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Statistical-sequential learning (SL) is the ability to process patterns of environmental stimuli,
such as spoken language, music, or one’s motor actions, that unfold in time.The underlying
neurocognitive mechanisms of SL and the associated cognitive representations are still
not well understood as reflected by the heterogeneity of the reviewed cognitive models.
The purpose of this review is: (1) to provide a general overview of the primary models
and theories of SL, (2) to describe the empirical research – with a focus on the event-
related potential (ERP) literature – in support of these models while also highlighting the
current limitations of this research, and (3) to present a set of new lines of ERP research to
overcome these limitations. The review is articulated around three descriptive dimensions
in relation to SL: the level of abstractness of the representations learned through SL, the
effect of the level of attention and consciousness on SL, and the developmental trajectory
of SL across the life-span. We conclude with a new tentative model that takes into account
these three dimensions and also point to several promising new lines of SL research.

Keywords: sequential learning, statistical learning, implicit learning, procedural learning, artificial grammar, ERP,

P300, P600

INTRODUCTION
From an ecological point of view, learning about temporal pat-
terns in our environment, and using this information to make
predictions about upcoming events and actions, is arguably of
primary importance to humans and other higher-order organ-
isms (Lashley, 1951; Conway et al., 2010; Goldstein et al., 2010).
In the past 15 years, an increasingly established body of research
has demonstrated that humans have a remarkable ability to learn
statistical patterns – i.e., commonalities and underlying regu-
larities – from among a set of stimuli, a phenomenon now
reffered to simply as “statistical learning” (Saffran et al., 1996,
1997). A related phenomenon, known as “implicit learning,”
likewise reveals people’s ability to learn predictive patterns with-
out conscious intent or awareness (Cleeremans and McClelland,
1991; Berry and Dienes, 1993). Both statistical learning and
implicit learning have been observed with many different types
of input materials in sensory (e.g., music, speech, and visual
patterns) and motor domains. In fact, due to the apparent
commonalities between statistical learning and implicit learn-
ing, there is growing consensus that these two phenomena
may actually tap into the same process (Perruchet and Pacton,
2006).

In the current review, we focus in particular on the learning of
temporal or sequential patterns of stimuli and therefore use the
term “statistical-sequential learning” or simply “sequential learn-
ing”(SL) for short. Because it is still an open question as to whether
these learning abilities are also governed at least in part by explicit
processes (e.g., Baddeley and Wilson, 1994; Cleeremans, 2006;
Haider and Frensch, 2009; Jamieson and Mewhort, 2009; Dale
et al., 2012), we avoid the use of the term “implicit” (and in sub-
sequent sections we directly address the different contributions of

implicit and explicit processes). Under this definition, SL is the
ability to learn underlying structured patterns that exist among a
set of non-random, sequentially presented stimuli (Conway and
Christiansen, 2001; Conway, 2012). Yet another term recently used
that also captures this crucial aspect of statistical-sequential learn-
ing is “structured sequence processing” (Uddén and Bahlmann,
2012).

To date, the underlying cognitive and neural mechanisms
of SL and the associated cognitive representations are still not
well understood. SL has been explored though a combination of
cognitive modeling and empirical studies using behavioral and
neurophysiological measurements. The current outcome of these
heterogeneous approaches is that the proposed theories of SL
still need to be confirmed by empirical evidence. The purpose
of this review is to provide an initial assessment of the current
theories of SL and to identify the areas of empirical research
that need further development. Due to the extensive behavioral
and neural SL literature, the scope of this review will focus
on the exploration of SL with a specific neural approach, the
event-related potential (ERP) technique (for other neuroimag-
ing techniques, see for example Seger et al., 2000; Bischoff-Grethe
et al., 2001; Huettel et al., 2002; Skosnik et al., 2002; Lieberman
et al., 2004; Petersson et al., 2004; Thomas et al., 2004; Fork-
stam et al., 2006; Turk-Browne et al., 2009; Uddén and Bahlmann,
2012).

Since SL has been observed in multiple modalities and domains,
we draw upon a wide range of empirical studies, reviewing for
instance studies on motor learning, visual-motor learning, visual-
perceptual learning, auditory learning of different types of stimuli,
language learning, and social learning. Recognizing the differ-
ences across these studies when relevant, we also focus on the
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commonalities among them in order to bring to light what we
believe is the cognitive process at the core of all of them.

We first summarize the primary theoretical views of SL.
We then review the main approaches used by ERP research to
study SL. This will point to a discrepancy between the theo-
retical and the empirical approaches, highlighting a series of
fundamental unanswered questions. Finally, we provide sug-
gestions for moving forward to address the most challenging
aspects of SL research and provide a tentative new model of SL
that incorporates much of the existing empirical and theoretical
advances.

MODELS AND THEORIES OF SEQUENTIAL LEARNING
Three primary questions about the nature of SL have intrigued
researchers over the decades, organized around a limited set
of non-orthogonal (i.e., partly overlapping) dimensions: (1)
the extent to which SL encodes and manipulates concrete ver-
sus abstract representations, (2) whether SL depends on the
level of conscious awareness or attention, and (3) how SL
changes across the life-span. We consider each of these issues in
turn.

CONCRETE VERSUS ABSTRACT REPRESENTATIONS
Sequential learning could in principal encode either: (1) concrete
features of the sequence, such as the frequencies of individual
items (or exemplars) of the sequence, (2) or abstract features, e.g.,
abstract rule(s) that organize the to-be-learned sequence (Franco
and Destrebecqz, 2012). This section refers primarily to the types
of representations that are manipulated by the SL mechanism(s).

Reber (1967) – using an artificial grammar paradigm – was
the first to propose that SL is the result of the implicit learning
of abstract rules. This proposal was later endorsed by sev-
eral others (e.g., McAndrews and Moscovitch, 1985; Mathews
et al., 1989; Dienes et al., 1991; Knowlton et al., 1992; Knowl-
ton and Squire, 1993, 1994, 1996; Manza and Reber, 1997;
Marcus et al., 1999; Rossnagel, 2001; Kuhn and Dienes, 2005).
The idea that the cognitive system was able to unconsciously
process abstract information, the so-called “smart unconscious”
hypothesis (Cleeremans et al., 1998), was for many researchers
somewhat provocative and was challenged by connectionist com-
putational modeling (Christiansen et al., 1998). Connectionist
models showed that rather than the learning of abstract rules,
several results of the SL literature could be successfully modeled
using only concrete feature processing, such as the processing
of chunks or transitional probabilities (Perruchet and Pacton,
2006).

Perhaps the best-known empirical demonstration of SL
comes from Saffran et al. (1997), who used a word segmen-
tation task in which a continuous sequence of syllables was
presented (e.g., “bupadapatubitutibu”). The syllable sequence
covertly consisted of artificial “words” (e.g., “bupada” and
“patubi”) spliced together. Participants demonstrated above-
chance performance in a subsequent recognition test, dis-
criminating words from non-word syllable groupings. Saffran
et al. (1997) proposed that such performance was achieved by
exploiting the statistical regularities present in the sequence of
syllables, such as transitional probabilities between successive

syllables (e.g., the probability that a given syllable A is imme-
diately followed by another given syllable B) that are higher
within words than between words. These statistical regulari-
ties are one type of concrete feature that could be learned in a
sequence.

The acquisition of these concrete features is often referred to
as “surface learning” or “fragmentary learning” (Perruchet and
Pacteau, 1990; Servan-Schreiber and Anderson, 1990; Perruchet
and Amorim, 1992; Meulemans and Van der Linden, 1997).
Surface learning may be based on the encoding of item fre-
quencies and item variability across the sequence (Maye et al.,
2002; Perruchet et al., 2004; Clayards et al., 2008). Cleeremans
et al. (1998) reviewed at least three types of concrete features
that once learned could account for many results of the SL lit-
erature: fragment-based or chunk information, exemplars, and
distributional information (Figure 1). In the same vein, several
models have been proposed to account for surface learning based
on the to-be-learned type of concrete information. Some mod-
els focused on conditional statistics between items of the sequence
(Thiessen and Pavlik, 2013) and others on the use of temporal con-
tingencies (Montague and Sejnowski, 1994) that may covary in a
cause-effect relationship with the physical world (Gopnik et al.,
2004).

These concrete feature-based models are computational and
have been criticized as such. For instance, the simple-recurrent-
network model (Elman, 1990; Cleeremans and McClelland, 1991),
has been argued to suffer major weaknesses (McCloskey and
Cohen, 1989; Goldstein et al., 2010) with (1) long range depen-
dencies, as in “embedded sequences” (e.g., Uddén and Bahlmann,
2012); (2) sequences made of large sets of rules and items of the
scale found in natural language, notably because they are designed
to consider the entire corpus of input simultaneously, rather than
in the proper temporal order (Goldstein et al., 2010); and (3)
multimodal data (Goldstein et al., 2010).

