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Abstract 
Worldwide diarrheal disease is a leading cause of morbidity and mortality in children less than five years of age. 

Incidence and disease severity remain the highest in sub-Saharan Africa.  Kenya has an estimated 400,000 

severe diarrhea episodes and 9,500 diarrhea-related deaths per year in children.  Current statistical methods for 

estimating etiological and exposure risk factors for moderate-to-severe diarrhea (MSD) in children are 

constrained by the inability to assess a large number of parameters without the limitations of sample size, 

complex relationships, correlated predictors, and model assumptions of linearity. This dissertation examines 

machine learning statistical methods to address weaknesses associated with using traditional logistic regression 

models. The studies presented here investigate data from a 4-year, prospective, matched case-control study of 

MSD among children less than five years of age in rural Kenya from the Global Enteric Multicenter Study (GEMS).  

The three approaches include:  Least Absolute Shrinkage and Selection Operator (LASSO), use of classification 

trees, and random forest.   

A principal finding in all three studies was that machine learning methodological approaches are useful and 

feasible to implement in epidemiological studies.  All provided additional information and understanding of the 

data beyond using only logistic regression models.  The results from all three machine learning approaches were 

supported by comparable logistic regression results indicating their usefulness as epidemiological tools.  This 

dissertation offers an exploration of methodological alternatives that should be used more frequently in 

diarrheal disease epidemiology, and in public health in general.  
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Chapter 1. Introduction 

Background and Statement of Problem 

Worldwide diarrheal disease is the second leading cause of mortality in children under-five years old and 

is responsible for nearly a million deaths each year (Levine 2013, WHO 2013, Liu 2012)). While there have been 

modest decreases in the incidence of diarrhea over the last several decades, it remains one the most frequent 

causes of hospital admissions in children worldwide, with the least amount of improvement seen in sub-Saharan 

Africa(UNICEF 2-13, Walker 2013). Kenya remains among the 15 countries with the highest burden for diarrhea 

associated mortality in children (Das 2014).  Kenya has an estimated 400,000 severe diarrhea episodes and 

9,500 diarrhea-related deaths per year in children (Walker 2013).   

Efforts aimed at reducing diarrhea related morbidity and mortality are targeted through appropriate 

clinical case management (e.g.- prompt rehydration, administration of zinc, and use of antimicrobials where 

indicated), promotion of early recognition of severe illness in the community and availability, knowledge and use 

of oral rehydration solution at home, promotion of increased fluids and continued feeding during diarrheal 

episodes, implementation of water, sanitation and hygiene (WASH) interventions and vaccines.  For these 

efforts to have the greatest impact, information on the relative contribution of diarrheal etiologies is essential to 

guide empiric clinical treatment, implementation of effective WASH interventions, and highlight potential 

vaccine development needs. In addition, assessment of environmental exposures is needed to prioritize 

community based interventions to reduce transmission. 

The Global Enteric Multicenter Study (GEMS), a case-control study of moderate-to-severe diarrhea 

(MSD) in seven countries in South Asia and sub-Saharan Africa, was undertaken to assess the etiologic burden of 

MSD in its study sites (Levine 2012). Since vaccines have been identified to have the greatest impact in reducing 

the burden of pediatric diarrheal disease, it is important to identify the enteric pathogens present in children 

with MSD (Levine 2012). Identifying etiologies and their relative contribution to the burden of pediatric diarrheal 

disease using current data sources is paramount to targeting vaccine interventions.  
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For many pathogens, vaccine development will be a lengthy process that will work better for some than 

others.  Currently, the only enteric vaccine becoming widely-available is for rotavirus.  Efforts to reduce diarrhea 

related mortality include appropriate clinical case management at health facilities in the form of appropriate use 

of rehydration and antimicrobials Creating clinical profiles to distinguish between viral and bacterial causes will 

aid in the judicious use of antibiotics and focus attention on rehydration needs for viral infections. It is estimated 

that nearly 50% of antibiotic use in health facilities for the treatment of diarrhea is unnecessary from a survey 

conducted in Kenya and Ghana (Spreng 2014). Misuse may be high due to the absence of diagnostic panels for 

enteric pathogens are not readily available to distinguish infections. 

