
Georgia State University
ScholarWorks @ Georgia State University
Learning Technologies Division Faculty
Publications Learning Technologies Division

2016

Improving Problem Solving with Subgoal Labels in
Expository Text and Worked Examples
Lauren Margulieux
Georgia State University, lmargulieux@gsu.edu

Richard Catrambone
Georgia Institute of Technology, richard.catrambone@psych.gatech.edu

Follow this and additional works at: https://scholarworks.gsu.edu/ltd_facpub

Part of the Instructional Media Design Commons

This Article is brought to you for free and open access by the Learning Technologies Division at ScholarWorks @ Georgia State University. It has been
accepted for inclusion in Learning Technologies Division Faculty Publications by an authorized administrator of ScholarWorks @ Georgia State
University. For more information, please contact scholarworks@gsu.edu.

Recommended Citation
Margulieux, Lauren and Catrambone, Richard, "Improving Problem Solving with Subgoal Labels in Expository Text and Worked
Examples" (2016). Learning Technologies Division Faculty Publications. 4.
https://scholarworks.gsu.edu/ltd_facpub/4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71427891?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/ltd_facpub?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/ltd_facpub?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/ltd?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/ltd_facpub?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/795?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/ltd_facpub/4?utm_source=scholarworks.gsu.edu%2Fltd_facpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 1

Improving Problem Solving with Subgoal Labels in Expository Text and Worked Examples

Submitted: December 16, 2015

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 2

Abstract

In highly procedural problem solving, procedures are typically taught with context-independent

expository text that conceptually describes a procedure and context-dependent worked examples

that concretely demonstrate a procedure. Subgoal labels have been used in worked examples to

improve problem solving performance. The effect of subgoal labels in expository text, however,

has not been explored. The present study examined the efficacy of subgoal labeled expository

text and worked examples for programming education. The results show that learners who

received subgoal labels in both the text and example are able to solve novel problems better than

those who did not. In addition, subgoal labels in the text appear to have a different, rather than an

additive, effect on learners compared to subgoal labels in the example. Specifically, subgoal

labels in the text appear to help the learner articulate the procedure, and subgoal labels in the

example appear to help the learner apply the procedure.

Keywords: STEM education; subgoal learning; worked examples; expository text; procedural

instructions.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 3

1. Improving Problem Solving with Subgoal Labels in Expository Text and Worked Examples

Knowledge of science, technology, engineering, and mathematics (STEM) subjects is

increasingly necessary in our society. As STEM fields advance, individuals need to generally

understand more about these fields to make well-informed decisions, such as those made when

buying technology, and to understand technical information, such as that in a medical diagnosis

(Committee on Highly Successful Schools or Programs in K-12 STEM Education (CHSSP),

2011). In addition, individuals with advanced STEM knowledge are needed to fill increasingly

technical jobs and promote innovation (Katehi, Pearson, & Feder, 2009). These demands are

particularly prevalent in computer science. Using data from the U.S. Bureau of Labor Statistics,

Miller (2014) argues that computer science skills are increasingly necessary for careers in all

industries and that, by 2020, we will have a million more computer science positions than

computer scientists. Cooper, Grover, Guzdial, & Simon (2014) argue that to address the deficit

of general computing literacy and qualified computer scientists, interventions to improve

computing instruction are needed.

In computing, like in other STEM disciplines, instruction of problem solving procedures

includes context-independent expository text to provide conceptual information about a

procedure that is abstract enough to transfer to novel problems and context-dependent worked

examples to provide procedural information that is concrete enough to grasp (Trafton & Reiser,

1993). Expository text provides information about reasoning within a domain (Reder &

Anderson, 1980). Worked examples, in contrast, demonstrate how to apply procedures to

specific cases (LeFevre & Dixon, 1986).

Like students in other STEM disciplines, computing students rely upon worked examples

to learn procedures (Anderson, Farrell, & Sauers, 1984; LeFevre & Dixon, 1986). Eiriksdottir

and Catrambone (2011) argue that worked examples are preferred over expository text because

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 4

they take less effort to understand and apply to closely related problems. The concrete features

that make worked examples easier to understand also tie them to a particular context. Therefore,

when learners rely too heavily on worked examples, they are commonly unable to glean

conceptual information about the procedure from these concrete examples, which can inhibit

transfer to novel problems (Bassok & Holyoak, 1989; Eiriksdottir & Catrambone, 2011). For this

reason, much research has focused on designing worked examples in a way that promotes

conceptual understanding and transfer (e.g., Catrambone, 1998; Mayer, 2009; Renkl, 2002).

One instructional design technique for worked examples that has improved problem

solving and transfer in STEM disciplines, including computing, is using subgoal labels in

worked examples to promote subgoal learning (see an example in Figure 1; Catrambone, 1998;

Margulieux, Catrambone, & Guzdial, 2012). To understand what a subgoal is, consider how

someone might solve a complex math problem. To achieve the solution (or the overall goal), the

problem solver takes multiple functional steps towards that solution (e.g., finding the value of

different parts of the problem). These functional pieces are called subgoals, and they comprise

one or more individual steps (e.g., summing numbers together). The same subgoals tend to

appear across problems within a topic area; therefore, teaching learners to identify and achieve

subgoals increases their success at solving novel problems (Catrambone & Holyoak, 1990).

Research on subgoal labeled worked examples suggests that by providing a small amount of

extra information and structure, subgoal labels improve outcomes in three ways:

 by highlighting the structure of the worked example for the learner,

 by helping the learner mentally organize information,

 and by inducing the learner to self-explain the examples (see Figure 2).

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 5

1.1.1 Highlight Structure. To help students learn problem solving procedures from

worked examples, the structure of worked examples needs to be emphasized (Atkinson, Derry,

Renkl, & Worthham, 2000; Van Gog, Paas, & Van Merriënboer, 2004, 2006). Subgoal labels

highlight the procedural structure of examples by grouping steps by structural features.

Catrambone (1996) found that learners who receive subgoal labeled examples were more likely

than those who did not to mentally chunk steps that were grouped. This chunking changed

learners’ mental representation of a problem solving procedure from individual steps to subgoals,

reducing the demand on cognitive resources (Atkinson & Derry, 2000; Catrambone, 1996).

Moreover, this abstract representation of the procedure helped students transfer knowledge to

solve novel problems (Catrambone, 1996).

1.1.2 Organize Information. Novices need help to effectively organize new information,

even if they recognize the structure of examples (Committee on Developments in the Science of

Learning (CDSL), 2000). For example, even though students might recognize the components of

a math procedure, they do not necessarily understand how those components relate to each other

or how they could be applied to a new problem. Helping learners create an organizational

scheme in a domain is critical because how learners organize and interpret new information

affects their proclivity to remember, use, and acquire new knowledge (CDSL, 2000). When

subgoals in examples are meaningfully labeled, the student gets information about the function

that a group of steps achieves (Renkl & Atkinson, 2002). Catrambone (1995a) found that

participants who received meaningful subgoal labels in worked examples tended to explain their

solutions using those labels, suggesting that is how they mentally organized information. These

learners solved problems better than those who did not receive subgoal labels, perhaps because

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 6

better mental organization of information in a domain enables better transfer within the domain

(CDSL), 2000).

Leaners who receive explanations about the purpose of steps in a worked example

typically organize information about the procedure better and transfer the procedure to novel

problems better (Van Gog et al., 2004, 2006). For this reason, subgoal labeled worked examples

and process-oriented worked examples, which describe the purpose and rationale for each step of

a worked example, help students solve novel problems (e.g., Van Gog et al., 2004). Both subgoal

labeled worked examples and process-oriented worked examples achieve the same purpose,

describing to the learner the purpose of steps of the example, but they differ in the specificity of

the instructional explanation. Subgoal labels are context independent, meaning that the same

subgoal label is used across a class of problems (e.g., Catrambone, 1998), while process-oriented

explanations tend to be context specific, meaning that the explanations in an example apply to

only that example (e.g., Van Gog et al., 2004). A recent meta-analysis by Wittwer and Renkl

(2010) found that the effect of including instructional explanations on learning was small. This

meta-analysis included worked examples with process-oriented explanations but not subgoal

labels. The effect of subgoal labels tends to be larger, d = .2 - .3 (e.g., Catrambone, 1998;

Margulieux et al., 2012), than the effect reported in Wittwer and Renkl (2010), d = .16, though

this average effect of subgoal labels is based on fewer experiments than were included in the

meta-analysis. Subgoal labeled worked examples might be more effective than process-oriented

worked examples because the abstract nature of subgoal labels promotes self-explanation.

