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Abstract: Point of use (POU) household water treatment is increasingly being adopted as  

a solution for access to safe water. Non-tuberculous Mycobacteria (NTM) are found in water, 

but there is little research on whether NTM survive POU treatment. Mycobacteria may be 

removed by multi-barrier treatment systems that combine processes such as coagulation, 

settling and disinfection. This work evaluated removal of a non-tuberculous Mycobacterium 

(Mycobaterium terrae) and a Gram-negative non-acid-fast environmental bacterium 

(Aeromonas hydrophila) by combined coagulation-flocculation disinfection POU treatment. 

Aeromonas hydrophila showed 7.7 log10 reduction in demand free buffer, 6.8 log10 in natural 

surface water, and 4 log10 reduction in fecally contaminated surface water. Turbidity after 

treatment was <1 NTU. There was almost no reduction in levels of viable M. terrae by 

coagulant-flocculant-disinfectant in natural water after 30 minutes. The lack of Mycobacteria 

reduction was similar for both combined coagulant-flocculant-disinfectant and hypochlorite 

alone. A POU coagulant-flocculant-disinfectant treatment effectively reduced A. hydrophila 

from natural surface waters but not Mycobacteria. These results reinforce previous findings 

that POU coagulation-flocculation-disinfection is effective against gram-negative enteric 
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bacteria. POU treatment and safe storage interventions may need to take into account risks 

from viable NTM in treated stored water and consider alternative treatment processes to 

achieve NTM reductions.  

Keywords: coagulation; flocculation; disinfection; Mycobacterium; point-of-use;  

water treatment 

 

1. Introduction 

Household water treatment is increasingly being adopted as a solution for households and 

communities without access to safe water sources. Households with access to unsafe sources frequently 

also carry water from the source and store it in the home. While a number of point-of-use (POU) 

household water treatment technologies have demonstrated effectiveness against microbial pathogens, 

storage remains a critical link in the provision of safe water access at the household level [1,2].  

Renewed multiplication of bacteria that either survive the treatment process or are introduced into water 

can result in recontamination that may pose health risks [3]. The formation of biofilms on the interior of 

storage containers may provide an environment for potentially pathogenic bacteria to grow and 

recontaminate treated water as they are released from the biofilm [4].  

Members of the genus Mycobacterium other than M. tuberculosis, collectively known as  

non-tuberculous Mycobacteria (NTM), are recognized causes of illness in immunocompromised people, 

including people living with HIV/AIDS [5,6]. These bacteria are acid-fast, with cell walls containing 

mycolic acids, which non-acid fast bacteria lack. This includes the Mycobacterium avium complex 

(MAC). Treated water has been implicated as a possible source of MAC illness in individuals with 

HIV/AIDS and others [5]; M. avium is on the US Environmental Protection Agency’s Contaminant 

Candidate List of microbial water contaminants under consideration for regulation because of their 

health effects [7].  

In developing countries, high HIV prevalence often coexists with lack of access to safe water [8,9]. In 

these countries, the potential risk of MAC from water is largely unexplored. In countries with near-universal 

infrastructure coverage, the NTM are found in treated water and distribution systems [10,11], but there 

is little research on whether NTM survive POU water treatment processes, potentially surviving to 

contaminate stored water. If NTM are present in untreated water and survive the treatment process, they 

may grow in biofilms in stored water. These biofilms could represent a possible pathway of exposure 

for household members.  

Mycobacteria may be removed by multi-barrier water treatment systems that combine conventional 

water treatment processes such as coagulation, settling and disinfection, including those applied at POU. 

POU treatments are often evaluated for efficacy in the laboratory using representative gram-negative, 

non-acid-fast enteric bacteria such as E. coli and Raoultella terrigena, but it is possible that NTM survive 

treatment processes that are effective against such test bacteria. One such multi-barrier treatment is 

composed of a ferric coagulant, an alkaline agent, flocculation aids, and a chlorine-based disinfectant. To our 

knowledge, POU treatments such as combined coagulation-flocculation-disinfection have not been evaluated 

for efficacy against NTM.  Therefore, the purpose of this work is to determine whether (1) a representative 
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non-tuberculous Mycobacterium (M. terrae) and (2) a representative gram-negative non-acid-fast 

environmental bacterium (A. hydrophila) can be reduced by a combined coagulation-flocculation 

disinfection POU treatment. A. hydrophila was the gram-negative potentially enteric bacterium selected 

for this study because it can proliferate in water and possibly regrow in stored water. 