Many intervention programs aimed at reducing transmission of diarrheal diseases in developing 

countries include structural and behavioral changes to improve water supply and quality, sanitation, and 

hygiene. Figure 1.1 presents a model of diarrheal disease transmission and the complex nature of water, 

sanitation and hygiene exposures. As highlighted in the figure, it is a complex and difficult process to assess and 

prioritize targeted interventions. Identifying the relative importance of each transmission pathway is challenging 

due to the complex inter-relationships. 
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Figure 1.1. Transmission by exposures 

 
Prüss, Kay, Fewtrell, and Bartram. Estimating the Burden of Disease from Water, Sanitation, and Hygiene at a 
Global Level. Environmental Health Perspectives . 2002 : 110 , 5 

 

Description of the Global Enterics Multicenter Study (GEMS)  

GEMS study design and background 

The purpose of GEMS was to estimate the burden, etiology, risk factors, and complications of MSD in 

children less than 5 years old. GEMS was funded by the Bill and Melinda Gates Foundation and was coordinated 

by the University of Maryland, Center for Vaccine Development.  The seven study sites of GEMS were Basse , 

The Gambia;  Siaya County (formerly Nyanza Province), Kenya; Bamako, Mali; Manhiça, Mozambique; Mirzapur, 

Bangladesh; Kolkata, India; and Karachi, Pakistan.  In each site, GEMS targeted three age strata: infants (0–11 

months), toddlers (12–23 months), and children (24–59 months). The Demographic Surveillance System  was 

used to enroll both cases and controls.  (Kotloff 2012). For case enrollment, sites selected sentinel health 

facilities (SHFs) where DSS children sought care for diarrheal illnesses. 
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A matched case-control study was conducted in all seven country sites during 2007-2011.  A case of MSD was 

defined as a child with a diarrheal illness <7 days duration comprising ≥3 loose stools in 24 hrs and ≥1 of the 

following: sunken eyes, skin tenting, dysentery, required IV rehydration, or hospitalization. Controls were 

selected using the DSS database to identify community matched controls.  Controls were enrolled within 14 days 

of the case, and were required to be without diarrhea in the 7 days prior to enrollment and able to provide a 

stool specimen (Kotloff 2012). One to three controls were selected per case, depending on age stratum, and 

matched on age, gender, same or nearby village.  

Study area and population 

In Kenya, between January 31, 2008 and January 29, 2011, 3,359 children (1,476 cases and 1,883 controls) were 

enrolled into GEMS-1.  Subsequent to this timeframe, the study was funded for an additional 11 months in 

Kenya.  Between October 31, 2011 and September 30, 2012, 868 children (302 cases and 566 controls) were 

enrolled; this time period is known as GEMS-1a.  The GEMS-1 Kenya study site was located in rural western 

Kenya in the districts of Gem and Asembo in Siaya County (formerly Nyanza Province).  During GEMS-1a the 

study site was located in the districts of Asembo and Karemo in Siaya County as the Kenya Medical Research 

Institute (KEMRI)/CDC Kenya DSS moved to a new area during this time period (Figure 1.2).  All papers in this 

dissertation utilize data from both GEMS-1 and GEMS1a. 

Figure 1.2. KEMRI/CDC HDSS study area (Asembo, Gem and Karemo) where GEMS Kenya Study was conducted 



Assessing moderate-to-severe diarrhea in children 
 

11 
 

 

  

Data collection 

At enrollment, clinical assessments, anthropometric measurements, and stool specimens were collected from 

both MSD cases and their matched controls. This enabled laboratory testing for a full spectrum of 23 bacterial, 

viral and parasitic enteric pathogens, and subsequent characterization. Data were collected via survey 

questionnaires and scanned into a database which was reviewed for quality control by the centralized Data 

Coordinating Center (DCC) (Biswas 2012). Data was provided in SAS and Stata formats to sites. 

Statement of purpose 

Current statistical methods for estimating etiological and exposure risk factors for moderate-to-severe 

diarrhea (MSD) in children are constrained by the inability to assess a large number of parameters without the 

limitations of sample size, complex relationships, correlated predictors, model linearity assumptions and 
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instability, and as well as biased estimates. This dissertation examines machine learning statistical methods to 

assess etiologies, clinical profiles, and exposures associated with MSD in children less than five years of age in 

rural western Kenya.   All three studies presented investigate data from a 4-year, prospective, matched case-

control study of MSD among children less than five years of age in rural Kenya from the Global Enteric 

Multicenter Study (GEMS). This dissertation examines using new machine learning statistical methods to address 

weaknesses associated with using traditional logistic regression for the purposes of assessing etiologies and 

exposures associated with MSD in children less than five years of age in rural western Kenya. 