1.1.3 Promote Self-Explanation. Worked examples have been designed to promote self-

explanation and help learners to conceptually understand procedures rather than simply

memorize them (Chi, Leeuw, Chiu, & LaVancher, 1994; Wylie & Chi, 2014). The more learners

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 7

understand concepts, the better they can adapt and transfer procedures to novel problems (e.g.,

Bransford, Brown, & Cocking, 2000). Moreover, Sweller (2010) argues that self-explanation

guides cognitive resources to focus on relevant information and reduces the effort spent on

extraneous information. The amount of self-explanations a typical learner makes is low (Chi et

al., 1994; Wylie & Chi, 2014), but explanations can also be prompted by the design of

instructional materials (Catrambone, 1998; Renkl & Atkinson, 2002).

By grouping steps of a worked example under a meaningful label, subgoal labels prompt

the learner to self-explain how the steps are related to the label (Catrambone, 1995a).

Furthermore, when the same subgoal label appears multiple times, students can explain to

themselves how the same label applies in multiple instances. Receiving subgoal labels might

inhibit the learner from self-explaining the purpose of steps, but it can prompt self-explanation of

how the steps of the worked example are related to the label. Furthermore, students can compare

methods for achieving a subgoal across several instances and develop a more abstract

understanding of the procedure (Atkinson et al., 2000; Catrambone & Holyoak, 1990). Renkl and

Atkinson (2002) found that because the subgoal labels describe the function of steps, learners

who received subgoal labels had fewer incorrect self-explanations than students who did not.

Perhaps most important, though, Renkl and Atkinson (2002) found that designing worked

examples to include subgoal labels externally and consistently prompted students to make these

self-explanations, unlike self-explanation training, which decayed in efficacy over time.

1.1.4 Expository Text. Past research suggests that students learn better from worked

examples when they include subgoal labels than when they do not, but the effect of subgoal

labels on learning from expository text has not been explored. Learning from worked examples

typically includes receiving expository text that describes the procedure used in the examples in

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 8

general terms. For example, a worked example shows how to use a probability formula to find

the probability of an event, whereas expository text describes the formula itself and its different

parts. While worked examples can improve immediate application of a procedure to problems

similar to that in the worked example, expository text can improve performance and transfer to

problems different from that in the example by helping students understand procedures

conceptually. Smith and Goodman (1984) found that participants who received structural or

functional information about the system on which they completed tasks read the steps faster,

recalled them more accurately, and transferred their knowledge to a novel system better than

participants who did not receive that information. Even with well-designed worked examples

that help learners build a conceptual understanding of a procedure, expository text could be more

efficient at conveying this conceptual information. Learners might have to review multiple

examples of concrete problems to extract the same level of abstract information that expository

text provides directly.

Subgoal labels might be beneficial in expository text because instructions that emphasize

the concepts in a domain can help novices learn how to process and organize new information

(for an example of subgoal labeled text, see Figure 3). Atkinson, Catrambone, and Merrill (2003)

found that learners could transfer knowledge to solve problems more successfully when they

received concept-oriented equations (i.e., written to show the purpose of the equation) compared

to calculation-oriented equations (i.e., written to expedite calculation). In addition, Catrambone

(1995b) found that when learners received general instructions for a domain, they transferred to

novel tasks more successfully than participants who received specific instructions.

Subgoal labels in expository text could also be considered a form of signaling. Signals in

text refers to clues from the writer to the reader about what is important (Lemarié, Lorch,

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 9

Eyrolle, & Virbel, 2008). Signals support identification of important concepts and efficient

processing of text (Lemarié et al., 2008). Subgoal labels could be used as signals to highlight

concepts in expository text and draw learners’ attention to them.

Subgoal labels were predicted to be most effective when included in both expository text

and worked examples. Instructions are more effective when students can find connections

between different representations of content (McGee & Reis, 2012). Using subgoal labels in

both expository text and worked examples might help learners connect information from these

two types of instruction. If learners connect information sharing the same label, then they could

more easily integrate information presented in each type of instruction. Though expository text is

important, learners can have difficulty applying abstract instructions to problems (Eiriksdottir &

Catrambone, 2011; VanLehn, Jones, & Chi, 1992). Worked examples are an important part of

instruction because they provide specific information about how to apply concepts to problem

solving (Catrambone, 1998; Trafton & Reiser, 1993). If learners receive only subgoal labeled

expository text, they might have trouble applying that information to problem solving without

subgoal labeled worked examples to guide them.

In summary, subgoal labels in both expository text and worked examples might improve

learners’ conceptual understanding of procedures and problem solving performance by

 helping learners structurally understand problem solving procedures in a way that

enables transfer to novel contexts,

 guiding learners’ mental organization of knowledge,

 helping learners understand information by encouraging learning strategies like self-

explanation,

 And helping learners integrate information from multiple sources.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 10

These first three points match the benefits that research on subgoal labeled worked examples has

supported. Subgoal labeled expository text is expected to help students organize information, by

signaling the main points of the text, and promote learning strategies by prompting the student to

explain how the label relates to the information in the text. Receiving labels in both text and an

example was expected to help learners integrate general information from the expository text

with the specific information from the worked example. The general purpose of expository text

is to teach the structure of a procedure; therefore, subgoal labeled expository text was not

expected to help learners structurally understand procedures more than unlabeled text.

1.2 Overview of Experiments

The present study explored the effectiveness of subgoal labeled instructional materials

compared to unlabeled instructional materials to teach computer programming. Participants

learned to create applications (apps) for Android devices using Android App Inventor. This

computer programming language was chosen because it is a drag-and-drop language. Drag-and-

drop programming languages allow the user to drag components from a menu and place them

together like puzzle pieces, instead of writing code, to create programs (view a screenshot of the

interface in Figure 4). This type of code creation is more easily understood by novices

(Hundhausen, Farley, & Brown, 2009). Instructions from the ICE Distance Education Portal

(Ericson, 2012) were used to develop instructional materials. Materials in all conditions were

identical except for the subgoal labels. Subgoals were determined using the Task Analysis by

Problem Solving (TAPS; Catrambone et al., 2014) technique with subject-matter experts.

In TAPS the subject matter expert (SME) identifies a set of problems that the SME thinks

learners should be able to solve if they conceptually understand the procedure. The SME solves

some of the problems while justifying each step to the knowledge extraction expert (KEE) who

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 11

is a domain novice. The KEE develops detailed notes based on the solution procedures and

justifications (the "why" for each step) provided by the SME. The SME is not invited to provide

abstract theory outside of justification for steps. Eventually the KEE uses the notes to solve the

problems that the SME already solved; the KEE can request help from the SME to resolve

impasses. Throughout this process the KEE continuously updates and reorganizes the notes; this

reorganization allows the KEE to develop solution procedures that are independent of specific

examples. Once the KEE can solve all of the old problems, the KEE then attempts to solve new

problems provided by the SME. When the KEE can, using the notes, solve all problems given by

the SME, without the help of the SME, then these notes represent a complete task analysis of the

procedure.

The procedure was completed in App Inventor, which has two interfaces. The Designer

interface allows the user to make components for an app. For example, if an app had an image,

the image would have been created in the Designer (Figure 5 shows the Designer interface). The

Blocks Editor interface allows the user to program behaviors for the components using pieces of

program called blocks. For example, if an image becomes bigger when it is touched, this

behavior would be programmed in the Blocks Editor (Figure 4 shows the Blocks Editor

interface).

