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ABSTRACT 

Background: Myocardial infarction (MI) results in severe biochemical, physiological, and cellu-

lar changes that lead to alterations in the structure and function of the myocardium. Oxidative 

stress potentiates this remodeling response and is associated with progressive worsening of car-

diac function. Accordingly, we used a powerful antioxidant-based therapeutic strategy to im-

prove cardiac health and study redox-dependent signaling. Methods: MI was surgically induced 

in rats by ligating the left anterior descending coronary artery. Subgroups of MI rats received 

resveratrol (i.p., 10 mg/kg/day for 28 days beginning immediately post-MI). Cardiac histology 

and biochemical analyses of genes and proteins implicated in cardiac fibrosis, hypertrophy, and 

apoptosis, and redox-dependent signaling were analyzed. Results: As expected, MI resulted in 

profound structural changes to the myocardium. Further, we observed a sharp reduction in nu-

clear factor-erythroid 2-related factor 2 (Nrf2) and Krüppel-like factor 15 (KLF15), factors that 

are responsible for maintaining the endogenous antioxidant capacity and regulating cardiac gene 

expression, respectively. It is likely that disruption of normal KLF15 signaling permitted the ex-

pression of several cardiac genes associated with progressive cardiac remodeling. Importantly, 

daily treatment with resveratrol ameliorated cardiac remodeling, improved redox state, restored 

Nrf2 expression, and up-regulated KLF15 expression. Further, induction of KLF15 signaling fol-

lowing resveratrol treatment is associated with attenuated expression of several genes implicated 

in cardiac remodeling. Conclusions: Chronic oxidative stress potentiates cardiac remodeling 

post-infarct, in part, by suppressing Nrf2 and KLF15 expression. Importantly, we demonstrate 

that normal KLF15 signaling may be rescued with an antioxidant-based therapy, which may be 

an attractive therapeutic target to support cardiac health post-MI. 

INDEX WORDS: Cardiac remodeling, KLF15, Myocardial infarction, Oxidative stress 
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CHAPTER ONE 

MYOCARDIAL INFARCTION AND CARDIAC REMODELING 

 

Introduction 

The high prevalence of cardiovascular disease (CVD) in the Western world is responsible 

for approximately thirty-three percent of all-cause mortality in the United States. In addition, 

each year nearly 1.5 million Americans experience a myocardial infarction [1, 2], which directly 

contributes to mortality or secondary heart failure. The Centers for Disease Control and Preven-

tion estimate that 5.1 million people have been diagnosed with heart failure and approximately 

half die within 5 years of diagnosis. Clearly, continued research investigating the molecular and 

cellular mechanisms underlying the pathogenesis of CVD to develop effective treatment options 

is warranted. 

 Importantly, myocardial infarction has been associated with a series of pathological mo-

lecular and cellular changes that result in remodeling of the myocardium. The pathologic myo-

cardium is associated with cardiac dysfunction as it progresses to secondary heart failure. Moreo-

ver, several lines of literature implicate oxidative stress as a primary feature of cardiac remodel-

ing following clinical and experimental myocardial infarction. Genetic studies that employ either 

knockout of reactive oxygen species producing enzymes or overexpression of antioxidant de-

fense enzymes demonstrate remarkable protection of the myocardium to pathological remodel-

ing. Importantly, treatment with antioxidants has also proven beneficial to attenuate cardiac re-

modeling following myocardial infarction. Together, these studies establish a role for oxidative 
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stress in the promotion of a pathological cardiac phenotype. However, the underlying mecha-

nisms that drive oxidative stress-dependent remodeling following myocardial infarction have not 

been fully elucidated. 

 Further, interstitial fibrosis and cardiac hypertrophy are cardinal features of the remodel-

ing myocardium in response to pathological stress. These processes appear to be under strict con-

trol of connective tissue growth factor (CTGF), myocyte enhancer factor 2 (Mef2), and GATA 

binding protein 4 (GATA4), which are robustly up-regulated in response to pressure overload. 

Importantly, the transcriptional repressor Krüppel-like factor 15 (KLF15) negatively regulates 

the transcription of CTGF and transcriptional activity of Mef2 and GATA4. In response to in 

vivo pressure overload and in vitro oxidative stress, KLF15 is dramatically down-regulated 

which alleviates its inhibitory effects and thus, permits expression of pro-fibrotic and pro-hyper-

trophic genes.  

 While antioxidant treatment has proven beneficial in attenuating cardiac remodeling fol-

lowing myocardial infarction, the redox-sensitive mechanisms responsible for its efficacy remain 

to be fully identified. To that end, no study to date has identified the expression of KLF15 in the 

myocardium following infarction. Here we attempt to identify the expression profile of KLF15 

and its sensitivity to the redox state in the myocardium following infarction. Importantly, we hy-

pothesize that treatment with resveratrol, a powerful antioxidant, will induce KLF15 expression 

to repress cardiac gene expression associated with remodeling post-MI. For clarity, we have pro-

vided the hypotheses and specific aims for the proposed dissertation project in Figure 1. 
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Figure 1. Hypotheses and specific aims wherein myocardial infarction induces oxidative stress 

(SA 1), which down-regulates KLF15 and permits the expression of fibrogenic and hypertrophic 

genes (SA 2). Expression of these genes leads to overt structural remodeling of the myocardium 

(SA 3). Treatment with resveratrol induces Nrf2 signaling to restore GSH and alleviate oxidative 

stress, thereby driving KLF15 signaling and attenuate cardiac remodeling. Connective Tissue 

Growth Factor (CTGF), GATA Binding Protein 4 (GATA4), Glutathione (GSH), Krüppel-Like 

Factor 15 (KLF15), Myocyte Enhancer Factor 2 (Mef2), Nuclear Factor erythroid-derived 2-like 

factor 2 (Nrf2), Reactive Oxygen Species (ROS), Specific Aim (SA). 

 

 

Characteristics of Myocardial Infarction 

 Myocardial infarction can be characterized by acute and chronic structural and functional 

alterations that occur within minutes and manifest as overt structural remodeling weeks to 

months after the initial ischemic insult. Changes in myocyte number, size, and shape manifest as 

overt structural remodeling of the myocardium and are closely associated with functional deteri-

oration. The direct relationship between the structure and function of the myocardium under-

scores the essential requirement to prevent pathological cardiac remodeling and to preserve car-

diac function. 
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Histopathology of Myocardial Infarction 

 The myocardium undergoes several morphological changes within hours after the initial 

ischemic insult, which persists for several weeks to months following myocardial infarction.  

During the infarction, cardiac myocytes in the ischemic zone experience necrotic cell death char-

acterized by cell swelling and disruption of the plasma and organelle membranes. Further, car-

diac myocytes in the non-infarcted region may undergo apoptotic cell death characterized by cell 

shrinking and condensed nuclei [3, 4].  

 Additionally, excessive destruction of the extracellular matrix may destabilize the colla-

gen struts, which normally provide cellular stabilization to cardiac myocytes. As such, cardiac 

myocytes in the border zone are likely to slip and potentially contribute to expansion of the in-

farct and ventricular wall thinning. Cell loss and extracellular matrix destruction increase myo-

cardial wall stress. To that end, cardiac myocytes that survive hypertrophy and the myocardium 

thickens early in the remodeling process. Over time, chronic stress induces a shift from a thicker 

to a longer myocyte, which coupled with infarct expansion manifest as increased ventricular cav-

ity dimension. In parallel, chronic stress likely contributes to interstitial collagen deposition and 

subsequent fibrosis (Figure 2). 
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Figure 2. Photomicrographs from mouse heart sections. Three days post-MI, the infarct zone (I) 

begins to form from the resultant loss of cardiomyocytes and scar tissue formation. The region 

adjacent to the infarct zone, termed the border zone (BZ), distinguished by the appearance of in-

terstitial collagen deposition and cardiomyocyte hypertrophy appears. Adjacent to the border 

zone, the remote myocardium (R), experiences a lesser degree of stress than the border zone, and 

thus a lesser degree of remodeling. These structural derangements are augmented at 14 days 

post-MI, where there is apparent increase in the ventricular chamber radius. Further, the infarct 

zone continues to thin and expand with a dense collagen framework. In parallel, cardiomyocytes 

in the border zone experience hypertrophy concomitant with interstitial fibrosis [5]. 

  

Functional Evidence of Myocardial Infarction 

 Ischemic cardiomyopathy resulting from a myocardial infarction is commonly associated 

with systolic dysfunction—a hallmark of heart failure. Intrinsic and structural alterations mani-

fest as significant deterioration to many hemodynamic parameters that define cardiac perfor-

mance. The underlying mechanisms responsible for systolic dysfunction include: post-transla-

tional modification of myofilament proteins that result in force development depression and de-

creased calcium sensitivity of the contractile apparatus, dysfunctional calcium handling, altered 

ion channel function, mitochondrial and metabolic abnormalities, and pathological structural re-

modeling [6].  
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Systolic function can be assessed with data from pressure-volume loops such as stroke 

volume, ejection fraction, stroke work, end-systolic pressure-volume relation, and end-diastolic 

pressure-volume relation. Relative narrowing of the pressure-volume loop accompanied by a 

rightward shift is reflective of reduced stroke volume, increased end-diastolic volume, and subse-

quently reduced ejection fraction indicative of an infarcted and failing heart [6, 7]. For example, 

several studies report significant depression of systolic function following experimental myocar-

dial infarction induced by LAD ligation [8-11]. Four weeks after myocardial infarction ventricu-

lar fractional shortening [8-11] and left ventricular ejection fraction [8, 11] are dramatically re-

duced. In parallel, these functional deficits were associated with pathological cardiac remodeling. 

Importantly, animals that receive antioxidant interventions show remarkable improvement in 

both indices of systolic function and pathological remodeling [8-11]. 

 

Molecular and Cellular Events during Acute Myocardial Infarction 

 The myocardium undergoes several molecular and cellular events starting with the initial 

ischemic insult leading to cell death. The ensuing inflammatory response then clears the myocar-

dium of dead cells and matrix debris, and prepares the myocardium for structural remodeling.  

 

Etiology of Myocardial Ischemia 

 Embolization or passage of an embolus (i.e., coronary plaque) within the bloodstream can 

occlude one or more major coronary arteries and deprive the myocardium of sufficient oxygen 

[12]. Plaque embolization is due to damage of the underlying vascular endothelium that results in 

formation of platelet plugs and thrombi [13]. Rupture of the plaque exposes thrombogenic ele-
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ments in the atherosclerotic lesion to the moving column of blood. Traveling thrombogenic ele-

ments trigger platelet aggregation and thrombus formation and result in occlusion of the diseased 

vessel [13]. To that end, total occlusion of a major coronary artery such as the left anterior de-

scending coronary artery results in the entire thickness (i.e., the subepicardium and subendocar-

dium) of the left ventricle to become ischemic, known as transmural ischemia [13]. Alterna-

tively, the partial occlusion of major arteries or significant collateral vessels results in fractional 

ischemic areas of the ventricular wall. When this occurs, the under-perfused subendocardium be-

comes more susceptible to ischemic shock [13]. 

 

Anoxic Intracellular Pathophysiology 

Intracellular oxygen tension within the affected myocardium falls to nearly zero within a 

minute of complete cessation of blood flow [13]. As a result, reliance on oxidative phosphoryla-

tion to generate adenosine triphosphate (ATP) is significantly reduced, and ATP generation is 

relegated to anaerobic glycolysis [13]. Unfortunately, anaerobic energy production can only pro-

ceed in the presence of sufficient cytosolic nicotinamide adenine dinucleotide (NAD+). Since the 

reduced form of NAD+ (NADH + H+) can only be oxidized via oxidative phosphorylation, the 

concentration of NAD+ quickly falls and anaerobic glycolysis ceases. ATP consuming enzymes 

such as myosin ATPase, sarcoplasmic-endoplasmic reticulum calcium ATPase (SERCA), and 

membrane bound sodium-potassium ATPase pump consume the remaining ATP. The immediate 

and cumulative result is abnormal cellular function, energy depletion, and eventual cell death. 
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Cellular Death Pathways 

Myocardial cell loss during acute myocardial infarction is a consequence of necrosis, 

apoptosis, and autophagy [14-16]. Each death pathway has distinguishing features, are not mutu-

ally exclusive [14], and their contribution to cell loss is likely specific to the cellular and extra-

cellular environment. For example, different pathways may contribute variably between models 

of myocardial infarction (e.g., permanent artery occlusion vs. ischemia/reperfusion) or due to the 

state of cellular energy demands.  

Necrosis is an unregulated, irreversible response to sustained ischemia and is the primary 

driving force of cell loss during myocardial infarction [14]. Due to cellular energy failure, so-

dium and calcium ions accumulate in the cytoplasm and cause cell swelling, degeneration of or-

ganelles, loss of membrane integrity, and dissolution of the cell [17]. Upon restoration of blood 

flow, necrosis continues in the infarct zone, but it may be mediated through different processes. 

Until recently, reperfusion-induced necrosis was considered a passive event referred to as “coag-

ulation necrosis” where the architecture of necrotic cells remains preserved for a couple days 

[14, 18]. However, it is now clear that cellular signaling pathways are capable of regulating ne-

crosis [3, 4]. Recently, this form of necrosis has been termed “programmed necrosis” and can be 

initiated by tumor necrosis factor-alpha (TNF-α). Primary features of programmed necrosis are 

swelling of the mitochondrial matrix, dispersion of the mitochondrial membrane potential, ATP 

depletion, and opening of the mitochondrial permeability transition pore (mPTP). Activation of 

caspases is not a feature of programmed necrosis; however, it may occur in parallel if matrix 

swelling causes rupture of the outer mitochondrial membrane before sufficient ATP is depleted. 

In this context, pro-apoptotic factors such as cytochrome c are released into the cytosol and po-

tentially activate caspases [14]. 
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Cell death mediated through apoptosis requires energy to activate caspases. Therefore, it 

is likely that less energy-compromised cells in the border zone are more likely to die by apopto-

sis and contribute to infarct expansion [14] However, during reperfusion (when cellular energy 

level is restored) apoptosis may occur in the infarct zone [19] and is likely driven by oxidative 

stress in a graded manner [20]. For example, cardiac myocytes closest to the capillaries receive 

the highest level of oxidative stress and therefore, may contribute to independent initiation of ne-

crosis and apoptosis during reperfusion. 

Activation of caspases is a hallmark biochemical feature of apoptosis and are activated by 

two major pathways [14]. First, the extrinsic pathway is initiated as a cellular response to inflam-

mation. Plasma membrane receptors become activated by pro-inflammatory ligands such as Fas, 

TNF-α, and TNF-related apoptosis-inducing ligand (TRAIL) [14]. These ligands bind death do-

main-containing receptors to form a death-inducing signaling complex, which initiates proteo-

lytic cleavage of pro-caspases and subsequently activates effector caspases [14]. Alternatively, 

the intrinsic pathway requires the permeabilization of the outer mitochondrial membrane to re-

lease mitochondrial pro-apoptotic factors such as cytochrome c [14]. Importantly, elevated cyto-

solic calcium ions and reactive oxygen species (ROS) have been implicated in activating the in-

trinsic pathway [14]. To that end, the effector caspase, caspase-3 digests cellular proteins and 

macromolecules, degrades DNA, and leads to cell death [14, 21]. 

Normally, autophagy provides a “housekeeping” function that degrades damaged orga-

nelles and macromolecules in response to stress, and promotes cell survival [22]. Alternatively, 

during persistent stress autophagy can initiate a cellular death response [23]. In support of these 

roles, autophagy may protect the myocardium and limit the size of the infarct during ischemia 
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[16, 24]. Alternatively, reperfusion-induced autophagy activation promotes expansion of the in-

farct zone [25]. It is now clear that different pathways are responsible for the diverse roles of au-

tophagy to promote cell survival and cell death [16, 26] 

 

Inflammatory Response 

Disruption of plasma membrane integrity is a common feature of necrosis and results in 

the release of intracellular contents into the extracellular and systemic compartments that initiate 

a robust inflammatory response [27]. Cell surface receptors bind endogenous ligands released 

from necrotic cells and activate inflammatory pathways such as Toll-like receptor (TLR)-medi-

ated pathways, the complement cascade, and the nuclear factor (NF)-κB cascade. To that end, 

NF-κB plays an essential role in the induction of pro-inflammatory mediators such as TNF-α, in-

terleukin 1-beta (IL-1β), IL-6, and ROS. Importantly, NF-κB can be reciprocally activated by 

TNF-α and ROS [27]. 

Moreover, ROS promote leukocyte chemotaxis by compliment activation , and up-regula-

tion of adhesion molecules  and chemokines [28]. The first inflammatory cell type in the periph-

eral circulation to increase in numbers after the ischemic insult are neutrophils [29]. Their pri-

mary role is to release large amounts of ROS through a nicotinamide adenine dinucleotide phos-

phate (NADPH) oxidase-dependent respiratory burst, which functions to degrade damaged parti-

cles [30]. Importantly, ROS released from inflammatory infiltrates and dying cells may directly 

injure healthy cardiac myocytes and vascular cells and contribute to myocardial damage [28]. 

 As such, clearance of dead cells and debris, and inhibition of cytokine and chemokine 

synthesis is crucial for the repair process. Further, optimal healing requires mechanisms that in-

hibit cytokine and chemokine synthesis to suppress continuous leukocyte recruitment and injury. 
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To that end, macrophage ingestion of apoptotic cells including neutrophils and cardiac myocytes 

results in powerful anti-inflammatory and immunosuppressive effects that transition to fibrous 

tissue deposition to stabilize the damaged myocardium [27]. 

 Transforming growth factor-β (TGF-β) is a key mediator in the transition from inflamma-

tion to fibrotic tissue deposition [31]. Moreover, TGF-β suppresses cytokine and chemokine ex-

pression by stimulated mononuclear and endothelial cells [27]. Importantly, TGF-β inhibits pro-

liferation of most cells, modulates fibroblast behavior, stimulates synthesis of various extracellu-

lar matrix proteins [32], and suppresses matrix degradation [33]. The fibroblast conversion to a 

myofibroblast phenotype is a primary feature of infarct scar formation and is characterized by 

increased expression of α-smooth muscle actin, cell proliferation, and extracellular matrix pro-

tein synthesis [34].  

 Myofibroblasts are not normally present in high numbers in the healthy myocardium. 

However, in response to mechanical stress and hormones released by inflammatory and resident 

cells, myofibroblasts migrate to damaged tissue [35]. Three days following infarction, they are 

the predominant cell type in the infarct zone [35]. Importantly, myofibroblasts serve two primary 

functions in the infarcted myocardium: (1) provide mechanical strength to the scar by secreting 

new extracellular matrix proteins and (2) synthesize factors that regulate the inflammatory and 

fibrogenic responses [35]. Initially, myofibroblasts secrete a specific set of matrix proteins to 

form a provisional scar to provide temporary stabilization of the ventricular myocardium. Even-

tually, the provisional scar is replaced with a more advanced scar containing a stable collagen 

network [34, 36].  
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Post-Infarct Cardiac Remodeling 

 The damaged myocardium undergoes profound changes in the ventricular architecture 

and geometry, referred to as “cardiac remodeling” [27]. Several molecular and cellular altera-

tions are associated with cardiac remodeling that affects both the infarct zone and non-infarct 

segments of the ventricle. Over time, continued cardiac remodeling can become pathological in 

nature and manifest as apoptosis of viable cardiac myocytes, interstitial fibrosis, cardiac hyper-

trophy, dilation of the left ventricle, and worsened cardiac function [27, 37, 38]. Figure 3 pro-

vides an overview of the factors that contribute to pathological cardiac remodeling. 
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Figure 3. Flow chart representing the many factors involved in the pathophysiology of ventricu-

lar remodeling [39]. Angiotensin II (AII), Angiotensin Converting Enzyme (ACE), Atrial Natriu-

retic Peptide (ANP), B-Type Natriuretic Peptide (BNP), Cardiac Output (CO), Extracellular Ma-

trix (ECM), Endothelin-1 (ET-1), Matrix Metalloproteinase (MMP), Norepinephrine (NE), 

Renin-Angiotensin-Aldosterone System (RAAS), Systemic Vascular Resistance (SVR), Trans-

forming Growth Factor-Beta1 (TGF-β1). 

 

 Further, loss of viable cardiac myocytes is an important mechanism in the development 

of pathological cardiac remodeling [40]. Shear wall stress imposed on cardiac myocytes lining 

the infarct scar induce oxidative stress and activate a second inflammatory wave within these 

cells. Experimental evidence document the expression of both TNF-α [41] and inducible nitric 

oxide synthase (iNOS) [42] in cardiac myocytes bordering the infarct scar. Importantly, oxida-

tive and nitrosative stress lead to apoptosis in cardiac myocytes adjoining the infarct scar, which, 

in conjunction with cell slippage, result in expansion of the infarct zone [43]. To that end, fibrous 

tissue replaces dead cardiac myocytes and contributes to extension of the infarct scar [44]. 

 The adjacent non-infarcted region defined by its proximity to the infarct zone is com-

monly referred to as the “border zone.” Surgically implanted sonomicrometers demonstrate that 

the non-infarcted myocardium in the border zone can be progressively recruited into the mature 

scar. In other words, there is an increased proportion of the left ventricular wall composed of scar 

tissue and decreased proportion composed of viable cardiac myocytes during the remodeling re-

sponse [45]. Therefore, the border zone may not remain in a fixed position after formation of the 

mature scar in the infarct zone.  

In addition to infarct scar extension, oxidative stress promotes interstitial collagen deposi-

tion in the non-infarcted myocardium and contributes to restructuring of the myocardium [44]. 

Further, the non-infarcted myocardium lying beyond the border zone may hypertrophy in re-
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sponse to a workload increase imposed on these cardiac myocytes. The magnitude of the hyper-

trophic response is dependent on several factors including: size of the initial infarct, type of in-

farct, location of the infarct, type of reperfusion, degree of infarct extension, ventricular preload 

and afterload, and the state of inflammatory activation. Thus, it seems reasonable to presume that 

the onset of the hypertrophic response will vary depending on the sum total of these and perhaps 

additional factors such as oxidative stress [44].  

 In later stages of cardiac remodeling, the myocardium enters a state primarily driven by 

chronic volume overload, which induces a characteristic dilated myocardium, in part, by length-

ening of cardiac myocytes [44]. In parallel, increased ventricular volume concomitant with de-

creased subendocardial perfusion drive elevated wall stress and result in depressed ventricular 

ejection fraction [44, 46]. Importantly, ventricular dilation is associated with development of 

heart failure, ventricular arrhythmias [47], and has been used to predict mortality [48].  