FIGURE 1 |Three types of concrete feature representations involved in

encoding a sequence of letter strings generated from an artificial

grammar (see “Artificial Grammar and Natural Language Paradigms”

section): fragment-based or chunk information, exemplars, and

distributional information (modified with permission from Cleeremans

et al., 1998).
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Related to the issue of abstractness, SL could result in
modality-specific (more concrete) or amodal (more abstract)
representations. For Reber, SL was a mainly amodal process
(Reber, 1989); however, some research has suggested that both
domain-general (Clegg et al., 1998; Kirkham et al., 2002; Bapi
et al., 2005) and modality-specific SL might coexist (Keele et al.,
2003; Conway and Christiansen, 2005; Conway and Pisoni,
2008; Turk-Browne et al., 2009; Shafto et al., 2012). For exam-
ple, Keele et al. (2003) proposed two independent SL systems
based on the available behavioral and neuroimaging findings
at the time. One system integrates all sequential information
regardless of the input modality (presumably relying on more
“abstract” representations that are not tied to a particular input
modality), while a second system captures only the patterns
of a sequence within a single modality (more reliant on “con-
crete” or modality-specific representations), without suffering
interference from intervening sequential information from other
modalities. Keele et al.’s (2003) two-system model of SL is there-
fore consistent with the notion that SL might encode both
concrete (stimulus-specific) and more abstract (domain-general)
patterns.

Some models of SL in fact explicitly incorporate a multilayer
structure. Clegg et al. (1998) suggested three levels of process-
ing: (1) an abstract level storing higher-level goals that are neither
stimulus- nor response-related; (2) an intermediate level encod-
ing the type of action required (independently of the effector) or
the stimulus specificity (independently of its exact identity); and
(3) a low level acquiring highly specific information related to the
exact stimulus and the associated final motor execution. Possibly a
parallel could be drawn between the representations processed by
these three layers and the concrete-abstract continuum. Multilayer
models like Clegg et al. (1998) have the advantage of providing an
account of both concrete feature learning and more abstract situa-
tions, such as the “transfer of learning” paradigm, which indicates
that the representation of a sequence may not be tied to a particular
effector or stimulus domain (Clegg et al., 1998).

Related to the issue of modality-specificty, it should be noted
that the more concrete-based aspects of SL appear to show
similarities to perceptual learning (PL), which allows for the devel-
opment of spatio-temporal representations of the environment
through learning along various levels of cortical processing (Sagi
and Tanne, 1994; Skrandies and Fahle, 1994; Goldstone, 1998;
Conway et al., 2007). Interestingly, PL and perceptual-based SL
seem to activate similar neural networks (Turk-Browne et al.,
2009). Like SL, PL can occur with rather short exposure to
patterns, can have long lasting effects, and can occur with-
out attention to or awareness of the patterns; however, PL can
also be modulated by levels of attention and awareness (Gold-
stone, 1998; Alain et al., 2007; Sasaki et al., 2010; Lu et al., 2011;
Aberg and Herzog, 2012; Byers and Serences, 2012; Kumano and
Uka, 2013). Furthermore, PL is, like SL, often described as being at
the root of language learning, particularly for the development
of phonological and lexical representations (Goldstone, 1998;
Cutler, 2008; Samuel and Kraljic, 2009; Werker, 2012) and is
also proposed as a process required for motor preparation and
execution (Hommel et al., 2001). According to a standard defi-
nition of SL – the ability to learn patterns of stimuli unfolding

in time – SL can be seen as the “temporal” subcategory of
a the more general “spatio-temporal” PL, in which items fre-
quently co-occurring in time (but not spatially) can form new
perceptual “units” (Goldstone, 1998). If SL is viewed from this
perspective, the development of concrete representations dur-
ing SL could be explained in terms of properties of PL. Indeed,
(temporal) statistical contingencies between items/percepts (e.g.,
transitional probabilities or perceptual units of co-occuring infor-
mations such as chunks, Czerwinski et al., 1992; Seriès and Seitz,
2013) could be captured and stored in cortical spatio-temporal
representations.

One final way that, together with abstractness and modal-
ity, SL representations might be differentiated is by the types of
input structures (Conway and Christiansen, 2001; Conway, 2012).
Three types have been proposed: fixed patterns (i.e., invariant
or repeating sequences); statistical patterns (sequences containing
statistical regularities or distributional information across exem-
plars); and hierarchical patterns (i.e., embedded sequences with
non-adjacent or self-recursive structures). Different neurocog-
nitive mechanisms may be used in the service of each type of
input structure (Bahlmann et al., 2006; Uddén and Bahlmann,
2012). These three types of input structures appear related to the
concrete-abstract continuum: learning an invariant fixed pattern
or statistical regularity is likely represented in a concrete fashion,
whereas learning a self-recursive structure is likely represented
more abstractly, allowing for generalization of the recursive rule
to new exemplars.

It appears likely then that SL involves multiple processes,
some that could be characterized as being more domain-general
and that manipulate rather abstract representations, and oth-
ers that are more input-specific and that encode more concrete
features. This perspective is similar to the “more-than-one-
mechanism” (MOM) hypothesis of language acquisition, stating
that language is acquired via the manipulation of both rule-
based and statistical representations (Endress and Bonatti, 2007).
Several recent models of SL now combine feature-based learn-
ing with more abstract forms of rule-learning mechanisms.
For instance, Pierrehumbert (2003) provided a model of how
abstract rules could be extracted from a speech signal through
the interaction between different high and low-level cognitive
systems, including bottom-up processing of low-level acous-
tic and articulatory features. In this model, a phonological
system would refine internal categorizations in its different lev-
els through: (1) internal feedback mechanisms from higher
level internal systems to lower levels internal systems, and
(2) external feedback due to the interaction with the speech
community.

The issue of the abstractness of the representations manip-
ulated during SL is complex. Perhaps the most promising
accounts of SL involve the processing of both concrete and
abstract information (e.g., Clegg et al., 1998; Keele et al., 2003;
Pierrehumbert, 2003). The exact interplay among these postu-
lated processes remains unknown and opened to multiple model
implementations. In a rather simple model, the two hypothet-
ical mechanisms would work in parallel. One would encode
and store modality-specific concrete features in a given format
and another mechanism would encode and store domain-general
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abstract information in another format. A second and per-
haps more neurally plausible possibility is a cascading account,
whereby the two mechanisms interact in a hierarchical manner,
with concrete information being first encoded in a modality-
specific format, followed, upon further processing or exposure
to the input, by the development and encoding of more abstract
and domain-general representations. Accordingly SL across input
modalities (e.g., learning that a particular tone predicts a visual
stimulus) would present a greater processing challenge than
SL within an input modality (e.g., learning that a particular
visual stimulus predicts another visual stimulus). This is, in
fact, what recent findings appear to indicate (Walk and Conway,
2011).

IMPLICIT AND EXPLICIT MECHANISMS
In addition to dissociating the mechanisms of SL by the level
of abstractness of the learned features, the level of attention
(and consciousness) has also been recognized as a critical dimen-
sion of SL. The SL literature often refers to this issue in terms
of “implicit” and “explicit” processing. Traditionally, SL is gen-
erally thought to involve the activation of incidental/implicit,
automatic, and even unconscious processes (e.g., Saffran et al.,
1996, 1997; Fiser and Aslin, 2001, 2002; Shanks and Perruchet,
2002; Turk-Browne et al., 2005; Shanks et al., 2006; Hannula
and Ranganath, 2009; Rosenthal et al., 2010). Several empiri-
cal strands of research on SL have suggested that the level of
awareness is irrelevant to SL performance (Curran and Keele,
1993; Goschke, 1998; Song et al., 2007). Clegg et al. (1998) not
only acknowledge this implicit component of SL but go further
by suggesting that SL does not manipulate explicit knowledge
representations. Rather, they suggest that explicit knowledge
emerges through the interaction of SL with other cognitive sys-
tems that can access and modify explicit memories (Clegg et al.,
1998).

Alternatively, other theories have argued for a more direct role
of explicit processing in SL. For instance, Cleeremans (2006) sug-
gested that a representation obtained from exposure to a sequence
may become explicit when the strength of activation of this rep-
resentation reaches a critical level. Similarly, explicit knowledge
may emerge as the result of a search process that is triggered by
unexpected events occuring during task processing and requir-
ing an explanation (the unexpected-event hypothesis; Haider
and Frensch, 2009). Some authors go even further by drawing
a link between “general” consciousness/awareness (i.e., not only of
sequence representations) and SL. Dale et al. (2012) proposed that
predictive mechanisms such as those that are thought to account
for SL may be at the root of the formation of conscious percepts
or awareness (Morsella, 2005).

Between these two extreme views there exist proposals that
acknowledge the development of both conscious and unconscious
representations resulting from SL as well as the contribution of
explicit and implicit mechanisms to SL. For instance, Baddeley
and Wilson (1994), who analyzed the effect of explicit versus
implicit learning in amnesic patients, suggested that implicit learn-
ing is strongly dependent on the efficiency of explicit learning, as
the later would monitor errors while the former would be heav-
ily impaired by errors during learning. Jamieson and Mewhort

(2009) reached a similar conclusion. In their model, they sug-
gested that even though SL can occur without the participant’s
explicit knowledge of an underlying rule, SL would nevertheless
require memory retrieval of association traces between the current
stimulus, the response associated with it, and the context pro-
vided by the immediately preceding response. Importantly, they
underline that this account of SL does not require implicit learn-
ing but instead memory retrieval, that may or may not be fully
conscious.

