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MODERN COMPUTING TECHNIQUES FOR SOLVING GENOMIC PROBLEMS

by

NING YU

Under the Direction of Yi Pan, PhD

ABSTRACT

With the advent of high-throughput genomics, biological big data brings challenges

to scientists in handling, analyzing, processing and mining this massive data. In this new

interdisciplinary field, diverse theories, methods, tools and knowledge are utilized to solve a

wide variety of problems. As an exploration, this dissertation project is designed to combine

concepts and principles in multiple areas, including signal processing, information-coding

theory, artificial intelligence and cloud computing, in order to solve the following problems

in computational biology: (1) comparative gene structure detection, (2) DNA sequence



annotation, (3) investigation of CpG islands (CGIs) for epigenetic studies.

Briefly, in problem #1, sequences are transformed into signal series or binary codes.

Similar to the speech/voice recognition, similarity is calculated between two signal series

and subsequently signals are stitched/matched into a temporal sequence. In the nature of

binary operation, all calculations/steps can be performed in an efficient and accurate way.

Improving performance in terms of accuracy and specificity is the key for a comparative

method. In problem #2, DNA sequences are encoded and transformed into numeric repre-

sentations for deep learning methods. Encoding schemes greatly influence the performance

of deep learning algorithms. Finding the best encoding scheme for a particular application

of deep learning is significant. Three applications (detection of protein-coding splicing sites,

detection of lincRNA splicing sites and improvement of comparative gene structure identi-

fication) are used to show the computing power of deep neural networks. In problem #3,

CpG sites are assigned certain energy and a Gaussian filter is applied to detection of CpG

islands. By using the CpG box and Markov model, we investigate the properties of CGIs

and redefine the CGIs using the emerging epigenetic data.

In summary, these three problems and their solutions are not isolated; they are linked

to modern techniques in such diverse areas as signal processing, information-coding theory,

artificial intelligence and cloud computing. These novel methods are expected to improve

the efficiency and accuracy of computational tools and bridge the gap between biology and

scientific computing.

INDEX WORDS: Signal processing, Deep learning, Cloud computing, Biological big data,
DNA annotation, Epigenetics, CpG island, CpG box, Markov model
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CHAPTER 1

INTRODUCTION

1.1 Background and Problems

The exponential growth in biological big data is a big challenge for researchers in life

science with the advent of the next generation sequencing technologies [1]. Diverse theories,

methods, tools and knowledge are utilized to solve a wide variety of problems. However, the

gaps between biology and computing are still large [2]. As an exploration, this dissertation

aims to develop state-of-the-art techniques by combining those concepts and principles in

the diverse areas of computing techniques, including signal processing, information-coding

theory, cloud computing and artificial intelligence in order to solve the following selected

problems:

Problem 1 Comparative methods for gene structure prediction. This is a fundamental

issue in comparative genome studies. Improving the specificity and the accuracy is

critical for this task.

Problem 2 Deep learning methods for DNA sequence annotation. Theoretically, coding

and non-coding DNA sequences are distinct from each other in function while the

DNA sequences are hard to identify. Complementary to conventional computational

models, the emerging methods in deep learning are expected to improve the accuracy

in computational annotation of DNA genome sequence.

Problem 3 Investigation of CpG island in human genome sequences. The investigations in-

clude the detection of CpG island (CGI), the re-definition of CGI and the exploration of

CGI structures since CGI is an important epigenetic marker and the current definition

of CGI cannot support the emerging data set such as methylation data. Data-driven
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Dynamic Time Warping Signal encoding Signal matching and recognition 

Figure 1.1: An Example of Signal Processing for Comparative Genomic Studies

CGI structure analysis can help scientists discover the epigenetic processes in CpG-rich

areas.

1.2 Goal and Outline

In order to solve problem #1, many related work have been conducted by scientists

[3][4][5][6][7]. In my previous work, a general framework, called DNA-As-X [8] was proposed

for character-analysis-free techniques to overcome these shortcomings, where X is the inter-

mediates, such as digit, code, signal, vector, tree, graph network and so on. A simple example

in Figure1.1 shows a novel signal processing method for comparative genomic studies [8].

As for problem #2, the computational annotation of DNA sequences is an indispens-

able task with the advent of next generation sequencing technology. Two primary methods

are widely accepted, (1) ab initio method that directly detects the DNA sequence without

any reference, (2) comparative method that studies the known data base and acquires the

knowledge for detection of DNA sequence. Here, I adopt the encoding technique to convert

the sequences into signals and use advanced deep learning methods to learn the knowledge

of coding DNA sequences, which are expected to have better performance over other con-

ventional methods.

Similarly, as for problem #3, many research have been performed on CGI investigation

[9][10]. However, few of them use signal processing to detect CGI; a few of them are seen

to redefine the CGI to support the emerging data; and the deep investigations to the CGI

structure are barely known. In my novel work, a Gaussian digital model called GaussianCpG

[11] is developed for detection of CGI in human genome sequences. The validation results

show its superiority on balancing the sensitivity and the specificity over other methods.
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#1: Comparative Gene Structure Prediction. 
 #1.1 DNA-As-X framework

 #1.2 Signalign: An ontology of DNA-As-X for gene structure prediction

#2: Deep Learning for DNA Sequence Annotation. 
 #2.1 Studies on Encoding schemes

 #2.2 Development of deep neural network algorithms

 #2.3 Applications and studies on DNA annotation 
• Studies on encoding schemes and deep neural network methods.

• Human gene splicing site detection

• lincRNA splicing site detection

• Hybrid method for gene structure prediction

#3: Issues of CpG island. 
 #3.1 GaussianCpG: A Gaussian model for detection of human CGIs

 #3.2 Investigation and Re-definition of CGIs using CpG box and Markov chain model

 #3.3 Cloud-assisted platform for the investigation of CGI

Figure 1.2: The Main Goals in the Dissertation

Moreover, a deep investigation to CGI is performed for solving the problems about CGI

definition and property investigation.

novel computing methods integrate signal processing, information coding techniques,

clouding computing, statistic analytics, and deep learning and constitute the technological

mainline throughout the whole dissertation. Figure1.2 gives the outline of main goals detailed

in tasks and sub-tasks.

1.3 Methodology

The primary methods adopted in the dissertation are shown in Figure1.3. These meth-

ods can be classified into three categories as follows.

The first class is signal processing and information-coding methods, including (A) Signal

encoding, (B) Error tolerance and detection, (C) Dynamic Time Warping for sequential

series, (D) Signal-Noise-Ratio (SNR) for measurement , (E) Gaussian filter and (G) erosion

digital filter, (J) Signal matching and recognition and (K) Information entropy.

The second class is artificial-intelligence techniques, including (F) Markov chain model,
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Main Techniques:
A. Signal encoding
B. Error tolerance & 

detection
C. Modified Dynamic Time 

Warping 
D. Signal-Noise Ratio for 

metrics
E. Gaussian filter
F. Markov chain model
G. Digital filter for erosion
H. CpG box model
I. Cloud-assisted 

technique

J. Signal matching and 
recognition

K. Information entropy
L. Deep neural network
M. Auto-encoder (AE)
N. Denoising Auto-encoder
O. Double Denoising AE

A, K, L, M, N, O

E, H

F, G, H

F, G, H, I

A, B, C, D, J

A, B, C, D, J

A, K

L, M, N, O

A, K, M
A, K, M

A, B, C, D, J, K, M

Figure 1.3: Methodology for Solving Problems
Red letters denote the methods adopted by each sub-task.

(H) CpG box model, (L) Deep neural network, (M) Auto-encoder, (N) Denoising auto-

encoder and (O) Double denoising auto-encoder. (F) and (H) are particularly designed

for CpG island for measuring the probabilities between two CpG sites; (L)-(O) are various

techniques used in deep learning, especially in deep neural network.

The third class is the cloud-assisted algorithm (I). In problem #3, the specific cloud-

assisted algorithms are designed for processing the large scale of biological data.

1.4 Contributions

This project aims to cover some topics in the middle of these interdisciplinary fields and

advance computational methods for the discovery of new knowledge in computational biol-

ogy. All these problems and solutions are not isolated and they are all linked to innovative

techniques in the areas of signal processing and information-coding theory, artificial intelli-

gence and cloud computing, which are expected to improve the efficiency and the accuracy

in computational tools and help to bridge the gap between biology and scientific computing.

Particularly, in problem 1, a novel method that integrates signal processing and infor-

mation encoding can improve the accuracy in comparative gene structure prediction. In

problem 2, deep learning methods are applied into DNA annotation problems and show the

superiority in raising the accuracy in genome analysis. These deep learning based techniques
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are anticipated to play more important roles in the future research. In problem 3, the CpG

box and Markov model are first proposed for investigating and redefining CpG islands in

epigenetic studies. In addition, a cloud-assisted platform is established for further analysis

in CpG island related issues.

1.5 Organization

This article is organized as follows. Chapter 2 discusses the comparative methods in

gene structure detection using signal processing and information-coding techniques. Chapter

3 describes the studies on encoding schemes and deep neural network methods and presents

three applications to illustrate the potential power of deep neural network in annotating DNA

sequences. Chapter 4 depicts the method of detecting CpG island (CGI) based on Gaussian

model and redefines the CGI to meet the emerging methylation data using CpG box and

Markov model. Furthermore, many deep and interesting investigations and discussions are

described on this chapter. Finally the paper outlines ongoing and future work in Chapter 5.
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CHAPTER 2

COMPARATIVE METHODS FOR GENE STRUCTURE PREDICTION

USING SIGNAL PROCESSING AND INFORMATION-CODING

TECHNIQUES

In this chapter, the first section gives the motivation that signal processing and

information-coding techniques can be applied in comparative genome studies and explains

the basic principle behind it. Section 2.2 introduces a generic framework called DNA-As-

X for the applications on genome analysis. Section 2.3 depicts the methodology and the

implementation of an ontology of DNA-As-Signal. Subsequently, Section 2.4 provides a

comprehensive valuation. Finally, Section 2.5 discusses the downside of the method and

summarizes this chapter.

2.1 Introduction

2.1.1 Motivation

Since several decades ago characters (A, T, C and G) have been used as symbols to rep-

resent the nucleotides in sequences of deoxyribonucleic acid (DNA) and character-analysis-

based techniques have underlain the research methodologies in bioinformatics and DNA

genome analysis. Many existing computational tools [12][13][14][15] take full advantage of

the properties of character representation - readable, understandable and convenient for se-

quence analysis. However, with the advent of biological big-data era, conventional character-

based techniques in DNA genome analysis exhibit three main shortcomings - (1) inefficient

to deal with large-volume genome data, (2) inflexible to handle various errors, mutations,

insertion-deletions, frame shifts and gaps in DNA genome sequences, and (3) incompatible

to well-developed engineering tool kits.

First, in order to overcome the inefficiency, two solutions are come up with. One solution
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is the applications of various data compression techniques, such as Lempel-Ziv-Welch data

compression [16], Burrows-Wheeler transform and local compression [17][18], which greatly

decrease the computing resources and promote the system efficiency; In parallel to the first

solution, novel numerical representations are proposed and adopted by character-analysis-

free techniques (CAF) that are our focus in this chapter.

Second, gapped extension [19][20], seeds and masks [21][22][23], and scoring and sub-

stitution matrices [24] are developed in character-analysis-based techniques to make up the

flexibility issues. However, it causes another problem - the comparative tools become compli-

cated if one uses more masks for higher sensitivity in some particular applications. Moreover,

although seed is a widely adopted method that can speed up the performance in searching

character-based context, it does not perform well in error-prone situations [25]. In recent

studies [21][23], lots of hidden homology in DNA genome are still not found by current

comparative tools despite decades of research.

Third, the gaps between biology and engineering or computer science are still large.

Character-based representations make the existing methods/techniques in numeric comput-

ing hardly to exert in the interdisciplinary research. No generic methods are proposed to fill

the enlarged gaps and to some extent it hinders veterans who work on traditional engineering

fields to apply their expertise directly to biological area.

Techniques in signal processing and information-coding theory can help overcome these

downsides of conventional character-based methods, because the existing and mature meth-

ods in engineering can assist to improve the accuracy and the efficiency and they have the

natural advantages in numerical analysis and cloud/parallel computing.

2.1.2 Related Work

The computational methods of comparative analysis in DNA genomes have evolved

to the fundamental infrastructure in bioinformatics [26]. Complying with the established

character-based rules since the late 1970s, scientists have employed assorted methods to

study these characters and hunt various patterns in character strings [19], resulting in the
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prosperity of character-analysis-based methods. One of the most canonical methods is the

sequence local alignment, such as FASTA [27] and BLAST [28].

As the core of BLAST, seed-and-extend algorithm uses k -mer words as seed [28][20]

and extends the search around seed, which is widely applied in numerous applications of

comparative analysis and homology studies. As k -mer is usually set to the default value

of 11, the heuristic method improves the running time significantly. However, the accuracy

is negatively affected because the coarse granularity of a seed determines that even subtle

mutations or small shifts are not considered. The improvement of this issue is derived

from a technique named spaced seed that allows mismatching for gaps and mutations in

a k -mer seed [19][20]. Concretely, a mask is applied to a seed in certain positions where

mismatch is allowed. For example, a spaced seed of length 11 and weight 8 in the mask of

11110110011 allows mismatching in positions of 0 and exact match in positions of 1. This

technique gives relatively more flexibility to character-analysis-based methods. However, for

various patterns, more seed masks are needed. In [21][23] lots of new masks are designed to

filter diverse cases and complicated syntax for masks are created in the nature of character-

analysis-based methods. They do work well in some particular applications but such designs

make the system more complicated with the loss in usability.

For other canonical algorithms such as Smith-Waterman and Needleman-Wuncsh

[27][29], although they can find the optimal solution for global alignment, two issues are

existing. (1) The time complexity is O(n2). It means that for long sequences it is inefficient

in computation. Many present global-alignment tools, such as FASTA, are improved by com-

bining heuristic algorithms, like seed-and-extend algorithm, to decrease the running time.

(2) Even though the global alignment algorithm can find the optimal solution, in practice

the optimum does not mean that it is the ground truth, especially in structure prediction

for a typical example of the conservation search in RNA structure studies. False positive

alignments may be generated as two sequences are globally aligned [30].

Additionally, although assembling algorithms such as burrow-wheeler transform have

good performances in mapping and sequence assembly, they primarily deal with sequences
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Figure 2.1: Main Procedures in DNA-As-X Framework

high similarity because the compact/compressed indexing structures in suffix tree or suffix

array do not scale well for an error-prone query [18]. For query sequences with relatively

large distance, the computational loads grow exponentially [31], inefficient to handle high

degrees of dissimilarity through string-matching indexing structures.

2.2 Framework of DNA-As-X

Character-analysis-free techniques (CAF) are defined to those technologies that do not

use characters or strings as the intermediates for data analysis and processing. In the DNA-

As-X framework, two aspects are substantial in CAF techniques: transformation model

and processing method. The former is about the non-character transformation, namely

the numerical representation or graphical representation, which is the foundation of CAF

techniques; the latter is based on the transformed data for further processing.

The purpose of DNA-As-X framework is to deal with above three issues on character

representation and character-analysis-based techniques. DNA-As-X is proposed as a generic

framework for genome analysis and processing, where X can be various formats of interme-

diates in other research fields [8]. DNA-As-X is expected to contribute to computational

biology and eliminate the hurdle of biological studies for veterans in engineering fields so

that more novel means can be introduced and benefit genomic studies.

The generic framework of the DAX model consists of four main parts that represent four

processing phases respectively, as shown in the dashed rectangles of Figure 2.1, including

transformation, feature extraction, signal processing, and inverse transformation.

(1) Transformation. This phase is responsible for transforming the DNA sequences into

signals, where encoding and signalizing may vary dependent on the selected encoding model.
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Similar to the quantification from analog signals to digital signals, the transformation

from traditional 1-D domain to 2-D spatial/temporal domain needs three essential steps:

sampling, quantizing and encoding. In bioinformatics, because of the discreteness of DNA

sequences, the sampling can be defined as a process to divide a character-based biological

sequence into a sequence of reads each of which contain at least 1 character. In the same way,

quantization and encoding in bioinformatics are respectively defined as a process to map a

sequence of reads to a set of values in terms of a certain rule, and a process to designate a

sequence of reads to a set of codes in terms of a certain rule.

Encoding designates codes to a sequence of reads while quantization maps the sequence

of reads to values. Therefore, different from communication engineering, a proper order of

three essential steps for transforming 1-D space to 2-D space in bioinformatics is sampling,

encoding and quantizing. Additionally, for the generated 2-D domain, you can plot it on the

plane of (x, y), where x is the spatial/temporal coordinate and y represents the magnitude

of amplitude.

(2) Feature extraction. Features usually are hidden in the profiles that show some

same or similar patterns. Exacting these common and subtle features is the task of this

phase. Similar to pairwise alignment in bioinformatics, Common features can be extracted by

matching two series of signal series and further form the coding vectors that can be processed

on the stage of signal processing. These extracted features may be raw and unpruned, which

will be further refined in the next phase.

(3) Signal processing 1. It primarily takes care of outlining the desired patterns from

those extracted raw features. Object X in this phase represents quantitative vectors. Because

of the nature of vectors, they can form undirected trees/graphs where a vector may be

contained in multiple paths. Chaining these vector into a larger path is the goal of global

comparative methods [32]. The one with the maximum coverage will be selected as the

best path. Similar to the aforementioned phases, the diverse methods of signal processing

1Since DAX is primarily based on information coding theory and signal processing, we use the term in
signal processing for this phase.
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or pattern cognition can be adopted depending on particular cases. For example, in [32],

vector-based algorithms are adopted for genome-wide sequence alignment to form paths in

a graph network.

(4) Inverse transformation. As the counterpart of transformation, inverse transformation

is responsible for converting the intermediate results, graphs, trees, paths, vectors, signals,

codes and digits, back into human-readable character sequences, denoted as Equation 2.13.

Thus, this phase is expected to implement the function of the reverse transformation of those

intermediates and present the final sequences to end users.

As an ontology, Figure2.2 shows the primary procedures used in Section 2.3, reflecting

the framework of DNA-As-X.
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2.3 Signalign: An ontology of DNA-As-Signal

2.3.1 Bio-chemical Model

Assuming four nucletotides are distributed equiprobably, the entropy brings the maxi-

mum information capacity to the sequence. In terms of the definition of information entropy

H = −
4∑
i=1

pi log2 pi,

we have the optimum value of 2 bits. Compatible to modern computing system, we consider

the Galois Field GF(2) and the extension of GF(4) for any GF(2) pair [7]. DNA sequences

can be encoded to binary codes [33] based on the principles in information coding theory.

Obviously, two important rules are needed to consider, nucleotide bio-chemical properties

and the features of binary codes. According to the chemical and biological enthalpy values

of the nearest nucleotide combinations [34], four nucleotides can be placed in the order of C,

T, A, G so that the bio-chemical dynamics manifest the symmetric properties as shown in

Figure 2.3. Also, in the ascendant order of molecular physical size and weight, C, T/U, A,

G are the best placement corresponding to symmetric codes. Moreover, we observe that all

bio-chemical representation models in Section 3.3 have the same order of C, T, A, G except

EIIP’s order of G, A, T, C (reverse order). By mapping these properties to features of binary

numeric coding, eventually we encode C, T, A, and G to 00, 01, 10, and 11 respectively in

two bits of binary codes.