Progression to heart failure secondary to uncomplicated myocardial infarction can be de-

fined in terms of the function, shape, and size of the left ventricle [49]. For example, infarct size 

correlates well with both end-systolic volume and ejection fraction [50]. Further, infarct imaging 

demonstrates a direct relationship between infarct scar size, both ventricular volumes, and ejec-

tion fraction [51]. Given that elevated end-systolic volume can be predicted from infarct size and 

end-systolic volume is a major determinant of mortality following myocardial infarction [48], 

extensive cardiac remodeling has been used as a surrogate endpoint for use in heart failure trails 

[52, 53]. Importantly, cardiac remodeling should be considered a primary target to prevent sec-

ondary heart failure following myocardial infarction [54, 55]. Therefore, a better understanding 

of the mechanisms responsible for pathological cardiac remodeling to develop effective thera-

peutic strategies is warranted.    
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Oxidative Stress in the Myocardium 

 Oxidative stress occurs when the production of reactive oxygen species such as superox-

ide (O2
-), hydrogen peroxide (H2O2), and hydroxyl radical (OH-) exceeds the cellular antioxidant 

defense capacity and promotes their rapid accumulation [56]. Importantly, the unpaired electron 

is an unstable free radical that will react with organic molecules such as proteins, lipids, and nu-

cleic acids and lead to disruption of cellular function [6]. ROS production occurs through elec-

tron leak from mitochondria during oxidative phosphorylation and through activation of cellular 

enzymes such as NADPH oxidase, xanthine oxidase, and NOS [57].  

In both the infarcted and non-infarcted myocardium, NADPH oxidases are a major 

source of oxidant production [58, 59]. However, the cellular source may differ between the two 

areas. For example, NADPH oxidase expression robustly increases in the infarct zone [60, 61] 

and leukocytes are the primary cell type to express the enzyme [57], while cardiomyocytes are 

more likely to express the enzyme in non-infarcted myocardium [62, 63]. Further, pathological 

stimuli such as TNF-α, angiotensin II, norepinephrine, and mechanical stretch increase the activ-

ity of NADPH oxidase enzymes [9], which occur as a result of an ischemic insult. Therefore, an 

effective oxidant scavenging system to combat oxidant production following a myocardial in-

farction is required to alleviate the accumulation of ROS.  

Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a highly conserved transcription fac-

tor that induces transcriptional activation of several anti-oxidant and phase II detoxifying en-

zymes that harbor the antioxidant response element (ARE) in their promoter region [64]. En-

zymes under the transcriptional regulation of Nrf2 may include: NADPH dehydrogenase, super-

oxide dismutase (SOD), glutathione peroxidase (GPx), glutathione S-transferase, γ-glutamate-

cysteine ligase, heme oxygenase-1, and catalase [64, 65]. 
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Importantly, glutathione (GSH) is a major product of several Nrf2-regulated genes and is 

the most abundant intracellular non-enzymatic free thiol that functions in antioxidant defense. 

GSH can reduce H2O2 and lipid peroxide through a GPx catalyzed reaction and detoxify electro-

philes spontaneously or through a glutathione S-transferase catalyzed reaction [66]. Therefore, 

adequate cellular GSH concentration is vital for normal cell function [67], whereas a reduced 

concentration of GSH may promote accumulation of ROS and subsequent oxidative stress. 

 Further, mitochondrial enzymes manganese superoxide dismutase (Mn-SOD2) and GPx 

appear to be the most important in controlling myocardial levels of O2
- and H2O2. Approximately 

90% of the SOD activity in cardiac myocytes is attributable to Mn-SOD2 [6]. For example, a 

study by Li et al [68] highlighted the strict requirement of Mn-SOD2 in the regulation of oxida-

tive stress in the myocardium. Using homozygous knockout mice, they demonstrated that mice 

deficient in Mn-SOD2 develop normally in utero, but die soon after birth with dilated cardiomy-

opathy [6]. In contrast, mice deficient in cytosolic superoxide dismutase (Cu/Zn-SOD1) or extra-

cellular SOD (Ec-SOD3) grow normally without a pathological cardiac phenotype [6, 69]. Im-

portantly, these studies implicate the mitochondria as a significant source of ROS, which likely 

contribute to pathological cardiac remodeling. In parallel, they underscore the importance of an-

tioxidant defense in attenuating pathological remodeling. 

 A number of clinical and experimental studies demonstrate increased generation of ROS 

in heart failure [70-73]. Moreover, animal models of heart failure document a decrease in the cel-

lular antioxidant defense capacity [74, 75]. For example, Hill et al. [71, 72] provided evidence to 

support a progressive reduction in SOD, GPx, and catalase activity after experimental myocar-

dial infarction. Moreover, plasma GSH levels have also been documented to decrease in patients 
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with acute myocardial infarction [76]. These observations indicate a common mechanism of oxi-

dative stress induction after infarction and in heart failure, which likely reflect a combination of 

excessive ROS production and impaired antioxidant defense capacity. Importantly, the resultant 

oxidative stress appears to be a primary feature in the infarcted and non-infarcted myocardium 

during the early remodeling phase and persist in heart failure.  

 

Oxidative Stress-Dependent Cardiac Remodeling 

 Reactive oxygen species production and oxidative stress are primary features in both clin-

ical and experimental myocardial infarction. Increasing evidence supports an important role for 

oxidative stress in cardiac remodeling [8, 9]. Specifically, ROS have been linked to apoptosis, 

interstitial fibrosis, and cardiomyocyte hypertrophy [40, 77, 78]; and the contribution of these 

processes to cardiac remodeling and secondary heart failure have been well-documented [8, 9]. 

Importantly, experimental reduction in ROS levels can attenuate cardiac remodeling following 

myocardial infarction [10, 62]. 

 Oxidative stress driven by free radical formation in combination with reduced antioxidant 

defense capacity may be an important mechanism responsible for cardiac remodeling and pro-

gression to heart failure [71]. For example, Qin et al [9] documented cardinal signs of remodel-

ing after experimental myocardial infarction, which were associated with increased NADPH oxi-

dase activity, oxidative stress, and apoptosis. Importantly, treatment with apocynin, an NADPH 

oxidase inhibitor, reduced oxidative stress and apoptosis. In parallel, a study by Shiomi et al. 

[10] demonstrated that cardiac remodeling and heart failure following myocardial infarction 

could be attenuated with genetic overexpression of GPx. Their observations were associated with 

decreased apoptosis, interstitial fibrosis, and myocyte hypertrophy. In addition, genetic knockout 
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of Nox2, a catalytic subunit of NADPH oxidase abundantly found in cardiac tissue, reduced 

apoptosis, interstitial fibrosis, and myocyte hypertrophy after experimental myocardial infarction 

in mice [8]. Cardiac phenotypes from both studies display similarities providing further evidence 

that (1) oxidative stress drives pathological remodeling and (2) oxidative stress can occur from 

excessive ROS production and/or impaired antioxidant defense capacity.  

Further, treatment with O2
- to induce oxidative stress has been shown to promote apopto-

sis in cardiomyocytes in vitro [79]. Moreover, oxidative stress has been demonstrated to trigger 

apoptosis in several pathological conditions including: myocardial infarction, cardiomyopathies, 

and heart failure [80-82]. Importantly, death of viable cardiac myocytes is an important mecha-

nism that contributes to the development of pathological remodeling [40]. Studies exploring the 

mechanisms of oxidative stress-induced apoptosis have shown increased expression of the pro-

apoptotic factor Bax in the infarcted heart [83]. Further, activation of the intrinsic apoptotic path-

way was shown to be associated with oxidative stress in an animal model of dilated cardiomyo-

pathy [84]. Together, these findings suggest that oxidative stress can induce apoptosis in cardio-

myocytes. Interestingly, TGF-β-induced apoptosis is associated with oxidative stress and antioxi-

dant treatment inhibited TGF-β-dependent apoptosis [85-87]. These studies suggest that TGF-β 

regulates apoptosis via mediation through oxidative stress. Importantly, both oxidative stress and 

apoptosis within the non-infarcted myocardium can be abolished with chronic treatment of anti-

oxidants [88, 89]. 

 In the infarcted heart, fibrosis is a cardinal feature of cardiac remodeling, which is char-

acterized as a scar in the infarct zone and interstitial fibrosis in the non-infarcted myocardium 

[57]. Importantly, oxidative stress has been further implicated in fibrogenesis not only in the my-
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ocardium, but also in various tissues such as the lung and liver [90, 91]. Genetic or pharmaceuti-

cal inhibition of Nox4, another catalytic subunit of NADPH oxidase that is abundantly expressed 

in cardiac tissue, attenuated oxidative stress, and blocked TGF-β1 stimulated ROS production 

and subsequent activation of myofibroblasts [92]. These data indicate that fibrosis contributes to 

cardiac remodeling and that oxidative stress drives this process. Further, oxidative stress has 

been shown to directly regulate collagen synthesis and that Smad3 and CTGF are required for 

TGF-β-dependent fibrosis [66]. Importantly, attenuation of oxidative stress with antioxidant 

treatment inhibited fibrosis [66]. Figure 4 depicts TGF-β-dependent fibrosis mediated through 

Smads and CTGF. However, the precise mechanism responsible for oxidative stress-induced reg-

ulation of CTGF induction following a myocardial infarction remains to be identified. 
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Figure 4. Depiction of the CTGF gene as a downstream target of TGF-ß signaling in fibrogene-

sis [93]. Alpha-Smooth Muscle Actin (α-SMA), Connective Tissue Growth Factor (CTGF), La-

tency Activated Protein (LAP), Latent TGF-β Binding Protein (LTBP), Mothers Against 

Decapentaplegic Homolog (Smad), Tissue Inhibitor of Metalloproteinase (TIMP), Transforming 

Growth Factor-Beta (TGF-β). 

 

 In addition, ROS production has been associated with cardiac hypertrophy and secondary 

heart failure [10, 94]. For example, an in vitro study exploring the mechanisms driving patholog-

ical cardiac hypertrophy documented that TNF-α signaling induced hypertrophy, which was me-

diated through NF-κB in the presence of ROS [95]. At the transcriptional level, Mef2 and 

GATA4 have been implicated in pathological hypertrophy under conditions of pressure overload 

and oxidative stress (Figure 5). However, the underlying mechanisms of how oxidative stress 

regulates cardiac hypertrophy mediated through Mef2 and GATA4 activity following myocardial 

infarction are not currently known. 
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Figure 5. Depiction of the transcription factors Mef2 and GATA4 as downstream targets in the 

expression of pro-hypertrophic genes [96]. Abbreviations are listed on page XIX. 

 

Krüppel Like Factors 

Krüppel-like factors (KLFs) are a subfamily of the large zinc-finger class of DNA bind-

ing transcriptional regulators. Most KLFs bind to consensus sequences such as the CACCC ele-

ment or GT box in the promoter region of target genes. Further, protein-protein interactions regu-

late trans-activation and trans-repression of target genes in non-DNA binding regions of KLFs 

[97]. Moreover, KLFs are predominately expressed in the nucleus. As such, they are subject to 

post-translational modification and are responsible for recruitment of transcriptional co-activa-

tor/co-repressor complexes [98]. Seventeen mammalian KLFs have been identified so far and are 

represented in numerical order based on chronological identification [97]. In various tissues, 
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these factors have a wide range of important roles including: cardiac remodeling [99, 100], angi-

ogenesis [101], monocyte activation [102], gluconeogenesis [103], and hematopoiesis [104]. 

 

KLFs in the Myocardium 

Several KLFs play pivotal roles in regulating many cardiac processes including: cardiac 

development, cardiac hypertrophy, cardiac metabolism, cardiac arrhythmogenesis [98], and car-

diac fibrosis [105, 106]. For example, KLF13 expression is first detected at E9.5 in the atria and 

ventricles of developing embryos, which is reduced after birth. Deletion of KLF13 in Xenopus 

embryos results in septal wall defects. Further, deletion in murine embryos results in hyper-

trophic hearts [107]. In addition to KLF13, KLF3 has been implicated in embryonic cardiomyo-

pathy and perinatal lethality. A missense mutation of the KLF3 gene results in embryonic lethal-

ity with hearts characterized by biventricular hypertrophy [108]. Surviving adult hearts were fur-

ther characterized by dilated cardiac chambers. Together, these data provide a critical role for 

KLF13 and KLF3 in regulating normal cardiac development. 

Hypertrophic stimuli such as angiotensin II induce a robust up-regulation of KLF5 ex-

pression. In contrast, targeted deletion of KLF5 blunts the angiotensin II-induced hypertrophic 

response [100, 109]. Since KLF5 expression is primarily restricted to cardiac fibroblasts, Takeda 

et al. [110] explored the mechanisms responsible for the interplay between cardiac fibroblasts 

and cardiomyocytes. They demonstrated that transverse aortic constriction induced KLF5 ex-

pression in both cardiac fibroblasts and cardiomyocytes, which was associated with cardiac hy-

pertrophy and fibrosis. In contrast, KLF5 knockdown in cardiac fibroblasts, but not cardiomyo-
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cytes, were less able to drive hypertrophic and fibrogenic signaling. In a subsequent series of ex-

periments, they demonstrated that KLF5 expression in cardiac fibroblasts exerts an effect on car-

diomyocytes mediated through paracrine action of insulin-like growth factor-1  

(IGF-1).   

In addition, pathologic hearts from KLF10 deficient male mice were characterized by 

septal wall hypertrophy, fibrosis, and myocyte disarray [111]. Interestingly, hearts from female 

mice deficient in KLF10 did not display signs of hypertrophy nor fibrosis, suggesting KLF10 ex-

erts its affects downstream of the estrogen receptor. In parallel, mice with cardiac-specific dele-

tion of KLF4 experienced high rates of mortality in response to pressure overload [112]. These 

hearts were characterized by cardiac hypertrophy, chamber dilation, fibrosis, and apoptosis. 

Taken together, these studies provide clear evidence in support of KLFs in regulating the hyper-

trophic and fibrogenic response in the myocardium. 

 

General Functions of KLF15 in the Myocardium 

Recently, KLF15 has been implicated as an independent regulator of cardiac lipid metab-

olism. In support of this, KLF15 expression in the maturing mammalian heart tracks in parallel 

to the increases in lipid utilization [113]. Moreover, cardiomyopathies characterized by a de-

crease in lipid oxidation were linked to reduced KLF15 expression and this effect was reversed 

with unloading of mechanical stress on the myocardium [113]. Modeling substrate flux in the 

isolated heart, KLF15 deficiency resulted in a significant reduction in lipid oxidation which 

tracked in parallel with increased reliance on glucose oxidation [113]. Interestingly, the alteration 

in myocardial energy metabolism was associated with preserved contractile function without any 

change in hemodynamic indices. Further, altered substrate metabolism occurred without a 
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change in the expression of metabolic transcriptional regulators or co-activators such as peroxi-

some proliferator activated receptors (PPARs) and PPAR-γ co-activator 1 (PGC-1), respectively. 

These data suggest that transcriptional regulators of cardiac metabolism may cooperate with 

KLFs to control energy metabolism. In support of this notion, a recently published study estab-

lished the cooperative effects of PPAR-α and KLF15, wherein KLF15 binding to PPAR-α is re-

quired for PPAR-α mediated gene expression such as those involved in lipid metabolism [114]. 

Further, based on the expression patterns of KLF15, Jeyaraj et al. [115] speculated that 

KLF15 may regulate cardiac electrophysiology. They observed that KLF15 expression in the 

heart is rhythmic and that peak expression occurs during the transition from the inactive to active 

phase. To support this hypothesis, the investigators provided evidence for a molecular link to 

KLF15-dependent expression of a subunit required to maintain the transient outward potassium 

current (Kv channel-interacting protein 2; KChIP2). To further establish a regulatory role for 

KLF15 in cardiac electrophysiology, gain- and loss-of-function experiments provide additional 

evidence that KLF15 excess or deficiency result in perturbations of QT intervals, abnormal re-

polarization, and increased susceptibility to ventricular arrhythmias [115].  

In addition to the established functions of KLF15 in cardiac lipid metabolism and electro-

physiology, work by Fisch et al. [99] documented an expression pattern of KLF15 in the postna-

tal heart, which tracked in parallel to the time that classical hypertrophic gene markers (e.g., 

atrial natriuretic and B-type natriuretic peptides) are down-regulated. Moreover, KLF15 expres-

sion is down-regulated in response to hypertrophic stimuli such as angiotensin II, phenylephrine, 

and endothelin-1 [116] further establishing a regulatory role for KLF15 in cardiac hypertrophy. 

Cardiac-specific deletion of KLF15 is not embryonically lethal and mice do not display a patho-
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logical cardiac phenotype [99]. However, these mice develop severe eccentric hypertrophy in re-

sponse to pressure overload. Together, these results clearly implicate KLF15 as a negative regu-

lator of pathological cardiac hypertrophy. To that end, continuing research investigating differen-

tial roles for KLF15 in cardiac remodeling are emerging.  

 

KLF15 as a Negative Regulator of Cardiac Remodeling 

Overexpression of KLF15 potently inhibits three primary features of cardiac hypertrophy 

(e.g., hypertrophic gene expression, protein synthesis, and cell growth) in rat neonatal ventricular 

myocytes under both basal and stimulated conditions [100]. In contrast, KLF15 deficient mice do 

not display a hypertrophic phenotype at baseline, but these animals are exquisitely sensitive to 

stress and develop eccentric hypertrophy in response to pressure overload [100]. Importantly, 

transcriptional activity of two well characterized activators of hypertrophic remodeling (e.g., my-

ocyte enhancer factor 2; Mef2, and GATA binding protein 4; GATA4) are under the strict con-

trol of KLF15 [99]. Importantly, KLF15 interferes with DNA binding of these transcriptional ac-

tivators to the promoter region of their target genes, which is how they exert their pro-hyper-

trophic effects [97]. 

Mice overexpressing either Mef2A or Mef2C develop dilated cardiomyopathy, which is 

exacerbated under conditions of pressure overload [117]. In addition, mice overexpressing 

GATA4 result in severe cardiomyopathy and premature death, while cardiac myocytes in culture 

develop significant hypertrophy and protein accretion [118]. Interestingly, hearts from mice with 

cardiac-specific KLF15 knockout share a common phenotype with hearts from mice overex-

pressing Mef2 suggesting a negative relationship between the two factors. 
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Mef2 and GATA4 are known to interact and cooperate to serve as integrators for several 

upstream signaling pathways. Therefore, it is not surprising that enhanced activity of these pro-

hypertrophic transcriptional activators in KLF15 deficient mice leads to marked dilated cardio-

myopathy in response to stress. Further, during postnatal cardiac development, inhibition of 

Mef2 by KLF15 may serve as transcriptional “brake” for excessive Mef2 activity [99]. For ex-

ample, Molkentin and Markham [119] demonstrated that Mef2 binding and activity increase dur-

ing the postnatal period concomitant with an up-regulation of KLF15 expression [99, 120]. 

Moreover, gene products of Mef2 and GATA4 (e.g., atrial natriuretic and B-type natriuretic pep-

tides) are markedly down-regulated at this time [120]. These data suggest that KLF15 serves to 

inhibit a pathological cardiac phenotype during maturation.  

In addition to the known roles of KLF15 in regulating pathological cardiac hypertrophy, 

KLF15 deficient mice display interstitial fibrosis in response to pressure overload induced by 

aortic constriction when compared to wild type mice [106]. Moreover, there was a clear associa-

tion between fibrosis and expression of connective tissue growth factor (CTGF) in isolated neo-

natal rat ventricular fibroblasts. Further, in response to TGF-β1 stimulation, KLF15 expression 

was markedly decreased with concomitant increased expression of CTGF. Together, this sug-

gests TGF-β stimulates the expression of CTGF and that KLF15 may negatively regulate the ex-

pression of CTGF. 

In support of this hypothesis, reporter assays directly demonstrate a repressive effect of 

KLF15 on the CTGF promoter under both basal and TGF-β1 stimulated conditions [106]. Inter-

estingly, KLF15 did not affect DNA binding of Smad3 to the CTGF promoter. Smad3 mediates 

signals from TGF-β and has been implicated in fibrosis by up-regulating the expression of CTGF 

[121]. It is known that Smads and KLFs interact with the co-activator P/CAF and co-activators 
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such as P/CAF are often rate limiting. Therefore, Wang et al. [106] examined whether KLF15 

competes with Smad3 to bind P/CAF and subsequently inhibit transcription of CTGF. Indeed, 

they demonstrated that KLF15 directly binds P/CAF competitively inhibiting Smad3 binding and 

thus preventing the association of P/CAF with Smad3 on the CTGF promoter. 

Taken together, KLF15 appears to act concurrently in two different cardiac cell types to 

repress genes implicated in pathological cardiac remodeling. This is consistent with the notion 

that cardiac fibrosis is a prominent feature of pathological cardiac hypertrophy [105]. To that 

end, reports implicating KLF15 in regulating cardiac hypertrophy and fibrosis highlight an im-

portant role for KLF15 as a negative regulator of the pathological response to stress. This novel 

role for KLF15 makes it an attractive target for therapeutic interventions aimed at preventing car-

diac remodeling observed following myocardial infarction. 

 

Regulation of KLF15 

KLF15 has an intriguing expression pattern in the myocardium—it is not detected during 

embryonic development and its expression is very low during the early postnatal period. How-

ever, 30 days following birth, KLF15 expression is robustly up-regulated [120]. Under condi-

tions of pathological stress such as pressure overload and valvular aortic stenosis in murine mod-

els and human subjects, respectively, KLF15 expression is dramatically reduced [99, 120]. More-

over, pharmacological agonists (e.g., phenylephrine and endothelin-1) known to induce a hyper-

trophic response in cardiac myocytes markedly reduce the expression of KLF15 [99]. Im-

portantly, pathological conditions such as these are associated with significant oxidative stress. 

Therefore, it is reasonable to suspect that KLF15 may be sensitive to the cellular redox state.  
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In support of this, a recent report detailing expression profiles in cultured cardiomyocytes 

revealed a 50% reduction of KLF15 expression when exposed to H2O2 [122]. In parallel, Vendov 

et al. [123] demonstrated that oxidative stress induced by NADPH oxidase in vascular smooth 

muscle cells was sufficient to  drastically down-regulate of KLF15 expression. Taken together, 

these studies [122-124] indicate that KLF15 is sensitive to changes in cellular redox in vitro and 

that ROS-induced oxidative stress is a primary regulator of KLF15 expression in several cell 

types. However, the expression pattern of KLF15 and its sensitivity to the redox state in vivo fol-

lowing a myocardial infarction are not currently known.  

 

Resveratrol Treatment 

 Resveratrol (3, 5, 4-trihydroxystillbene) is a natural polyphenolic phytoalexin commonly 

found in the skin of red grades and peanuts. A wide body of literature suggests a beneficial role 

for this plant extract in treating many chronic diseases such as cardiovascular disease [125], can-

cer [126], and diabetes [127]. Many cardiovascular diseases such as cardiomyopathies and heart 

failure secondary to myocardial infarction are associated with chronic elevations in ROS and/or 

impaired cellular antioxidant defense mechanisms [6]. Therefore, treatment with resveratrol may 

have beneficial effects in these redox-dependent models of disease due to its well-established an-

tioxidant capabilities. 