Clearly, there is far from a consensus on the question of
whether SL is subserved by implicit or explicit mechanisms, or
a combination of both. Nevertheless, perhaps the most influential
view to date is that both types of mechanisms contribute to SL
(e.g., Curran and Keele, 1993). Importantly, this view finds sup-
port from neuroimaging data. Physically distinct brain networks,
including dorsolateral prefrontal, medial frontal, and more dorsal
posterior regions, appear to be activated when subjects become
consciously aware of a sequence. These networks are not acti-
vated when subjects are unaware of the sequence rules (Grafton
et al., 1995). Such results would be consistent with explicit knowl-
edge leading to the use of working memory to process conscious
representations of the sequence (Smith and Jonides, 1995), while
areas commonly associated with motor control and/or percep-
tual processing, including motor cortex, primary sensory areas,
and subcortical structures in the basal ganglia, would be acti-
vated under conditions of implicit learning (for a more complete
discussion see Curran, 1998).

From a methodological point of view, one way to explore the
extent of explicit and implicit learning in SL paradigms is to
use rapid serial visual presentations (RSVP). Kim et al. (2009),
for instance, used such a design together with a matching ques-
tionnaire to assess explicit learning and concluded that SL was
performed though implicit mechanisms. But several critiques can
be raised on the ability to assess purely explicit learning through
questionnaire assessments. Thus, novel methods have been devel-
oped to better dissociate implicit from explicit learning, such as
comparisons between direct and indirect tasks or the process-
dissociation procedure (Jacoby, 1991). In direct tasks, such as
questionnaire assessments or recognition judgments, subjects are
explicitly instructed to respond based on their conscious knowl-
edge. In indirect tasks, performance is measured in a manner that
does not require conscious choice by the participants. If partici-
pants show greater SL as measured by an indirect task compared
to a direct task, it is likely that SL occurred without accom-
panying conscious awareness (Cleeremans et al., 1998). Taking
this logic one step further, Jacoby (1991) proposed the process-
dissociation procedure as a method for dissociating implicit
from explicit learning. This procedure allows one to separate
memories acquired intentionally (i.e., consciously) from mem-
ories acquired automatically. Franco et al. (2011) applied this
method to explore the cognitive mechanism(s) of SL. They found
that statistical information acquired through two SL paradigms
containing two different artificial grammars of syllables where
only transition probabilities differed, can be consciously manip-
ulated to differentiate these artificial languages. That is, the
transitional probabilities became to some extent available to
consciousness.
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Even though these new methods have improved our abil-
ity to assess the contribution of the level of consciousness to
SL mechanisms, the issue is far from settled. Some researchers
still believe that the assessment of consciousness needs further
improvements (Dale et al., 2012). Importantly, the debate about
the interaction between consciousness and SL performance essen-
tially distinguishes between two aspects of consciousness: the
consciousness of the acquired knowledge (e.g., transitional prob-
abilities) resulting from SL (see for instance Franco et al., 2011)
and the level of consciousness available or required during the SL
process itself, that is, whether learning was intentional or inciden-
tal. One recent empirical study incorporated this distinction by
using a dual-task paradigm that induced a cognitive load either
during an (incidental) encoding phase or during an (explicit) test
phase, or both (Hendricks et al., 2013). Interestingly, the results
demonstrated differential effects of the dual-task manipulation,
impairing performance only during the explicit test phase, that
is, during the manipulation of explicit knowledge, but not dur-
ing the encoding phase. Furthermore, in a transfer condition in
which the elements of each sequence were mapped onto a new
subset of items, the dual-task condition eliminated SL regard-
less of whether it occurred during the encoding phase or during
the test phase. This finding suggests that SL is largely an implicit
process; however, the expression of previously learned knowledge
gained through SL during an explicit test as well as the learning of
abstract rules appears to require conscious awareness (Hendricks
et al., 2013).

In summary, the literature remains highly heterogeneous in
terms of the impact of the level of consciousness on SL perfor-
mance. However, perhaps the most conservative view, similar to
that discussed earlier, is that SL might not be governed by a sin-
gle cognitive mechanism and might not store representations in a
single – e.g., unconscious – format. Instead, SL is likely subserved
by at least two mechanisms, one that is rather independent of the
level of consciousness/attention and results in unconscious rep-
resentations and one that depends more on attentional resources
and leads to more conscious representations. We will see that ERPs
can be helpful in testing this assumption.

DEVELOPMENTAL CONSIDERATIONS
Whether described in terms of the abstractness of the representa-
tions or on the consciousness/attentional dimension, SL can hardly
be fully investigated without taking into account its developmen-
tal trajectory. Although most SL experiments have been performed
with young adults, several studies have focused on SL in children
(Saffran et al., 1997; Meulemans et al., 1998; Thomas and Nelson,
2001; Vicari et al., 2003; Thomas et al., 2004; Arciuli and Simpson,
2011; Arciuli and von Koss Torkildsen, 2012) and infants (Haith
et al., 1988; Haith and McCarty, 1990; Saffran et al., 1996, 2001;
Smith et al., 1997; Aslin et al., 1998; Clohessy et al., 2001; Fiser and
Aslin, 2002; Shafto et al., 2012). There are also a handful of stud-
ies investigating SL in the elderly population (Prull et al., 2000;
Dennis et al., 2003; Howard et al., 2004; Aizenstein et al., 2005;
Humes and Floyd, 2005; Shea et al., 2006).

Despite the growing body of research that focuses on SL
across the life-span, the developmental progression of SL is
still largely unknown. The early literature on implicit learning

assumed that this cognitive ability was rather independent of age
(Reber, 1993), while explicit learning would improve with aging
(Schneider and Pressley, 1997; Parkin and Streete, 1988). Later on,
this claim of developmental invariance was contradicted in sev-
eral instances (Mecklenbräuker et al., 2003; Thomas et al., 2004;
Barry, 2007; McNealy et al., 2010). In most cases where develop-
mental differences in implicit learning have been found, young
adults out-performed children. However, it appears that in at
least some instances, the SL mechanisms of juvenile organisms
may be more efficient than those of older ones (McNealy et al.,
2010; Johnson and Wilbrecht, 2011); in natural language, this is
evidenced by the difficulty with which adults acquire a second
language (Gordon, 2000) compared to infants who can display
efficient bilingual learning skills (Werker, 2012). Some proposals
take the somewhat paradoxical stance that cognitive limitations
may confer a computational advantage for learning, which may
provide an alternative explanation for the presence of sensitive
periods in language development (Newport, 1990; Elman, 1993;
Conway et al., 2003). Additional research is needed to explore these
ideas further.

In terms of how SL abilities develop later in life, the litera-
ture from the elderly population points either to no change in old
age in the case of deterministic sequences (Howard and Howard,
1989, 1992; Frensch and Miner, 1994; Cherry and Stadler, 1995;
Salthouse et al., 1999) but age-related deficits when sequences are
probabilistic or have rather complex structures such as long range
dependencies (Curran, 1997; Howard and Howard, 1997; Feeney
et al., 2002; Howard et al., 2004). According to “the frontal lobe
hypothesis of cognitive aging” (Hess, 2005), this deficit could
stem from atypical activation of the dorsolateral prefrontal system,
resulting in failures to properly represent and maintain context
information (Braver et al., 2001), which in turn might be due to
reduced working memory performance.

The model of Pierrehumbert (2003) takes clearly into account
the developmental aspect. The author proposes that bottom-up
mechanisms, including SL mechanisms – that encode concrete
features of sequences – would be the main component of speech
processing strategy in infants. Later on, with increased exposure
to linguistic materials, this strategy would allow the develop-
ment of categorizations at higher levels of the phonetic system,
which in turn, would trigger top-down feedback mechanisms.
Consistent with this model, children show evidence of catego-
rization of the speech stream rather early, by age three (Nittrouer,
1996) and Hazan and Barrett (2000) showed that categorization
of consonants in minimal pairs such as boat/goat continues to
develop between 6 and 12 years. At age 12, such categorizations
have still not reached young adult levels. According to Pierre-
humbert, these later developments would result from top-down
feedback mechanisms within the phonological system requiring
a long process of elaboration and refinement. These top-down
mechanisms would explain how initial preconscious levels of rep-
resentation are progressively refined from childhood to adulthood.
Such top-down accounts of SL mechanisms imply that low-level
mechanisms of SL do not provide a full picture of the SL in
adults and require one to take into account interactions between
a more “basic” SL mechanism and information received from
higher-level systems of the phonological system. Along this line,
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one may hypothesize the existence of two types of SL mech-
anisms: a “basic” and an “expert” mechanism. Infants would
benefit almost exclusively from the former, while children, ado-
lescents, and young adults would benefit from the latter becoming
increasingly developed as age increases into young adulthood.
In older adults, however, the “expert” mechanism, presumably
drawing upon working memory resources, might show signs of
deficiency.