The first paper addresses the impact of model selection strategies on the description and variability of 

diarrheal etiologies associated with MSD.  Newer statistical methods have been developed to handle exploring a 

large number of variables relative to sample size, known as ‘shrinkage and selection methods’. Despite these 

statistical advantages over traditional model selection methods, they are not widely used in epidemiological 

studies.  This first paper compares feature selection across five different logistic regression model selection 

approaches including two traditional stepwise procedures and three variants of Least Absolute Shrinkage and 

Selection Operator (LASSO) approaches. 

While an extensive panel of laboratory diagnostics were supported during the active study period, they 

are not sustainable nor are they available for point-of-care treatment in all areas of Africa. The ability to 

differentiate enteric viruses from bacterial causes at the clinical setting, in the absence of laboratory diagnostics, 

is imperative for judicious use of antibiotics and in reducing antimicrobial resistance as a result of over 

prescribing.  The second paper will apply classification tree methodologies for developing a clinically based 

decision tree for classifying rotavirus infections and highlighting high risk sub-populations. 

The third paper will address the contributions of WASH exposures to MSD.  WASH exposures are often 

correlated and nested within transmission routes, random forest methods provide a novel approach for  

summarizing groups of exposures in a potentially more efficient and appropriate manner.  Risk factor analyses of 

diarrheal diseases are complicated because of numerous potential exposures that are often correlated. This 
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study investigates the use of machine learning approaches, specifically random forest (RF), to identify WASH 

factors associated with diarrheal disease in children less than 5 years old. The newer approach of RF is compared 

to the traditional analytic approach of using logistic regression models for evaluating WASH risk factors for MSD. 

Estimates from the GEMS study are some of the only available burden of illness estimates for enteric 

pathogens and WASH in developing countries, it is important to assess and explore multiple approaches to such 

computations.  All three studies will investigate the use of machine learning approaches to describe and 

characterize etiologies, clinical profiles, and WASH factors associated with MSD. This dissertation will offer an 

exploration of methodological alternatives to address common pitfalls of logistic regression analyses that exist 

not only in diarrheal disease studies, but in epidemiology in general. 
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Chapter 2. Comparing novel shrinkage model selection methods for 

assessing etiologies associated with moderate-to-severe diarrhea in 

children <5 years old, rural western Kenya 2008-2012 
 

Ayers TL1, 6, Luo R6,  Omore R2,3,  Ochieng B2,3, Farag TH4, Nasrin D4, Panchalingam S4, Nataro JP4, Kotloff KL4, 

Levine MM4, Oundo J5, Parsons MB 1, Bopp C1, Laserson K2, Stauber CE6,  Breiman RF7, Mintz E1 , O’Reilly CE1 and 

Hoekstra RM1 

Abstract 
Background: Multivariable model variable selection is one of the most difficult tasks for epidemiological 

analyses. The goal of achieving unbiased estimates and uncovering new relationships, such as interactions, is 

severely limited by sample size and computational capacity. Despite the emergence of newer statistical 

methods, such as penalized regression, they have not been applied in epidemiological studies outside of 

genomics.  It is important to describe how alternative model selection methods influence model composition 

using real world epidemiologic data.   

Methods: Using data from a large matched case-control study of moderate-to-severe diarrhea (MSD) model 

selection methods were compared. Specimens from both cases and controls were tested for 23 major enteric 

pathogens. Backward Elimination (BE) stepwise selection was applied to select pathogens associated with MSD 

case status. Alternative subset selection using penalized regression in the form of Least Absolute Shrinkage 

Selector Operator (LASSO) was investigated.  Analysis was stratified by three age groups: infants (0-11 months), 

toddlers (12-23 months), and older children (24-59 months). Selection of pathogen variables and two-way 

interactions across methods was examined. 

Results: Pathogens with stable and large effects were selected consistently across models. Pathogen and 

interaction selection varied the greatest in the infant subgroup analysis and demonstrated uncertainty in 

pathogen estimation. By comparison, the toddler and older children analyses demonstrated greater consistency 

across models. Pathogens selected by BE were also selected by LASSO methods. LASSO methods permitted 

tuning model complexity and always selected models that still converged when applied in standard multivariable 

logistic regression models.  

Conclusions:  This study demonstrated the feasibility of implementing newer LASSO model selection methods in 

epidemiological studies.  LASSO methods permitted the inclusion of more pathogens and did not compromise 

the detection of the pathogens with clear associations with MSD. In some subgroups, model selection varied 
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more greatly than others. It is beneficial to apply different model selection strategies and consider the 

agreement and disagreement in making epidemiological conclusions. 

