongjun Ha

July 18th, 2016

Committee Chair: Daniel Bauer

Major Academic Unit: Department of Risk Management and Insurance

This dissertation consists of two chapters. The first chapter establishes an algorithm

for calculating capital requirements. The calculation of capital requirements for finan-

cial institutions usually entails a reevaluation of the company’s assets and liabilities

at some future point in time for a (large) number of stochastic forecasts of economic

and firm-specific variables. The complexity of this nested valuation problem leads

many companies to struggle with the implementation. The current chapter proposes

and analyzes a novel approach to this computational problem based on least-squares

regression and Monte Carlo simulations. Our approach is motivated by a well-known

method for pricing non-European derivatives. We study convergence of the algorithm

and analyze the resulting estimate for practically important risk measures. Moreover,

we address the problem of how to choose the regressors, and show that an optimal

choice is given by the left singular functions of the corresponding valuation operator.

Our numerical examples demonstrate that the algorithm can produce accurate results

at relatively low computational costs, particularly when relying on the optimal basis

functions.



The second chapter discusses another application of regression-based methods,

in the context of pricing variable annuities. Advanced life insurance products with

exercise-dependent financial guarantees present challenging problems in view of pricing

and risk management. In particular, due to the complexity of the guarantees and since

practical valuation frameworks include a variety of stochastic risk factors, conventional

methods that are based on the discretization of the underlying (Markov) state space

may not be feasible. As a practical alternative, this chapter explores the applicability

of Least-Squares Monte Carlo (LSM) methods familiar from American option pricing

in this context. Unlike previous literature we consider optionality beyond surrender-

ing the contract, where we focus on popular withdrawal benefits – so-called GMWBs

– within Variable Annuities. We introduce different LSM variants, particularly the

regression-now and regression-later approaches, and explore their viability and poten-

tial pitfalls. We commence our numerical analysis in a basic Black-Scholes framework,

where we compare the LSM results to those from a discretization approach. We then

extend the model to include various relevant risk factors and compare the results to

those from the basic framework.
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Chapter 1

A Least-Squares Monte Carlo

Approach to the Calculation of

Capital Requirements1

1.1 Introduction

Many risk management applications within financial institutions entail a reevaluation

of the company’s assets and liabilities at some time horizon τ (usually called a risk

horizon) for a large number of realizations of economic and firm-specific (state) vari-

ables. The resulting empirical loss distribution is then applied to derive risk measures

such as the Value-at-Risk (VaR) or the Expected Shortfall (ES), which serve as the

basis for capital requirements within several regulatory frameworks such as Basel III

for banks and Solvency II for insurance companies. However, the high complexity

of this nested computation structure leads firms to struggle with the implementation

1This chapter extends an earlier working paper Bauer et al. (2009), where the approach considered here
was originally proposed. We thank Giuseppe Benedetti, Enrico Biffis, Matthias Fahrenwaldt, Andreas Reuss,
Daniela Singer, Ajay Subramanian, Baozhong Yang, and seminar participants at the Bachelier Congress 2014,
the World Risk and Insurance Economics Congress 2015, Georgia State University, Michigan State University,
St. Joseph’s University, Université de Montréal, and Barrie & Hibbert for helpful comments.
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(Bauer et al., 2012).2

The present chapter proposes an alternative approach based on least-squares re-

gression and Monte Carlo simulation akin to the well-known Least-Squares Monte

Carlo method (LSM) for pricing non-European derivatives introduced by Longstaff

and Schwartz (2001). Akin to the LSM pricing method, this approach relies on two

approximations (Clément et al., 2002): On the one hand, the capital random variable,

which can be represented as a conditional risk-neutral expected value at the time hori-

zon τ , is replaced by a finite linear combination of functions of the state variables,

so-called basis functions. As the second approximation, Monte Carlo simulations and

least-squares regression are employed to estimate this linear combination. Hence, for

each realization of the state variables, the resulting linear combination presents an

approximate realization of the capital at τ , and the resulting sample can be used for

estimating relevant risk measures.

Although this approach is increasingly popular in practice for calculating economic

capital particularly in the insurance industry (Barrie and Hibbert, 2011; Milliman,

2013; DAV, 2015) and has been used in several applied research contributions (Flo-

ryszczak et al., 2011; Pelsser and Schweizer, 2015), these papers do not provide a

detailed analysis of the properties of this algorithm and the choice of the basis func-

tions. Our work closes this gap in literature.

We begin our analysis by introducing our setting and the algorithm. As an impor-

tant innovation, we frame the estimation problem via a valuation operator that maps

future payoffs (as functionals of the state variables) to the conditional expected value

at the risk horizon. In particular, we base our definition on a hybrid probability mea-

sure that overcomes structural difficulties with the probability space – arising from

the fact that simulations for risk estimation before the risk horizon are carried out

under the physical measure whereas simulations for valuation after the risk horizon

2As a consequence, many companies rely on approximations within so-called standard models or standard-
ized approaches, which are usually not able to accurately reflect an company’s risk situation and may lead to
deficient outcomes (Liebwein, 2006; Pfeifer and Strassburger, 2008)
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are carried out under a risk-neutral measure.

We formally establish convergence of the algorithm for the risk distribution (in

probability) and for families of risk measures under general conditions when taking

limits sequentially in the first and second approximation. In addition, by relying on

results from Newey (1997) on the convergence of series estimators, we present condi-

tions for the joint convergence of the two approximations in the general case and more

explicit results for the practically relevant case of orthonormal polynomials.3 We then

analyze in more detail the properties of the estimator for the important special case of

VaR, which serves as the risk measure for regulatory frameworks such as Basel III or

Solvency II. In particular, the conditions for joint convergence imply that the number

of simulations has to increase faster than the cube of the number of basis functions

when estimating VaR via the LSM algorithm based on polynomial basis functions.

Moreover, by building on ideas from Gordy and Juneja (2010), we show that for a

fixed number of basis functions, the least-squares estimation of the regression approx-

imation, while unbiased when viewed as an estimator for the individual loss, carries a

positive bias term for this tail risk measure. It is important to note, however, that this

result only pertains to the regression approximation but not the approximation of the

actual loss variables via the linear combination of the basis functions – which is the

crux of the algorithm. In particular, the adequacy of the estimate crucially depends

on the choice of basis functions.

This is where the operator formulation becomes especially useful. By expressing

the valuation operator via its singular value decomposition (SVD), we show that under

certain conditions, the (left) singular functions present an optimal choice for the basis

functions. More precisely, we demonstrate that these singular functions approximate

the valuation operator – and, thus, the distributions of relevant capital levels – in an

optimal manner. The intuition is that similarly to an SVD for a matrix, the singular

functions provide the most important dimensions in spanning the image space of the

3We thank Giuseppe Benedetti for pointing us to this issue of joint convergence.
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operator.

We comment on the joint convergence of the LSM algorithm under this choice and

also the calculation of the singular functions. While in general the decomposition

has to be carried out numerically, for certain classes of models it is possible to derive

analytic expressions. As an important example class for applications, we discuss the

calculation of the SVD – and, thus, the derivation of optimal basis functions – for

models with Gaussian transition density. In this case, (i) it is straightforward to show

that the underlying assumptions are satisfied. And (ii), by following ideas from Khare

and Zhou (2009), it is possible to derive the singular functions, which take the form of

products of Hermite polynomials of linearly transformed states, by solving a related

eigenvalue problem.

We illustrate our theoretical results considering two examples from life insurance in

the context of annuitization options. We first we consider a simple Guaranteed Annuity

Option (GAO) within a pure endowment insurance contract in the Vasicek (1977)

stochastic interest rate model (Boyle and Hardy, 2003; Pelsser, 2003). Following Boyle

and Hardy (2003), we obtain a closed form solution for the valuation problem at the

risk horizon so that we can conveniently compare the approximated realizations of the

loss distribution with the exact ones. Our results demonstrate that the algorithm can

produce accurate results at relatively low computational costs, although the interplay

of the sample variance and the functional approximation is finical. We find that

optimal basis functions improve the performance of the algorithm when compared to

alternative basis functions with a different span.

As a second example, we consider popular annuitization guarantees within Vari-

able Annuity contracts, so-called Guaranteed Minimum Income Benefits (GMIBs).4

In a setting with three stochastic risk factors (investment fund, interest, and morta-

lity), we demonstrate that the algorithm still delivers reliable results when relying on

4Between 2011 and 2013, roughly 15% of the more than $150 billion worth of Variable Annuities sold
in the US contained a GMIB. Source: Fact Sheets by the Life Insurance and Market Research Association
(LIMRA).
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sufficiently many basis functions and simulations. Here we emphasize that the opti-

mal choice given by the singular functions not only determines the functional class

– which are Hermite polynomials in this case, although of course different classes of

univariate polynomials will generate the same span. But they also specify the most

important combinations of stochastic factors, an indeed in our setting it turns out that

higher-order combinations of certain risk factors are more important than lower-order

combinations of others.5 This latter aspect in particular is very relevant in practical

settings with high-dimensional state vectors, so that our results provide immediate

guidance for these pressing problems.

Related Literature and Organization of the Chapter

Our approach is inspired by the LSM approach for derivative pricing and relies on

corresponding results (Carriere, 1996; Tsitsiklis and Van Roy, 2001; Longstaff and

Schwartz, 2001; Clément et al., 2002). A similar regression-based algorithm for risk

estimation is independently studied in Broadie et al. (2015) (their paper postdates early

versions of this work; Bauer et al. (2009)). Their results are similar to our sequential

convergence results in 1.3.1, and the authors additionally introduce a weighted version

of their regression algorithm. Moreover, Benedetti (2016) provides alternative joint

convergence results to ours in Section 1.3.1 under a different (weaker) set of conditions.

However, these authors do not contemplate how to optimally choose the basis functions

– although they emphasize the importance of this choice – which is a key contribution

of the current chapter.

As already indicated, the LSM approach enjoys popularity in the context of calcu-

lating risk capital for life insurance liabilities in practice and applied research, so that

providing a theoretical foundation and guidance for its application are key motivating

factors for this chapter. A number of recent contributions discuss the so-called repli-

cating portfolio approach as an alternative that enjoys certain advantages (Beutner et

5We thank Baozhong Yang for pointing us in this direction.
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al., 2016; Natolski and Werner, 2016; Cambou and Filipović, 2016), and Pelsser and

Schweizer (2015) point our that the difference between the LSM versus the replicat-

ing portfolio calculation aligns with the so-called regression-now versus the so-called

regression-later algorithm, respectively, for non-European option pricing (Glasserman

and Yu, 2002). While a detailed comparison is beyond the scope of this chapter,

we note that although indeed in simple settings the performance of regress-later ap-

proaches appears superior (Beutner et al., 2013), the application comes with several

caveats regarding the choice of the basis function and other complications in high-

dimensional settings (Pelsser and Schweizer, 2015; Ha and Bauer, 2016).

The remainder of the chapter is structured as follows: Section 1.2 lays out the

simulation framework and the algorithm; Section 1.3 addresses convergence of the

algorithm and analyzes the estimator in special cases; Section 1.4 discusses optimal

basis functions and derives them in models with Gaussian transition densities; Section

1.5 provides the numerical examples; and, finally, Section 1.6 concludes the chapter.

All proofs are relegated to the Appendix.

1.2 The LSM Approach

1.2.1 Simulation Framework

We assume that investors can trade continuously in a frictionless financial market

with time finite horizon T corresponding to the longest-term liability of the company

in view. Let (Ω,F ,F = (Ft)t∈[0,T ],P) be a complete filtered probability space on which

all relevant quantities exist, where P denotes the physical measure. We assume that

all random variables in what follows are square-integrable (in L2(Ω,F ,P)). The sigma

algebra Ft represents all information about the market up to time t, and the filtration

F is assumed to satisfy the usual conditions.

The uncertainty with respect to the company’s future assets and liabilities arises

from the uncertain development of a number of influencing factors, such as equity re-

6



turns, interest rates, demographic or loss indices, etc. We introduce the d-dimensional,

sufficiently regular Markov process Y = (Yt)t∈[0,T ] = (Yt,1, . . . , Yt,d)t∈[0,T ], d ∈ N, the

so-called state process, to model this uncertainty. We assume that all financial assets

in the market can be expressed in terms of Y . Non-financial risk factors can also be

incorporated (see e.g. Bauer et al. (2010) or Zhu and Bauer (2011) for settings specific

to life insurance that include demographic risk). In this market, we take for granted

the existence of a risk-neutral probability measure (equivalent martingale measure) Q

equivalent to P under which payment streams can be valued as expected discounted

cash flows with respect to a given numéraire process (Nt)t∈[0,T ].
6

In financial risk management, we are now concerned with the company’s financial

situation at a certain (future) point in time τ , 0 < τ < T , which we refer to as the

risk horizon. More specifically, based on realizations of the state process Y over the

time period [0, τ ] that are generated under the physical measure P, we need to assess

the available capital Cτ , at time τ calculated as the market value of assets minus

liabilities. This amount can serve as a buffer against risks and absorb financial losses.

The capital requirement is then defined via a risk-measure ρ applied to the capital

random variable. For instance, if the capital requirement is cast based on Value-at-

Risk (VaR), the capitalization at time τ should be sufficient to cover the net liabilities

at least with a probability α, i.e. the additionally required capital is

VaRα(−Cτ ) = inf {x ∈ R|P (x+ Cτ ≥ 0) ≥ α} . (1.1)

The capital at the risk horizon, for each realization of the state process Y , is derived

from a market-consistent valuation approach. While the market value of traded instru-

ments is usually readily available from the model (“mark-to-market”), the valuation

of complex financial positions on the firm’s asset side such as portfolios of derivatives

and/or the valuation of complex liabilities such as insurance contracts containing em-

6According to the Fundamental Theorem of Asset Pricing, this assumption is essentially equivalent to the
absence of arbitrage. We refer to Schachermayer (2009) for details.
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bedded options typically requires numerical approaches. This is the main source of

complexity associated with this task, since the valuation needs to be carried out for

each realization of the process Y at time τ , i.e. we face a nested calculation problem.

Formally, the available capital is derived as a (risk-neutral) conditional expected

value of discounted cash flows Xt, where for simplicity and to be closer to modeling

practice, we assume that cash flows only occur at the discrete times t = 1, 2, . . . , T

and that τ ∈ {1, 2, . . . , T} :

Cτ = EQ

[
T∑
k=τ

Nτ

Nk

Xk

∣∣∣∣∣ (Ys)0≤s≤τ

]
. (1.2)

Note that within this formulation, interim asset and liability cash flows in [0, τ ] may

be aggregated in the σ(Ys, 0 ≤ s ≤ τ)-measurable position Xτ . Moreover, in contrast

to e.g. Gordy and Juneja (2010), we consider aggregate asset and liability cash flows

at times k ≥ τ rather than cash flows corresponding to individual asset and liability

positions. Aside from notational simplicity, the reason for this formulation is that we

particularly focus on situations where an independent evaluation of many different

positions is not advisable or feasible as it is for instance the case within economic

capital modeling in life insurance (Bauer et al., 2012).

In addition to current interest rates, security prices, etc., the value of the asset

and liability positions may also depend on path-dependent quantities. For instance,

Asian options depend on the average of a certain price index over a fixed time interval,

lookback options depend on the running maximum, and liability values in insurance

with profit sharing mechanisms depend on entries in the insurer’s bookkeeping system.

In what follows, we assume that – if necessary – the state process Y is augmented so

that it contains all quantities relevant for the evaluation of the available capital and

8



still satisfies the Markov property (Whitt, 1986). Thus, we can write:

Cτ = EQ

[
T∑
k=τ

Nτ

Nk

Xk

∣∣∣∣∣Yτ
]
.

We refer to the state process Y as our model framework. Within this framework,

the asset-liability projection model of the company is given by cash flow projections

of the asset-liability positions, i.e. functionals xk that derive the cash flows Xk based

on the current state Yk:
7

Nτ

Nk

Xk = xk (Yk) , τ ≤ k ≤ T.

Hence, each model within our model framework can be identified with an element in

a suitable function space, x = (xτ , xτ+1, ..., xT ) . More specifically, we can represent:

Cτ (Yτ ) =
T∑
j=τ

EQ [xj (Yj)|Yτ ] .

We now introduce the probability measure P̃ via its Radon-Nikodym derivative:

∂P̃
∂P

=
∂Q
∂P

EP
[
∂Q
∂P |Fτ

] .
Lemma 1.2.1. We have:

1. P̃(A) = P(A), A ∈ Ft, 0 ≤ t ≤ τ .

2. EP̃ [X| Fτ ] = EQ [X| Fτ ] for every random variable X ∈ F .

Lemma 1.2.1 implies that we have

Cτ (Yτ ) =
T∑
j=τ

EP̃ [xj (Yj)|Yτ ] = Lx (Yτ ) , (1.3)

7Similarly to Section 8.1 in Glasserman (2004), without loss of generality, by possibly augmenting the
state space or by changing the numéraire process (see Section 1.5), we assume that the discount factor can
be expressed as a function of the state variables.
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where the operator

L : H =
T⊕
j=τ

L2
(
Rd,B, P̃Yj

)
→ L2

(
Rd,B,PYτ

)
(1.4)

is mapping a model to capital. We call L in (1.4) the valuation operator. For our

applications later in the text, it is important to note the following:

Lemma 1.2.2. L is continuous linear operator.

Moreover, for our results on the optimality of basis functions, we require compact-

ness of the operator L. The following lemma provides a sufficient condition for L to

be compact in terms of the transition densities of the driving Markov process.

Lemma 1.2.3. Assume there exists a joint density πYτ ,Yj(y, x), j = τ, τ + 1, ..., T , for

Yτ and Yj. Moreover:

∫
Rd

∫
Rd
πYj |Yτ (x|y) πYτ |Yj(y|x) dx dy <∞,

where πYj |Yτ (x|y) and πYτ |Yj(y|x) denote the transition density and the reverse transi-

tion density, respectively. Then the operator L is compact.

The definition of L implies that a model can be identified with an element of the

Hilbert space H whereas the capital Cτ can be (state-wise) identified with an element

of L2(Rd,B,PYτ ). The task at hand is now to evaluate this element for a given model

x = (xτ , . . . , xT ) and to then determine the capital requirement via a (monetary) risk

measure ρ : L2(Rd,B,PYτ ) → R as ρ(Lx), although the model may change between

applications as the exposures may change (e.g. from one year to the next or when

evaluating allocations).

One possibility to carry out this computational problem is to rely on nested simu-

lations, i.e. to simulate a large number of scenarios for Yτ under P and then, for each

of these realizations, to determine the available capital using another simulation step
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under Q. The resulting (empirical) distribution can then be employed to calculate

risk measures (Lee, 1998; Gordy and Juneja, 2010). However, this approach is compu-

tationally burdensome and, for some relevant applications, may requires a very large

number of simulations to obtain results in a reliable range (Bauer et al., 2012). Hence,

in the following, we propose and develop an alternative approach for such situations.

1.2.2 Least-Squares Monte-Carlo (LSM) Algorithm

As indicated in the previous section, the task at hand is to determine the distribution

of Cτ given by Equation (1.3). Here, the conditional expectation causes the primary

difficulty for developing a suitable Monte Carlo technique. This is akin to the pricing

of Bermudan or American options, where “the conditional expectations involved in the

iterations of dynamic programming cause the main difficulty for the development of

Monte-Carlo techniques” (Clément et al., 2002). A solution to this problem was pro-

posed by Carriere (1996), Tsitsiklis and Van Roy (2001), and Longstaff and Schwartz

(2001), who use least-squares regression on a suitable finite set of functions in order

to approximate the conditional expectation. In what follows, we exploit this analogy

by transferring their ideas to our problem.

As pointed out by Clément et al. (2002), their approach consists of two different

types of approximations. Proceeding analogously, as the first approximation, we re-

place the conditional expectation, Cτ , by a finite combination of linear independent

basis functions ek(Yτ ) ∈ L2
(
Rd,B,PYτ

)
:

Cτ ≈ Ĉ(M)
τ (Yτ ) =

M∑
k=1

αk · ek(Yτ ). (1.5)

We then determine approximate P-realizations of Cτ using Monte Carlo simula-

tions. We generate N independent paths (Y
(1)
t )0≤t≤T , (Y

(2)
t )0≤t≤T ,..., (Y

(N)
t )0≤t≤T ,

where we generate the Markovian increments under the physical measure for t ∈ (0, τ ]
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and under the risk-neutral measure for t ∈ (τ, T ].8 Based on these paths, we calculate

the realized cumulative discounted cash flows

V (i)
τ =

T∑
j=τ

xj

(
Y

(i)
j

)
, 1 ≤ i ≤ N.

We use these realizations in order to determine the coefficients α = (α1, . . . , αM) in

the approximation (1.5) by least-squares regression:

α̂(N) = argminα∈RM


N∑
i=1

[
V (i)
τ −

M∑
k=1

αk · ek
(
Y (i)
τ

)]2
 .