Thus, similarly to the dissociation of mechanisms of SL into
explicit and implicit components, and into mechanisms encod-
ing concrete and abstract representations, the Pierrehumbert
(2003) developmental account of SL incorporates two systems
that develop differentially. Such a multiple mechanism view of
SL is consistent with Gervain and Mehler’s (2010) suggestion
that a combination of language-specific, perceptual, and statis-
tical learning mechanisms are all necessary for learning language
(Gervain and Mehler, 2010). In their ACCESS model, these ele-
ments are combined together with social cues to explain language
acquisition performance across the early life-span. Some learn-
ing mechanisms would work only on short time-scales while
others would require the link of information at longer time-
scales (Goldstein et al., 2010). Over short time-scales, infants
would use surface structure such as transitional probabilities
to extract co-located sequences of phonemes from a contin-
uous input (Saffran et al., 1996; Pelucchi et al., 2009). Over
longer time-scales, infants may benefit from social cues, such as
parents’ use of common grammatical constructions and incorpo-
rate them in their own speech (Cameron-Faulkner et al., 2003).
Importantly, such developmental models (i.e., involving mul-
tiple mechanisms) have received support from neuroimaging
data. For instance, Thomas et al. (2004) provided evidence
of a maturation of two distinct mechanisms of SL between
childhood and adulthood: a process acting on unconscious
representations and another that manipulates explicit knowl-
edge.

In summary, SL may consist of at least two different systems.
The first relies upon bottom-up implicit/perceptual mechanisms
that result in unconscious representations, develop early in life,
and are likely to exploit surface structure of input and hence
can explain some of the impressive language-related abilities
present in infants and children. The second system develops
later in life, consisting of expert SL mechanisms that rely more
on top-down information, are more dependent on the level of
attention, and result in explicit knowledge of abstract rules that
further improves language processing abilities (but see Marcus
et al., 1999, suggesting that abstract information may already
be processed by 7-months old as well). Thus, rather than a
simple explanation of how a single SL ability progresses over
time, it may be necessary to consider at least two different sub-
systems and associated mechanisms to draw a complete picture
of the developmental trajectory of SL. Understanding how each
of these processes develops and interacts dynamically across the
life-span remains a formidable research challenge. Based on the
preceeding discussion, we propose an initial and albeit sim-
plified model showing the developmental progression of these
two SL systems (Figure 2). In order to provide extra empiri-
cal validation of this model, we now turn to how ERPs have

contributed to a better understanding of the mechanisms of
SL.

EXPLORING SEQUENTIAL LEARNING WITH EVENT-RELATED
POTENTIALS
We will first summarize the main ERP paradigms that have been
used to date in SL research (the main ERP components are
described in Figure 3). We will then focus on how ERPs have
been used to explore the three above-mentioned dimensions of
SL mechanisms: the abstractness of the manipulated representa-
tion, the level of attention/consciousness of the mechanisms and
the level of consciousness of the representations, and the devel-
opment of SL across the life-span. After considering these three
dimensions of SL, we then consider new avenues of research and
then conclude with a re-evaluation of the two-system model of SL
described in Figure 2.

MAIN ERP PARADIGMS OF SL RESEARCH
Oddball and SRT paradigms
A rather basic paradigm for testing a simple form of SL, referred
to as the “Oddball” paradigm, contains a rare (or “deviant”) target
stimulus presented along with more frequent (or“standard”) non-
target stimuli in a serial input stream (Figure 4). This paradigm
elicits a P300 ERP component, one of the most studied compo-
nents of ERP research (for a review, see Polich, 2007). The P300
is thought to reflect a decision based on an evaluation or cate-
gorization of the stimulus. The amplitude of the P300 is highly
sensitive to the stimulus probability and to the level of attention.
In the oddball paradigm, the number of repetition of standards
between two occurrences of a (target) deviant is randomized, such
that the length of the sequence of interest is not fixed, but ran-
dom. The perceiver is thought to “compute online” a conditional
probability of the target occurrence. Stadler et al. (2006) were able
to show how decision and preparatory mechanisms are affected
by this conditional probability, by measuring the P300 and the
contingent negative variation (CNV, Walter et al., 1964), respec-
tively. In this paradigm, the target cannot be predicted by the
occurrence of a given stimulus. However, as the number of con-
secutive standards increases, the probability of occurrence of the
target increases too, which increases the likelihood of a motor
response requirement, hence affecting: (1) the level of attention
and/or motor decision mechanisms (as reflected by the P300),
and (2) the amount of motor preparation (as reflected by the
CNV). Stadler et al. interpreted their results as an indication
that the level of activation of decision mechanisms indexed by
the P300 were continuously increasing as the target conditional
probability increased while the activation of preparatory motor
mechanisms according to the CNV was much like an all-or-none
phenomena.

Another well studied ERP component elicited by the oddball
paradigm is the mismatch negativity (MMN), which typically is
thought to reflect an automatic discrimination or echoic mem-
ory updating between the standard and the deviant stimulus (for
a review, see Näätänen et al., 2012). Capitalizing on the fact that
the MMN is less dependent on the level of attention than the
P300, van Zuijen et al. (2006) recorded these two components
simultaneously with an oddball paradigm to explore how the
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FIGURE 2 | Model of SL across the life span. We propose that SL is
governed by two systems: a “basic” and an “expert” system. The “basic”
system incorporates modality-specific predictive mechanisms that are mostly
automatic and implicit and that capture concrete structures of sequences
such as chunks and transition probabilities through a bottom-up process. The
basic system, which is possibly a sub-system (in the temporal domain) of the
(spatio-temporal) PL system, can be modeled by simple recurrent networks.
The “basic” system is already available very early in life, allowing for the
development of explicit long-term associative memories that become
available to the expert SL system. The “expert” system, which relies on

top-down explicit multimodal and retrospective mechanisms, depends on the
level of intention (to learn) and attention (including selective attention through
social cues). The “expert” system, which captures more abstract patterns,
increasingly develops from childhood into adulthood and then declines in old
age because of impaired working and sensory memories. Blue represents
the proportion of SL governed by the basic system and yellow represents the
proportion of SL governed by the expert system. Clearly, this model is
tentative and highly speculative. In particular, the exact degree of contribution
of the basic and expert systems at different ages of life remain currently
unknown.

level of attention affects SL (more on this study in a subsequent
section).

Some researchers have taken the standard oddball paradigm
and used it to study SL processes that occur during the serial
reaction time task (SRT; Nissen and Bullemer, 1987). The typi-
cal SRT task is a visuo-motor SL task where visual stimuli appear
at different locations on a screen, as described by a particular
rule or pattern (Figure 5). Response buttons correspond spa-
tially to each location. SL is behaviorally demonstrated by a
reduced response time to repeating/familiar sequences compared
to novel or random sequences. The SRT has been subsequently
adopted and modified by many others for various purposes
(Cleeremans and McClelland, 1991; Perruchet and Amorim, 1992;
Willingham et al., 1993; Reed and Johnson, 1994; Stadler, 1995;
Jiménez et al., 1996; Perruchet et al., 1997; Frensch et al., 1998;
Honda et al., 1998; Reber and Squire, 1998; Shanks and John-
stone, 1999; Destrebecqz and Cleeremans, 2001). Most relevant
to the present purposes, the SRT has also been used with ERP

recordings, revealing ERP correlates of SL (Eimer et al., 1996; Bald-
win and Kutas, 1997; Rüsseler and Rösler, 2000; Rüsseler et al.,
2003a; Ferdinand et al., 2010; Meiri, 2011). Specifically, under
an oddball-type version of the SRT that involves the presenta-
tion of deviant stimuli occurring in a sequence of standards, an
enhancement of the N200 to deviants compared to standards
has been reported (e.g., Eimer et al., 1996; Rüsseler and Rösler,
2000; Schlaghecken et al., 2000). Note that an important ques-
tion is whether this modulation stems from SL per se or from
a secondary effect of SL, for instance, an effect of attention. We
will also come back to this issue in a subsequent section of this
review.

One final variation of the oddball design comes from Jost
et al. (2011). This paradigm included sequences of visual stim-
uli (colored circles) containing a frequent stimulus and a set of
“deviant” stimuli. These deviants belonged to two different cat-
egories: “predictors” and “targets” (Figure 6). The participant is
asked to respond to target stimuli without being told that certain
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FIGURE 3 | Main ERP components with their functional interpretation,

latencies, and scalp topography (ellipses indicate the scalp location

where the component has the largest amplitude – red: positive

potential, blue: negative potential; vertical axis unit: scalp potential in

microvolts with negativity upward; horizontal axis unit: time from the

stimulus onset in milliseconds).

predictor stimuli predict the occurrence of the target with fixed
contingent probabilities. That is, the occurrence of the predictor
allows the participant to predict the target with varying probabil-
ities. The assumption is that this design requires a kind of basic
statistical learning of the contingent probabilities that links the
predictors to the targets. Jost et al. (2011) reported a late pos-
itivity in response to the predictors between 300 and 600 ms
post-predictor onset that increased as the contingent probability
increased. This ERP effect was referred to as a P300-like compo-
nent and interpreted as reflecting an index of SL. Similarly, Rose
et al. (2001) reported an SL effect as reflected by an increased
P300 to the first stimulus of a two-item sequence. According to
these authors, since the task required a motor response to the sec-
ond item, the ERP to the first item was also modulated by: (1)
an increased lateralized readiness potential component (LRP, e.g.,
Hackley and Valle-Inclán, 2003), reflecting an increased motor
preparation to the predictable second item (see also Eimer et al.,
1996; Rüsseler et al., 2001), and (2) a decreased CNV, reflecting a
reduced motor preparation to other alternative, non-predictable
second items.