 Moreover, several studies have demonstrated that resveratrol more effectively inhibits 

oxidative stress and damage when compared to conventional antioxidants [128, 129]. In parallel, 

resveratrol has also been shown to directly scavenge free radicals such as O2
- and OH- [130, 

131]. Unfortunately, the ability of resveratrol to directly scavenge ROS is inferior to other well-
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established antioxidants such as ascorbate and cysteine [132]. These studies suggest that the po-

tent antioxidant effects of resveratrol must reside in an ability to up-regulate endogenous antioxi-

dant defense mechanisms.  

 In support of this, data demonstrates resveratrol stimulates Nrf2 activation and induces 

robust expression of numerous antioxidant enzymes in cardiac tissue [133, 134] such as 

NADPH:quinone oxioreductase-1 and -2, and γ-glytamylcysteine synthase (the rate-limiting en-

zyme for GSH synthesis), glutaredoxin-1 and -2, thioredoxin-1 and -2, and heme oxygenase-1 

[135]. Taken together, these data clearly demonstrate a potent antioxidant role for resveratrol and 

that treatment with resveratrol may protect the myocardium from pathological remodeling driven 

by oxidative stress following a myocardial infarction.  

Importantly, Chen et al. [83] reported that resveratrol protects cardiac myocytes from hy-

poxia-induced apoptosis. In parallel, Soner and Şahin [136] demonstrated that resveratrol pro-

vided a protective effect against H2O2-induced myocardial contractile dysfunction and aortic vas-

oconstriction. These data suggest that resveratrol provides a cardioprotective role, which is likely 

mediated by reduced oxidative stress. In agreement with previous reports, Lin et al. [137] pro-

vided additional support for a cardioprotective role of resveratrol. Their data showed that daily 

treatment with resveratrol reduced infarct size and improved both systolic and diastolic function. 

However, the mechanism of redox control of cardiac function and remodeling could not be as-

certained from their data. For example, their study explored the effects of daily resveratrol treat-

ment on the expression of a select few genes known to be implicated in the pathogenesis of myo-

cardial remodeling. Specifically, they quantified mRNA expression of TGF-β, ANP, and type I 

collagen. They reported a significant reduction in TGF-β and ANP mRNA expression in resvera-

trol treated animals concomitant with no change in type I collagen mRNA transcripts. Based on 
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their data, they concluded that resveratrol exerted its beneficial effects by reducing TGF-β and 

ANP mRNA levels. However, they did not explore any potential redox-dependent transcriptional 

regulation.  

As such, the proposed study will explore the effects of daily resveratrol treatment on car-

diac remodeling following myocardial infarction. Importantly, the redox-dependent transcrip-

tional mechanisms responsible for cardiac remodeling driven by oxidative stress will be identi-

fied. Nrf2 protein expression and mRNA transcripts of antioxidant genes will be assessed as a 

surrogate marker of endogenous antioxidant capacity. Further, protein expression of KLF15 and 

mRNA transcripts of its known regulatory targets associated with cardiac remodeling will be as-

sessed as an indicator of KLF15 signaling. Together, these data will provide support for the effi-

cacy of antioxidant therapy in cardiac remodeling and attempt to elucidate the redox-dependent 

signaling pathways regulating cardiac remodeling. 

 

Hypotheses and Specific Aims 

 The normal structure and function of a healthy heart is vital to its mechanical and meta-

bolic efficiency. Upon an ischemic insult that results in a myocardial infarction, a portion of the 

contractile myocardium used to generate ventricular pressure to eject blood is lost. As such, the 

myocardium undergoes a specific series of molecular and cellular changes to compensate for the 

loss of viable cardiac myocytes initiated by an intense inflammatory response. The early inflam-

matory response is responsible for clearing dead cells and matrix debris from the damaged site. 

Prompt resolution of the early degenerative inflammatory response is required to minimize the 

extent of the damage and promote the repair phase and restructure the myocardium.  
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 Cardiac myocytes in the viable non-infarct region experience elevated mechanical stress 

and chronic oxidative stress. In response to increased mechanical and oxidative stress, myocar-

dial cells express pro-hypertrophic and pro-fibrogenic gene programs. Exposure of cardiac myo-

cytes and fibroblasts to chronic pathogenic stimuli such as mechanical stress and oxidative stress 

results in apoptosis of viable cardiac myocytes, excessive cardiac hypertrophy and ventricular 

dilation, and interstitial fibrosis, which may progress to secondary heart failure.  

 Recently, KLF15 has been identified as a negative regulator of the cardiac hypertrophic 

response to pathological stress. In parallel, KLF15 has been shown to attenuate the expression of 

the hypertrophic gene program by the inhibition of transcriptional activators GATA4 and Mef2.  

Further, KLF15 was shown to repress the transcription of the CTGF gene in response to patho-

logical stimuli. Taken together, KLF15 acts as a transcriptional regulator to support cardiac 

health. However, cell culture experiments have demonstrated the KLF15 expression is dramati-

cally reduced in response to oxidative stress. If the sensitivity of KLF15 to the redox state can be 

extrapolated in vivo, then presumably, its inhibition of hypertrophic and fibrogenic gene pro-

grams will be relieved to permit cardiac remodeling following myocardial infarction. To that 

end, alleviating oxidative stress may rescue the expression of KLF15 and attenuate the expres-

sion of these pathological gene programs. 

Therefore, in three integrated specific aims the purpose of this study will be to: (1) 

determine the effect of resveratrol on oxidative stress in the myocardium following a myo-

cardial infarction, (2) determine the effect of resveratrol on the activity of KLF15 and its 

downstream targets, (3) determine the effect of resveratrol in preventing pathological car-

diac remodeling following myocardial infarction (Figure 1). Together, these data will ad-

dress the hypothesis that KLF15 plays a novel redox-sensitive role in the transcriptional 
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regulation of pathological cardiac remodeling associated with heart failure following myo-

cardial infarction. 

 

References 

1. Thom T: Executive summary: Heart disease and stroke statistics. Circulation 2010, 

121:948-954. 

2. Trogdon JG, Finkelstein EA, Nwaise IA, Tangka FK, Orenstein D: The economic 

burden of chronic cardiovascular disease for major insurers. Health promotion 

practice 2007, 8(3):234-242. 

3. Proskuryakov SY, Konoplyannikov AG, Gabai VL: Necrosis: a specific form of 

programmed cell death? Experimental cell research 2003, 283(1):1-16. 

4. Kung G, Konstantinidis K, Kitsis RN: Programmed necrosis, not apoptosis, in the 

heart. Circulation research 2011, 108(8):1017-1036. 

5. Van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill 

JA, Olson EN: Dysregulation of microRNAs after myocardial infarction reveals a 

role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences 

2008, 105(35):13027-13032. 

6. Mann DL, Felker MG: Heart failure: a companion to Braunwald's heart disease: 

Elsevier Health Sciences; 2014. 

7. Kass D, Maughan W, Guo ZM, Kono A, Sunagawa K, Sagawa K: Comparative 

influence of load versus inotropic states on indexes of ventricular contractility: 

experimental and theoretical analysis based on pressure-volume relationships. 

Circulation 1987, 76(6):1422-1436. 

8. Looi YH, Grieve DJ, Siva A, Walker SJ, Anilkumar N, Cave AC, Marber M, Monaghan 

MJ, Shah AM: Involvement of Nox2 NADPH oxidase in adverse cardiac remodeling 

after myocardial infarction. Hypertension 2008, 51(2):319-325. 

9. Qin F, Simeone M, Patel R: Inhibition of NADPH oxidase reduces myocardial 

oxidative stress and apoptosis and improves cardiac function in heart failure after 

myocardial infarction. Free radical biology and medicine 2007, 43(2):271-281. 

10. Shiomi T, Tsutsui H, Matsusaka H, Murakami K, Hayashidani S, Ikeuchi M, Wen J, 

Kubota T, Utsumi H, Takeshita A: Overexpression of glutathione peroxidase prevents 

left ventricular remodeling and failure after myocardial infarction in mice. 

Circulation 2004, 109(4):544-549. 

11. Engberding N, Spiekermann S, Schaefer A, Heineke A, Wiencke A, Müller M, Fuchs M, 

Hilfiker-Kleiner D, Hornig B, Drexler H: Allopurinol Attenuates Left Ventricular 

Remodeling and Dysfunction After Experimental Myocardial Infarction A New 

Action for an Old Drug? Circulation 2004, 110(15):2175-2179. 

12. White HD, Chew DP: Acute myocardial infarction. The Lancet 2008, 372(9638):570-

584. 

13. Katz AM: Physiology of the Heart: Lippincott Williams & Wilkins; 2010. 



33 

 

 

 

14. Webster KA: Mitochondrial membrane permeabilization and cell death during 

myocardial infarction: roles of calcium and reactive oxygen species. Future 

cardiology 2012, 8(6):863-884. 

15. Golstein P, Kroemer G: Cell death by necrosis: towards a molecular definition. 

Trends in biochemical sciences 2007, 32(1):37-43. 

16. O’Neal W, Griffin W, Kent S, Virag J: Cellular Pathways of Death and Survival in 

Acute Myocardial Infarction. J Clin Exp Cardiolog S 2012, 6:2. 

17. Nieminen A-L: Apoptosis and necrosis in health and disease: role of mitochondria. 

International review of cytology 2003, 224:29-55. 

18. Robbins SL, Cotran RS: Pathologic basis of disease: Saunders; 1979. 

19. Freude B, Masters TN, Robicsek F, Fokin A, Kostin S, Zimmermann R, Ullmann C, 

Lorenz-Meyer S, Schaper J: Apoptosis is initiated by myocardial ischemia and 

executed during reperfusion. Journal of molecular and cellular cardiology 2000, 

32(2):197-208. 

20. Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, Ferrari R, Knight 

R, Latchman D: Apoptosis of endothelial cells precedes myocyte cell apoptosis in 

ischemia/reperfusion injury. Circulation 2001, 104(3):253-256. 

21. Thompson JW, Graham RM, Webster KA: DNase activation by hypoxia–acidosis 

parallels but is independent of programmed cell death. Life sciences 2012, 91(7):223-

229. 

22. Gustafsson ÅB, Gottlieb RA: Autophagy in ischemic heart disease. Circulation 

research 2009, 104(2):150-158. 

23. Verfaillie T, Salazar M, Velasco G, Agostinis P: Linking ER stress to autophagy: 

potential implications for cancer therapy. International journal of cell biology 2010, 

2010. 

24. Huang C, Liu W, Perry CN, Yitzhaki S, Lee Y, Yuan H, Tsukada YT, Hamacher-Brady 

A, Mentzer RM, Gottlieb RA: Autophagy and protein kinase C are required for 

cardioprotection by sulfaphenazole. American Journal of Physiology-Heart and 

Circulatory Physiology 2010, 298(2):H570-H579. 

25. Hamacher-Brady A, Brady N, Logue S, Sayen M, Jinno M, Kirshenbaum L, Gottlieb R, 

Gustafsson ÅB: Response to myocardial ischemia/reperfusion injury involves Bnip3 

and autophagy. Cell Death & Differentiation 2007, 14(1):146-157. 

26. Konstantinidis K, Whelan RS, Kitsis RN: Mechanisms of cell death in heart disease. 

Arteriosclerosis, thrombosis, and vascular biology 2012, 32(7):1552-1562. 

27. Frangogiannis NG: The immune system and cardiac repair. Pharmacological 

Research 2008, 58(2):88-111. 

28. Frangogiannis NG, Smith CW, Entman ML: The inflammatory response in myocardial 

infarction. Cardiovascular research 2002, 53(1):31-47. 

29. Latet SC, Hoymans VY, Van Herck PL, Vrints CJ: The cellular immune system in the 

post-myocardial infarction repair process. International journal of cardiology 2015, 

179:240-247. 

30. Ma Y, Yabluchanskiy A, Lindsey ML: Neutrophil roles in left ventricular remodeling 

following myocardial infarction. Fibrogenesis Tissue Repair 2013, 6(11). 

31. Bujak M, Frangogiannis NG: The role of TGF-β signaling in myocardial infarction 

and cardiac remodeling. Cardiovascular research 2007, 74(2):184-195. 



34 

 

 

 

32. Bassols A, Massague J: Transforming growth factor beta regulates the expression 

and structure of extracellular matrix chondroitin/dermatan sulfate proteoglycans. 

Journal of Biological Chemistry 1988, 263(6):3039-3045. 

33. Edwards DR, Murphy G, Reynolds J, Whitham S, Docherty A, Angel P, Heath J: 

Transforming growth factor beta modulates the expression of collagenase and 

metalloproteinase inhibitor. The EMBO journal 1987, 6(7):1899. 

34. Lambert JM, Lopez EF, Lindsey ML: Macrophage roles following myocardial 

infarction. International journal of cardiology 2008, 130(2):147-158. 

35. Ma Y, de Castro Brás LE, Toba H, Iyer RP, Hall ME, Winniford MD, Lange RA, Tyagi 

SC, Lindsey ML: Myofibroblasts and the extracellular matrix network in post-

myocardial infarction cardiac remodeling. Pflügers Archiv-European Journal of 

Physiology 2014, 466(6):1113-1127. 

36. Blankesteijn W, Creemers E, Lutgens E, Cleutjens J, Daemen M, Smits J: Dynamics of 

cardiac wound healing following myocardial infarction: observations in genetically 

altered mice. Acta physiologica scandinavica 2001, 173(1):75-82. 

37. Swynghedauw B: Molecular mechanisms of myocardial remodeling. Physiological 

reviews 1999, 79(1):215-262. 

38. Takemura G, Fujiwara H: Role of apoptosis in remodeling after myocardial 

infarction. Pharmacology & therapeutics 2004, 104(1):1-16. 

39. Sutton MGSJ, Sharpe N: Left ventricular remodeling after myocardial infarction 

pathophysiology and therapy. Circulation 2000, 101(25):2981-2988. 

40. Anversa P, Cheng W, Liu Y, Leri A, Redaelli G, Kajstura J: Apoptosis and myocardial 

infarction. Basic research in cardiology 1998, 93(3):s008-s012. 

41. Akasaka Y, Morimoto N, Ishikawa Y, Fujita K, Ito K, Kimura-Matsumoto M, Ishiguro S, 

Morita H, Kobayashi Y, Ishii T: Myocardial apoptosis associated with the expression 

of proinflammatory cytokines during the course of myocardial infarction. Modern 

Pathology 2006, 19(4):588-598. 

42. Gilson WD, Epstein FH, Yang Z, Xu Y, Prasad K-MR, Toufektsian M-C, Laubach VE, 

French BA: Borderzone contractile dysfunction is transiently attenuated and left 

ventricular structural remodeling is markedly reduced following reperfused 

myocardial infarction in inducible nitric oxide synthase knockout mice. Journal of 

the American College of Cardiology 2007, 50(18):1799-1807. 

43. Pfeffer MA, Braunwald E: Ventricular remodeling after myocardial infarction. 

Experimental observations and clinical implications. circulation 1990, 81(4):1161-

1172. 

44. French BA, Kramer CM: Mechanisms of postinfarct left ventricular remodeling. Drug 

Discovery Today: Disease Mechanisms 2007, 4(3):185-196. 

45. Jackson BM, Gorman JH, Moainie SL, Guy TS, Narula N, Narula J, John-Sutton MGS, 

Edmunds LH, Gorman RC: Extension of borderzone myocardium in postinfarction 

dilated cardiomyopathy. Journal of the American College of Cardiology 2002, 

40(6):1160-1167. 

46. Lew W, Chen Z, Guth B, Covell JW: Mechanisms of augmented segment shortening 

in nonischemic areas during acute ischemia of the canine left ventricle. Circulation 

research 1985, 56(3):351-358. 



35 

 

 

 

47. Sutton MSJ, Lee D, Rouleau JL, Goldman S, Plappert T, Braunwald E, Pfeffer MA: Left 

ventricular remodeling and ventricular arrhythmias after myocardial infarction. 

Circulation 2003, 107(20):2577-2582. 

48. White HD, Norris R, Brown MA, Brandt P, Whitlock R, Wild C: Left ventricular end-

systolic volume as the major determinant of survival after recovery from 

myocardial infarction. Circulation 1987, 76(1):44-51. 

49. Gajarsa JJ, Kloner RA: Left ventricular remodeling in the post-infarction heart: a 

review of cellular, molecular mechanisms, and therapeutic modalities. Heart failure 

reviews 2011, 16(1):13-21. 

50. Watzinger N, Lund GK, Higgins CB, Wendland MF, Weinmann HJ, Saeed M: The 

potential of contrast‐enhanced magnetic resonance imaging for predicting left 

ventricular remodeling. Journal of Magnetic Resonance Imaging 2002, 16(6):633-640. 

51. Ørn S, Manhenke C, Anand IS, Squire I, Nagel E, Edvardsen T, Dickstein K: Effect of 

left ventricular scar size, location, and transmurality on left ventricular remodeling 

with healed myocardial infarction. The American journal of cardiology 2007, 

99(8):1109-1114. 

52. Konstam MA: Reliability of ventricular remodeling as a surrogate for use in 

conjunction with clinical outcomes in heart failure. The American journal of 

cardiology 2005, 96(6):867-871. 

53. Yan RT, White M, Yan AT, Yusuf S, Rouleau JL, Maggioni AP, Hall C, Latini R, Afzal 

R, Floras J: Usefulness of temporal changes in neurohormones as markers of 

ventricular remodeling and prognosis in patients with left ventricular systolic 

dysfunction and heart failure receiving either candesartan or enalapril or both. The 

American journal of cardiology 2005, 96(5):698-704. 

54. Mann DL: Cardiac remodeling as therapeutic target: treating heart failure with 

cardiac support devices. Heart failure reviews 2005, 10(2):93-94. 

55. Sharpe N: Pharmacologic effects on cardiac remodeling. Current heart failure reports 

2004, 1(1):9-13. 

56. Tsutsui H, Kinugawa S, Matsushima S: Oxidative stress and heart failure. American 

Journal of Physiology-Heart and Circulatory Physiology 2011, 301(6):H2181-H2190. 

57. Sun Y: Oxidative stress and cardiac repair/remodeling following infarction. The 

American journal of the medical sciences 2007, 334(3):197-205. 

58. Xiao L, Pimentel DR, Wang J, Singh K, Colucci WS, Sawyer DB: Role of reactive 

oxygen species and NAD (P) H oxidase in α1-adrenoceptor signaling in adult rat 

cardiac myocytes. American Journal of Physiology-Cell Physiology 2002, 282(4):C926-

C934. 

59. Görlach A, Brandes R, Nguyen K, Amidi M, Dehghani F, Busse R: A gp91phox 

containing NADPH oxidase selectively expressed in endothelial cells is a major 

source of oxygen radical generation in the arterial wall. Circulation Research 2000, 

87(1):26-32. 

60. Lu L, Quinn MT, Sun Y: Oxidative stress in the infarcted heart: role of de novo 

angiotensin II production. Biochemical and biophysical research communications 

2004, 325(3):943-951. 

61. Fukui T, Yoshiyama M, Hanatani A, Omura T, Yoshikawa J, Abe Y: Expression of p22-

phox and gp91-phox, essential components of NADPH oxidase, increases after 



36 

 

 

 

myocardial infarction. Biochemical and biophysical research communications 2001, 

281(5):1200-1206. 

62. Kinugawa S, Tsutsui H, Hayashidani S, Ide T, Suematsu N, Satoh S, Utsumi H, 

Takeshita A: Treatment with dimethylthiourea prevents left ventricular remodeling 

and failure after experimental myocardial infarction in mice role of oxidative stress. 

Circulation Research 2000, 87(5):392-398. 

63. Grieve DJ, Byrne JA, Cave AC, Shah AM: Role of oxidative stress in cardiac 

remodelling after myocardial infarction. Heart, Lung and Circulation 2004, 13(2):132-

138. 

64. Howden R: Nrf2 and cardiovascular defense. Oxidative medicine and cellular longevity 

2013, 2013. 

65. Zhou S, Sun W, Zhang Z, Zheng Y: The role of Nrf2-mediated pathway in cardiac 

remodeling and heart failure. Oxidative medicine and cellular longevity 2014, 2014. 

66. Liu R-M, Pravia KG: Oxidative stress and glutathione in TGF-β-mediated 

fibrogenesis. Free Radical Biology and Medicine 2010, 48(1):1-15. 

67. Rahman I, Biswas SK, Jimenez LA, Torres M, Forman HJ: Glutathione, stress 

responses, and redox signaling in lung inflammation. Antioxidants & redox signaling 

2005, 7(1-2):42-59. 

68. Li Y, Huang T-T, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, 

Berger C, Chan PH: Dilated cardiomyopathy and neonatal lethality in mutant mice 

lacking manganese superoxide dismutase. Nature genetics 1996(11):376-381. 

69. Carlsson L, Jonsson J, Edlund T, Marklund S: Mice lacking extracellular superoxide 

dismutase are more sensitive to hyperoxia. Proceedings of the National Academy of 

Sciences 1995, 92(14):6264-6268. 

70. Belch J, Bridges A, Scott N, Chopra M: Oxygen free radicals and congestive heart 

failure. British heart journal 1991, 65(5):245-248. 

71. Hill MF, Singal PK: Antioxidant and oxidative stress changes during heart failure 

subsequent to myocardial infarction in rats. The American journal of pathology 1996, 

148(1):291. 

72. Hill MF, Singal PK: Right and left myocardial antioxidant responses during heart 

failure subsequent to myocardial infarction. Circulation 1997, 96(7):2414-2420. 

73. Mallat Z, Philip I, Lebret M, Chatel D, Maclouf J, Tedgui A: Elevated Levels of 8-iso-

Prostaglandin F2α in Pericardial Fluid of Patients With Heart Failure A Potential 

Role for In Vivo Oxidant Stress in Ventricular Dilatation and Progression to Heart 

Failure. Circulation 1998, 97(16):1536-1539. 

74. Dhalla AK, Singal PK: Antioxidant changes in hypertrophied and failing guinea pig 

hearts. American Journal of Physiology-Heart and Circulatory Physiology 1994, 

266(4):H1280-H1285. 

75. Siveski-Iliskovic N, Kaul N, Singal P: Probucol promotes endogenous antioxidants 

and provides protection against adriamycin-induced cardiomyopathy in rats. 

Circulation 1994, 89(6):2829-2835. 

76. Usal A, ACARTÜRK E, YÜREGIR GT, ÜNLÜKURT I, Demirci C, Kurt HI, Birand A: 

Decreased glutathione levels in acute myocardial infarction. Japanese heart journal 

1996, 37(2):177-182. 