Replacing α by α̂(N), we obtain the second approximation:

Cτ ≈ Ĉ(M)
τ (Yτ ) ≈ Ĉ(M,N)

τ (Yτ ) =
M∑
k=1

α̂
(N)
k · ek(Yτ ), (1.6)

based on which we may then determine ρ (Lx) ≈ ρ(Ĉ
(M,N)
τ ).

In case the distribution of Yτ , PYτ , is not directly accessible, we can calculate real-

izations of Ĉ
(M,N)
τ resorting to the previously generated paths (Y

(i)
t )0≤t≤T , i = 1, . . . , N,

or, more precisely, to the sub-paths for t ∈ [0, τ ]. Based on these realizations, we may

then determine the corresponding empirical distribution function and, consequently,

an estimate for ρ(Ĉ
(M,N)
τ ). For the analysis of potential errors when approximating the

risk measure based on the empirical distribution function, we refer to Weber (2007).

8Note that it is possible to allow for multiple inner simulations under the risk-neutral measure per outer
simulation under P as in the algorithm proposed by Broadie et al. (2015). However, as shown in their paper,
a single inner scenario as within our version will be the optimal choice when allocating a finite computational
budget. The intuition is that the inner noise diversifies in the regression approach whereas additional outer
scenarios add to the information regarding the relevant distribution.
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1.3 Analysis of the Algorithm

1.3.1 Convergence

The following proposition establishes convergence of the algorithm described in Section

1.2.2 when taking limits sequentially:

Proposition 1.3.1. Ĉ
(M)
τ → Cτ in L2(Rd,B,PYτ ), M → ∞, and Ĉ

(M,N)
τ →

Ĉ
(M)
τ , N → ∞, P̃-almost surely. Furthermore, Z(N) =

√
N
[
Ĉ

(M)
τ − Ĉ(M,N)

τ

]
−→

Normal (0, ξ(M)), where ξ(M) is provided in Equation (15) in the Appendix.

We note that the proof of this convergence result is related to and simpler than

the corresponding result for the Bermudan option pricing algorithm in Clément et al.

(2002) since we do not have to take the recursive nature into account. However, in

contrast to their setting, we deal with a structurally more complex probability space

due to the intermittent measure change and we show the adequacy of “any” linearly

independent collection of basis functions rather then postulating certain properties.

The primary point of Proposition 1.3.1 is the convergence in probability – and,

hence, in distribution – of Ĉ
(M,N)
τ → Cτ implying that the resulting distribution func-

tion of Ĉ
(M,N)
τ presents a valid approximation of the distribution of Cτ for large M

and N. The question of whether ρ(Ĉ
(M,N)
τ ) presents a valid approximation of ρ(Cτ )

depends on the regularity of the risk measure. In general, we require continuity in

L2(Rd,B,PYτ ) as well as point-wise continuity with respect to almost sure convergence

(see Kaina and Rüschendorf (2009) for a corresponding discussion in the context of

convex risk measures). In the special case of orthogonal basis functions, we are able

to present a more concrete result:

Corollary 1.3.1. If {ek, k = 1, . . . ,M} are orthonormal, then Ĉ
(M,N)
τ → Cτ , N →

∞, M → ∞ in L1(Rd,B,PYτ ). In particular, if ρ is a finite convex risk measure on

L1(Rd,B,PYτ ), we have ρ(Ĉ
(M,N)
τ )→ ρ (Cτ ) , N →∞, M →∞.

Thus, at least for certain classes of risk measures ρ, the algorithm produces a
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consistent estimate, i.e. if N and M are chosen large enough, ρ(Ĉ
(M,N)
τ ) presents a

viable approximation. In the next part, we make more precise what large enough

means and, particularly, how large N needs to be chosen relative to M.

1.3.2 Joint Convergence and Convergence Rate

The LSM algorithm approximates the capital level – which is given by the con-

ditional expectation of the aggregated future cash flows Vτ =
∑T

j=1 xj(Y
(i)
j ) – by

its linear projection on the subspace spanned by the basis functions e(M)(Yτ ) =

(e1(Yτ ), . . . , eM(Yτ ))
′ :

EP̃ [Vτ |Yτ ] ≈ e(M)(Yτ )
′ α̂(N).

Thus, the approximation takes the form of a series estimator for the conditional expec-

tation. General conditions for the joint convergence of such estimators are provided

in Newey (1997). Convergence of the risk measure then follows as in the previous

subsection. We immediately obtain:9

Proposition 1.3.2 (Newey (1997)). Assume Var(Vτ |Yτ ) is bounded and that for every

M, there is a non-singular constant matrix B such that for ẽ(M) = B e(M) we have:

• The smallest eigenvalue of EP
[
ẽ(M)(Yτ ) ẽ

(M)(Yτ )
′] is bounded away from zero

uniformly in K; and

• there is a sequence of constants ξ0(M) satisfying supy∈Y ‖ẽ(M)(y)‖ ≤ ξ0(M) and

M = M(N) such that ξ0(M)2M/N → 0 as N → ∞, where Y is the support of

Yτ .

Moreover, assume there exist ψ > 0 and αM ∈ RM such that supy∈Y |Cτ (y) −

e(M)(y)′ αM | = O(M−ψ) as M →∞.

Then:

EP̃
[(
Cτ − Ĉ(M,N)

τ

)2
]

= O(M/N +M−2ψ),

9Newey (1997) also provides conditions for uniform convergence and for asymptotic normality of series
estimators. We refer to his paper for details.
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i.e. we have joint convergence in L2(Rd,B,PYτ ).

In this result, we clearly see the influence of the two approximations: The functional

approximation is reflected in the second part of the expression for the convergence

rate. Here, it is worth noting that the speed ψ will depend on the choice of the basis

functions, emphasizing the importance of this aspect. The first part of the expres-

sion corresponds to the regression approximation, and in line with the second part of

Proposition 1.3.1 it goes to zero linearly in N. However, it is important to note that to

ensure convergence in the first place, the conditions require that ξ0(M)2M/N → 0 –

and not only M/N → 0 as it appears in the convergence rate – where ξ0 again depends

on the choice of the basis functions and the underlying stochastic model.

The result provides general conditions that can be checked for any selection of

basis functions, although ascertaining them for each underlying stochastic model may

be cumbersome. Newey also provides explicit conditions for the practically relevant

case of power series. In our notation, they read as follows:

Proposition 1.3.3 (Newey (1997)). Assume Var(Vτ |Yτ ) is bounded and that the basis

functions e(M)(Yτ ) consist of orthonormal polynomials, that Y is a Cartesian product of

compact connected intervals, and that a sub-vector of Yτ has a density that is bounded

away from zero. Moreover, assume that Cτ (y) is continuously differentiable of order

s.

Then, if M3/N → 0, we have:

EP̃
[(
Cτ − Ĉ(M,N)

τ

)2
]

= O(M/N +M− 2s/d),

i.e. we have joint convergence in L2(Rd,B,PYτ ).

Hence, for orthonormal polynomials, the conditions entail M3/N → 0, i.e. the

number of simulations has to increase faster than the cube of the number of basis

functions. In particular, to ascertain convergence for a large set of basis functions,
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a very large number of simulations is required. Moreover, the smoothness of the

conditional expectation is important. First-order differentiability is required (s ≥ 1),

and if s = 1, the convergence of the functional approximation will only be of order

M−2/d, where d is the dimension of the underlying model.

For common financial models, particularly for diffusion models, smoothness is sat-

isfied so the latter part of the assumptions seem innocuous. On the other hand,

frequently the support of the stochastic variables is unbounded. However, here con-

vergence in probability still may be established via the Markov inequality since we can

limit the consideration to products of compact intervals (see also Andrews and Whang

(1990) for related results on series estimators under a weaker condition).

Regarding the properties of the estimator beyond convergence, much rides on the

first (functional) approximation that we discuss in more detail in the following section.

With regards to the second approximation, it is well-known that as the OLS estimate,

Ĉ
(M,N)
τ is unbiased – though not necessarily efficient – for Ĉ

(M)
τ under mild conditions

(see e.g. Sec. 6 in Amemiya (1985)).10 However, this clearly does not imply that

ρ(Ĉ
(M,N)
τ ) is unbiased for ρ(Ĉ

(M,N)
τ ). Proceeding similarly to Gordy and Juneja (2010)

for the nested simulation estimator, in the next subsection we analyze this question in

more detail for VaR.

1.3.3 LSM Estimate for Value-at-Risk

An important special case is VaR, which is the risk measure applied in regulatory

frameworks such as Basel III and Solvency II. VaR does not fall in the class of convex

risk measures so that Corollary 1.3.1 does not apply. However, convergence immedi-

ately follows from Proposition 1.3.1-1.3.3:

10Note that, in financial applications, typically the residuals are not homoscedastic. Nevertheless, on relies
on a simple OLS rather than a GLS estimate since the covariance matrix is usually not known and its
estimation would yet again increase the complexity of the algorithm.
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Corollary 1.3.2. We have:

F
Ĉ

(M,N)
τ

(l) = P(Ĉ(M,N)
τ ≤ l)→ P(Cτ ≤ l) = FCτ (l), N →∞, M →∞, l ∈ R,

and

F−1

Ĉ
(M,N)
τ

(α)→ F−1
Cτ

(α), N →∞, M →∞,

for all continuity points α ∈ (0, 1) of F−1
Cτ

. Moreover, under the conditions of Propo-

sitions 1.3.2 and 1.3.3, we have joint convergence.

Gordy and Juneja (2010) show that the nested simulations estimator for VaR carries

a positive bias in the order of the number of simulations in the inner step. They derive

their results by considering the joint density of the exact distribution of the capital at

time τ and the error when relying on a finite number of inner simulations scaled by the

square-root of the number of inner simulations. The following proposition establishes

that their results carry over to our setting in view of the second approximation:

Proposition 1.3.4 (Gordy and Juneja (2010)). Let gN(·, ·) denote the joint probability

density function of (−Ĉ(M)
τ , Z(N)), and assume that it satisfies the regularity conditions

from Gordy and Juneja (2010) collected in the Appendix. Then:

E
[
V̂aRα

[
−Ĉ(M,N)

τ

]]
= VaRα

[
−Ĉ(M)

τ

]
+ θα

Nf̄
(
VaRα

(
−Ĉ(M)

τ

)) + oN(N−1),

where V̂aRα

[
−Ĉ(M,N)

τ

]
denotes the d(1 − α)Ne order statistic of V

(i)
τ , 1 ≤ i ≤ N

(the sample quantile), θα = −1
2
d
dµ

[
f̄(µ)E

[
σ2
Z(N)| − Ĉ

(M)
τ = µ

]]
µ=VaRα

[
−Ĉ(M)

τ

], σ2
Z(N) =

E
[(
Z(N)

)2 |Yτ
]
, and f̄ is the marginal density of −Ĉ(M)

τ .

The key point of the proposition is that – similarly to the nested simulations

estimator – the LSM estimator for VaR is biased. In particular, for large losses or

a large value of α, the derivative of the density in the tail is negative resulting in

a positive bias. That is, ceteris paribus, on average the LSM estimator will err on

the “conservative” side (see also Bauer et al. (2012)). However, note that here we

ignore the variance due to estimating the risk measure from the finite sample, which
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may well trump the inaccuracy due to the bias. Indeed, as is clear from Proposition

1.3.1, the convergence of the variance is of order N and thus dominates the mean-

square error for relatively large values of N (in which the bias will enter as O(N−2)).

Moreover, of course the result only pertains to the regression approximation but not

the approximation of the capital variable via the linear combination of basis functions,

which is at the core of the proposed algorithm.

1.4 Choice of Basis Functions

As demonstrated in Section 1.3.1, any set of independent functions will lead the LSM

algorithm to converge. In fact, for the LSM method for pricing non-European deriva-

tives, frequent choices of basis functions include Hermite polynomials, Legendre poly-

nomials, Chebyshev polynomials, Fourier series, and even simple polynomials. Based

on various numerical tests, Moreno and Navas (2003) conclude that the approach is

robust to the choice of basis functions (see also the original paper by Longstaff and

Schwartz (2001)). A key difference between the LSM pricing method and the approach

here, however, is that it is necessary to approximate the distribution over its entire

domain rather than the expected value only. Furthermore, the state space for esti-

mating a company’s capital can be high-dimensional and considerably more complex

than that of a derivative security. Therefore, the choice of basis functions is not only

potentially more complex but also more crucial in the present context.

1.4.1 Optimal Basis Functions for a Model Framework

As illustrated in Section 2.1, we can identify the capital – as a function of the state

vector at the risk horizon Yτ – for a cash flow model x within a certain model framework

Y with the output of the linear operator L applied to x: Cτ (Yτ ) = Lx(Yτ ) (cf. Eq.

(1.3)). As discussed in Section 1.3.2, the LSM algorithm, in turn, approximates Cτ by

its linear projection on the subspace spanned by the basis functions e(M)(Yτ ), P Cτ (Yτ ),
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where P is the projection operator.

For simplicity, in what follows, we assume that the basis functions are orthonormal

in L2(R,B,PYτ ). Then we can represent P as:

P · =
M∑
k=1

〈·, ek(Yτ )〉L2(PYτ ) ek.

Therefore, the LSM approximation can be represented via the finite rank operator

LF = P L, where we have:

LFx = P Lx =
M∑
k=1

〈Lx, ek(Yτ )〉L2(PYτ ) ek

=
M∑
k=1

EP

[
ek(Yτ )

T∑
j=τ

EP̃ [xj(Yj)|Yτ ]

]
ek =

M∑
k=1

EP

[
ek(Yτ )

T∑
j=τ

xj(Yj)︸ ︷︷ ︸
=Vτ

]
ek

=
M∑
k=1

EP̃ [ek(Yτ )Vτ ]︸ ︷︷ ︸
αk

ek, (1.7)

where the fourth equality follows by the tower property of conditional expectations.

It is important to note that under this representation, ignoring the uncertainty

arising from the regression estimate, the operator LF gives the LSM approximation

for each model x within the model framework. That is, the choice of the basis function

precedes fixing a particular cash flow model (payoff). Thus, we can define optimal

basis functions as a system that minimizes the distance between L and LF , so that

the approximation is optimal with regards to all possible cash flow models within the

framework:

Definition 1.4.1. We call the set of basis functions {e∗1, e∗2, ..., e∗M} optimal in

L2(Rd,B,PYτ ) if:

{e∗1, e∗2, ..., e∗M} = argmin{e1,e2,...,eM}‖L− LF‖ = argmin{e1,e2,...,eM} sup
‖x‖=1

‖Lx− LFx‖.
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This notion of optimality has various advantages in the context of calculating risk

capital. Unlike pricing a specific derivative security with a well-determined payoff,

capital may need to be calculated for subportfolios or only certain lines of business for

the purposes of capital allocation. Moreover, a company’s portfolio will change from

one calculation date to the next, so that the relevant cash flow model is in flux. The

underlying model framework, on the other hand, is usually common to all subportfolios

since the purpose of a capital framework is exactly the enterprise-wide determination

of diversification opportunities and systematic risk factors. Moreover, it is typically

not frequently revised. Hence, it is expedient here to connect the optimality of basis

functions to the framework rather than a particular model (payoff).

1.4.2 Optimal Basis Functions for a Compact Valuation Operator

In order to derive optimal basis functions, it is sufficient to determine the finite-

rank operator LF that presents the best approximation to the infinite-dimensional

operator L. If L is a compact operator, this operator is immediately given by the

singular value decomposition (SVD) of L (for convenience, details on the SVD of

a compact operator are collected in the Appendix). More precisely, we can then

represent L : H → L2(Rd,B,PYτ ) as:

Lx =
∞∑
k=1

ωk 〈x, sk〉ϕk, (1.8)

where {ωk} with ω1 ≥ ω2 ≥ . . . are the singular values of L, {sk} are the right singular

functions of L, and {ϕ}k are the left singular functions of L – which are exactly the

eigenfunctions of LL∗. As demonstrated by the following proposition, the optimal

basis functions are given by the left singular functions of L.

Proposition 1.4.1. Assume the operator L is compact. Then for each M, the left

singular functions of L {ϕ1, ϕ2, . . . , ϕM} ∈ L2(Rd,B,PYτ ) are optimal basis functions

in the sense of Definition 1.4.1. For a fixed cash flow model, we obtain αk = ωk 〈x, sk〉.
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The result that the left singular functions provide an optimal approximation may

not be surprising given related results in finite dimensions. In particular, our proof

is similar to the Eckart-Young-Mirsky Theorem on low-rank approximations of an

arbitrary matrix. A sufficient condition for the compactness of the operator L is

provided in Lemma 1.2.3.

To appraise the impact of the two approximations simultaneously, we can analyze

the joint convergence properties in M and N for the case of optimal basis functions.

Here, in general, we have to check the conditions from Proposition 1.3.2. We observe

that the convergence rate associated with the first approximation depends on the

quantity ψ, which in the present context depends on the speed of convergence of the

singular value decomposition:

O(M−ψ) = inf
αM

sup
y∈Y
|Cτ (y)− e(M)(y)′ αM | ≤ sup

y∈Y
|Lx (y)− LF x (y)|

= sup
y∈Y

∣∣∣∣∣
∞∑

k=M+1

ωk 〈x, sk〉ϕk(y)

∣∣∣∣∣ . (1.9)

In particular, we are able to provide an explicit result in the case of bounded singular

functions:

Proposition 1.4.2. Assume Var(Vτ |Yτ ) is bounded and that the singular functions,

{ϕk}∞k=1, are uniformly bounded on the support of Yτ . Then, if M2/N → 0, we have:

EP̃
[(
Cτ − Ĉ(M,N)

τ

)2
]

= O(M/N + ω2
M),

i.e. we have joint convergence in L2(Rd,B,PYτ ).

In the general (unbounded) case, according to Equation (1.9), the convergence will

depend on the properties of the singular functions as well as the speed of convergence

of the singular values. Here, similarly to Proposition 1.3.3 for orthonormal polyno-

mials, the latter convergence depends on the smoothness of the kernel k(x, y) (see
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Birman and Solomyak (1977) for a survey on the convergence of singular values of

integral operators). However, Equation (1.9) again illustrates the intuition behind the

optimality criterion: To choose a basis function that minimizes the distance between

the operators for all x, although in the Definition we consider the L2 norm rather than

the supremum.

The derivation of the SVD of the valuation operator of course depends on the spe-

cific model framework. In some cases, it is possible to carry out the calculations and

derive analytical expressions for the singular values. In the next subsection, we deter-

mine the SVD – and, thus, optimal basis functions – in the practically highly relevant

case of Gaussian transition densities. Here, the optimal basis functions correspond to

Hermite polynomials of suitably transformed state variables (Proposition 1.4.3).

1.4.3 Optimal Basis Functions for Gaussian Transition Densities

In what follows, consider a single cash flow at time T only and let (Yt) be a Rd-

dimensional Markov process such that (Yτ , YT ) are jointly Gaussian distributed. We

denote the distribution under P̃ of this random vector via:Yτ
YT

 ∼ N

µτ
µT

 ,

Στ Γ

Γ′ ΣT

 , (1.10)

where µτ , µT , Στ , and ΣT are the mean vectors and variance-covariance matrices of Yτ

and YT , respectively, and Γ is the corresponding (auto) covariance matrix – which we

assume to be non-singular.11 Note that the specific form of these parameters depends

on the choice of a numéraire Nt, τ ≤ t ≤ T.

Denoting by g(x;µ,Σ) the joint normal probability density function at x with mean

vector µ and covariance matrix Σ, the marginal densities of Yτ and YT are πYτ (x) =

g(x;µτ ,Στ ) and πYT (y) = g(y;µT ,ΣT ), respectively. Mapping these assumption to the

11The distribution in (1.10) is the unconditional distribution with known Y0.
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previous notation yields x = xT , L : H = L2(Rd,B, πYT )→ L2(Rd,B, πYτ ), and

Cτ (Yτ ) = Lx(Yτ ) =

∫
Rd
xT (y) πYT |Yτ (y|Yτ ) dy,

where πYT |Yτ (y|x) denotes the transition density. In order to obtain optimal basis

functions, the objective is to derive the SVD of L.

Lemma 1.4.1. We have for the conditional distributions:

YT |Yτ ∼ N
(
µT |x,ΣT |τ

)
and Yτ |YT ∼ N

(
µτ |y,Στ |T

)
with transition density and reverse transition density:

πYT |Yτ (y|x) = g(y;µT |τ (x),ΣT |τ ) and πYτ |YT (x|y) = g(x;µτ |T (y),Στ |T ),

respectively, where µT |τ (x) = µT + Γ′Σ−1
τ (x − µτ ), ΣT |τ = ΣT − Γ′Σ−1

τ Γ, µτ |T (y) =

µτ + ΓΣ−1
T (y − µT ), and Στ |T = Στ − ΓΣ−1

T Γ′. Moreover, L is compact in this setting.