2. Experimental Section 

Pure cultures of A. hydrophila (ATCC # 7966) were grown in typtic soy broth at 37 °C on a shaker 

flask for 24 hours. Cultures were centrifuged twice at 16,000 rpm for 10 minutes, and the pellet was 

washed and resuspended in sterile 0.9% NaCl for inoculation into test waters. Mycobacterium 

experiments used pure cultures of M. terrae (kindly provided by University of North Carolina Hospitals). 

Cultures were prepared by inoculating 100 mL of Middlebrook 7H9 broth with 100 μL of M. terrae 

culture maintained in frozen stocks. Cultures were incubated at 37 °C on a shaker flask for 5 days until 

the OD520 of the culture reached 0.3–0.4. The culture was centrifuged twice (3000 × g, 10 °C, 30 minutes), 

and the pellet washed and resuspended in 20 mL sterile 0.9% NaCl.  

Oxidant demand free (ODF) buffer (pH 7) was prepared as previously described [12]. Natural surface 

water was obtained from Botany Pond, a natural lake in Chapel Hill, NC (USA), and used within  

24 hours of collection. For a “worst case” test water, fecally contaminated surface waters were created 

by spiking Botany Pond water with 10% or 20% (v/v) primary wastewater effluent obtained from Orange 

Water and Sewer Authority wastewater treatment facility, Chapel Hill, NC. Experiments with  

A. hydrophila were conducted in ODF buffer, natural surface water, and fecally contaminated surface 

water. Experiments with M. terrae were conducted in natural surface water.  

The coagulant-flocculant-disinfectant came as a pre-packaged product intended to treat 10 L of water. 

All experiments were carried out at 25 °C. A 10 L volume of test water was spiked with 10 mL of test 

bacteria culture, and the water was stirred for 30 s to distribute the organisms. A 15 mL sample was 

taken to determine the initial concentration of microorganisms (time 0). The coagulant-flocculant 

disinfectant was added according to the manufacturer’s instructions. Coagulant-flocculant-disinfectant 

was added, the water was stirred vigorously for 30 s, and slow stirring was continued for 5 min.  

The water was then allowed to sit for an additional 25 minutes to allow flocculation, settling, and 

disinfectant contact time. Hypochlorite was prepared fresh each time as stock solution in ODF buffer, 

added to water at a final concentration of 5 mg/L, and allowed 30 minutes contact time.  

Samples for microbiological analysis were taken from the middle of the water column at 30 s, 5, 10, 

20, and 30 min, and immediately neutralized with 0.1% sodium thiosulfate. Samples for residual chlorine 

analysis were taken at the same time and residual chlorine was measured immediately using N, 

N-diethyl-p-phenylenediamine titration [13]. Turbidity was measured using a Hach turbidimeter  

(Hach Co, Loveland, CO, USA).  

A. hydrophila was enumerated according to EPA Method 1605 [14]. M. terrae samples were 

centrifuged (3000 × g, 10 °C, 30 min), and the pellets resuspended in 2 mL 0.9% NaCl. To reduce 

overgrowth of slow growing Mycobacteria by rapidly growing contaminating organisms, samples were 

decontaminated using the N-acetyl-L-cysteine method [15]. Samples were diluted and spread plated on 

Middlebrook 7H11 agar containing 10 mg/L Amphotericin B (to suppress growth of fungi). Plates were 
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incubated for 14 days at 35 °C in a 10% CO2 atmosphere. Counts were expressed as CFU/mL. Data 

analysis was done using GraphPad Prism 5 (GraphPad, LaJolla, CA, USA). 

3. Results and Discussion 

The coagulant-flocculant-disinfectant was tested for performance against Aeromonas hydrophila in 

both ODF buffer (pH 7.3) and natural surface water (mean turbidity 2.6 NTU, mean pH 7.6). There was 

a mean 7.7 log10 reduction in ODF after 20 minutes of contact time (Figure 1). In natural surface water, 

the average log10 reduction was extensive at 6.8 log10 but significantly lower than in ODF water  

(p = 0.02 by student’s t test) (Figure 2). The lower log10 reduction in natural water is possibly due to the 

higher chlorine demand of this water as free chlorine concentration was under the detection limit  

(0.1 mg/L) in natural water after 20 minutes but was an average of 0.67 mg/L after 20 minutes in ODF. 