Introduction 
An important component of epidemiological analyses is determining which variables should be included 

in multivariable models. The goal of the multivariable model is to produce unbiased estimates while controlling 

for confounders.  Including all possible variables in the model for full control of confounding often leads to 

model convergence issues (Greenland 2008). It is computationally prohibitive to perform best subset model 

selection strategies when there is a large number of independent variables. As a result, automatic stepwise 

model selection methods remain the most widely used methods for variable selection in epidemiology (Guo 

2015). Variable selection in epidemiological modeling is a common and well known problem (Rothman, 2009). 

Limitations and concerns with using stepwise procedures have been well documented (Derkesen 1992, 

Whittingham 2006, Weigand 2010, Mundry  2009). Despite these well-known limitations, automatic stepwise 

regression remain the dominant multivariable modelling approach in epidemiological research (Walter 2009). 

Automatic stepwise selection procedures reduce the quantity of model subsets considered by either 

adding or removing variables one at a time (forward or backward selection). The computational simplicity and 

ease of implementation have led to automatic stepwise selection popularity (Morzova 2015).  While these 

selection strategies are more manageable, they are limited in identifying the best possible model since selection 

is always based on at least one fixed parameter in the model (James, Witten, Hastie, Tibshirani 2014). Other 

drawbacks for automatic selection procedures include the reliance on sufficient sample size, bias towards 

variables with greater frequency, coefficients may be biased upwards, and underestimation of standard errors 

(Morozova 2010, Rothman 2008, Derksen 1992).   

Backwards elimination (BE) is one of the most commonly used automatic selection procedures that 

preferably starts with a fully saturated model that contains all variables and all interactions to be considered.  

However, this often leads to convergence issues and the model cannot be assessed.  As result, two additional 

modifications are taken. One is to ‘screen’ variables based p-values from single variable models and only those 
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variables with a p-value below a predetermined threshold are considered for the backwards elimination model 

selection.  While this approach reduces the number of main effects considered, the sample size may still restrict 

the ability to include interactions. Thus, an additional modification to the approach is to only consider main 

effects for backwards elimination selection and then consider interactions only among the remaining main 

effects chosen (Rothman 2009, Walter 2009) 

Alternative model selection strategies, such as shrinkage or penalized regression, have emerged to as a 

method to handle high dimensional data in the late 1990’s.  Using a penalty, coefficients of unstable model 

parameters are ‘shrunk’ to zero (or close to zero).  By imposing a constraint on the total value of coefficients, 

parameters with the largest variability are shrunk to zero and thus can be used for model selection (Steyerberg 

2001, Hastie and Tibsihirani 2009, Walter 2009).  The Least Absolute Shrinkage and Selection Operator (LASSO) 

technique is one of the key ‘shrinkage with selection’ methods developed and was first proposed by Tibshirani 

(Tibshirani 1996). LASSO penalization will constrain some parameters to exactly zero, thus a useful method for 

performing model reduction and selection without the need of multiple statistical tests to assess p-values. The 

ability for LASSO methods to search across a large number of variables without the constraint of sample size has 

sparked its wide use in high dimensional data scenarios, such as genomic data (Wei 2011, Won 2015).   

We used data from a case-control study designed to identify the burden of MSD illnesses to specific 

enteric pathogens. Using a comprehensive panel of microbiological assays, stool specimens from both cases and 

controls were tested for 23 major pathogens.  All pathogen variables are expected to have some association 

with the outcome of MSD.  Shrinkage or penalized model methods have existed for nearly two decades, but 

have not been implemented or explored in epidemiological studies (Walter 2009). This study aims to compare 

backwards elimination (BE) and LASSO penalized logistic regression model selection methods using real world 

epidemiological data. While a definitive best method cannot be identified, this study will highlight the influence 

of model selection methods on conclusions and any potential uncertainty in estimates.  
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Materials and Methods 

Dataset  

Global Enteric Multi-centre Study (GEMS) case-control data from the Kenya site during 2008-2012 was 

used for this analysis. This data was collected as part of a 4-year, prospective, age-stratified, matched case-

control study designed to investigateMSD in children aged 0-59 months.  Case children were recruited from 

sentinel health facilities and matching controls were selected using the Demographic Surveillance System (DSS). 

Community controls were matched on age, sex, and geographic proximity. At enrollment, fecal samples were 

collected from both cases and controls to identify enteric pathogens. The panel and methods used to identify 

enteric pathogens, which includes 9 bacterial, 7 viral, and 3 parasitic etiologies are described in detail 

(Pachalingham 2012, Kotloff 2012). Pathogen results were recorded for each pathogen tested as simply present 

or absent and are considered independent variables. Both cases and controls could have more than one 

pathogen present. 