77. Siwik DA, Tzortzis JD, Pimental DR, Chang DL-F, Pagano PJ, Singh K, Sawyer DB, 

Colucci WS: Inhibition of copper-zinc superoxide dismutase induces cell growth, 



37 

 

 

 

hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. 

Circulation research 1999, 85(2):147-153. 

78. Siwik DA, Pagano PJ, Colucci WS: Oxidative stress regulates collagen synthesis and 

matrix metalloproteinase activity in cardiac fibroblasts. American Journal of 

Physiology-Cell Physiology 2001, 280(1):C53-C60. 

79. Li P-F, Dietz R, von Harsdorf R: Superoxide induces apoptosis in cardiomyocytes, but 

proliferation and expression of transforming growth factor-β1 in cardiac 

fibroblasts. FEBS letters 1999, 448(2):206-210. 

80. Gottlieb RA, Burleson K, Kloner RA, Babior B, Engler R: Reperfusion injury induces 

apoptosis in rabbit cardiomyocytes. Journal of Clinical Investigation 1994, 94(4):1621. 

81. Kajstura J, Zhang X, Liu Y, Szoke E, Cheng W, Olivetti G, Hintze TH, Anversa P: The 

cellular basis of pacing-induced dilated cardiomyopathy myocyte cell loss and 

myocyte cellular reactive hypertrophy. Circulation 1995, 92(8):2306-2317. 

82. Teiger E, Than V, Richard L, Wisnewsky C, Tea B-S, Gaboury L, Tremblay J, Schwartz 

K, Hamet P: Apoptosis in pressure overload-induced heart hypertrophy in the rat. 

Journal of Clinical Investigation 1996, 97(12):2891. 

83. Chen C-J, Yu W, Fu Y-C, Wang X, Li J-L, Wang W: Resveratrol protects 

cardiomyocytes from hypoxia-induced apoptosis through the SIRT1–FoxO1 

pathway. Biochemical and biophysical research communications 2009, 378(3):389-393. 

84. Cesselli D, Jakoniuk I, Barlucchi L, Beltrami AP, Hintze TH, Nadal-Ginard B, Kajstura 

J, Leri A, Anversa P: Oxidative stress–mediated cardiac cell death is a major 

determinant of ventricular dysfunction and failure in dog dilated cardiomyopathy. 

Circulation research 2001, 89(3):279-286. 

85. Yao K, Tan J, Gu W-z, Ye P-P, Wang K-j: Reactive oxygen species mediates the 

apoptosis induced by transforming growth factor β 2 in human lens epithelial cells. 

Biochemical and biophysical research communications 2007, 354(1):278-283. 

86. Herrera B, Murillo MM, Alvarez-Barrientos A, Beltrán J, Fernández M, Fabregat I: 

Source of early reactive oxygen species in the apoptosis induced by transforming 

growth factor-β in fetal rat hepatocytes. Free Radical Biology and Medicine 2004, 

36(1):16-26. 

87. Albright CD, Salganik RI, Craciunescu CN, Mar MH, Zeisel SH: Mitochondrial and 

microsomal derived reactive oxygen species mediate apoptosis induced by 

transforming growth factor‐β1 in immortalized rat hepatocytes. Journal of cellular 

biochemistry 2003, 89(2):254-261. 

88. Kumar D, Kirshenbaum LA, Li T, Danelisen I, Singal PK: Apoptosis in adriamycin 

cardiomyopathy and its modulation by probucol. Antioxidants and Redox Signaling 

2001, 3(1):135-145. 

89. Sia YT, Lapointe N, Parker TG, Tsoporis JN, Deschepper CF, Calderone A, Pourdjabbar 

A, Jasmin J, Sarrazin J, Liu P: Beneficial effects of long-term use of the antioxidant 

probucol in heart failure in the rat. Circulation 2002, 105(21):2549-2555. 

90. Tsukamoto H: Oxidative stress, antioxidants, and alcoholic liver fibrogenesis. Alcohol 

1993, 10(6):465-467. 

91. Mastruzzo C, Crimi N, Vancheri C: Role of oxidative stress in pulmonary fibrosis. 

Monaldi archives for chest disease= Archivio Monaldi per le malattie del 

torace/Fondazione clinica del lavoro, IRCCS [and] Istituto di clinica tisiologica e 



38 

 

 

 

malattie apparato respiratorio, UniversitÃ di Napoli, Secondo ateneo 2001, 57(3-4):173-

176. 

92. Hecker L, Vittal R, Jones T, Jagirdar R, Luckhardt TR, Horowitz JC, Pennathur S, 

Martinez FJ, Thannickal VJ: NADPH oxidase-4 mediates myofibroblast activation 

and fibrogenic responses to lung injury. Nature medicine 2009, 15(9):1077-1081. 

93. Cheng E, Souza RF, Spechler SJ: Tissue remodeling in eosinophilic esophagitis. 

American Journal of Physiology-Gastrointestinal and Liver Physiology 2012, 

303(11):G1175-G1187. 

94. Sorescu D, Griendling KK: Reactive oxygen species, mitochondria, and NAD (P) H 

oxidases in the development and progression of heart failure. Congestive Heart 

Failure 2002, 8(3):132-140. 

95. Higuchi Y, Otsu K, Nishida K, Hirotani S, Nakayama H, Yamaguchi O, Matsumura Y, 

Ueno H, Tada M, Hori M: Involvement of reactive oxygen species-mediated NF-κ B 

activation in TNF-α-induced cardiomyocyte hypertrophy. Journal of molecular and 

cellular cardiology 2002, 34(2):233-240. 

96. Shah AM, Mann DL: In search of new therapeutic targets and strategies for heart 

failure: recent advances in basic science. The Lancet 2011, 378(9792):704-712. 

97. Haldar SM, Ibrahim OA, Jain MK: Kruppel-like Factors (KLFs) in muscle biology. 

Journal of molecular and cellular cardiology 2007, 43(1):1-10. 

98. Prosdocimo DA, Sabeh MK, Jain MK: Kruppel-like factors in muscle health and 

disease. Trends in cardiovascular medicine 2014. 

99. Fisch S, Gray S, Heymans S, Haldar S, Wang B, Zhu Y, Liao R, Pinto Y, Jain M: 

KRUPPEL‐LIKE FACTOR 15 IS A NOVEL REGULATOR OF 

CARDIOMYOCYTE HYPERTROPHY.: 38. Journal of Investigative Medicine 2007, 

55(2):S354. 

100. Shindo T, Manabe I, Fukushima Y, Tobe K, Aizawa K, Miyamoto S, Kawai-Kowase K, 

Moriyama N, Imai Y, Kawakami H: Krüppel-like zinc-finger transcription factor 

KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of 

cardiovascular remodeling. Nature medicine 2002, 8(8):856-863. 

101. Bhattacharya R, SenBanerjee S, Lin Z, Mir S, Hamik A, Wang P, Mukherjee P, 

Mukhopadhyay D, Jain MK: Inhibition of vascular permeability factor/vascular 

endothelial growth factor-mediated angiogenesis by the Kruppel-like factor KLF2. 

Journal of Biological Chemistry 2005, 280(32):28848-28851. 

102. Das H, Kumar A, Lin Z, Patino WD, Hwang PM, Feinberg MW, Majumder PK, Jain 

MK: Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of 

monocytes. Proceedings of the National Academy of Sciences 2006, 103(17):6653-6658. 

103. Gray S, Wang B, Orihuela Y, Hong E-G, Fisch S, Haldar S, Cline GW, Kim JK, Peroni 

OD, Kahn BB: Regulation of gluconeogenesis by Krüppel-like factor 15. Cell 

metabolism 2007, 5(4):305-312. 

104. Nuez B, Michalovich D, Bygrave A, Ploemacher R, Grosveld F: Defective 

haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature: 

international weekly journal of science 1995, 375(6529):316-318. 

105. Chin MT: KLF15 and cardiac fibrosis: The heart thickens. Journal of molecular and 

cellular cardiology 2008, 45(2):165. 

106. Wang B, Haldar SM, Lu Y, Ibrahim OA, Fisch S, Gray S, Leask A, Jain MK: The 

Kruppel-like factor KLF15 inhibits connective tissue growth factor (CTGF) 



39 

 

 

 

expression in cardiac fibroblasts. Journal of molecular and cellular cardiology 2008, 

45(2):193-197. 

107. Lavallée G, Andelfinger G, Nadeau M, Lefebvre C, Nemer G, Horb ME, Nemer M: The 

Kruppel‐like transcription factor KLF13 is a novel regulator of heart development. 

The EMBO journal 2006, 25(21):5201-5213. 

108. Kelsey L, Flenniken AM, Qu D, Funnell AP, Pearson R, Zhou Y-Q, Voronina I, 

Berberovic Z, Wood G, Newbigging S: ENU-induced mutation in the DNA-binding 

domain of KLF3 reveals important roles for KLF3 in cardiovascular development 

and function in mice. PLoS genetics 2013, 9(7):e1003612. 

109. Nagai R, Shindo T, Manabe I, Suzuki T, Kurabayashi M: KLF5/BTEB2, a Krüppel-like 

zinc-finger type transcription factor, mediates both smooth muscle cell activation 

and cardiac hypertrophy. In: Molecular and Cellular Aspects of Muscle Contraction. 

Springer; 2003: 57-66. 

110. Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, Shindo T, Sano 

M, Otsu K, Snider P: Cardiac fibroblasts are essential for the adaptive response of 

the murine heart to pressure overload. The Journal of clinical investigation 2010, 

120(1):254. 

111. Rajamannan NM, Subramaniam M, Abraham TP, Vasile VC, Ackerman MJ, Monroe 

DG, Chew TL, Spelsberg TC: TGFβ inducible early gene‐1 (TIEG1) and cardiac 

hypertrophy: Discovery and characterization of a novel signaling pathway. Journal 

of cellular biochemistry 2007, 100(2):315-325. 

112. Yoshida T, Gan Q, Franke AS, Ho R, Zhang J, Chen YE, Hayashi M, Majesky MW, 

Somlyo AV, Owens GK: Smooth and cardiac muscle-selective knock-out of Krüppel-

like factor 4 causes postnatal death and growth retardation. Journal of Biological 

Chemistry 2010, 285(27):21175-21184. 

113. Prosdocimo DA, Anand P, Liao X, Zhu H, Shelkay S, Artero-Calderon P, Zhang L, Kirsh 

J, Rosca MG, Vazquez E: Kruppel-like factor 15 is a critical regulator of cardiac lipid 

metabolism. Journal of Biological Chemistry 2014, 289(9):5914-5924. 

114. Prosdocimo DA, John JE, Zhang L, Efraim ES, Zhang R, Liao X, Jain MK: KLF15 and 

PPARα Cooperate to Regulate Cardiomyocyte Lipid Gene Expression and 

Oxidation. PPAR research 2015, 2015. 

115. Jeyaraj D, Haldar SM, Wan X, McCauley MD, Ripperger JA, Hu K, Lu Y, Eapen BL, 

Sharma N, Ficker E: Circadian rhythms govern cardiac repolarization and 

arrhythmogenesis. Nature 2012, 483(7387):96-99. 

116. Haldar SM, Lu Y, Jeyaraj D, Kawanami D, Cui Y, Eapen SJ, Hao C, Li Y, Doughman Y-

Q, Watanabe M: Klf15 deficiency is a molecular link between heart failure and aortic 

aneurysm formation. Science translational medicine 2010, 2(26):26ra26-26ra26. 

117. Xu J, Gong NL, Bodi I, Aronow BJ, Backx PH, Molkentin JD: Myocyte enhancer 

factors 2A and 2C induce dilated cardiomyopathy in transgenic mice. Journal of 

Biological Chemistry 2006, 281(14):9152-9162. 

118. Liang Q, De Windt LJ, Witt SA, Kimball TR, Markham BE, Molkentin JD: The 

transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in 

vitro and in vivo. Journal of Biological Chemistry 2001, 276(32):30245-30253. 

119. Molkentin JD, Markham B: Myocyte-specific enhancer-binding factor (MEF-2) 

regulates alpha-cardiac myosin heavy chain gene expression in vitro and in vivo. 

Journal of Biological Chemistry 1993, 268(26):19512-19520. 



40 

 

 

 

120. Gray S, Feinberg MW, Hull S, Kuo CT, Watanabe M, Sen S, DePina A, Haspel R, Jain 

MK: The Krüppel-like factor KLF15 regulates the insulin-sensitive glucose 

transporter GLUT4. Journal of Biological Chemistry 2002, 277(37):34322-34328. 

121. Chen T, Li J, Liu J, Li N, Wang S, Liu H, Zeng M, Bu P, Zhang Y: Activation of SIRT3 

by resveratrol ameliorates cardiac fibrosis and improves cardiac function via TGF-

β/Smad3 pathway. American journal of physiology Heart and circulatory physiology 

2014:ajpheart. 00454.02014-ajpheart. 00454.02014. 

122. Clerk A, Kemp TJ, Zoumpoulidou G, Sugden PH: Cardiac myocyte gene expression 

profiling during H2O2-induced apoptosis. Physiological genomics 2007, 29(2):118-

127. 

123. Vendrov AE, Madamanchi NR, Hakim ZS, Rojas M, Runge MS: Thrombin and NAD 

(P) H Oxidase–Mediated Regulation of CD44 and BMP4-Id Pathway in VSMC, 

Restenosis, and Atherosclerosis. Circulation research 2006, 98(10):1254-1263. 

124. Cullingford TE, Butler MJ, Marshall AK, Sugden PH, Clerk A: Differential regulation 

of Krüppel-like factor family transcription factor expression in neonatal rat cardiac 

myocytes: effects of endothelin-1, oxidative stress and cytokines. Biochimica et 

Biophysica Acta (BBA)-Molecular Cell Research 2008, 1783(6):1229-1236. 

125. Szmitko PE, Verma S: Red wine and your heart. Circulation 2005, 111(2):e10-e11. 

126. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, 

Farnsworth NR, Kinghorn AD, Mehta RG: Cancer chemopreventive activity of 

resveratrol, a natural product derived from grapes. Science 1997, 275(5297):218-

220. 

127. Su H-C, Hung L-M, Chen J-K: Resveratrol, a red wine antioxidant, possesses an 

insulin-like effect in streptozotocin-induced diabetic rats. American Journal of 

Physiology-Endocrinology and Metabolism 2006, 290(6):E1339-E1346. 

128. Pervaiz S: Resveratrol: from grapevines to mammalian biology. The FASEB journal 

2003, 17(14):1975-1985. 

129. Sun AY, Simonyi A, Sun GY: The “French paradox” and beyond: neuroprotective 

effects of polyphenols 1, 2. Free Radical Biology and Medicine 2002, 32(4):314-318. 

130. Hung LM, Su MJ, Chu WK, Chiao CW, Chan WF, Chen JK: The protective effect of 

resveratrols on ischaemia‐reperfusion injuries of rat hearts is correlated with 

antioxidant efficacy. British journal of pharmacology 2002, 135(7):1627-1633. 

131. Leonard SS, Xia C, Jiang B-H, Stinefelt B, Klandorf H, Harris GK, Shi X: Resveratrol 

scavenges reactive oxygen species and effects radical-induced cellular responses. 

Biochemical and biophysical research communications 2003, 309(4):1017-1026. 

132. Bradamante S, Barenghi L, Villa A: Cardiovascular protective effects of resveratrol. 

Cardiovascular drug reviews 2004, 22(3):169-188. 

133. Cao Z, Li Y: Potent induction of cellular antioxidants and phase 2 enzymes by 

resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury. 

European journal of pharmacology 2004, 489(1):39-48. 

134. Li Y, Cao Z, Zhu H: Upregulation of endogenous antioxidants and phase 2 enzymes 

by the red wine polyphenol, resveratrol in cultured aortic smooth muscle cells leads 

to cytoprotection against oxidative and electrophilic stress. Pharmacological research 

2006, 53(1):6-15. 

135. Li H, Xia N, Förstermann U: Cardiovascular effects and molecular targets of 

resveratrol. Nitric Oxide 2012, 26(2):102-110. 



41 

 

 

 

136. Soner BC, Şahin AS: Cardiovascular effects of resveratrol and atorvastatin 

treatments in an H2O2‑induced stress model. Experimental and therapeutic medicine 

2014, 8(5):1660-1664. 

137. Lin J-F, Lin S-M, Chih C-L, Nien M-W, Su H-H, Hu B-R, Huang S-S, Tsai S-K: 

Resveratrol reduces infarct size and improves ventricular function after myocardial 

ischemia in rats. Life sciences 2008, 83(9):313-317. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



42 

 

 

 

CHAPTER TWO 

 

ANTIOXIDANT THERAPY ATTENUATES POST-INFARCT CARDIAC REMODELING 

BY DRIVING EXPRESSION OF KRÜPPEL-LIKE FACTOR 15 

 

INTRODUCTION 

Myocardial infarction (MI) results in severe biochemical, physiological, and cellular 

changes and often leads to alterations in the structure and function of the myocardium [1]. The 

structural changes, referred to as cardiac remodeling, are an adaptive response to the ischemic 

insult in order to maintain myocardial homeostasis during the acute phase of cardiac injury. 

However, pathological stimuli such as oxidative stress potentiate the magnitude of the remodel-

ing response and are associated with progressive worsening of cardiac function [2, 3]. Hallmarks 

of cardiac remodeling following MI may include: loss of viable myocardium, interstitial collagen 

deposition, cardiac hypertrophy, cardiomyocyte apoptosis, and systolic dysfunction. Collec-

tively, these remodeling events are identified as ischemic cardiomyopathy [3].  

In an otherwise healthy heart, reactive oxygen species (ROS) are rapidly neutralized by a 

variety of endogenous enzymatic and non-enzymatic antioxidant systems [4]. In contrast, MI can 

result in oxidant production and suppressed oxidant clearance [5]. Further, increased oxidative 

stress due to accelerated oxidant production and attenuated scavenging systems has been linked 

to the pathophysiology of ischemic cardiomyopathy [6, 7]. For example, expression of the super-

oxide-generating enzyme, NADPH oxidase (Nox), increases after an MI, which is directly asso-

ciated with cardiac remodeling and dysfunction [8]. In parallel, persistent oxidative stress in 
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hearts with ischemic cardiomyopathy is associated with depressed endogenous antioxidant de-

fense and potentiated cardiac remodeling and dysfunction [7], suggesting that uncontrolled oxi-

dative stress plays a key role in disease progression. 

To combat oxidative stress, several mammalian genes harbor an antioxidant response ele-

ment (ARE) in their promoter region such as the superoxide scavenging enzyme, superoxide dis-

mutase (SOD) and the hydrogen peroxide scavenging enzyme, catalase (CAT) [9]. A major 

trans-activator of the AREs is the nuclear factor-erythroid 2-related factor (Nrf2) [9]. Many of 

the Nrf2-regulated antioxidant genes are essential in the prevention of cardiovascular disease 

[10] and their dysregulation is strongly associated with heart failure [11, 12].  

A major end-product of Nrf2/ARE signaling is glutathione (GSH), the most abundant 

thiol antioxidant in cardiomyocytes. Importantly, GSH is a key determinant of redox signaling, 

detoxification of xenobiotics, modulates apoptosis, immune function, and fibrogenesis [13]. In-

terestingly, chronic oxidative stress plays a dominant role in GSH depletion in many redox-de-

pendent diseases [14] and is associated with progressive worsening of the condition [15]. Fur-

ther, several experimental studies have demonstrated that oxidative stress drives most, if not all, 

of the changes thought to contribute to cardiac remodeling [15-17]. Therefore, therapeutic inter-

ventions to restore the GSH pool and reduce persistent oxidative stress may attenuate the potenti-

ated cardiac remodeling response and lessen the severity of cardiomyopathies.  

Resveratrol (3, 5, 4-trihydroxystillbene) is a natural polyphenolic phytoalexin commonly 

found in the skin of grapes and peanuts. Importantly, resveratrol alleviates oxidative stress by di-

rectly scavenging ROS [18] and by driving Nrf2/ARE signaling [19]. Moreover, resveratrol use 

is becoming increasingly common for chronic diseases such as cancer [20], diabetes [21], and 

cardiovascular disease [22]. However, the redox-sensitive regulatory mechanisms involved in 
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pathophysiological gene expression associated with disease progression remain to be fully identi-

fied.   

In response to oxidative stress, the transcriptional regulator Krüppel-like factor 15 

(KLF15) is down-regulated in cultured cardiomyocytes [23] and vascular smooth muscle cells 

[24], which suggests it may extrapolate to in vivo conditions. Importantly, KLF15 has been iden-

tified as an antagonist to gene expression associated with cardiac remodeling in response to sus-

tained pathological stimuli. More specifically, KLF15 inhibits the transcription of connective tis-

sue growth factor (CTGF) by binding to its promoter [25], as well represses the transcriptional 

activity of myocyte enhancer factor 2 (Mef2) and GATA binding protein 4 (GATA), two im-

portant transcription factors associated with cardiac hypertrophy [26, 27]. However, the influ-

ence of persistent oxidative stress on KLF15-dependent signaling in a model of ischemic cardio-

myopathy remains unknown. Accordingly, the purpose of this study was: (1) to determine the ef-

ficacy of resveratrol treatment on cardiac remodeling, (2) to determine the ability of resveratrol 

to drive Nrf2/ARE signaling, and (3) to determine the ability of resveratrol to manipulate KLF15 

expression and signaling in vivo in a small animal model of ischemic cardiomyopathy. We hy-

pothesize that chronic oxidative stress driven by the ischemic insult will down-regulate KLF15 

signaling and permit the expression of cardiac genes associated with pathological remodeling. 

 

METHODS 

Animals. 

Male Sprague – Dawley rats ~2 months old (Charles River Laboratories, Wilmington, 

MA) were housed in groups of 2 animals per cage, supplied with food and water ad libitum, and 
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maintained in a room at 20 – 22°C with a 12 hour photoperiod. All procedures were approved by 

the Georgia State University Institutional Animal Care and Use Committee. 

 

Experimental Design. 

Myocardial infarction (MI) was surgically induced by permanent ligation of the left ante-

rior descending artery (LAD) under isoflurane anesthesia. Animals that survived the surgery 

were randomly selected to receive daily intraperitoneal (i.p.) injections of resveratrol (Chro-

maDex, Irvine, CA; 10 mg/kg) dissolved in dimethyl sulfoxide (DMSO) or an equal volume of 

the vehicle, DMSO. Sham operated animals underwent the same pre- and post-surgical proce-

dures as the MI group up to and including a left lateral thoracotomy and were also randomly se-

lected to receive daily i.p. injections of resveratrol or vehicle. Treatments began after the animal 

recovered from the appropriate surgical procedure and continued for 28 days.  