Per Proposition 1.4.1, the optimal basis functions are given by the left singular

functions, which are in turn the eigenfunctions of LL∗. We obtain:

Lemma 1.4.2. The operator LL∗ and L∗L are integral operators:

LL∗f(·) =

∫
Rd
KA(·, y) f(y) dy and L∗Lf(·) =

∫
Rd
KB(·, x) f(x) dx,

where the kernels are given by Gaussian densities:

KA(x, y) = g(y;µA(x),ΣA) and KB(y, x) = g(x;µB(y),ΣB)

with

• µA(x) = µτ + A(x− µτ ), A = ΓΣ−1
T Γ′Σ−1

τ , and ΣA = Στ − AΣτA
′;

• µB(y) = µT +B(y − µT ), B = Γ′Σ−1
τ ΓΣ−1

T , and ΣB = ΣT −BΣTB
′.
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We denote by EKA [·|x] and EKB [·|y] the expectation operators under the Gaussian

densities KA(x, ·) and KB(y, ·), respectively.

The problem of finding the singular values and the left singular functions therefore

amounts to solving the eigen-equations:

EKA [f(Y )|x] = ω2 f(x).

We exploit analogies to the eigenvalue problem of the Markov operator of a first-

order multivariate normal autoregressive (MAR(1)) process studied in Khare and Zhou

(2009) to obtain the following:

Lemma 1.4.3. Denote by PΛP ′ be the eigenvalue decomposition of

Σ−1/2
τ AΣ1/2

τ = Σ−1/2
τ ΓΣ−1

T Γ′Σ−1/2
τ ,

where PP ′ = I and Λ is the diagonal matrix whose diagonal entries are the eigenvalues

|λ1| ≥ |λ2| ≥ · · · ≥ |λd| of A. For y ∈ Rd, define the transformation:

zP (y) = P ′Σ−1/2
τ (y − µτ ). (1.11)

Then:

EKA
[
zP (Y )|x

]
= Λ zP (x).

Moreover, VarKA
[
zP (Y )|x

]
= I − Λ2, EπYτ

[
zP (Yτ )

]
= 0, and VarπYτ

[
zP (Yτ )

]
= I.

Similarly, denote the diagonalization Σ
−1/2
T BΣ

1/2
T = QΛQ′, where Q′Q = I and

define the transformation:

zQ(x) = Q′Σ
−1/2
T (x− µT ). (1.12)
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Then for X ∼ KB(y, ·), we have:

EKB
[
zQ(X)|y

]
= Λ zA(y),

VarKB
[
zQ(X)|y

]
= I − Λ2, EπYT

[
zQ(YT )

]
= 0, and VarπYT

[
zQ(YT )

]
= I.

Therefore, for a random vector Y |x in Rd that is distributed according to

K(x, ·), the components zPi (Y ) of zP (Y ) are independently distributed with zPi (Y ) ∼

N(λi z
P
i (x), 1− λ2

i ), where zPi (x) is the i-th component of zP (x). Since eigenfunctions

of standard Gaussian distributed random variables are given by Hermite polynomials,

the SVD follows immediately from Lemma 1.4.3:

Proposition 1.4.3. Denote the Hermite polynomial of degree j by hj(x), that is:12

h0(x) = 1, h1(x) = x, hj(x) =
1√
j

(
xhj−1(x)−

√
j − 1hj−2(x)

)
, j = 2, 3, ...

The singular values of L in the current (Gaussian) setting are given by:

ω|n| = Πd
i=1λ

ni/2
i , n = (n1, ..., nd) ∈ Nd

0, (1.13)

where Nd
0 is the set of d-dimensional non-negative integers, |n| =

∑d
i=1 ni, and the

corresponding right and left singular functions are:

s|n|(x) = Πd
i=1hni(z

Q
i (x)) and ϕ|n|(y) = Πd

i=1hni(z
P
i (y)),

respectively.

We know from Proposition 1.4.1 that the left singular functions ϕ will present opti-

mal choices for the basis functions in the LSM algorithm. Note that in the univariate

case (d = 1), A = λ1 is simply the square of the correlation coefficient between Yτ and

12See Kollo and Rosen (2006) for real and vector valued Hermite polynomials and the normalization em-
ployed here.
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YT – so that the singular values are simply powers of this correlation. Thus, the SVD

takes the form

Lx(Yτ ) =
∞∑
k=1

(Corr(Yτ , YT ))k−1

〈
xT , hk−1

(
YT − µT

ΣT

)〉
πYT

hk−1

(
Yτ − µτ

Στ

)
.

In particular, the optimal basis functions are simply given by Hermite polynomials of

the normalized Markov state – although other choices of polynomial bases will generate

the same span so that the results will coincide.

In the general multivariate case, it is clear from Proposition 1.4.3 that the singular

values of L are directly related to eigenvalues of the matrix A (or, equivalently, B).

In particular, the largest eigenvalue gives the most important dimension for the basis

function – which according to (1.11) is a linear transformation of the normalized state

vector. However, it is important to note that the subscripts in Proposition 1.4.3 do

not correspond to those in the SVD (1.8). There are d vectors of indices n such that

|n| = 1, d2 vectors of indices such that |n| = 2, etc. in Equation (1.13), whereas in the

SVD (1.8) the functions are ordered according to the singular values. For instance,

while for 1 > λ1 > λ2 clearly
√
λ1 >

√
λ1

2
= λ1 and similarly for λ2, it is not clear

whether λ2
1 > λ2 or vice versa – and the order will determine which combination of

basis functions is optimal. Thus in the multi-dimensional case – and particularly in

high-dimensional settings that are very relevant for practical applications – is where the

analysis here provides immediate guidance. Even if a user chooses the same function

class (Hermite polynomials) or function classes with the same span (other polynomial

families), it is unlikely that a näıve choice will pick the suitable combinations – and this

choice becomes less trivial and more material as the number of dimensions increases.

From Proposition 1.3.1, we obtain sequential convergence. As polynomials with

full support, the left singular functions do not satisfy the uniformly boundedness as-

sumptions of Proposition 1.4.2 and due to the unbounded domain formally also the

requirements of Propositions 1.3.2 and 1.3.3 are not satisfied. However, following the
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discussion after Proposition 1.3.3, we have joint convergence in probability as long as

M3
/N → 0.

In models with non-Gaussian transitions, while an analytical derivation may not be

possible, we can rely on numerical methods to determine approximations of the optimal

basis functions. For instance, Huang (2012) explains how to solve the associated

integral equation by discretization method, which allows to determine the singular

function numerically. Alternatively, Serdyukov et al. (2014) apply the truncated SVD

to solve inverse problems numerically.

1.5 Applications

To illustrate the LSM algorithm and its properties, we consider two examples from life

insurance: A Guaranteed Annuity Option (GAO) within a conventional pure endow-

ment policy and a Guaranteed Minimum Income Benefit (GMIB) within a Variable

Annuity contract. As indicated in the Introduction, the LSM algorithm is particularly

relevant in insurance, especially in light of the dawning Solvency II regulation that

comes into effect in 2016. Here, the so-called Solvency Capital Requirement within

an internal model takes the form of a 99.5% VaR of the available capital at the risk

horizon τ = 1 (see Bauer et al. (2012) for details).

1.5.1 Application to GAO

GAOs are common in many markets and, as described Boyle and Hardy (2003), these

options were a major factor in the demise of Equitable Life, the world’s oldest life

insurance company, in 2000. We consider the valuation of a GAO attached to a basic

pure endowment policy under the Vasicek (1977) interest rate model. This framework

has two advantages. First, following Boyle and Hardy (2003) and Pelsser (2003), it is

possible to derive a closed form valuation formula. Hence, we can exactly simulate the

capital level at the risk horizon and derive a closed form for the VaR. This allows us to
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appraise the performance of the LSM algorithm by comparing numerical results to the

“exact” quantities that are not subject to the functional approximation. Moreover,

since the Vasicek model is driven by a simple Ornstein-Uhlenbeck (OU) process, it falls

in the class of models considered in Section 1.4.3 and we can rely on the corresponding

results to obtain optimal basis functions.

Payoff of the GAO and Valuation Formula

We consider a large portfolio of pure endowment policies with a GAO. In particular, we

abstract from mortality risk (aggregate systematic risk as well as small sample risk),

and to ease notation we derive all expressions for a single policyholder aged x at time

zero. Following standard actuarial notation we denote the k-year survival probability

by kpx.

Under a plain pure endowment policy, the policyholder receives a fixed payment

P upon survival until the maturity date T and nothing in case death occurs before

time T. Thus, the time-t value of the basic contract – if the policyholder is alive –

is P p(t, T ) T−tpx+t, where p(t, T ) is the value at time t of a zero-coupon bond with

maturity T. The benefit can be taken out as a fixed payment or can be converted into

a life annuity under the concurrent market annuity payout rate, mx+T (T ). In the latter

case, the policyholders will receive a payment of P mx+T (T ) each year upon survival

past year T.

In contrast, when the policy is equipped with a GAO, upon survival the policy-

holder has the right to choose at maturity between (i) a fixed payment of P, (ii) a

life annuity at the market rate P mx+T (T ), or (iii) a life annuity with a guaranteed

payout rate g fixed at the policy’s inception. Clearly, (i) and (ii) will result in the

same (market) value, so that the time T payoff for the pure endowment plus GAO is
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given by the maximum of options (ii) and (iii):13

P max{g,mx+T (T )}
∞∑
k=1

kpx+T p(T, T + k)︸ ︷︷ ︸
=ax+T (T )

,

where ax+T (T ) denotes the time T -value of an immediate annuity on an (x+ T )-year

old policyholder. We clearly have mx+T (T ) = 1/ax+T (T ), so that:

P max{g,mx+T (T )} ax+T (T ) = P + P max{g ax+T (T )− 1, 0}︸ ︷︷ ︸
=C(T )

.

Here, the bond prices within the annuity present value depend on the concurrent

(time T ) interest rate rT , so that C(T ) takes the form of an interest rate derivative. For

its valuation, we follow Vasicek (1977) and assume the interest rate evolves according

to unidimensional OU process:

drt = α(γ − rt) dt+ σ dWt, (1.14)

under the physical measure P, whereas the dynamics under the risk-neutral measure

Q are given by:

drt = α(γ̄ − rt) dt+ σ dZt. (1.15)

Here α is the speed of mean reversion, γ is the mean reversion level, σ is the volatility,

γ̄ = γ−λσ/α where λ is market price of risk, and (Wt) and (Zt) are standard Brownian

motions under the physical measure and risk-neutral measure, respectively. Following

Boyle and Hardy (2003), who rely on the approach by Jamshidian (1989) for pricing

13Clearly, this entails the strong assumption on the policyholder’s behavior that she chooses the value-
maximizing option. While this may not be the case in a realistic setting with financial frictions, incomplete
markets, or behavioral biases (Bauer et al., 2015), we accept it here for illustrative purposes.
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options on a coupon bond, we obtain for the value of the GAO:

c(t) = EQ
[
T−tpx+t e

−
∫ T
t rs dsC(T ) |rt

]
(1.16)

= g T−tpx+t

∞∑
k=1

kpx+T [p(t, T ) Φ(h)−Kk p(t, T + k) Φ(h− σ̃)] . (1.17)

Here Φ(·) denotes the standard Normal cumulative distribution function,

σ̃ = σ

√
1− e−2α(T−t)

2α

1− exp(−α k)

α
, h =

1

σ̃
log

(
p(t, T + k)

p(t, T )Kk

)
+
σ̃

2
,

and the strike price Kk is given by p∗(T, T +k), where r∗T is the interest rate such that

∞∑
k=1

kpx+T p
∗(T, T + k) = 1/g

and p∗(T, T + k) is the price of zero coupon bond priced at rate r∗T . Thus, the price of

the pure endowment plus GAO policy is:

v(t) = P (c(t) + p(t, T ) T−tpx+t) . (1.18)

Capital Requirement for the GAO

The (available) capital at the risk horizon τ is given by the present value of assets Aτ

minus liabilities Lτ . For the single pure endowment plus GAO policy considered here,

we obtain:

Cτ = Aτ − Lτ = Aτ − P (T−τpx+τ p(τ, T ) + c(τ))︸ ︷︷ ︸
=v(τ)

= Aτ − P T−τpx+τ p(τ, T )EQT [1 + C(T )|rτ ] , (1.19)
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where QT denotes the T -forward measure, i.e. the risk-neutral measure when choosing

(p(t, T )) as the numéraire process. For the dynamics of the risk-free rate, we have:

drt = α(γ̄ − σ2

/α2 (1− e−α(T−t))− rt) dt+ σ dZT
t ,

where
(
ZT
t

)
is a Brownian motion under QT . The capital requirement can then be

determined by a risk measure ρ applied to −Cτ : ρ(−Cτ ) (see e.g. Eq. (1.1) in the case

of VaR).

For simplicity, we ignore asset risk in what follows and simply set Aτ = 0, so

that we can express the capital requirement as ρ (v(τ)) . Since the distribution of the

risk-free rate under the physical measure is Normal, rτ ∼ N(µτ , σ
2
τ ) (see the proof

of Lemma 1.5.1 in the Appendix for the corresponding expressions in terms of the

parameters) and since v(t) is decreasing in rt, we can determine the capital in closed

form for various risk measures. For instance, in the case of VaR, we obtain

VaRα = v(τ, rτ = µrτ − Φ−1(α)σrτ ). (1.20)

For calculating the capital requirement via the LSM algorithm, we map the notation

from the previous sections to the current setting. From Equation (1.19), it is clear

that the relevant state process Yt = rt is of dimension d = 1. Moreover, the cash flow

functional x = xT , where

xT (rT ) = −v(T, rT ) = −P T−τpx+τ p(τ, T ) [1 + C(T, rT )]

and

Cτ = Lx (rτ ) = EQT [xT (rT )|rτ ] .

To apply Proposition 1.4.3 to the current problem, we require the joint distribution

of the state variables rτ and rT :
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Lemma 1.5.1. The joint distribution of rτ and rT under P̃ is:

rτ
rT

 ∼ N

µτ
µT

 ,
 σ2

τ , e−α(T−τ)σ2
τ

e−α(T−τ)σ2
τ , σ2

T

 ,

where we refer to the proof in the Appendix for explicit expressions of µτ , στ , etc. in

terms of the parameters.

From Proposition 1.4.3, we then have:

Lx(rτ ) =
∞∑
k=1

ρk−1 〈x, hk−1〉hk−1(z(rτ )),

where ρ = e−α(T−τ)στ/σT and z(rτ ) = (rτ − µτ )/στ . Importantly, since the first n

Hermite polynomials are spanned by other families of orthogonal polynomials and even

simply monomials, other polynomial families will lead to equivalent results (ignoring

possible numerical issues in the calculation of the regression coefficients). However,

we can compare this family to other basis functions with a different functional form;

following Proposition 1.3.1, we will have (sequential) convergence for any (square-

integrable) choice of basis functions.

Numerical Results

We parametrize the model by using representative values. We set the initial interest

rate r0 = 5%, and for the interest rate parameters we assume α = 15% (speed of

mean reversion), γ = 5% (mean reversion level), σ = 1% (interest rate volatility),

λ = 3% (market price of risk), and x = 55 (age of the policyholder). For the mortality

rates, for illustrative purposes, we use a simple De Moivre model with terminal age

ω = 110, so that kpx = ω−x−k/ω−x. For the insurance contract, we let the face value

P = 100, the maturity T = 10, and the guaranteed annuity rate g = 1/9. This rate

corresponds to a (flat) interest rate of a little over 6%, so that the option will frequently

be in-the-money. Finally, we set the risk horizon τ = 1 as it is typical in insurance.
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We start by analyzing the LSM approximation to the capital variable as we vary the

number of basis functions. In Figure 1.1, we display the empirical density functions

based on N = 60, 000 Monte Carlo simulations for exact realizations according to

Equation (1.17) and approximate realizations calculated via the LSM algorithm for

different numbers of basis functions M. Here we rely on the optimal basis functions

from Proposition 1.4.3 (Hermite polynomials). As is evident from the figure, the

approximation becomes closer as M increases, although already for low values of M

the LSM algorithm seems to capture the basic shape of the density. Hence, this

first analysis seems encouraging that the LSM algorithm can provide viable results at

relatively low computational costs.

Figure 1.1: Empirical density functions of v(τ) based on N = 60, 000 Monte Carlo realiza-
tions; exact and using the LSM algorithm with M singular functions in the approximation.

To appraise the influence of the choice of basis functions, in Figure 1.2 we compare

the LSM approximation based on the singular functions as used in Figure 1.1 to a

different choice of basis functions, namely the first M elements of the Fourier basis. We
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observe that the approximation based on the (non-optimal) Fourier series is noticeably

worse. In particular, from the upper panel (1.2a) with M = 4, we find that the Fourier

basis is not able to accurately reflect the shape of the density function. As the number

of basis functions increases, of course the approximation becomes better as is evident

from lower panel (1.2b) withM = 10. However, still the optimal basis functions provide

a considerably better fit.

(a) M = 4, N = 60, 000 (b) M = 10, N = 500, 000

Figure 1.2: Empirical density functions of v(τ) based on N Monte Carlo realizations; exact
and using the LSM algorithm with different basis functions (M terms)

Table 1.1 reinforces this insight. Here, we show statistical differences between the

empirical density functions based on N = 700, 000 realizations (we report the mean of

two-hundred runs) using, on the one hand, the exact realizations of the capital and, on

the other hand, an LSM approximation. We compare differences for various choices of

basis functions, both in view of the number of function terms M and the function class

(singular functions / polynomials vs. Fourier basis). For each combination, the table

reports three common statistical distance measures: the Kolmogorov-Smirnov statistic

(KS), the Kullback-Leibler divergence (KL), and the Jensen-Shannon divergence (JS).

There are two key observations. First, the statistical distances are considerably smaller

for the optimal choice of singular functions relative to the Fourier series. This holds for

all combinations and distance measures, and, depending on the metric, the discrepancy

is quite large. Second, the statistical difference increases for the singular functions as

we add additional basis functions, i.e. as M increases. The reason becomes clear
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when recalling our results on joint convergence: When increasing M, the error due to

the regression approximation increases (the second approximation from Section 1.2.2

corresponding to the first term in the convergence order from Proposition 1.3.2). For

the Fourier basis, on the other hand, adding a basis term sometimes decreases and

sometimes increases the distance. Here, both aspects in the convergence rate are at

work – as M increases and with fixed N, the regression approximation worsens but the

functional approximation improves – with either of them dominating in some cases.

Order Singular Functions Fourier Series

M = 3
KS 2.218× 10−3 6.601× 10−2

KL 1.413× 10−8 5.226× 10−5

JS 5.465× 10−5 3.594× 10−3

M = 4
KS 2.291× 10−3 6.570× 10−2

KL 1.896× 10−8 9.582× 10−6

JS 6.555× 10−5 1.507× 10−3

M = 5
KS 2.423× 10−3 6.208× 10−2

KL 2.421× 10−8 9.324× 10−6

JS 7.435× 10−5 1.483× 10−3

Table 1.1: Statistical Distances between the empirical density function based on the exact
realizations and the LSM approximation using different basis functions; mean of two-hundred
realizations of N = 700, 000.

The key application for the LSM algorithm in practice is calculating a company’s

capital requirement (economic capital), which is cast via a risk measure applied to

the simulated distribution. Figure 1.3 shows results for the third quartile (VaR75%)

and the 99.5% VaR (VaR99.5%). In both cases, we show results for different numbers

of simulations N used in the LSM algorithm on the x-axis. We use the first M = 3

(fixed) singular functions as basis functions. For each combination of risk measure

and N, we run the LSM algorithm 300 times and determine the risk measure for each

run. Figure 1.3 provides box plots of the outcomes (the box presents the area between

the first and third quartile, with the inner line at the median; the whisker line spans

samples that are located closer than 150% of the interquartile range to the upper and

lower quartiles, respectively (Tukey boxplot)).
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(a) Third quartile (b) 99.5% VaR

Figure 1.3: Box-and-whisker diagrams for different risk measures (mean, third quartile, and
99.5% VaR) calculated using the LSM algorithm with different number of simulations N ;
the number of basis functions is fixed at M = 3.

The VaR formula from Equation (1.20) yields 74.65 and 83.14 for the third quartile

and the 99.5% VaR, respectively. From Figure 1.3, it appears that the LSM algorithm

produces viable results even with a relatively small number of simulations, e.g. ranging

between about 74.5 to 74.8 for VaR75% when using 20,000 simulations. However,

this range becomes wider as we move towards the tail of the distribution, with the

corresponding estimates for VaR99.5% ranging between roughly 82 to 84.5. We observe

a slight downward trend in the mean of the VaR99.5% when increasing N in line with

the positive bias from Proposition 1.3.4. However, as also indicated in the discussion

after the proposition, the bias is overshadowed by the sample variance resulting from

the Monte Carlo estimation of the quantiles.