Statistical analysis  

Statistical analyses were performed using both SAS 9.3 (Cary, NC) and R Statistical Software (Foundation 

for Statistical Computing, Vienna, Austria).  In keeping with the GEMS study design, analysis was stratified by age 

groups in which infants (0-11 month), toddlers (12-23 month) and older children (24-59 months) were modeled 

for the outcome of MSD separately.  Giardia lamblia was excluded from all models because its role as a causal 

pathogen of illness is undetermined, particularly in non-industrialized settings (Muhsen 2012, Bilenko 2004, 

Cotton 2015). Among the 22 pathogen variables considered, only pathogens that were present in at least 10 

observations were considered for multivariable modeling.  Conditional logistic regression models were 

performed to preserve the matched case-control sets.  However, because conditional penalized models are 

limited in their capacity to detect interactions and preserve model hierarchy, unconditional logistic regression 

models were computed for comparison.  Model selection was performed on four model types to account for the 
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penalized vs non-penalized approach and the conditional vs unconditional model structure for each age strata.  

Two-way pathogen interactions were assessed in all models. 

Backwards elimination model selection 

For the traditional stepwise approach, we utilized backward elimination (BE) strategies. All pathogen 

variables were first screened using univariable models. Pathogens with p <.20 in simple logistic regression were 

considered in the multivariable model.  All pathogens considered in the multivariable model were then included 

in the model at the start and removed one at a time based on the largest p-value, until all pathogens remained 

significant at p<.05.  Subsequently, among the pathogens that remained in the multivariable model, all possible 

two-interactions were considered and removed one at a time until all parameters in model remained significant 

at p<.05.  This backward elimination approach was performed using both conditional and unconditional logistic 

regression models. 

Penalized and shrinkage model selection  

Penalized logistic regression models were computed using the clogitL1 R package for conditional models 

and hierNet R package for unconditional models.  We used the method for computing a penalized logistic 

regression for matched case-controls studies developed by Reid and Tibshirani (2014). For the conditional LASSO 

approach, we first only considered the main effects of pathogens and selected the Lambda (penalty parameter) 

based on 10-fold cross-validation with the lowest error.  For all conditional LASSO models, we selected the 

largest within one standard error from the minimum error to produce the most parsimonious model (referred to 

as λ max 1SE). A larger value of lambda leads to a sparser model with less predictors. One limitation of the 

conditional LASSO, is its inability to maintain model hierarchy when evaluating interactions. That is, the 

algorithm may select an interaction term in the model but omit the main effects involved in the interaction. For 

this reason we used the conditional LASSO to select pathogen main effects, but interactions were assessed using 

traditional model approaches. To illustrate the process of variable coefficients and selection in relation to 

Lambda values we provide trace plots for the main effects considered in the conditional LASSO model.  
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 In addition, we performed model selection using a hierarchical group LASSO algorithm (HG LASSO) 

designed to address the ability of searching for two-way interactions while maintaining model hierarchy (Bien 

and Tibshirani 2013). This method permits searching for all two-way interactions while simultaneously 

considering all main effects to produce a final model that preserves variable hierarchy. Similar to the conditional 

LASSO approach, we selected the largest Lambda value within one standard error from the minimum error 

(referred to as λ max 1SE). Since this was the only model selection approach in which it was computationally 

feasible to fully evaluate interactions, we also ran models with the smallest Lambda value whose error was 

equal to the minimum cross-validation error.  A smaller lambda leads to a more complex model with more 

predictors, where interactions are more likely to be included. Since the hierarchical group LASSO considers all 

main effects and two-way interactions simultaneously, a very large number of parameters were considered, and 

we did not provide variable coefficient and selection plots by Lambda for these models.  We explored all LASSO 

methods in this paper as feature selection methods, but report Odds Ratios (ORs) and 95% Confidence Intervals 

(CIs) based on standard logistic regression coefficients for ease of interpretation and comparison.  