For instruction, participants received expository text detailing how to create apps (excerpt

in Figure 3) and a video demonstration detailing how to create a Fortune Teller app (i.e., a

worked example). A video demonstration of an expert making the app and explaining the

procedure was used as the worked example because videos can quickly and naturally show

learners how to use direct-manipulation interfaces (Palmiter, Elkerton, & Baggett, 1991) such as

App Inventor. Participants were also asked to make the app themselves using a textual step-by-

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 12

step guide (excerpt in Figure 1) because studying an example and applying the content can lead

to better learning than studying alone (Trafton & Reiser, 1993).

The sessions were completed in a computer-based learning environment in a laboratory

with an experimenter to provide administrative instructions that were unrelated to the

programming task. Experiment 1 explored the efficacy of subgoal labels in general expository

text in a laboratory study that had higher control but less ecological validity. Experiment 2

attempted to replicate performance results from Experiment 1 in a more ecologically valid

learning scenario with lower control. In Experiment 1, participants were not allowed to use

instructional materials when solving novel problems to isolate the effect of instructional design

on learning as much as possible. This constraint, however, is not typical for learners who have

had less than 30 minutes of instruction. Thus, Experiment 2 permitted participants to use

instructions during problem solving. This learning situation affords exploration of the effect of

subgoal labeled instructional materials when they could be used as a resource during problem

solving.

The assessment tasks in the experiments asked participants to solve novel problems to

measure participants’ skill in problem solving. It was predicted that subgoal labeled worked

examples would lead to better performance than unlabeled examples. This effect is well-

documented in the literature (e.g., Catrambone, 1998). It was also predicted that subgoal labeled

expository text would not independently lead to better performance compared to unlabeled

expository text. It was expected that if participants received only subgoal labeled expository text

that abstractly describes procedures for problem solving, they would have trouble applying these

concepts to solving problems. However, it was predicted that subgoal labeled expository text

would improve performance when paired with subgoal labeled worked examples. It was

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 13

expected that subgoal labeled expository text would enable learners to identify subgoals earlier

and organize procedural information better, which would improve problem solving performance

when paired with subgoal labeled examples that demonstrated how to apply this knowledge.

Furthermore, it was expected that subgoal labels on both expository text and examples would

facilitate the integration of information in the expository text and examples by matching the

information grouped under matching subgoal labels. For this reason, it was also predicted that

learners who received subgoal labeled expository text and examples would perform better than

those who received subgoal labeled examples without subgoal labeled expository text.

Patterns of performance across groups were not expected to differ between experiments.

For Experiment 1 in which learners were not allowed to view the instructions during the problem

solving assessment tasks, receiving subgoal labels in both types of instruction was expected to

improve organization and memory of information by guiding attention to important details of the

instructions and making connections between the expository text and worked example explicit.

For Experiment 2 in which learners were allowed to view the instructions during problem

solving, receiving subgoal labels in both types of instruction was expected to improve learners’

use of the instructions as a resource during problem solving by guiding attention and making

connections.

2. Experiment 1

2.1 Method

2.1.1 Participants. Participants were 120 students from a mid-sized, urban university

who received class credit for participation. Participants must not have had experience with App

Inventor or taken more than one course either before or during college in computer science or

programming. These restrictions were necessary to ensure participants had about the same level

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 14

of prior knowledge about programming because instructions were designed for novices. Previous

experiments using similar instructional materials found no statistical differences in scores

between participants who had taken one course in computer science and those who had taken

none (Margulieux et al., 2012). On average, participants were 19.3 years old, had completed 2.1

years of college, and were comfortable with computers (M = 6.0 on a scale of “1 – Not at all

comfortable” to “7 – Very comfortable”). The majority (67%) of participants were men.

2.1.2 Design. The experiment was a two-by-two, between-subjects, factorial design: the

format of the expository text (subgoal labeled or unlabeled) was crossed with the format of the

worked example (subgoal labeled or unlabeled). In each of the conditions, participants received

the same instructional content, but the presence of subgoal labels differed. The dependent

variables were performance on the assessment tasks (to determine participants’ knowledge

organization and effectiveness in solving problems), minutes spent completing the assessment

tasks (to determine participants’ efficiency), and minutes spent looking at instructions.

2.1.3 Materials. Participants learned the procedure for creating apps with three types of

instruction. The first, expository text, gave participants general, conceptual information about the

procedure. These instructions were displayed as a PDF on a computer screen. The second, a

video that showed the Fortune Teller being created with a voice over describing the process,

gave participants a specific worked example of the procedure being completed. The third, a

textual step-by-step guide to create the Fortune Teller app, gave participants step-based

instructions to complete the Fortune Teller app themselves. These instructions were also

displayed as a PDF on a computer screen. Examples of subgoal labeled and unlabeled materials

are in Figures 1 and 3. For participants who received the subgoal labeled worked example, the

video presented subgoal labels in pop-up text boxes while the subgoal was being achieved. The

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 15

pop-up text did not obscure the part of the interface that was being used (see Figure 5).

Participants who received subgoal labels in the video also received subgoal labels in the textual

step-by-step guide.

The assessment tasks measured problem solving performance with a series of problem

solving tasks and measured mental organization of information with an explanation task and a

generalization task. Participant responses were scored by two raters. Interrater reliability was

measured with an intraclass correlation coefficient of absolute agreement (ICC(A)) because the

absolute values of continuous scores were compared (Shrout & Fleiss, 1979). Raters were

undergraduate and graduate research assistants who had taken a research methodology course

and were trained on the protocol and scoring by the investigators. During scoring, raters were

blind to the participants’ conditions to avoid bias.

The first assessment, the series of problem solving tasks, asked participants to list the

steps that they would take to make four features of an app (e.g., “Write the steps you would take

to italicize the fortune presented,” or “Write the steps you would take to create a list of colors

and make a ball change to a random color whenever it collided with something”). This

assessment was meant to measure how well participants could solve novel problems.

To score this assessment, participants’ solutions were compared to the correct solutions

for each problem. Participants earned one point for each correct step that they took towards the

problem solution. To complete all four features correctly, 22 steps needed to be taken; therefore,

the maximum score was 22. Because the solutions are complex, this scoring scheme afforded

more sensitivity than judging an entire solution as correct or incorrect. ICC(A) for this

assessment was .94.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 16

To better understand participants’ performance, the problem solving tasks were also

scored in terms of how much of the solution participants attempted. This score is meant to

measure how many functional components, or subgoals, of the solution the participants

attempted, regardless of whether their answers were correct. Attempting subgoals of the solution

would suggest that a participant recognized the components needed in the solution, even if they

could not achieve them. To create an "attempted" score, the correct solutions for the problem

solving tasks were deconstructed into the subgoals that were necessary to complete the solution

(e.g., “create a component” or “set the output”). Participant solutions earned a point for each

subgoal that was attempted. Attempting a subgoal was operationally defined as listing at least

one step required to complete it, listing a step that would achieve a similar function (e.g., listing

a step to change a property regardless of whether it was the correct property), or describing the

function of the subgoal. In the four features created in the problem solving assessment, there

were 10 subgoals; therefore, the maximum score was 10. ICC(A) for this assessment was .95.

In the explanation task, participants were given an expert’s solutions for the problem

solving tasks in the first assessment and asked to group steps of the solutions however they

thought apt. Then, participants were asked to provide a label describing the purpose of each

group. This assessment was meant to measure how well participants could explain solutions. To

do well on this assessment, participants did not need to solve problems, but they did need to

recognize the steps of the solution that were structurally-related and explain why they were

related. Participants received two scores for this assessment: a grouping score for how well they

organized steps and a labeling score for how well they explained groups. To score the grouping

portion of this task, participants received points for grouping together structurally-related steps

(i.e., steps that achieve a function). For each group that contained only structurally-related steps,

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 17

participants received one point, and they could earn up to 10 points. To score the labeling portion

of this task, the labels that participants used to describe the groups were analyzed qualitatively

using the methods from Taylor-Powell and Renner (2003) to determine if participants correctly

identified the purpose of the chunks. ICC(A) was .97.

The generalization assessment asked participants to describe the general approach that

they would take to create an app that provided an output when a button was pressed. This

assessment was meant to measure how well participants could abstractly describe the problem

solving procedure that they learned in the session. To score the generalization task, participants

received a point for each structural feature that they described that was necessary for creating the

app. Participants did not receive points for specific descriptions or unnecessary features. Specific

descriptions included information about how to achieve a step using the interface or specified a

particular block to be used. The maximum score on this assessment was six. The ICC(A) was

.89.