Unlike these oddball paradigms where the sequences embody
rather simple contingent statistics, other ERP paradigms have been
used to explore SL using more complex sequences, such as the
“artificial grammar” paradigm.

Artificial grammar and natural language paradigms
Artificial grammar learning (AGL) paradigms, which incorporate
a set of rules that govern the structure of sequences (Figure 7),
have been designed to mimic the complex structure of natural
language while simultaneously removing other potentially con-
founding parameters such as semantic information. Converging
evidence has suggested that this experimental design is a good
model for testing the grammatical and structural processing of
natural language (for a review see Christiansen et al., 2002). It
should be noted that the AGL paradigms used in ERP research
often incorporate aspects of the SRT paradigm, described above
(Nissen and Bullemer, 1987). In such a combined SRT-AGL task,
the structure of the sequence of stimuli follows the rules defined
by an artificial grammar to determine what stimulus occurs next
in the sequence.

Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 437 | 8

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Daltrozzo and Conway Neurocognitive mechanisms of statistical-sequential learning

FIGURE 4 | Example of an oddball paradigm in the visual domain.

Visual stimuli are presented in a temporal sequence. The green colored
circle stimulus is frequently presented and is referred to as the “frequent”
or “standard” stimulus. The pink colored circle is rarely presented and is
referred to as the “rare” or “deviant” or “target” stimulus. The number of
standards presented between two deviants is pseudo-random.

The ERP research using AGL has shown that several ERP com-
ponents known to index grammar/syntactic violation in natural
language (e.g., Steinhauer et al., 2001) and in music perception
(e.g., Patel et al., 1998) are also elicited by artificial grammar
violations (Osterhout and Holcomb, 1992; Christiansen et al.,
2012; Tabullo et al., 2013). The most commonly reported ERP
indices of syntactic violation are an “early” negativity and a “late”
positivity. The early negativity is usually found at left anterior
cortical sites and between 200 and 400ms poststimulus-onset
(but see for instance Hoen and Dominey, 2000), and hence is
often referred to as the early left anterior negativity (ELAN) (e.g.,
De Diego Balaguer et al., 2007; Mueller et al., 2008). The late posi-
tivity, being often maximal around 600ms is usually referred to as
the P600 (e.g., Steinhauer et al., 2001).

Using such AGL paradigms, it is possible for instance to
test whether SL is processed by different mechanisms for dif-
ferent sequence structures. For instance, Bahlmann et al. (2006)
reported two ERP components to grammar violation of CV sylla-
bles sequences, an early negativity within a 300–400 ms window
that was evoked only by local violation [in (AB)n sequences] and
a late positivity within 400–750 ms that was evoked by both local
and longer range violation (in center-embedded AnBn sequences).
These ERP results confirm earlier predictions of the existence of
different cognitive mechanisms engaged for the processing of dif-
ferent types of input structures (e.g., Conway and Christiansen,
2001).

Other ERP components have also occasionally been reported
as indices of SL during exposure to artificial grammars: the error-
related negativity (ERN, Gehring et al., 1993), the N200, the slow

FIGURE 5 | One possible depiction of the serial reaction time task

(Nissen and Bullemer, 1987). Visual stimuli appear at different –
non-random – locations in a temporal sequence. Participants have to
reproduce the displayed sequence by pressing on the touch screen at the
correct locations and in the same temporal order as the displayed
sequence. Note that the actual configuration of the stimulus locations can
vary across studies.

negative wave (SNW), and the N400. Rüsseler et al. (2003b) used
an Erikson-like flanker task wherein a central imperative let-
ter followed a sequence or was randomly chosen and reported
sequence error monitoring as reflected by the ERN. This find-
ing suggests that the detection of (artificial) syntactic violations
is cognitively processed as a specific instance of a more general
set of errors, as reflected by the ERN. Lang and Kotchoubey
(2000) using an AGL paradigm based on sequences of vowels
within a passive task not requiring a motor response reported
two frontally distributed ERP effects to rule violations: one at a
latency of 250 ms – a N200 – and another around 500 ms – a
SNV. Lang and Kotchoubey (2000) suggest that this SNV may in
fact be an instance of the “family” of N400 components. This
would be in line with other studies that also propose the N400
(Kutas and Federmeier, 2011) as an index of SL processes (Sanders
et al., 2002; Cunillera et al., 2006, 2009; Carrión and Bly, 2007;
De Diego Balaguer et al., 2007; Abla et al., 2008; Buiatti et al.,
2009).

The AGL paradigms allow one to test SL mechanisms inde-
pendently of the effects of other language processes. How-
ever, natural language paradigms remain useful even with these
potential confounds, as they allow one to better understand
how SL might directly contribute/interfere with language pro-
cessing. The research using natural language paradigms has
mainly reported an ELAN and a left anterior negativity (LAN;
for an overview see Friederici, 2002) as well as a P600 (e.g.,
Osterhout and Holcomb, 1992) as markers of syntactic violations.
For instance, Friederici et al. (2002) reported a similar P600 and
ELAN to artificial and natural language grammar violations in
native-speakers. This result suggests that adult who are learning
a new (artificial) language use the same learning mechanisms as
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FIGURE 6 | Modified oddball paradigm of Jost et al. (2011). The standard
stimulus is a white circle on a dark background. The paradigm comprises
several deviant stimuli belonging to two different categories: “predictor” and
“target”. Participants are asked to press a button when the target is
presented. There are three types of predictors (corresponding to the three
experimental conditions): a “high probability” predictor which is followed
90% of the trials by the target, a “low probability” predictor, followed 20% of

the trials by the target, and a “zero probability” predictor, which is never
followed by the target. Participants are not told about these predictor-target
variable statistical contingencies. SL is observed behaviorally when
performance improves with higher statistical contingency. SL is observed
neurophysiologically when the ERP to the predictors differ between the
experimental conditions (e.g., a larger amplitude for the high probability
predictor compared to the other two predictor types).

are used in natural language. A similar conclusion comes from
Mueller et al. (2005), who reported similar ERP patterns from
non-native Japanese speakers trained to learn a “Mini-Japanese”
compared to native Japanese speakers. Similarly, Christiansen
et al. (2012) found a P600 to syntactic violations in artificial
grammars and natural language paradigms in the same set of
participants. The amplitude of the P600 was correlated between
the two tasks, suggesting that identical or similar underlying
mechanisms were engaged in both non-linguisitc SL and natu-
ral language processing. These studies suggest that a successful
methodological approach is to combine the AGL and natural lan-
guage paradigms in order to more fully understand SL and natural
language processing.

In summary, several ERPs components, such as the N200,
the MMN, the N400, the ERN, the ELAN, the LAN, the P300,
and the P600 seem to be modulated by SL in various experi-
mental paradigms and hence may be used to better understand
the cognitive mechanisms underlying SL. The variety of rele-
vant paradigms ranges from simple sequence designs such as
oddballs to more complex sequential stimuli involving natural

or artificial grammars. We now consider to what extent the
ERP research helps elucidate questions about the underlying
mechanisms of SL and the associated representations from the
perspective of the three dimensions previously discussed: the
level of abstractness, the level of attention or consciousness
(i.e., implicit versus explicit mechanisms), and the developmental
trajectory.

WHAT THE ERP FINDINGS TELL US ABOUT SL
ERP findings: level of abstractness
As previously discussed, SL is thought to stem from at
least two different types of mechanisms, one that acts on
rather concrete information and the other that acts on more
abstract information. With concrete feature-learning mech-
anisms, SL is explained by the encoding of distributional
properties of the sequence of items, such as item co-
occurrences or the transitional probability between items. The
alternative (or complementary) mechanism assumes that the
perceiver encodes abstract rules (or discrete combinatorial
systems).
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FIGURE 7 | Example of an artificial grammar in the visual domain.

The algorithm describes the rules of the artificial grammar, that is the set
of possible sequences of stimuli (in this case, colored squares) that are
valid according the rules of the grammar. Examples of valid sequences

(i.e., grammatical sequences containing no syntactic violations) are
presented on the bottom of the figure circled in dark. Examples of
non-grammatical sequences (containing syntactic violations) are also
presented, circled in red.

One of the crucial results from ERP studies of SL is provided
by Pulvermüller and Assadollahi (2007), who attempted to disso-
ciate ERP correlates of SL mechanisms between those that process
concrete versus abstract information. To this aim, these authors
manipulated separately concrete features (item co-occurrences or
transitional probability) and abstract features (syntactic rules or
grammaticality) of sequences using ungrammatical word strings,
very rare grammatical word strings (i.e., with low co-occurrence
and low transitional probabilities), and common grammatical
word strings (i.e., with high co-occurrence and high transitional
probabilities). Pulvermüller and Assadollahi reported a magnetic
MMN that differed between grammatical and non-grammatical
word strings but was unaffected by the co-occurrence (or tran-
sitional probability) manipulation. These authors concluded that
natural language grammar learning would stem from the encod-
ing of discrete combinatorial systems (i.e., abstract rules) rather
than the learning of co-occurrence and/or transitional probability
(i.e., concrete features). However, an alternative interpretation
could be drawn from their data: both mechanisms processing
concrete and abstract features might occur during syntactic pro-
cessing, but the magnetic MMN could be more sensitive to
abstract compared to concrete features encoding. Put another

way, just because an ERP correlate was not observed for con-
crete feature learning does not mean that such a correlate does
not exist; null effects in ERP research are notoriously difficult to
interpret.