Increasing the number of simulations of course yields a more accurate estimation of

the quantiles. In Figure 1.4a, we plot the distributions of 99.5% VaR for N = 700, 000

and different choices for the number of basis functions M (again box plots based on 300

runs). We find that the dispersion of the distribution becomes larger as the number

of basis functions increases under fixed number of simulation. Again, this emphasizes

the importance of the joint convergence rate: When increasing M, to ascertain the

approximation improves, it is necessary to simultaneously increase N.
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(a) N = 700, 000 (b) M = 3

Figure 1.4: Box-and-whisker diagrams for 99.5% VaR calculated using the LSM algorithm
with different number of basis functions and N fixed (a); and different number of simulations
N and M fixed under an increased volatility parameter.

The results are sensitive to changes in the parameters. For instance, in Figure 1.4b,

we increase the volatility parameter (σ) from 1% to 2.5%. The VaR formula from

Equation (1.20) yields 124.18 and we find that the range for VaR99.5% at σ = 2.5%

widens substantially relative to Figure 1.3. Thus, the required computational budget

to obtain viable results may increase as the parameters change. Moreover, the positive

bias arising from the VaR estimation is more evident in this case.

1.5.2 Application to GMIB

Within a Variable Annuity (VA) plus GMIB, at maturity T the policyholder has the

right to choose between a lump sum payment amounting to the current account value

or a guaranteed annuity payment b determined as a guaranteed rate applied to a

guaranteed amount. GMIBs are popular riders for VA contracts: Between 2011 and

2013, roughly 15% of the more than $150 billion worth of Variable Annuities sold in

the US contained a GMIB (LIMRA). Importantly, GMIBs are subject to a variety

of risk factors, including fund (investment) risk, mortality risk, and – as long term

contracts – interest rate risk. Consequently, we consider its risk and valuation in a

multivariate Markov setting for these three risk factors.
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Model and Payoff of the GMIB

As in the previous section, we consider a large portfolio of GMIBs with policyholder

age x, policy maturity T, and a fixed guaranteed amount – so that the guaranteed

annuity payment b is fixed at time zero.14 The payoff of the VA plus GMIB at T in

case of survival is given by:

max {ST , b ax+T (T )} , (1.21)

where ST is the underlying account value which evolves according to a reference asset

net various fees (which we ignore for simplicity).

We consider a three-dimensional state process Yt governing financial and biometric

risks:

Yt = (qt, rt, µx+t)
′,

where qt denotes the log-price of the risky asset at time t, rt is the short rate, and µx+t

is the force of mortality of an (x + t)-aged person at time t. We assume Yt satisfies

the following stochastic differential equations under P:

dqt =

(
m− 1

2
σ2
S

)
dt+ σS dW

S
t , (1.22)

drt = α(γ − rt) dt+ σr dW
r
t , (1.23)

dµx+t = κµx+t dt+ ψ dW µ
t , (1.24)

where m is the instantaneous rate of return of the risk asset, σS is the asset volatility,

κ is an instantaneous rate of increment of mortality (Gompertz exponent), ψ is the

volatility of mortality, and W S
t , W r

t , and W µ
t are standard Brownian motions under

P with dW S
t dW

r
t = ρ12 dt, dW

S
t dW

µ
t = dW r

t dW
µ
t = 0, i.e. we assume independence

of financial and biometric risks. Note that the solutions to the above stochastic dif-
14Some contract variants include path-dependent features such as ratchet guarantees (Bauer et al., 2008).
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ferential equations at time t are Normal distributed so that we can derive the optimal

basis function using the approach in Section 1.4.3.

The dynamics of Yt under the risk-neutral measure Q are given by:

dqt =

(
rt −

1

2
σ2
S

)
dt+ σS dW̃

S
t ,

drt = α(γ̄ − rt) dt+ σr dW̃
r
t ,

dµx+t = κµx+t dt+ ψ dW̃ µ
t ,

where W̃ S
t , W̃ r

t and W̃ µ
t are standard Brownian motions under Q with the same corre-

lation coefficients. Here, for simplicity and without loss of generality, we assume that

there is no risk premium for mortality risk. Since the force of mortality is stochastic,

the k-year survival probability kpx+t is given by:

kpx+t = EQ
[
e−

∫ k
0 µx+t+s ds|Yt

]
,

and the at time-t-value of the VA plus GMIB contract is:

V (t) = EQ
[
e−

∫ T
t rs dse−

∫ T−t
0 µx+t+y dy max {eqT , b ax+T (T )} |Yt

]
. (1.25)

Since it is not possible to obtain an analytical expression for the GMIB, particularly

when considering additional features such as step ups or ratchets, it is necessary to

rely on numerical methods for valuation and estimating risk capital. To directly apply

our LSM framework, we adjust the presentation by changing the numéraire to a pure

endowment with maturity T and maturity value one. The price of GMIB at time k

using the pure endowment as the numéraire is:

V (t) = T−tEx+t EQE [max {eqT , b ax+T (T )} |Yt] , (1.26)

where τ ≤ t ≤ T, T−tEx+t is the price of the pure endowment contract at time t, and
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QE is the risk-neutral measure using the pure endowment contract as the numéraire.

Under our assumption of independence between financial and biometric risk, we

obtain:

T−tEx+t = EQ
[
e−

∫ T
t rs dse−

∫ T−t
0 µx+t+y dy|Yt

]
= p(t, T ) × T−tpx+t

= Ar(t, T ) exp (−rtBr(t, T )) Aµ(t, T ) exp (−µx+tBµ(t, T ))

since (rt) and (µt) are affine with

Br(t, T ) =
1− e−α(T−t)

α
, Ar(t, T ) = exp

{(
γ̄ − σ2

r

2α2

)
(Br(t, T )− T + t)− σ2

r

4α
B2
r (t, T )

}
,

Bµ(t, T ) =
1− eκ(T−t)

κ
, Aµ(t, T ) = exp

{
ψ2

2κ2
(Bmu(t, T ) + T − t) +

ψ2

4κ
Bµ(t, T )2

}
.

Thus, applying Itô’s formula, the dynamics of the pure endowment price are:

dT−tEx+t = dp× T−tpx+t + p× d(T−tpx+t)

= T−tEx+t

[
(rt + µx+t)dt− σrBr(t, T )dW̃ t

t − ψBµ(t, T )dW̃ µ
t

]
,

and from Brigo and Mercurio (2006), the new dynamics of Yt under QE for τ ≤ t ≤ T

become:

dqt =

(
rt −

1

2
σ2
S − ρ12 σs σrBr(t, T )

)
dt+ σS dZ

S
t , (1.27)

drt = α(γ̄ − σ2
rBr(t, T )/α− rt) dt+ σr dZ

r
t , (1.28)

dµx+t = κ(µx+t − ψ2Bµ(t, T )/κ) dt+ ψ dZµ
t , (1.29)

where ZS
t , Zr

t , and Zµ
t are standard Brownian motions under QE with dZS

t dZ
r
t = ρ12dt,

dZS
t dZ

µ
t = 0, and dZr

t dZ
µ
t = 0.

Again proceeding similarly to the previous section, we ignore the asset side in the

calculation of the risk capital for the VA plus GMIB contract, and estimate the risk
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measure ρ(V (τ, Yτ )) via the LSM algorithm. In particular, the cash flow functional in

the current setting is x = xT with

xT (YT ) = −V (T ) = −max{eqT , bax+T (T )}

and

Cτ = Lx(Yτ ) = T−tEx+τ EQE [xT (YT )|Yτ ] .

To apply our results on optimal basis functions, we require the joint distribution

of Yτ and YT :

Lemma 1.5.2. From (1.22)−(1.24) and (1.27)−(1.29), the joint (unconditional) dis-

tribution of Yτ and YT under P̃ is:

Yτ
YT

 ∼ N

µτ
µT

 ,
Στ Γ

Γ′ ΣT

 ,
where we refer to the proof in the Appendix for explicit expressions of µτ , µT , Στ etc.

in terms of the parameters.

Thus we can apply the results from Proposition 1.4.3 to derive optimal basis func-

tions. More precisely, for any non negative integer vector l = (l1, l2, l3), ω|l| = λl11 λ
l2
2 λ

l3
3

is the squared singular value of L and the corresponding left singular functions is:

ϕ|l|(x) = hl1(z
P
1 (x))hl2(z

P
2 (x))hl3(z

P
3 (x)).

Thus, in order to find the set of optimal basis functions for the LSM algorithm con-

sisting of M = K + 1 functions, we need to calculate ω|m| for m = (m1,m2,m3) such

that |m| ≤M , order them, and then determine the associated functions.
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Numerical Results

As in the previous application, we set the model parameters using representative val-

ues. The initial price of the risky asset is one hundred – so q0 = 4.605 – and for the risky

asset parameters we assume m = 0.05 (instantaneous rate of return) and σS = 20%

(asset volatility). The initial interest rate is assumed to be r0 = 2%, α = 20% (speed

of mean reversion), γ = 2.5% (mean reversion level), σr = 1% (interest rate volatility),

λ = 2% (market price of risk), and ρ12 = −30% (correlation between asset and interest

rate). For the mortality rate, x = 55 (age of the policyholder), µ55 = 1% (initial value

of mortality), κ = 10% (instantaneous rate of increment), and ψ = 0.03% (mortality

volatility) are assumed. For the insurance contract, we let the maturity T = 15, and

the guaranteed annuity payout b = 30 per year. We set the risk horizon τ = 1 as in

the previous application.

With the above parameters, the eigenvalues of A are λ1 = 0.1908, λ2 = 0.0669,

and λ3 = 0.0012. The first singular value is one and its corresponding left singular

function is ϕ1(x) = 1. The second singular value of the valuation operator is
√
λ1 and

the corresponding left singular function is ϕ2(x) = zP1 (x). The next three singular

values are given by
√
λ2, λ1, and

√
λ1λ2, and corresponding left singular functions are

ϕ3(x) = zP2 (x), ϕ4(x) = 1√
2

((
zP1 (x)

)2 − 1
)
, and ϕ5(x) = zP1 (x)zP2 (x). In contrast, a

näıve choice of five monomials may result in the sequence (1, qτ , rτ , µx+τ , q
2
τ ) or another

arbitrary arrangement.

We implement the LSM approximation to the capital variable as we vary the

number of basis functions. In Figure 1.5, we provide empirical densities based on

N = 200, 000 and approximate realizations calculated via the LSM algorithm for dif-

ferent numbers of basis functions M. Here we rely on the optimal basis functions

from Proposition 1.4.3 (Hermite polynomials). As is evident from the figure, the re-

quired number of basis function is relatively large comparing to the univariate case in

the previous section.15 The approximation becomes closer to the exact density as M
15Since it is impossible to obtain the exact loss distribution at the risk horizon, we consider the estimated
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increases.

Figure 1.5: Empirical densities of V (τ) based on N = 200, 000 Monte Carlo realizations;
exact and using the LSM algorithm with M singular functions in the approximation.

To assess the performance of optimal basis functions relative to näıve choices, in

Table 1.2 we report statistical differences to the exact distribution according to various

statistical distance measures for singular functions (left column) and simple monomi-

als (right column).16 We find that the optimal basis functions perform uniformly

better than the simple polynomials. Furthermore, the table demonstrates that in this

higher-dimensional setting, the functional approximation is more relevant than in the

univariate setting in the previous section. More precisely, here we observe improve-

ments in the statistical measures when using more basis functions even when keeping

the number of simulations constant.

Moving to the calculation of the company’s capital requirement, Figure 1.6 plots

estimates for the VaR at 99.5% (a) using a fixed number of (optimal) basis functions

loss distribution obtained from the LSM algorithm with M = 34 monomials and N = 25 × 106 simulations
as the exact loss distribution to assess the performance of the LSM algorithm in this multivariate setting.

16Here, the set of monomial basis functions when M = 5 in Table 1.2 is (1, qτ , rτ , µx+τ , q
2
τ ).
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Order Singular Functions Simple Polynomials

M = 4
KS 1.560× 10−2 3.700× 10−2

KL 8.227× 10−6 5.249× 10−5

JS 1.428× 10−3 3.643× 10−3

M = 5
KS 7.693× 10−3 1.217× 10−2

KL 3.119× 10−6 3.945× 10−6

JS 8.754× 10−4 9.885× 10−4

M = 10
KS 3.372× 10−3 5.754× 10−3

KL 5.139× 10−7 1.445× 10−6

JS 3.325× 10−4 5.983× 10−4

Table 1.2: Statistical Distances between the empirical density function based on the exact
realizations and the LSM approximation using different basis functions; mean of two-hundred
realizations of N = 800, 000.

(a) M = 11 (b) N = 1, 500, 000.

Figure 1.6: Box-and-whisker diagrams for 99.5% VaR calculated using the LSM algorithm
with different number of simulations N and a fixed number of basis functions (a); and with
different number of basis functions M and a fixed number of simulations (b).

and varying the number of simulations, and (b) using a fixed number of simulations

and varying the number of basis functions (box plots based on 150 runs). Similarly

to the previous section, Figure 1.6a displays that the dispersion of the distribution

of VaR is decreasing as N increases. However, for N = 1, 000, 000, the bulk of the

estimates are located between 178.65 and 176.13, which cover 95% of VaR estimates

and safely contains the correct estimate – illustrating the viability of the approach.

We observe a slight downward trend in the mean of the VaR99.5% in line with the

positive bias from Proposition 1.3.4. In Figure 1.6b, we plot the distribution of 99.5%

VaR for N = 1, 500, 000 and different choices for number of basis functions M. We
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KS KL JS VaR99.5%

Singular 1.097× 10−2 2.625× 10−6 7.990× 10−4 176.98

Comb. 1 (q2
τ , r

2
τ ) 1.222× 10−2 3.370× 10−6 9.130× 10−4 177.03

Comb. 2 (q2
τ , µ

2
x+τ ) 1.402× 10−2 4.567× 10−6 1.064× 10−3 177.22

Comb. 3 (r2
τ , µ

2
x+τ ) 3.520× 10−2 5.079× 10−5 3.584× 10−3 169.46

Comb. 4 (qτrτ , qτµx+τ ) 3.148× 10−2 4.123× 10−5 3.225× 10−3 170.15

Comb. 5 (qτµx+τ , rτµx+τ ) 3.643× 10−2 5.417× 10−5 3.701× 10−3 169.26

Comb. 6 (q2
τ , rτµx+τ ) 1.387× 10−2 4.447× 10−6 1.049× 10−3 177.21

Table 1.3: Statistical Distances between the empirical density function based on the exact
realizations and the LSM approximation using different combinations, and VaR at 99.5%;
mean of two-hundred realizations of N = 800, 000.

see that a small number of basis functions, e.g. M = 3 or M = 5, can lead to a

severe misestimation. As we increase the number of basis functions, the estimated

99.5% VaRs converges to the exact 99.5% VaR, although the distribution becomes

more dispersed. Again, this emphasizes the relevance of the joint behavior as N and

M increase.

To analyze the viability of näıve choices, in Table 1.3, we compare the performance

of six optimal basis functions to various combinations of six simple polynomial basis

functions. In particular, we choose a constant term and first order terms in each

variables, and we then consider six choices for the remaining two terms. Again, we

observe that the singular functions provide a uniformly better fit than the polynomials.

Furthermore, we notice that a poor choice in the basis function (Combinations 3-5)

lead to a severe underestimation of the VaR at 99.5%, where it appears that omitting

higher-order terms in q is the key issue.

1.6 Conclusion

We propose a novel algorithm for estimating risk measures in “nested” settings, which

delivers reliable results with a relatively small computational effort. The algorithm

relies on functional approximations of conditional expected values and least-squares
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regression. After establishing the algorithm, we analyze convergence of the approach

and examine properties where estimating VaR. Moreover, we discuss the choice of

basis functions in the functional approximation. Specifically, we show that, under

certain conditions, the left singular functions of the valuation operator that maps cash

flows to capital present optimal basis functions for a model framework. We derive

optimal basis functions in settings where the underlying Markov state variable follows

a Gaussian distribution, and we apply our ideas in two relevant examples from life

insurance.

Our numerical illustrations document that the algorithm can provide viable results

at relatively low computational costs. The algorithm therefore provides one potential

solution to pressing practical problems such as the calculation of capital requirements

in life insurance according to the forthcoming Solvency II directive. Two key insights

emerge from our analyses in view of applying the LSM algorithm in practical set-

tings. First, increasing the number of basis functions comes at a significant cost since

it is necessary to simultaneously increase the number of simulations N. This is re-

quired to establish convergence in theory, since the number of simulations typically

has to increase much faster; and also in our illustrations, the variance of the estimates

increased markedly when adding in additional basis terms. Second, in multivariate

settings, a key issue is not only choosing the functional class of basis functions – which

appears less crucial in our exercises – but rather the combinations of basis functions

that are important for spanning the payoff space in view of valuation. Even in the

three-dimensional setting considered here, this is of critical importance as näıve choices

may yield significantly worse results. We expect that the choice of basis functions will

become even more important as the complexity and the dimensionality of the problem

increase.
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Chapter 2

A Least-Squares Monte Carlo

Evaluation of Withdrawal Benefits

in Variable Annuities1

2.1 Introduction

Within the life insurance industry, advanced savings products that combine capital

market participation, financial guarantees, and insurance features play an increasingly

important role. For instance, in the US since 1995, annual Variable Annuity (VA)

sales have increased from roughly $30 billion to $150 billion (Morningstar Annuity

Research Center2), whereas the annual growth rate in the US individual life insurance

market was a mere 2% (LIMRA3). These products present challenging problems in

view of pricing and risk management, particularly due to exercise-dependent features

embedded in the contracts that render the resulting option valuation problem “non-

European.” The conventional approach is to rely on numerical methods that require

a discretization of the (Markov) state space, such as finite difference schemes for the

1This chapater is co-authored with Daniel Bauer.
2Morningstar Annuity Research Center. http://www.vards.com.
3Life Insuance and Market Research Association. http://www.limra.com.
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corresponding Black-Scholes partial differential equations (Bauer et al., 2008; Chen

et al., 2008; Dai et al., 2008). However, due to the complexity of the guarantees

and due to the multitude of relevant risk factors over the typically long horizons

– e.g., interest, volatility, and longevity risk – the valuation problems are usually

high-dimensional. Therefore, these conventional approaches may not be feasible for

real-world applications.

In this context, a number of studies in the actuarial literature have proposed to rely

on so-called Least-Square Monte Carlo (LSM) methods that are popular for pricing

American options (Carriere, 1996; Longstaff and Schwartz, 2001; Clément et al., 2002).

However, thus far the consideration was limited to optimal stopping problems as they

arise when considering the option to surrender the contract (Nordahl, 2008; Bauer et

al., 2010; Bacinello et al., 2010). The purpose of the current chapter is to explore the

feasibility of the LSM approach for other (non-surrender) option features within life

insurance contracts that depend on the policyholders exercise, particularly for pop-

ular withdrawal guarantees in VAs. Understanding the applicability – and potential

pitfalls or limitations – of this method is highly relevant for providers faced with these

valuation problems, particularly in light of the dawning Solvency II regulation that

emphasizes market-consistent valuation.

Within a VA investment, the insurer invests an initial premium into a separate

financial asset account according to the policyholder’s choice and deducts a continuous

fee – the so-called option fee – from the account. The option fee should be determined

so as to provide for the benefits chosen by the policyholder. The problem of “pricing”

an embedded option in this context then refers to the determination of this option fee.

Within a Guaranteed Minimum Withdrawal Benefit (GMWB) rider, the policyholder

has the option to make periodical withdrawals from her account, even in case the

account value reaches zero. For pricing and managing the risk associated with a

GMWB, of course the policyholder’s behavior is a crucial factor.

A number of contributions comment on suitable assumptions for policyholder be-
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havior. For instance, optimal withdrawals and fees when applying a conventional

non-European option pricing approach to a basic VA plus GMWB do not square well

with empirical patterns (Moenig and Bauer (2016) and references therein). Potential

reasons include taxes and other frictions, market incompleteness, or behavioral biases.

In this chapter, we follow the view in Bauer et al. (2015) that in the context of newly

introduced guarantees and changing market environments, it is not sufficient to rely

on past policyholder behavior but it is necessary to construct structural models. In

particular, if one views policyholder behavior as actuarial risk, the conventional ap-

proach is to put up a reserve that is sufficient under any exercise pattern – which leads

to the non-European option pricing problem (Bauer et al., 2010, 2015). However, also

when considering the optimal decision in more advanced models that include taxes or

risk aversion, it is typically necessary to solve a dynamic optimization problem so that

the considerations here will apply, possibly after some modification.

There are many papers that determine optimal exercise behavior in insurance con-

tracts according to American or Bermudan option pricing techniques (Steffensen, 2002;

Tanskanen and Lukkarinen, 2003; Bauer et al., 2008, among many others). Here, the

common approach is to rely on a discretization of the state space within the so-called

grid algorithm (Judd, 1998). However, one of key problems when using this numerical

method to approximate the value function is the so-called curse of dimensionality.

That is, it is computationally demanding – and potentially prohibitive – to use this

algorithm if the problem is high-dimensional. As indicated, this is typically the case

for VA guarantees and for GMWBs in particular, especially within a practical model

framework that includes relevant risk factors such as equity, interest, volatility, and

longevity risks.