On the other hand, the mutations/changes between four nucleotides differentiate the

transition and the transversion. Relatively, transition (A-G, C-T) takes place more frequently

than transversion (C-G, T-A) as the different colors (light-dark) respectively shown on the

right of Figure2.3. Corresponding to the enthalpy values on the left of Figure2.3, we can

see the weak bonds between pairs of transitions comparing with the strong bonds between

nucleotide pairs of transversions. Mapping to the binary codes, the Hamming distance and

the Euclidean distance between two codes precisely reflect the differences between transition
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Figure 2.3: Symmetric Thermodynamics Pattern and Encoding Scheme

Left: Symmetric thermodynamics pattern (from left to right) in terms of the enthalpy val-
ues of thermodynamic interactions between two molecules [34]. Unit of measurement is k
cal/mol. Right: Molecules are encoded for reflecting the bio-chemical relations [35].

and transversion.

2.3.2 Encoding and Signalizing Model

In terms of algebraic coding theory, a single nucleotide can be encoded into c that

c = ψ1x + ψ0, where ψ1 and ψ0 ∈ GF (2). The Hamming distance (dh) and the Euclidean

distance (de) are defined for any two codes c and c′ as Equation 2.1 (c, c′ ∈ GF (4)).

dh = c⊕ c′, de = c− c′. (2.1)

The matrices of dh and de shown in Equations 2.2 and 2.3 reflect the collection of

distances between any two codes c and c′ in the order of C, T, A and G.

dh =


0 1 1 2

1 0 2 1

1 2 0 1

2 1 1 0


, (2.2)
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de =


0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0


. (2.3)

dX is a mixed distance used to highlight the transversion by combining the Euclidean

and Hamming distances. It is expressed in Equation 2.4 and its distance matrix is shown in

Equation 2.5 in the order of C, T, A and G.

dX = max(dh, de) = max(c⊕ c′, c− c′), (2.4)

dX =


0 1 2 3

1 0 2 2

2 2 0 1

3 2 1 0


. (2.5)

In practice, a masked distance dK is necessary to represent the binary relations between

different codes. dK = 1 when c 6= c′ while dK = 0 when c = c′. The distance matrix of dK is

shown in Equation 2.6.

dK =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


. (2.6)

Any nucleotide in a sequential context is encoded into that c = ψ2i+1x
2i+1 + ψ2ix

2i

according to the extended GF (4) where i ∈ {0, 1, ..., n−1} indicates the location information

of any nucleotide in this sequence.

Since ψi and ψ′i ∈ GF (2), ψ2i+1x
2i+1 + ψ2ix

2i and ψ′2i+1x
2i+1 + ψ′2ix

2i ∈ GF (4),

i ∈ {0, 1, ..., n − 1} and n is the length of this DNA sequence, assuming that two DNA
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reads/tuples with the length of k are denoted as u and u′ respectively and that 2k − 1

(k > 0) is the degree of the expressed polynomial with coefficients from the extension of

GF(2) [36], u and u′ can be expressed as Equations 2.7 and 2.8.

u = ψ2k−1x
2k−1 + ψ2k−2x

2k−2 + ...+ ψ1x
1 + ψ0x

0

=
2k−1∑
i=0

ψix
i,

(2.7)

u′ = ψ′2k−1x
2k−1 + ψ′2k−2x

2k−2 + ...+ ψ′1x
1 + ψ′0x

0

=
2k−1∑
i=0

ψ′
i
xi.

(2.8)

The hamming distance and the Euclidean distance denoted as Dh and De between u

and u′ are

Dh(u, u
′) = ‖u⊕ u′‖ =

k−1∑
i=0

∥∥ci ⊕ c′i∥∥ =
k−1∑
i=0

dh,i, (2.9)

De(u, u
′) = ‖u− u′‖ =

k−1∑
i=0

∥∥ci − c′i∥∥ =
k−1∑
i=0

de,i. (2.10)

The mixed distance DX between u and u′ is

DX(u, u′) =
k−1∑
i=0

dX,i. (2.11)

The masked distance DK between u and u′ is

DK(u, u′) =
k−1∑
i=0

dK,i. (2.12)

Assuming that two DNA string sequences s and s′ have the nucleotide lengths of n and

n′ respectively, w and w′ are the numerical representations of string sequences s and s′. We
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denote the transformation and the inverse transformation as follows:

w = T (s), s = T−1(w). (2.13)

Assuming that u and u′ are polynomials with the same degree of 2k − 1 (k > 0)

and coefficients from the extension of GF (2), w and w′ can be represented as two series,

w = {u0, u1, ..., un−k} and w′ = {u′0, u′1, ..., u′n′−k}. Therefore, sequential codes ui−1, ui and

ui+1 in sequence w can be expressed as the Equations 2.14 and 2.15.

ψ2(k+i)−1x
2k−1 + ψ2(k+i)−2x

2k−2 + ui−1

x2
= ui, (2.14)

ui+1x
2 + ψ2i+1x+ ψ2i = ui. (2.15)

2.3.3 Error Tolerance and Detection for Feature Extraction

In recent studies, such as [21] [23], the discrimination of transition and transversion

and the tolerance of multiple-loci errors were highlighted. Various methods are developed

for this purpose. One of them is string mask that was included in Lastz [37]. In contrast,

a binary mask in binary contexts is easier to develop. Another typical method is scoring

and substitution matrix [24]. The magnitudes of substitution matrix are acquired through

statistical experiments although they are limited by sample numbers and available alignments

in species. The functions of scoring and substitution matrix may be replaced by distances

in binary encoding contexts. For example, the matrices of Euclidean distance, Hamming

distance, mixed distance and masked distance are able to measure the difference between

sequences.

It is useful for DX(u, u′) and DK(u, u′) to identify the errors2 between two nucleotide

reads/messages with the length of k. Assuming that mX and mK indicate the mixed dis-

tance/error and the masked distance/error respectively tolerated by k-tuple messages/reads,

2Mutations, insertions-deletions, short gaps and small frameshifts are generalized as errors in the system.
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by assigning the different condition (k,mX ,mK), 0 ≤ mX ≤ 3k and 0 ≤ mK ≤ k , we

can have the desired tolerance distance in various patterns between reads. For example,

DX(u, u′) ≤ mX and DK(u, u′) ≤ mK mean that the distances between u and u′ are less or

equal to mX and mK respectively.

For sequence w = {u0, u1, ..., un−k} and sequence w′ = {u′0, u′1, ..., u′n′−k} with the same

polynomial degree for u and u′, we denote vl = 〈uil,jl, u′i′l,j′l〉 as a feature/signal vector that

satisfies the condition (k,mX ,mK) for sequential pairs of u and u′ with the same length

of l (u ∈ [uil, ujl], u
′ ∈ [u′i′l, u

′
j′l]). We further denote the set of all feature vectors as F =

{v0, v1, ..., vq} (q ≥ 0). Therefore, the alignment between w and w′ can be represented as a

set f that contains a sequential series of vectors, f ⊆ F .

Feature extraction actually is a procedure of collecting sets of feature vector v before

one conducts dynamic time warping to find the set f . One of the most commonly used

method is to create a list to store all possible values of u. For any signal u, once it is located,

its neighbor signals are tested to see whether it satisfies the condition (k,mX ,mK). The

vector v is the signal region that meets the criteria. Searching a signal u spends O(log n)

time and the search for w to w′ can finish in O(n log n) time, provided that they are of the

same length n.

2.3.4 Dynamic Time Warping for Processing Sequential Series

Similar to Needleman-Wuncsh algorithm [29], Dynamic Time Warping (DTW) uses a

2-D table to find the optimal matching paths between series. In [38], a global constraint is

adopted to reduce the computational load while in [39] the sparsity of matrix is utilized to

simplify the computation. DTW can be computed in dynamic programming for the optimal

path with the maximum scores. With some adjustments from the traditional method of

DTW in signal processing and similar to [32], we adopt a dynamic programming algorithm

to stitch the path of sequential time signals as shown in Algorithm 1.

First of all, the objective of signal stitching is to collect the optimal set of vectors where

the signal vectors can form a stitching path. The graph structure of g that can be imple-
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mented in a multi-way tree by using pointers. The signal vector contains the spatial/temporal

coordinates of two signals, the offset of two coordinates, the length of the signal, the Ham-

ming distance, the Euclidean distance, the mixed distance, the masked distance and the

signal-to-noise ratio (SNR) respectively.

Second, SNR is applied as the metric to measure the score of signal vector and path.

Maximizing SNR is the measure to stitch the path. SNR is also regarded as a threshold to

reduce the number of vectors that determines the computational load.

Third, the search constraint c in the algorithm limits the search distance away from the

end of this signal vector. This is a strategy to reduce the computational load and keep the

accuracy. c is set to min(|x|, |y|)/2 [38], where |x| and |y| are the lengths of two sequences

respectively. Additionally, since the signal vectors are sorted by abs(x− y), x and y where x

and y represent signal locations in two sequences respectively, stitching always starts from

the most likely region to generate a graph containing most likely paths first.

Assuming that the number of vector v is r, the computing complexity of generating the

graph containing all paths takes O(r) (the property of isParsed is set to 1 if it is touched).

Calculating all paths from the graph may take the maximum time of O(r2) in the worse case

depending on the structure of the graph. In practice, the number of calculated signal vector

r is far less than the length of sequence n. Thus, in the worse case the time complexity for

stitching is far less than O(n2).

2.3.5 Signal-to-Noise Ratio for Metrics

Signal-to-Noise Ratio (SNR) is a metric of scoring system in DNA-As-Signal to deter-

mine whether the signal vector/path meets the criteria. Its expression is shown in Equation

2.16 with the unit of measurement db.

SNR = 20 log10
Asignal
Anoise

∼ log10
Asignal
Anoise

= log10
L

DX−DK

(2.16)
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Algorithm 1 Modified DTW Algorithm

1: f ← <filter signal vectors>

2: s← <sort f> {Sorted by abs(x− y),x,y}
3: c← constraint for search
4: g ← 0
5: ModifiedDTW (prev)
6: i← <seek next proper index of prev>
7: while i < c do
8: if s[i].isParsed 6= 0 then
9: <continue>

10: else
11: s[i].isParsed← 1
12: g ← s[i] + <max ModifiedDTW(i)>

13: end if
14: end while
15: return g

where Asignal and Anoise are the amplitudes of signal and noise and here they are measured by

the length of signal series L and the offset of the mixed distance DX and the masked distance

DK . The reason of why we adopt the offset of DX and DK is that the offset can tolerate the

effect of transition and highlight the difference between transversion and transition.

As a threshold, SNR determines how many signals are filtered from the final results. The

proper magnitude of SNR is obtained from empirical training set. We test a training set of

13 genes and 56 cross-species and obtain the system SNR as 1.2 db. The result of acquiring

the system SNR is shown in Figure2.4. The accumulated percentages of sensitivity and

specificity have the maximum magnitude around SNR = 1.0 db to 1.3 db. Eventually, SNR

= 1.2 db is chosen as the default system parameter.

2.4 Evaluation and Assessment

2.4.1 Data Set and System Configurations

The standard ROSETTA dataset contains totally 140 orthologous gene pairs and 1,160

cross-species exons from human and mouse [40]. Human and mouse both have the com-

plicated gene structures: introns with various length are located between exons. It results
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Figure 2.4: Stack Columns of Training Result for Different SNRs

The y-axis represents the magnitude of accumulations in specificity and sensitivity.

in that the degree of homologous regions varies a lot among these genes. Approximately

85% identity at DNA level shows in coding regions and only up to 27% identity exists in

non-coding areas. The length of exons and introns also varies in a range from 3 nt to a few

thousand nt. Human introns usually are 50% larger than mouse introns. All these biases

make the data set suitable for our experiment.

Five widely used software including Avid [12], Blastn [13], Fasta36 [14], Ngila [15], Lastz

[37] are utilized for the comparison with our program named Signalign. Both Blastn and

Fasta36 are two of the most famous comparative tools for many years; Lastz origins from

Blastz and currently is the core engine for UCSC [41]; Avid and Ngila are two popular global-

alignment tools. All software are downloaded in the latest version of June, 2015 except Blastn

that is a server version over Internet. All programs except Blastn are compiled in C/C++

and performed in a local system with Intel i7 1.8GHz, 8G RAM, 500G HD and Ubuntu

12.4. The default system parameters and configurations are adopted for all programs and

the same criteria are applied to the evaluation of final results.



23

Exon Exon Exon Exon 
True Gene 
Structure 

Predicted 
Structure 

          Measures: 
 TN         FN          TP     FP    TN     FN       TP        FN     TN      FP         TP       FN   TN   FP     TP      FP 

Figure 2.5: An Illustration of Evaluation Measures

2.4.2 Evaluation Measures

Sensitivity (Sn), specificity (Sp), accuracy (Acc) and Matthews correlation coefficient

(Mcc) are used as evaluation measures [42]. Their expressions are shown as Equations 2.17,

where true positive (TP) is the number of coding regions correctly predicted as coding;

false positive (FP) is the number of non-coding regions incorrectly predicted as coding; true

negative (TN) is the number of non-coding regions correctly predicted as non-coding; false

negative (FN) is the number of coding regions incorrectly predicted as non-coding. A toy

example is shown in Figure2.5 as an illustration. All these measurements are measured in

nucleotide level.

Sn = TP
TP+FN

Sp = TN
TN+FP

Acc = TP+TN
TP+FP+FN+TN

Mcc = TP×TN−FN×FP√
(TP+FN)×(TN+FP)×(TP+FP)×(TN+FN)

(2.17)

2.4.3 Experimental Results

Due to the difference of gene structure, the predicted result varies for each pair of

human and mouse sequences. Thus, we take into account the percentage of exons predicted

in various coverage rates. For example, in the evaluation of sensitivity, we consider how
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Figure 2.6: Comparison of Sensitivity

many percent of exons are predicted in 100% sensitivity, 95% sensitivity, 90% sensitivity, ...,

70% sensitivity respectively. Similar to sensitivity, other measurements such as specificity,

accuracy and Matthews correlation coefficient adopt the percentage categories in order to

explicitly demonstrate the distributions of evaluation measures.

From the results in Figure2.6, Avid and Fasta36 show the highest rank in sensitivity.

Signalign is ranked in the third place followed by Lastz. Although Signalign is ranked in the

middle place in sensitivity, the comparative results in specificity illustrate that Signalign has

good performances to narrow the number of candidates for gene prediction in all categories

of specificities as shown in Figure2.7.

Following the evaluations in sensitivity and specificity, two other comprehensive evalua-

tion measures, accuracy and Matthews correlation coefficient, shown respectively in Figure2.8

and Figure2.9, illustrate that Signalign has the capability in gene structure prediction.

Blastn and Fast36 provide the local optimized alignments as the final results, which

may make the specificity worse because the local alignments are often not optimal for global

prediction even if the results are accurate locally. Moreover, even if one can adjust various

parameters to filter the results, the final results may still be inferior to others. That is

one of reasons why some alignment tools are not suitable to some particular comparative

applications.
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Figure 2.7: Comparison of Specificity

Although Avid and Ngila provide the global alignments as their final results, their

performances show a large difference. For Avid, its results in specificity and in sensitivity

are mostly complementary to each other. Since it is already a global result, less chance

can affect its performance by adjusting its parameter setting. For Ngila, its performance is

ranked in the third place according to the comprehensive evaluation. However, its sensitivity

is ranked at the last place. Similar to the situation of Avid, adjusting its parameters cannot

boost the performance.

As the engine of UCSC, Lastz shows good performance only following Signalign in these

performance evaluations. And it does provide a bunch of parameters for various applications.

But Lastz is a general alignment software, not a special software for gene structure analysis.

Thus, it often needs additional work for tuning. It was criticized [23] for resorting to extra

masks and complicated settings to improve its performance in homology prediction.

A comprehensive comparison is given in Figure2.10(a) by plotting TP rate against FP

rate for all samples/genes in the data set. In order to illustrate the comparative details in each

sample/gene, in Figure2.10(b), we draw the first nine samples and each subplot represents

the receiver operating characteristic for a gene. The statistics of area under curve (AUC)

are shown by drawing box plots in Figure2.10(c). It manifests that Signalign and Lastz have

the similar performance, whereas Signalign has the higher average AUC 0.630175697 and
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Lastz has the lower average AUC 0.604215947, and the median AUC of Signalign is higher

than that of Lastz as shown in the red bar in Figure2.10(c). However, the box length of

Lastz is shorter than Signalign. It is caused by some outlier samples that play down the

performance of Signalign. On the other side, the superiority of Signalign over Lastz can

be better illustrated by the statistics in Figure2.10(d) if one counts the winners sample by

sample, which approximately reflects the situation in Figure2.10(b) (Signalign wins 7 bids

while Lastz wins 2 bids).

Through these evaluations, DNA-As-Signal demonstrates the potential capability to re-

solve the problem in biology by using the techniques in engineering, especially in information

coding and processing. Certainly, although Signalign shows strong ability to predict gene

structure using comparative methods, the extremely small exons still cannot be detected.

Figure2.11 shows the original exon similarity, the predicted exon coverage and predicted

exon similarity as well as the exon lengths for 39 exons. Signalign can detect almost various

lengths of exons with the range from 20+ nt to 1,000+ nt except extremely short ones (3 nt

and 6 nt).

For the comparison of execution time, Figure2.12 shows the running time spent on

various numbers of genes for all software except Blastn. The tested data is around 2.5 Mega

Bytes and the average gene pair is about 25 Kilo Bytes. Ngila and Fasta36 use the longest

time followed by Avid while Signalign and Lastz are the top two who spend the least time.

2.5 Discussion

Signalign can be used to detect homologous sequences for comparative gene structure

prediction. The experimental results manifest its potential capability in comparative gene

analysis and processing. However, some questions are still remained for the future work, such

as (1) the identification of splicing sites, (2) the genome-wide global search of gene structure,

(3) the recognition of conserved non-coding region, (4) the improvement of sensitivity, and

so forth. For the first question, detecting splicing sites can help narrow the comparative

results and further accurately find the exact boundary of exon and intron. However, recog-
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(a) ROC plots for all testing samples/genes. (b) ROC plots for the first 9 samples/genes
from the data set. (c) AUC statistics. (d) Winning rate, when one counts the ROC/AUC
winners gene by gene.
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nizing patterns of splicing sites in their contexts needs some statistical knowledge, methods

or models [43]. The gene structure prediction method is further improved in Chapter 3 by

integrating deep learning method to splicing site detection. For the second question, the

detection of gene structure for whole genomes will be our next task in the future. The cur-

rent version of Signalign does not provide the optimized solution in memory efficiency that

is indispensable component for genome-wide search. However, as a good trial for combin-

ing the information-coding-and-processing with comparative genomics, Signalign has shown

good capability in evaluations and is expected to have the potential of being optimized to

fit the memory efficiently in the future since intuitively its binary code has some nature

connection with memory efficiency. For the third question, detecting and eliminating the

conserved non-coding region is an important challenge to improve the specificity. In order

to differentiate conserved coding regions from conserved non-coding regions, a number of

statistical experiments and some data mining methods are needed. However, how to apply

engineering techniques to these issues remains undiscovered. For the fourth question, sen-

sitivity and specificity are frequently twisted together - one often improves the sensitivity

while specificity drops; specificity is enhanced while sensitivity becomes worse. Thus, bal-

ancing sensitivity and specificity is a common strategy. However, it does not intend to blur

the question - many good software can give attention to both two things. A viable way is

to remove constraints in sensitivity while increasing the accuracy of predicted candidates.

Searching certain biological patterns such as splicing sites sheds some light on it that is

further developed in Chapter 3.