2.1.4 Procedure. Sessions were between 70 and 90 minutes depending on how quickly

participants completed the protocol. All instruction about programming was given through a

computer (one participant per computer). This computer-based learning environment was chosen

to isolate the effect of the instructional materials and reduce possible bias from an instructor.

During the sessions, experimenters answered questions about the study (e.g., “When will the

credit show up in my account?” or “Can I watch the video again?”) but did not answer questions

about the instructional materials or App Inventor (e.g., “How do I make a button?” or “Where do

I find the text blocks?”).

Participants first filled out a demographic questionnaire to provide information about

their age, gender, field of study, SAT scores, high school and college GPA, year in school,

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 18

number of completed credits, primary language, computer science experience, comfort with

computers, and expected difficulty of learning App Inventor. These factors were collected

because they are possible predictors of performance in computer science (Rountree, Rountree,

Robins, & Hannah, 2004).

The instructional period was next. During this time, participants received expository text

about creating apps generally and the video (worked example) demonstrating how to create the

Fortune Teller app. To give participants a chance to practice using the interface and the

procedure, participants were asked to create the Fortune Teller app by following a textual step-

by-step guide. Participants had up to 30 minutes to create the app using the App Inventor website

and the instructions in whatever way they wanted.

Next was the assessment period. During the assessment tasks, participants could not

access the instructional materials, but they could access the App Inventor website and the app

that they had created during the instructional period to serve as a memory cue to aid problem

solving. The assessment tasks included the 1) series of problem solving tasks, 2) explanation

task, and 3) generalization task. For the series of problem solving tasks, participants were limited

to a maximum of 25 minutes. Thus, like an exam, participants were not permitted to work on the

problems for an unlimited amount of time. They were not limited on time for the explanation and

generalization tasks.

2.2 Results and Discussion

Of the demographic factors collected as possible predictors, two were correlated with

performance. There was a negative correlation between SAT Writing scores and time spent on

the instructional period, r = -.28, p = .022. Participants’ with higher SAT Writing scores tended

to finish the instructional period faster. There was a positive correlation between participants’

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 19

subjective ratings of their comfort with computers and number of attempted problem solutions, r

= .25, p = .009. These predictors were not expected to confound the analyses of the performance

metrics because there were no differences among experimental conditions on these predictors

(see Table 1), and, therefore, no group would have an advantage.

2.2.1 Time on instruction. Participants who received the subgoal labeled example (M =

20.9, SD = 3.26) finished the instructional period 12% faster than those who did not (M = 23.7,

SD = 4.69), F (1, 116) = 12.62, MSE = 16.83, p < .001, est. ω2 = .10, f = .32. Estimated ω2

represents the proportion of variance that is accounted for by the intervention; in this case, 10%

of variance is attributed to the intervention. The effect size f represents the size of the difference

between groups in units of standard deviation; in this case, there is a difference of .32 standard

deviations between groups. This effect could be the result of the subgoal labels in examples

helping participants to group or chunk the steps of the step-by-step guide. Chunking steps could

have helped participants to remember more steps to complete in the App Inventor interface

before referring back to the guide, and the labels could also have helped participants find their

spot in the guide faster when they did refer to it. There was no significant difference between text

designs, F (1, 116) = .25, MSE = 16.83, p = .62, and there was no interaction of text and example

design, F (1, 116) = .69, MSE = 16.83, p = .69.

2.2.2 Problem solving performance. This task measured participants’ problem solving

performance. Participants could earn a maximum score of 22. Participants who received subgoal

labels in the example (M = 13.1, SD = 6.0) successfully completed 58% more steps than those

who did not (M = 5.5, SD = 4.8), F (1, 116) = 70.19, MSE = 24.47, p < .001, est. ω2 = .32, f =

.76. In addition, participants who received subgoal labels in the text (M = 11.0, SD = 7.1)

completed 31% more steps than those who did not (M = 7.6, SD = 5.7), F (1, 116) = 13.90, MSE

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 20

= 24.47, p < .001, est. ω2 = .06, f = .34. Moreover, there was an interaction between text and

example design, F (1, 116) = 12.82, MSE = 24.47, p = .001, est. ω2 = .05, f = .57. The interaction

shows that participants who received subgoal labels in the text performed better than those who

did not only when they also received subgoal labels in the example (see Figure 6). This pattern

suggests that the interaction caused the main effect of text by inflating the average for subgoal

labeled text. Closer evaluation showed that there was not a consistent simple effect of text design

meaning subgoal labels in the text did not independently improve performance (see Table 2).

Several studies (e.g., Atkinson et al. 2003; Catrambone, 1998; Renkl, 2002), including a

study using similar instructional materials (Margulieux et al., 2012), have demonstrated that

subgoal labeled worked examples help participants learn procedures in a way that allows them to

transfer their knowledge to solve novel problems. The primary explanation for this effect is that

subgoal labeled examples might help participants to learn the subgoals necessary to solve a class

of problems in a domain, which improves their problem solving performance (Catrambone,

1998).

 Despite the benefits of subgoal labels in worked examples, a simple effect of subgoal

labels in expository text was not found. Perhaps because learners in procedural domains rely on

worked examples to show how to apply domain knowledge to problem solving (e.g., LeFevre &

Dixon, 1986), subgoal labeled expository text might not have provided enough information to

help students apply subgoals to problem solving. However, the interaction between text design

and example design demonstrates that subgoal labeled text can improve problem solving

performance when paired with subgoal labeled examples.

These results were expected for two reasons. First, having subgoal labels in both types of

instructional material could have helped participants integrate the general information in the text

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 21

with the specific information in the example, leading to a better representation of the procedure.

Additionally, receiving the subgoal labeled text, similar to receiving principles in text (Bassok &

Holyoak, 1989), might have helped participants organize components of the expository text

better. Better organization of the expository text could lead to more effective processing of the

example when the same labels were used in both.

2.2.2.1 Attempted problem solutions. Participants’ performance on the problem solving

tasks was also measured by number of components of the solution that they attempted, even if

those components were not correct. Participants could earn a maximum score of 10. Participants

who received the subgoal labeled example (M = 6.9, SD = 2.7) attempted 41% more components

than those who did not (M = 4.1, SD = 2.8), F (1, 116) = 30.43, MSE = 7.73, p < .001, est. ω2 =

.20, f = .50. There was no significant difference between text designs, F (1, 116) = .52, MSE =

7.73, p = .47, and there was no interaction of text and example design, F (1, 116) = .00, MSE =

7.73, p = .96. These results suggest that participants who received the subgoal labeled example

recognized the necessary components of the task solutions better than those who did not,

regardless of whether they could solve the problem correctly. These results, in conjunction with

problem solving performance, suggest that the subgoal labeled text did not enable participants to

attempt more components but, when paired with the subgoal labeled example, helped them

correctly achieve more of their attempted components.

2.2.2.2 Time on task. The amount of the time that participants spent working on the

problem solving tasks was also measured. The majority of participants (75%) used the entire 25

minutes, but despite this range restriction, there were main effects of text and example design for

time on task. Participants who received the subgoal labeled example (M = 20.5 minutes, SD =

3.0) completed the task 6% faster than those who did not (M = 21.7, SD = 2.8), F (1, 116) = 7.88,

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 22

MSE = 7.84, p = .006, est. ω2 = .06, f = .26. Additionally, participants who received the subgoal

labeled text (M = 20.25, SD = 2.2) completed the task 7% faster than those who did not (M =

21.8, SD = 3.4), F (1, 116) = 9.19, MSE = 7.84, p = .003, est. ω2 = .07, f = .28 (see Figure 7).

There was no interaction of text and example design, F (1, 116) = .15, MSE = 7.84, p = .70.

These findings suggest that receiving subgoal labels in instructional materials reduced time on

the task. Moreover, when paired with the performance results, these findings show that

participants who performed better also completed the problems faster. These results are contrary

to the typical tradeoff between speed and accuracy and suggest that participants who received

subgoal labels in both the text and example were more successful and quicker at solving

problems compared to those who did not.