Lelekov et al. (2000) were also able to explore the issue of the
level of abstractness of the information encoded during SL. Using
an AGL paradigm, they presented instances of sequences of type
ABCBAC and DEFEDF with different surface structure (i.e., dif-
ferent concrete distributional properties) but identical abstract
structure. These authors reported a late positivity at 500ms, simi-
lar to the typical P600 to syntactic violation, in response to abstract
structure violation, but no ERP effect to surface (concrete) struc-
ture violation. As with the Pulvermüller and Assadollahi’s (2007)
study, at least two conclusions could be drawn: either only SL
mechanisms of abstract structures occur or both concrete and
abstract structures are processed by the mechanisms of SL but in
their paradigm the ERP are mainly sensitive to those mechanisms
that act on abstract information and less sensitive to those related
to concrete feature encoding.

Conversely, other studies have found ERP correlates – specif-
ically, the MMN – related to concrete feature encoding (Deouell
et al., 1998; Marco-Pallarés et al., 2005; Schröger et al., 2007). For

Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 437 | 11

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Daltrozzo and Conway Neurocognitive mechanisms of statistical-sequential learning

instance, Schröger et al. (2007) used standard and deviant tone
pairs of different frequencies, either ascending or descending. The
first tone of the pair had either a fixed frequency of 900 Hz or a
random frequency within 600–1200 Hz using 10 Hz-steps. The
second tone of the pair had a short or a long duration (200 or
400 ms). Schröger et al. (2007) referred to the condition with a
fixed-frequency first tone as sequences with a “concrete rule” and
to the condition with a random-frequency first tone as sequences
with “abstract rules.” ERPs were time-locked to the second tone of
the pairs. Schröger et al. (2007) reported a MMN to deviant pairs
with both concrete and abstract sequences. These authors also
used source localization analyses and concluded that the MMN
sources elicited by abstract and concrete rule violations involved a
similar neural network.

In summary, some of the few ERP studies that explored the
level of abstractness of the encoded information during SL have
been interpreted as evidence that SL is governed only by abstract
rule-learning mechanisms. On the other end, other ERP research
were taken as evidence that concrete-rule encoding can also be
indiced by ERPs. Overall, it appears that the ERP research supports
the assumption that both concrete and abstract feature encoding
occurs in SL. The apparent inconsistency between these studies
may be due simply to variation in experimental designs and a lack
of sensitivity of ERP to adequately index particular mechanisms
of SL.

ERP findings: level of attention and conscious awareness
Across various paradigms, not just those specifically looking at
SL, almost all ERP components have been reported to be modu-
lated by the level of attention (Kok, 2000; Barry et al., 2003; Correa
et al., 2006). Thus, one might consider the possibility that sev-
eral studies that interpreted ERP components as markers of SL
were in fact pointing to a (top-down) attentional effect that may
or may not be specific to SL itself. For instance, Sanders et al.
(2002) reported an increased N100 to learned/segmented pseu-
dowords compared to new/unfamiliar pseudowords with exposure
to a speech-like stream of unfamiliar pseudo-words. These authors
concluded that the N100 is an index of SL (or segmentation).
However, an alternative top-down account of this result could be
that, as pseudo-words become more and more familiar due to SL
(or segmentation), the pseudo-words are better recognized, and
hence are more likely to capture attention. The increased N100
across exposure to a speech-like stream would thus reflect a top-
down attentional effect to items of this stream. If this attentional
effect is indeed occurring, an important question is whether it
contributes or not to the actual process of SL (or segmentation)
itself.

The literature contains several other ERP studies that attribute
to ERP components the property of indexing SL while often ignor-
ing the alternative top-down attentional explanation (Rose et al.,
2001; Sanders et al., 2002; Cunillera et al., 2006, 2009; De Diego
Balaguer et al., 2007; Abla et al., 2008). For instance, Abla et al.
(2008) and Sanders et al. (2002) interpreted an increased N100
and N400 to segmented/learned sequences of three items [tones
in Abla et al. (2008) and syllables in Sanders et al. (2002)] as
reflecting the indexing of SL mechanisms. Similarly, Rose et al.
(2001) reported an increased P300 with SL to the first item of

a sequence of two items and several other SL studies concluded
that the P200 is a marker of SL (Cunillera et al., 2006, 2009;
De Diego Balaguer et al., 2007). As with the case of the Sanders
et al. (2002) study, all of these ERP effects could instead be due
to modulations of the level of attention, rather than SL per se.
However, even if this top-down account is true, the ERP com-
ponents still reflect an outcome of the SL process, that is, a
learning-related change of attention to stimuli based on whether
or not the stimuli are consistent with the previously learned
patterns.

Whether SL requires conscious awareness is a hotly debated
topic. The relation between implicit SL, explicit SL, and ERPs has
been mostly explored through two approaches: by dissociating
implicit from explicit learning according to whether participants
acquired explicit knowledge of the patterns (e.g., Eimer et al., 1996;
Baldwin and Kutas, 1997; Rüsseler and Rösler, 2000; Schlaghecken
et al., 2000; Rüsseler et al., 2001) or by dissociating these two types
of learning according to whether participants had or had not an
intention to learn the rules (e.g., Rüsseler et al., 2003a,b).

In line with early behavioral studies of SL (Reber, 1967; Saffran
et al., 1996, 1997), several ERP studies, using different experi-
mental approaches, provide strong evidence that there is at least
an implicit component of SL (Saarinen et al., 1992; Dell’Acqua
et al., 2003; Carral et al., 2005; Kessler et al., 2005; Zachau et al.,
2005; Kranczioch et al., 2006; van Zuijen et al., 2006; Trippe
et al., 2007; Acqualagna et al., 2010; Yu et al., 2011; Batterink
and Neville, 2013). Indeed, several ERP studies concluded that
SL had occurred under conditions of minimal attention (Saari-
nen et al., 1992; Carral et al., 2005; Zachau et al., 2005; van Zuijen
et al., 2006). For instance, van Zuijen et al. (2006) investigated
the attentional issue by recording the MMN (assumed to reflect
attention-independent discrimination, but see Arnott and Allan,
2002; Müller et al., 2002) and the P300 (assumed to be more depen-
dent on the level of attention, but see Bennington and Polich,
1999). They used an oddball paradigm wherein standards are tone
pairs with an ascending frequency and deviants are tone pairs with
a descending frequency. Participants who after the ERP session did
not report the presence of deviants, i.e., were subjectively unaware
of them, showed only a MMN, while participants who were aware
of the deviants showed also a P300. These findings suggest that
both implicit and explicit SL can occur, each recruiting different
neural mechanisms. In a study similar to van Zuijen et al. (2006),
Gottselig et al. (2004) tested SL using an oddball paradigm con-
taining eight-tone sequences [instead of tone pairs in van Zuijen
et al. (2006)]. Deviant sequences differed from standard sequences
only by the frequency of one tone. Similar to van Zuijen et al.
(2006), Gottselig et al. (2004) were also able to record a MMN to
deviants while participants’ attention was focused on silent films,
thus suggesting again that implicit SL of very basic input sequences
is possible.

Still using the oddball paradigm and measuring the P300, but
under rapid stimulus presentation - the so-called RSVP paradigm
– other studies tested the perception of a deviant within an
attentional blink (Dell’Acqua et al., 2003; Kessler et al., 2005;
Kranczioch et al., 2006; Trippe et al., 2007; Acqualagna et al., 2010;
Yu et al., 2011). These studies concluded that there was an implicit
component of SL. A similar conclusion was also reported using
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AGL paradigms (Baldwin and Kutas, 1997; Schröger et al., 2007)
and syntactic violations within natural language (Batterink and
Neville, 2013). For instance, Batterink and Neville (2013) reported
early ERP deviations to such syntactic violations while the par-
ticipant’s attention was focused on a distractive task. This result
indicates that SL of more complex rules than those found in an
oddball paradigms might also be processed implicitly.