Additionally, although five software show inferior performances in the comparative ex-

periments, it does not mean inferior in other applications and, in fact, each of them shows

its strength in various aspects. For example, Avid and Ngila emphasize on the efficiency in

global alignment; Blastn and Fasta36 are canonical local alignment software; Lastz manifests

its versatility in a wide scope. By modifying and adjusting some functions, they are enabled

to have better performance. For example, by introducing some constraints to global align-

ment and revising their programs, Avid and Ngila may obtain the most significant output as
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the candidates of gene structure prediction. But these modifications must be implemented

by revising their programs or patching extra software.
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CHAPTER 3

DEEP LEARNING TECHNIQUES FOR GENOME ANNOTATION

This chapter is composed of the following sections. First section describes problems

and introduces the deep learning technology. Section 3.2 discusses previous ab initio meth-

ods in computationally predicting coding DNA sequences. Section 3.3 gives the primary

encoding schemes in the field of genomic analysis. Section 3.4 depicts several deep learning

algorithms based on artificial neural network. The subsequent section examines the perfor-

mance of these deep learning algorithms and discusses canonical encoding schemes on these

algorithms. Three applications, illustrated on subsections 3.5.1, 3.5.2 and 3.5.3, provide

solutions respectively on detection of protein-coding splicing sites, recognition of lincRNA

Transcription and improvement of gene structure prediction respectively. Among them, the

last application is a hybrid method combining with Signalign described on Chapter 2.

3.1 Introduction and Contribution

DNA annotation is located at the central position of genomic studies. It refers to a

process of identifying the locations of genes, coding regions and other specific locations that

are important in DNA sequence. Although the first phase of Encyclopedia of DNA Elements

(ENCODE) project has been claimed complete, the annotation of the functional elements

is far from completeness [44]. Computational methods in gene identification will continue

to play important roles in this area and relevant issues. So far, lots of work have been

performed on this area and a plethora of computational methods and avenues have been

developed. The methods for protein-coding DNA identification can be divided into three

categories: ab initio, comparative, and hybrid methods.

ab initio method can detect genes by systematically examining and discriminating signal

sensors as well as distinct biological patterns that distinguish gene regions in the single input
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sequence. The only criteria this method adopted to identify the genes rely on the extracted

intrinsic information of DNA sequences.

Comparative methods are homology-based under the assumption that coding sequences

are conserved more than non-coding genes are. These conserved areas can be detected by

traditional local alignment methods, such as the canonical Smith-Waterman algorithm. In

Chapter 2, the novel method named Signalign are based on homologous conservation on

DNA sequence for gene structure prediction.

Hybrid methods integrate the advantages of ab initio and comparative methods into

a particular application. The innovation of hybrid methods primarily relies on a novel

combination of techniques in the two mainstream methods in order to achieve performance

improvement in a particular application.

An important concern in DNA sequence annotation is about improving the accuracy

of annotation. Belonging to the ab initio category, deep-leaning method is an emerging

cut-edge technology with high prediction accuracy. The methods described in this chapter

are derived from deep artificial neural network technology, one of deep learning techniques.

Meanwhile, auto-encoder related techniques in deep neural network are primarily studied in

this chapter.

Deep learning (DL) method has emerged as the state-of-the-art technique for genomic

sequence analysis [45]. Deep Neural Network (DNN) is one of implementations in DL, which

generally refers to methods that map data through multiple levels of feed-forward neural

network to reveal some intractable and non-linear relation between input data and hidden

factors and automatically learn complex functions [46].

Generically, in a deep learning model, the DNA sequences need to be encoded and

converted into numeric sequences. After the data preparation, various deep learning methods

use these pre-processed data as the input for training and further prediction. Depending

on different data representation methods namely encoding schemes, various deep learning

techniques can make a good deal of difference from each other on performance. Thus,

studying the difference of combinations between deep learning methods and encoding schemes
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can help practitioners learn the characteristics of different method designs and acquire better

performance for their research.

Deep learning models can be applied into a variety of applications. However, their

basic procedures are quite similar. A generic procedure applied in this chapter is shown as

Figure3.1 and its data flow chart is shown as Figure3.2

In this chapter, four goals are anticipated to achieve: (1) developing the deep learning

methods for identifying coding DNA regions. (2) studying the difference between various

deep learning methods. (3) discovering how encoding schemes could affect the performance

of deep learning and finding the most appropriate encoding schemes for these applications.

(4) improving the accuracy on identifying coding DNA sequences.

Deep-learning based methods and relevant studies for DNA annotation are contributed

to the bioinformatics community. Meanwhile, the significance of encoding schemes are stud-

ied to unveil the influence to deep neural network. In addition, a few applications that

use the deep-learning based method are discussed to illustrate its superior performance in

improving the accuracy in bioinformatic research.

3.2 Previous Methods

Many ab initio methods largely depend on probabilistic models. Among them hidden

Markov models (HMM) are the most generative model where the transitions of nucleotide

over finite hidden states are ruled by the probabilities of present and previous appearances.

ab initio methods are indispensable for gene prediction because it uses statistical pat-

terns and intrinsic information, especially signal sensors, to detect the boundaries of content

and it can greatly increase the specificity of prediction performance. On the other side, one of

disadvantages of ab initio methods is that it requires a large volume of training sets to collect

the near-ground-truth statistical properties of various signal sensors, which inherently limits

their applicability to low sample sets. Another disadvantage is that since the boundaries are

often variable, it results in overfitting models on small training sets.
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Figure 3.2: Details of Deep Learning Data Flow

3.2.1 Hidden Markov Model (HMM)

The prerequisite of HMM is based on an assumption that the probability of the appear-

ance of a given nucleotide depends on its k previous nucleotides (k is the order of HMM),

that is, the model is defined by conditional probabilities P (X|k), where X ∈ {C, T,A,G}.

A zero-order Markov model assume that each nucleotide occurs independently with a given

frequency. The large-order Markov model can better characterize the dependencies between

adjacent nucleotides. Most gene prediction methods are 5th-order Markov model that use

the compositional words of 6 in gene characteristics. In [47], an observation is noticeable that

models with an order higher than five does not make a distinct difference in discriminating

coding and non coding regions.

Usually, a training set is necessary to estimate the state transition and nucleotide emis-

sion probabilities so that the HMM model can be built. Thus, given a genomic sequence,

HMM model outputs the most probable path that generates the observed sequences using
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Viterbi algorithm. The definition is as follows: Given a generated DNA sequence S of length

L and a parse φ also of L, the conditional probability of φ can be computed using Bayesian

Rule [48] [49].

P (φ|S) =
P (φ, S)∑

ϕ∈φ(L)
P (ϕ, S)

,

where φ(L) is the set of all parses of length L. Thus, given a particular DNA sequence S,

the parse maximizes the most likelood of generating S.

Extensive models are further developed in gene prediction to improve HMMs. A typical

model called generalized HMMs (GHMMs) [50] is most widely used, which extracts different

regions into finite states and encapsulates syntactic and statistical properties of each regions

into state transitions.

3.2.2 Neutral Network

Neutral Network copes with uncertain, imprecise and approximate problem to achieve

robust and tractable outcomes. It is one of artificial intelligence techniques, which represents

the learning process of human brain and includes supervised and unsupervised learning

algorithms for gene prediction.

A neural network is applied to combine the feature selection output and to predict

the location of coding regions. Neutral network takes a training procedure to learn how to

deal with the output of feature selection and can make accurate decision about the location

of coding regions. To determine the likelihood of a given sequence position, the neutral

network extracts the weights of network from training procedure. For example, in Figure3.3,

seven features are selected [51]: Frame bias matrix provides the usage of amino acid to

calculate the correlation coefficient for reading frame; Fickett algorithm considers several

properties of coding sequences; Dinucleotide fractal dimension represents the dinucleotide

occurrence difference between that of intron and that of examined window; Coding 6-tuple

work preferences examine the frequency of nucleotide words of a given length in a DNA
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Figure 3.3: Schematic Diagram of Neutral Network Methods

genome; Coding 6-tuple in frame preferences are computed through the observed 6-tuple in

coding DNA; Word commonality is calculated by summing all 6-tuple commonalities in the

analysis window; Repetitive 6-tuple word preferences reflect the fact that highly repetitive

DNA rarely encodes protein.

Comparing with deep neural network, conventional neural network can have the same

architecture of multiple feed-forward layers. However, limited to the multiplication problem

of the back-propagation, conventional neural network does not achieve the same accuracy

as deep neural network because the latter usually has more complicated algorithms, such as

auto-encoder and Boltzmann machine etc., that can constrain the error between layers and

eliminate the back-propagation problem.
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3.2.3 SVM-based

Support vector machines (SVM) and related kernel approaches have demonstrated their

capability in accurate prediction of various functional DNA signal sensors/features, such as

transcription start sites (TSS) and splice sites [52, 53, 54, 55, 56]. These approaches train

support vector machines in the following procedures: (1) detection of interest site candidates,

(2) training these candidate SVMs with features capturing patterns of site evolution and (3)

scoring candidates of interest site [57]. After splice sites are detected, exon can be predicted

by SVM exon model and subsequently transcripts are obtained by chaining exons.

In [58], a SVM-based two-layer approach is constructed,consisting of independent SVM

signal and content detectors and hidden semi-Markov(HSM) SVMs. The former layer is

SVM feature recognition while the latter one is gene structure reconstruction. The SVMs

use task-specific string kernels, including spectrum kernel, the weighted degree (WD) kernel,

the WD kernel with shift (WDS) and so forth [55]. The spectrum kernel counts all matching

words so that SVM captures the typical sequence composition; the WD kernel considers

matching words at the same position of sequences; WDS allows silghtly shifted matching

[59]. HSM-SVM is similar to HMMs but it is trained discriminatively. High order content

structure and length preferences are exploited and linked to transitions. A scoring function

is utilized to comprehend different kinds of features at any position.

3.2.4 Digital Signal Processing

Due to the repetitive 3-periodicity of protein-coding regions, the open problem of gene

finding can be dealt with by the methods in digital signal processing (DSP). In general, in

order to analyze the DNA sequence, the symbolic-to-numeric transformation is necessary in

the first step. Through numerical representations of DNA genome, DSP-based features are

extracted, analyzed and classified in the spectral domain or the spacial-temporal domain.

The binary representation is mostly used to represent genome sequences, which converts

a DNA sequence of four nucleotides C, T, A, and G into four separate binary sequences,

xC [n], xT [n], xA[n], and xG[n] where 1 or 0 represents the presence or absence respectively



40

in the corresponding positions. Other encoding schemes can also used as the descriptions in

Chapter 2.

The most commonly used methods in spectrum analysis is the discrete Fourier transform

(DFT) shown as follows.

X[k] =
N−1∑
n=0

x[n]e−j(2πnk/N), 0 ≤ k ≤ N − 1,

where x[n] is a finite-length numerical sequence of length N . GeneScan program [48]

calculates the signal-to-noise ratio of the peak at k = N/3 as P = S[N/3]/Ŝ, where

S[k] =
∑
m

|Xm[k]|2, m={C, T,A,G} and Ŝ is the average of spectral content of S. In [48], P

is assigned to 4 as a critical point where the bulk of coding sequences is distinct from almost

90% of non-coding regions having P < 4.

In [60], after a FIR band pass filter of order 8 with central frequency of 2π/3 is applied to

numerical sequences, an impulse train of periodicity-3 is multiplied to the filtered numerical

sequences in order to emphasize the period-2 property in exonic region.

MA=
N−1∑
n=0

BA[n]δ[n− 3k]

where δ is the pulse function, BA is the filtered numerical sequence.

3.3 Encoding Schemes

Conventionally numerical representation and graphical representation are both non-

character representation that can be summarized into a few categories: (1) Cartesian coor-

dinate coding, (2) Binary linear code, and (3) Bio-chemical mapping.

First, most graphical representations and many numerical representations can be gen-

eralized into the points in Cartesian coordinate system. After the transformation, sequences

are converted into a set of 2-dimensionl, 3-dimensional or even higher-dimensional points in

Cartesian coordinate. Real representations [61] and complex representations [3] as well as
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quaternions [4] are in this category. For example, the complex representation [61] A = 1 + j,

C = −1 + j, G = −1− j, and T = 1− j is 2-dimensional numerical mapping. By choosing

the different placement of vertices on a 2-dimensional Cartesian coordinate plane, encoding

values for {A,C,G, T} are different.

Second, Voss [62] proposed the simplest binary representation for DNA sequences by

using four binary sequences for {A,C,G, T} respectively and using 1 or 0 to denote the

presence or absence for each corresponding nucleotide in the position. Voss representation

has been widely accepted as a canonical numerical representation and applied to long-range

fractal correlation analysis in DNA sequences and genomic signal processing, especially for

discrete-Fourier-transform-related applications. Kent et al [41] use 2-bit format to compress

and store the DNA sequences in a compact randomly-accessible format, which gives a 16-

byte header to contain the encoding information and pack each DNA nucleotide to two bits

per base, T:00, C:01, A:10 and G:11. However, this type of arbitrary assignment is criticized

[6] for that it cannot provide real signals to understand biological research.

In binary linear code, a promising representation is about Galois Field encoding that

was used in DNA computing. In [7], the encoding scheme was formalized to Galois Field

where not only nucleotides are mapped to Galois Field GF (4) but also all operations are

restrained to GF (4). It manifests the advantage of information coding in genome analysis

where error-correcting coding structure reflects the nature of genome coding and it also

shows the efficient effects on detecting genome redundancy and gene mutations.

Third, Bio-Chemical mapping uses the numerical representation to reflect the biological

and chemical properties, complying with some commonly accepted rules that are regarded

near the ground truth in biology and chemistry. Four typical representations are reviewed:

(1) Atomic number [63], (2) Molecule mass [64], (3) Electron-ion interaction pseudopotentials

(EIIP) [65] and (4) Thermodynamic values [34].

The single indicator of atomic number for nucleotide is assigned to each nucleotide:

C=58, T=66, A=70, G=78. The nucleotide sequence, therefore, is converted into a series of

numerical atomic indicators. In [63], this mapping was used to measure the fractal dimension
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difference between sequences of Human and Chimpanzee. It also gave a set of comparisons to

show the diverse results when using different encoding schemes of numerical representations.

Similar to atomic number, in terms of the mass of nucleotide molecules [3][64], a mass-based

encoding scheme is generated as C=110, T=125, A=134, G=150.

The numerical representation scheme based on electron-ion interaction pseudopotentials

(EIIP) for {A,C,G, T} was first proposed in [65], where it aimed to replace the four binary

indicator sequences proposed in Voss [62]. The energy of delocalized electrons in amino acid

and nucleotides has been calculated as the electron-ion interaction pseudopotential that was

used in Resonant Recognition Models (RRM) to substitute for the corresponding amino acid

in protein sequences. The EIIP value indicators for nucleotides are G=0.0806, A=0.1260,

T=0.1335, C=0.1340. If substituting the EIIP values to a DNA sequence, it can be converted

into a series of EIIP numerical sequence that denotes the distribution of the free electron

energy along the corresponding DNA sequence.

The thermodynamic enthalpy values between two neighboring nucleotides were studies

in [6][66]. The encoding scheme is that each nucleotide pair is encoded to the enthalpy value

in terms of the energy between the two nucleotides. Thus, DNA sequence is transformed into

a numerical sequence that shows all enthalpy values of nucleotide pairs. In [6] the encoding

scheme was used for searching certain bio-molecule patterns in DNA sequences.

In addition, three groups of nucleotides in terms of bio-chemical properties are important

for encoding schemes [67]. They are: (1) purine R = {A,G} and pyrimidine Y = {C, T},

(2) amino group M = {A,C} and keto group K = {G, T}, (3) weak H-bonds W = {A, T}

and strong H-bonds S = {G,C}. They are widely considered by many encoding schemes.

For example, in [68], local similarity/dissimilarity was studied in terms of these groups, by

combining Chaos Game Representation [69] with the method of DNA walk [70].

From these bio-chemical schemes, we can observe that all these representations are full

of sense in biology and chemistry. However, they do not consider the encoding properties

in computer system and do not combine the bio-chemical sense with encoding schemes. It

limits applicable scopes in computational biology.
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Nine encoding schemes, respectively named DAX, arbitrary, EIIP, neural, complemen-

tary, enthalpy, entropy, statistic, and Galois, are selected in this project. Basically, DAX,

arbitrary, neural and Galois are binary linear code; EIIP, enthalpy, entropy and statistic are

bio-chemical mapping; complementary is Cartesian coordinate coding.

3.4 Deep Neural Network

3.4.1 Auto-encoder

Auto-encoder is an artificial neural network that can be used to constitute a multiple-

layer percetron architectures for deep learning machince shown in Figure3.5(a). The hidden

layer h and the iterative estimation of x∗ can be expressed as Equation 3.1 by calculating the

weights as illustrated in Figure3.5(b). The iteration becomes stable when it has the minimum

distance between x and x∗, as shown in Equation 3.2. The preliminary ideas of shallow/deep

neural network had been discussed for long time since 90s, however, mature concepts of deep

learning including deep neural network were proposed in mid-2000s [71, 72, 73]. Since then,

it has been applied to life sciences and shown tremendous promise [46, 74, 75, 45].

The simplest auto-encoder is based on a feedforward, non-recurrent neural network

similar to the multiple-layer perceptron (MLP). The difference is that the output layer of

auto-encoder has the same number of nodes as the input layer and an auto-encoder is trained

to reconstruct their own inputs instead of being trained to predict the output value. Thus,

training the neighboring set of two layers minimizes the errors between layers and eliminates

the problem of error propagation that occurs in conventional neural network.

As the core of auto-encoder, the pseudo-code of cost update algorithm is shown in

Algorithm 2 following the equations 3.1 and 3.2.

 h = f(x) = Sf (Wx+ bh)

x∗ = g(h) = Sg(W
′h+ bx)

(3.1)

ζDAE(θ) = arg min
∑

x∈X
E[L(x, x∗)] (3.2)
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Building the model Pre-training the model Validating the model

Figure 3.4: Flow Chart for Auto-encoder Method.

(a) (b)

… … 

Figure 3.5: Architecture of Deep Neural Network

(a) An Illustration of Deep Neural Network Architecture. (b) An Illustration of Auto-
encoder.
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Algorithm 2 Psudocode of Auto-encoder Cost Update Algorithm

1: x← <input matrix> //Input data
2: p← <parameter matrix> //Parameters
3: y ← null //Vector for hidden layer
4: z ← null //Reconstructed x
5: h← null //Vector for cross entropy
6: c← null //Vector for average cross entropy
7: lr ← 0.8 //Learning rate
8: g ← null //Vector for gradient
9: u← <null matrix> //Updates of parameters
10: l← batch number
11: i← 0
12: while i < l do
13: y = <gethiddenvalue( x[i] )>
14: z = <getreconstructed( y )>

15: h = −sum(x ∗ log (z) + (1− x) ∗ log (1− z))
16: c = mean(h)
17: g = <gradient( c, p[i] )>
18: u[i] = p[i]− lr ∗ g
19: end while
20: return u

3.4.2 Denoising Auto-encoder

A denoising auto-encoder partially corrupts input data and uses the corrupted data

for training in order to recover the original undistorted input. This technique can robustly

obtain a corrupted input that will be useful for recovering the corresponding clean input. This

definition includes the following implicit assumptions: The higher level representations are

relatively stable and robust to the corruption of the input; It is necessary to extract features

that are useful for representation of the input distribution. To train an auto-encoder for

denoising data, it is necessary to perform preliminary stochastic mapping in order to corrupt

the data and use as input for a normal autoencoder, with the only exception being that the

loss should be still computed for the initial input instead of the corrupted one.