The findings from the problem solving assessment provide two important pieces of

information about subgoal labeled instructional materials. First, they demonstrate that for

subgoal labeled text to improve performance, it needs to be paired with subgoal labeled

examples. Second, the results show that subgoal labels can lead to better problem solving when

the labels appear in both the example and text than when subgoal labels appear only in examples.

It is possible that receiving more instantiations of each subgoal label, whether in the text or in

additional subgoal labeled examples, would allow learners to gather more information about

each subgoal, refine their procedural rules, and solve problems better. Though this possibility is

not directly explored in the present study, viewing more examples might be less efficient than

viewing expository text, especially for topics in which the examples are long like programming.

Furthermore, the results from other tasks suggest that subgoal labels have a different effect on

learners’ mental representations of the procedure when presented in expository text than when

presented in worked examples.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 23

2.2.3 Explanation task. The grouping part of the explanation task measured how well

participants organized steps of problem solutions into functional components. Participants could

earn a total of 10 points, 1 point for each component in the problem solutions. Compared to other

conditions, participants who received subgoal labels in both the text and example made

significantly more groups that included only structurally-related steps. There was no significant

difference between text designs, F (1, 116) = 3.60, MSE = 4.69, p = .06, and there was no

significant difference between example designs, F (1, 116) = 3.93, MSE = 4.69, p = .05. There

was, however, an interaction between text and example design, F (1, 116) = 3.99, MSE = 4.69, p

= .047, est. ω2 = .04, f = .18 (see Table 3 for simple main effects). To perform well on this task,

participants needed to integrate procedural knowledge (to identify functional groups) and

application knowledge (to apply the groups to specific problems), and subgoal labels in both

types of instructional material might have aided this integration.

The labeling part of this task measured how well participants could describe the function

of the groups. Over 50% of the responses given by participants who received the subgoal labeled

text correctly described the function of a group of steps. In contrast, less than 10% of the

responses given by participants who received the unlabeled text correctly described the function.

There was no meaningful difference for example design. Both subgoal labeled and unlabeled

example groups produced 30% correct functional descriptions. The content of incorrect

responses included superficial information such as how the blocks of code were placed together

or where in the interface the steps were completed.

For time on task, the only statistically significant difference between conditions was

within the group that did not receive the subgoal labeled text. People who received subgoal

labels only in the worked example (M = 4.7, SD = 2.1) completed the explanation task

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 24

significantly faster than people who did not receive subgoal labels in any of the instructional

materials (M = 7.0, SD = 3.1), t (58) = -3.06, p = .004 (see Figure 8 and Table 4 for full pattern

of results). These results indicate that people who performed best on this task (i.e., those who

received subgoal labels in both the text and example) did not take longer to group and label the

solutions with more accuracy than it took the other participants to group and label the solutions

with less accuracy. This pattern of results suggests that subgoal labels in the text made

participants more likely to articulate the purpose of groups of steps, perhaps by encouraging self-

explanation (Chi, 2009; Hill & Levenhagen, 1995).

2.2.4 Generalization task. The generalization task measured how well participants could

create a conceptual description of the procedure. Participants could earn a maximum score of six,

one point for each component of the solution. Participants who received the subgoal labeled text

(M = 4.4, SD = 1.1) correctly described 20% more components than those who did not (M = 3.5,

SD = 1.3), F (1, 116) = 15.11, MSE = 1.49, p < .001, est. ω2 = .10, f = .35. There was no

significant difference between example designs, F (1, 116) = 2.70, MSE = 1.49, p = .10, and

there was no interaction, F (1, 116) = .20, MSE = 1.49, p = .66. These results are consistent with

the explanation task in that subgoal labels in the text seem to have aided articulation of the

abstract procedure. This result might be due to subgoal labels signaling the components in the

instructions that abstractly described the procedure.

For time on task in this assessment, there was also a significant difference between text

designs. Participants who received the subgoal labeled text (M = 3.9, SD = 2.3) took 23% longer

to complete the task than those who did not (M = 3.0, SD = 1.20), F (1, 116) = 5.95, MSE = 3.48,

p = .016, est ω2 = .05, f = .22. There was no significant difference between example designs, F

(1, 116) = .83, MSE = 3.48, p = .36, and there was no interaction of text and example design, F

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 25

(1, 116) = 1.65, MSE = 3.48, p = .20. In this case, people who performed better took longer to

complete the task.

Because responses were written, it could be the case that those who performed well

needed more time to write their responses than those who performed poorly because the former

group wrote more than the latter group. To explore this possibility, the number of words in each

response was counted to estimate the time participants spent writing. Participants who received

subgoals in the text wrote 18% (M = 40 words) more words on average than other participants

(M = 34 words). This finding suggests that part of the difference in time on task between these

groups is due to time spent writing.

In summary, Experiment 1 explored the efficacy of subgoal labeled expository text to

teach a programming task. The results suggest that subgoal labeled text helped learners to solve

novel problems when paired with subgoal labeled worked examples. Subgoal labeled expository

text also seemed to help learners explain a procedure. Experiment 2 continued this exploration in

a different learning scenario. During Experiment 2, participants could use instruction as a

resource during the problem solving tasks.

3. Experiment 2

3.1 Method

3.1.1 Participants. Participants were 120 students from a mid-sized, urban university

who received class credit for participation. Participants must not have participated in Experiment

1, interacted with App Inventor, or taken more than one course (either before or during college)

in computer science or programming. On average, participants were 20.3 years old, had

completed 2.5 years of college, and comfortable with computers (M = 5.9 on a scale of “1 – Not

at all comfortable” to “7 – Very comfortable”). The majority (61%) of participants were men.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 26

3.1.2 Procedure. The procedure and design for Experiment 2 was the same as for

Experiment 1. The only differences were that participants could use instructional materials

during the assessment period, and the assessment period included only the problem solving tasks.

The other tasks used in Experiment 1 were meant to measure mental organization and conceptual

understanding of the procedure; therefore, allowing participants to reference instructions would

likely lead to participants repeating the instructions on the assessments rather than recording

their mental representations. For this reason, these tasks were excluded.

3.2 Results and Discussion

Of the demographic information collected as possible predictors, two were correlated

positively with performance on the problem solving tasks: high school GPA, r = .30, p < .01, and

number of college credits completed, r = .25, p = .01. These predictors were not expected to

confound the analyses of the performance metrics because the variance was evenly distributed

among groups (see Table 5), and, therefore, no group had an advantage.

3.2.1 Time on instruction. The amount of time that participants spent using instructional

materials in the instructional period was recorded. There was a main effect of text design:

participants who received the subgoal labeled text (M = 19.5, SD = 3.01) finished the

instructional period 6% faster than those who did not (M = 20.8, SD = 3.3), F (1, 116) = 4.36,

MSE = 9.79, p = .038, est. ω2 = .09, f = .19. There was no main effect for example design, F (1,

116) = .10, MSE = 9.79, p = .76. There was an interaction of text and example design, F (1, 116)

= 4.62, MSE = 9.79, p = .034, est. ω2 = .09, f = .20. The interaction suggests that participants

who received subgoal labels in both the text and example finished instructions faster than the

others. This pattern suggests that the interaction caused the main effect of text by reducing the

average for the subgoal labeled text condition. Closer evaluation showed that there was not a

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 27

consistent simple effect of text design, indicating that subgoal labels in the text did not

independently decrease instruction time (see Table 6). If subgoal labels in text helped

participants more effectively process worked examples, then perhaps when the examples had

subgoal labels, too, participants could process information more quickly than the other groups.

3.2.2 Problem solving performance. This assessment and scoring was the same as in

Experiment 1. The maximum score was 22. There was an interaction between text and example

design, F (1, 116) = 5.87, MSE = 24.26, p = .017, est. ω2 = .07, f = .22. This interaction shows

that participants who received subgoal labels in the text and example outperformed all other

groups. There were no other significant differences (see Figure 9 and Table 7).