Animals were euthanized with carbon dioxide inhalation followed by a bilateral thoracot-

omy. Hearts were perfused with ice-cold phosphate buffered saline (PBS), weighed, and cut in 

the transverse plane at the level of the papillary muscles. The apical portion of the myocardium 

was cut at the mid-papillary muscle level and suspended in tissue freezing medium, rapidly fro-

zen in 2-methylbutane cooled in liquid nitrogen and sectioned for histological and immunohisto-

chemical analyses. The remaining left ventricular free wall consisting of both the viable myocar-

dium and infarct scar was immediately frozen in liquid nitrogen and stored at -80°C for biochem-

ical analyses. 
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Experimental Methods 

Left Anterior Descending Artery Ligation 

Animals were given a single pre-operative dose of Carprofen (5 mg/kg) subcutaneously 

(s.q.) one hour prior to surgery. Anesthesia was induced by exposing rats to 5% isoflurane gas 

and maintained at 2% and 1.5L O2 per minute. Animals were then intubated using a 14G endo-

tracheal tube (over the needle catheter), connected to a small animal ventilator (Harvard Appa-

ratus, South Natick, MA), and secured to temperature controlled platform to maintain core body 

temperature between 35 and 37°C. An incision was made into the skin following the natural an-

gle of the pectoralis major. The superficial and deep musculatures were reflected to expose the 

intercostal muscles. A transverse incision was made into the 4th intercostal space and the ribs 

were retracted exposing the thoracic cavity viscera. The LAD was permanently ligated using a 5-

0 silk suture. Next, the thoracic cavity was closed using a 4-0 silk suture with a cross-stitch and 

the deep and superficial musculature was closed using a 5-0 silk suture with a simple continuous 

stitch. Finally, the skin incision was sutured using a 6-0 nylon suture with a simple interrupted 

stitch. Carprofen administration (s.q. 5 mg/kg) for post-operative pain alleviation was continued 

once daily for 3 days following the surgery. 

 

Cardiac Morphology 

Transverse serial cryosections were cut at 10 µm at the mid-papillary level toward the 

apex using a cryostat (Leica CM1850, Leica, Germany) and adhered to superfrost microscope 

slides. Cryosections were then processed for hematoxylin & eosin (H&E) staining and Masson’s 

trichrome staining using a commercially available kit (American MasterTech Scientific, Lodi, 

CA) according to the manufacturer’s recommended protocol. Histological slides were visualized 
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using a VanGuard light microscope (VEE GEE Scientific, Kirkland, WA). Images were captured 

using ISCapture software (Xintu Photonics, Fujian, China). Cardiomyocyte cross-sectional area 

was calculated as the average area of approximately 50 myocytes from the border zone per H&E 

stained section from 3-5 sections per heart separated by approximately 400 µm. Myocardial in-

farct scar size was calculated using the midline length method as previous described [28] . 

Briefly, the left ventricular midline was drawn at the center of the epicardial and endocardial sur-

faces along the length of the infarct scar that consisted of greater than 50% of the thickness of the 

myocardial wall. The infarct scar size was calculated by dividing the sum of the midline length 

measurements by the sum of the midline circumference from 5 Masson’s trichrome stained sec-

tions per heart separated by approximately 400 µm and multiplying by 100. Measurements of 

cardiomyocyte cross-sectional area and infarct scar size were calculated using ImageJ software 

(National Institutes of Health, Bethesda, MD). 

 

Terminal Deoxynucleotide Transferase dUTP Nick End-Labeling (TUNEL) Staining 

Transverse serial crysections cut at 10 µm were processed for apoptotic cell death detec-

tion using a commercially available TUNEL staining kit (PromoKine, Heidelberg, Germany) ac-

cording to the manufacturer’s recommended protocol. The apoptotic index was calculated as the 

number of TUNEL positive nuclei relative to the number of total nuclei from 10 fields per sec-

tion and multiplied by 100.  

 

Immunoblotting 

Tissue samples from the left ventricular free wall were cut in the transverse plane. Ice-

cold RIPA buffer (Thermo Scientific, Rockford, IL) supplemented with a protease inhibitor 
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cocktail (Thermo Scientific, Rockford, IL) was added to the tissues that were then homogenized 

using and electric homogenizer. The homogenate was then aliquoted and centrifuged at 10,000 g 

for 15 minutes at 4°C. Total protein concentration of the supernatant and whole tissue homoge-

nate was measured using a bicinchoninic acid (BCA) assay (Thermo Scientific, Rockford, IL). 

Tissue homogenates were diluted in a 2X loading buffer containing glycerol and boiled at 100°C 

for 4 minutes. Thirty µg of protein was resolved on a 4 – 20% gradient sodium dodecyl sulfate 

(SDS) polyacrylamide gel at 120 V for 60 minutes. Proteins were then immobilized on a nitro-

cellulose membrane using a Trans-Blot Turbo transfer system (Bio-Rad, Hercules, CA) at 25 V 

for 30 minutes. Membranes were then blocked for 1 hour at room temperature in 5% non-fat 

dried milk (w/v) dissolved in tris-buffered saline with 0.05% Tween-20 (TBS-T) on an orbital 

shaker then stored overnight at 4°C. Following the block, membranes were probed with anti-

Nrf2 (1:1000, R&D Systems) and anti-KLF15 (1:1000, Thermo Scientific, Rockford, IL) anti-

bodies for 2 hours at room temperature on an orbital shaker. Following incubation with primary 

antibodies, membranes were washed with TBS-T (3 x 15 minutes) and then probed with the ap-

propriate horseradish peroxidase conjugated secondary antibody (1:20000) for 1 hour at room 

temperature on an orbital shaker and washed. After the final wash, membranes were incubated in 

an enhanced chemiluminescent solution (Thermo Scientific, Rockford, IL) and immunoreactivity 

was visualized using a ChemiDoc imaging station (Bio-Rad Laboratories, Hercules, CA). Band 

density was quantified using Image Lab v4.0 software (Bio-Rad Laboratories, Hercules, CA) and 

normalized to Ponceau S stained bands.  
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Quantitative Real Time-Polymerase Chain Reaction 

Tissue samples from the left ventricular free wall were cut in the transverse plane. Trizol 

was added to the tissues (1 mL/100 mg tissue) that were then homogenized using an electric tis-

sue homogenizer. Total RNA (1 µg) was reverse transcribed in a 20 µL final reaction volume us-

ing iScript Advanced cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA) according to the 

manufacturer’s recommended protocol. Real time PCR products were analyzed using Applied 

Biosystems 7500 Fast Real-Time PCR system. cDNA (5 µL of a 1:10 dilution) was amplified in 

a 25 µL reaction containing 1 nM gene-specific primer pair and iQ Sybr Green Supermix (Bio-

Rad Laboratories, Hercules, CA). Primer sequences were designed using Primer3 and are listed 

in Table 2. Samples were incubated at 95°C for 15 minutes followed by 40 cycles of denatura-

tion, annealing, and extension at 95°C, 60°C, and 72°C, respectively, with fluorescence recorded 

at the end of each annealing step. All reactions were performed in duplicate and the starting 

quantities of the genes of interest were normalized to 18S rRNA (Ambion, Austin, TX). The 2-

ΔΔCt
 method was used to analyze alterations in gene expression and values were expressed as fold 

change relative to control [29]. 

 

Statistical Analysis 

An independent t-test or factorial analysis of variance (ANOVA; group by treatment) was 

used for comparisons followed by Bonferroni post-hoc tests using SigmaPlot v11.0 software 

(Systat Software, San Jose, CA). Values are reported as mean ± SEM. Statistical significance 

was accepted at p ≤ 0.05. 
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RESULTS 

Chronic Ischemia Induces Structural Remodeling of the Myocardium 

 Hearts from MI animals were significantly enlarged (p ≤ 0.001) (Table 2) and displayed a 

significant loss of viable myocardium to the left ventricular free wall (Figure 6A). This loss of 

contractile tissue was replaced with fibrous scar tissue containing a significant quantity of colla-

gen (Figure 6A). Moreover, cardiomyocytes in the MI border zone increased in average cross-

sectional area (CSA; p ≤ 0.001) (Figure 7B). Additionally, cardiomyocytes adjacent to the border 

zone had significantly more apoptotic nuclei in untreated infarcted hearts (p ≤ 0.001) (Figure 7B) 

that was associated with an induction of the apoptotic signaling pathway (Figure 9A-C). Im-

portantly, resveratrol treatment markedly attenuated the infarct scar (by 18.2%, p = 0.027; Figure 

6B), the increase in average CSA of cardiomyocytes (by 13.9%, p = 0.004; Figure 7B), and the 

number of apoptotic nuclei (by 24.3%, p ≤ 0.001; Figure 8B). 

 

Resveratrol Restores Nrf2 Protein Expression and Mediates Cellular Redox State 

 Next, we assessed Nrf2 expression to determine if the beneficial effects of resveratrol 

treatment were associated with the induction of antioxidant defense mechanisms. In hearts from 

untreated MI animals, Nrf2 expression was reduced by 51.4% (p = 0.039) (Figure 10B). Interest-

ingly, Nrf2 expression in hearts from resveratrol treated MI animals was not different from un-

treated sham operated animals (p = 0.383) (Figure 10B).    

As a surrogate marker of Nrf2/ARE activity, we quantified mRNA expression levels of 

key Nrf2/ARE-dependent oxidant scavenging enzymes. MI tended to increase the expression of 

the superoxide-generating NADPH (Nox)-4 subunit by 300% (p = 0.12 [ns]) (Figure 11D). In 

contrast, this increase was attenuated in hearts from resveratrol treated MI animals. Interestingly, 
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these hearts exhibited a 400% increase in the mRNA transcripts of the cytoplasmic form of the 

superoxide scavenging enzyme (SOD)-1 (Cu/Zn-SOD1) (p = 0.08) (Figure 11A). In contrast, 

these hearts displayed no significant change in mRNA transcripts of the mitochondrial form 

(SOD)-2 (Mn-SOD2) (p = 0.325) (Figure 11B). Moreover, the mRNA expression of the hydro-

gen peroxide scavenging enzyme, CAT, is robustly increased in resveratrol treated infarcted 

hearts (p = 0.027) (Figure 11C).  

 Hearts from resveratrol treated MI animals displayed an increase in the mRNA expres-

sion of the two glutathione synthesizing enzymes, glutamate-cysteine ligase catalytic subunit 

(GLCL; p = 0.11 [ns]) (Figure 12A) and glutathione synthase (GSS; p ≤ 0.05) (Figure 12B). Ad-

ditionally, resveratrol treatment tended to increase mRNA transcripts of glutathione reductase 

(GSR) (p = 0.08 [ns]) (Figure 12C). In contrast, resveratrol treatment had no effect on glutathi-

one peroxidase (GPx-1) (p =0.245) (Figure 12D) mRNA expression. Interestingly, there was a 6-

fold increase in the glutathione-dependent detoxifying enzyme (glutathione S-transferase; GST; p 

≤ 0.05) (Figure 12E). 

 

 

Resveratrol Drives KLF15 Protein Expression to Regulate Cardiac Gene Expression 

 KLF15 protein expression was assessed to determine if resveratrol treatment could affect 

upstream transcriptional regulation of hypertrophic and fibrogenic genes. In hearts from un-

treated MI animals, KLF15 expression was reduced by 25.5% compared to hearts from untreated 

sham operated animals (p = 0.039) (Figure 13B). Interestingly, hearts from resveratrol treated MI 

animals displayed a marked increase in KLF15 expression that was significantly higher com-

pared to untreated sham operated animals (p = 0.017) (Figure 13B).   
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Next, genes associated with pathological cardiac remodeling were assessed to establish a 

role for KLF15 in a model of ischemic cardiomyopathy. mRNA transcripts of ANP and BNP, 

markers of cardiac hypertrophy, were increased 13- and 19-fold, respectively, in hearts from un-

treated MI animals (p = 0.041 and p = 0.01, respectively) (Figure 14A & B). Likewise, mRNA 

transcripts of TGF-β1 and CTGF, markers of cardiac fibrosis, were increased 4- and 6-fold, re-

spectively, in hearts from untreated MI animals (p = 0.037 and p = 0.024, respectively) (Figure 

14C & D). Importantly, the gene expressions of ANP, BNP, TGF-β1 and CTGF were markedly 

attenuated in hearts from resveratrol treated animals (p = ns, compared to both untreated MI and 

sham operated animals) (Figure 14A-D). 
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    Table 1. Real-Time PCR Primer Pairs 

Gene Accession No. Primer Sequences (5’ → 3’) 

ANP NM_012612.2 
F: TTCTCCATCACCAAGGGCTTC 

R: CTCTGAGACGGGTTGACTTCC 

BNP NM_031545.1 
F: GCCAGTCTCCAGAACAATCAA 

R: AAGTCTCTCCTGGATCCGGAA 

BCL-2 NM_016933.1 
F: CTCTTCAGGGATGGGGTGAAC 

R: CAGCCTCCGTTATCCTGGATC 

BAX NM_017059.2 
F: CGAATTGGCGATGAACTGGAC 

R: AGGACTCCAGCCACAAAGATG 

CASP3 NM_012922.2 
F: CTGGAATGTCAGCTCGCAATG 

R: TTCGGCTTTCCAGTCAGACTC 

CAT NM_012520 
F: GGACCAGTACAACTCCCAGAAG 

R: ACTCCATCCAGCGATGATTACT 

CTGF NM_022266.2 
F: GTCTCGCCGCCCTTCTTATTA 

R: TTCTGAGGGGAGAGAGACTGG 

GCLC NM_012815.2 
F: TGGCCAGCCGTACGGAGGAA 

R: CAGGGCAGCCTAGCCTGGGA 

GPx-1 NM_030826.3 
F: ACACCGCTTACTTTCCCTCTG 

R: GCCATTCTCCTAGGGAAAGCA 

GSR NM_053906.1 
F: GGGTGGTGTGCCCACGGTTC 

R: ATAACGCTGCGGCTGGGCAA 

GSS NM_012962.1 
F: TCACTGGACATGGGTGAAGA 

R: TCCATGAGGATGTAGGAGGC 

GST NM_177426 
F: CACAAGATCACCCAGAGCAA 

R: CCATAGCCTGGTTCTCCAAA 

Nox4 NM_053524 
F: GGGCCTAGGATTGTGTTTGA 

R: CTGAGAAGTTCAGGGCGTTC 

Cu/Zn-SOD1 NM_017050 
F: CTTCTGTCGTCTCCTTGCTTTT 

R: CCTGTAATCTGTCCTGACACCA 

Mn-SOD2 NM_017051 
F: TGTGGCTGAGCTGTTGTAATCT 

R: GATGGCCTTATGATGACAGTGA 

TGF-β1 NM_021578 
F: CTACTACGCCAAAGAAGTCACC 

R: CTGTATTCCGTCTCCTTGGTT 
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Table 2. Animal Body Weights (BW) and Heart Weights (HW)    

 Sham MI 

 Vehicle Resveratrol  Vehicle Resveratrol 

N 11 9  6 7 

BW (g) 401.7±7.3 384.4±7.9    391.0±10.8 386.1±16.6 

HW (mg) 1193.7±28.7 1206.9±27.7  1495.0±40.5* 1283.3±35.3 

HW:BW 2.91±0.05 3.07±0.04  3.83±0.13* 3.34±0.07*# 

Values are reported as means ± SEM. Significance was accepted at p ≤ 0.05.  

*, compared to untreated sham operated animals. #, compared to untreated MI animals.  

 

 

 
Figure 6. Myocardial Infarct Scar Size 

(A) Representative micrographs of infarct scar size in Masson’s trichrome stained sections. (B) 

Bar graph representing the infarct scar as a percentage of the left ventricle. Values are expressed 

as means ± SEM (n = 5-6 animals per group). Significance was accepted at p ≤ 0.05. *, com-

pared to untreated MI animals. 
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Figure 7. Cardiomyocyte Cross-Sectional Area 

(A) Representative micrographs of cross-sectional area in hematoxylin & eosin stained sections. 

(B) Bar graph representing average cross-sectional area of cardiomyocytes. Values are expressed 

as means ± SEM (n = 6 animals per group). Significance was accepted at p ≤ 0.05. Groups with 

the same letter are not statistically different. Images were magnified using a 10X objective and 

the magnification bar represents 100 µm. 
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Figure 8. Cardiomyocyte Apoptosis 

Representative micrographs of cross-sectional area in TUNEL stained sections (A). Bar graph 

representing the apoptotic index (B). Values are expressed as means ± SEM (n = 5-6 animals per 

group). Significance was accepted at p ≤ 0.05. Groups with the same letter are not statistically 

different. Yellow arrows indicate TUNEL positive nuclei. Images were magnified using a 40X 

objective and the magnification bar represents 25 µm. 
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Figure 9. Gene Expressions of Anti- and Pro-Apoptotic Factors 

Real-time PCR analyses of the (A) anti-apoptotic factor, B-cell lymphoma 2 (Bcl-2), and pro-

apoptotic factors, (B) Bcl-2-like protein 4 (Bax) and (C) Caspase-3 (CASP3). Data are repre-

sented as means ± range of potential values based on the 2-ΔΔCt method and expressed as fold 

changes relative to untreated sham operated rats (n = 5-6 animals per group). Significance was 

accepted at p ≤ 0.05. *, compared to untreated sham operated rats. 
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Figure 10. Nrf2 Protein Expression 

Representative immunoblot of Nrf2 protein expression and Ponceau S stained membranes. The 

bar graph represents normalized Nrf2 expression relative to the 25 kDa Ponceau S stained band 

density in arbitrary units. Values are expressed as means ± SEM (n = 3-5 animals per group). 

Groups with the same letter are not statistically different. 
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Figure 11. Gene Expressions of Antioxidant and Oxidant Enzymes 

Real-time PCR analyses of (A) Cu/Zn-superoxide dismutase-1 (Cu/Zn-SOD1) and (B) Mn-su-

peroxide dismutase-2 (Mn-SOD2), (C) catalase, and (D) NADPH oxidase-4 (Nox4). Data are 

represented as means ± range of potential values based on the 2-ΔΔCt method and expressed as 

fold changes relative to untreated sham operated rats (n = 4-6 animals per group). Significance 

was accepted at p ≤ 0.05. *, compared to untreated sham operated rats. 
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Figure 12. Gene Expressions of Glutathione Synthesizing and Handling Enzymes 

Real-time PCR analyses of (A) GCLC, (B) GSS, (C) GSR, (D) GPx-1, and (E) GST. Data are 

represented as means ± range of potential values based on the 2-ΔΔCt method and expressed as 

fold changes relative to untreated sham operated rats (n = 4-6 animals per group. Significance 

was accepted at p ≤ 0.05. *, compared to untreated sham operated rats. 
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Figure 13. KLF15 Protein Expression 

Representative immunoblot of KLF15 protein expression and Ponceau S stained membranes. Bar 

graph represents normalized KLF15 expression relative to the 44 kDa Ponceau S stained band 

density in arbitrary units. Values are expressed as means ± SEM (n = 4-6 animals per group). 

Groups with the same letter are not statistically different. 
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Figure 14. Gene Expressions of Hypertrophic and Fibrogenic Markers 

Real-time PCR analyses of (A) atrial and (B) B-type natriuretic peptides, and (C) transforming 

growth factor-β1 (TGF-β1) and (D) connective tissue growth factor (CTGF). Data are repre-

sented as means ± range of potential values based on the 2-ΔΔCt method and expressed as fold 

changes relative to untreated sham operated rats (n = 5-6 animals per group). Significance was 

accepted at p ≤ 0.05. *, compared to untreated sham operated animals. 
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DISCUSSION 

 In this study, we confirmed that four weeks of chronic myocardial ischemia resulted in 

profound structural changes to the myocardium that included left ventricular dilation, dense fi-

brotic tissue formation, cardiomyocyte hypertrophy, increased apoptotic cardiomyocytes, and 

heart enlargement. These derangements were associated with decreased Nrf2/ARE signaling and 

increased Nox4 expression that likely lead to persistent oxidative stress and reduced KLF15 sig-

naling. Attenuated KLF15 signaling may have permitted expression of several cardiac genes as-

sociated with potentiated remodeling of the myocardium. Importantly, daily treatment with 

resveratrol seems to have reduced chronic oxidative stress and ameliorated these derangements 

to the myocardium at the molecular, cellular, and organ levels.    

 In response to a myocardial infarction, fibrogenic and hypertrophic signaling pathways 

are activated and initially serve as an adaptive response to maintain cardiac function [3]. How-

ever, chronic pathological stimuli such as oxidative stress lead to continued remodeling and pro-

gressive deterioration of cardiac function [2, 8, 30]. Oxidative stress is associated with increased 

TGF-β1 signaling, natriuretic peptides (e.g., ANP and BNP), and increased apoptosis signaling 

have been reported in numerous and experimental studies [31-34]. Consistent with these reports, 

we demonstrated that infarcted hearts from untreated animals displayed a robust up-regulation of 

these fibrogenic, hypertrophic, and apoptotic markers. Importantly, we report that daily treatment 

with resveratrol reduced cardiac gene expression in response to chronic ischemia, which attenu-

ated the magnitude of cardiac remodeling. Together, our data provide evidence that persistent 

oxidative stress potentiates cardiac remodeling and worsens the severity of ischemic cardiomyo-

pathy. 



64 

 

 

 

In support of this notion, Looi et al. [35] demonstrated that expressions of Nox2 and 

Nox4 are elevated following a myocardial infarction. Further, infarcted hearts from these mice 

displayed a robust expression of fibrogenic and hypertrophic markers, and increased apoptotic 

nuclei. Interestingly, mice lacking the Nox2 isoform exhibited attenuated oxidative stress and re-

duced expression of several cardiac genes and apoptotic nuclei [35]. In parallel, Nox2 null mice 

displayed a significant reduction in the pathological phenotype associated with ischemic cardio-

myopathy [35]. Similarly, Qin et al. [36] reported that pharmacological inhibition of NADPH ox-

idase with apocynin was sufficient to reduce oxidative stress, cardiomyocyte apoptosis, and re-

modeling of the myocardium. Together, these studies highlight a pivotal role for NADPH oxi-

dases in inducing oxidative stress following a myocardial infarction and that genetic and pharma-

cological inhibition of the catalytic subunits of NADPH oxidase is sufficient to alleviate oxida-

tive stress and cardiac remodeling. Moreover, Shiomi et al. [12] demonstrated that mice genet-

ically engineered to overexpress the glutathione-dependent detoxifying enzyme, glutathione pe-

roxidase, were protected from cardiac remodeling and failure following a myocardial infarction. 

Taken together, these studies underscore the critical balance that oxidant generation and clear-

ance play in establishing the redox state. Further, an imbalance between these systems and per-

sistent oxidative stress appear to be responsible, at least in part, for driving cardiac remodeling 

through up-regulation of pathological cardiac gene expression. 