An auto-encoder takes an input x and first maps it to a hidden representation y =

fθ(x) = s(Wx+ b), parameterized by θ =< W, b >. The resulting latent representation y is

then mapped back to reconstruct a vector z ∈ [0, 1]d in input space z = gθ′(y) = s(W ′y+ b′).
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Figure 3.6: An Illustration of Denoising Auto-encoder

The weight matrix W’ can be constrained that W ′ = W T , in which case the auto-encoder

has tied weights. The network is trained such that to minimize the reconstruction error

between x and z [76].

When the denosing auto-encoder is training input data, first x is corrupted into x̃, where

x̃ is a partially denoised x by means of a stochastic mapping. Subsequently, y is computed

as y = s(Wx̃ + b) and z is computed as s(W ′y + b′). The reconstruction error is now

measured between z and the uncorrupted input x, which is computed as the cross-entropy :

−
∑d

k=1[xk log zk + (1−xk) log(1− zk)] [77]. The pseudo code of DAE cost update algorithm

is shown in Algorithm 3.

3.4.3 Hidden-layer Denoising Auto-encoder

Different from input-layer denoising, hidden-layer denoising auto-encoder model (HDAE)

corrupts the units in hidden layer instead of input-layer and reconstructs the hidden layer.

The architecture is shown as Figure3.7. Concretely, the hidden-layer is obtained in the same

way as that of AE. Afterwards, the denoising in hidden layer occurs in binomial distribution.

The corrupted hidden layer units are decoded into x. Finally, vector x is encoded back into

h∗. The cross-entropy is calculated as a measure to evaluate the minimum cost of h and

h∗. The pseudo code of cost update algorithm is shown in Algorithm 4. Both encoding and

decoding are twisted in auto-encoder models such as HDAE and DAE. Meanwhile, HDAE

and DAE represent two components of double denoising auto-encoder described in the next
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Algorithm 3 Psudocode of Denoising Auto-encoder Cost Update Algorithm

1: x← [input matrix] //Input data
2: xd ← [input matrix] //Denoised input data
3: p← [parameter matrix] //Parameters
4: y ← null //Vector for hidden layer
5: z ← null //Reconstructed x
6: h← null //Vector for cross entropy
7: c← null //Vector for average cross entropy
8: lr ← 0.8 //Learning rate
9: il← <getinputdenoise> //Get denoised level for input
10: g ← null //Vector for gradient
11: u← [null matrix] //Updates of parameters
12: l← batch number
13: i← 0
14: while i < l do
15: xd[i] = <getdenoisedinput( x[i], il )>
16: y = <gethiddenvalue( xd[i] )>
17: z = <getreconstructedinput( y )>

18: h = −sum(x ∗ log (z) + (1− x) ∗ log (1− z))
19: c = mean(h)
20: g = <gradient( c, p[i] )>
21: u[i] = p[i]− lr ∗ g
22: end while
23: return u
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Figure 3.7: An Illustration of Hidden-layer Denoising Auto-encoder

subsection. That is, the input-layer denoising algorithm and the hidden-layer denoising

algorithm are combined together for cost calculation in double denoising auto-encoder.

3.4.4 Double Denoising Auto-encoder

A deep neural network usually has a deep architecture that uses multiple layer to learn

the feature representation of data and a representation learning procedure is used to discover

multiple levels of representation of deep architecture: the higher the level, the more abstract

the representation.

Figure3.8 illustrates the architecture of double denoising auto-encoder. An example x

is stochastically corrupted to x̃. The auto-encoder then maps it to hidden representation

h (via encoding) and attempts to reconstruct x via Decoding, producing reconstruction x∗.

Reconstruction error is measured by loss L(x, x∗). Meanwhile, the hidden representation h

is also stochastically corrupted to h̃ and then h̃ is mapped to an intermediate reconstructed

input x̄ (via decoding) and attempts to reconstruct h via encoding, producing reconstruction

h∗. Reconstruction error is measured by loss L(h, h∗). Cross-entropy is measured to minimize

the distances of L(x, x∗) and L(h, h∗) as shown in Algorithm 5.
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Algorithm 4 Psudocode of Hidden-layer Denoising Auto-encoder Cost Update Algorithm

1: x← [input matrix] //Input data
2: p← [parameter matrix] //Parameters
3: y ← null //Vector for hidden layer
4: yd ← null //Vector for denoised hidden layer
5: v ← null //Reconstructed x̂
6: w ← null //Reconstructed y
7: k ← null //Vector for cross entropy for hidden
8: c← null //Vector for average cross entropy
9: lr ← 0.8 //Learning rate
10: il← <getinputdenoise> //Get denoised level for input
11: hl← <gethiddendenoise> //Get denoised level for hidden layer
12: g ← null //Vector for gradient
13: u← [null matrix] //Updates of parameters
14: l← batch number
15: i← 0
16: while i < l do
17: y = <gethiddenvalue( x[i] )>
18: yd = <getdenoisedhidden( y, hl )>
19: v = <getreconstructedinput( yd )>
20: w = <getreconstructedhidden( v )>

21: k = −sum(y ∗ log (w) + (1− y) ∗ log (1− w))
22: c = mean(k)
23: g = <gradient( c, p[i] )>
24: u[i] = p[i]− lr ∗ g
25: end while
26: return u

L(h, h*)+L(x, x*)

Corrupting

Encoding

Decoding

EncodingDecoding

Corrupting

h*



h
~

x~

x

x x*

h

Figure 3.8: Double Denoising Auto-encoder
λ = 0.0005 is used in this study.
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Algorithm 5 Psudocode of Double Denoising Auto-encoder Cost Update Algorithm

1: x← [input matrix] //Input data
2: xd ← [input matrix] //Denoised input data
3: p← [parameter matrix] //Parameters
4: y ← null //Vector for hidden layer
5: yd ← null //Vector for denoised hidden layer
6: z ← null //Reconstructed x
7: v ← null //Reconstructed x̂
8: w ← null //Reconstructed y
9: h← null //Vector for cross entropy for input
10: k ← null //Vector for cross entropy for hidden
11: c← null //Vector for average cross entropy
12: lr ← 0.8 //Learning rate
13: cr ← 0.0005 //Cost rate
14: il← <getinputdenoise> //Get denoised level for input
15: hl← <gethiddendenoise> //Get denoised level for hidden layer
16: g ← null //Vector for gradient
17: u← [null matrix] //Updates of parameters
18: l← batch number
19: i← 0
20: while i < l do
21: xd[i] = <getdenoisedinput( x[i], il )>
22: y = <gethiddenvalue( xd[i] )>
23: yd = <getdenoisedhidden( y, hl )>
24: z = <getreconstructedinput( y )>

25: v = <getreconstructedinput( yd )>
26: w = <getreconstructedhidden( v )>

27: h = −sum(x ∗ log (z) + (1− x) ∗ log (1− z))
28: k = −sum(y ∗ log (w) + (1− y) ∗ log (1− w))
29: c = cr ∗mean(h) +mean(k)
30: g = <gradient( c, p[i] )>
31: u[i] = p[i]− lr ∗ g
32: end while
33: return u
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Encoding Schemes Codebook

DAX {'c':0,'t':1,'a':2,'g':3}

Arbitrary {'c':2,'t':1,'a':0,'g':3}

EIIP {'c':0.1340,'t':0.1335,'a':0.1260,'g':0.0806}

Neural Network {'a':8,'c':4,'g':2,'t':1}

Complementary {'c':-1,'t':-2,'a':2,'g':1}

Enthalpy {'cc':0.11,'tt':0.091,'aa':0.091,'gg':0.11,'ct':0.078,'ta':0.06,'ag':0.078,'ca':0.058,'tg':0.0
58,'cg':0.119,'tc':0.056,'at':0.086,'ga':0.056,'ac':0.065,'gt':0.065,'gc':0.111}

Entropy {'cg':2.0,'gc':1.367,'cc':1.328,'gt':1.310,'gg':1.301,'ac':1.268,'tc':1.244,'ga':1.215,'ta':1.
174,'ag':1.155,'ct':1.149, 'tg':1.131,'ca':1.131,'at':1.092,'aa':1.013,'tt':1.013}

Statistics {'cg':0.01,'gc':0.043,'cc':0.047,'gt':0.049,'gg':0.050,'ac':0.054,'tc':0.057,'ga':0.061,'ta':0
.067,'ag':0.070,'ct':0.071, 'tg':0.074,'ca':0.074,'at':0.081,'aa':0.097,'tt':0.097}

Galois(4) {'cc':0.0,'ct':1.0,'ca':2.0,'cg':3.0,'tc':4.0,'tt':5.0,'ta':6.0,'tg':7.0,'ac':8.0,'at':9.0,'aa':10.0,'
ag':11.0,'gc':12.0,'gt':13.0,'ga':14.0,'gg':15.0}

Figure 3.9: Summary of Nine Encoding Schemes

3.5 Applications and Experimental Results

Here, three applications including protein-coding splicing sites detection, lincRNA tran-

scriptional splicing sites detection, and improvement of gene structure prediction are de-

scribed. Nine encoding schemes are applied to this study including DAX, Arbitrary, EIIP,

Neural, Complementary, Enthalpy, Entropy, Statistic, Galois, which are briefly summarized

in Figure3.9. The auto-encoder based model including original auto-encoder, denoising auto-

encoder, hidden-layer denoising auto-encoder, and double denoising auto-encoder, are stud-

ied for discovering the relevance with diverse encoding schemes. Meanwhile, the comparison

between deep neural network and conventional neural network is also performed.

3.5.1 Application I: Protein-coding Splicing Sites

Although alternative splice sites of exon/intron were discovered in recent literature [78],

commonly generalized signals for splice acceptor and donor are AG and GT respectively.

These splice sites are punctured along DNA sequences where transcription processes rely on

these biological marks, and only 1% dimer AG/GT are identified as the real splice sites in
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DNA sequence. Detecting splice sites [79] is an important subject in gene identification and

gene structure studies.

The data sets are the standard benchmark from fruitfly.org for predicting gene splicing

sites on human genome sequences [80] . The data set I is the Acceptor locations containing

6,877 sequences with 90 features. The data set II is the Donor locations including 6,246

sequences with 15 features. The Acceptor data sets have 70bp in the intron (ending with

AG) and 20bp of the following exon. The Donor data sets have 7bp of the exon and 8bp of

the following intron (starting with GT). The standard data sets contain real and fake splice

sites and a window of +/- 40bp around the actual splice sites D (Donor) A (Acceptor). The

data set of cleaned 269 genes is divided into a test and a training data set [80].

Experimental Results Table 3.1 and Table 3.2 show the performance of 2-layer

auto-encoder. Complementary scheme shows the superiority over other schemes in Table 3.1

where the data set has more features than that in Table 3.2. DAX scheme shows the best

performance in Table 3.2.

Table 3.3 and Table 3.4 show the performance of denoising auto-encoder. Denoising

auto-encoder seems not fit to the application of DNA structure prediction because corrupted

input data (DNA features) at each location may have a high dependency with others such

that denoising makes the prediction messed.

Table 3.5 and Table 3.6 show the performance of hidden-layer denoising auto-encoder.

Compared with the performance of input-layer denoising auto-encoder in Tables 3.3 and 3.4,

in hidden-layer denoising auto-encoder model, corrupting some nodes on hidden layers makes

a less impact than corrupting nodes on input layer. It is probably because in hidden layer

some correlations/nodes may be so trivial to be denoised. Complementary scheme manifests

its superiority over other schemes on more-feature data set while DAX and arbitrary schemes

share the top rank on less-feature data set.

Table 3.7 and Table 3.8 show the performance of double denoising auto-encoder. Com-

plementary encoding scheme continues keeping its superiority over other schemes in large-
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Figure 3.10: Overall Evaluation of Encoding Schemes on Accepor Data

feature data set while DAX and arbitrary scheme share the best performances on measure-

ment in Table 3.8.

In addition, the legends in Figure3.1 and Figure3.2 are shared with those in figures from

3.3 to 3.8.

Discussion In this application, deep learning based methods are developed for detec-

tion of coding area splicing sites, including auto-encoding, denoising auto-encoder, hidden-

layer auto-encoder and double denoising auto-encoder. Meanwhile, nine encoding schemes

are studied for unveiling the best encoding schemes for DNA sequence analysis applications,

including DNA-As-X (DAX), arbitrary mapping, EIIP, convention neural network scheme,

complementary scheme, enthalpy scheme, entropy method, statistic mapping and Galois en-

coding. Complementary scheme shows its superiority over other schemes on more-feature

data set as shown in Figure3.10 where it wins 24 out of 28 measurements. DAX slightly

outperforms others on less-feature data set as shown in Figure3.11 where it totally wins

11 out of 28 measurements ranked at the first place while complementary scheme wins 8
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Table 3.1 2-layer Auto-encoder Model on Acceptor Data

a I II III IV V VI VII VIII IX

TP 13.7 11.6 9.8 0.0 14.7 3.3 0.2 3.2 0.0
FP 4.5 5.8 2.0 0.0 4.2 5.6 4.0 3.2 0.0
FN 5.6 7.6 9.5 19.3 4.6 16.0 19.1 16.1 19.3
TN 76.2 75.0 78.7 80.7 76.5 75.1 80.3 77.5 80.7

b I II III IV V VI VII VIII IX

Sn 71.0 60.4 50.8 0.0 76.2 17.1 1.0 16.6 0.0
Sp 94.4 92.8 97.5 100.0* 94.8 93.1 99.5 96.0 100.0*
Acc 89.9 86.6 88.5 80.7 91.2 78.4 80.5 80.7 80.7
Mcc 66.9 55.3 59.1 – 71.5 14.1 2.8 20.3 –
Ppv 75.3 66.7 83.1 – 77.8 37.1 33.3 50.0 –
Pc 57.6 46.4 46.0 0.0 62.6 13.3 1.0 14.2 0.0
F1 73.1 63.4 63.0 0.0 77.0 23.4 2.0 24.9 0.0

I: DAX, II: Arbitrary, III: EIIP, IV: Neural, V: Complimentary,
VI: Enthalpy, VII: Entropy, VIII: Statistic, IX: Galois

Panel a: the measurement of methods.
TP: True positive.
FP: False positive.
FN: False negative.
TN: True negative.

Panel b: the evaluation of methods.
Sensitivity, Sn = TP/(TP + FN)
Specificity, Sp = TN/(TN + FP )
Accuracy, Acc = (TP + TN)/(TP + FP + FN + TN)
Matthews correlation coefficient,

Mcc = TP×TN−FN×FP√
(TP+FN)×(TN+FP )×(TP+FP )×(TN+FN)

Positive predictive value, Ppv = TP/(TP + FP )
Performance coefficient, Pc = TP/(TP + FN + FP )
F1 score, the harmonic mean of precision and sensitivity,

F1 = 2× TP/(2× TP + FP + FN)

*: Not eligible for comparison due to training failure.
–: Invalid value.
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Table 3.2 2-layer Auto-encoder Model on Donor Data

c I II III IV V VI VII VIII IX

TP 17.1 17.1 10.4 17.4 17.2 15.9 15.6 15.0 0.0
FP 3.3 3.6 1.8 4.8 3.9 4.3 4.4 3.0 0.0
FN 4.0 4.0 10.7 3.7 3.9 5.2 5.5 6.1 21.1
TN 75.6 75.3 77.1 74.1 75.0 74.6 74.5 75.9 78.9

d I II III IV V VI VII VIII IX

Sn 81.0 81.0 49.3 82.5 81.5 75.4 73.9 71.1 0.0
Sp 95.8 95.4 97.7 93.9 95.1 94.6 94.4 96.2 100.0*
Acc 92.7 92.4 87.5 91.5 92.2 90.5 90.1 90.9 78.9
Mcc 77.8 77.0 58.6 75.0 76.6 71.0 69.7 71.5 –
Ppv 83.8 82.6 8.2 78.4 81.5 78.7 78.0 83.3 –
Pc 70.1 69.2 45.4 67.2 68.8 62.6 61.2 62.2 0.0
F1 82.4 81.8 62.5 80.4 81.5 77.0 75.9 76.7 0.0

I: DAX, II: Arbitrary, III: EIIP, IV: Neural, V: Complimentary,
VI: Enthalpy, VII: Entropy, VIII: Statistic, IX: Galois

Panel a : the measurement of methods.
TP: True positive.
FP: False positive.
FN: False negative.
TN: True negative.

Panel b : the evaluation of methods.
Sensitivity, Sn = TP/(TP + FN)
Specificity, Sp = TN/(TN + FP )
Accuracy, Acc = (TP + TN)/(TP + FP + FN + TN)
Matthews correlation coefficient,

Mcc = TP×TN−FN×FP√
(TP+FN)×(TN+FP )×(TP+FP )×(TN+FN)

Positive predictive value, Ppv = TP/(TP + FP )
Performance coefficient, Pc = TP/(TP + FN + FP )
F1 score, the harmonic mean of precision and sensitivity,

F1 = 2× TP/(2× TP + FP + FN)

*: Not eligible for comparison due to training failure.
–: Invalid value.
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Table 3.3 Denoising Auto-encoder Model on Acceptor Data

a I II III IV V VI VII VIII IX

TP 19.2 19.2 0.0 19.2 7.9 0.0 19.2 0.0 19.2
FP 80.8 80.8 0.0 80.8 1.2 0.0 80.8 0.0 80.8
FN 0.0 0.0 19.2 0.0 11.3 19.2 0.0 19.2 0.0
TN 0.0 0.0 80.8 0.0 79.6 80.8 0.0 80.8 0.0

b I II III IV V VI VII VIII IX

Sn 100.0* 100.0* 0.0 100.0* 41.1 0.0 100.0* 0.0 100.0*
Sp 0.0 0.0 100.0* 0.0 98.5 100.0* 0.0 100.0* 0.0
Acc 19.2 19.2 80.8 19.2 87.5 80.8 19.2 80.8 19.2
Mcc – – – – 54.3 – – – –
Ppv 19.2 19.2 – – 86.8 – 19.2 – 19.2
Pc 19.2 19.2 0.0 19.2 38.7 0.0 19.2 0.0 19.2
F1 32.2 32.2 0.0 32.2 55.8 0.0 32.2 0.0 32.2

I: DAX, II: Arbitrary, III: EIIP, IV: Neural, V: Complimentary,
VI: Enthalpy, VII: Entropy, VIII: Statistic, IX: Galois

Panel a: the measurement of methods.
Panel b: the evaluation of methods.
*: Not eligible for comparison due to training failure.
–: Invalid value.
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Figure 3.11: Overall Evaluation of Encoding Schemes on Donor Data
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Table 3.4 Denoising Auto-encoder Model on Donor Data

a I II III IV V VI VII VIII IX

TP 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0
FP 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0
FN 21.1 21.1 21.1 21.1 19.3 21.1 21.1 21.1 21.1
TN 78.9 78.9 78.9 78.9 78.2 78.9 78.9 78.9 78.9

b I II III IV V VI VII VIII IX

Sn 0.0 0.0 0.0 0.0 8.5 0.0 0.0 0.0 0.0
Sp 100.0* 100.0* 100.0* 100.0* 99.1 100.0* 100.0* 100.0* 100.0*
Acc 78.9 78.9 78.9 78.9 80.0 78.9 78.9 78.9 78.9
Mcc – – – – 20.0 – – – –
Ppv – – – – 72.0 – – – –
Pc 0.0 0.0 0.0 0.0 8.3 0.0 0.0 0.0 0.0
F1 0.0 0.0 0.0 0.0 15.3 0.0 0.0 0.0 0.0