Recognizing this point, a number of studies have proposed to rely on an LSM

approach, although the focus in actuarial studies has been on optimal stopping prob-

lems in the context of policy surrender. One exception is the recent paper by Huang

and Kwok (2016), who consider a regression-based algorithm for pricing and heed-
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ing related withdrawal guarantees, so-called Guaranteed Lifelong Withdrawal Benefits

(GLWBs), in VAs. Within GLWBs, the withdrawal option does not elapse until the

policyholder’s time of death, whereas GMWBs feature a fixed maturity date and a

guarantee account that gets depleted upon withdrawal. In particular, this means that

within our setting, the guarantee account evolves as a state variable – rendering the

problem different than usual LSM pricing. Moreover, in contrast to their paper, we

consider variants of the LSM approach and discuss advantages and pitfalls of the var-

ious approaches. Further, we provide analyses in an advanced financial model with

several risk factors.

After introducing the model framework and the GMWB pricing problem, we de-

scribe the conventional regression-based algorithm – which we refer to as regression-

now algorithm. We formally establish the algorithm for pricing the GMWB. We first

implement it in a basic Black-Scholes setting to analyze its performance and proper-

ties. In particular, we also implement a grid-based algorithm, which is feasible in this

setting, and compare the results. This allows us to analyze the viability of the LSM

algorithm in solving the dynamic optimization problem.

A number of insights emerge. First, for a relatively low number of simulation paths,

the withdrawal rule from the LSM algorithm does not present a close approximation

to the optimal withdrawal rule from the grid-based algorithm. While this “subopti-

mal” behavior should yield a lower value for the embedded option, we instead find

that the LSM algorithm produces a higher price. This is due to a well-known bias

in regression-based algorithms, since the algorithm emphasizes results that are high

solely due to Monte Carlo variation (Glasserman, 2004). As the number of simula-

tion paths increases, however, we observe that (i) the withdrawal pattern under the

LSM algorithm becomes closer to that from the grid-based approach; and (ii) the pos-

itive bias decreases – so that for large choices, the LSM algorithm produces a viable

approximation.

We then extend the model framework to include multiple stochastic factors:
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Stochastic volatility, stochastic interest rates, and stochastic mortality. Here, the

LSM algorithm allows us to solve the dynamic optimization problem associated with

the GMWB valuation, whereas a conventional grid-based algorithm would require an

at least five-dimensional grid – which complicates or even prohibits its application.

We find that the option fee considerably increases when incorporating the various risk

factors. Furthermore, optimal withdrawal patterns become relatively “rich” as they

depend on the various risk factors in a non-trivial fashion. In view of the algorithm,

more simulation paths and a high number of basis functions are required for the option

fee to converge relative to the simple Black-Scholes setting – but these requirements

are not prohibitive with reasonable computational resources.

Finally, we also analyze a different variant of the LSM algorithm, the so-called

regression-later algorithm. This version relies on a functional approximation of the

payoff profile with suitable basis functions that permit a closed-form evaluation of

their expectation – rather than approximating the conditional expectations as within

the conventional regression-now LSM variant. Our findings are mixed. In the basic

Black-Scholes setting, it proves relatively straightforward to approximate the payoff

profile based on few basis functions, and the regression-later algorithm then performs

better (see Beutner et al. (2013) for similar findings). However, as we move to the

multi-factor setting, (i) one faces the nontrivial problem of obtaining suitable basis

functions for approximating the payoff that allow for closed-form solutions of their

expected values; and (ii) the implementation becomes increasingly difficult and it is

subject to other error sources, including the solution of equation systems associated

with finding the moments of the basis functions. Due to these complications, we are

not able to produce viable results.

The remainder of the chapter is organized as follows: Section 2.2 introduces model

setting for GMWB and the related dynamic optimization problem. Section 2.3 presents

the basic regression-now algorithm in the context of GMWB pricing. Section 2.4

provides our numerical results in the two model settings. Section 2.5 discusses the
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regression-later variant and gives corresponding numerical illustrations. And, finally,

Section 2.6 concludes.

2.2 Model Setting

This section sets up the general model framework for pricing the VA plus GMWB.

In Section 2.2.1, we formalize the underlying assumptions and specify the quantities

related to the GMWB. Section 2.2.2 then introduces the dynamic optimization problem

to find the optimal withdrawal amount at each stage.

2.2.1 Framework

We assume that (Ω,F ,F = (Ft)t∈[0,T ],P) is a complete filtered probability space on

which all relevant quantities exist, where P is the physical measure. The sigma algebra

Ft contains all information about the market and mortality up to time t, and the

filtration F is assumed to satisfy the usual conditions. In addition, we take for granted

the existence of a risk-neutral probability measure (equivalent martingale measure) Q

equivalent to P.

The uncertainty with respect to pricing and management of the VA plus GMWB

arises from the uncertain development of a number of influencing factors, such as

equity returns, interest rates, demographic indices, etc. We introduce the sufficiently

regular d-dimensional Markov process Y = (Yt)t∈[0,T ] = (Yt,1, ..., Yt,d)t∈[0,T ], d ∈ N, to

model the uncertainty. We assume that all market and mortality risk factors can be

expressed in terms of Y . Moreover, we suppose the existence of a locally risk-free

process (Bt)t∈[0,T ] with Bt = exp{
∫ t

0
rudu} where (rt)t∈R+ with rt = r(t, Yt) is the risk-

free interest rate process. In particular, for the time t price of a zero-coupon bond

with maturity k ≥ t, we have p(t, k) = p(t, k, Yt) = EQ
[
e−

∫ k
t rs ds

∣∣∣Yt]. For considering

mortality risk, we assume the existence of stochastic intensity (µx+t)t∈R+ , the force of

mortality at age x+ t. In particular, the probability that a policyholder whose age is
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x+ t at time t survives up to time k > t is given by k−tpx+t = EQ
[
e−

∫ k−t
0 µx+t+sds

∣∣∣∣Yt].
The corresponding mortality probability is denoted by k−tqx+t = 1− k−tpx+t.

Suppose that the policyholder at age x enters into a VA plus GMWB contract. She

pays an initial lump sum premium, P0, which is invested into the reference asset whose

price is given by St = St(Yt) at time t. A personal account is kept for the policyholder,

and she has the right to make periodic withdrawals. More precisely, we assume that

withdrawals are possible at ti, i = 1, 2, ..., n− 1, with:

0 = t0 < t1 < · · · < tn−1 < tn = T,

where T denotes the maturity of the contract.

Within a GMWB rider, the insurer maintains a (virtual) guarantee account which

quantifies the remaining guaranteed total amount of withdrawals during the contract

period, regardless of the performance of the reference asset. In particular, if the value

of personal account is depleted due to poor market performance, the policyholder can

still make withdrawals as long as the guaranteed account balance is positive.

We set up the law of motion for the personal account and guaranteed account of

the GMWB following notations and the structure in Bauer et al. (2008) and Moenig

and Bauer (2016). Let X−ti and wti denote the value of the personal account at time

ti before making withdrawal and the amount of withdrawal at time ti, respectively.

After the withdrawal, the value of personal account is denoted by X+
ti . During the

lifetime of the contract, the insurer deducts an (option) fee, φ, continuously from

the personal account to cover the cost for providing option features embedded in the

contract. Then, the resulting law of motion of the personal account is given by:

X−ti = X+
ti−1

Sti
Sti−1

e−φ(ti−ti−1), i = 1, 2, ..., n,

X+
ti

= max
(
0, X−ti − wti

)
, i = 1, 2, ..., n− 1,
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with X+
t0 = P0.

The possible withdrawal amount at time ti is:

0 ≤ wti ≤ max
(
X−ti ,min (gti , Gti)

)
, (2.1)

where Gti is the guarantee account value at time ti and gti is the guaranteed contrac-

tual withdrawal amount. The constraint in (2.1) is a common form of the possible

withdrawal amount and it differs slightly from some of the settings put forward in

literature (Bacinello et al., 2013; Huang and Kwok, 2016). Note that we allow the

policyholder to surrender the contract before the maturity by permitting wti = X−ti if

X−ti > Gti in (2.1). The guarantee account is updated based on the withdrawal amount

according to the following transition equation:

Gti+1
=


max (0, Gti − wti) , wti ≤ gti .

min

(
max (0, Gti − wti) ,

X+
ti

X−ti
Gti

)
, wti > gti , i = 1, 2, ..., n− 1,

with Gt1 = P0. It is also possible to include common ratchet or roll-up features of the

guarantee account.

While the amount and timing of withdrawal are determined by the policyholder, it

is common to impose penalties in the form of fees if the withdrawal amount exceeds

some threshold or if the withdrawal occurs too early. Therefore, the cash amount

going to the policyholder at time ti, C(ti, wti), may be different from wti . In line with

practical contract designs, we assume that:

C(ti, wti) = wti − feeI
ti
− feeR

ti
,

feeI
ti

= epti ×max(0, wti −min(gti , Gti)), (2.2)

feeR
ti

= pgti × (wti − feeI
ti

)1{x+ti<59.5}, (2.3)

where 1A is the indicator function; epti and pgti are penalty percentages. In (2.2),
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the fee is applied to the withdrawal and absorbed by the insurer if the withdrawal is

greater than the threshold, min(gti , Gti), whereas the fee in (2.3) is collected by the

regulator.

We define the death benefit, Dti , paid at ti, i = 1, 2, ..., n, if death of the poli-

cyholder occurs during (ti−1, ti]. Dti may be the account value X−ti or a guaranteed

amount. Since most VA contracts also contain a Guaranteed Minimum Death Benefit

(GMDB) rider free of charge, the death benefit in this chapter is assumed to be:

Dti = max(X−ti , Gti).

If the policyholder survives until maturity, on the other hand, the policyholder will

receive a survival benefit, V (tn), which is given by

V (tn) = max
(
X−tn , min(gtn , Gtn)

)
.

For the valuation, in this chapter, we assume that the policyholder determines the

amount of withdrawal and the optimal surrender time, τ , so as to maximize value of

her contract. Suppose that W = (wt1 , ..., wtn−1) is an arbitrary withdrawal strategy

and A denotes family of all conceivable (adapted) W , and τ is a stopping time such

that wti = 0 for ti > τ if τ ≤ tn−1. Then the price/value V (0) of the VA plus GMWB

at t = t0 is given by

V (0) = sup
W∈A

EQ
[ n−1∧τ∑

i=1

e−
∫ ti
0 rsdse−

∫ ti
0 µx(s)dsC(ti, wti) + e−

∫ T
0 rsdse−

∫ T
0 µx(s)dsV (tn)1{T≥τ}︸ ︷︷ ︸

Survival Benefit

+
n∧τ∑
j=1

e−
∫ tj
0 rtdte−

∫ tj−1
0 µx(t)dt

(
1− e−

∫ tj−tj−1
0 µx+tj−1 (t)dt

)
Dtj︸ ︷︷ ︸

Death Benefit

∣∣∣∣Y0

]
. (2.4)

To find V (0) in (2.4), we need to determineW∗ that maximizes the contract value.
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Usually, it is not possible to determine V (0) by finding W∗ analytically. In the fol-

lowing section, we thus introduce a dynamic optimization problem to find the optimal

withdrawal strategy.

From the insurer’s point of view, the fair option fee, φ, is then determined by

setting V (0) = P0 according to the equivalence principle.

2.2.2 Dynamic Optimization Problem

Finding the optimal withdrawal strategy in (2.4) is equivalent to solving the following

dynamic optimization problem (2.5) recursively (Judd, 1998). At time ti, i = n−1, n−

2, ..., 1, the policyholder’s problem reads:

Vti(Yti) = max
wti

C(ti, wti) +

EQ
[
e−

∫ ti+1
ti

rsds
{
e−

∫ ti+1−ti
0 µx+ti (s)dsVti+1

(Yti+1
) +

(
1− e−

∫ ti+1−ti
0 µx+ti (s)ds

)
Dti+1

(Yti+1
)
} ∣∣∣∣Yti] ,

subject to 0 ≤ wti ≤ max(X−ti ,min(gti , Gti)),

Vtn(Ytn) = Vtn(X−tn , Gtn) = max(X−tn , Gtn),

Dti+1
(Yti+1

) = max(X−ti+1
, Gti+1

). (2.5)

The challenging part in solving (2.5) is the calculation of the expected actuarially

discounted benefits. Usually, it is not possible to obtain the expectation in closed form

due to unknown form of Vt(·). Instead, it is common to rely on numerical techniques.

The grid algorithm, which discretizes the underlying (Markov) state space, is the most

common tool to get an approximation of the expectation. However, this method is

effective and feasible only when the dimension of problem is low. For instance, the

grid algorithm is easily implemented when the dimension of state variables is two

(Bacinello et al., 2013). In case one wants to include multiple risk factors such as

equity, interest rate and mortality risk, however, the previous method is subject to the

so-called curse of dimensionality. As a potential solution, we adapt two Least-Squares
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Monte Carlo (LSM) methods in the following sections – the so-called regression-now

and regression-later algorithms.

2.3 Regression-Now Algorithm

The expectation operator in (2.5) may be regarded as the mapping:

EQ : L2
(
Rd,B,Qti+1

)
→ L2

(
Rd,B,Qti

)
, (2.6)

where Qt is the risk-neutral measure defined at time t (according to the distribution

of Yt). Note that the considered two spaces in (2.6) are separable as L2 spaces under

a regular Borel measure. Thus, there exists a complete set of basis functions for the

each space (Kreyszig, 1989). Accordingly, a conditional expectation in L2(Rd,B,Qti)

and a functional of random variables in L2(Rd,B,Qti+1
) can be approximated by linear

combinations of the respective sets of complete basis functions.

Hence, there are two options for approximating the conditional expectation in (2.5):

One is to approximate the conditional expectation using the basis for L2(Rd,B,Qti);

the other is to approximate a functional of random variables using the basis for

L2(Rd,B,Qti+1
) and to then compute the expectation of the approximating functional.

In this section, we discuss the first option to obtain the approximated value of the ex-

pected actuarially discounted benefits. The later option is explored in Section 2.5.

We label this method the regression-now algorithm. More precisely, the condi-

tional expectation is approximated by a linear combination of basis functions for

L2(Rd,B,Qti) now at time ti. The corresponding coefficients are estimated via or-

dinary least-squares using information generated from a Monte Carlo simulation. As

a Monte Carlo method, the regression-now algorithm does not suffer from the curse

of dimensionality. The key ingredients are the number of simulations, the number of

basis functions, and the form of basis functions.
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2.3.1 Regression-now algorithm

Suppose that the policyholder is alive at time tn−1. The policyholder’s dynamic opti-

mization problem then is:

Vtn−1(Ytn−1) = max
wtn−1

C(tn−1, wtn−1) +

EQ
[
e
−
∫ tn
tn−1

rsds
{
e−

∫ tn−tn−1
0 µx+tn−1 (s)dsVtn(Ytn) +

(
1− e−

∫ tn−tn−1
0 µx+tn−1 (s)ds

)
Dtn(Ytn)

} ∣∣∣∣Ytn−1

]
,

subject to 0 ≤ wtn−1 ≤ max(X−tn−1
,min(gtn−1 , Gtn−1)),

Vtn(Ytn) = Vtn(X−tn , Gtn) = max(X−tn ,min(gtn , Gtn)),

Dtn(Ytn) = max(X−tn , Gtn). (2.7)

Suppose that {ek}∞k=1 is a set of complete basis functions for L2
(
Rd,B,Qtn−1

)
. Then

the expectation in (2.7) may be written as:

EQ
[
e
−
∫ tn
tn−1

rsds
{
e−

∫ tn−tn−1
0 µx+tn−1 (s)dsVtn(Ytn) +

(
1− e−

∫ tn−tn−1
0 µx+tn−1 (s)ds

)
Dtn(Ytn)

} ∣∣∣∣Ytn−1

]
=
∞∑
k=1

α
tn−1

k ek
(
Ytn−1

)
, (2.8)

where α
tn−1

k is the corresponding coefficient of the kth basis function (Kreyszig, 1989).

The basic idea of the regression-now algorithm to approximate the (conditional)

expectation consists of two steps:

1. (2.8) is replaced by finite linear combination of M basis functions.

2. The corresponding coefficients are estimated via least-squares regression.

Common choices of basis functions for the first approximation are monomials, Hermite

polynomials, or Legendre polynomials. After choosing the function class and the
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number of basis functions, the first approximation is:

EP×Q
[
e
−

∫ tn
tn−1

rsds
{
e−

∫ tn−tn−1
0 µx+tn−1

(s)dsVtn(Ytn) +

(
1− e−

∫ tn−tn−1
0 µx+tn−1

(s)ds

)
Dtn(Ytn)

} ∣∣∣∣Ytn−1

]
≈

M∑
k=1

α
tn−1

k ek
(
Ytn−1

)
. (2.9)

The associated coefficients in (2.9) are estimated via least-squares regression using

information generated from a Monte Carlo simulation.4 More precisely, we use N

samples of state variables generated at each t = tn−1,j, j = 1, ...,m, such that:

tn−1 = tn−1,0 < tn−1,1 < · · · < tn−1,m = tn.

At time tn−1, using the lth sample path, we calculate:

yltn = df l1,tn
[
df l2,tnVtn(Y l

tn) +
(
1− df l2,tn

)
Dtn(Y l

tn)
]
, (2.10)

where

Y l
tn−1

= lth realization of state variables,

df l1,tn = exp

(
−

m−1∑
j=0

rltn−1,j
∆n
j

)
,

df l2,tn = exp

(
−

m−1∑
j=0

µlx+tn−1
(j) ∆n

j

)
,

∆n
j = tn−1,j+1 − tn−1,j.

Note that (2.10) is a (very) noisy estimator of the expectation in (2.7). We thus solve

4It may be (theoretically) possible to compute the M coefficients by calculating inner products. However,
since the structures of the space and the payoff functional are usually complicated, it is typically not feasible
to calculate corresponding coefficients analytically in practice.
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the following least-squares problem:

α̂tn−1 = argmin{αtn−1}

N∑
k=1

[
e
(
Y l
tn−1

)
· αtn−1 − yltn

]2
,

where e
(
Y l
n−1

)
=
(
e1

(
Y l
n−1

)
, ..., eM

(
Y l
n−1

))
, αtn−1 = (α

tn−1

1 , ..., α
tn−1

M )′ and · is the

usual scalar product. Then, we replace αtn−1 by α̂tn−1 to obtain the second approxi-

mation:

M∑
k=1

α
tn−1

k ek(Ytn−1) ≈
M∑
k=1

α̂
tn−1

k ek(Ytn−1). (2.11)

At time tn−1, therefore, we have the final approximated expectation after the two

steps:

EQ
[
e
−

∫ tn
tn−1

rsds
{
e−

∫ tn−tn−1
0 µx+tn−1

(s)dsVtn(Ytn) +

(
1− e−

∫ tn−tn−1
0 µx+tn−1

(s)ds

)
Dtn(Ytn)

} ∣∣∣∣Ytn−1

]
≈

M∑
k=1

α̂
tn−1

k ek
(
Ytn−1

)
.

The policyholder thus solves the following (approximated) dynamic optimization prob-

lem:

Vtn−1(Ytn−1) ≈ max
wtn−1

C(tn−1, wtn−1) +
M∑
k=1

α̂
tn−1

k ek
(
Ytn−1

)
,

subject to wtn−1 ∈ Atn−1 ,

where Atn−1 is the set of discretized feasible solutions. Note that the continuous set

of feasible solutions needs to be discretized as within the grid algorithm to solve the

above approximated dynamic optimization problem. The discretized set of feasible

solutions considered in this chapter is discussed in the next section. After solving the

approximated dynamic optimization problem at time tn−1, we follow similar approxi-

mation steps and solve the problem at each time ti, i = n−2, n−3, ..., 1. More details
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about the regression-now algorithm for pricing the GMWB are provided in Appendix

A.2.1. Within the above steps, the values of the regressors are specified according to

the current information. This is why the algorithm is called regression-now method.

It is relatively straightforward to anticipate that the algorithm converges to the

true expectation as M → ∞ and N → ∞. If the number of simulation is increased,

α̂ti → αti in probability (Amemiya, 1985). And as M → ∞, the first approximation

converges to (2.8) in L2. Details about convergence of (2.11) can be found in Clément

et al. (2002).

2.3.2 Discretized Feasible Solution

The continuous set of feasible solutions needs to be discretized to a finite set of fea-

sible solutions for the implementation of approximation algorithms. For Guaranteed

Minimum Life Benefits (GMLBs), recent contributions show that there are only three

possible optimal solution: “do not withdraw,” “withdraw the guaranteed contractual

amount,” and “surrender” (Azimzadeh and Forsyth, 2015; Huang and Kwok, 2016). It

is difficult, however, to generalize the set of possible optimal solutions for the GMWB,

although it is likely that a consideration of “corners” will suffice.

Here, we consider the following set of possible withdrawals, inspired by the litera-

ture on GMWB pricing and the corresponding results for GMLBs. However, we can

extend the considered set to other sets that contains more feasible solutions based on

the nature of problem, e.g. when incorporating tax features (Moenig and Bauer, 2016).