Nevertheless, bacterial reduction in natural surface water still exceeded EPA guidelines of 6 log10 [16].  
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Figure 1. Reduction of A. hydrophila in ODF buffer (n = 4 experiments) (white circles = 

bacterial reduction; black diamonds = free chlorine residual; bars = 95% confidence interval). 

Coagulant-flocculant-disinfectant achieved a 4 log10 reduction of A. hydrophila in test  

waters that simulated fecally contaminated surface waters as “worst case” water (average turbidity  

8.0 NTU, average pH 7.4) (Figure 3), thereby meeting the 4 log10 highly protective bacteria  

reduction performance target of the World Health Organization [17]. There was no significant  

difference in log10 reduction between waters with 10% (v/v) and 20% primary effluent (p = 0.14). There 

was no detectable residual chlorine remaining after 20 minutes contact time in fecally contaminated 

worst case test water. For both natural and fecally contaminated worst case test waters, turbidity after 

treatment was <1 NTU.  
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Figure 2. Reduction of A. hydrophila in natural surface water (B, n = 2 experiments)  

(white circles = bacterial reduction; black diamonds = free chlorine residual; bars = 95% 

confidence interval). 

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

Time (min)

L
o

g
1

0 
(N

t/N
0
)

 

Figure 3. Reduction of A. hydrophila in fecally contaminated natural water (white circles = 10% 

primary effluent; black diamonds = 20% primary effluent; bars = 95% confidence interval). 

In contrast to the log10 reductions observed for A. hydrophila, there was almost no reduction in levels 

of viable M. terrae by coagulant-flocculant-disinfectant in natural water after a contact time of  

30 minutes (Table 1). Because this treatment is a combination of coagulation-flocculation and 

disinfection, hypochlorite alone at a target concentration of 5 mg/L was also tested separately to confirm 

that the Mycobacteria were resistant to hypochlorite disinfection. The lack of Mycobacteria reduction 
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was similar for both combined coagulant-flocculant-disinfectant and hypochlorite alone after 30 minutes 

contact time in natural water (p = 0.96). 

Table 1. Reduction of M. terrae in natural water by coagulant-flocculant-disinfectant and 

free chlorine. 

 log10 Reduction (95% CI) Free Chlorine Residual (mg/L) 
  30 s 30 min 30 s 30 min 

Coagulant-flocculant-disinfectant 0.02 0.23 (0.31–0.77) 5.87 4.46 
Hypochlorite −0.65 0.21 (−3.1–3.5) 0.96 0.57 

A POU coagulant-flocculant-disinfectant treatment that effectively reduced A. hydrophila from 

natural surface waters by 4–7 log10 was not effective in reducing Mycobacteria. In both ODF buffer and 

natural surface water, coagulant-flocculant-disinfectant achieved ~7 log10 reduction of A. hydrophila, 

exceeding the POU water treatment bacterial reduction levels of both EPA guidelines (>6 log10) and 

WHO targets (4 log10 reduction) [16]. In natural waters contaminated with human fecal waste, reductions 

were lower but still reached 4 log10 to meet the WHO performance target. These results reinforce 

previous findings that point of use coagulation-flocculation-disinfection is an effective treatment method 

against gram-negative enteric bacteria, including A. hydrophila [18].  

Although USEPA microbial reduction performance guidelines for point-of-use water treatment 

technologies are applied to products sold in the U.S. market, there are more recent World Health 

Organization microbial reduction performance targets now available for developing countries as well. 

The WHO performance targets focus on the specification of three levels of microbial reduction 

performance to evaluate point-of-use technologies in ways that are appropriate to a wide variety of 

situations. The three WHO categories of microbial reduction performance are “highly protective” 

“protective” and “minimally protective” at 4, 3 and 2 log10 bacteria reductions, respectively [17].  

In natural surface water the coagulant-flocculant-disinfectant met the 4 log10 reduction target for the 

“highly protective” category of point-of-use drinking water treatment technology. It also met this “highly 

protective” reduction target  in highly fecally contaminated surface water, and was effective in reducing 

turbidity in water to less than 1 NTU in such test water.  