I: DAX, II: Arbitrary, III: EIIP, IV: Neural, V: Complimentary,
VI: Enthalpy, VII: Entropy, VIII: Statistic, IX: Galois

Panel a: the measurement of methods.
Panel b: the evaluation of methods.
*: Not eligible for comparison due to training failure.
–: Invalid value.
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Table 3.5 Hidden-layer Denoising Auto-encoder Model on Acceptor Data

a I II III IV V VI VII VIII IX

TP 10.4 0.4 0.0 10.3 11.9 0.0 0.0 0.0 10.6
FP 2.9 0.3 0.0 16.4 2.5 0.0 0.0 0.0 6.1
FN 8.8 18.8 19.2 8.9 7.3 19.2 19.2 19.2 8.6
TN 77.9 80.5 80.8 64.4 78.3 80.8 80.8 80.8 74.7

b I II III IV V VI VII VIII IX

Sn 54.2 2.1 0.0 53.6 62.0 0.0 0.0 0.0 55.2
Sp 96.4 99.6 100.0* 79.7 96.9 100.0* 100.0* 100.0* 92.5
Acc 88.3 80.9 80.8 74.7 90.2 80.8 80.8 80.8 85.3
Mcc 58.7 8.1 – 29.7 66.1 – – – 50.3
Ppv 78.2 57.1 – 38.6 82.6 – – – 63.5
Pc 47.1 2.1 0.0 28.9 54.8 0.0 0.0 0.0 41.9
F1 64.0 4.0 0.0 44.9 70.8 0.0 0.0 0.0 59.1

I: DAX, II: Arbitrary, III: EIIP, IV: Neural, V: Complimentary,
VI: Enthalpy, VII: Entropy, VIII: Statistic, IX: Galois

Panel a: the measurement of methods.
Panel b: the evaluation of methods.
*: Not eligible for comparison due to training failure.
–: Invalid value.
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Figure 3.13: Overall Comparisons among Deep Learning Methods on Donor Data
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Table 3.6 Hidden-layer Denoising Auto-encoder Model on Donor Data

a I II III IV V VI VII VIII IX

TP 15.5 11.2 0.0 8.0 10.5 0.0 0.0 0.0 0.1
FP 9.1 9.9 0.0 13.1 10.6 0.0 0.0 0.0 0.0
FN 5.6 2.0 21.1 2.2 3.7 21.1 21.1 21.1 21.0
TN 69.8 76.9 78.9 76.7 75.2 78.9 78.9 78.9 78.9

b I II III IV V VI VII VIII IX

Sn 73.5 84.8 0.0 37.9 73.9 0.0 0.0 0.0 0.5
Sp 88.5 88.6 100.0* 85.4 87.6 100.0* 100.0* 100.0* 100.0*
Acc 85.3 88.1 78.9 84.7 85.7 78.9 78.9 78.9 79.0
Mcc 58.7 60.9 – 47.3 52.7 – – – 6.1
Ppv 63.0 53.1 – 37.9 49.8 – – – 100.0*
Pc 51.3 48.5 0.0 34.3 42.3 0.0 0.0 0.0 0.5
F1 67.8 65.3 0.0 51.1 59.5 0.0 0.0 0.0 0.9

I: DAX, II: Arbitrary, III: EIIP, IV: Neural, V: Complimentary,
VI: Enthalpy, VII: Entropy, VIII: Statistic, IX: Galois

Panel a: the measurement of methods.
Panel b: the evaluation of methods.
*: Not eligible for comparison due to training failure.
–: Invalid value.
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Table 3.7 Double Denoising Auto-encoder Model on Acceptor Data

a I II III IV V VI VII VIII IX

TP 11 0.4 0.0 6.6 12.2 0.0 0.0 0.0 6.5
FP 3.1 0.3 0.0 8.5 2.5 0.0 0.0 0.0 1.6
FN 8.8 18.8 19.2 12.6 7.0 19.2 19.2 19.2 12.7
TN 77.7 80.5 80.8 72.3 78.3 80.8 80.8 80.8 79.2

b I II III IV V VI VII VIII IX

Sn 55.6 2.1 0.0 34.4 63.5 0.0 0.0 0.0 33.9
Sp 96.2 99.6 100.0* 89.5 96.9 100.0* 100.0* 100.0* 98.0
Acc 88.2 80.9 80.8 78.9 90.5 80.8 80.8 80.8 85.7
Mcc 59.2 8.1 – 26.2 67.2 – – – 46.0
Ppv 78.0 57.1 – 43.7 83.0 – – – 80.2
Pc 48.0 2.1 0.0 23.8 56.2 0.0 0.0 0.0 31.3
F1 64.9 4.0 0.0 38.5 72.0 0.0 0.0 0.0 47.6

I: DAX, II: Arbitrary, III: EIIP, IV: Neural, V: Complimentary,
VI: Enthalpy, VII: Entropy, VIII: Statistic, IX: Galois

Panel a: the measurement of methods.
Panel b: the evaluation of methods.
*: Not eligible for comparison due to training failure.
–: Invalid value.
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Figure 3.15: Performance Comparisons of Conventional Neural Network and Auto-encoder
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Table 3.8 Double Denoising Auto-encoder Model on Donor Data

a I II III IV V VI VII VIII IX

TP 15.5 11.1 0.0 8.2 10.3 0.0 0.0 0.0 3.3
FP 9.0 2.0 0.0 2.8 3.8 0.0 0.0 0.0 0.6
FN 5.6 10.0 21.1 12.9 10.8 21.1 21.1 21.1 17.8
TN 69.9 76.9 78.9 76.1 75.1 78.9 78.9 78.9 78.3

b I II III IV V VI VII VIII IX

Sn 73.5 52.6 0.0 38.9 48.8 0.0 0.0 0.0 15.6
Sp 88.6 97.5 100.0* 96.5 95.2 100.0* 100.0* 100.0* 99.2
Acc 85.4 88.0 78.9 84.3 85.4 78.9 78.9 78.9 81.6
Mcc 58.9 60.6 – 46.1 51.6 – – – 31.4
Ppv 63.3 84.7 – 74.5 73.0 – – – 84.6
Pc 51.5 48.1 0.0 34.3 41.4 0.0 0.0 0.0 15.2
F1 68.0 64.9 0.0 51.1 58.5 0.0 0.0 0.0 26.4

I: DAX, II: Arbitrary, III: EIIP, IV: Neural, V: Complimentary,
VI: Enthalpy, VII: Entropy, VIII: Statistic, IX: Galois

Panel a: the measurement of methods.
Panel b: the evaluation of methods.
*: Not eligible for comparison due to training failure.
–: Invalid value.
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evaluations.

Figure3.12 and Figure3.13 illustrate the comparisons among these deep neural network

methods by selecting complementary scheme as its encoding. The 2-layer auto-encoder

method shows better performances over others. It is probably because of close correlation

and mutual interactions among nucleotide molecules so that denoising or corrupting any

location may cause the deletion of dependency and downplay the performance of neural

network.

Deep neural network and conventional neural network are compared on the standard

data set while auto-encoder (a deep neural network method) and NNsplice [80] (a conven-

tional neural network method) is chosen for this comparison. Figure3.14 and Figure3.15

show the comparative results. Auto-encoder shows superiority on data set with a large num-

ber of features while auto-encoder slightly outperform the conventional neural network on

data set with a small size of features.

3.5.2 Application II: Detection of lincRNA Transcription Splicing Sites

LincRNA LincRNA refers to long intergenic non-coding RNAs with the length

greater than 200 nucleotides that are transcribed from non-coding DNA sequences between

protein-coding regions. Intergenic regions were referred as junk DNA, however, now it is

known that intergenic regions can be transcribed and provide functional noncoding RNA

genes within intergenic regions [81]. LincRNAs are frequently enriched for various classes

of transposable elements and lincRNAs are viewed as elements with some regulatory func-

tions in transcription and translation, for example some lincRNAs attach to messenger RNA

to block protein production [82] and families of transposable elements-derived lincRNAs

have been implicated in the regulation of pluripotency [83]. In addition, lincRNA is highly

tissue-specific, which is frequently related to epigenetic regulation.

Similar to coding region transcription, non-coding regions are split at transcription

splicing sites. However, regulatory RNAs rather than message RNAs are generated. That

is, the transcribed RNAs participate the biological process as regulatory units instead of
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generating proteins. Thus, identifying these transcriptional regions is the first step towards

lincRNA recognition. Similar to gene structures, lincRNAs have the complicated exon/intron

structures, whereas the difference from gene structures is that many of them have two exons

or three exons only.

LincRNAs are four times more than coding RNA sequences. However, currently only

21 thousand lincRNAs (about 2M bytes) are computationally discovered [81]. This is also

one of the most important findings in lincRNA identification. The new identified lincRNAs

are most from the analysis of RNA-seq transcript data. The basic procedure is composed of

the following steps [81]: (1) collecting the RNA-seq transcript data from different tissues; (2)

compiling the annotated ncRNAs to form known transcripts; (3) configuring filters to remove

transcripts overlapping protein coding genes, known non-lincRNA noncoding RNA genes,

pseudogenes, small ncRNAs with length less than 200 nt and any transcripts containing or

overlapping an open reading frame (ORF) longer than 100 amino acids.

Deep learning related methods are barely seen in lincRNA annotation. Based on those

annotated data, deep learning based methods can exert their capability in knowledge learn-

ing in order to improve the aforementioned method and discover novel lincRNAs in DNA

genomes.

In this project, three goals are set. First, detecting lincRNA transcription splicing

sites from the integenic areas. Second, validating the annotated lincRNAs splicing sites and

testing the performance of deep learning method. Third, computationally discovering other

unidentified splicing sites. For the first goal, auto-encoder method achieves 100% prediction

accuracy illustrated in next subsection. For the second and third goal, one unreported

splicing site is found by re-scanning the whole human genome through the deep learning

method.

Benefiting from the increasing annotation data in lincRNAs, lincRNA’s transcriptional

splicing site sequences are collected from the annotated human DNA genome data. However,

the annotated data sets of lincRNAs are not so many as that of mRNAs. Thus, all of

annotated lincRNAs are used for training and testing.
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In the same vein to detection of protein-coding splicing sites, auto-encoder neural net-

work method is used for the lincRNA application. In terms of the discussion in application

I, a 2-layer auto-encoder model is used for lincRNA detection and encoding schemes are

used for evaluating the best performance. This is the first application to adopt the deep

learning techniques for identifying lincRNA transcription splicing sites. The experimental

results show an excellent predictive performance of deep neural network method on lincRNA

data sets.

Results and Discussion Totally 46,983 lincRNAs’ splicing site sequences with 90

features and are selected as acceptor data and 89,287 lincRNAs’ splicing site sequences with

15 features are classified as donor data. According to the aforementioned experiments, 2-

layer auto-encoder neural network method shows the best performance. Thus, it is chosen

as the deep learning method for identifying lincRNA transcriptional splicing sites. Nine

encoding schemes are still used for comparisons of different encoding performances.

Table 3.9 and Table 3.10 respectively show the comparison results for the two data sets.

It shows that 100% predictive rate of deep neural network method with complementary

encoding scheme on the acceptor data, meaning that complementary scheme has the strong

ability on more-feature data sets. Similar performances among all encoding schemes show

the similar ability on less-feature data set.

Figure3.16 shows an unreported splicing site is found by re-scanning the whole human

genome through the deep learning method, which is located at 90,763,154 chromosome 12

(hg38) within the annotated lincRNA chr12 90761911 90806776. This result is based on the

aforementioned deep learning method that was tested with 100% accuracy in acceptor data

set.

This experiment indicates that deep learning method has the extensive ability for lin-

cRNA splicing site prediction. In the future, related methods will be developed for more

applications in this area.
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Table 3.9 Results on lincRNA Acceptor Data

a I II III IV V VI VII VIII IX

TP 49.4 49.4 49.0 49.4 49.4 49.4 46.0 49.4 49.4
FP 0.0 50.6 0.2 50.6 0.0 1.4 2.0 1.6 50.6
FN 0.0 0.0 0.4 0.0 0.0 0.1 3.4 0.0 0.0
TN 50.5 0.0 50.4 0.0 0.6 49.2 48.6 49.0 0.0

b I II III IV V VI VII VIII IX

Sn 100.0 100.0* 99.2 100.0* 100.0 99.9 93.1 99.9 100.0*
Sp 99.9 0.0 99.6 0.0 100.0 97.2 96.0 96.8 0.0
Acc 100.0 49.4 99.4 49.4 100.0 98.5 94.6 98.3 49.4
Mcc 99.9 – 98.8 – 100.0 97.1 89.2 96.7 –
Ppv 99.9 49.4 99.6 49.4 100.0 97.2 95.8 96.8 49.4
Pc 99.9 49.4 98.8 49.4 100.0 97.1 89.5 96.7 49.4
F1 100.0 66.1 99.4 66.1 100.0 98.5 94.5 98.3 66.1

I: DAX, II: Arbitrary, III: EIIP, IV: Neural, V: Complimentary,
VI: Enthalpy, VII: Entropy, VIII: Statistic, IX: Galois

Panel a: the measurement of methods.
Panel b: the evaluation of methods.
*: Not eligible for comparison due to training failure.
–: Invalid value.
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Table 3.10 Results on lincRNA Donor Data

a I II III IV V VI VII VIII IX

TP 7.7 10.7 9.0 8.9 8.5 11.2 7.7 10.2 0.0
FP 2.1 3.3 2.7 2.9 2.8 4.5 2.1 4.0 0.0
FN 6.7 3.7 5.4 5.5 5.9 3.2 6.7 4.2 14.4
TN 83.5 82.3 82.9 82.7 82.8 81.1 83.5 81.6 85.6

b I II III IV V VI VII VIII IX

Sn 53.2 74.0 62.5 61.5 58.8 78.1 53.3 71.0 0.0
Sp 97.6 96.1 96.9 96.7 96.7 94.8 97.5 95.3 100.0*
Acc 91.2 92.9 91.9 91.6 91.2 92.4 91.2 91.8 85.6
Mcc 60.1 71.0 64.9 63.5 61.5 70.2 60.1 66.6 –
Ppv 78.6 76.3 77.1 75.6 75.0 71.5 78.5 71.9 –
Pc 46.5 60.2 52.7 51.3 49.1 59.5 46.5 55.5 0.0
F1 63.5 75.1 69.0 67.8 65.9 74.6 63.5 71.4 0.0

I: DAX, II: Arbitrary, III: EIIP, IV: Neural, V: Complimentary,
VI: Enthalpy, VII: Entropy, VIII: Statistic, IX: Galois

Panel a: the measurement of methods.
Panel b: the evaluation of methods.
*: Not eligible for comparison due to training failure.
–: Invalid value.
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Figure 3.16: An Unidentified lincRNA Acceptor Splicing Site

3.5.3 Application III: Improvement for Gene Structure Prediction

Hybrid Method The methodology design of DNA annotation mainly relies on genetic

characteristics in gene structure, such as promoter, GC content, start and stop codon, coding

region, splicing sites, exon and intron length, and compositional properties of coding and

non-coding. The information are further integrated into almost all computational approaches

as the criteria of determining entire gene structures. However, identifying those real signal

sensors is difficult because genomic sequences contain thousands of similar signals/noises that

fake themselves in DNA texture. Moreover, some signal sensors are not exactly validated.

For example, GC content and TATA box are thought of the important markers in promotor,

however, recent research show that TATA box is not present in all Eukaryotic promoters

and about 45% promoters contain TATA box [84]. Similarly, GC content manifests various

levels in promoter regions [85]. In order to deal with these difficulties, hybrid computing

techniques are adopted to increase the accuracy and the specificity.



68

DNA sequences

Comparative method 
Signalign

Candidate areas

Site sequences

Extract and recognize 
splicing sites

Deep Learning 
Method

Candidate sites
Combine both 

candidates

Predicted gene structure

Figure 3.17: An Illustration for the Procedure of Hybrid Method

Hybrid methods integrates the advantages of ab initio and comparative methods into

this particular application. The innovation of hybrid methods primarily relies on a novel

combination of techniques in the two mainstream methods for the performance improve-

ment in a particular application. Hybrid methods simply include two categories: one is the

combination in methodology; another is the combination in overlapping result. Even though

the latter one looks simpler than the former, the success of a hybrid method heavily depends

on the final performance and its particular constraints.

In this application, comparative methods and deep neural network methods are com-

bined for detection of gene structure. The hybrid method is illustrated in Figure3.17. Com-

parative methods are used for approximately perceiving the candidate location of gene struc-

ture whle deep neural network methods are used for discovering whether the candidate is

validated exactly as a real exon or intron. In terms of the duplicate criteria, the combination

is anticipated to have better performance than a single method.

Results The same data sets and the same measurements adopted in Chapter 2 are

used to assess the performance of the hybrid method. Figure3.18 shows the comparisons

in sensitivity with other comparative methods. It shows that this method scarifies a little
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Figure 3.18: Performance of Improved Method in Sensitivity

performance in sensitivity. However, it gains a lot in specificity, accuracy and Matthews

correlation coefficient (Mcc), shown respectively in Figure3.19, Figure3.20 and Figure3.21.

Especially in the highest level of specificity, accuracy and Matthews correlation coefficient,

which are the most important factors for performance evaluation, it shows its remarkable

performance over other comparative methods. Noticeably, the hybrid method is two folds

better than other methods in specificity.

3.6 Conclusion

In this chapter, deep neural network methods are developed for DNA sequence annota-

tion. Four deep neural network methods and nine encoding schemes are studied to discover

the relation of how encoding schemes can affect the performance of deep neural network

methods. Three applications based on deep neural network methods are shown. These ap-

plications illustrate that deep-learning based methods have a promising future to obtain the

better performance on computationally annotating DNA sequences. From the experiments,

we can observe that encoding schemes greatly affect the performance of deep learning meth-

ods. For DNA genome analysis in deep neural network, direct mapping schemes such as

DAX, EIIP and Complementary are better than pre-processed schemes such as Enthalpy,
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Figure 3.21: Performance of Improved Method in Mcc

Entropy and Galois. It is perhaps because direct mapping does not wrap any information

of DNA sequence while pre-processed schemes have hidden some information by encoding

them together. Complementary can beat other schemes in more than half of experiments

and it is the only one whose sum of the encoding values is zero. DAX manifests a good per-

formance in the areas of similarity analysis and computing, however, it does not mean that

it can be superior in other areas such as numeric representation in artificial neural network.

Whereas, its performance is closely near Complementary, ranked the 2nd place. From some

perspectives, it is still a good encoding scheme.

Detection of LincRNA transcription splicing sites using deep learning method shows

a very high accuracy in acceptor data. The auto-encoder method is subsequently used to

validate the annotation data and find one unreported splicing site within a lincRNA, which

needs to be further validated biologically.

A hybrid method integrating deep learning and proposed comparative method is applied

to boost the performance of comparative method, especially the accuracy and specificity in

identifying the gene structure. The experimental results show its remarkable increase in

various measures and meet our expectation.
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CHAPTER 4

INVESTIGATION OF HUMAN CPG ISLAND

In this chapter, CpG islands in human genome sequence are explored by using signal

processing, statistic model, cloud-assisted method and other modern computing techniques.

Three main questions are included: computational detection of CpG island, redefinition of

CpG island and the structural investigation of CpG island. Through the three questions we

could gradually approach the hidden truth in CpG island although no one can guarantee

whether it is. This chapter is organized as follows. Section 4.1 gives a brief introduction on

the problems of CpG island and describes the signal processing method to detect CpG island.