Importantly, none of the above-mentioned ERP studies rule
out the possibility that explicit mechanisms of SL also con-
tribute to the reported ERP effects. Indeed, the ERP research
on SL mechanisms has abundantly explored the explicit compo-
nent(s) of SL (Tiitinen et al., 1994; Eimer et al., 1996; Baldwin
and Kutas, 1997; Rüsseler and Rösler, 2000; Schlaghecken et al.,
2000; Rüsseler et al., 2003a,b; Miyawaki et al., 2005; Schröger
et al., 2007). For instance, Schröger et al. (2007) reported a com-
bination of implicit and explicit SL using violations of abstract
auditory rules. Standard and deviant tone pairs of different fre-
quencies were used, in which deviant and standard pairs could
have either ascending or descending frequency and the second
tone of the pair had a short or a long duration (200 or 400 ms).
They manipulated the effect of attention on the rules by using
three conditions: (1) a passive (i.e., no task) “ignore” condition
wherein participants are asked to watch a soundless video, (2) an
active rules task-irrelevant “distraction” condition wherein par-
ticipants were asked to perform a two alternative-forced choice
discrimination decision on duration, judging whether the sec-
ond tone of each pair was short or long, and (3) an active
rules task-relevant “detection” condition wherein participants
were asked to detect deviant pairs after having been informed
of the rising/falling frequency rule. Schröger et al. (2007) not only
confirmed the above-mentioned reports of an implicit compo-
nent of SL showing ERP effects to deviants modulated by the
participants’ performance on a non-rule related task, they also
provided findings regarding the effect of the participant’s inten-
tion. Schröger et al. (2007) results suggest that intention to learn
improved the ability to perform the non-rule related task. All
together, these data suggest that SL can be both implicitly and
explicitly learned, depending on the participants’ intention. A
similar effect of the intention to learn sequences was found by
Miyawaki et al. (2005). These authors presented sequences of eight
digits and found that, after training, the amplitude of the N200
component (and behavioral performances in sequence free and
cued recall) were higher with intention to learn compared to
non-intention.

In addition, larger effects of learning (as measured by behav-
ior and ERP) appear to be found in explicit compared to implicit
conditions. For instance, Baldwin and Kutas (1997) provided evi-
dence that behavioral measures of SL were roughly twice as large
for explicit compared to implicit SL (Figure 8). In addition, these
authors reported P300 effects to sequence violations that were,
when explicit SL occurs, more than two times larger than those
observed when only implicit SL was permitted (Figure 8). A simi-
lar “effect size doubling” on behavioral performance was reported
by Eimer et al. (1996, see Figure 9) using 10-letter sequences with
standard and deviant sequences. The effect size increase was even
larger when measuring the amplitude of the N200. In the same
vein, Rüsseler and Rösler (2000) and Schlaghecken et al. (2000),

reported N200 and P300 modulations to sequence violation only
in participants that learned explicitly the sequence [according to
post-experimental free recall and recognition tests in the Rüsseler
and Rösler’s (2000) study, and according to the “process dissocia-
tion procedure” of Jacoby, 1991 in the study of Schlaghecken et al.
(2000)].

However, robust effects of explicit SL are not systematically
reported. For instance, Rüsseler et al. (2003b) found similar
behavioral and neurophysiological effects in implicit and explicit
conditions. Rüsseler et al. (2003b) measured the ERN while par-
ticipants performed an Erikson-like flanker task wherein a central
imperative letter followed a sequence or was randomly chosen. The
lack of difference between these conditions is likely to stem from
the use of a rather unusual SL paradigm. Indeed, using a more
typical SL paradigm with 16-letter-long sequences irregularly dis-
rupted by deviant stimuli, Rüsseler et al. (2003a) were able to show
a strong effect of intention on ERP effects of SL. These authors
reported ERP effects on the N2b- and P3b-components only in
participants who were informed of the presence of sequences and
no ERP effects in a group of participants who were not previously
informed of these stimulus patterns.

In summary, the ERP literature seems to support the existence
of both implicit and explicit mechanisms of SL. Furthermore, the
effect size of the SL measured behaviorally or neurophysiologically
appears to increase with the intention to learn the rules and with
the explicit knowledge of these rules. Therefore, when attempting
to understand the mechanisms of SL, a very critical aspect appears
to be the attentional/consciousness dimension. Importantly, since
the level of attention can affect almost all ERP components, the
interpretations of ERP correlates of SL must be cautious as in some
instances there may be an alternative top-down explanation.

ERP findings: developmental trajectory
In general, there is a paucity of ERP research examining SL
in young children. However, neural signatures of infant and
children’s early language learning mechanisms – presumably
dependent in part on SL – have been documented using ERPs.
Indeed, ERP studies have provided some evidence that the ability
to extract statistical dependencies between adjacent elements in
the speech stream appears to be present from birth, and infants
can learn non-adjacent dependencies in a natural, non-native
language by 4 months of age (Teinonen et al., 2009; Friederici
et al., 2011). From about 9 months of age, familiar words evoke
responses that are different in amplitude as well as in scalp
distribution measurements from responses to unfamiliar words
(Molfese, 1990; Vihman et al., 2007). By 11 months of age, pho-
netic learning can already be observed; by 14 months, responses
to known words are observed; and by 2.5 years, semantic and
syntactic learning is elicited (Kuhl and Rivera-Gaxiola, 2008). For
instance, a P600 to sentence-level syntactic violations has been
found in 30, 36, and 48 months old children that looked rather
similar to the P600 found in young adults (Silva-Pereyra et al.,
2007).

Although SL is assumed to be important for language acquisi-
tion, few studies have directly examined the relationship between
SL and language outcomes. Recently, the link between SL and
children’s language performance has received new support. Rosas

Frontiers in Human Neuroscience www.frontiersin.org June 2014 | Volume 8 | Article 437 | 13

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Daltrozzo and Conway Neurocognitive mechanisms of statistical-sequential learning

FIGURE 8 | Left panel: Mean response time to a SRT for grammatical
(“Gram”) and ungrammatical (“Ungram”) sequences across practice
sessions (each session lasts for four hours) under implicit (“IMP,” participants
were not previously informed of the sequence structure) and explicit

conditions (“EXP,” participants were previously informed of the sequence
structure). Right panel: Difference waves (ERP to ungrammatical targets
minus ERP to grammatical targets) under implicit and explicit conditions.
(Reproduced with permission from Baldwin and Kutas, 1997).

et al. (2010) reported an ERP study of SL in children (6–11 years)
using visual sequences. The authors compared two groups of
children: one with and one without attention deficit hyperac-
tive disorder. Rosas et al. found that both behavioral and ERP
findings pointed to the occurrence of SL in both experimental
groups. However, their most striking ERP result seems to be a
considerable difference in ERP amplitude between the two groups
of children on a late positivity (between 400 and 800 ms post-
stimulus onset) similar to the P600, suggesting that non-linguistic
SL incorporates mechanisms also used for language learning (as
reflected by the P600). The fact that the two groups differed on
the magnitude of the P600 also suggests that differences in atten-
tion can modulate the P600 effects to SL in children. The relation
between SL and natural language is predictive from a develop-
mental perspective, as the early mastery of the sound patterns
of one’s native language provides a foundation for later language
learning. Indeed, children who show enhanced ERP responses
to phonemes at 7.5 months show faster advancement in lan-
guage acquisition between 14 and 30 months of age (Kuhl et al.,
2008).

As concerns older populations, the literature about ERP corre-
lates of SL is scarce and mostly involves oddball paradigms that

elicit, for example, the MMN and the P300 (Fabiani and Fried-
man, 1995; Fabiani et al., 1998; Berti et al., 2013; Cheng et al.,
2013). In line with behavioral data suggesting more age-related
SL deficits for structures that include long range dependen-
cies (Curran, 1997; Howard and Howard, 1997; Feeney et al.,
2002; Howard et al., 2004), MMN studies show more age-related
decline with interstimulus intervals larger than 2 s (Czigler et al.,
1992; Pekkonen et al., 1993, 1996; Cooper et al., 2006; Ruz-
zoli et al., 2012) compared to shorter intervals (Cheng et al.,
2013). This decline has been interpreted in terms of faster
sensory memory trace decay in the older compared to the
younger adults (Pekkonen, 2000; Näätänen et al., 2007). These
results suggest that the behavioral studies showing age-related
decline of SL due to impaired abilities to represent and main-
tain context information (Braver et al., 2001) might not only
stem from working memory-related deficits but also from sen-
sory memory impairements, as reflected by the MMN attenuation.
Regardless as to whether or not working memory and sensory
memory share underlying mechanisms (Jääskeläinen et al., 2011),
these ERP studies of aging seem to point to an age-related
impairment of memory systems that might in turn affect SL
ability.
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FIGURE 9 | Left panel: Mean response time difference to a
SRT (RT to ungrammatical sequences minus RT to grammatical
sequences) across practice sessions/blocks (each block consists of
120 trials with the presentation of 12 sequences of 10 letters)
under implicit (“I,” participants who did not report noticing the
presence of a sequence when asked after the experiment) and
explicit conditions (“E,” participants who reported noticing the

presence of a sequence when asked after the experiment). Right

panel: Mean ERP amplitude in the 240–340 ms poststimulus onset
time range (corresponding to the N2 component) to the deviant
stimulus (ungrammatical sequences) minus ERP to the standard
stimulus (grammatical sequences) under implicit (“I”) and explicit
conditions (“E”) from the first and second halves of the blocks.
(Reproduced with permission from Eimer et al., 1996).

Clearly, the developmental trajectory of SL still has many unex-
plored fundamental questions. We believe the ERP technique has
not been used to explore SL across the lifespan to its fullest poten-
tial. This research gap in the developmental dimension as well as
opened questions left by the previously discussed models of SL
models lead us now to consider several new lines of ERP research
that we believe could offer new insights into SL, some of which are
amenable to developmental approaches.