In our setting, when the policyholder makes decision at time ti, she confronts the

following six cases:

• If X−ti ≤ gti ≤ Gti , the possible withdrawal amount is [0, gti ]. The set of possible

withdrawals is thus assumed to be:

Ati = {0, gti}.
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Note that there is no incentive for the policyholder to make a withdrawal of X−ti .

• X−ti ≤ Gti ≤ gti , the possible withdrawal amount is [0, Gti ]. The set of possible

withdrawals is thus assumed to be:

Ati = {0, X−ti , Gti}.

• Gti ≤ X−ti ≤ gti , the possible withdrawal amount is [0, X−ti ]. The set of possible

withdrawals is thus assumed to be:

Ati = {0, Gti , X
−
ti
}.

• Gt ≤ g ≤ X−t , the possible withdrawal amount is [0, X−ti ]. The set of possible

withdrawals is thus assumed to be:

Ati = {0, Gti , X
−
ti
}.

• gti ≤ Gti ≤ X−ti , the possible withdrawal amount is [0, X−ti ]. In this case, there

are two sub-cases :

– if
∑tn

s=ti
gs < Gti

In this sub-case, the policyholder has the motivation to rebalance her guar-

antee account value since she may not be able to fully enjoy her minimum

guarantee feature if she only withdraws gti in the future. Thus, the set of

possible withdrawals is assumed to be:

Ati =
{

0, Gti − g,X−ti
}
,

where g = Gti −
∑tn

s=ti+1
gs.
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– if
∑tn

s=ti
gs ≥ Gti . The set of possible withdrawals is assumed to be:

Ati = {0, gti , X−ti }.

• g ≤ X−t ≤ Gt, the possible withdrawal amount is [0, X−t ]. In this case, there are

also two sub-cases :

– If
∑tn

s=ti
gs < Gti

Similar to the previous case, the policyholder has the motivation to rebalance

her guarantee account. The set of possible withdrawals is assumed that

Ati =
{

0, g,X−ti
}
,

where g = X−ti −X
−
ti /Gti

(∑tn
s=ti+1

gs

)
.

– If
∑tn

s=ti
gs ≥ Gt. The set of possible withdrawals is assumed to be:

Ati = {0, gti , X−ti }.

After specifying Ati , we generate arbitrary withdrawals wti at each point in order to

obtain variation in the personal account and the guarantee account states simulta-

neously. Note that, like in Monte Carlo simulations for conventional American-style

derivatives, the random withdrawals causing surrender or situation rendering Gti+1
= 0

should be ruled out.

2.4 Application of the Regression-Now Algorithm

We implement the regression-now algorithm to solve the dynamic optimization prob-

lem described in Section 2.2.2. First, in Section 2.4.1 we rely on a simple Black-Scholes

framework with deterministic mortality. In this setting, the state vector is two dimen-

sional and the grid algorithm is implementable for determining true optimal withdrawal
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strategy and for pricing the GMWB. Thus, we are able to compare the results of the

regression-now algorithm with the results of the grid method to appraise the viability

of the LSM approach.

In Section 2.4.2, we introduce a more advanced model including stochastic interest

rate, stochastic volatility, and stochastic mortality. We compare our results to the

basic setting and discuss how the optimal withdrawal strategy is affected by state

variables.

2.4.1 Application in the Black-Scholes framework

Under the Black-Scholes assumption, the price of the reference asset evolves according

to the following stochastic differential equation under the measure Q:

dSt = rStdt+ σStdWt,

where r is the constant risk free rate, σ is the asset volatility, and Wt is a standard

Brownian motion under the measure Q. We assume that the force of mortality is a

positive constant µ (exponential law of mortality). Under this assumption, the k-year

survival probability of an x-year old policyholder is given by kpx = e−µk. Note that

the dimension of the state vector in this framework becomes two – Yt = (X−t , Gt).

The dynamic optimization problem at time ti i = n− 1, ..., 1, reads:

Vti(Yti) = max
wti

C(ti, wti)

+ e−r(ti+1−ti)EQ
[
e−µ(ti+1−ti)Vti+1

(Yti+1
) +

(
1− e−µ(ti+1−ti)

)
Dti+1

(Yti+1
)

∣∣∣∣Yti] ,
subject to wti ∈ Ati ,

Vtn(Ytn) = max(X−tn ,min(g,Gtn)). (2.12)

We solve (2.12) via the grid method. Since the value of the personal account is

log-normally distributed under the Black-Scholes framework, the expectation in (2.12)
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is given by:

EQ
[
e−µ(ti+1−ti)Vti+1

(Yti+1
) +

(
1− e−µ(ti+1−ti)

)
Dti+1

(Yti+1
)

∣∣∣∣Yti]
=

∫ ∞
−∞

[
e−µ(ti+1−ti)Vti+1

(X+
ti
ex, Gti+1

) +
(
1− e−µ(ti+1−ti)

)
max(X+

ti
ex, Gti+1

)
]
g(x)dx

where

g(x) =
1√

2πσ2(ti+1 − ti)
e
−

(x−(r−φ− 1
2σ

2(ti+1−ti))
2σ2(ti+1−ti) , −∞ < x <∞.

The integral is evaluated via linear interpolation for Vti+1
andDti+1

, and the trapezoidal

rule after discretizing Yt.

In the LSM algorithm, we choose simple monomials as basis functions for the first

approximation. After solving the least-squares problem, the approximated form of the

expected value is given by:

EQ
[
e−µ(ti+1−ti)Vti+1

(Yti+1
) +

(
1− e−µ(ti+1−ti)

)
Dti+1

∣∣∣∣Y −ti ]
≈

M∑
j=1

α̂tij
(
X+
ti

)j1 (G+
ti+1

)j2
,

where j1, j2 ∈ Z+.

We use representative values to parameterize the model. The specification of the

GMWB contract, financial market parameters, policyholder’s age, etc. are provided

in Table 2.1. The fair fee of 0.17% is calculated using grid-based algorithm. We first

implement the regression-now algorithm using eight basis functions:

EQ [·|Yt] = α0+α1X
+
t +α2

(
X+
t

)2
+α3

(
X+
t

)3
+Gti+1

+Gti+1

(
β1X

+
t + β2

(
X+
t

)2
+ β3

(
X+
t

)3
)
.

For the grid-based algorithm, we consider equidistant grids for X−t and Gt with 201×16

gird points.

In Figure 2.1, we plot the expected present value of benefits at time zero V (0)
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GMWB contract

Maturity 15
Number of withdrawal per year 1
Initial Premium (P0) 15
Option fee (φ) 0.17%
epti (8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0%, · · · , 0%)
pgti 10%
g 1

Policyholder

Age 55
µ 0.02

Financial Market

Risk free rate 4%
Volatility 15%

Table 2.1: Description of GMWB contract in the Black-Scholes framework

under the LSM algorithm for different numbers of simulation paths N. We compare

it to the value under the grid-based algorithm, which is exactly the initial premium

P0 since we are relying on the fair fee that equates P0 and V (0) (as calculated via

the grid-based algorithm). There are two immediate observations. First, the LSM

valuation always exceeds the value from the grid algorithm. This is a familiar feature

of regression-based algorithms (Glasserman, 2004) originating from an asymmetric

influence of Monte Carlo errors: If an estimate is high, it is likely to be picked as the

maximum in the Bellman equation, whereas it is likely that another option is favored if

the estimate is low. Second, the LSM valuation converges to the grid-based valuation

as the number of simulations increases – the bias vanishes and the optimal withdrawal

strategy approximates the pattern from the grid-based approach.

To illustrate the latter aspect, Figure 2.2 plots the maximizing withdrawal rules

resulting from the LSM algorithm in comparison to the corresponding patterns from

the grid-based algorithm for N = 30, 000 and N = 6000, 000 simulations for different

points in time on the left- and right-hand side, respectively. The grid-based withdrawal

rules at t = 14 (red line in Panels 2.2a and 2.2b) indicates that it will be optimal to

surrender if the value of the guaranteed account value is two and the value of personal
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Figure 2.1: Convergence of Regression-Now Estimates: VA plus GMWB value for the grid-
based algorithm (Grid) and the LSM estimates (Now) as a function of the number of simu-
lations N , basic Black-Scholes model

account is larger than 2.7, whereas it is optimal to withdraw the guaranteed amount

for smaller account values. Thus, 2.7 is the “critical value” dividing the region of

withdrawing the guaranteed amount g (to the left of it) and surrendering (to the

right of it). Clearly, the LSM algorithm does not accurately reflect this pattern for

N = 30, 000 (Panel 2.2a), whereas for N = 600, 000 (Panel 2.2b) the two graphs

are similar. Indeed, the brief dip in the grid-based algorithm is arguably due to

discretization errors – and we do not observe it for the withdrawal rule resulting from

the LSM algorithm. The match for very large values of X−t (beyond 29) is not very

close, but note that (Gt = 2, X−t > 29) correspond to unlikely combinations of the

state variables – since it corresponds to withdrawals of 13 units prior to time t = 14

with still more than 29 units in the account value. In fact, a number of combinations

illustrated in Figure 2.2 are relatively unlikely or even impossible (“off-equilibrium”)

given optimal withdrawals in prior years. As such, a poor fit in these regions may be a

“feature” rather than a problem of the LSM algorithm. Observations for earlier dates
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are similar, although there is a considerable region for relatively small account values

where the grid and the LSM algorithm for t = 11 and t = 12. While these do not seem

very material in view of the valuation as is evident from Figure 2.1, it is important to

keep in mind these potential issues when interpreting withdrawal patterns resulting

from the LSM algorithm.

2.4.2 Extended Model with Stochastic Volatility, Stochastic Interest

Rates, and Stochastic Mortality

In this section, we consider the valuation of the VA plus GMWB contract in a more

practical model including stochastic volatility, stochastic interest rate, and stochastic

mortality. More precisely, the dynamics of Yt are assumed to follow a hybrid Heston-

Cox-Ingersoll-Ross model (Heston, 1993; Cox et al., 1985) with the following stochastic

differential equations under the risk-nuetral measure Q:

dSt = rtStdt+
√
νtStdW

(1)
t

drt = a(b− rt)dt+ σdW
(2)
t ,

dνt = κ(ν̄ − νt)dt+ γ
√
νtdW

(3)
t

dµx(t) = ψ(ϕ− µx(t))dt+ η
√
µx(t)dW

(4)
t ,

where b is the long-term interest rate, a is the speed of mean reversion for the risk-

free interest rate, σ is the volatility of the risk-free interest rate, νt is the (stochastic)

variance of the risky asset, κ is the speed of mean reversion for the variance process, ν̄

is the long-term mean of the variance, γ is the volatility of volatility, ψ is the speed of

mean reversion for the force of mortality, ϕ is the long term mean of the force of mor-

tality, η is the volatility of the force of mortality and Wt = (W
(1)
t ,W

(2)
t ,W

(3)
t ,W

(4)
t )′ is

a four-dimensional Brownian motion under the measure Q with the correlation matrix

ρ = [ρi,j] such that dW
(i)
t dW

(j)
t = ρi,jdt, i, j = 1, 2, 3, 4. Hence, the relevant state

variable at time t here is given by Yt = (X−t , Gt, rt, νt, µx(t)).
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(a) t = 14, N = 30, 000 (b) t = 14, N = 600, 000

(c) t = 13, N = 30, 000 (d) t = 13, N = 600, 000

(e) t = 12, N = 30, 000 (f) t = 12, N = 600, 000

(g) t = 11, N = 30, 000 (h) t = 11, N = 600, 000

Figure 2.2: Estimated Optimal Withdrawals for the grid-based algorithm (Grid) and the
regression-now algorithm (Now) for N = 30, 000 (left-hand side) and N = 600, 000 (right-
hand side) at different times t
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To generate sample paths of the stochastic variables, a simple Euler discretization

scheme5 with m = 220 is applied, and again monomials are used as the basis functions.

We set the model parameters according to the representative values in Table 2.2. As

evident from Table 2.2, we note the conventional assumption of independence between

financial and mortality risk. At each time of withdrawal, we use sixty two (M = 62)

basis functions of the following form:

EQ [·|Yt] =f(Yt, α) +Gt+1 +Gt+1f(Yt, β),

where f(Yt, α) =
∑

j1+j2+j3≤3 αj1,j2,j3
(
X+
t

)j1 (rt)
j2(
√
νt)

j3 .

We use the same specifications of the contract as in Table 2.1 except for the option

fee, which again is chosen as the fair fee according to the LSM valuation with a large

number of basis functions (M = 62) and simulations (N = 35× 105). This will be our

reference value in what follows. The option fee is estimated to be 0.7%, which is over

four times higher than the previous option fee. While there are obvious differences

in the models (non-constant mortality, lower interest rate, etc.), higher number of

stochastic factors may increase the overall riskiness – and, thus, the value of the

protection provided by the GMWB.

In Figure 2.3, we again plot the expected present value of benefits at time zero

V (0) under the LSM algorithm for different numbers of simulation paths N in this

extended model framework. Notably more simulations are required than in the simple

Black-Scholes framework with a single stochastic driver (Figure 2.1) – even for 400,000

simulations, we notice a significant deviation. However, for more than 600,000 simu-

lations, the valuation slowly converges. This is a significant advantage of the Monte

Carlo algorithms considered here: Implementing a grid-based algorithm in the current

setting with five states presents a complex problem and requires considerable com-

putational resources, whereas implementing the Monte Carlo algorithm here is only

5Here, we use the full truncation method to generate sample paths for a square root process.
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Parameter Values

Interest rate

r0 2.2%
a 0.25
b 2%
σ 1.5%

Volatility

ν0 0.011
κ 3.5
ν̄ 0.01
γ 15%

Mortality

µ55 1.2%
ψ 20%
ϕ 1.5%
η 1.2%

Correlation

ρ1,2 0.27
ρ1,3 –0.30
ρ1,4 0.00
ρ2,3 0.20
ρ2,4 0.00
ρ3,4 0.00

Option fee

φ 0.7%

Table 2.2: Setting of Parameter Values and Option fee

slightly more complex than in the basic Black-Scholes setting and feasible even on a

personal computer.

In Figure 2.4, we analyze optimal withdrawal rules in this extended model setting

using M = 62 basis functions and N = 35×105 simulations. More precisely, we display

different exercise regions – no withdrawal (blue), surrender (green), and withdrawing at

the guaranteed rate g (red) – for different combinations of the financial state variables

(rt, vt, X
−
t ) for µ55+t = 1.5% and at different times t. The results here come with

the caveat from the previous section: While the valuation converges, the validity of

the withdrawal rules for low-probability or “off-equilibrium” combinations of the state

variables is questionable. The first take-away from the figure is that the optimal
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Figure 2.3: Convergence of Regression-Now Estimates: VA plus GMWB value for the LSM
estimates (Now) as a function of the number of simulations N , four-factor model

withdrawal strategy appears to be relatively “rich” in the sense that it depends on

the state variables in a non-trivial – and sometimes even non-monotone – manner.

Generally, it seems advisable to remain in the contract for relatively low account

values whereas withdrawing/surrendering seems optimal in a moderate range of the

account value.

2.5 Regression-later Algorithm

In some cases, it is possible to apply an alternative regression-based method to the val-

uation problem to speed up the convergence – the so-called regression-later algorithm.

This variant approximates a functional of random variables in (2.5) via a linear com-

bination of basis functions and least-squares regression, rather than the conditional

expectation as within the regression-now algorithm. The conditional expectation of

the approximation is then computed in the closed-form and serves as an approxima-

tion to the conditional expected value of interest. Since this approach uses information
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(a) t = 14, Gt = 2 (b) t = 13, Gt = 3

(c) t = 12, Gt = 4 (d) t = 11, Gt = 5

Figure 2.4: Estimated Optimal Withdrawals based on the LSM algorithm (Now) for N =
3, 500, 000 at time t with µ55+t = 1.5% at different times t
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available at the end of the period in view to approximate the expectation, it is called

the regression-later algorithm (Glasserman and Yu, 2002). Applications of regression-

later can be found in Nadarajah et al. (2012) and Beutner et al. (2013).

In this section, after introducing the general approach we discuss the regression-

later algorithm in the Black-Scholes framework from Section 2.4.1 with the same de-

terministic mortality assumption. Subsequently we comment on its application in the

advanced model framework from Section 2.4.2.

We begin with the dynamic optimization problem at t = tn−1. Under the regression-

later algorithm, we approximate:

Ftn = e−µ(tn−tn−1) Vtn(Ytn) + (1− e−µ(tn−tn−1))Dtn(Ytn)

via the following steps:

1. The random variable Ftn is approximated using a linear combination of basis

functions.

2. The associated coefficients are estimated by least-squares regression.

More precisely, suppose that {ϕk}∞k=1 is a set of complete basis functions for

L2
(
Rd,B,Qtn

)
. The random variable Ftn is then first approximated with the set

of M basis functions ϕ = {ϕ1, ..., ϕM}:

Ftn ≈
M∑
h=1

βtnh ϕh(Ytn).

Note that we have realizations of Y l
tn from the Monte Carlo simulations, 1 ≤ l ≤ N .

We rely on these to calculate:

F l
tn = e−(tn−tn−1)µ Vtn(Y l

tn) + (1− e−(tn−tn−1)µ)Dtn(Y l
tn).
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Using {F l
tn}

N
l=1, the coefficients βtnh are estimated by least-squares regression:

β̂tn = argmin{βtn}

N∑
l=1

[
ϕ
(
Y l
tn

)
· βtn − F l

tn

]2
,

where ϕ
(
Y l
n

)
=
(
ϕ1

(
Y l
n

)
, ..., ϕM

(
Y l
n

))
and βtn = (βtn1 , ..., β

tn
M)′. Then, the second

approximation is obtained by replacing βtn with β̂tn :

Ftn ≈
M∑
h=1

β̂tnh ϕh(Ytn). (2.13)

It is important to note that (2.13) is not an expectation, but we approximate a

random variable (payoff). For solving the dynamic optimization problem, however, we

need to calculate expected value of (2.13). Thus, under the regression-later algorithm,

it is assumed that a closed-form expression is available for calculating the following

expectation:

EQ [ϕh(Ytn)|Ytn−1

]
, h = 1, ...,M.

Therefore, the approximated dynamic problem at time tn−1 becomes:

Vtn−1(Ytn−1) = max
wtn−1

C(tn−1, wtn−1)

+ e−r(tn−tn−1)EQ [e−µ(tn−tn−1) Vtn(Ytn) + (1− e−µ(tn−tn−1))Dtn(Ytn)|Ytn−1

]
,

≈ max
wtn−1

C(tn−1, wtn−1) + e−r(tn−tn−1)

M∑
h=1

β̂tnh EQ [ϕh(Ytn)|Ytn−1

]
,

subject to wti ∈ Ati ,

Vtn(Ytn) = max(X−tn ,min(g,Gtn)).

We assume that policyholder solves the above approximated dynamic optimization

problem based on discretized feasible solutions.

At the previous withdrawal times, analogous approximations are applied and
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approximated dynamic optimization problems are solved. More details about the

regression-later algorithm for our valuation problem are provided in Appendix A.2.2.

Even though the final approximation of the regression-later algorithm in (2.13)

seems to be similar to the regression-now algorithm, the two approaches are funda-

mentally different. In the regression-later algorithm, not the expectation is approx-

imated, but the functional of random variable is via information available at time

ti+1. The primary advantage of the regression-later algorithm is that the algorithm

approximates the Fti+1
-measurable functional accurately since the value function and

death benefit are highly correlated with Yti+1
, whereas the Fti+1

-measurable functional

is projected on the spanned space by Yti in the regression-now algorithm.

2.5.1 Regression-later Approach for GMWB Valuation

We implement the regression-later algorithm in the Black-Scholes framework intro-

duced in Section 2.4.1 with the same assumptions. We again rely on monomial basis

functions, so that we have the following estimator for functional of state variables:

e−µ(ti+1−ti)Vti+1
(Yti+1

) + (1− e−µ(ti+1−ti))Dti+1
(Yti+1

)

≈
M∑
h=1

β̂
ti+1

h

(
X−ti+1

)h1 (
Gti+1

)h2 , (2.14)

where h1, h2 ∈ Z+. Note that Gti+1
is Fti-measurable. Therefore, the expectation of

(2.14) is:

EQ

[
M∑
h=1

β̂
ti+1

h

(
X−ti+1

)h1 (
Gti+1

)h2 ∣∣∣∣Yti
]

=
M∑
h=1

β̂
ti+1

h EQ
[(
X−ti+1

)h1 ∣∣∣∣Yti] (Gti+1

)h2
=

M∑
h=1

β̂
ti+1

h

(
X+
ti

)h1 exp

((
r − φ− 1

2
σ2

)
(ti+1 − ti)h1 +

1

2
σ2(ti+1 − ti)2h2

1

)(
Gti+1

)h2 .
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We use the same contract specifications and parameter values as in Section 2.4.1 (Table

2.1). We first implement the regression-later algorithm with M = 8 basis functions.6

A key question is to check whether it converges faster to the exact price than the

regression-now algorithm.