When participants were allowed to reference instructional materials, receiving subgoal

labels in only examples no longer improved problem solving. This finding is not surprising

because the worked example was the same except for the subgoal labels. If the effect of subgoal

labeled examples is helping students decontextualize examples, and if learners have access to

context-independent expository text while solving problems, then subgoal labels in the examples

would not be expected to cause a difference.

Receiving subgoal labels in both expository text and worked examples improved problem

solving even when participants were allowed to reference the instructions during problem

solving. Perhaps when subgoal labels were in both instructional materials, in addition to

previously discussed benefits, they helped participants find information to resolve specific

problem solving impasses. VanLehn et al. (1992) found that when participants had trouble with a

problem and consulted the expository text, many spent a long time searching the text, but only a

small proportion found relevant information. Subgoal labels might have helped students who are

struggling with a problem to find relevant information more quickly. For example, if a

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 28

participant was stuck on a part of a problem, he or she might consult the worked example to find

analogous information. If that did not resolve the issue, then he or she might consult the

expository text for information. If both of these materials had the same subgoal labels, then

finding information could be easier.

3.2.2.1 Attempted problem solutions. This score was calculated using the same method

as in Experiment 1. The maximum score was 10. There was no main effect of example design, F

(1, 116) = 2.70, MSE = 6.35, p = .10, no main effect of text design, F (1, 116) = 2.21, MSE =

6.35, p = .14, and no interaction, F (1, 116) = 1.40, MSE = 6.35, p = .24. These findings were

expected because participants were allowed to use the instructional materials during problem

solving and the instructions were the same except for subgoal labels. All participants were

equally unlikely to overlook components of the procedure.

3.2.2.2 Time on task. The amount of the time that participants spent working on the

problem solving tasks was also measured. There was a main effect of text design for time on

task. Participants who received the subgoal labeled text (M = 17.8, SD = 4.57) completed the

task 8% faster than those who did not (M = 19.3, SD = 3.00), F (1, 116) = 4.42, MSE = 14.2, p =

.038, est. ω2 = .09, f = .19. There was no main effect for example design, F (1, 116) = .00, MSE =

14.2, p = .99. The main effect of text is largely irrelevant, however, due to the interaction of text

and example design, F (1, 116) = 5.88, MSE = 14.2, p = .017, est. ω2 = .09, f = .22 (see Figure

10).

Though the effect sizes for these findings are relatively small, the pattern of results is

interesting. Participants who received subgoal labels in the example took about the same time to

finish the task regardless of whether they received subgoal labels in the text (M = 18.4 for

unlabeled text versus M = 18.6 for labeled text). For participants who did not receive subgoal

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 29

labels in the example, time on task depended on whether they received subgoal labels in the text

(M = 20.2 for unlabeled text versus M = 16.8 for labeled text). The program that displayed

instructional materials also logged which instructions participants viewed during the assessment

period. Most participants who received subgoal labels in the example (about 75%), regardless of

whether they received subgoal labels in the text, viewed only the example while working on the

problem solving tasks. Of participants who did not receive subgoal labels in the example, most

(91%) viewed both the expository text and example while working on the problem solving tasks.

These findings suggest that participants who received subgoal labels in the example

tended to ignore the expository text while solving problems. In addition, participants who

received subgoal labels in the text and example solved problems better than those who did not,

even though they took the same amount of time, on average, to complete the problem solving

tasks. Perhaps participants who received labels in both the text and example were more

successful than other participants at connecting information from the example and the expository

text. As a result, during problem solving they could refer back just to the example to

successfully solve novel problems.

For participants who did not receive subgoal labels in the example, they tended to view

both the expository text and worked example while solving problems. Participants who received

labels in the text performed about the same as those who did not, but they took significantly less

time to do so. Perhaps the subgoal labeled text allowed these participants to identify the

necessary components of the solution more quickly, but because they did not receive labels in the

example as well, they were not able to make those components as effectively.

4. Conclusion

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 30

Guided instruction is important for novices because it helps them organize and use new

information more effectively (e.g., Kirschner, Sweller, & Clark, 2006; Van Gog et al., 2006).

The present study explored a new method for providing guided instruction: subgoal labeled

expository text. The findings provide three important pieces of information about subgoal

labeled instructional materials:

 Subgoal labeled expository text improved performance only when paired with

subgoal labeled examples.

 Subgoal labeled expository text helped learners explain procedures while subgoal

labeled examples helped learners apply procedures.

 Subgoal labels led to better problem solving when the labels appeared in both

examples and text than when subgoal labels appeared in examples alone.

Participants who received subgoal labels in both the text and example outperformed those

in other conditions. This effect was expected two reasons. First, when learners receive multiple

representations of content (e.g., text and example), features that help them translate between

those representations leads to better integration and understanding of the information

(Ainsworth, 2006). Subgoal labels might have helped learners translate between the two types of

instructional materials. Second, receiving the subgoal labeled text, similar to receiving signals in

instructions (Lemarié et al., 2008), might help learners organize information about the expository

text better. Better organization of the information in the expository text might lead to more

effective processing of examples that use the same labels.

The results from the explanation and generalization tasks in Experiment 1 suggest that

subgoal labels in the text led to different benefits than subgoal labels in the example. Both the

generalization task and labeling portion of the explanation task required participants to articulate

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 31

their knowledge of the procedure. In both cases, participants who received subgoal labels in the

text outperformed those who did not.

To speculate on how subgoal labeled instructional materials affect learning, the model in

Figure 2 that describes how subgoal labeled worked examples improve problem solving was

expanded. Figure 11 shows a proposed model for how subgoal labels in text and examples jointly

improve problem solving. The results of the present study provide some preliminary evidence to

support the benefits of subgoal labeled expository text and the combination of subgoal labels in

both text and examples for problem solving. Evidence from other researchers supports some of

the connections in this proposed model. The results from Chi (2009) and Hill and Levenhagen

(1995) support the claim that self-explanations improve articulation and that improved

articulation can improve problem solving. Eiriksdottir and Catrambone (2011) argue that

integrating information from general and specific instructions can improve the application of

general knowledge and transfer of specific knowledge. Lemarié et al. (2008) argue that

meaningful labels of text improves organization of information. More research is needed,

however, to systematically test the model in Figure 11.

4.1 Application of Subgoal Labels

The subgoal intervention manipulates the instructional materials that students receive;

therefore, distributing the intervention would be relatively easy. Furthermore, because the

interventions are not reliant on instructors, they can be used in a range of learning environments

including face-to-face and online learning. This study did not explore the efficacy of this

manipulation in a learning environment with an instructor, but we hypothesize it could improve

learning in that situation. Instructors, as experts, sometimes do not realize how to help learners

form useful knowledge representations, partly because much of the instructor's procedural

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 32

knowledge has become automated. Using subgoal labeled materials would ensure that students

received the fundamental knowledge that they needed to conceptually understand procedures.

Subgoal labeled text could also help learners communicate better, especially when they

are not face-to-face, by improving their articulation of the procedure. Students in online learning

environments often communicate less effectively than in face-to-face environments because they

are often forced to express themselves primarily verbally rather than relying on other types of

communication, such as drawing (Gecer, 2013). The present results show that people who

receive subgoal labeled text are able to articulate the problem solving process better than those

who do not, which could result in more effective verbal communication.

The present research advances knowledge about strategies for improving novice problem

solving in programming. Subgoal labeled worked examples have already been shown to

significantly increase learners’ problem solving performance (Catrambone, 1998). The present

study demonstrated that subgoal labeled expository text can increase this effect and improve

other types of performance. This study suggests that subgoal labels should be used in both

expository text and worked examples designed to teach problem solving procedures.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 33

References

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple

representations. Learning and Instruction, 16, 183-198. doi:10.1016/j.learninstruc.

2006.03.001

Anderson, J. Farrell, R. & Sauers, R. (1984). Learning to program in LISP. Cognitive Science,

3(2), 87-129. doi: 10.1207/s15516709cog0802_1

Atkinson, R. K., Catrambone, R., & Merrill, M. M. (2003). Aiding transfer in statistics:

Examining the use of conceptually oriented equations and elaborations during

subgoal learning. Journal of Educational Psychology, 95(4), 762-773. doi:

10.1037/0022-0663.95.4.762

Atkinson, R. K., & Derry, S. (2000). Computer-based examples designed to encourage

optimal example processing: A study examining the impact of sequentially

presented, subgoal-oriented worked examples. In B. Fishman & S. O’Connor-

Divelbiss (Eds.), Fourth International Conference of the Learning Sciences, (pp.