 Exposure to acute oxidative stress up-regulates the expression of Nrf2 and induces a ro-

bust Nrf2/ARE signaling cascade to protect the cell from oxidative damage [37]. For example, 

Nrf2 up-regulation protected cultured cardiomyocytes against oxidative stress and apoptosis [38, 

39]. In contrast, these cardiomyocytes were highly susceptible to oxidative stress and apoptosis 
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following knockdown of the Nrf2 gene. Together, these studies provide direct evidence to sup-

port a critical role for Nrf2 in cardioprotection against oxidative stress and apoptosis. However, 

chronic exposure to oxidative stress reduces the expression of Nrf2 and depletes cellular stores of 

glutathione [14, 40, 41]. Here, we reported that chronic ischemia down-regulated the expression 

of Nrf2 and concomitantly increased the expression of Nox4. These data suggest that untreated 

infarcted hearts experience chronic accumulation of reactive oxygen species and oxidative stress, 

which explains, in part, the up-regulation of pathological cardiac gene expression. In contrast, 

treatment with resveratrol induced Nrf2/ARE signaling and attenuated the expression of Nox4. 

Taken together, these data suggest that resveratrol effectively increased the endogenous antioxi-

dant systems and concomitantly reduced oxidant production.  

 To provide a further explanation for the efficacy of resveratrol treatment associated with 

oxidative stress alleviation, we demonstrated that the transcriptional regulator Krüppel-like fac-

tor 15 (KLF15) is redox-sensitive in vivo, which may regulate a host of pathological cardiac 

genes in a redox-dependent manor. For example, reports have documented that KLF15 regulates 

the transcription of CTGF [25], and the transcriptional activity of Mef2 and GATA4 [26, 27]. In 

support of this notion, we show that in conditions that likely induce persistent oxidative stress, 

KLF15 expression is markedly reduced, which may have permitted pathological cardiac gene ex-

pression observed in this study. Importantly, resveratrol treatment induced a robust expression of 

KLF15, which may, in part, explain the reduced cardiac gene expression and potentiated cardiac 

remodeling.  

Interestingly, KLF15 may also negatively regulate persistent oxidative stress to promote 

its own expression. For example, a recent study by Yu et al. [42] reported that KLF15 regulates 
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TGF-β1 expression in conditions of mechanical and metabolic stress. Further, accumulating evi-

dence demonstrates that TGF-β signaling up-regulates Nox4 expression in a variety of cells [43-

47]. The major mechanism involved in TGF-β-induced Nox4 expression appears to be mediated 

through the Smad2/3 pathway. In support of this, Boudreau et al. [48] demonstrated that TGF-β-

dependent Nox4 expression and subsequent oxidant generation can be quenched by genetic 

knockdown of Smad3, suggesting Nox4 expression occurs downstream to the Smad pathway 

[49]. Additionally, TGF-β1 has also been reported to suppress the synthesis of glutathione by 

quenching the expression of GCLC, the rate limiting enzyme in GSH synthesis [50-52]. Taken 

together, it is likely that in conditions of persistent TGF-β signaling, permitted by reduced 

KLF15 expression, may leave cardiomyocytes more susceptible to persistent oxidative stress. 

For example, oxidant production as a result of the initial ischemic insult drives TGF-β signaling 

by reducing KLF15 activity, this, in turn, potentiates superoxide production while suppressing 

the capacity of cardiomyocytes to neutralize oxidants. In a perpetual cycle of TGF-β-mediated 

oxidative stress, KLF15 activity remains repressed to permit the expression of hypertrophic and 

fibrogenic genes, which likely results in potentiated cardiac remodeling. 

 In support of this notion, we demonstrate that TGF-β1 and Nox4 mRNA transcripts are 

increased in conditions of reduced KLF15 expression. However, we show no appreciable de-

crease in GCLC mRNA transcripts. This may be due to an oxidative stress-mediated transcrip-

tional activation of the GCLC promoter at a proximal AP-1 element [53]. Nevertheless, sustained 

TGF-β1/Nox4 signaling likely generates substantial oxidative stress to sufficiently deplete cellu-

lar GSH. In contrast, inducing the expression of KLF15 with resveratrol treatment attenuated 

both TGF-β1 and Nox4 expression and increased mRNA transcripts of GCLC. Taken together, 
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our data support a role for KLF15 in the regulation of oxidative stress in conditions of mechani-

cal and metabolic stress mediated through a TGF-β1-dependent mechanism. 

 In conclusion, four weeks of chronic ischemia resulted in structural remodeling of the rat 

myocardium that was associated with reduced protein expressions of Nrf2 and KLF15. These 

factors are critical in providing cardioprotection and support a pivotal role in attenuating redox-

dependent cardiac remodeling driven by persistent oxidative stress in response to a severe is-

chemic insult. Importantly, we demonstrate that daily treatment with resveratrol is sufficient to 

restore and up-regulate Nrf2 and KLF15 expression, respectively. As a consequence, potentiated 

cardiac remodeling and worsening of ischemic cardiomyopathy induced by persistent oxidative 

stress was ameliorated. Importantly, our data suggest that KLF15 may explain, in part, the effi-

cacy of resveratrol treatment. While further experimentation is required, our data suggests that 

resveratrol treatment may provide a safe and therapeutically effective secondary treatment option 

for individuals who have had a myocardial infarction. Additionally, our data suggests that 

KLF15 may be an attractive therapeutic target to support cardiac health post myocardial infarc-

tion. 
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APPENDICES 

 

Appendix A: IACUC Original Protocol and Amendments 

 

 
Georgia State University 

Institutional Animal Care and Use Committee 
 

RESEARCH PROTOCOL FOR ANIMAL CARE AND USE 
(Please DO NOT send initial submission as a PDF) 

For Office Use Only 
Date Received:  January 20, 2015 
Protocol Number:  A15003 
Protocol Title:  Myocardial Infarction and Cardiac Regeneration 
Principal Investigator:  Dr. Jeffrey Otis 
Veterinary Review Date:  February 4, 2015 
Revision Date:  February 10, 2015 
Final Approval Date:   
Protocol Number Replacing:   
Biosafety Approval Needed: Yes    No   Approval Date__________ Approval Number________ 
Radiation Safety Approval Needed: Yes    No  Approval Date_____ Approval Number________ 

 
  

Signature of Attending Veterinarian ________________________________________________________________ 
 

 
Signature of IACUC Chair 
________________________________________________________________________ 
 

The Institutional Animal Care and use Committee (IACUC) is by law responsible for ensuring that the use 
of animals at Georgia State University is performed according to the highest standards and in an ethical 
manner. This responsibility is shared with university faculty, staff, and students. The use of animals at the 
university is a privilege, not a right. Maintaining this privilege requires compliance with the following regu-
lations, policies, and guidelines: 

Animal Welfare Act Regulations 
Public Health Service Policy on Humane Care and Use of Laboratory Animals 
The Guide for the Care and Use of Laboratory Animals 
U.S. Government Principles for the Utilization and Care of Vertebrate Animals Used in Testing, Re-

search, and Training 
The authority of the IACUC is derived from these laws and policies. The IACUC’s role in institutional self-
regulation ensures that animals are not subject to unnecessary pain and distress. Furthermore, by assur-
ing compliance with these animal welfare laws and guidelines the IACUC also protects the investigator 
and the institution. The IACUC must review all aspects of the animal care and use program. The animal 
care and use program must include: 
 
A properly constituted and functioning IACUC 
Procedures for self-monitoring 
An adequate veterinary care program 
An occupational health and safety program 
A training program for personnel 
An environment, housing, and management program for animals 
Appropriately maintained facilities for housing and support 
 

http://www.nal.usda.gov/awic/pubs/Legislat/awabrief.shtml
http://grants.nih.gov/grants/olaw/references/phspol.htm
http://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-Use-of-Laboratory-Animals.pdf
http://history.nih.gov/research/downloads/US_Principles.pdf
http://history.nih.gov/research/downloads/US_Principles.pdf
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Central to the IACUC’s mandated functions are (1) reviewing and approving animal use protocols submit-
ted by investigators and (2) semi-annual program reviews and facility inspections. 
This form is intended to facilitate review of requests to use animals for specific research, instruction, or 
biological testing projects.  
 

 This completed form must be reviewed and approved by the IACUC before the project or course 
is initiated and before animals can be procured. 

 After 3 years a new complete AUP must be submitted, approved and assigned a new number. 

 The number of animals used must be declared annually and their documentation is the responsi-
bility of the Principal Investigator. 

 
The Georgia State University IACUC Policies and Procedures Manual can be found on line at:  GSU IACUC Policies 
and Procedures Manual  This document contains information on Completing the Protocol Form, Protocol Review and 
Approval, Required Training, The Occupational Health Program, Additional Considerations Pertaining to Protocols, 
and more. 
 

PLEASE COMPLETE A SEPARATE PROTOCOL FOR EACH DIFFERENT TYPE OF ANIMAL OR 
PROJECTS WITH DISTINCTLY DIFFERENT PURPOSES USING THE SAME TYPE OF ANIMAL (e.g. 
experimental protocol and breeding protocol).  
 

SECTION 1.  Basic Protocol Information 
 

1.1 PROTOCOL TITLE: Myocardial Infarction and Cardiac Regeneration 
1.2  DATE: January 20, 2015 
1.3  PRINICPAL INVESTIGATOR:  Jeffrey S. Otis, PhD 
1.4  DIVISION:  College of Education: Dept. of Kinesiology and Health 
1.5  E-MAIL:  jotis@gsu.edu 

 
1.6 General Animal Information 

 

1.6.1 Over a period of three (3) years I would like to use a total of  _20___ (number) animals. 
1.6.2 Common name:  Rat 
1.6.3 Scientific name: Rattus rattus 
1.6.4 I would like to begin using these animals on (date):  March 1, 2015 
1.6.5 I will obtain animals from (name of supplier):  Charles River.  However, we will initially ask 

the greater GSU research community for unwanted animals (e.g., retired breeders, 
sentinels, etc.) 

1.6.6 I will breed these animals:  
 Yes (If yes, justify in Section 14 “Animal Housing & Husbandry”).  

Where will breeding stock be obtained? (Name of supplier):  
 No 

 
1.7 List All Funding for the Proposed Animal Work:   

GRANT TITLE  

 
GRANTING 
AGENCY 
 

 GRANT # 

Departmental Funds     

     

     

 
1.7.1. If Funding for the Proposed Animal Work is from the following sources, please sub-

mit the required documents listed below.   
NIH funding - please attach the following:  
Project/Performance Site Location(s) 

http://ursa.research.gsu.edu/files/2013/04/IACUC-Policies-and-Procedures-Manual.pdf
http://ursa.research.gsu.edu/files/2013/04/IACUC-Policies-and-Procedures-Manual.pdf
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Project Summary Abstract 
Project Narrative 
Research Plan Attachments 
Specific Aims 
Research Strategy 
Vertebrate animals (grants.nih.gov/grants/olaw/VASfactsheet_v12.pdf) 
 
NSF funding - please attach the following:  
Cover sheet 
Project Summary 
Results from prior NSF support 
Explanation of Revisions 
Project Description 
Research Plan 

 
1.8 Three Year Renewal 

If this is a 3 year renewal, please answer the following questions.  If not, please skip to section 
1.10. 
 
1.8.1 What is the number of the protocol this is replacing?  
1.8.2  Do you presently have any live animals under this number?  
1.8.3  If yes, will these animals be transferred to your new protocol once it is approved?  
1.8.4  As this is a 3-year renewal, the IACUC requests that you provide a very brief description 

of the outcomes of the work conducted under the existing approval:  
 

1.9 Location of work on project 
 
1.9.1 Will any aspect of the study (course) or animal husbandry be conducted at another insti-

tution? If so, please name the institution:  No 
1.9.2 If yes, please provide the PHS Assurance number of the institution where this work will 

occur:  
1.9.3 Has this proposal been approved by the IACUC of that institution?  

If yes, please attach a copy of the approved protocol and a copy of the dated and signed 
approval letter. 

 
1.10 Veterinary Care and Consultation: Principal Investigators may discuss the proposed project 

with the Attending Veterinarian before submission of the application to the IACUC. Procedures 
involving more than momentary or slight pain or distress (USDA Pain Category “D” or “E”) must 
be discussed with the Attending Veterinarian in the planning of the research project. All protocols 
and amendments will be sent to the Veterinarian for review of animal care issues after submis-
sion.  
 

1.11 Certification of Compliance:  I will comply with the procedures described in the NIH Guide 
for the Care and Use of Laboratory Animals, with PHS policy, the Animal Welfare Act, and 
the GSU IACUC Policies and Procedures Manual. I acknowledge responsibility for the pro-
cedures described and assure that the faculty, staff and students who perform these proce-
dures are qualified (or will be adequately trained) to conduct them in a humane manner.  
Failure to comply may result in sanctions by the IACUC including, but not limited to sus-
pension of research activities. 
 
Signature of the Principal Investigator  Jeffrey S. Otis 
Date _January 20, 2015___________ 
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SECTION 2.  Lay Project Summary and Overview 

 
2.1 Objective(s) (What are you doing?) 

Please provide a brief statement, in LAY TERMINOLOGY understandable by someone with a col-
lege education, with no acronyms or scientific jargon, outlining the objective of the procedures of 
this protocol. Begin with a broad statement concerning the overall problem (e.g., “Pancreatic can-
cer kills ~50,000 Americans each year. We are addressing this problem by ….”). Include a state-
ment of your experimental hypothesis or objectives. Please do not submit your grant proposal 
abstract for this section. Define all abbreviations the first time they are used and explain medi-
cal terms. You will be asked to provide a scientific summary of the project in a later section.  
 
***, Please note that this new IACUC protocol is for a pilot study only.  Here, we intend to 
fine-tune and demonstrate our proficiency with an established animal model of heart 
disease (ligation of the left anterior descending coronary artery).  As such, we are only 
requesting 20 animals.  Future amendments to this parent protocol will include requests for 
more animals and treatment interventions.  That said, we have included our planned, future 
work in this section as it may assist the veterinary staff and IACUC reviewers.  
 
The American Heart Association has estimated approximately 450,000 individuals die each year in 
the United States from coronary artery disease and myocardial infarction (MI). Infarctions may 
cause cellular death to cardiac muscle cells, cause fibrosis, or lead to complete heart failure and 
death.  By ligating the left anterior descending coronary artery to induce a MI, our ultimate goal will 
be to reduce the amount of tissue damage and improve cardiac performance by blocking molecular 
signaling pathways known to induce fibrosis in the heart (e.g., Wnt pathway).  We will manipulate 
this pathway with the use of gene silence techniques or local administration of signaling peptides 
(again, to be described in amendments to follow).   

 
2.2 Rationale and Significance (Why are you doing it?) 

Please provide a brief statement about how contributions from your proposed work might be rele-
vant to human/animal wellbeing or the expansion of knowledge. This must be written in LAY 
TERMINOLOGY, understandable by someone with a college education, with no acronyms or sci-
entific jargon. Please do not submit your grant proposal abstract for this section. Define all 
abbreviations the first time they are used and explain medical terms.  
According to the Centers for Disease Control and Prevention, 5.1 million people have been 
diagnosed with heart failure and about half die within 5 years of diagnosis. Medical costs associated 
with healthcare services and treatment for heart failure cost the nation over $32 billion annually. 
Clearly, research focused towards improving cardiac function following heart failure is warranted 
and could potentially save lives and money.  
 

2.3 Justification for the Use of Animals 
Please justify why animals must be used instead of using methodology that does not require ver-
tebrate animal use. Provide a brief statement justifying your use of animals in the proposed pro-
ject. 
Induction of MI and subsequent heart disease are a consequence of a multi-organ systemic 
response to the injury that includes metabolic, hematological, immunological, and 
pathophysiological involvement. Further, the heart is a multi-cellular organ which requires strict 
cellular communication in its native environment to execute the observed response to injury. Study 
of MI and cardiomyopathies requires the use of mammalian species as their physiology is similar 
to human physiology. Therefore, the effects of a MI and the development of heart disease can only 
be modeled in vivo.  
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SECTION 3.  Overall Animal Use Category Information 
 
If the answer to any of the following questions is YES, please provide a brief explanation. 
3.1 Will any technique be performed which will involve prolonged physical restraint (> 30 minutes) 

other than routine caging and handling?  Yes 
If yes, describe the type, method and the length of time the animal is restrained:  While 
anesthetized, front and hindlimbs will be secured to the surgical platform with tape for 
approximately 45 minutes. 

3.2 Will any substance such as Complete Freund’s Adjuvant or other adjuvants be injected which 
could cause chronic inflammation and/or pain?  No 
If yes, describe what will be used, volumes, and the schedule for the injections:  

3.3 Will it be necessary for live animals to be removed from the animal facility?  No 
3.4 Will this experiment involve stress, pain, or abnormal behavior in live animals, which cannot be 

alleviated with drugs because their use would interfere with the research goal?  No 
 3.4.1 Will any adverse effects or overt signs of illness be expected?  Yes 
3.5  Will animals be subjected to more than one major survival surgical procedure?  No 

Major surgery penetrates and exposes a body cavity, produces substantial impairment of physical 
or physiologic function, or involves extensive tissue dissection or transection.  Please note that 
routine injections are not considered surgical procedures. 

3.6 Will food or fluid be restricted and/or regulated?  No 
3.7 Will field investigations be employed?  No 

If yes, please provide all the relevant permits:  
 

SECTION 4.  USDA Animal Use Category Classification  

 
USDA Classifications and Examples of Pain Categories: 
Classification B: Animals being bred, conditioned, or held for use in teaching, testing, experiments, re-
search, or surgery, but not yet used for such purposes. 
Examples: 

 Breeding colonies - Includes parents and offspring.  

 Animals held under proper captive conditions or wild animals that are being observed.  
 

Classification C: Animals upon which teaching, research, experiments, or tests will be conducted involv-
ing no pain, distress, or use of pain-relieving drugs. 
Examples: 

 Procedures performed correctly by trained personnel such as the administration of elec-
trolytes/fluids, administration of oral medication, blood collection from a common periph-
eral vein per standard veterinary practice or catheterization of same, standard radiog-
raphy, parenteral injections of non-irritating substances.  

 Euthanasia performed in accordance with the recommendations of the most recent 
AVMA Panel on Euthanasia, utilizing procedures that produce rapid unconsciousness 
and subsequent humane death.  

 Manual restraint that is no longer than would be required for a simple exam; short period 
of chair restraint for an adapted nonhuman primate.  
 

Classification D: Animals upon which experiments, teaching, research, surgery, or tests will be con-
ducted involving accompanying pain or distress or leading to illness to the animals and for which appro-
priate anesthetic, analgesic, or tranquilizing drugs will be used. 
Examples: 

 Surgical procedures conducted by trained personnel in accordance with standard veteri-
nary practice such as biopsies, gonadectomy, exposure of blood vessels, chronic cathe-
ter implantation, laparotomy or laparoscopy.  

 Blood collection by more invasive routes such as intracardiac or periorbital collection from 
species without a true orbital sinus such as rats and guinea pigs.  

http://www.avma.org/issues/animal_welfare/euthanasia.pdf
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 Administration of drugs, chemicals, toxins, or organisms that would be expected to pro-
duce pain or distress but which will be alleviated by analgesics.  
 

Classification E: Animals upon which teaching, experiments, research, surgery, or tests will be con-
ducted involving accompanying pain or distress or leading to illness to the animals and for which the use 
of appropriate anesthetic, analgesic, or tranquilizing drugs will adversely affect the procedures, results, or 
interpretation of the teaching, research, experiments, surgery, or tests. 
Examples: 

 Procedures producing pain or distress unrelieved by analgesics such as toxicity studies, 
microbial virulence testing, radiation sickness, and research on stress, shock, or pain.  

 Surgical and postsurgical sequella from invasion of body cavities, orthopedic procedures, 
dentistry or other hard or soft tissue damage that produces unrelieved pain or distress.  

 Negative conditioning via electric shocks that would cause pain in humans.  

 Chairing of nonhuman primates not conditioned to the procedure for the time period 
used.  
 

4.1 Selection of Pain Category  
Please classify the project according to the level of perceived pain / stress / distress experienced 
by the animal(s). Animals must be claimed under the highest class involved at any point prior to 

euthanasia or release. Highest Pain Category within this protocol:  D   (enter B, C, D, or E) 

 
4.2 Justification of Pain Category “E” 

If category E is selected, please provide a scientific justification for withholding pain and/or dis-
tress relief.  
 

4.3 Monitoring of Animal Pain and Comfort Levels 
 
4.3.1 Who will be responsible for monitoring the animals for pain and/or distress during the ex-

perimental procedure(s)? 
Russell G. Rogers, DAR staff, and GSU veterinarians 

4.3.2 How will the comfort level of the animals be determined?  
Pain or distress will be visually monitored and may include failure to groom, increased 
vocalization, hunched posture, decreased appetite and weight loss.  

 
Surgery will be performed between 8AM and 10AM. Animals will then be monitored for 
any signs of discomfort and distress immediately after the surgery, 3PM and 6PM on the 
day of surgery. The next morning, animals will be monitored at 9AM, 12PM, 3PM, and 
6PM; and, 9AM and 12PM the following morning. 
 
The body condition scoring system for rats as published by Ullman−Cullere and Foltz 
(Laboratory Animal Science, 49(3), 319−323, 1999) and available online at  
http://www.aalas.org/pdfUtility.aspx?pdf=CM/49_03_15.PDF will be utilized. Using this 
scale as a reference, we will implement a cutoff for euthanasia at a body condition of 
"1+". The body condition will be assessed at least twice a week and the body condition 
scores recorded in the DAR Laboratory Animal Care Record found in the animal room.  

 
4.3.3 In the event that an animal needs to be euthanized or removed from the experiment, 

please list the criteria for the decision. Describe the humane endpoint criteria to be ap-
plied and the frequency of monitoring for these humane endpoints: 
Should an animal require euthanasia because of significant stress, appropriate Georgia 
State University guidelines will be followed as identified in the GSU IACUC policies and 
procedures guideline located on the IACUC website 
(http://www.gsu.edu/research/iacuc.html).   
 

http://www2.gsu.edu/~wwwvir/esirius/Humane%20Endpoint%20Criteria.pdf
http://www.gsu.edu/research/iacuc.html
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In addition, body weight will be recorded 3 times per week.  Euthanasia will be 
recommended for any animal that loses 20% of their pre-injury body weight once 
normalized against a standard growth chart for young, growing animals.  Animals in 
obvious distress (e.g., failure to groom, increased vocalization) that can not be alleviated 
with analgesia will be euthanized.  In these animals,  euthanasia will be performed via 
CO2 inhalation and confirmed by thoracotomy. 
 
Our conversations with Dr. Titterington suggest an expected mortality rate of 1 in 6 ani-
mals.  These rates will be considered when calculating required animal numbers on fu-
ture amendments.  Dr. Titterington also notes that animals that survive 24 hours post-
procedure generally survive through the duration of the 4-week recovery period.  
  