In Figure 2.5, we plot the expected present value of benefits at time zero V (0) for

different numbers of simulation paths N under the three considered algorithms: The

grid-based algorithm, the regression-now algorithm, and the regression-later algorithm.

We notice the regression-later estimates provide a close approximation to the grid-

based value already for relatively low choices of N. This is in line with results from the

literature that emphasize the advantages of the regression-later approach since it uses

informationoin Yti+1
directly to approximate the Fti+1

-measurable function (Nadarajah

et al., 2012; Beutner et al., 2013).

To obtain insights on the improved convergence properties of the regression-later

approach, Figure 2.6 again displays the maximizing withdrawal rules from Figure 2.2

(N = 30, 000 and N = 6000, 000 simulations for different points in time on the left-

and right-hand side, respectively), but we now overlay the optimal withdrawal rules

from the regression-later algorithm. The key observation is that for the regression-

later algorithm, the withdrawal pattern for N = 30, 000 simulations presents a closer

approximation to the grid-based withdrawal rule. While not perfect, the match is

markedly better resulting in a closer valuation as observed from Figure 2.5.

Despite these advantages, the regression-later approach also comes with a variety

of disadvantages that are exacerbated in high-dimensional settings. More specifically,

while the application is straightforward in the simple Black-Scholes framework con-

sidered here, in multi-factor models (i) it is necessary to put structural constraints

on the state variables to assure the existence of closed-forms for the expected values

6The regression equation considered is

F = α0 + α1X
−
t + α2

(
X−t

)2
+ α3

(
X−t

)3
+Gti+1 +Gti+1

(
β1X

−
t + β2

(
X−t

)2
+ β3

(
X−t

)3)
.
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Figure 2.5: Convergence of Regression-Later Estimates: VA plus GMWB value for the
grid-based algorithm (Grid), the regression-now estimates (Now), and the regression-later
estimates (Later) as a function of the number of simulations N , basic Black-Scholes model

of the basis functions; and (ii) even then the choice of basis functions is constrained

by the availability of closed-forms. Depending on the form of the random variables

that need to be approximated, these constraints may be prohibitive for determining

approximations. Indeed, although the model from Section 2.4.2 falls in the affine class

when suitably transformed, our numerical experiments did not yield viable results.

2.6 Conclusion

We establish and apply two LSM algorithms to price a VA plus GMWB contract. We

find that the two approaches require sizable computational budgets to produce viable

results, where the regression-later estimator converge faster than the regression-now

estimators. However, the regression-now algorithm is more robust in the sense that it

does not require structural assumptions on the form of the stochastic drivers or the

form of the basis functions. In particular, with little modification relative to the basic
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(a) t = 14, N = 30, 000 (b) t = 14, N = 600, 000

(c) t = 13, N = 30, 000 (d) t = 13, N = 600, 000

(e) t = 12, N = 30, 000 (f) t = 12, N = 600, 000

(g) t = 11, N = 30, 000 (h) t = 11, N = 600, 000

Figure 2.6: Estimated Optimal Withdrawals for the grid-based algorithm (Grid), the
regression-now algorithm (Now), and the regression-later algorithm (Later) for N = 30, 000
(left-hand side) and N = 600, 000 (right-hand side) at different times t
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Black-Scholes setup, it is possible to evaluate the VA plus GMWB contract using the

regression-now algorithm in a more advanced model with several stochastic drivers.
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Appendices
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A.1 Proofs

Proof of Lemma 1.2.1. 1. Let A ∈ Ft, 0 ≤ t ≤ τ . Then:

P̃(A) = EP̃ [1A] = EP

[
∂P̃
∂P

1A

]
= EP

[
EP

[
∂Q
∂P

EP
[
∂Q
∂P |Fτ

]1A
∣∣∣∣∣Fτ

]]

= EP

[
1A

EP
[
∂Q
∂P |Fτ

]EP
[
∂Q
∂P

∣∣∣∣Fτ]
]

= P(A).

2. Let X : Ω→ R be a random variable. Then:

EP̃ [X |Fτ ] =
1

EP
[
∂P̃
∂P |Fτ

]
︸ ︷︷ ︸

=1

EP

[
∂P̃
∂P

X

∣∣∣∣∣Fτ
]

= EP

[
X ∂Q

∂P

EP
[
∂Q
∂P |Fτ

]∣∣∣∣∣Fτ
]

=
1

EP
[
∂Q
∂P |Fτ

]EP
[
∂Q
∂P

X

∣∣∣∣Fτ] = EQ [X| Fτ ] .

Proof of Lemma 1.2.2. Linearity is obvious. For the proof of continuity, consider

a sequence h(n) → h ∈ H. Then:

EP
[
Lh(n) − Lh

]2
= EP


 T∑
j=τ

EP̃
[(
h

(n)
j − hj

)
(Yj) |Yτ

]2


= EP

∑
j,k

EP̃
[(
h

(n)
j − hj

)
(Yj) |Yτ

]
EP̃
[(
h

(n)
k − hk

)
(Yk) |Yτ

]
≤

∑
j,k

√
EP
[(

EP̃
[(
h

(n)
j − hj

)
(Yj) |Yτ

])2
]
×

√
EP
[(

EP̃
[(
h

(n)
k − hk

)
(Yk) |Yτ

])2
]

≤
∑
j,k

√
EP̃
[(
h

(n)
j − hj

)2

(Yj)

]
×

√
EP̃
[(
h

(n)
k − hk

)2

(Yk)

]
→ 0, n→∞,

where we used the Cauchy-Schwarz inequality, the conditional Jensen inequality, and

the tower property of conditional expectations.
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Proof of Lemma 1.2.3. Consider an operator L(j), which maps from

L2
(
Rd,B, P̃Yj

)
to L2

(
Rd,B,PYτ

)
. Since L(j) is the (conditional) expectation

under the assumption that there exists a joint density, it can be represented as an

integral:

L(j) x =

∫
Rd

x(y) πYτ |Yj(y|x) dy =

∫
Rd

x(y)
πYτ ,Yj(y, x)

πYj(x)
dy

=

∫
Rd

x(y)
πYτ ,Yj(y, x)

πYj(x)πYτ (y)
πYτ (y) dy =

∫
Rd

x(y) k(x, y) πYτ (y) dy,

where x is an element of L2
(
Rd,B, P̃Yj

)
, πYτ ,Yj(y, x) is the joint density function

of Yτ and Yj, πYj(y) and πYτ (x) are marginal density functions for Yj and Yτ in

L2
(
Rd,B, P̃Yj

)
and L2

(
Rd,B,PYτ

)
, respectively, and k(x, y) =

πYτ ,Yj (y,x)

πYj (x)πYτ (y)
. Thus,

L(j) is an integral operator with kernel k(x, y). Moreover,

∫
Rd

∫
Rd
|k(x, y)|2 πYj(x)πYτ (y) dx dy =

∫
Rd

∫
Rd
πYj |Yτ (x|y) πYτ |Yj(y|x) dx dy <∞.

Thus, according to p. 9 in Carrasco and Florens (2011), L(j) is a Hilbert-Schdmit

operator and therefore compact. Finally, L is the sum of L(j), j = τ, ..., T , and

therefore also compact.

Proof of Proposition 1.3.1. PYτ is a regular Borel measure as a finite Borel mea-

sure and hence L2
(
Rd,B,PYτ

)
is separable (see Proposition I.2.14 and p. 33 in

Werner (2005)). Now if {ek, k = 1, 2, . . . ,M} are independent, by Gram-Schmidt

we can find an orthonormal system S = {fk, k = 1, 2, . . . ,M} with lin{ek, k =

1, 2, . . . ,M} = linS.7 For S, on the other hand, we can find an orthonormal basis

{fk, k ∈ N} = S ′ ⊃ S. Hence:

Ĉ(M)
τ =

M∑
k=1

αk ek =
M∑
k=1

α̃k︸︷︷︸
〈Cτ ,fk〉

fk →
∞∑
k=1

α̃k fk = Cτ , M →∞,

7We denote by linS the (sub-)space spanned by the elements of S.
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where ∥∥∥Ĉ(M)
τ − Cτ

∥∥∥2

=
∞∑

k=M+1

|〈Cτ , fk〉|2 → 0, M →∞,

by Parseval’s identity.

For the second part, we note that

(α̂
(N)
1 , . . . , α̂

(N)
M )′ = α̂(N) =

(
A(M,N)

)−1 1

N

N∑
i=1

e
(
Y (i)
τ

)
V (i)
τ ,

where e(·) = (e1(·), . . . , eM(·))′ and A(M,N) =
[

1
N

∑N
i=1 ek(Y

(i)
τ ) el(Y

(i)
τ )
]

1≤k,l≤M
is in-

vertible for large enough N since we assumed that the basis functions are linearly

independent. Hence,

α̂(N) → α = (α1, . . . , αM)′ =
(
A(M)

)−1 EP̃

[
e (Yτ )

(
T∑
k=τ

xk

)]
P̃-a.s.,

by the law of large numbers, where AM =
[
EP̃ [ek (Yτ ) el (Yτ )]

]
1≤k,l≤M

, so that

Ĉ(M,N)
τ = e′ α̂(N) → e′α = Ĉ(M)

τ P̃-a.s.

Finally, for the third part, let

V (i)
τ =

T∑
k=τ

xk
(
Y (i)
τ

)
=

M∑
j=1

αjej
(
Y (i)
τ

)
+ εj,

where E [εj|Yτ ] = 0,Var [εj|Yτ ] = Σ(Yτ ), and Cov [εi, εj|Yτ ] = 0.

Thus (see e.g. Section 6.13 in Amemiya (1985)):

√
N [α− α̂(N)] −→ Normal

0,
(
A(M)

)−1 [EP [ek(Yτ )el(Yτ )Σ(Yτ )]
]

1≤k, l≤M

(
A(M)

)−1︸ ︷︷ ︸
ξ̃

 ,
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so that
√
N
[
Ĉ(M)
τ − Ĉ(M,N)

τ

]
= e′[α− α̂(N)]

√
N −→ Normal (0, ξ(M)),

where

ξ(M) = e′ ξ̃ e. (15)

Proof of Corollary 1.3.1. Relying on the notation from the proof of Proposition

1.3.1, we now have (supposing square integrability)

α̂(N) =
1

N

N∑
i=1

e
(
Y (i)
τ

)
V (i)
τ → α, N →∞

in L2
(

Ω,F , P̃
)

by the L2-version of the weak law of large numbers (Durett, 1996).

Thus,

EP̃ [∣∣e(Yτ )′ α̂(N) − e(Yτ )′ α
∣∣]

≤
M∑
k=1

EP̃
[∣∣∣ek(Yτ )′ (α̂(N)

k − αk
)∣∣∣]

≤
M∑
k=1

√
EP̃ [e2

k(Yτ )]

√
EP̃
[
α̂

(N)
k − αk

]2

→ 0, N →∞.

The last assertion in the statement is a direct consequence of the Extended Namioka

Theorem in Biagini and Fritelli (2009).

Proof of Corollary 1.3.2. The first assertion immediately follows from conver-

gence in distribution as discussed in Section 1.3.1. For the quantiles, the convergence

for all continuity points of F−1
Cτ

follows from Proposition 1.3.1 and the standard proof

of Skorokhod’s representation theorem (see e.g. Lemma 1.7 in Whitt (2002)).

Proof of Proposition 1.3.2. Since as Monte Carlo trials (V
(i)
τ , Y

(i)
τ ) are i.i.d., the

first part of Assumption 1 in Newey (1997) is automatically satisfied. The conditions
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in the proposition are then exactly Assumptions 1 (part 2), 2, and 3 in his paper for

d = 0. Thus, the claim follows by the first part of Theorem 1 in Newey (1997).

Proof of Proposition 1.3.3. Analogously to the proof or Proposition 3.2, the first

part of Assumption 1 in Newey (1997) is automatically satisfied. The conditions in

the proposition are taken from the second part of Assumption 1, Assumption 8, the

discussion following Assumption 8, and Assumption 9 in his paper. Thus, the claim

follows by the first part of Theorem 4 in Newey (1997).

Regularity Conditions in Proposition 1.3.4. (Gordy and Juneja, 2010).

Regularity conditions on the joint probability function (pdf) g of (−Ĉ(M)
τ , Z(N)):

• The joint pdf gN(·, ·), its partial derivatives ∂
∂y
gN(y, z) and ∂2

∂y2
gN(y, z) exist for

each N and for all (y, z).

• For N ≥ 1, there exist non-negative functions p0,N(·), p1,N(·) and p2,N(·) such

that:

– gN(y, z) ≤ p0,N(z),

–
∣∣∣ ∂∂ygN(y, z)

∣∣∣ ≤ p1,N(z),

–
∣∣∣ ∂2∂y2 gN(y, z)

∣∣∣ ≤ p2,N(z), and

for all y and z. In addition:

sup
N

∫ ∞
−∞
|z|rpi,N(z)dz <∞

for i = 0, 1, 2 and 0 ≤ r ≤ 4.

Singular Value Decomposition of a Compact Operator (Section 1.4.2).

Suppose A is a compact operator mapping from H1 to H2, where H1 and H2 are
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separable Hilbert spaces. Then, A can be represented in the following form (see

Section VI.3 in Werner (2005) or Huang (2012)):

Ax =
∞∑
k=1

λk < x, gk >H1 fk, (16)

where:

• < ·, · >H1 denotes the inner product in H1;

• {λ2
k} are non-zero eigenvalues of A∗A and AA∗ with λ1 ≥ λ2 ≥ · · · , counted

according to their multiplicity. Here, λk is called the k-th singular value of A;

• {gk}, called the (right) singular functions, are the orthonormal eigenfunctions of

A∗A; and

• {fk}, called the (left) singular functions, are the orthonormal eigenfunctions of

AA∗ satisfying Agk = λk fk.

The representation (16) is called singular value decomposition (SVD) of A and the

triplet (λk, gk, fk) is called singular system for A. The functional sequences, {gk}k≥1

and {fk}k≥1, form a complete orthonormal sequence for H1 and H2, respectively. The

singular values λk are non-negative and the only possible accumulation point is zero.

For more details about the SVD of a compact operator, we refer to Huang (2012).

Proof of Proposition 1.4.1. We consider the approximation of L by an arbitrary

rank-M operator LF , which can be represented as

LF =
M∑
k=1

αk < · , uk > ek,

where {αk}Mk=1 ⊆ R+, {uk}Mk=1 are orthonormal in H, and {ek}Mk=1 are orthonormal in

L2
(
Rd,B,PYτ

)
. Denote by L∗F the operator when choosing (αk, uk, ek) = (ωk, sk, ϕk).
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Then:

inf
{LF }
||L− LF ||2 ≤ sup

||x||=1

||Lx− L∗Fx||2

= sup
||x||=1

||
∞∑

k=M+1

ωk < x, sk > ϕj||2

= sup
||x||=1

∞∑
k=M+1

ω2
k < x, sk >

2= ω2
M+1.

On the other hand, consider any alternative system (αk, uk, ek) for an arbitrary finite-

rank operator LF . Then choose a non-zero x0 such that x0 ∈ lin{s1, ..., sM+1} ∩

lin{u1, ..., uM}⊥ 6= {0}. Note that L− LF is compact and bounded. Therefore:

||L− LF ||2 ≥
||Lx0 − LF x0||2

||x0||2
=
||Lx0||2

||x0||2

=

∑M+1
k=1 ω2

k| < x0, sk > |2∑M+1
k=1 | < x0, sk > |2

≥ ω2
M+1.

Hence:

inf
{LF }
||L− LF ||2 = ω2

M+1 = ||L− L∗F ||.

Now since:

inf
{LF }
||L− LF ||2 = inf

{e1,...,eM}
||L− P (e1, ..., eM) · L||2,

where P (e1, ..., eM) denotes the orthogonal projection on the subspace spanned by

(e1, ..., eM), the claim follows by Equation (1.7).

Proof of Proposition 1.4.2. Proceeding as in Equation (1.9) and with Equation
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(1.7), we obtain:

inf
αM

sup
y∈Y

∣∣∣∣∣Cτ (y)−
M∑
k=1

αM,kek(y)

∣∣∣∣∣ ≤ sup
y∈Y

∣∣∣Cτ (y)− Ĉ(M)
τ (y)

∣∣∣
= sup

y∈Y
|
∞∑

k=M+1

ωk 〈x, sk〉ϕk(y)|

≤
∞∑

k=M+1

ωk |〈x, sk〉| sup
y∈Y
|ϕk(y)|

≤
∞∑

k=M+1

ωk ‖x‖ ‖sk‖ sup
y∈Y
|ϕk(y)|

=
∞∑

k=M+1

ωk ‖x‖ sup
y∈Y
|ϕk(y)| = O (ωM)

for a fixed x since the {ϕk} are uniformly bounded, where the second and third in-

equality follow by the triangle and Cauchy-Schwarz inequalities, respectively.

Then, going through of the assumptions of Proposition 1.3.2 with B = I and

e(M) = (e1, ..., eM)′, we obtain:

EP̃ [ẽ(M)(Yτ )ẽ
(M)(Yτ )

′] = I

due to the orthonormality of the singular functions. Therefore, the smallest eigen-

values is bounded away from zero uniformly for every M. Moreover, for fixed y ∈ Y ,

||ẽ(M)(y)|| =
√
ϕ1(y)2 + · · ·ϕM(y)2, so that

sup
y∈Y
||ẽ(M)(y)|| = sup

y∈Y

√
ϕ1(y)2 + · · ·ϕ1(y)2

≤

√√√√ M∑
k=1

sup
y∈Y

ϕk(y)2 ≤
√

max
1≤k≤M

sup
y∈Y

ϕk(y) ·M = C
√
M = ζ0(M)

since the {ϕk} are uniformly bounded. Thus, the claim follows by Proposition 1.3.2.
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Proof of Lemma 1.4.1. The assertions on the conditional distributions are stan-

dard. For showing that L is compact, we check that the transition and the reverse

transition density functions satisfy the condition in Lemma 1.2.3. Note that the tran-

sition density function can be written as:

πYT |Yτ (y|x) = g(y;µT + Γ′Σ−1
τ (x− µτ ),ΣT |τ )

=
1

(2π)d/2|ΣT |τ |1/2
exp

[
−1

2
(y − µT − Γ′Σ−1

τ (x− µτ ))′Σ−1
T |τ (y − µT − Γ′Σ−1

τ (x− µτ ))

]
=

1

(2π)d/2|ΣT |τ |1/2
|Στ (Γ′)−1ΣT |τΓ−1Στ |1/2

|Στ (Γ′)−1ΣT |τΓ−1Στ |1/2

× exp

[
−1

2
(x− µτ − Στ (Γ′)−1(y − µT ))′Σ−1

τ ΓΣ−1
T |τΓ′Σ−1

τ (x− µτ − Στ (Γ′)−1(y − µT ))

]
=
|Στ |
|Γ|

g(x;µτ + Στ (Γ′)−1(y − µT ),Στ (Γ′)−1ΣT |τΓ−1Στ ).

We evaluate the following integral:

∫
Rd
πYT |Yτ (y|x)πYτ |YT (x|y)dx

=
|Στ |
|Γ|

∫
Rd
g(x;µτ + Στ (Γ′)−1(y − µT ),Στ (Γ′)−1ΣT |τΓ−1Στ )

× g(x;µτ + ΓΣ−1
τ (y − µT ),Στ |T ) dx

=
|Στ |

|Γ|(2π)d/2
1

|Στ (Γ′)−1ΣT |τΓ−1Στ + Στ |T |1/2

× exp

[
− 1

2
(Στ (Γ′)−1(y − µT )− ΓΣ−1

T (y − µT ))′(Στ (Γ′)−1ΣT |τΓ−1Στ + Στ |T )−1

× (Στ (Γ′)−1(y − µT )− ΓΣ−1
T (y − µT ))

]
=

|Στ |
|Γ|(2π)d/2

1

|Στ (Γ′)−1ΣT |τΓ−1Στ + Στ |T |1/2

× exp

[
− 1

2
(y − µT )′ (Γ−1Στ − Σ−1

T Γ′)(Στ (Γ′)−1ΣT |τΓ−1Στ + Στ |T )−1(Στ (Γ′)−1 − ΓΣ−1
T )︸ ︷︷ ︸

V −1

× (y − µT )

]
= C1 × g(y;µT , V ),

where we use results on the product of Gaussian densities (Vinga, 2004) and where
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C1 is an appropriate constant to obtain g(y;µT , V ). Therefore:

∫
Rd

∫
Rd
πYT |Yτ (y|x)πYτ |YT (x|y) dx dy =

∫
Rd
C1g(y;µT , V ) dy = C1 <∞.