NEW DIRECTIONS FOR RESEARCH
As mentioned earlier, SL mechanisms can be explored on the
dimensions of the abstractness of the manipulated represen-
tations (i.e., whether it reflects abstract rule-learning or con-
crete/distributional learning) and attention (i.e., the question
of implicit versus explicit SL). For these two approaches, ERPs,
allowing the assessment of “online” cognition, could make a
nice contribution if new paradigms are applied to control for
the amount of concrete information available in the input and
the level of attention (or consciousness) brought to bear. In
this regard, the control of concrete information could be per-
formed using the so-called “balanced chunk strength design” (e.g.,

Knowlton and Squire, 1996). This procedure allows one to control
for the amount of potential chunks or fragments that can emerge
from the stimuli, independent of whether or not the stimuli con-
form to grammatical rules. As concerns the level of attention,
further insights about the underlying implicit and explicit mech-
anisms of SL could be explored with ERPs using, for instance,
the process-dissociation procedure (Jacoby, 1991). This method
seems particularly promising when combined with the balanced
chunk strength design and ERP, as questions such as whether
chunks reflect the content of the attentional focus, or whether
there exist chunks that participants are not aware of could be
tested. Furthermore, it is important to attempt to tease apart the
encoding of input (during a“training”phase) versus the expression
of knowledge (during a “test” phase) as the level of attention may
differentially impact each process (Hendricks et al., 2013). Such a
line of research could be used to test the 2-step theory of Perruchet
and Pacton (2006), who posited that chunks are unconsciously
extracted via a bottom-up process, and then become consciously
available, in a second step, for top-down processing.

We mentioned earlier that almost all ERP effects observed in
SL paradigms can be interpreted either as indices of the SL process
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itself or as a consequence of SL, which modulates the level of atten-
tion to the learned material (be it the full stimuli, or fragments of it,
i.e., chunks). Future approaches could control the level of atten-
tion using for instance subliminal stimulation (Daltrozzo et al.,
2011). Finding ERP effects of SL under subliminal stimulation
would rule out the alternative attentional explanation, indicating
that these ERP effects are indices of SL per se and not indirect
effects of increased attention to newly learned materials.

Another area where ERPs can be fruitfully used is to explore the
nature of multisensory SL and the ways in which different subsys-
tems of SL interact and integrate information across domains. For
instance, Walk and Conway (2011) have recently proposed that SL
of multisensory patterns proceeds initially via modality-specific
mechanisms, and then only at a later stage of information process-
ing, are cross-modal contingencies learned. This type of two-stage
theory, in which an earlier process is posited to be followed by a
later one, is perfectly amenable for exploration by ERPs, which
provide a precise temporal profile of information processing. For
instance, ERPs could be used to measure within-modal versus
cross-modal violations in an SL paradigm, with the prediction fol-
lowing from Walk and Conway (2011) that cross-modal processing
will occur at a later latency than within-modal processing.

In addition, future ERP research could focus more on exam-
ining the developmental time-course of SL. This issue can be
assessed either on a short time scale, with for instance the
analysis of the development of SL across trials within a single
experiment; or on a longer time scale, with groups of par-
ticipants of various ages. Both approaches have been followed
for instance by Jost et al. (2011). Indeed, the short time scale
approach is particularly well-suited for ERP research because it
provides an online assessment of cognitive processing. At a longer
time scale, the ERP technique presents also some advantages
as compared to other techniques, such as behavioral measures.
Whereas behavioral data, which can be rather messy to collect from
children, might show a particular developmental pattern, ERP
data, which can be elicited even without a behavioral response,
might show an entirely different pattern of results. For exam-
ple, in Jost et al. (2011), two groups of children of different
ages and one group of young adults participated in an SL task
while ERPs were recorded. Despite the behavioral data showing
SL only in the adults group, the ERPs indicated SL also in the
children.

Importantly, developmental approaches should not be
restricted to comparisons between age groups. What is also needed
to better explore SL at a longer time-scale are longitudinal stud-
ies (as previously suggested by Conway et al., 2011 and Arciuli
and von Koss Torkildsen, 2012). The use of longitudinal studies,
for instance, would help provide evidence for a causal relation-
ship between SL and language performance. The demonstration
of causality, by showing that SL at a young age predicts language
outcomes later in life, would in turn have important implications
for clinical intervention. So far, recent research has found a strong
link at the neural level between SL and language performance using
correlational research strategies (Christiansen et al., 2012; Tabullo
et al., 2013). But this type of research design only allows one to
conclude that there exists an association between SL and language
performance, not necessarily a causal relationship.

In this manner, one potentially important way that ERPs can
be used is to assess to what extent SL is amenable to cognitive or
behavioral intervention. Because it has been argued and empir-
ically demonstrated that SL is related to language performance
(Conway et al., 2011; Daltrozzo et al., 2013), incorporating novel
training techniques in an attempt to improve SL could have a
causal impact on (i.e., transfer to) language ability (Daltrozzo
et al., 2013). In this vein, using ERPs to monitor changes in SL
and language abilities after receiving SL training is an important
next step. Such an intervention might be even more efficient if
it is combined with a biofeedback procedure. Research indicates
that the combination of ERP monitoring and biofeedback shows
impressive results in terms of neuronal plasticity (e.g., Miltner
et al., 1986; Rosenfeld, 1990; Kotchoubey et al., 2000; Birbaumer
et al., 2006).

We also suggest that additional research ought to attempt
to tackle more realistic learning situations. For example, some
models of SL have incorporated the interaction with the speech
community and other social cues. Goldstein et al. (2010) and
Tomasello (2000) have proposed models that include a bottom-
up analysis of statistical regularities reinforced by a top-down
attentional mechanism driven by social context cues. The influ-
ence of the social environment on SL could be accounted
for by an associative memory component, or a retrospec-
tive mechanism, which facilitates processing of the stimulus
(McClelland, 1979; Dale et al., 2012). According to Dale et al.,
SL is explained by both a predictive mechanism, as modeled by
simple recurrent networks (Cleeremans and McClelland, 1991;
Misyak et al., 2009), and a retrospective mechanism, which
facilitates subsequent processing in a top-down manner (see
also Conway et al., 2010). More research is needed to tease
apart the potential role of such top-down processing in more
realistic social and linguistic situations, and how this impacts
SL.

Finally, it is essential that future research also recognizes the
need for exploring several dimensions of SL together, because by
only assessing one dimension alone, we may suffer from an overly
simplistic and perhaps inaccurate view of the underlying mech-
anisms of SL. For instance, it might be that different aspects of
SL such as the level of abstractness of the encoded representa-
tions and the level of consciousness of the learned patterns may
develop along different developmental trajectories (although our
proposed model predicts that these two aspects develop in parallel,
Figure 2). As indicated earlier, ERPs are particularly well-suited to
explore each of these dimensions and could also be used to explore
combinatory modulations of each of these dimensions.

CONCLUSION: AN INTEGRATIVE MODEL
SL mechanisms can be described along several partially-
overlapping dimensions: the level of abstractness of the encoded
sequential information, the level of attention/consciousness of
these representations and the mechanisms that manipulate them,
as well as the developmental trajectory. Based on these descriptors,
several cognitive and computational models have been proposed.
Although many disagreements and unanswered questions remain
about these views, a general picture emerges. As an integrative
model, we propose that SL is most likely governed by at least two
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types of systems whose respective contributions vary across the
life-span (Figure 2).

In many regards, the results of the ERP research are in line
with a two-systems view of SL, as opposed to just one system.
However, ERP findings appear to provide inconsistent evidence
with regard to the relative involvement of concrete versus abstract
rule-learning components. This could be merely due to the greater
sensitivity of ERPs to one or the other process and therefore the
extent that ERPs are a reliable index of different mechanisms of SL.
On the other hand, this might not be an intrinsic weakness of ERP
but instead may point to methodological weaknesses in the assess-
ment of consciousness, attention, and intention. To overcomes
these limitations, several methodological improvements could be
used in conjunction with ERP research, including the process-
dissociation procedure (Jacoby, 1991) or dual-task methodology
(Hendricks et al., 2013), with the aim to test the two-systems
hypothesis along the dimensions of consciousness, attention, and
intention. Furthermore, more nuanced ways of investigating the
level of abstractness of the information encoded through SL could
rely upon balanced-chunk strength designs (Knowlton and Squire,
1996).

In sum, this review has explored to what extent ERP findings
can be used to better understand the neurocognitive mechanisms
of SL. Rather than continuing to argue over a simple dichotomy
of abstract versus concrete feature encoding or implicit versus
explicit mechanisms, future research must be more aware of the
potential complex relationships among multiple neurocognitive
mechanisms that may differ along one or more of these dimen-
sions based on the task at hand. Furthermore, ERPs can be used
to shed light on the developmental progression of these various
mechanisms. If the two-system view of SL (Figure 2) is correct,
then this helps frame our understanding of the nature of many
related aspects of cognition including motor skill development,
perceptual processing, and language acquisition. One potential
outcome of an improved understanding of the mechanisms of SL
is the ability to design novel language rehabilitation interventions,
capitalizing on the assumption that improving performance on
SL could have a transfer effect and thereby improve the perfor-
mance of other cognitive processes, such as language, that stem
from it.
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