There are no specific guidelines for levels of Mycobacteria in drinking water treated at the point of 

use or by centralized facilities or for their reductions by treatment processes or systems. In this study the 

combined coagulant-flocculant-disinfectant treatment was not effective for reduction of M. terrae,  

a representative NTM, in natural surface water, a “worst case” fecally contaminated water or a high 

quality buffered water. The POU treatment performance comparison of A. hydrophila and M. terrae in 

this study also suggests that gram-negative indicator bacteria may be poor indicators of POU treatment 

performance against Mycobacteria. The low reduction of M. terrae over 30 minutes contact time by 

hypochlorite in this study is consistent with previous findings that Mycobacterium are highly resistant 

to chlorine disinfection [19]. Ct values for 99.9% reduction ranging from 50–200 have been reported for  

M. avium grown in standard media; Ct values are even higher for strains grown in low-nutrient  

conditions [20]. However, the low reduction of M. terrae by combined coagulant-flocculant-disinfectant 

in this study suggests that the coagulation-flocculation process also achieves low removal of NTM.  

Although there is evidence that conventional combined treatment processes are effective against 

Mycobacteria [10,11,21], there is little evidence on the effectiveness of coagulation processes alone in 
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removing NTM from water. One study of coagulation alone found that at doses optimized for three 

different test waters, alum coagulation-flocculation achieved on average 0.7, 0.6, and 2.2 log10 removal, 

depending on test water, lower than removal of E. coli tested in parallel [22]. These NTM reductions 

were greater than those observed in this present study. However, the coagulant doses in the Wong study 

were optimized for the test waters using concentrations from 10–30 mg/L, whereas this study used  

a single, standard dose of coagulant for 10 L of water regardless of water quality. The hydrophobicity 

of the Mycobacterial cell surface suggests that Mycobacteria in water will attach to surfaces such as 

other particles, and thus processes that are effective for removing particles would be expected to also 

remove these microorganisms [23]. However, if the cells are not associated with particles, but instead 

exist as hydrophobic aggregates of bacteria in water, the charge destabilizing effects of a conventional 

coagulant may not work to cause these aggregates to coagulate and flocculate, leaving them in the water 

column after the coagulation, flocculation and settling processes. These bacteria aggregates may also 

contribute to disinfection resistance as has been previously observed for other bacteria [24]. It is possible 

that optimized coagulant doses might achieve higher reductions of NTM in water. However the extent 

to which the reductions would be sufficient to meet either EPA standards or WHO recommendations for 

the three different categories of protection, “highly protective”, “protective”, and “minimally 

protective”, levels of POU treatment performance, are now unknown and would require further study.  

NTM have been isolated from environmental waters in countries where people may use  

untreated surface water for drinking water supply [25]. Waterborne Mycobacteria typically compete 

poorly for nutrients in the presence of other organisms [23]. However, disinfection can disinfect 

competing organisms, selecting for genera that are more resistant to disinfection [10] and allowing 

Mycobacteria to grow preferentially in treated drinking water [23]. POU treatment with combined  

coagulation-flocculation-disinfection is highly effective against non-acid fast bacteria, including  

gram-negative environmental bacteria that are representative of many waterborne pathogens [18]. Ingestion 

is a potential route of exposure to NTM infection, particularly for people living with HIV [5,6], who are also 

at highest risk for diarrheal disease and often targeted for POU water treatment interventions [8,9]. However, 

the results of this study suggest that combined coagulation-flocculation-disinfection POU treatment may 

select for Mycobacterium in treated water, and that POU treatment has the potential to leave viable 

Mycobacteria in treated, stored household drinking water. These bacteria may form biofilms, creating  

a continuing source of these bacteria in stored water.  

4. Conclusions 

A POU coagulant-flocculant-disinfectant treatment that effectively reduced A. hydrophila from 

natural surface waters by 4–7 log10 was not effective in reducing Mycobacteria. In both ODF buffer and 

natural surface water, coagulant-flocculant-disinfectant achieved ~7 log10 reduction of A. hydrophila, 

exceeding the POU water treatment bacterial reduction levels of both EPA guidelines (>6 log10) and 

WHO targets (4 log10 reduction)In natural waters contaminated with human fecal waste, reductions were 

lower but still reached 4 log10 to meet the WHO performance target. Therefore, POU treatment and safe 

storage interventions may need to take into account risks from viable NTM in treated stored water and 

consider alternative treatment processes, such as filtration for physical removal a more effective 

technology to achieve NTM reductions from water. 
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