Based on the studies of Section 4.1, Section 4.2 tries to redefine and investigate the CpG

island to meet the new emerging data criteria using proposed CpG box model and Markov

model. In order to speed up the epigenetic analysis, Section 4.3 describes a cloud-assisted

platform for CGI investigation.

4.1 GaussianCpG: Detection of CpG Island

4.1.1 Introduction

DNA genomes are punctuated by CpG islands where high profiles of CpG sites are

densely contained in certain genome regions. However, CpG contents in the entire DNA

genome are generally suppressed to only around 1% comparing with other combinations

[86]. Scientists further found that it is in CpG islands where many biological processes

occur closely related with high density of CpG contents. In vertebrate, DNA methylation

usually occurs in CpG islands and adds an additional methyl to cytosine such that the gene

silencing may be caused by the additional methyl. This subtle process can further give rise

to gene regulatory problems and epigenetic problems, which can significantly develop to

be a hereditary determinant besides genetic factors, such as gene mutation and chromosome



73

rearrangement. However, conventional bisulfite modification-based methods to determine the

CpG island are time-consuming [9]. Although new sequencing techniques are developed for

whole genome assays, it is reported to be too costly [87]. Thus, computational investigations

to CpG islands is efficient and fundamental for many biological studies.

The recently emerging data implies that the definition of CpG island cannot follow

these new data. The redefinition and the further investigation of CGI is necessary. These

problems are further discussed in Section 4.2.

4.1.2 Related Work

The first article about the computational prediction of CpG islands for vertebrate

genome was seen in [88], which proposed CpG island (CGI) problems and gave the defi-

nition of CGI, the definition of which has been widely adopted by the later research. A

milestone article [89] further constrained the CGIs within only gene promoters and excludes

Alu repeat regions. However, recent studies have revealed that CGIs are not only in the area

of gene promoters but also contained in the regions of both coding and non-coding [87].

The computational methods for the detection of CpG island can be primarily classified

into four categories in terms of their main algorithms. The first type is window-based meth-

ods [89] [90] [91], which use a scrolling window to scan through the genome and detect CGIs

by these established statistical criteria. A canonical algorithm in [89] shifts a size-adjustable

window for 1 nt each time to calculate the %G+C content and CpGobs/CpGexp within the

window until encountering the satisfied CpG island. Subsequently it shifts to next adjacent

window and calculates it again until the window does not satisfy the criteria. At that time, it

shifts back each nt until finding the last satisfied boundary window. This algorithm is widely

used because it strictly follows the statistical criteria. Obviously, one of obvious drawbacks

of this method primarily is that the window size determines the accuracy of prediction: the

larger window increases the predictive granularity and lags the computing speed while the

smaller window decreases the computing complexity and increases the probability of omit-

ting a potential CGI. And another drawback is that it probably is too sensitive to predict a
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whole CGI: a CpG island can be divided into many trivial segments.

The second type is Hidden-Markov-Model-based (HMM) methods [9] [86] [92] [93].

These methods use the statistical transition model to compute transitive probability within

CpG island and between CGIs. The transition probability between any two adjacent nu-

cleotides are obtained in the training phase for CGI regions and non-CGI regions respectively.

The probability of CG pair in CpG-rich region is much higher than that in non-CGI region.

Thus, the log-likelihood ratio of the probabilities of CpG and non-CpG is calculated to reflect

the difference between two regions for each possible sequence [93]. However, the variant pat-

terns in CpG islands can easily add some implacable noises to prediction due to insufficient

data training, resulting in that the performance of the HMM-based method is negatively

affected. Moreover, it is computing-inefficient.

Third, density-based methods [94] intuitively calculate the density of CpG sites, similar

to statistical methods in window-based methods. The density of CpG island can be simply

computed by taking into account the ratio of the number of CpG sites in the CpG island and

the total length of the CpG island. Its basic idea is that it sets initial seeds to iteratively

adjust the density variables and expand the CpG-rich regions. That is, initially it sets a

low/loose threshold of density to find the approximate border of CpG islands and then use

the high/strict thresholds to further detect where the borders are as long as the sequence

within the borders meets the density requirement. The main drawback of this method is that

the density represents the simply linear relation between the number of CpG sites and the

length of CpG island while the ground truth of CpG distribution in CpG islands probably

cannot be simply delineated by the linear model.

The fourth is the distance/length-based method [10] [95], which clusters data by the

distance between CpG sites and provides a fast way to predict CpG island. Compared with

other methods, this method studies the sequence property of primary structure between any

two adjacent CpG sites, which provides a new perspective to understand the phenomena of

CpG island. However, this method is criticized that it mainly depends on the composition

of the sequence, resulting in different outputs for a same CGI in different contexts, and low
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predictive sensitivity with trivial results [94].

The aforementioned methods cannot pursue both the sensitivity and the specificity

simultaneously: either they can have high sensitivity with low specificity, or high specificity

can be attained with the loss of the sensitivity. It also implies that the original definition of

CGI perhaps deviates from the ground truth.

4.1.3 Methodology

The proposed model aims to fit the niche of previous work by presuming that each

CpG site has the information energy that satisfy the Gaussian energy distribution along its

primary structure1. The Gaussian model is proposed to macroscopically reflect and simplify

the principles of microscopical interactions in the complex human genome. The model is

computed not by the linear statistical method but by the Gaussian filter. Moreover, the

parameters of Gaussian function are not arbitrarily designated but deliberately chosen by

optimizing the biological statistics. Thus, it results in that the proposed method shows the

better performance than other existing methods in detecting CpG islands.

Assumptions In order to simplify the microscopical interactions in the human

genome and macroscopically reflect the general principles of the complex system, we pro-

pose the Gaussian model based on the following assumptions: (a) Each CpG site preserves

the potential energy and the CpG-rich regions where energy are highly aggregated have

more opportunities for methylation. (b) Each CpG island is regarded as an energy field

where only the contained CpG sites can affect mutually. (c) The energy of each CpG site

is closely related to its primary structure or secondary/tertiary structures. However, due to

the uncertainty of unknown secondary or tertiary structures, its primary structure is the first

determinant. (d) Since we consider only the primary structure of CpG islands, the energy in

a certain location is directly relevant to its neighboring CpG sites [96]. Namely, the energy

of each CpG site is distributed across its nearby area along DNA sequence 5’ to 3’. (e) The

1Here the term of energy can be regarded as the information energy for each CpG [96]. To some extent,
it can be replaced by the term of pseudopotential [97].
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energy at each nucleotide within the CpG island is the sum of energy distributed by nearby

CpG sites. (f) Each CpG site has the same magnitude of information energy.

Notations Assuming that we aim to find all m CpG islands each of which is notated as

CGIi, i ∈ {1, 2, ...,m} in a genome sequence s with the length of n nt. In any CGIi, its length

is li, in which k CpG sites lay on. At any CpG site cpgij, j ∈ {1, 2, ..., k}, we assume that

it preserves the energy E. The energy is distributed to its nearby nucleotides, which satisfy

Gaussian model function g(x) where x is the relative distance to the corresponding CpG

site and its directions, + and −, represent 5’ end and 3’ end respectively. The accumulated

energy for any nucleotide position x in CGIi (x ∈ {0, 1, ..., li−1}) is denoted as Gi(x), which

is the sum of distributed energy gij(x) at this location.

Gaussian model We assume that each CpG site meets the Gaussian model [96][97]

as shown in Equation 4.1.

g(x) =
E√
2πσ

e
−x2
σ2 , (4.1)

where x is the relative distance from this nucleotide to the CpG site, E is the energy each

CpG site preserves and σ determines the smoothness of energy distribution. When σ → 0, it

converges to an impulse function. From this formula, we can see that when σ becomes large

its energy is distributed smoothly. Therefore, σ determines the curve of the distribution and

further influences the predictive accuracy of this model.

Further, we can calculate the accumulated energy at any position x′ in the CGIi as

Equation 4.2. x′ is the absolute location in the CpG island while x is the relative distance

to CpG sites. x′ = T (x) and x = T−1(x′) represent the linear transformation between x and

x′.

Gi(x
′) =

k∑
j=1

gij(x
′) =

k∑
j=1

gij(T (x)), (4.2)

where j ∈ 1, 2, ..., k and k is the number of CpG sites within this CpG island CGIi. The
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mean of pseudopotential energy in CGIi can be expressed in Equation 4.3.

Ĝi =
1

li

li−1∑
x=0

Gi(T (x)) =
1

li

li−1∑
x=0

k∑
j=1

gij(T (x)) (4.3)

Ĝi is a measure to evaluate the energy in the candidate area: the higher energy it preserves,

the more likely the region can be a real CpG island.

Parameters The scarcity of CpG sites in DNA genome determines that CpG sites

can bring larger amount of information compared with other regions. From this aspect, the

energy proposed in GaussianCpG somehow look similar to information energy. However,

in GaussianCpG model, the energy of CpG sites are assumed to distribute to surrounding

areas in an energy-rich CpG island. The adjacent CpG sites are presumed to overlap their

energy with each other and keep the energy saturated in the region. Obviously, the distances

between adjacent CpG sites affect the strength of energy in CpG islands. Additionally, an

important assumption is that the influence of CpG sites is only limited to its surrounding

area and the far distant CpG sites can barely affect the current location as our model.

Thus, before setting the parameters of Gaussian model, we need to cluster the CpG sites so

that only nearby CpG sites are considered. That is, identifying the clustering threshold is

indispensable prior to setting the GaussianCpG parameters.

In order to investigate the distribution of CpG distances and identify the clustering

threshold, we extract all CpGs’ distances and observe the distribution of all CpG sites in

human genome in Figure4.1, we find that it matches the kernel of exponential distribution.

In [10] the curve is locally modeled as an approximate geometric distribution from around

20 nt to 100 nt, which does not reflect the ground truth of its distribution. In Equation 4.4,

f(x) is the distribution kernel and x is the distances between CpG sites.

f(x) =

 λe−λx x ≥ 0

0 x < 0
, (4.4)
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Figure 4.1: Distribution Curve of CpG Distances in Human Genome.

Distance 

# of CpG 

Figure 4.2: Distance Distribution of CGI Candidates in Human Chromosome 21 as an Ex-
ample and Gaussian Kernel Density Estimation (blue solid line)

where λ = 1/x̂ and x̂ is the mean distance of CpG sites. In terms of the exponential

distribution in Equation 4.4, the mean distance is at x̂ = 95 while at the point of x = 128

the third quarter of coverage is ln4/λ. By removing the under-represented value with large

distances, we eventually choose x = 118 with 73% coverage as the clustering threshold that

eliminates the noises from extra large distances and keeps the most suspicious elements for

further processing.

When clustering the CpGs, we can further minimize the range of potential CGI candi-

dates. We extract these CpG distances from potential CGI candidates, draw the distribution

chart and find that the kernel density estimation of this distribution fits Gaussian kernel as

the blue solid line shown in Figure4.2 where human chromosome 21 is taken as an example.
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Figure 4.3: Discrete Gaussian Filter

The upper chart shows the value for each location; the lower box is the discrete filter.

At the location of x = 26 or x = 27, the Gaussian kernel has the peak where the number

of distances between two CpG sites approaches the maximum. Thus, 27 is chosen as the

digital filter length. In terms of Gaussian model in Equation 4.1, the discrete Gaussian filter

is created as shown in Figure4.3.

4.1.4 Algorithm and Implementation

The main procedures of GaussianCpG are shown as Figure4.4: (1) Find all CpGs for

each human chromosome; (2) Cluster these CGIs in terms of distance threshold; (3) Apply

Gaussian filter to each cluster and calculate the magnitude of Gaussian pseudopotential; (4)

Utilize a binary threshold to filter clusters; (5) Collect the filtered clusters; (6) Calculate

%G+C for the remaining clusters and pick up those that meet the %G+C content. In

the first step, all CpG sites are extracted from genome as well as their properties, such

as locations and distances between two adjacent CpG sites2. In the second step, using the

statistical threshold x = 118 we have acquired in statistics, we cluster these CpGs into groups

that may contain lots of CpG islands. The basic idea of clustering algorithm is to find all

locations where distances are greater than threshold and then cut the sequence from these

locations into segments. Subsequently, we apply Gaussian filter to scroll these clusters and

calculate their energy value for each location. Segments can have the accumulated energy

as well. After that, a binary filter is utilized to the computed loci in order to detect if

these loci should be kept as CGI candidates, resulting in that new clusters are generated.

2 The repeat regions are not included in this project following most previous methods even if some
literature [98] did state that repeat area may involve more evolutionary force.
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1. Find all CpGs 

2. Cluster them in terms of distance threshold. 

3. Apply Gaussian Filter to each cluster and calculate 
Gaussian energy value. 

6. %G+C applied to each cluster 

5. Calculate new clusters 

4. Binary threshold for filtered clusters 

Figure 4.4: The Main Procedures of GaussianCpG.

That is, inside the large segment, it might be divided into sub-segments depending on the

accumulated energy. The threshold we adopt here is 1.5 times of the average energy across

the digital filter because of 2δ containing 95% energy in terms of Gaussian distribution

function. Finally, we count the percentage of %G+C content in these sub segments with the

threshold of 40% and determine whether they are candidates.

For the computing complexity, the primary computing task is in applying Gaussian

filter to clustered CpG sites. To speed up the calculation, we generate a matrix table

that stores the computing intermediates to save the computational time. That is, for each

location involved Gaussian filter computation, it takes constant times for the calculation.

Thus, its time complexity in Gaussian computation is O(n). For the rest computing tasks,

extracting CpG sites takes O(n) and sorting the distance takes O(n log n). Therefore, the

time complexity of GaussianCpG is O(n log n). The program is implemented in Python and

its libraries.

4.1.5 Validation and Assessment

Data set and Evaluation metrics In [10], in order to examine the capability of

predicting those known CGIs for methods, an artificial dataset was generated from the known

dataset, in which real CGIs were embedded into fake genome sequences. By detecting the

real CGIs in those fake sequences, the specificity and the sensitivity of the software can

be validated. In the same vein, we generate an artificial dataset to test the specificity of
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Table 4.1 Hit Rate of Known Human CGIs

Chr# Known Predicted Hit

Chr 1 546 541 99.08%
Chr 2 430 426 99.07%
Chr 3 319 319 100%
Chr 4 272 272 100%
Chr 5 359 356 99.16%
Chr 6 293 292 99.66%
Chr 7 304 298 98.03%
Chr 8 254 253 99.61%
Chr 9 359 356 99.16%
Chr 10 311 311 100%
Chr 11 346 346 100%
Chr 12 363 360 99.17%
Chr 13 200 200 100%
Chr 14 206 205 99.51%
Chr 15 150 150 100%
Chr 17 383 380 99.22%
Chr 18 43 43 100%
Chr 19 315 314 99.68%
Chr 20 259 257 99.23%
Chr 21 133 131 98.50%
Chr 22 215 214 99.53%
Chr X 253 250 98.81%
Chr Y 5 5 100%

Known CGIs: 6786, predicted: 6740, avg. hit rate: 99.32%.
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Table 4.2 Comparison in Artificial Data Set

aMethod: I II III IV V

T 6854696 6854696 6854696 6854696 6854696
TP 2101562 3603662 5489738 2531549 5036243
FN 4753134 3251034 1364958 4323147 1818453
F 5919255 5919255 5919255 5919255 5919255
FP 20437 220957 1085303 9319 46906
TN 5898818 5698298 4833952 5909936 5872349

bMethod: I II III IV V

Sn 30.66% 52.57% 80.09% 36.93% 73.47%
Sp 99.65% 96.27% 81.66% 99.84% 99.21%
Acc 62.63% 72.82% 80.82% 66.08% 85.40%
Mcc 99.04% 94.22% 83.49% 99.63% 99.08%
Ppv 30.57% 50.93% 69.14% 36.88% 72.97%
Pc 40.61% 53.18% 61.61% 45.94% 74.04%
F1 46.82% 67.49% 81.75% 53.89% 84.37%

I:CpGPlot, II:CpGReport, III:CpGProd, IV:CpGCluster, V:GaussianCpG

For Panel a: The unit of measurement is necleotide.
True, T: the length of known CpG islands.
False, F: the length of non-CpG islands.
True positive, TP: the length of predicted known CGIs.
False positive, FP: the length of predicted CGIs not in known CGIs.
False negative, FN: the length of not predicted known CGIs.
True negative, TN: the length of predicted non-CGIs.

For Panel b:
Sensitivity, Sn = TP/(TP + FN)
Specificity, Sp = TN/(TN + FP )
Accuracy, Acc = (TP + TN)/(TP + FP + FN + TN)
Matthews correlation coefficient,

Mcc = TP×TN−FN×FP√
(TP+FN)×(TN+FP )×(TP+FP )×(TN+FN)

Positive predictive value, Ppv = TP/(TP + FP )
Performance coefficient, Pc = TP/(TP + FN + FP )
F1 score, the harmonic mean of precision and sensitivity,

F1 = 2× TP/(2× TP + FP + FN)

For Panel a&b: Default parameters for all software are set.
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GaussianCpG. However, different from [10], we create the artificial dataset by using real

human DNA sequences that were located at the regions between two CpG-rich areas to pad

the gaps between known CpG islands instead of by randomly generating nucleotides in [10].

The artificial data set contains 6,786 known CpG islands from the annotation database [99]

with the nucleotide length of 6,854,696 nt and 6,786 non-CpG islands with the nucleotide

length of 5,919,255 nt. And Lengths of CGIs vary from a hundred nucleotides to a few

thousand of nucleotides.

In addition to artificial data set, in order to further validate our method, we take the

benchmark of real data from UCSC annotation of Human Chromosome 21, which contains

348k annotated CGIs along with 46M DNA genome sequence.

Four mainstream software are examined in the performance evaluation of CpG-island

prediction, including CpGPlot [91], CpGReport [91], CpGProd [90] and CpGCluster [10]. In

the nucleotide level, the performance of each method is assessed by the observation of True

Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN), as shown

in Panel a of Tables 4.2 and 4.3. Furthermore, the comprehensive assessments are defined and

calculated, including sensitivity (Sn), specificity (Sp), accuracy (Acc), Matthews correlation

coefficient (Mcc), positive predictive value (Ppv), performance coefficient (Pc) and F1 score,

as shown in Panel b of Tables 4.2 and 4.3.

4.2 CpG Box and Markov Chain Model: A New Method to Measure and Define

CpG Islands

4.2.1 Introduction

In order to computationally detect CpG islands, the definition of CpG island is needed

to constrain the computing procedure. Generally, CpG islands are defined as CpG-rich

regions where the epigenetic processes are highly related with the methylation status. Three

criteria are widely accepted as the definition of CpG islands: (a) %G+C content is ≥ 50%,

(b) the ratio of the observed CpG content and the expected CpG content is ≥ 0.6 [89], and
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Table 4.3 Comparison in Real Data Set

aMethod: I II III IV V

T 348930 348930 348930 348930 348930
TP 255732 348546 333015 300315 292732
FN 93198 384 15915 48615 56198
F 46361053 46361053 46361053 46361053 46361053
FP 397423 1680731 1034353 583460 363493
TN 46124740 44417698 45331765 45923959 46075369

bMethod: I II III IV V

Sn 73.29% 99.88% 95.43% 86.06% 83.89%
Sp 99.14% 96.35% 97.76% 98.74% 99.21%
Acc 98.95% 96.38% 97.75% 98.65% 99.10%
Mcc 53.11% 40.65% 47.61% 53.60% 60.80%
Ppv 39.15% 17.17% 24.35% 33.98% 44.60%
Pc 34.26% 17.17% 24.07% 32.20% 41.08%
F1 51.03% 29.31% 38.80% 48.72% 58.24%

I:CpGPlot, II:CpGReport, III:CpGProd, IV:CpGCluster, V:GaussianCpG

For Panel a&b: The setting and metrics are same as those in Table 4.2.
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(c) the general length of CGI is greater than 200 nucleotides.