Results 

 Among the pathogens considered, four pathogens were excluded for insufficient frequency 

(Enterohaemorrhagic E. coli (EHEC), Aeromonas, Vibrio spp., and Salmonella typhi). Overall frequencies of cases 

and controls are presented in Supplemental table 1 (S1). For conditional LASSO models, the relationship 

between pathogen variable selection and the tuning parameter Lambda is illustrated in Figure 2.1. Each line 

corresponds to a pathogen variable coefficient, demonstrating that as Lambda increases (from left to right) 

some of the coefficients are shrunk to zero.  In the infant model plot, rotavirus is the last parameter to have 

coefficient shrunk to zero thus demonstrating the stability of the rotavirus relationship with MSD.  Lines below 

zero on the y-axis demonstrate a protective association with MSD.  When a pathogen remains in the models, its 

coefficients remain stable and only change when shrunk to zero demonstrating that all the pathogens have 

relatively stable coefficients. 
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 In the infant models, 7 of the 18 pathogens were selected in all five models (Figure 2.2 and 

Supplemental Table 2.1).  Among the two conditional models, the LASSO model selected one additional main 

effect and one additional interaction term. Both the conditional BE and LASSO models selected the same 

pathogens, only the LASSO model also included Campylobacter jejuni. The primary difference between the two 

model selection strategies was the selection of interaction terms. Conditional BE models detected a statistically 

significant interaction between enteropathogenic E. coli (EPEC) and Shigella at exactly p=.05.   Among the three 

unconditional models, as expected, BE selected the fewest parameters (5 main effects and 2 interactions) while 

the hierarchical group LASSO with the smallest Lambda value selected the largest number of parameters (13 

main effects and 2 interactions). Among the 18 pathogens selected to be included in any of the unconditional 

logistic regression models, as either main effects or as part of pathogen interactions, 5 pathogens were 

consistently chosen.  Unconditional BE model selection identified a statistically significant interaction (p =.04) 

between rotavirus and norovirus-GII. However, the hierarchical group LASSO model with the larger Lambda 

value included three additional viral pathogens as main effects and did not detect any interactions (Figure 2.2 

and Supplemental Table 2.2). 

 In either toddler or older children analysis, no interactions were selected across any of five model 

selection methods.  For the toddler specific analysis, conditional LASSO and BE models both selected 7 

pathogens, but differed on the inclusion of the protective effect of atypical EPEC and omission of Entamoeba 

histolytica in the LASSO model.  In unconditional models, BE and LASSO models selected the same 6 pathogens 

across all models. Only the LASSO model with the minimized Lambda value selected additional 7 pathogens 

(Figure 2.33 and Supplemental Table 2.3).  For the older children specific analysis, 4 pathogen main effects 

which included enterotoxigenic E. coli any ST, Shigella, rotavirus, and Cryptosporidium, were selected across all 

model selection methods.  The conditional LASSO model selected 3 additional pathogens, all with protective 

effects, compared to the conditional BE model.  Using unconditional analysis, hierarchical group LASSO selected 

two additional pathogens than BE methods.  Adenovirus 40/41 and Entamoeba histolytica demonstrated large, 
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but insignificant, effects and were included in both hierarchical group LASSO approaches.  Thus, the change in 

shrinkage parameter had no effect on parameter selection in the unconditional older children specific analysis 

(Figure 2.4 and Supplemental Table 2.4). 

Discussion 

This study demonstrates the variability and impact of methods used for model selection. While there 

was consistency across the major pathogens such as rotavirus, Shigella, and Cryptosporidium, there was 

variability in identification of interactions and covariates.  The consistent detection of the major pathogens 

across all methods supports the use of alternative model selection strategies as they are stable in selecting 

important pathogens, but these approaches may add to our understanding and estimation by depicting 

uncertainty in estimates.  In the infant model, traditional conditional logistic regression selected an interaction 

between Shigella and EPEC that was not selected by any of the other models.  It is likely that because these two 

pathogens were the more frequently identified pathogens and that this selection is based on sample size power.  

It is important to note that all five model selection approaches selected pathogen interaction effects within the 

infants. However, none of the models selected the same interaction effects. It is an important finding that there 

were inconsistent conclusions across the infant models and points to an area of uncertainty about the impact 

and interpretation of co-infections in infants.  More longitudinal cohort designed studies are needed to better 

access which infections are occurring when and the role of co-infections in infants, such as the Mal-ED project 

(Platts-Mills 2015).  

There are several limitations to our comparison of models. We did not utilize the coefficients from the 

penalized LASSO models, therefore the estimates do not reflect the shrinkage estimated by LASSO and estimates 

still reflect the upward bias from non-penalized estimates. Ability to easily implement a method for computing 

standard errors of LASSO derived coefficients is currently lacking (Steyerberg 2000, Morzova 2015).  Since this 

study used real world epidemiological data, there is no way to conclude how the model selection methods 

compared to a ‘true’ or ‘correct’ model.  Thus, in applied epidemiological settings none of the model selection 
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methods obviate the need for external epidemiological guidance.  Finally, this study represents a case study and 

is limited in its generalizability to other epidemiology studies. 