4.3.4 Who will determine this action? 
Russell G. Rogers, DAR staff, and GSU veterinarians 

4.3.5 Will animal models with tumors be utilized?  No 
If yes, please review the following: 
http://ursa.research.gsu.edu/files/2013/04/GSU_IACUC_Policy_on_Mouse_Tumor_Burd
en.doc 
I will adhere to the standards specified in this policy. 

 Yes   
  No (If No, scientifically justify here):  

 

Section 5.  Alternatives and Non-duplication 
 
5.1 Explanation for the Consideration of Alternatives for Category “D” or “E” Animal Use.  

Federal Regulations (The Public Health Service Policy and the Animal Welfare Act) and Univer-
sity Policy require assurance that this project does not unnecessarily duplicate research pro-
jects/courses performed at this or other institutions, and that the use of alternatives to live animal 
models and alternative procedures that may cause more than momentary or slight pain/distress 
(Class “D” and “E” procedures) to animals have been considered. The information in this section 
should include adequate information for the IACUC to assess that a reasonable and good faith 
effort was made to determine the availability of alternative models or methods.  
The following is a guide for answering 5.1.1 and beyond. 
Your literature search is done as part of the OLAW requirement to address the “3Rs” (Re-
finement, Reduction, and Replacement) issues.  For example:  
 
* Refinement of procedures to eliminate or minimize pain or distress, the use of remote telemetry 
to decrease the distress of restraint; the use of humane endpoints. 
 
Other examples of refinement are: ways to enhance the well-being of animals and the use of an-
algesics to decrease pain or anesthetics to decrease distress. These should be addressed only in 
Section 10.  
 
For the literature searches: 
 
Ask "Am I using the least painful technique(s)?” 
 - Search terms: Your species + animal/experimental model/technique + scientific keywords. 
 
* Replacement of live animals with non-animal procedures or a less sentient species. Examples 
include the use of non-animal models such as in-vitro work, cell culture, tissues culture, computer 
models or simulations.  
 
Ask "Do I need to use animals?" 
 - Search terms: Your experimental model + simulation + in vitro +scientific keywords.  
 

http://ursa.research.gsu.edu/files/2013/04/GSU_IACUC_Policy_on_Mouse_Tumor_Burden.doc
http://ursa.research.gsu.edu/files/2013/04/GSU_IACUC_Policy_on_Mouse_Tumor_Burden.doc
http://www.nal.usda.gov/awic/pubs/Legislat/awabrief.shtml


79 

 

 

 

Ask "Am I using the lowest species possible?" 
 - Search terms: Your species + all applicable lower species (For example if using mice, specifi-
cally use "invertebrate", "fish" and "frog" in your search terms) + your animal/experimental model 
+ scientific keywords. 
 
Note: There are NO search terms that will direct the searcher to all examples of replace-
ment or refinement. The onus is on the researcher to read and evaluate the literature.  
 
*Reduction in the number of animals used in the study. (This only needs to be addressed in 
Section 9.2 of the protocol not here).  Examples include the use of shared control groups; pre-
liminary screening in non-animal systems; innovative statistical packages.  
 
The selection of databases depends on the work performed and the species used in the 
protocol. Samples of databases available through the Georgia State University Library www.li-
brary.gsu.edu/database web pages. 
 
· PubMed·   Web of Knowledge · Biological Abstracts·   Web of Science    PsychINFO    AltWeb    
NLM Gateway     AVAR     Galileo     AGRICOLA. 
 
 OVID (allows a search of multiple databases including Agricola, BIOSIS, CAB Abstracts, Med-
line, Zoological Record, etc.)  
 
Please visit the Animal Welfare Information Center (AWIC) Literature Searching and Databases 
page (http://awic.nal.usda.gov/nal_display/index.php?tax_level=1&info_center=3&tax_ sub-
ject=184) for a list of databases that can be used to search for alternatives. The AWIC site also 
recommends using the Literature Search Worksheet (http://www.nal.usda.gov/awic/alterna-
tives/searches/altwksht.pdf) to assist in performing a successful alternatives database search. 
The worksheet helps to identify relevant searchable terms and concepts. 
 
5.1.1 Literature search for alternatives to painful procedures 

If you chose category “D” or “E” above, please do literature searches using the broadest 
database for your area of study, and provide a brief summary of the results obtained to 
verify that you investigated the use of alternatives to painful or distressful procedures. If 
you have not selected either category D or E, skip to section 5.2. 
 

5.1.1.1 Name of the databases used:   Pubmed  
Date the databases search (es)  were done:   January 14, 2015 
Did the search cover the entire date range of the databases with no restriction on dates? 

 Yes   
  No (If No, provide dates covered by the search(es) below) 
Dates covered by the databases search(es):   

 
5.1.1.2 Search keyword(s) used: include number of hits for combinations of terms. You must use 

‘alternative’ and ‘animal welfare’ in the search combinations for invasive or painful 
procedures (See above for 3R criteria). 
myocardial infarction, anterior descending artery ligation, animal welfare, and alternative 

(1) Myocardial infarction + animal welfare = 5 
(2) Myocardial infarction + alternative = 3,061 
(3) anterior descending artery ligation+ animal welfare = 0 
(4) anterior descending artery ligation + alternative = 29 

 
5.1.1.3 Summarize the information found in the hits below.  (Note: this should be a general sum-

mary. You do not need to go into the details of each hit but rather summarize hits by rele-
vant groups).  
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The studies relevant to the research interest from the above searches describe in vivo 
mouse, rat, rabbit, and pig models. The in vivo studies track repair of the heart over time 
and the development of fibrotic tissue (i.e., remodeling). 
 

5.1.2 Explain what alternatives exist in place of using animals for this protocol and provide a 
justification if these cannot be used.  
Alternatives do not include less sentient species and are limited to in vitro systems.  

 In vitro systems do not accurately reflect the in vivo condition as described in 2.3. 
 

5.1.3 Other Sources of Information on Alternatives to Painful Procedures 
 

5.1.3.1 Consultation with Experts: (Names, credentials, and dates):   Dr. Jane Titterington, MD, 
PhD (Clinical and research fellow in the Division of Cardiology at Emory University under 
the advisement of W. Robert Taylor, MD, PhD.   

 
Russell has met with Jane frequently during December 2014 and Janurary 2015 for 
surgical training in the operation outlined in 8.1.  In all, he has witnessed ~20+ successful 
surgeries (from induction of anesthesia through recovery). Training includes aseptic and 
surgical instrument preparation prior to the operation, pre- and post-op animal care, and 
surgical training.  Importantly, while not named as a protocol associate, Dr. Titterington has 
agreed to serve as a consultant for this protocol and will provide guidance to Russell as 
needed on these procedures. 

 
5.1.3.2 Scientific Meetings: Specify:   No 

 
Note: A careful literature search is usually the best way to determine whether a proposed study is unnec-
essarily duplicative of previous work. However, it is ok to repeat a published experiment to make sure that 
it works in a different lab. This reason just needs to be stated as the justification.  
 
5.2 Consideration of non-duplication 

 
5.2.1 Please provide a written assurance that the proposed work is not unnecessarily duplica-
tive. This is a training protocol.  Once proficient with the technique, all subsequent work using this 
model will be novel. 
 

Section 6.  Method(s) of Euthanasia 

 
6.1 Describe in detail the method of euthanasia (if any) you will use. If the method involves the use of 

pharmaceuticals, please specify agent, dose, and route of administration.  Please note that meth-
ods of euthanasia must be in accordance with the most current American Veterinary Medical As-
sociation Panel on Euthanasia.  References must be cited to justify deviations from this docu-
ment, or to justify use of cervical dislocation or decapitation without anesthesia.   
Should an animal require euthanasia because of significant stress or has completed their 
experimental time period, appropriate GSU guidelines will be followed.  Euthanasia will be 
performed via CO2 inhalation followed by thoracotomy to confirm death. 

6.2 How will death be confirmed?  thoracotomy 
6.3 How will remains be disposed? Animal carcasses will be disposed by putting them in the DAR 

designated freezers within the animal facility. 
6.4 If you chose Carbon Dioxide inhalation method above, please review the GSU IACUC Carbon 

Dioxide Euthanasia Policy.  
I will adhere to the standards specified in this policy. 

 Yes   
  No (If No, scientifically justify here):  

 

http://www.avma.org/issues/animal_welfare/euthanasia.pdf
http://www.avma.org/issues/animal_welfare/euthanasia.pdf
http://ursa.research.gsu.edu/repo/Carbon_Dioxide_Euthanasia_Policy.doc
http://ursa.research.gsu.edu/repo/Carbon_Dioxide_Euthanasia_Policy.doc
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SECTION 7.  Justification for Animal Species Selection 

 
7.1  Animal characteristics 

7.1.1 Species Name:  Rat 
7.1.2 Strain (if any):  Sprague-Dawley 
7.1.3 Age:  7 weeks to 24 months 
7.1.4 Sex:  Male 
 

7.2 This species has been selected because (check all that apply) 
 Previous work in the biomedical literature validates the use of this species as an animal model for 

this disease or biological process. 
 This is the lowest sentient species that provides appropriate size, tissue or anatomy of the pro-

posed work. 
 There is a large body of existing data that would need to be repeated if another species was used 

instead. 
 Available reagents or research tools necessary for this research are unique to this species. 
 Characteristics of this species make it uniquely suited for the proposed research. Explain:  
 Other (Explain):  

 

SECTION 8.  Animal Use Narrative 
 
8.1 Please describe in narrative form all experimental or instructional procedures to be per-

formed on the animals. Please note that it is not necessary to provide the details already provided 
elsewhere in the protocol (e.g. procedure descriptions, volumes of blood collected, dosages, routes 
of administration, use of aseptic procedures, etc.). However, it is important that one is able to 
ascertain what procedure or set of procedures is conducted on each group of animals. Include the 
time frames and intervals between procedures and describe the procedures in the order they will 
be performed. 
Animals will undergo ligation of the left anterior descending artery.  This procedure will induce a 
myocardial infarction and has been described in greater detail in section 10.  Animals will be sacri-
ficed 4 weeks post surgery and hearts will be removed to assess damage, fibrosis, and several 
signaling components associated with heart disease.   
 
Again, this initial protocol is for training purposes only.  We will submit amendments that request 
more animals and treatments. 
 

SECTION 9.  Justification for the number of animals that will 
be used 

 
9.1 Group sizes are expected to represent the minimum number of animals that are needed to 

achieve the scientific or instructional objectives. Please indicate all the methods used to deter-
mine these numbers. 

 Statistical tools, such as power analysis, were employed to determine appropriate group sizes to 
ensure statistically valid outcomes. (Please retain print outs from calculations.) 

 Previous experience with this experimental paradigm indicates this is the minimum number of ani-
mals needed. 

 Consultation with a biostatistician  
 This is a pilot study used to determine feasibility before proceeding with larger, more tightly con-

trolled experiments.  
 This is an instructional activity. This is the minimum number of animals needed based on class 

size and optimal student to instructor ratios.  
 Other (Explain):  
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9.2 Using the specifics of your experimental plan demonstrate how the numbers of animals required 
to achieve your scientific objectives for this project were calculated. Include details of numbers of 
animals per group, control groups, treatment groups, pilot studies, and potential experimental fail-
ure.  Information may be provided in the form of a table or flow chart. Justify the number of ani-
mals required for each procedure/experiment described in Section 10 using power analysis, if 
possible. For help with power analyses see: http://www.psycho.uni-duesseldorf.de/abtei-
lungen/aap/gpower3/  
Justify the number of animals requested:  
Animals outlined in this protocol will be strictly used as an instructional tool to provide more 
experience with the surgical technique prior to proceeding with a larger set of experiments.  While 
animals in the experimental study will be purchased, we intend to ask the greater GSU research 
community to donate unwanted rats (e.g., retired breeders or sentinels, male or females). 
 

Section 10.  Procedures  

 
Please describe in detail all of the procedures you will be doing with animals below. Indicate whether infec-
tious agents, chemical or physical restraint, radioactivity or adjuvants will be used. Describe possible/known 
side effects of each procedure. 

***, Please note that we encourage the veterinary staff to watch the first several surgeries.  
Russell has witnessed 20+ surgeries at Emory and is confident he can perform them without 
incident.  However, we feel it would be prudent to have vet staff present to confirm his 
proficiency or potentially provide improvements/refinements to his technique. 
 
Induction of anesthesia 
Rats will be placed into an induction chamber and anesthetized via isoflurane inhalation (4% 
isoflurane and 500 mL O2/min) until the respiratory rate has fallen to a safe level and the animal 
fails to respond to toe pinch on all four paws. 
 
Intubation 
Rats will be anesthetized with an injection of a cocktail containing ketamine (40-50mg/kg) and 
xylazine (5-8mg/kg) IP. Once the rat has been intubated as decribed below, xylazine will be neu-
tralized with yohimbine (2.1mg/kg) IP and the rat will be placed back on isoflurane.  Per our dis-
cussions with the veterinary staff, once we become proficient with this intubation procedure, we 
will discontinue the use of this cocktail. 
 
Rats will be placed on a plexiglass intubation stage with limbs taped down and teeth secured to the 
stage with fine line and a velcro strap. Using a endotracheal tube inducer (stylette),14G 
endotracheal tube, and a small laryngoscope rats will be intubated as follows: The larynogoscope 
will allow access and provide light to visualize the vocal cords. When the vocal cords are open, the 
stylette and tube will pass through. Once passed the vocal cords, only the endotracheal tube will 
be further advanced and the stylette will be removed. A mirror will be used to ensure the animal 
was successfully intubated by observing fog accumulation as the animal breathes. Once intubated, 
the animal will be placed on an anesthetic ventilator (1.5 – 2.0% isoflurane and 500 mL O2/min). 
The ventilator will stimulate mechanical breathing via an intermittent positive pressure ventilation 
(IPPV) mode. Tidal volume will be set to 10 cmH2O with a mean airway pressure of 15 cmH2O at 
a frequency of 240 breaths per minute. 
 
Preparation of surgical site 
A heating pad underneath a sterile absorptive pad will be used to maintain core temperature at 35-
37˚C during the surgery. The site of the incision will be shaved (i.e., chest area) and sterilized via 
circular washes with 70% ethanol and betadine 3 times. Next, a sterile drape with hole removed 
exposing the surgical site will be placed over the animal ensuring a large sterile field. All surgical 
instruments, cotton swabs, and gauze will be sterilzed via autoclave.  

 
Incisions and exposure of pericardial cavity 

http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/
http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/
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A 1.5 inch incision will be made into the skin using a pair of surgical straight scissors starting at an 
area between the mid-axillary line and the superior aspect of the sternum (i.e., manubrium) to the 
inferrior aspect of the sternum (i.e., xiphoid process). The skin will be separated from the underlying 
musculature to expose the pectoralis major using a pair of curved and blunted surgical scissors. 
Next, connective tissue (i.e., fascia) tethering the pectoralis major to the deep musculature will be 
removed such that the pectoralis major can be reflected forward using a pair of locking hemostatic 
forceps. The muscular immediately deep to the pectoralis major will be reflected backward using a 
pair of locking hemostatic forceps to expose the ribcage and the intercostal muscles. The apex of 
the heart will be identified by pulsating waves on the ribcage and the intercostal space closest to 
the apex of the heart will be selected as the site of entry into the thoracic cavity. A small, transverse 
incision made to the left side of the 3rd and 4th intercostal spaces will be made into the selected 
intercostal muscle followed by blunt force separation to ensure visceral organs are not damaged. 
The ribs will be retracted with a small retractor  approximately 2 cm exposing the left lung and the 
heart. Next, the left lung will be retracted with a small (approximately 1.5 cm x 2.0 cm) piece of 
sterile gauze to expose the entire apex of the heart. The anterior portion of the pericardium will be 
removed prior to ligation of the left anterior descending coronary artery (LAD) to reduce the risk of 
developing pericarditis.  

 
Ligation of left anterior descending (LAD) coronary artery 
A 5-0 silk suture attached to a C1 needle will be inserted into the myocardium just beneath the LAD 
at its superior branch. A surgical knot will permanently ligate the LAD. Induction of MI will be visually 
ensured via a color change of the anterior apical region of the left ventricle from a deep red to pink. 
In the event of excess bleeding, sterile cotton swabs will be used to remove the blood. If the cotton 
swabs are insufficient and  bleeding continues, a cautery instrument will be used to stop the 
bleeding. After successful ligation of the LAD, a 20G angio-catheter will be carefully inserted into 
the 6th intercostal space approximatelty 2 cm on the left side of the animal. Extreme caution will be 
taken to ensure no orgrans are damaged during the insertion of the chest catheter. After 
successfully inserting the chest catheter, the needle will be removed and the catheter tube will 
remain inserted into the thoracic cavity and proceed to closure of the thoracic cavity.  
 
Closure 
The gauze retracting the left lung will be removed and a check to ensure all organs are in their 
correct anatomical location and a chest catheter will be inserted (for use in the event of a 
pneumothorax) before closing the thoracic cavity. A 4-0 proline suture with a FS-2 needle will be 
inserted into the intercostal muscles in a single cross-stitch pattern to close the thoracic cavity. 
Next, the musculature deep to the pectoralis major will be sutured (with a 5-0 silk suture attached 
to a C1 needle) to the above pectoralis major at its most medial location just superior to the 
underlying musculature followed by suture of the pectoralis major at its most lateral location to the 
underlying deep musculature. Next, the skin will be sutured using a nonabsorable 6-0 nylon suture 
attached to a C1 needle.  In addition, a topical anesthetic (1:1, 0.5% Bupivacaine: 2% Lidocaine) 
will be applied to the surgical site prior to closing the skin. 
 
Recovery from surgery 
After the skin has been completely sutured, isoflurane administration will cease and the animal 
will continue to be ventilated with oxygen until frequent spontaneous breaths are observed. The 
animal will then be removed from the ventilator (endotracheal tube still inserted) and placed into a 
nose cone to breathe oxygen. If the animal’s respiratory rate is not sufficient, the animal will be 
placed back on the ventilator until adequent to be removed. Once the animal’s respiratory rate is 
sufficient to be unhooked from the ventilator, the animal will then be extubated and remain in the 
nose cone to breathe oxygen. This will continue until the animal recovers from the anesthetic and 
is able to voluntarily move. In the event of a pneumothorax, a syringe will be connected to the 
chest catheter to remove any air trapped in the thoracic cavity.  After all air has been aspirated 
from the thoracic cavity and the animal has recovered from surgery, the animal will then be 
closely monitored for 2 hours for signs of distress and development of another pneumothorax. At 
this time, if no further air has developed in the thoracic cavity, the chest catheter will be removed. 
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Analgesia 
On the day of the surgery, carprofen (5 mg/kg, sc) will be given post-procedurally to reduce pain. 
Analgesia treatment will continue once per day for the first 3 days after the surgery.   
 
Animals will be sacrificed 4 weeks after surgery and their hearts will be removed for histological 
and biochemical assessment of the MI.   

 
10.1 Prolonged physical restraint (> 30 minutes) that will be used under this protocol. 

 
10.1.1 How is the animal acclimated to the restraint device?  N/A 
10.1.2 Describe the monitoring of the animal during the time of restraint:  The animals will be 
restrained while under anesthesia.  Animals will be visually monitored for changes to respiratory 
rate and/or core temperature. 
10.1.3 In the event of an animal welfare issue, what are the criteria for removal of the animal from 
the restraint device?  Animals will be euthanized (while under deep anesthesia) should 
complications from the surgery arise.   

  
10.2 Non-surgical procedures that will be used under this protocol.  

Non-surgical Procedures Description and Guidance 
Describe each non-surgical procedure that will be used and state the maximum number of times 
each procedure will be done to any animal.  
N/A 
 

10.3 Surgical procedures that will be used under this protocol. 
Surgical Procedures Description and Guidance 
Please indicate if surgical procedures will be used under this protocol 

 Yes   
  No (If No, then skip to Question 11) 

 
10.3.1 Review the ASEPTIC TECHNIQUE FOR ANIMAL SURGERY. 

I will adhere to the standards specified in this policy. 
 Yes   
  No (If no, scientifically justify here):  

 
10.3.2 Review the PREPARATION OF SURGICAL INSTRUMENTS, DEVICES, AND SUP-

PLIES POLICY.  
I will adhere to the standards specified in this policy. 

 Yes   
  No (If no, scientifically justify here):  

 
10.3.3 Describe surgical procedures that will be used. Indicate type of surgery, provide a general 

description and indicate if it will be survival (indicate major or minor) or non-survival 
surgery.  
 

10.3.3.1 Describe pre- and post-op procedures and monitoring:  Described above 
in section 10 
10.3.3.2 Will analgesics will be given pre- or post-procedurally?  Yes.  Analgesia 
will be provided 1 hour before surgery, at surgery, and again 1 time per day for 3 
days.  In addition, a topical anesthetic (1:1, 0.5% Bupivacaine: 2% Lidocaine) will 
be applied to the surgical site prior to closing the skin).  
10.3.3.3If analgesics are not used, justify why this is the case:  
10.3.3.4 If sutures or wound clips will be used, indicate when they will be removed:  
The duration of recovery from surgery is 28 days.  Skin sutures, unless 
recommended by the vet staff, will not be removed from these animals in order to 
avoid additional stress.  

http://ursa.research.gsu.edu/repo/Non-Surgical_Procedure_Descriptions_and_Guidance.doc
http://ursa.research.gsu.edu/repo/Surgical_Procedures_Description_and_Guidance.doc
http://ursa.research.gsu.edu/repo/Aseptic_Technique_for_Animal_Surgery.doc
http://ursa.research.gsu.edu/repo/GSU_Preparation_of_Surgical_Instruments.docx
http://ursa.research.gsu.edu/repo/GSU_Preparation_of_Surgical_Instruments.docx
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10.3.3.5 If multiple major surgeries in a single animal are proposed, please 
scientifically justify the necessity:  
10.3.3.6. If multiple surgeries (major or minor) in a single animal are proposed, 
please indicate the minimum time interval between surgeries:  

10.3.4 Describe any non-pharmacological control of pain post procedure such as: 
 quiet darkened recovery area; and/or 
 increased ambient warmth; and/or  
 soft resting surface, etc.; or 
 other; please explain:  

 

SECTION 11.  Substance Administration 

 
11.1 Substance Description 

If anesthetics, analgesics, or any other substances are administered during the conduct of a pro-
cedure, please describe: Please copy and paste the set of questions as needed to list each 
additional substance(s) to be administered.  

11.1.1 Name of Substance:   Isoflurane 
11.1.2 Is this a non-pharmaceutical grade chemical or substance?  No 
 If yes, please justify and indicate how sterility and purity are achieved:  
11.1.3 Dose:   Induction pre-intubation: 4%, Maintenance during procedure: 1.5 – 2% at 500mL O2 per 

minute. 
11.1.4 Route of Administration:   inhalant 
11.1.5 Frequency of administration:   Once on the day of surgery 
11.1.6 If applicable, state how anesthetic depth will be assessed:   Respiratory rate and loss of toe pinch 

on all 4 limbs. 
 