Most existing computational methods for the prediction of CpG island are programmed

on these rules. However, many experiments have verified that CpG islands deviate from

these threshold-based criteria [9][100]. Experimental data indicate that many cases violate

the criteria including %G+C < 50%, CpGobs/CpGexp varying, and the length of CGI ranging

from eight nucleotides to a few thousand of nucleotides [10]. Moreover, the recent Methyl-seq

data show that more than 65% methylation areas are not located at the CGIs of present

definition [101]. For example, Methyl-seq assays more than 250,000 methyl-sensitive restric-

tion enzyme cleavage sites that consist of more than 90,000 genomic regions. Among these

methylation regions, only 35,528 regions are located at annotated CpG islands, while the

remaining 55,084 regions are not located in any conventional CpG islands, including areas

like promoters, genes, and intergenic regions [101]. It strongly indicates that the present

threshold-based CGI definition needs to be modified and the CGI detection is not just a

straightly statistical/computing task. Some unrevealed rules may be hidden in the CpG-

enriched regions. The redefinition is expected to comprehensively consider these existing

issues.

The Relevance between CGI and RNA structure Recent research has discovered

that CpG island structure may play a fundamental role in establishing chromatin structures

in the pluripotent genome because the locations of genome-wide CGIs are found relevant to

the chromatin structure of nucleosomes H3K4me3 and H3K27me3 [102]. It indicates that

there probably are some certain patterns within CpG island. However, these patterns are

hidden in numerous genome sequences and not so obvious for direct observations. That

is, the re-examination of CpG island and the investigation into CpG island are necessary

since the present definition of CpG island has the coarse granularity with the arbitrary-like

threshold. Thus, we propose the Markov model and the CpG box for the re-examination

and the investigation by taking the advantage of biological big data in genome sequences.



86

Discovered Structures in CGI Epigenetic silencing involves the aberrant methyla-

tion of CpG islands and suppresses the methylation in cancer. CpG islands are susceptible

to aberrant methylation and these aberrant methylation can be predicted. It means that

certain structural/sequence features may contribute to the protection from or susceptible to

aberrant methylation. Some sequence motifs are elicited by classical techniques and classi-

fied into two categories: methylation-prone and methylation-resistant. In [103], some motifs

are identified and they are found to associate with Alu and other repetitive sequences.

Long-short Repetition Figure4.5 and Figure4.6 indicate the distribution of lengths

of all CpG boxes in human genome and manifest the same distribution pattern in all chro-

mosomes except chromosome Y. We can observe the fluctuation of distribution in odd-even

lengths and the long-short-bar fluctuations are interrupted at the same positions shown as

the red arrows.

We cannot find any previous description from extant documents about the phenomena of

coincident fluctuations in CpG box’s length distributions for almost all human chromosomes.

We speculate that its regularity of fluctuation may be caused by some patterns existing within

CpG boxes. However, no prior literature can support our speculation about the fixed pattern

of CpG island. It may rely on two reasons: (1) there is no appropriate model to describe

the structural patterns of CpG island structure, (2) indeed there is no common patterns for

CpG island. Figure4.5 and Figure4.6 imply that some hidden patterns might exist and a

new model is needed to detect them. The redefinition of CGI should have some connections

with these new findings.

Energy Analysis of CpG Box As the analysis in chapter 2, thermodynamics are

conserved in CGI sequences. If encoding the dinucleotides in terms of bio-chemical properties

of DNA sequences, the combination of CpG will have the highest quantitative value. Within

a CpG box, the starting value and the end value are the peaks which preserve the highest

energy and the dinucleotides within the CpG box are the valley between two peaks where

less energy is preserved. Therefore, it manifests the special pattern of CGI structure. The
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Figure 4.5: Fluctuations of Length Distributions of CpG Box in Human Chromosomes 1-12

Red arrows show the first three locations of long-short-bar interruptions from left to right
along x-axis and the remaining interruptions are not indicated. Similar patterns are shown
along chromosomes 1-12.
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Figure 4.6: Fluctuations of Length Distributions of CpG Box in Human Chromosomes 13-22,
X and Y

Red arrows show the first three locations of long-short-bar interruptions from left to right
along x-axis and the remaining interruptions are not indicated. All chromosomes, except
Chromosome Y, show the similar patterns of regularity and the same locations of interrup-
tions.
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thermodynamic analysis provides the representation of visualization for CpG box.

The consensus CGI motif is also calculated throughout all CpG boxes since it is specu-

lated to preserve certain dynamic structures and link to bio-chemical properties.

4.2.2 Previous Work

A CpG box is defined as a tiny sequence where the starting dinucleotide and the end

dinucleotide are CpGs. Hence, the CpG island is composed of CpG boxes. The terrain of

CpG island structure can be measured by investigating CpG boxes. It is inspired by the

distance analysis between CpGs [10] [11] [104]. Actually, the distance analysis is about the

property of DNA primary structure and the definition of CpG box can definitely include

the properties of primary structure. Thus, Markov chain model can be easily applied to the

investigation of CGI and the re-examination of CGI definition.

Due to the high frequency of CpG occurrence in CpG island, present definitions focus

on the parameter thresholds from the G+C content, the CpG ratio between observation

and expectation, and the length of CpG island. Thus, using the mathematical thresholds

to distinguish the CpG-rich regions from other regions is the simplest and the most direct

way to find these interest regions. However, it is arbitrary and rough even though the

threshold-based definition can quickly identify the potential CGI regions because threshold-

based definition may be coarse-grained.

Differentially methylated regions (DMR) [105] frequently overlap with CpG island and

some special DNA repeats are more frequently contained in CpG island than randomly

selected regions. Besides of Methylation, some studies [98] unveil that the Alu repeats and

CpG islands are closely related and widely subject to methylation. Thus, it was speculated

whether Alu elements form new CpG islands and give rise to gene expression changes as an

evolutionary force. On this aspect, we need more evidences to find the evolutionary relevance

between repeats and CGI. Interestingly, scientists find some motifs in CGI [103] that are

targeted or protected by methylation processes. The studies combine the analysis of CGIs,

methylation and sequence variants in human DNA genome and also find the association
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Four CpG Boxes  NN: dinucleotides excluding CG 

Figure 4.7: A Toy Example to Illustrate the Definition of CpG Box

between CGI motifs and Alu repetitive sequences. In addition to the motif finding in CGI,

some special structures in CpG island are identified [102] with respect to two structure-

related features of CpG islands: (1) the secondary structure of ncRNA has characteristic

CG-rich stem loop structures and (2) CpG islands relevant to transcription starting sites of

genes pervasively coincide with small RNAs that show CG-rich hairpin structures. These

studies have provided strong supports on the potential structure of CpG islands. However,

the existing definition of CpG island can not lend any help to the structural studies on CGI

due to its mathematical property. Thus, a new definition is needed for the future studies.

Under these circumstances, CpG box model is proposed to resolve the problem.

4.2.3 Model and Method

CpG Box CpG box refers to the regions between two neighboring CpGs where nu-

cleotides within the CpG dinucleotides are encapsulated likely in a black box. An example

is shown in Figure4.7 for the illustration of the definition of CpG box. CpG box is different

from CpG distance that was proposed in [10]. The latter is about the length of CpG box, a

property of CpG box while CpG box is a particular object for studying the properties of CGI.

The studies of CpG box are derived from the statistics of CpG distance and the energy analy-

sis in human DNA genome. Figure4.8 shows that CpGs outline the terrain of DNA sequence

after encoded into signals through dinucleotide enthalpy analysis, dinucleotide statistics and

information entropy encoding.

Assumption and Notation Each CpG box can be analyzed as a stochastic sequence

with Markov property. The next state of nucleotide depends only on the state of the current
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Figure 4.8: CpGs Outline the Terrain of Genome Sequence/CpG Island

Each peak is the location of a CpG.

nucleotide. Generally, it can be formulated as Equation 4.5.

P (Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, ..., X1 = x1)

= P (Xn = xn|Xn−1 = xn−1),
(4.5)

where Xn is the stochastic process of position n and xn is a nucleotide at the corresponding

position n.

In a CpG box, the stochastic process always starts from a CpG dinucleotide and

stop at another CpG dinucleotide. No any other CpG occurs in the box. For a CpG

box with the number of nucleotide n, x1, x2, xn−1 and xn are fixed where nucleotide

is C or G. We have the probability P if the number of nucleotides in a CpG box is n,

P (X1, X2, ..., Xn) = P (X2, ..., Xn−1) since x3 and xn−2 are relevant to x2 and xn−1. Thus,

for computing convenience, we redefine X1 as the nucleotide position at the nucleotide G of

the starting CpG site and Xn as the nucleotide position at the nucleotide C of the end CpG

site.

Each dinucleotide is studied in a chain since the neighboring nucleotides constitute the

structure of CpG box from the viewpoint of energy analysis [88]. The next dinucleotide
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is determined by the current dinucleotide because they share a same nucleotide and this

nucleotide combines next nucleotide to form the next dinucleotide.

Markov Chain within CpG Box The Markov chain model can be represented as

Equation 4.6.

P (Xn = xn, Xn−1 = xn−1, ..., X1 = x1)

= P (Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, ..., X1 = x1)

× P (Xn−1 = xn−1, Xn−2 = xn−2, ..., X1 = x1)

(4.6)

Apply Equation 4.5 and further expand Equation 4.6, we have Equation 4.7.

P (Xn = xn, Xn−1 = xn−1, ..., X1 = x1)

= P (Xn = xn|Xn−1 = xn−1)

× P (Xn−1 = xn−1, Xn−2 = xn−2, ..., X1 = x1)

= P (X1 = x1)
n∏
i=2

P (Xi = xi|Xi−1 = xi−1)

(4.7)

Following the Bayesian equation, Equation 4.7 can further be induced to Equation 4.8. Note

that P (X1 = x1) = 1 since the nucleotide is fixed.

P (Xn = xn, Xn−1 = xn−1, ..., X1 = x1)

=
n∏
i=2

P (Xi=xi,Xi−1=xi−1)
P (Xi−1=xi−1)

(4.8)

Combing with dinucleotide Di−1 that appears in Xi and Xi−1, i ∈ {2, ..., n}, we have

Equation 4.9.

P (Xn = xn, Xn−1 = xn−1, Xn−2 = xn−2, ..., X1 = x1)

=
n∏
i=2

P (Di−1)
P (Xi−1=xi−1)

(4.9)

The definition of CpG box fits the model well since its properties not only constrain the

stochastic walk but also contain the bio-chemical relevance.
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CpG box varies in length that is surmised to be affected by bio-chemical structures.

And the length of neighboring CpG boxes is the result of reciprocity each other. Thus, the

probability of length transition between neighboring CpG boxes is also studied in the later

subsections.

Maximum Likelihood In terms of Equation 4.9, from the current database of an-

notated CGIs, we can sort all CpG boxes in CGIs and acquire the probabilities of each

dinucleotide located at particular locations of CpG boxes. In the same way, we also can

store all CpG boxes in all non-CGIs and obtain the probabilities of dinucleotide in each type

of CpG boxes.

A CpG box has an estimation parameter θ, θ ∈ Θ, Θ is the set of {θcgi, θnoncgi}, sim-

plified as {θC , θN} . The likelihood of an estimator with a parameter θ and observations

Xn, Xn−1, ..., X1 is denoted as L(θ;Xn, Xn−1, ..., X1). In terms of Bayesian theorem, we have

Equation 4.10. Furthermore, the maximum likelihood estimator is equivalent to the most

probable Bayesian estimator if we assume that parameter θ meets the uniform prior distribu-

tion. That is, a prior P (θ) in Equation 4.10 is uniform distribution and P (Xn, Xn−1, ..., X1)

is independent of θ because of the average probability over all parameters θ. Thus, the

Equation 4.10 can be further induced to Equation 4.11

P (θ|Xn, Xn−1, ..., X1) = P (Xn,Xn−1,...,X1|θ)P (θ)
P (Xn,Xn−1,...,X1)

. (4.10)

L(θ;Xn, Xn−1, ..., X1) ≡ P (θ|Xn, Xn−1, ..., X1)

∝ P (Xn, Xn−1, ..., X1|θ)P (θ)

∝ P (Xn, Xn−1, ..., X1|θ)

(4.11)

Neighboring CpG Boxes It is obvious that not only the composition of CpG boxes

determines the primary structure but also the neighboring CpG boxes consist of the structure
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of CpG islands. Examining the neighboring CpG boxes are indispensable to investigate the

forming of CGIs. CpG box B1 determines CpG box B2 that subsequently determines CpG

box B3. That is, the current CpG box is dependent on the previous one and determines the

next one.

The likelihood of estimator θC for Bi → Bi+1 can be expressed as Equation 4.12. In

a similar vein of Equation 4.11, the maximum likelihood estimator is equivalent to the

most probable Bayesian estimator if we assume that parameter θ meets the uniform prior

distribution. P (Bi → Bi+1) is independent of θ because of the average probability over all

θ parameters. The probability of estimator θ is assumed as uniform distribution since no

estimator probability can be detected for CGI or non-CGI.

L(θ;Bi → Bi+1) ≡ P (θ|Bi → Bi+1)

= P (Bi→Bi+1|θ)P (θ)
P (Bi→Bi+1)

∝ P (Bi → Bi+1|θ)P (θ)

∝ P (Bi → Bi+1|θ).

(4.12)

Data Collection We collect and extract CpG boxes from annotated CGI database(22M)

in Human genome, denoted as CGI group, and the other CpG boxes in the remaining Hu-

man genome, denoted as pseudo non-CGI (or simply non-CGI) group. After sorting all CpG

boxes, the statistic data about CpG boxes of various lengths can be acquired respectively

from the two groups of data sets, especially the dinucleotides’ statistical information follow-

ing Equation 4.9. From Equations 4.11, we can calculate P (θ|Xn, Xn−1, ..., X1) in different

estimators and further determine the maximum likelihood of estimators.

In terms of Equation 4.12, the maximum likelihood of neighboring CpG boxes needs

the data set for every two neighboring CpG boxes corresponding to each estimator. Thus,

we collect two groups of data for neighboring CpG boxes. The CGI data are from the
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annotated CGIs and the non-CGI data are from the remaining CGIs after removing the

annotated CGIs.

4.2.4 Results and Assessment

According to the literature [9], model-based CGI definition is the best method in the

world that has been adopted by UCSC genome browser [41] as the standard of annotated

CGIs. Therefore, we use the model-based UCSC data set as our target for comparison and

assessment.

Structure of CpG Box Evolution-related activities frequently occur in CpG islands.

It was asserted that there are no particular structures in CpG islands. Moreover, due to the

limited analytic models and methods, the structures of CpG islands are not regarded to

be resolved. The use of CpG boxes and Markov chain model brings a new perspective for

investigating this problem.

From known annotated CpG islands, all CpG boxes are extracted and analyzed. Figures

4.9 4.10 and 4.11 show the consensus of CpG box with various lengths as the x-axis. The

y-axis is entropy-based probability for the frequency of each location. All these logo figures

are generated from Weblogo [106]. Due to the effect of a large number of CpG boxes, the

frequency of nucleotides in some locations seems even. However, these consensuses manifest

that some possible structures may exist in CpG boxes.

From these consensus data, we can observe that there are obvious secondary structures

within CpG boxes. It matches the finding in [102] that CGI regions have latent RNA

secondary structures, especially hairpin structures and CG-rich stem loop structures. These

consensus data also verify that CpG box is so far the best way to measure the structures in

CGI.

Transcriptional Starting Sites Transcriptional Starting Sites (TSS) are important

markers to measure the relevance between CGI and methylation because the gene silencing

may be caused by the methylated CpG sites and the transcription in the transcriptional
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Figure 4.9: Consensus Logos of CpG Box with Length = 5, 10, 15, 20, 25, 30, 35, 40 and 45.
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Figure 4.10: Consensus Logos of CpG Box with Length = 50, 60, 70, 80 and 90.
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Figure 4.11: Consensus Logos of CpG Box with Length = 100, 105, 110, 115 and 120.
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Table 4.4 Details of TSS results

Gene Direct Hit Padding Coverage Length

Annotated 1157 343 13 0.307 348484
half eroded 580 146 78 0.386 210860
eroded 1157 296 192 0.421 715429
box+jump 1157 315 248 0.486 975624
box 1157 315 294 0.526 1648812

starting site is hindered by the precise epigenetic mechanism. Thus, many literature uses

the TSS as the signal to show the accuracy of their prediction on CGIs since some articles

find that up to 50% TSS are related to CpG islands [107].

TSS Data and Measurement The gene annotations of human genome (hg38) are

utilized for the assessment. The coverage of transcriptional starting sites for each gene in

chromosome 21 are tested as a measure to evaluate the our definition and the annotation of

UCSC genome browser. The conventional CGI definition is about the broader genome area

of CpG-enriched region than that of the CpG box definition. Thus, CpG box seems thinner

than the CGI definition. some TSS might not exactlly locate at the predicted CpG box.

Thus, we pad a 106 nt area [11] to the predicted CpG box and the same padding areas are

also attached to UCSC CGIs.

The results of four parameters for CpG box definition as the top line are shown in

Figure4.12. From the figure, it also can be observed that neither the annotated UCSC

CGIs nor the predicted data from CpG box are the complete set related to TSS. That is,

in specificity, they are possibly at the similar level. However, in sensitivity, our proposed

CpG box can beat the annotated UCSC CGIs. Note that the padding area of CpG box is

important because CpG sites may not be directly located at the starting sites. In Table 4.4,

the details of TSS results are given.

Differentially Methylated Regions Recent findings have revealed that epigenetic

markers are not only related with the present defined CGIs but also other non-defined CpG-
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Figure 4.12: TSS Receiver-Operating-Characteristic-like Plot

It shows the TSS coverage used as a measure of the sensitivity and the total lengths for
different CGI lists used as a measure of specificity. The plotted line is generated for different
parameters. Box means only considering the likelihood of CpG box. Box+jump means
considering the combination of the likelihood of CpG box and CpG box jump. Eroded
means using erosion algorithm to eliminate the noise. Half eroded means that only the half
data are processed for erosion due to the need of the comparison to the annotated CGI list.
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rich regions [9]. The data from differentially methylated regions (DMR) further confirm

these findings: DMRs appear not only in CGIs based on the current definition but also in

CGI shores (a region, within 2,000 nt of CGIs ), which indicate that (1) the current CGI

definition is not complete enough to cover these DMR markers and (2) the higher coverage

rate for DMR data means the stronger signal for CGI definition as an epigenetic marker.

DMR Data and Measurement Nine DMR data sets are derived from the methy-

lation region data of different cells for human genome (hg18) using Methyl-seq method that

was developed in the Myers laboratory to measure the methylation status at CpG sites

throughout the whole genome sequence [101]. It combines DNA digestion by a methyl-

sensitive enzyme HpaII and its methyl-insensitive isoschizomer MspI with the Illumina DNA

sequencing platform. We take the chromosome 21 as the example again for illustrating the

results since it has been a benchmark well studied by many research.

The Methyl-seq data contain more than 250,000 methyl-sensitive restriction enzyme

cleavage sites, distributed to more than 90,000 genomic regions [101]. In the data set, over

65% methylation regions are not included in the present definition of CpG island.