Proof of Lemma 1.4.2. L∗ can be found by:

〈Lh,m〉πYτ =

∫
Rd
Lh(x)m(x) πYτ (x) dx =

∫ [∫
h(y)πYT |Yτ (y|x) dy

]
m(x) πYτ (x) dx

=

∫
Rd
h(y)

[∫
Rd
m(x)πYτ |YT (x|y) dx

]
πYT (y) dy = 〈h, L∗m〉,

where L∗m(y) =
∫
Rdm(x)πYτ |YT (x|y) dx. We calculate LL∗:

LL∗ϕ(x) =

∫
Rd
L∗ϕ(s)πYT |Yτ (s|x) ds

=

∫
Rd

[∫
ϕ(y)πYτ |YT (y|s) dy

]
πYT |Yτ (s|x) ds

=

∫
Rd
ϕ(y)

∫
Rd
πYτ |YT (y|s)πYT |Yτ (s|x) ds︸ ︷︷ ︸

KA(x,y)

dy.

It is useful to express the reverse density in the following form to find KA(x, y) as in

the proof of Lemma 1.4.1:

g(y;µYτ |s,Στ |T ) =
|ΣT |
|Γ|

g(s;µT + ΣTΓ−1(y − µτ ), ΣTΓ−1Στ |T (Γ′)−1ΣT ).
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Hence:

KA(x, y) =

∫
Rd
πYτ |YT (y|s)πYT |Yτ (s|x) ds

=
|ΣT |
|Γ|

∫
Rd
g(s;µT + ΣTΓ−1(y − µτ ), ΣTΓ−1Στ |T (Γ′)−1ΣT )× g(s;µT |x,ΣT |τ ) ds

=
|ΣT |
|Γ|
× 1

(2π)d/2|ΣTΓ−1Στ |T (Γ′)−1ΣT + ΣT |τ |1/2

exp

(
− 1

2

(
ΣTΓ−1(y − µτ )− Γ′Σ−1

τ (x− µτ )
)′

×
(
ΣTΓ−1Στ |T (Γ′)−1ΣT + ΣT |τ

)−1 (
ΣTΓ−1(y − µτ )− Γ′Σ−1

τ (x− µτ )
))

=
1

(2π)d/2|ΓΣ−1
T

(
ΣTΓ−1Στ |T (Γ′)−1ΣT + ΣT |τ

)
Σ−1
T Γ′|1/2

exp

(
− 1

2

(
y − µτ − ΓΣ−1

T Γ′Σ−1
τ (x− µτ )

)′
(Γ−1)′ΣT

(
ΣTΓ−1Στ |T (Γ′)−1ΣT + ΣT |τ

)−1

× ΣTΓ−1
(
y − µτ − ΓΣ−1

T Γ′Σ−1
τ (x− µτ )

))
= g(y;µτ + ΓΣ−1

T Γ′Σ−1
τ︸ ︷︷ ︸

A

(x− µτ ), Στ − ΓΣ−1
T Γ′Σ−1

τ ΓΣ−1
T Γ′)

= g(y;µτ +A(x− µτ )︸ ︷︷ ︸
µA(x)

, Στ −AΣτA
′︸ ︷︷ ︸

ΣA

)

= g(y;µA(x),ΣA).

L∗L can be calculated by similar method.

Proof of Lemma 1.4.3. We start by recalling the considerations from Khare and

Zhou (2009): Let (Xt) on Rd be a MAR(1) process satisfying the following stochastic

difference equation:

Xt = ΦXt−1 + ηt, t ≥ 1, (17)

where Φ ∈ Rd×d and (ηt)t≥1 are independent and identically distributed, η1 ∼ N(0, H).

(Xt) has a unique stationary distribution N(0,Σ) if and only if H = Σ − ΦΣΦ′, and

the process is reversible if and only if ΦΣ = ΣΦ′. Khare and Zhou (2009) show that if

these assumptions are satisfied, the transformed Markov operator for (17) has eigen-

values which are products of eigenvalues of Φ and the corresponding eigenfunctions

92



are products of Hermite polynomials.

Now note that under for a random variable Y that is distributed according to

KA(x·), we can write:

Y − µτ = A(x− µτ ) + ζA, (18)

where ζ ∼ N(0,ΣA). Since from Lemma 1.4.2 we have that ΣA = Στ − AΣτA
′ and

AΣτ = ΓΣ−1
T Γ′ = Στ A

′,

the operator LL∗ has the same structure of the Markov operator for (17) that is

reversible and stationary.

Following the approach by Khare and Zhou (2009), denote by Σ
1/2
τ the square root

matrix of Στ . Then

Σ−1/2
τ AΣ1/2

τ = Σ−1/2
τ ΓΣ−1

T Γ′Σ−1/2
τ

is symmetric and thus orthogonally diagonalizable:

Σ−1/2
τ AΣ1/2

τ = PΛP ′ ⇔ A = (Σ1/2
τ P ) Λ (P ′Σ−1/2

τ ).

In particular, the entries of the diagonal matrix Λ are the eigenvalues of A.

Now for the transformation (1.11) of the random vector Y from (18), zP (Y ), we

obtain:

EKA
[
zP (Y )|x

]
= P ′Σ−1/2

τ A(x− µτ )

= P ′Σ−1/2
τ Σ1/2

τ PΛP ′Σ−1/2
τ (x− µτ ) = ΛzP (x),

and

VarKA
[
zP (Y )|x

]
= P ′Σ−1/2

τ ΣAΣ−1/2
τ P

= P ′Σ−1/2
τ (Στ − AΣτA

′)Σ−1/2
τ P = I − Λ2.
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Moreover,

EπYτ
[
zP (Yτ )

]
= P ′Σ−1/2

τ EπYτ [Yτ − µτ ] = 0

and

VarπYτ
[
zP (Yτ )

]
= P ′Σ−1/2

τ ΣτΣ
−1/2
τ P = I.

The second part follows analogously.

Proof of Proposition 1.4.3. For fixed zPi (Y ), we obtain from Carrasco and Flo-

rens (2011) that the univariate orthonormal Hermite polynomial of order ni is the

eigenfunction under KA :

EKA
[
hni(z

P
i (Y ))|x

]
= λnii hni(z

P
i (x)).

Moreover, the product of these orthonormal polynomials are also eigenfunction since:

EKA
[
Πd
i=1hni(z

P
i (Y ))|x

]
= Πd

i=1EKA
[
hni(z

P
i (Y ))|x

]
=
(
Πd
i=1λ

ni
i

) (
Πd
i=1hni(z

P
i (x))

)
.

The orthogonality of the eigenfunctions is proved in Khare and Zhou (2009). Note

that the product of normalized Hermite polynomials is already normalized since:

EπYτ
[(

Πd
i=1hni(z

P
i (Y ))

)2
]

= EπYτ
[
Πd
i=1hni

(
zPi
)2

(Y )
]

= Πd
i=1EπYτ

[
hni
(
zPi (Y )

)2
]

= 1.

Right singular functions are obtained similarly with fixed zQi (X).

Proof of Lemma 1.5.1. Under P, we have:

rτ = r0e
−ατ + γ(1− e−ατ ) + σ

∫ τ

0

e−α(τ−t)dWt,

so that rτ ∼ N(µτ , σ
2
τ ) with µτ = γ − (γ − r0)e−ατ and σ2

τ = σ2

2α
(1− e−2ατ ).
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Under QT , we have:

rT = rτe
−α(T−τ) +M(τ, T ) + σ

∫ T

τ

e−α(T−t)dZT
t ,

where M(τ, T ) = (γ̄ − σ2

α2 )(1 − e−α(T−τ)) + σ2

2α
(1 − e−2α(T−τ)), so that rT |rτ ∼

N(µrT |rτ , σ
2
rT |rτ ) with µrT |rτ = rτe

−α(T−τ) + M(τ, T ) and σ2
rrT |rτ

= σ2

2α
(1 − e−2α(T−τ)).

Note that this distribution specifies the transition density of rT given rτ . The uncon-

ditional mean and variance of rT is given by:

EP̃ [rT ] = EP [EQT [rT |rτ ]
]

= EP [rτe−α(T−τ) +M(τ, T )
]

= µrτ e
−α(T−τ) +M(τ, T ) = µT

and

VarP̃ [rT ] = EP [VarQT [rT |rτ ]
]

+ VarP
[
EQT [rT |rτ ]

]
= EP

[
σ2

2α
(1− e−2α(T−τ))

]
+ VarP

[
rτe
−α(T−τ) +M(τ, T )

]
=
σ2

2α
(1− e−2α(T−τ)) +

σ2

2α
(1− e−2ατ )e−2α(T−τ) =

σ2

2α
(1− e−2αT ) = σ2

T ,

so that rT ∼ N(µT , σ
2
T ). Moreover:

Cov(rτ , rT ) = EP̃(rT · rτ )− µτµT = EP̃
[
EP̃[rT · rτ |rτ ]

]
− µτµT

= e−α(T−τ)σ2
τ .

Thus, we have for the joint distribution of rτ and rT :

rτ
rT

 ∼ N

µτ
µT

 ,
 σ2

τ , e−α(T−τ)σ2
τ

e−α(T−τ)σ2
τ , σ2

T

 ,

with ρ = ρrτ ,rT = Corr(rτ , rT ) = e−α(T−τ) 1−e−2ατ

1−e−2αT .
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Proof of Lemma 1.5.2. Under P, the solutions of (1.22), (1.23), and (1.24) at time

τ are:

qτ = q0 +

(
m− 1

2
σ2
S

)
τ + σS

∫ τ

0

dW S
s ,

rτ = r0e
−ατ + γ

(
1− e−ατ

)
+ σr

∫ τ

0

e−α(τ−t)dW r
t ,

µx+τ = µxe
κτ + ψ

∫ τ

0

eκ(τ−u)dW µ
u .

Thus, the joint Gaussian distribution of Yτ is given by:


qτ

rτ

µx+τ

 ∼ N




q0 +
(
m− 1

2σ
2
S

)
τ

r0e
−ατ + γ (1− e−ατ )

µxe
κτ

 ,


σ2
S τ,

ρ12σSσr(1−e−ατ )
α 0

ρ12σSσr(1−e−ατ )
α

σ2
r(1−e−2ατ )

2α 0

0 0 ψ2(e2κτ−1)
2κ


 ,

(19)

so that µτ and Στ are given by

µτ =


q0 +

(
m− 1

2
σ2
S

)
τ

r0e
−ατ + γ (1− e−ατ )

µxe
κτ

 , Στ =


σ2
S τ,

ρ12σSσr(1−e−ατ )
α

0

ρ12σSσr(1−e−ατ )
α

σ2
r(1−e−2ατ )

2α
0

0 0 ψ2(e2κτ−1)
2κ

 .

To derive the distribution under QE, first note that for τ ≤ s < T ,

rs = e−α(s−τ)rτ +

(
γ̄ − σ2

r

α2

)
(1− e−α(s−τ)) +

σ2
r

2α2

(
e−α(T−s) − e−α(T+s−2τ)

)
+ σr

∫ s

τ

e−α(s−y)dW r
y ,

so that the integral of
∫ T
τ
rs ds can be evaluated using the stochastic Fubini’s theorem:

∫ T

τ

rs ds =
eατrτ
α

(e−ατ − e−αT ) +

(
γ̄ − σ2

r

α2

)(
T − τ + eατ

e−αT − e−ατ

α

)
+

σ2
r

2α2

(
e−αT

eαT − eατ

α
+ e−αT+2ατ e

−αT − e−ατ

α

)
+ σr

∫ T

τ

∫ s

τ

e−α(s−y)dW r
y ds

=
eατrτ
α

(e−ατ − e−αT ) +

(
γ̄ − σ2

r

α2

)(
T − τ + eατ

e−αT − e−ατ

α

)
+

σ2
r

2α2

(
e−αT

eαT − eατ

α
+ e−αT+2ατ e

−αT − e−ατ

α

)
+
σr
α

∫ T

τ

1− e−αT+αydW r
y .
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Thus, under QE with known Yτ , the solutions of (1.27), (1.28), and (1.29) are:

qT = qτ +
1− e−α(T−τ)

α
rτ +

(
γ̄ − σ2

r

α2

)(
T − τ +

1− e−α(T−τ)

α

)
+

σ2
r

2α2

(
1− e−α(T−τ)

α
− e−α(T−τ) − e−2α(T−τ)

α

)
+
σr
α

∫ T

τ

1− e−α(T−t)dZrt

− σ2
S

2
(T − τ)− ρ12σSσr

α

[
T − τ − 1− e−α(T−τ)

α

]
+ σS

∫ T

τ

dZSs ,

rT = e−α(T−τ)rτ +

(
γ̄ − σ2

r

α2

)(
1− e−α(T−τ)

)
+

σ2
r

2α2

(
1− e−2α(T−τ)

)
+ σr

∫ T

τ

e−α(T−t)dZrt ,

µx+T = eκ(T−τ)µx+τ −
ψ2

κ2

(
1− eκ(T−τ)

)
+

ψ2

2κ2

(
1− e2κ(T−τ)

)
+ ψ

∫ T

τ

eκ(T−u)dZµu ,

so that the (Gaussian) conditional distribution of YT |Yτ is given by:


qτ

rτ

µx+τ

 |Yτ ∼ N




µqT |qτ

µrT |rτ

µµx+T |µx+τ

 ,


σ2
qT |qτ , σqT ,rT |qτ ,rτ 0

σqT ,rT |qτ ,rτ σ2
rT |rτ 0

0 0 σ2
µx+T |µx+τ


︸ ︷︷ ︸

G


, (20)

where

qT |qτ = qτ + rτ
1− e−α(T−τ)

α
+

(
γ̄ − σ2

r

α2

)(
T − τ +

1− e−α(T−τ)

α

)
+

σ2
r

2α2

(
1− e−α(T−τ)

α
− e−α(T−τ) − e−2α(T−τ)

α

)
− σ2

S

2
(T − τ)− ρ12σSσr

α

[
T − τ − 1− e−α(T−τ)

α

]
,

rT |rτ = e−α(T−τ)rτ +

(
γ̄ − σ2

r

α2

)(
1− e−α(T−τ)

)
+

σ2
r

2α2

(
1− e−2α(T−τ)

)
,

µx+T |µx+τ = eκ(T−τ)µx+τ −
ψ2

κ2

(
1− eκ(T−τ)

)
+

ψ2

2κ2

(
1− e2κ(T−τ)

)
,
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and

σ2
qT |qτ =

(σr
α

)2
[
T − τ −

2
(
1− e−α(T−τ)

)
α

+
1− e−2α(T−τ)

2α

]

+ σ2
S(T − τ) +

2σrσSρ12

α

[
T − τ − 1− e−α(T−τ)

α

]
,

σ2
rT |rτ =

σ2
r

2α

(
1− e−2α(T−τ)

)
,

σqT ,rT |qτ ,rτ =

(
σ2
r

α
+ σSσrρ12

)(
1− e−α(T−τ)

α

)
− σ2

r

α

(
1− e−2α(T−τ)

2α

)
,

σ2
µx+T |µx+τ =

ψ2

2κ

(
e2κ(T−τ) − 1

)
.

It is possible to write the conditional mean of YT given Yτ in the following linear

form: 
µqT |qτ

µrT |rτ

µµx+T |µx+τ

 =


1 1−e−α(T−τ)

α
0

0 e−α(T−τ) 0

0 0 eκ(T−τ)


︸ ︷︷ ︸

H


qτ

rτ

µx+τ

+ Cτ

=HYτ + Cτ

where Cτ is a constant matrix defined by remaining terms of mean vector of YT |Yτ

after defining HYτ . The unconditional distribution of YT under P̃ is also Gaussian

since Yτ and YT |Yτ follow Gaussian distributions. Thus, it suffices to specify a mean

vector and a covariance matrix of YT under P̃ to specify its distribution:

EP̃[YT ] = EP [EQE [YT |Yτ ]
]

= EP [HYτ + Cτ ] = Hµτ + Cτ = µT ,

VarP̃[YT ] = VarP
[
EQE [YT |Yτ ]

]
+ EP [VarQE [YT |Yτ ]

]
= VarP [HYτ + CYτ ] + EP [G] = HΣτH

′ +G = ΣT .

Hence, YT ∼ N(µT , ΣT ).
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The final step is to specify the joint distribution of Yτ and YT by finding Cov(Yτ , YT ).

Note that

Cov(Yτ , YT ) = EP̃[YτY
′
T ]− EP̃[Yτ ]EP̃[Y ′T ]

= EP[EQE [YτY
′
T |Yτ ]]− µτµ′T

= EP [Yτ (Y
′
τH
′ + C ′τ )]− µτµ′T

= ΣτH
′ = Γ.

Therefore, Yτ
YT

 ∼ N

µτ
µT

 ,
Στ Γ

Γ′ ΣT

 .
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A.2 Simulation Scheme

In this section, we provide simulation algorithms of the regression-now and regression-

later approaches. All notations are defined in the main text.

A.2.1 Regression-now algorithm

• Initiate state variables, X+
t0 , Gt1 , rt0 , νt0 , and µx(t0).

• For (ti−1, ti] , i = 1, 2, ..., n:

1. Divide (ti−1, ti] into m sub-intervals such that ti−1 = ti−1,0 < ti−1,2 < · · · <

ti−1,m = ti.

2. Generate Y l
ti−1,j

, l = 1, 2, ..., N , j = 1, ...,m where the superscript denotes

lth simulation and N is the total number of simulations.

3. Calculate X−,lti−1,j
, l = 1, 2, ..., N , j = 1, 2, ...,m.

4. Generate random wlti from Alti not allowing for surrenders or setting Gl
ti+1

=

0.

5. Update X+,l
ti and Gl

ti+1
, l = 1, 2, ..., N .

6. Drop wltn , l = 1, 2, ..., N.

• Set V̂ l,now
tn

(
Y l
tn

)
= max(X−,ltn ,min(g,Gl

tn)) and D̂tn(Y l
tn) = max(X−,ltn , G

l
tn).

• For i = n− 1, ..., 1:

1. Calculate ylti = df l1,ti

[
df l2,tiVti+1

(Y l
ti+1

) +
(
1− df l2,ti

)
D̂ti+1

(Y l
ti+1

)
]
, where

df l1,ti = exp

(
−

m−1∑
j=0

rlti,j ∆i
j

)
,

df l2,ti = exp

(
−

m−1∑
j=0

µlx+ti,j
∆i
j

)
,
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and

∆i
j = ti,j+1 − ti,j, l = 1, ..., N.

2. Solve

α̂ti = argmin{αti}

N∑
l=1

[
e
(
Y l
ti

)
· αti − ylti

]2
.

3. Solve

V̂ l,now
ti

(
Y l
ti

)
= max

wlti
∈Alti

C(ti, wti) +
(
e (Yti) α̂

ti
)
.

4. Set D̂l
ti

(Y l
ti

) = max(X−,lti , G
l
ti

).

• The price of GMWB at t = 0 is:

V̂now(0) =
1

N

N∑
l=1

df l1,t0

(
df l2,t0V̂

l,now
ti (Y l

t1
) + (1− df l2,t0)D̂

l
ti

(Y l
t1

)
)
.

A.2.2 Regression-later algorithm in the Black-Scholes framework with de-

terministic survival probability

• Initiate state variables, X+
t0 , Gt1 , rt0 , νt0 , and µx(t0).

• For each ti , i = 1, 2, ..., n:

1. Generate N independent standard normal random variable Zl, l = 1, ..., N .

2. Calculate X−,lti = X+,l
ti−1

exp
((
r − φ− 1

2
σ2
)

(ti − ti−1) + σ
√
ti − ti−1Zl

)
.

3. Generate random wlti from Alti not allowing for surrenders or setting Gl
ti+1

=

0.

4. Update X+,l
ti and Gl

ti+1
, l = 1, 2, ..., N .

5. Drop wltn , l = 1, 2, ..., N.

• Set V̂ l,later
tn

(
Y l
tn

)
= max(X−,ltn ,min(g,Gl

tn)) and D̂tn(Y l
tn) = max(X−,ltn , G

l
tn).
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• For i = n− 1, ..., 1:

1. Calculate F l
ti+1

= e−r(ti+1−ti)
[
e−µ(ti+1−ti)Vti+1

(Y l
ti+1

) +
(
1− e−µ(ti+1−ti)

)
D̂ti+1

(Y l
ti+1

)
]
,

l = 1, ..., N .

2. Solve

β̂ti+1 = argmin{βti+1}

N∑
l=1

[
ϕ
(
Y l
ti+1

)
· βti+1 − F l

ti+1

]2

.

3. Solve

V̂ l,later
ti

(
Y l
ti

)
= max

wlti
∈Alti

C(ti, wti) + EQ
[(
ϕ
(
Yti+1

)
β̂ti+1

)
|Yti
]
. (21)

4. Set D̂l
ti

(Y l
ti

) = max(X−,lti , G
l
ti

)

• The price of GMWB at t = 0 is:

V̂later(0) =
1

N

N∑
l=1

e−r(t1−t0)
(
e−µ(t1−t0)V̂ l,later

t1 (Y l
t1

) +
(
1− e−µ(t1−t0)

)
D̂l
t1

(Y l
t1

)
)
.
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