11.1.1 Name of Substance:   Ketamine (to be used in combination with xylazine) 
11.1.2 Is this a non-pharmaceutical grade chemical or substance?  No 
 If yes, please justify and indicate how sterility and purity are achieved:  
11.1.3 Dose:   40-50 mg/kg 
11.1.4 Route of Administration:   i.p. 
11.1.5 Frequency of administration:   Once on the day of surgery 
11.1.6 If applicable, state how anesthetic depth will be assessed:   Respiratory rate and loss of toe pinch 

on all 4 limbs. 
11.1.1 Name of Substance:   Xylazine (to be used in combination with ketamine) 
11.1.2 Is this a non-pharmaceutical grade chemical or substance?  No 
 If yes, please justify and indicate how sterility and purity are achieved:  
11.1.3 Dose:   5-8 mg/kg 
11.1.4 Route of Administration:   i.p. 
11.1.5 Frequency of administration:   Once on the day of surgery 
11.1.6 If applicable, state how anesthetic depth will be assessed:   Respiratory rate and loss of toe pinch 

on all 4 limbs. 
 
11.1.1 Name of Substance:   Yohimbine 
11.1.2 Is this a non-pharmaceutical grade chemical or substance?  No 
 If yes, please justify and indicate how sterility and purity are achieved:  
11.1.3 Dose:   2.1 mg/kg 
11.1.4 Route of Administration:   i.p. 
11.1.5 Frequency of administration:   Once on the day of surgery 
11.1.6 If applicable, state how anesthetic depth will be assessed: NA 
 
11.3.1 Name of Substance: Carprofen (analgesic). 
11.3.2 Is this a non-pharmaceutical grade chemical or substance? No. Carprofen (Pfizer Animal Health) 

If yes, please justify and indicate how sterility and purity are achieved:  
11.3.3 Dose:  Carprofen 5 mg/kg. 
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11.3.4 Route of Administration: subcutaneously 
11.3.5 Frequency of administration: Carprofen will be administered at the time of anesthetic induction at 

5 mg/kg subcutaneously with one additional dose (5 mg/kg) 24 hours after surgery. 
11.3.6 If applicable, state how anesthetic depth will be assessed: N/A 
 
11.1.1 Name of Substance:   Bupivacaine (in 1:1 ratio with Lidocaine) 
11.1.2 Is this a non-pharmaceutical grade chemical or substance?  No 
 If yes, please justify and indicate how sterility and purity are achieved:  
11.1.3 Dose:   0.5% 
11.1.4 Route of Administration:   topical. 
11.1.5 Frequency of administration:   On the day of surgery  
11.1.6 If applicable, state how anesthetic depth will be assessed:   NA 
 
11.1.1 Name of Substance:   Lidocaine (in 1:1 ratio with Bupivacaine) 
11.1.2 Is this a non-pharmaceutical grade chemical or substance?  No 
 If yes, please justify and indicate how sterility and purity are achieved:  
11.1.3 Dose:   2.0% 
11.1.4 Route of Administration:   topical. 
11.1.5 Frequency of administration:   On the day of surgery  
11.1.6 If applicable, state how anesthetic depth will be assessed:   NA 

 

SECTION 12.  Personnel and Their Experience and Training 

 
List the experience and/or training of the personnel and the procedures that each will conduct be-
low. If personnel are not experienced, please list the name of the individual(s) who will be respon-
sible for training on all procedures.  Please note that DAR and/or the IACUC reserve the right to 
observe procedures being performed prior to protocol approval. 
 
If training has not been completed, visit http://ursa.research.gsu.edu/ursa/compliance/iacuc/ and 
click on “Apply to Work with Animals”.  Under Training click on “Required Education Document” 
(http://ursa.research.gsu.edu/repo/Required_Education.doc) to find out what requirements must 
be met in order to be considered approved personnel on this protocol.   Click on “How to enroll in 
and use the AALAS Learning Library” link (http://ursa.re-
search.gsu.edu/files/2013/04/How_To_AALAS.doc), if you are a first time user of the AALAS 
Learning Library.  After the initial registration with the AALAS Learning Library, any future mod-
ules in the library can be accessed by following the “AALAS Learning Library training” link in this 
same section. 
 
All employees of Georgia State University who work with vertebrate animals must enroll in the 
Medical Monitoring Program for Vertebrate Animal Exposure. Read http://ursa.re-
search.gsu.edu/files/2013/04/MMPVAE_Program_Description.pdf and carefully follow the instruc-
tions. To enroll click on the following link: http://mmpvae.gsuapps.com/ 
 

 Principal Investigator: 
Name:   Jeffrey S. Otis 
Phone number and location:   404-413-8378, Office: G13 Sports Arena; Lab: G19 Sports Arena 
Procedures will do on animals:   None 
Experience:   Dr. Otis has over 15 years of experience working with mouse and rat models – 
including survival surgery models. 
GSU training completed:   all as needed 
Is this person enrolled in the Medical Monitoring Program for Vertebrate Animal Exposure?  

 yes   
 no  . 

 
 

http://ursa.research.gsu.edu/ursa/compliance/iacuc/
http://ursa.research.gsu.edu/repo/Required_Education.doc
http://ursa.research.gsu.edu/files/2013/04/How_To_AALAS.doc
http://ursa.research.gsu.edu/files/2013/04/How_To_AALAS.doc
http://ursa.research.gsu.edu/files/2013/04/MMPVAE_Program_Description.pdf
http://ursa.research.gsu.edu/files/2013/04/MMPVAE_Program_Description.pdf
http://mmpvae.gsuapps.com/
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Graduate Students: 
Name:   Russell G. Rogers 
Phone number and location:   Cell: 770.365.5392, G01 (office) and G19 (lab) Sports Arena 
Procedures will do on animals:   Russell will be responsible for all surgical procedures and post-
procedural monitoring of the animals. 
Experience (Indicate who will be responsible for training):   Russell has 5 years of experience 
working with rodent models, including small animal handling, surgical techniques, and post-
procedural care.  He has watched Dr. Jane Titterington, MD, PhD perform 20+ ligation surgeries 
and feels competent to perform the surgeries by himself. 
GSU training completed:   All as needed 
Is this person enrolled in the Medical Monitoring Program for Vertebrate Animal Exposure? 

 yes   
 no    

 

SECTION 13.  Hazard Use 
 

All Hazardous Materials used must be identified. 
For more information on the Biosafety program please click: GSU Biosafety Program. 
For more information on the Radiation Safety program please click: GSU Radiation Safety. 
For more information on Lab Safety and Hazard Communication please click: GSU Lab Safety 
and Hazard Communication. 

13.1 Are you working with infectious agents and/or biologically-derived toxins? 
   No 
   Yes  I have approval from the Biosafety Committee 

Date: ______________ Approval #: ________________ 
 

13.1.1  Describe all special precautions recommended for personnel who handle animals, equip-
ment, or do housekeeping. Describe how contaminated caging or tanks, bedding, and 
equipment should be handled. 
 

13.2  Does the project use any recombinant DNA (i.e. cloning/expression systems, viral vectors, etc.) 
material in animals? 

    No 
   Yes.  I have approval from the Biosafety Committee 

Date: ______________ Approval #: ________________ 
 
13.2.1  Describe all special precautions recommended for personnel who handle animals, equip-

ment, or do housekeeping. Describe how contaminated bedding, cages or tanks or equip-
ment should be handled. 
 

13.3  Will any carcinogenic or toxic compounds to be used in animals? 
   No 
   Yes   

 
13.3.1  Describe all special precautions and training recommended for personnel who handle an-

imals, equipment, or do housekeeping.  Describe how contaminated caging or tanks, 
bedding, and equipment should be handled. 
 

13.4  Will any radioactive compounds be administered to the animals?   
   No 
   Yes.  I have approval from the Radiation Safety Committee 

Date: ______________ Approval #: ________________ 
 

http://www.gsu.edu/research/ibc.html
http://www.gsu.edu/research/radsafety.html
http://www.gsu.edu/research/lab_safety_and_hazard_communication.html
http://www.gsu.edu/research/lab_safety_and_hazard_communication.html
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13.4.1  Describe all special precautions recommended for personnel who handle animals, equip-
ment, or do housekeeping.  Describe how contaminated caging, bedding, and equipment 
should be handled. 
 

13.5  Will Controlled Substances be used? 
   No 
   Yes 

 
13.5.1  Do you have a Controlled Substance Permit? 

   No 
   Yes 

 

SECTION 14.  Animal Housing and Husbandry 
 

14.1  Will you breed these animals? 
   No 
  Yes  Please address the following: describe method of mating (harem, monogamous, et 

cetera); describe age of weaning; describe genetic monitoring and methods to assure inbred / 
outbred status; justify breeding versus obtaining commercially. If only one sex of offspring will be 
used in experiments, please justify. A separate breeding protocol (Use breeding protocol 
form) may be submitted to generate animals for this and other experimental protocols.  
14.1.1 If breeding Genetically Modified Animals (GMAs), with their inherent potential for 

unanticipated phenotypes, please describe monitoring procedures for unexpected 
outcomes:  
 

14.1.2 Please state if there is a plan in place for preservation of critcal or irreplaceable animals 
such as transgenics:  
 

14.2  Do the animals require housing other than standard caging/bedding or tanks/water? 
  No 
   Yes (List housing required and explain here):  

 
14.3 Will animals be housed singly? 

  No 
   Yes (List reason single housing is required and explain why here):  

Non-Human Primate Housing and Social Housing of Social Species criteria options can be found 
at: http://grants.nih.gov/grants/olaw/positionstatement_guide.htm#nonhuman 

http://ursa.research.gsu.edu/files/2013/04/GSU_IACUC_SOP_on_Social_Housing_of_So-
cial_Species.docx 
 

14.4 Do the animals require special care? 
   No 
   Yes (List special care and explain here):  

 
14.5  Do the animals require diet other than the standard diet for this species used at GSU? 

   No 
  Yes (List diet and explain here):   

 
14.6 Will food and/or fluid restriction and/or regulations be necessary? 

   No 
  Yes (List restrictions and explain here how they will be managed).  

Describe how the animal(s) will be monitored to ensure that food and fluid intake meets their nu-
tritional needs.  
 
 

http://grants.nih.gov/grants/olaw/positionstatement_guide.htm#nonhuman
http://ursa.research.gsu.edu/files/2013/04/GSU_IACUC_SOP_on_Social_Housing_of_Social_Species.docx
http://ursa.research.gsu.edu/files/2013/04/GSU_IACUC_SOP_on_Social_Housing_of_Social_Species.docx
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14.7  Will animals remain outside the IACUC approved Animal Housing Area for more than 12 hours? 
   No 
  Yes (List building and room number and explain here):  

 
14.8  Will animals be transported outside of an IACUC approved Animal Housing Area (e.g. to your lab 

or off campus)? 
 Yes   

 I agree to adhere to the GSU IACUC Animal Transportation Policy.  
 I request a deviation from the GSU IACUC Animal Transportation Policy. Please state 

the deviation and provide a justification for the deviation here:  
  No  

 
14.9  Will animals undergo experimental manipulations outside the IACUC approved Animal Housing 

Area? 
  Yes (List building and room number and explain here):  
   No 

 
14.10  Can animals be provided environmental enrichment? Enrichment options can be found at: Enrich-

ment Options 
   Yes (List enrichment requested here):  group housing, Nylabones, shelters 
   No (Explain reason for lack of enrichment here):  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://ursa.research.gsu.edu/repo/IACUC_Approved_Animal_Housing_Areas.doc
http://ursa.research.gsu.edu/repo/Animal_Transportation_Policy.doc
http://ursa.research.gsu.edu/repo/Animal_Transportation_Policy.doc
http://ursa.research.gsu.edu/repo/animal_enrichment_plan.doc
http://ursa.research.gsu.edu/repo/animal_enrichment_plan.doc
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GEORGIA STATE UNIVERSITY 
INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE 

Request for Amendment to an Approved Protocol 
(revised 05/09/2014) 

Information for the protocol you wish to amend: 
Protocol Number: A15003 
Principal Investigator: Jeffrey S. Otis, PhD 
Department: Kinesiology and Health 
Protocol Title: Myocardial Infarction and Cardiac Regeneration 
Animal Type and Quantity: rat, 80 
Proposal Period:  
1. I wish to amend this protocol by making the following changes:  
 This amendment seeks approval for four additions to the parent protocol: 

(1) An additional 80 experimental animals 
(2) Use of resveratrol (RSV: 10mg/kg/day delivered i.p.) to be started on the day of 

surgery           and continuing for 28 days of recovery 
(3) Ear punches 
(4) Minor protocol change that allows us to sacrifice animals in our lab (using                    ap-

proved techniques: CO2 inhalation followed by thoracotomy to confirm death). 
 

2. Please provide scientific justification for the changes. (if you are only adding Genetically 
Modified Animals (GMAs), with their inherent potential for unanticipated phenotypes, please de-
scribe monitoring procedures for unexpected outcomes.  If you are only adding GMAs and there 
are no new procedures you may proceed to Question 8). 
  (1)  Animals: The parent protocol was a training protocol intended to improve the surgical 

proficiency of Russell Rogers during the left anterior descending (LAD) artery ligation 
surgery.  This training is still ongoing and we submit this amendment now to initiate the 
review process.  In reality, these newly requested animals will not be used until later 
this summer when we (and the veterinary staff) are comfortable with his progress and 
outcomes. 

            
           Effect size, power, and required sample size to attain power of 0.8 at alpha level of 0.05 

have been calculated.  Including ~25% more animals/group to account for attrition or 
surgical complication, each experimental group will require 20 animals.  Thus, we 
anticipate that 80 rats will be required and randomly assigned to 1 of 4 groups. 

a) Sham operated, vehicle (dimethyl sulfoxide, DMSO) 
b) Sham operated, RSV (10 mg/kg/day, i.p., diluted in DMSO) 
c) LAD artery ligation, vehicle (DMSO) 
d) LAD artery ligation, RSV (10 mg/kg/day, i.p., diluted in DMSO) 

 
    (2) Resveratrol: Resveratrol (RSV, 3, 5, 4’-trihydroxystilbene) is a powerful antioxidant that 

is increasingly being used to treat several common chronic diseases such as cancer, 
cardiovascular and pulmonary diseases.  For example, resveratrol has been shown to 
provided cardioprotection, in part, by restoring Nrf2 activity (a central transcription 
factor that drives expression of several antioxidants), improving glutathione levels, and 
attenuating caspase 3 activity.  We are currently defining the impact of resveratrol on 
signaling pathways known to regulate skeletal muscle repair and these initial data are 
encouraging and suggest that similar benefits may be achievable in the infarcted heart 
as well. 
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          RSV (10 mg/kg/day for 28 days, delivered i.p.) will be dissolved in DMSO and sterile-
filtered using 0.22-μm syringe filters.  

 
   (3)  Ear punches: Ear punches will be performed under isofluorane sedation while the animal 

is undergoing the LAD artery ligation surgery.  This, in combination with notation on 
cage cards and detailed surgical records in our log book, will ensure correct 
identification of our animals.  The punch will be cleaned between each animal with 
alcohol. 

 
   (4)  Euthanasia location:  The parent protocol was a training protocol and animals were not 

leaving the DAR facility.  These newly requested experimental animals will be sacrificed 
in our lab and tissue collections will need to occur immediately.  We will euthanize 
animals as approved using CO2 inhalation followed by thoracotomy to confirm death.  
This location change will affect all animals. 

 
3. Justification for non-duplication of work.  

Please provide a written assurance that the proposed work is not unnecessarily duplicative. 
 We assure that this requested work does not unneccessarily duplicate previous findings. 
 

4. Personnel:  If new procedures are proposed, list the name(s), experience and/or training of 
the personnel and the procedures that each will conduct.  List the names(s) of the individuals 
who will be responsible for training:   
 (1) Russell Rogers (PhD student):   Russell will be responsible for all work described in this 

amendment and the parent protocol.  Russell has 5 years of experience working with 
rodent models, including small animal handling, surgical techniques, and post-
procedural care.  He has recently been trained by DAR staff on i.p. injection. 

 
         (2)  Jeffrey S. Otis (PI):  Dr. Otis has over 15 years of experience working with mouse and 

rat               models – including survival surgery models.  He will oversee all aspects of 
this amendment. 

 
5. Highest Pain Category for experiments described in this amendment:  (enter B, C, D, or E) 

C.   
 
USDA Classifications and Examples of Pain Categories: 
Classification B: Animals being bred, conditioned, or held for use in teaching, testing, experi-
ments, research, or surgery, but not yet used for such purposes. 
Classification C: Animals upon which teaching, research, experiments, or tests will be con-
ducted involving no pain, distress, or use of pain-relieving drugs. 
Classification D: Animals upon which experiments, teaching, research, surgery, or tests will be 
conducted involving accompanying pain or distress to the animals and for which appropriate an-
esthetic, analgesic, or tranquilizing drugs will be used. 
Classification E: Animals upon which teaching, experiments, research, surgery, or tests will be 
conducted involving accompanying pain or distress to the animals and for which the use of ap-
propriate anesthetic, analgesic, or tranquilizing drugs will adversely affect the procedures, re-
sults, or interpretation of the teaching, research, experiments, surgery, or tests. 
Is this a change in Pain Category?  Yes    No 
6. If the Pain Category Is “B” or “C” please go to question number 8. 
7. Explanation for the Consideration of Alternatives for Category “D” or “E” Animal Use.  
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Federal Regulations (The Public Health Service Policy and the Animal Welfare Act) and Uni-
versity Policy require assurance that this project does not unnecessarily duplicate research 
projects/courses performed at this or other institutions, and that the use of alternatives to live 
animal models and alternative procedures that may cause more than momentary or slight 
pain/distress (Class “D” and “E” procedures) to animals have been considered. The infor-
mation in this section should include adequate information for the IACUC to assess that a 
reasonable and good faith effort was made to determine the availability of alternative models 
or methods.  

 
The following is a guide for answering 7.1 and beyond. 
Your literature search is done as part of the OLAW requirement to address the “3Rs”  
(Refinement, Reduction, and Replacement) issues.  For example:  
 
* Refinement of procedures to eliminate or minimize pain or distress, the use of remote te-
lemetry to decrease the distress of restraint; the use of humane endpoints. 
 
Other examples of refinement are: ways to enhance the well-being of animals and the use of 
analgesics to decrease pain or anesthetics to decrease distress. 
 
For the literature searches 
 
Ask "Am I using the least painful technique(s)?” 
 - Search terms: Your species + animal/experimental model/technique + scientific keywords 
 
* Replacement of live animals with non-animal procedures or a less sentient species. Exam-
ples include the use of non-animal models such as in-vitro work, cell culture, tissues culture, 
computer models or simulations.  
 
Ask "Do I need to use animals?": 
 - Search terms: Your experimental model + simulation + in vitro +scientific keywords  
 
Ask "Am I using the lowest species possible?": 
 - Search terms: Your species + all applicable lower species (For example if using mice, 
specifically use "invertebrate", "fish" and "frog" in your search terms) + your animal/experi-
mental model + scientific keywords 

 
Note: There are NO search terms that will direct the searcher to all examples of re-
placement or refinement. The onus is on the researcher to read and evaluate the litera-
ture.  
 
*Reduction in the number of animals used in the study. (This only needs to be addressed 
in Question 14 below).  Examples include the use of shared control groups; preliminary 
screening in non-animal systems; innovative statistical packages.  
 
The selection of databases depends on the work performed and the species used in 
the protocol. Samples of databases available through the Georgia State University Library 
www.library.gsu.edu/database web pages 
 
· PubMed·   Web of Knowledge · Biological Abstracts·   Web of Science    PsychINFO    Alt-
Web    NLM Gateway     AVAR     Galileo     AGRICOLA 

http://www.nal.usda.gov/awic/legislat/usdaleg1.htm
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 OVID (allows a search of multiple databases including Agricola, BIOSIS, CAB Abstracts, 
Medline, Zoological Record, etc.)  
 
Please visit the Animal Welfare Information Center (AWIC) Literature Searching and Data-
bases page (http://awic.nal.usda.gov/nal_display/index.php?tax_level=1&info_center=3&tax_ 
subject=184) for a list of databases that can be used to search for alternatives. The AWIC 
site also recommends using the Literature Search Worksheet 
(http://www.nal.usda.gov/awic/alternatives/searches/altwksht.pdf) to assist in performing a 
successful alternatives database search. The worksheet helps to identify relevant searchable 
terms and concepts. 
7.1 Literature search for alternatives to painful procedures 
If you chose category “D” or “E” above, please do literature searches using the broadest da-
tabase for your area of study, and provide a brief summary of the results obtained to verify 
that you investigated the use of alternatives to painful or distressful procedures. If you have 
not selected either category D or E, skip to section 6.2. 

 
 

7.1.1 Name of the databases used:   
Date the databases search(es)  were done:   
Did the search cover the entire date range of the databases with no restriction on dates? 

 Yes   
  No (If No, provide dates covered by the search(es) below) 

Dates covered by the databases search(es):   
 

7.1.2 Search keyword(s) used: include number of hits for combinations of terms. You 
must use ‘alternative’ and ‘animal welfare’ in the search combinations for 
invasive or painful procedures (See above for 3R criteria.) 
 
 

71.3 Summarize the information found in the hits below.  (Note: this should be a general 
summary. You do not need to go into the details of each hit but rather summarize 
hits by relevant groups)  
 
 

7.1.4 Explain what alternatives exist in place of using animals for this protocol and pro-
vide a justification if these cannot be used.  
 
 

7.1.5 Other Sources of Information on Alternatives to Painful Procedures 
7.1.5.1 Consultation with Experts: (Names, credentials, and dates):   
7.1.5.2 Scientific Meetings: Specify:   

 
Note: A careful literature search is usually the best way to determine whether a proposed study 
is unnecessarily duplicative of previous work. However, it is ok to repeat a published experiment 
to make sure that it works in a different lab. This reason just needs to be stated as the justification.  
 
8. If additional animals are needed, please justify their use.  

Note: This Amendment Form may be used to request additional animals. If a different spe-
cies is required you must submit a new protocol. 
  Animal use justification has been provided in question 2. 
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9. Are there any changes in the Animal housing/husbandry for this protocol?  

If so please describe below 
 No. 
 

 
Jeffrey S. Otis_______________________  ___________ 
Investigator’s Signature    

  Date 
 

PLEASE RETURN THIS FORM TO:  
IACUC Compliance Officer / Georgia State University / Office of Research Integrity / 232 Alumni 
Hall / Atlanta, GA 30303   e-mail: iacuc@gsu.edu     

 
 

 
 
APPROVED: __________________________________ ___________ 

           Attending Veterinarian’s Signature  Date 
 
 
APPROVED: _________________________________ __________ 

           IACUC Chair’s Signature       Date 
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