LASSO models are known to increase model stability over stepwise methods and should be considered 

in more epidemiological studies for a more coherent comparison of effects across studies (Morozova 2015). In 

addition, LASSO models have demonstrated superior performance to automatic stepwise procedures especially 

when data sets are small (Steyerberg 2000, Steyerberg 2001). These newer ‘shrinkage and selection’ methods 

should be explored more frequently in epidemiological studies.  While LASSO methods are not yet widely 

available in all statistical software, they are currently easy to implement using R software.  Epidemiologist 

should use multiple model selection methods, including penalized regression, to explore stability in conclusions 

especially in situations where sample size is small relative to the number of variable of interest, when the  

frequency of predictors are unbalanced, or when identification of effect modifiers is important.  This study 

highlights the feasibility of applying new LASSO techniques for epidemiological studies. The conditional LASSO 

and hierarchical group LASSO algorithms specifically address methods needed for epidemiological studies, such 

as case-control designs. These LASSO methods are promising, especially in situations in which there is a large 

number of variables and interactions to consider relative to the sample size and should be used more frequently 

in epidemiological studies 
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Figure 2.1. Trace plots of pathogen variable coefficients by Lambda for Infants, toddlers, and older children
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Figure 2.2. Pathogen variables and interactions selected by model selection method for infants (0-11 

months)* 

 

*HG LASSO – Hierarchical Group LASSO, BE –Backwards Elimination 
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Figure 2.3. Pathogen variables selected by model selection method for toddlers (12-23 months) 

 

Figure 2.4. Pathogen variables selected by model selection method for older children (24-59 months) 
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Chapter 3. Identifying clinical profiles for rotavirus among children < 5 

years of age with moderate-to-severe diarrhea in rural western Kenya 

2008 2012: a classification tree approach 
 

Ayers TL1, 6, Luo R6,  Omore R2,3,  Ochieng B2,3, Farag TH4, Nasrin D4, Panchalingam S4, Nataro JP4, Kotloff KL4, 

Levine MM4, Oundo J5, Parsons MB 1, Bopp C1, Laserson K2, Stauber CE6,  Breiman RF7, Mintz E1 , O’Reilly CE1 and 

Hoekstra RM1. 

Abstract 
Background: Laboratory diagnostics at the point-of-care for children with moderate-to-severe diarrhea (MSD) 

are lacking. The ability to differentiate enteric viruses from bacterial and parasitic causes at the clinical setting, 

in the absence of laboratory diagnostics, is imperative for judicious use of antibiotics and in reducing 

antimicrobial resistance as a result of over prescribing. 

Methods:  Data from a 4-year, prospective, case-control study of MSD among children less than five years of age 

in rural Kenya. Cases with MSD were enrolled at sentinel health facilities in Kenya and were assessed for 

demographic and clinical features. Classification trees using clinical profiles for identifying rotavirus infections 

were developed.   

Results: Both the recursive partitioning classification tree and a conditional inference tree highlighted that the at 

risk sub-population of children less than 18 months of age with rotavirus are likely to predominantly present for 

care with vomiting during warm-dry months. The rotavirus classification trees presented a useful algorithm for 

understanding the data structure and identifying high-risk groups among correlated clinical features. 

Conclusions:  The classification tree methodology identified homogeneous subgroups of cases based on clinical 

presentation as they related to rotavirus positivity.  The risk magnitude of given risk factors within the subgroup 

were highlighted.  While a useful classification method offers visualization of clinical decision making and 

structure of the data, it does not eliminate the need for more detailed clinical evaluation. 

 

Background 
For children under 24 months of age, rotavirus was the most frequent cause of illness in Kenya, and the 

most frequent cause of moderate-to-severe (MSD) in children under 12 months of age in all 7 GEMS country 

sites (Kotloff 2013). Unlike most bacterial enteric pathogens, a vaccine currently exists for rotavirus and was 
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introduced in July 2014 after the GEMS study period vaccination campaigns in Kenya are in the process of being 

launched (personal communication Omore et al. In clearance). While laboratory diagnostics were available to 

confirm the presence of rotavirus and other pathogens, this intensive and exhaustive testing is not sustainable in 

resource limited settings, such as rural Kenya.  Since laboratory diagnostics will not continue to be available after 

initial GEMS study period, a statistically supported approach to diagnosis based on demographic and clinical 

features would assist with point-of-care treatment and monitoring the impact of the vaccine introduction. 