132-133), Mahwah, NJ: Earlbaum.

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning from examples:

Instructional principles from the worked examples research. Review of the

Educational Research, 70(2), 181-214. doi: 10.2307/1170661

Bassok, M., & Holyoak, K. (1989). Interdomain transfer between isomorphic topics in

algebra and physics. Journal of Experimental Psychology: Learning, Memory,

and Cognition, 15(1), 153-166. doi: 10.1037/0278-7393.15.1.153

Biederman, I., & Shiffrar, M. (1987). Sexing day-old chicks: A case study and expert

systems analysis of a difficult perceptual-learning task. Journal of Experimental

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 34

Psychology: Learning, Memory, and Cognition, 13(4), 640-645. doi:

10.1037/0278-7393.13.4.640

Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.) (2000). How People Learn: Brain, Mind,

Experience, and School. Washington, DC: National Academy Press.

Catrambone, R. (1994). Improving examples to improve transfer to novel problems.

Memory and Cognition, 22, 605‐615. doi: 10.3758/BF03198399

Catrambone, R. (1995a). Aiding subgoal learning: Effects on transfer. Journal of

Educational Psychology, 87(1), 5-17. doi: 10.1037/0022-0663.87.1.5

Catrambone, R. (1995b). Following instructions: Effects of principles and examples.

Journal of Experimental Psychology: Applied, 1(3), 227-244. doi: 10.1037/1076-

898X.1.3.227

Catrambone, R. (1996). Generalizing solution procedures learned from examples.

Journal of Experimental Psychology: Learning, Memory, and Cognition, 22,

1020-1031. doi: 10.1037/0278-7393.22.4.1020

Catrambone, R. (1998). The subgoal learning model: Creating better examples so that

students can solve novel problems. Journal of Experimental Psychology: General,

127, 355-376. doi: 10.1037/0096-3445.127.4.355

Catrambone, R., Gane, B. D., Adams, A. E., Bujak, K. R., Kline, K. A., & Eiriksdottir, E.

(2014). Task Analysis by Problem Solving (TAPS): A method for uncovering

expert knowledge. Under review.

Catrambone, R., & Holyoak, K. (1990). Learning subgoals and methods for solving

probability problems. Memory & Cognition, 18(6), 593-603. doi: 10.1037/0096-

3445.127.4.355

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 35

Chi. M. T. H. (2009). Active-constructive-interactive: A conceptual framework for

differentiating learning activities. Topics in Cognitive Science, 1(1), 73-105.

Chi, M. T. H., Leeuw, N. D., Chiu, M., LaVancher, C. (1994). Eliciting self-explanations

improves understanding. Cognitive Science, 18¸439-477.

Committee on Developments in the Science of Learning, National Research Council.

(2000). How people learn: Brain, mind, experience, and school: Expanded

edition. Retrieved from http://www.nap. edu/catalog.php?record_id=9853

Committee on Highly Successful Schools or Programs in K-12 STEM Education, National

Research Council. (2011). Successful K-12 STEM education: Identifying effective

approaches in science, technology, engineering, and mathematics. Retrieved from

http://www.nap.edu/catalog.php?record_id=13158

Cooper, S., Grover, S., Guzdial, M., & Simon, B. (2014). A future for computing education

research. Communications of the ACM, 57(11), 34-36.

Eiriksdottir, E., & Catrambone, R. (2011). Procedural instructions, principles, and examples:

How to structure instructions for procedural tasks to enhance performance, learning, and

transfer. Human Factors, 53(6), 749-770. doi: 10.1177/0018720811419154

Ericson, B. (2012, February 12). ICE Distance Education Portal. Retrieved from

http://ice.cc.gatech.edu/dl/?q=node/641

Gecer, A. (2013). Lecturer-student communication in blended learning environments.

Educational Sciences: Theory and Practice, 13(1), 362-367.

Hill, R. C., & Levenhagen, M. (1995). Metaphors and mental models: Sensemaking and

sensegiving in innovative and entrepreneurial activities. Journal of Management, 21(6),

1057-1074.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 36

Hundhausen, C. D., Farley, S. F., & Brown, J. L. (2009). Can direct manipulation lower the

barriers to computer programming and promote transfer of training?: An experimental

study. ACM Transactions in CHI, 16(3). doi: 10.1145/1592440.1592442

Katehi, L., Pearson, G., & Feder, M. (Eds.), Committee on K-12 Engineering Education,

National Academy of Engineering and National Research Council. (2009). Engineering

in K-12 education: Understanding the status and improving the prospects. Retrieved

from http://www. nap.edu/catalog.php?record_id=12635

Kirschner, P., Sweller, J., & Clark, R. (2006). Why minimal guidance during instruction

does not work: An analysis of the failure of constructivist, discovery, problem-

based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2),

75-86. doi: 10.1207/s15326985ep4102_1

LeFevre, J. & Dixon, P. (1986). Do written instructions need examples? Cognition and

Instruction, 3, l-30. doi: 10.1207/s1532690xci0301_1

Lemarié, J., Lorch Jr., R. F., Eyrolle, H., & Virbel, J. (2008). SARA: A text-based and reader-

based theory of signaling. Educational Psychologist, 43, 27-48

Margulieux, L. E., Guzdial, M., & Catrambone, R. (2012). Subgoal-labeled instructional material

improves performance and transfer in learning to develop mobile applications.

Proceedings of the Ninth Annual International Conference on International Computing

Education Research (pp. 71-78). New York, NY: Association for Computing Machinery.

doi: 10.1145/2361276.2361291

McGee, P., & Reis, A. (2012). Blended course design: A synthesis of best practices.

Journal of Asynchronous Learning Networks, 16(4), 7-22.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 37

Miller, A. D. (2014). Computer science: The future of education. Retrieved from

http://www.edutopia.org/blog/computer-science-future-of-education-alison-

derbenwick-miller

Mayer, R. E. (2009). Multimedia learning (2nd). New York: Cambridge University Press.

Palmiter, S., Elkerton, J., & Baggett, P. (1991). Animated demonstrations versus written

instructions for learning procedural tasks: A preliminary investigation. International

Journal of Man-Machine Studies, 34, 687-701. doi: 10.1016/0020-7373(91)90019-4

Reder, L. M., & Anderson, J. R. (1980). A comparison of texts and their summaries:

Memorial consequences. Journal of Verbal Learning and Verbal Behavior, 19,

121-134. doi: 10.1016/S0022-5371(80)90122-X

Renkl, A. (2002). Worked-out examples: Instructional explanations support learning by

self-explanations. Learning and Instruction, 12, 529-556. doi: 10.1016/S0959-

4752(01)00030-5

Renkl, A., & Atkinson, R. K. (2002). Learning from examples: Fostering self-

explanations in computer-based learning environments. Interactive Learning

Environments, 10(2), 105-199. doi: 10.1076/ilee.10.2.105.7441

Rountree, N., Rountree, J., Robins, A., & Hannah, R. (2004). Interacting factors that

predict success and failure in a CSI course. SIGCSE Bulletin, 33(4), pp. 101-104.

Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater

reliability. Psychological Bulletin, 86(2), 420-428.

Smith, E. E., & Goodman, L. (1984). Understanding written instructions: The role of an

explanatory schema. Cognition and Instruction, 1, 359-396. doi: 10.1207

/s1532690xci0104_1

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 38

Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive

load. Educational Psychology Review, 22(2), 123-138. doi: 10.1007/s10648-010-

9128-5

Taylor-Powell, E., & Renner, M. (2003). Analyzing qualitative data. University of Wisconsin,

Cooperative Extension.

Trafton, J. G., & Reiser, B. J. (1993). The contributions of studying examples and solving

problems to skill acquisition. In Proceedings of the Fifteenth Annual Conference

of the Cognitive Science Society (pp. 1017-1022). Boulder, CO.

Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2004). Process-oriented worked examples:

improving transfer performance through enhanced understanding. Instructional Science,

32(1-2), 83-98.

Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2006). Effects of process-oriented worked

examples on troubleshooting transfer performance. Learning and Instruction, 16(2), 154-

164.

VanLehn, K., Jones, R., & Chi, M. T. H. (1992). A model of the self-explanation effect. The

Journal of the Learning Sciences, 2, 1-59. doi: 10.1207/s15327809jls0201_1

Wylie, R., & Chi, M. T. H. (2014). The self-explanation principle in multimedia learning. In R.

Mayer (Ed.) The Cambridge Handbook of Multimedia Learning, 2nd Edition (pp.413-

432). Cambridge University Press.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 39

Subgoal Labeled Worked Example

 Create Component

1. From the basic palette drag out a Button.
Set Properties

2. Set the image source to "gypsy.jpg".
3. Clear the default text.
4. Set the width to fill the parent's width and

the height to 300 pixels.
 Create Component

5. From the basic palette drag out a label.
6. Place the label underneath the image.

Set Properties

7. Set the text to Click button to see your
fortune.

8. Rename it to fortuneLabel.

Unlabeled Worked Example

1. From the basic palette drag out a
Button.

2. Set the image source to "gypsy.jpg".
3. Clear the default text.
4. Set the width to fill the parent's width

and the height to 300 pixels.
5. From the basic palette drag out a label.
6. Place the label underneath the image.
7. Set the text to Click button to see your

fortune.
8. Rename it to fortuneLabel.

Figure 1. Worked examples with and without subgoal labels. The subgoal label “create
component” corresponds to the function of creating a component for the app, such as a button.
The subgoal label “set properties” corresponds to the function of setting the properties of
components, such as determining the size of the button.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 40

Figure 2. Diagram of how subgoal labeled worked examples can help learners improve problem

solving performance. The “properties of subgoal labeled examples” level describes the physical

characteristics of subgoal labels. The “effect on learners studying examples” level describes how

these characteristics help the learners use effective learning strategies.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 41

Subgoal Labeled Expository Text

 Create Component

Components are the pieces that provide your

app functionality, such as a button that users

can press or a label to display…

Set Properties

You’ll be able to change the properties of each

component in the App Inventor Designer as

well. For example, you can change…

Unlabeled Expository Text

Components are the pieces that provide your

app functionality, such as a button that users

can press or a label to display…

You’ll be able to change the properties of each

component in the App Inventor Designer as

well. For example, you can change…

Figure 3. Expository text with and without subgoal labels.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 42

Figure 4. App Inventor interface with interlocking blocks of code used to program features. The

image shows blocks that would play the “clapSound” when the “clap” component is touched.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 43

Figure 5. Screenshot of the “Create Component” subgoal callout in video demonstration.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 44

Figure 6. Scores on problem solving task by condition in Experiment 1. Error bars represent a

standard deviation.

0

2

4

6

8

10

12

14

16

18

20

22

Subgoal Labeled Text Unlabeled Text

Sc
o

re Subgoal Labeled Example

Unlabeled Example

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 45

Figure 7. Time spent on problem solving task by condition in Experiment 1. Error bars represent

a standard deviation.

0

5

10

15

20

25

Subgoal Labeled Text Unlabeled Text

Ti
m

e
(i

n
 m

in
u

te
s)

Text Design

Subgoal Labeled Example

Unlabeled Example

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 46

Figure 8. Time spent on explanation task by condition in Experiment 1. Error bars represent a

standard deviation.

0

2

4

6

8

10

12

Subgoal Labeled Text Unlabeled Text

Ti
m

e
(i

n
 m

in
u

te
s)

Subgoal Labeled Example

Unlabeled Example

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 47

Figure 9. Scores on problem solving task by condition in Experiment 2. Error bars represent a

standard deviation.

0

2

4

6

8

10

12

14

16

18

20

22

Subgoal Labeled Text Unlabeled Text

Sc
o

re Subgoal Labeled Example

Unlabeled Example

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 48

Figure 10. Time on task for problem solving task by condition in Experiment 2. Error bars

represent a standard deviation.

0

2

4

6

8

10

12

14

16

18

20

22

24

Subgoal Labeled Text Unlabeled Text

Ti
m

e

Subgoal Labeled
Example

Unlabeled
Example

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 49

Figure 11. Model of how subgoal labeled expository text and worked examples can help learners

improve problem solving performance. Starting from the top, the first two levels describe the

type of instructional material. The third level describes the physical characteristics of subgoal

labels. The fourth level describes how the physical characteristics help the learners use effective

learning strategies. The fifth and sixth levels describe how these strategies help learners

understand the instructional material, and the last level describes the outcome.

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 50

Table 1

Distribution of selected demographics among conditions in Experiment 1.

 SAT Writing Comfort with Computers

Condition M SD r p M SD r p

Subgoal-text,

Subgoal-example
631 87 -.07 .73 5.88 1.16 -.11 .68

Unlabeled-text,

Subgoal-example
659 54 .03 .84 6.41 .93 .08 .78

Subgoal-text,

Unlabeled-example
625 72 -.31 .08 5.57 1.19 .02 .95

Unlabeled-text,

Unlabeled-example
665 41 -.20 .26 6.08 1.05 .41 .15

Note: Comfort with computers on 7-pt. scale (1-Not Comfortable At All and 7-Very

Comfortable).

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 51

Table 2

Simple main effects of problem solving score in Experiment 1.

Simple main effect F p est. ω2

Text Format

Unlabeled example .01 .92 < .01

Subgoal labeled example 26.7 < .001 .19

Example Format

Unlabeled text 11.5 .001 .09

Subgoal labeled text 71.5 < .001 .38

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 52

Table 3

Simple main effects comparing groups for number of groups containing structurally-related

steps in explanation task in Experiment 1.

Simple main effect F p est. ω2

Text Format

Unlabeled example .01 .91 < .01

Subgoal labeled example 6.58 .01 .05

Example Format

Unlabeled text .03 .86 < .01

Subgoal labeled text 6.88 .01 .06

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 53

Table 4

T-tests comparing groups for time on task for the explanation task in Experiment 1.

Condition n M SD 𝑡 Std. error p

Unlabeled-text,

Unlabeled-example
30

7.0 3.1

1.171 .820 .247

Subgoal-text,

Subgoal-example
30

6.0

2.6

.707 .724 .482

Subgoal-text,

Unlabeled-example
30

5.5

2.7

1.194 .643 .237

Unlabeled-text,

Subgoal-example
30 4.7 2.1

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 54

Table 5

Distribution of selected demographics among conditions in Experiment 2.

 High School GPA (as percentage) Credit Hours Earned

Condition M SD r p M SD r p

Subgoal-text,

Subgoal-example
87% .33 .05 .81 63.0 37.8 .27 .16

Unlabeled-text,

Subgoal-example
84% .32 .08 .69 52.2 41.1 .07 .75

Subgoal-text,

Unlabeled-example
71% .42 .25 .12 59.3 41.4 .18 .39

Unlabeled-text,

Unlabeled-example
77% .39 .30 .13 48.2 39.4 .18 .39

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 55

Table 6

Simple main effects of instructional time in Experiment 2.

Simple main effect F p est. ω2

Text Format

Unlabeled example .01 .97 <.01

Subgoal labeled example 9.08 .003 .08

Example Format

Unlabeled text 1.74 .19 .02

Subgoal labeled text 2.94 .09 .03

Running head: SUBGOAL LABELED INSTRUCTIONS IN PROGRAMMING 56

Table 7

Simple main effects of problem solving score in Experiment 2.

Simple main effect F p est. ω2

Text Format

Unlabeled example .12 .74 .01

Subgoal labeled example 9.33 .003 .08

Example Format

Unlabeled text .46 .50 .01

Subgoal labeled text 7.40 .008 .07

	Georgia State University
	ScholarWorks @ Georgia State University
	2016

	Improving Problem Solving with Subgoal Labels in Expository Text and Worked Examples
	Lauren Margulieux
	Richard Catrambone
	Recommended Citation

	tmp.1484253245.pdf.yFmvG