In previous literature [108] [107], they measure the DMR coverage within 2000 bp of a

CGI. However, since the traditional definition has the limitation on predicting the accurate

location of methylated regions, we use the more strict measure to assess the results whether

the CpG methylation region is directly located in CGI instead of the CGI shore (2000 bp of

a CGI) by taking advantage of the definition of CpG box. We choose the annotated CGI

lists of UCSC Genome Browser as the comparison for the assessment.

Four parameters of CpG box definition are assessed. The x-axis represents the size of

generated data while y-axis represents the percentage of DMR covered. Only less than 30%

DMR regions are related with the annotated CGI lists, namely the present defined CGIs,

while the most conservative result of our CpG box definition can cover around 60% DMR

regions as shown in Figure4.13. Note that the difference between eroded and box+jump is

that the former conducts the signal-noise suppression for the result, that is, the single CpG
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box may be removed from the final results. It implies that some single CpG boxes may have

the differentially methylated marker while they probably are excluded from the final results

as the present definition.

From the results, the top line of CpG box definition has the higher sensitivity as well

as higher specificity than UCSC genome browser that was regarded as the benchmark to

measure the performance. The conventional CGI definition has the coarse granularity for

predicting the CGIs because the criteria actually are threshold-based. In contrast, due to

the fine-grained definition of CpG box and data-driven Markov model, our definition can

better represent CpG island than others.

4.3 Cloud-assisted Platform for Investigating CpG Islands

4.3.1 Introduction

About 100 million to 10 billion human genomes could be sequenced by 2025 as sequenc-

ing costs have decreased dramatically in recent years [109]. Those high volumes of genome

sequences lead to difficult tasks for scientists in the biological analysis. The conventional

computing resources are not geared up to handle the biological big data. On the other side,

as an emerging computing force, the cloud computing frameworks such as Apache Spark pro-

vide efficient and convenient ways for researchers to handle the procedures of big data and

data analytics. Recent research findings in computational biology manifest the advances of

cloud computing as an assisting-tool for big data and data analytics [110][111]. In this study,

we apply cloud-assisted methods based on Apache Spark framework to the redefinition and

the investigation of CpG island, an important epigenetic marker for biological processes on

DNA genome sequences.

Spark Core The sequentially computing methods were adopted on a single-node

workstation for the human genome sequence investigation (3 Gigabytes), which takes more

than six hours to collect the data for only one transition table in Markov chain model.

However, we aim to examine more species and more parameters analysis to investigate the
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Figure 4.13: DMR Receiver-Operating-Characteristic-like Plot

It shows the DMR coverage used as a measure of the sensitivity and the total lengths for
different CGI lists used as a measure of specificity. The plotted line is generated for different
parameters. Box means considering only the likelihood of CpG box. Box+jump means con-
sidering the combination of the likelihood of CpG box and CpG box jump. Eroded means
using erosion algorithm to eliminate the noise. Half eroded means that only the half data are
processed for erosion due to the need of the comparison to the annotated CGI list. Nine data
sets are a:K562, b:BGO2, c:GM12878, d:MethylSeqCalls.SL578, e:MethylSeqCalls.SL577,
f:MethylSeq.605.604, g:MethylseqCalls.SL835.SL831, h:MethylseqCalls.SL832.SL828, and
i:MethylseqCalls.SL833.SL829.
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relevance of species-specific CpG islands and structural parameters. Obviously, the sequen-

tial computing methods cannot satisfy the data-intensive need in our studies.

The main reasons that Spark-based cloud platform is chosen to accommodate the pro-

posed computing models are based on the following facts [112]:

First, Spark is regarded as a lightning fast cluster computing platform, which provides

a faster and more generic processing mechanism than Hadoop. By supporting the program-

ming language such as Scala, Java, Python and R with over 80 high-level operator APIs,

Spark also makes it possible to write code more efficiently and more promptly. Moreover,

Spark Core is the basic engine for large-scale parallel and distributed data processing. It

provides multiple built-in functions, including job scheduling and distributing on clusters,

memory management, fault recovery, communication and management with storage systems,

and so on.

Second, the Resilient Distributed Dataset (RDD) [113] is an excellent concept for

genome-based analysis, especially for CpG-box model that can be easily distributed to worker

nodes for analytic operations. RDD is uniformed in spark programming paradigm, which

is an immutable fault-tolerant and distributed collection of objects that can be executed in

parallel. Any type of object can be contained in RDD. Moreover, loading an external data

set or distributing a collection from the driver layer can result in the generation of RDD.

Two types of operations are included in RDD: transformations and actions. Operations

that are performed on a RDD, such as map, filter, group, join, union, and so on, are called

transformations, whose results can be contained in a new generated RDD. Transformations

in Spark are passive, meaning that they do not compute their results right away. Instead,

they pre-configure the operation to be performed and the data set to which the operation

is to be performed. On the contrary, so-called actions are operations that return a value

after running a computation on a RDD, such as reduce, count, first, and so on. Actions are

executed immediately by Spark system without delay.

Third, distinguished from other computing forces, Spark provides cache methods that

can preserve an RDD in memory even though each transformed RDD may be recomputed
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each time by default when you perform an action on it. It results that users can keep the

elements around on the cluster for much faster access the next time when query is received.

Supported by the cache mechanism on the cluster, Spark can achieve superior computing

performances over other computational platforms such as Hadoop [112].

By taking advantage of the aforementioned computational merits of Spark platform, we

develop the Scala-based Spark pipeline, which is an ad hoc application on epigenetic analysis

and can be executed in an interactive way that opens up the possibility of customizing cloud-

based parallel algorithms for epigenetic analysis. The application of cloud-assisted methods

on CpG islands is the first application on epigenetic genome analysis over Spark platform.

The rest parts of this paper are organized as follows: Subsection 4.3.2 depicts the

methodology, the design and the implementation of the models; Section 4.3.3 shows the

results and assessments; Section 4.3.4 makes a conclusion and discusses the future work.

4.3.2 Design and Implementation

Flow Chart The flow chart in Figure4.14 is the pipeline of the main processes. CpG

islands are extracted from genome sequences in single node because the extraction does

not take long time and frequent communications may downgrade the system performance.

All extracted CpG islands are sent to distributed nodes as RDD for grouping operations

performed on distributed nodes that sort the CpG islands following the order of their lengths.

The transition matrix of Markov chain model and the possibility matrix of maximum

likelihood model are calculated based on the sorted CGIs. These operations are performed by

worker nodes and distributed jobs are assigned by Spark built-in job scheduling mechanism.

In practice, two transition probability matrices are frequently computed in terms of different

parameters (the length of CpG box) following the analysis needs. For example, the length

of CpG island greater than 200 nt or a particular threshold may be omitted by particular

analysis. That is, each threshold indicates different matrices and de novo computation.

Thus, cloud-assisted method is a pragmatic way to meet different needs, and it turns out

efficient for whole genome analysis described in subsection 4.3.3, only 20 seconds with 10
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Figure 4.14: A Brief Flow Chart of Program Implementation

cores on 5 nodes.

Finally, the query for an unknown sequence are derived from the user-end. The decision-

making procedure can be made in a single node since only a small amount of computing is

involved based on the calculated matrices.

Main Procedures and Algorithms The main procedures are about calculating

two transition probability matrices. The below code snippet is the calculation of Markov

matrix for CpG boxes with the same length. cpg list is a RDD that stores all CpG boxes

in distributed nodes. countLetter is a map function that counts the probability at each

position required by Equation 4.6. That is, all worker nodes concurrently run countLetter

on data cpg list when collect() operation is performed because actions actually drive passive

transformation map() as we have discussed on Subsection 4.3.1.

// Sor t the CpG boxes i n l e n g t h .

v a l c p g l i s t g r o u p b y = c p g l i s t . groupBy ( x => x . l e n g t h )
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// Ca l c u l a t e the p o s s i b i l i t i e s .

v a l r e s u l t = c p g l i s t g r o u p b y .map{

case (n , l i s t : Seq [ S t r i n g ] )

=> c oun t L e t t e r (n , l i s t ) }

. c o l l e c t ( )

The key algorithm of calculating the possibility of neighboring CpG boxes is shown as

the following code snippet. It makes use of RDD’s zipWithIndex() and leftOuterjoin()

operations to take statistics of neighboring CpG boxes. The scala-based Spark programming

paradigm makes coding concise and efficient.

// Ca l c u l a t e the p r o b a b i l i t y mat r i x

va l b o x j ump l i s t =

c p g l i s t . z i pWi th Index ( )

.map { case ( v , i ) => i −> v

} . l e f t O u t e r J o i n (

c p g l i s t . z i pWi th Index ( )

.map {case ( v , i )

=> i − 1 −> v}

) . f l a tMap { case ( i , ( a , b ) )

=> b .map( a −> ) }

4.3.3 Performance Evaluation

Human and mouse chromosome sequences, 24 chromosomes and 21 chromosomes respec-

tively, are used for the validation of our cloud-assisted methods. From three main aspects

on computing performance, the experiments are designed including evaluating the unit com-

puting cost, testing the running time of large scale data, and analyzing the speedup rate for

multiple cores.

System Configuration The experiments on evaluating the cloud-assisted method are

performed on a private cloud. Five computing nodes and one master node are constructed

on Apache Spark architecture, where the total executor memory is configured to 50G, and
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the total number of executor cores on running-time experiments of chromosomes human and

mouse is set to 50. Hardware specification is Dual Intel Xeon E5-2650 and 64 GB DDR3

(1866MHz).

Chromosome Test The first experiment aims to test the executing performance

for human and mouse chromosomes respectively. The details are shown as Figure4.15 and

Figure4.16. All chromosomes are sorted in length and the running time have an apparent

increase with an increasing chromosome length. However, the time/length ratio has an

approximately decreasing trend shown as Figure4.15.(c) and Figure4.16.(c), meaning that

the cloud-computing method has the ability to better handle large-scale data so that the

unit computing time/cost per MBytes decreases. Note that some fluctuations on running

time may occur in the Spark execution. It might be caused by some chromosomes contain

particular CpG box patterns, such as extra long CpG boxes that are filtered out by pre-

configured thresholds.

Whole-Genome Test and Speedup Analysis This test aims to evaluate the ca-

pability of this cloud-assisted method on handling large-scale data sets. The whole genomes

of human (3 GBytes) and mouse (2.7 GBytes) are used to test the consumed time following

a particular number of cores on Spark system. The illustration is shown as Figure4.17.

The speedup analysis is shown as Figure4.18 based on the experiment of whole genome

test. By analyzing the speedup ratio for different core configuration, we can clearly see the

speedup performance of our cloud-assisted method constructed on Spark platform: 6-7 times

speedup rate when using 10 cores.

4.3.4 Conclusion

CpG box is a novel measure proposed in this project for the fine-grained measurement

and the investigation into the existing CpG islands. Taking advantage of biological big

data and existing annotated data, we use CpG box as the elementary unit to establish the

Markov chain model and estimate the maximum likelihood for the structure of CpG box
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Figure 4.15: Running Time & Length of Human Chromosomes

Note that x-axis represents chromosomes that are sorted in the ascending order of length.
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Note that x-axis represents chromosomes that are sorted in the ascending order of length.
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and the neighboring CpG box. It not only reflects the biological properties (more related

to TSS and DMR signals than the current annotation) but also shows the capability to

improve the computing efficiency for whole genome analysis. Furthermore, it perfectly fits

the state-of-the-art cloud platform.

Comparing with the current definition of CpG island, the proposed CpG box investiga-

tion can better respond to the data sets of differentially methylated regions and transcrip-

tional starting sites in both sensitivity and specificity. Thus, we recommend the novel CpG

box definition and the Markov chain model to replace the current criteria of CpG island

for the fine-grained definition instead of the coarse-grained, threshold-based and outdated

definition.

By using cloud-assisted method based on Spark architecture, we reduce the performing

time for handling large-scale genome data. Moreover, this cloud-assisted method is first

applied into the epigenetic analysis with the equivalent accuracy and faster processing ca-

pability compared with sequential processing. The advantages of Spark system, including

Resilient Distributed Dataset, Spark programming paradigms, job scheduling, and so forth,

are well manifested on this genome-analysis-based project. The performance evaluation of

this cloud-assisted application on epigenetic analysis validates the successful combination of

the two areas. Also, it stands for one of future directions about how to accelerate the pro-

cessing and analysis on big data in biology, not limited to epigenetic analysis. Thus, in the

future we will continue to design new methods to assist biologists for resolving biological big

data issues. Concretely, a fully-fledged cloud platform is expected to establish for handling

multiple big-data analytic tasks, including genomic analysis, sequence operations, genetic

analysis and epigenetic analysis, etc.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

This dissertation aims to explore the methodology in diverse computing technologies,

including digital signal processing technology, information-coding theory, statistics, cloud

computing, deep learning, artificial intelligence and so forth, which can be applied in ge-

nomic analysis and processing. With the combination of these cutting-edge techniques, it

can improve the performance in solving some practical problems in computational biology.

In this dissertation three topics/problems are discussed and the performance of modern com-

puting techniques are comprehensively illustrated. The success of these proposed solutions

can provide good paradigms for applying these state-of-the-art techniques to biology in the

future.

Concretely, in the first problem, a novel signal and information encoding based method

is proposed to increase the accuracy in gene structure prediction. This method is an instance

of DNA-As-X framework, which converts the DNA sequence into binary code and the dis-

tance is calculated in a simple Exclusive-OR operation for similarity analysis. The encoding

scheme is proposed based on the bio-chemical properties of DNA sequence and the ham-

ming distance can directly reflect the bio-chemical difference. Thus, the encoding method is

more appropriate on homology-based comparative studies than other methods according to

performance evaluation.

In the second problem, deep neural network methods are developed for DNA sequence

annotation, including applications such as detection of protein-coding splicing sites, recog-

nition of lincRNA transcription splicing sites and the hybrid method for improvement in

gene structure prediction. Nine different encoding schemes and four auto-encoder based

deep learning techniques are studied for discovering how encoding schemes could affect the

performance of deep learning and exploring the most appropriate solutions for these appli-
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cations.

In the third problem, three main contributions are made. (1) A Gaussian digital filter

based method is developed for detection of CpG island. This is a novel method applying

digital signal processing in genome analysis. (2) CpG box and Markov model are developed

to redefine and investigate the CpG island. According to the experimental results, the novel

measures are more related with transcription starting sites and differentially methylated

regions. Meanwhile, the measures can be easily used for detecting the structures of CpG

island and investigating the epigenetic properties of DNA sequence. (3) A state-of-the-art

cloud-assisted platform is developed to accommodate the investigation of CpG island based

on the proposed CpG box and Markov model.

The methodology design and its applications are the primary targets in the future. On

the aspect of methodology, the hybrid method becomes the main trend in our community,

especially in the interdisciplinary fields. As a result, numerous novel methods have been

invented by combining the concepts and principles in conventionally different areas. In this

dissertation, the philosophy and its practice have been manifested a lot. For example, in

problem #1, signal processing, information encoding, and similarity detection are combined

so that the performance can be improved. In problem #2, diverse encoding schemes and

cutting-edge deep learning algorithms are integrated for various DNA annotation applica-

tions. In problem #3, the signal processing, statistical methods and cloud computing are

combined for a hybrid method. Thus, in the future, studying these hybrid methods is one of

the main ways to solve the problems in interdisciplinary fields, particularly in the big data

area.

For future studies, these proposed methods are worthy of further development. For

example, three problems in this dissertation are about fundamental issues, which provide

potential spaces and a broad range for hybrid techniques to further exert their power. In

problem #1, the information-coding method can be extended into many other areas, such as

evolutionary studies, mapping and assembly, fast processing in FPGA and cloud computing

etc. In problem #2, the cutting-edge deep learning techniques in artificial intelligence is
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Big Data

How to 
visualize big 

data?
How to 

protect the 
privacy of 
big data?

How to 
easily 

access big 
data?

How to 
store big 

data?
How to 

efficiently 
process big 

data?

How to 
accurately 
analyze big 

data?

Figure 5.1: Six Main Problems in Big Data.
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ubiquitously penetrating into almost all aspects of modern society including bioinformatics,

especially pattern-recognition related issues. Further discovery on how to identify lincRNAs

and understand their interactions from abundant DNA sequences is the key to unveil many

unknown biological mechanisms. LincRNAs are also directly related with epigenetic markers

such as CpG islands that are discussed a lot in problem #3. CpG island is the fundamental

element in epigenetics to understand methylation and other epigenetic procedures. The

CGI investigation in other species such as mouse and dog may be conducted in the future.

Also, the correlation of CGI and microRNA needs further discovery using proposed CGI

techniques. The latter one is a small non-coding RNA molecule that functions in silencing

and gene regulation and probably has certain connections with CGI methylation due to

altered expression of microRNAs [114]. In addition, through the studies on CpG island and

lincRNA, aging problems and disease related issues can be related to my future application

areas in computational biology.

In a big picture, the big data issue, including biological big data, is currently one of the

main challenges for scientists, especially for computer scientists. In the big data areas, six

main problems are proposed as shown in Figure5.1: (1) how to efficiently process big data;

(2) how to accurately analyze big data; (3) how to store big data; (4) how to easily access

big data; (5) how to visualize big data; (6) how to protect the privacy of big data. This

dissertation is a part of the first two problems. In the future, all my efforts will be around

the six problems. Novel hybrid methods are expected to apply into these big data problems

and contribute to bridging the gap between computation and biology.
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[59] G. Rätsch, S. Sonnenburg, and B. Schölkopf, “RASE: recognition of alternatively

spliced exons in c.elegans,” Bioinformatics, vol. 21, no. suppl 1, pp. i369–i377, 2005.

[60] O. Abbasi, A. Rostami, and G. Karimian, “Identification of exonic regions in dna

sequences using cross-correlation and noise suppression by discrete wavelet transform,”

BMC Bioinformatics, vol. 12, no. 1, p. 430, 2011.

[61] H. K. Kwan and S. Arniker, “Numerical representation of DNA sequences,” in Elec-

tro/Information Technology, 2009. eit ’09. IEEE International Conference on, June

2009, pp. 307–310.

[62] R. F. Voss, “Evolution of long-range fractal correlations and 1/ f noise in DNA base

sequences,” Phys. Rev. Lett., vol. 68, pp. 3805–3808, Jun 1992.

[63] T. Holden, R. Subramaniam, R. Sullivan, E. Cheung, C. Schneider, G. Tremberger,

Jr., A. Flamholz, D. H. Lieberman, and T. D. Cheung, “ATCG nucleotide fluctuation

of Deinococcus radiodurans radiation genes,” vol. 6694, 2007, pp. 669 417–669 417–10.

[64] H. E. Stanley, S. V. Buldyrev, A. L. Goldberger, Z. D. Goldberger, S. Havlin, S. M.

Ossadnik, C.-K. Peng, and M. Simmons, “Statistical mechanics in biology: how ubiq-

uitous are long-range correlations,” Physica A, vol. 205, no. 1-3, p. 214253, April 1994.

[65] A. Nair and S. Sreenadhan., “A coding measure scheme employing electron-ion inter-

action pseudopotential (EIIP),” Bioinformation, vol. 1, no. 6, pp. 197–202, 2006.

[66] M. Garzon and R. Deaton, “Codeword design and information encoding in DNA en-

sembles,” Natural Computing, vol. 3, no. 3, pp. 253–292, 2004.

[67] A. T. M. G. Bari, M. R. Reaz, A. K. M. T. Islam, H.-J. Choi, and B.-S. Jeong, “Ef-

fective encoding for DNA sequence visualization based on nucleotideś ring structure.”
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