As the most frequently identified pathogen, it is important to provide a tool for clinicians in the field to 

quickly identify whether a child with MSD is likely to have rotavirus or not in order to begin appropriate 

treatment early.  Children with rotavirus who are adequately rehydrated at the health facility are likely to 

survive their infection compared to children with other enteric pathogens, such as a multi-drug-resistant 

bacterial infection (O’Reilly 2012). Therefore, it is imperative that children with MSD be identified and managed 

expeditiously so that focus can be spent on other complex diagnoses.  In addition, because diagnostics are often 

not available at the point of care, it is important to provide assistance for rapid clinical decisions at clinical 

presentation.  

Since laboratory diagnostics are not widely available, patients are often treated with broad spectrum 

antibiotics, when available.  Resistance to antibiotics has developed in many bacterial enteric pathogens, 

including Salmonella and Shigella spp (Gebrekidan 2015, Brooks 2006).    In a recent assessment healthcare 

workers in Kenya and Ghana, only 14% correctly identified a case patients as having a viral infection among 

acute gastroenteritis patients. In addition, antibiotics were prescribed at rates of nearly 50% (Spreng 2014). In 

order to combat the continued increase in antibiotic resistant pathogens, a tool for improving identification of 

viral infections is necessary. 

Decision tree methods for clinical decision making have been predominantly used in industrialized 

settings, where multiple treatment options and resources are available (Walsh 2014, Jung 2015, Mody 2015, Van 

Hlst 2015, Varma 2004).  The advantage for using tree-based analytic methods for clinical decisions are that they 
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can model more complicated and non-linear relationships (Berk 2009, Jung 2015). Recursive partitioning of the 

data provides a classification tree that can describe effect modification and specific risk sub-groups. In addition, 

recursive partitioning methods are particularly useful for their ability to generate output that is easily 

interpreted, even when describing higher order interactions (Auston 2012, Van Hulst, 2015). 

The primary objective of this paper is to identify key demographic, including seasonality, and clinical 

features that are immediately observable, for classifying children < 5 years of age with rotavirus using decision 

tree methods.  A secondary objective is to examine how well the resulting classification algorithm can be used 

for prediction of rotavirus, for purposes of monitoring rotavirus in the absence of diagnostics. 

Methods 

Data 

 Data was collected as part of a prospective matched case-control study. Cases with MSD were enrolled 

at sentinel health facilities in Kenya in the districts of Gem, Asembo, and Karremo in Siaya County (formerly 

Nyanza Province) from January 31, 2008 to September 30, 2012.  An MSD case was defined as a child with a 

diarrheal illness <7 days duration comprising ≥3 loose stools in 24 hrs and ≥1 of the following: sunken eyes, skin 

tenting, dysentery, required IV rehydration, or hospitalization. Controls were selected using the Demographic 

Surveillance System database to identify community matched controls.   

 At enrollment, demographic, clinical, epidemiological information and stool samples were collected. 

Rotavirus VP6 antigen was detected in the whole stool specimen by a well-validated commercial enzyme-linked 

immunosorbent assay (ELISA) (ProSpecT rotavirus kit, Oxford, Basingstoke, UK).  Detailed laboratory methods 

are described elsewhere (Pachalingham 2013) 

Statistical analysis 

 To assess clinical profiles of MSD children positive for rotavirus, we restricted the analysis to cases in 

which a pathogen was identified and further reduced to only observations with a single pathogen identified. 



Assessing moderate-to-severe diarrhea in children 
 

31 
 

During enrollment at healthcare facilities demographic and clinical features were assessed from caretaker self-

reporting, health facility assessment, and medical assessment.  All features were explored using frequencies and 

simple logistic regression odds ratios (ORs) and 95% confidence intervals (CIs) are reported. 

Recursive partitioning methods, from the rpart algorithm implemented in R statistical software version 

3.2.3, were used for generating Classification Trees (CT).  In the process of building a tree, an iterative process is 

performed to select a variable and variable values to split the data into two groups so that the outcome 

rotavirus presence or absence is the most homogenous in both groups. The homogeneity of the subgroups 

identified is measured based on the Gini index, a measure of ‘purity’, and splits are chosen to maximize the 

index value.  The recursive process repeats and variables were chosen with replacement such that the same 

predictor could be chosen again. The process stopped when no additional splits are possible or nodes no longer 

contained a minimum number of 20 observations.  To reduce overfitting, the tree was reduced, or ‘pruned’, 

using a complexity parameter cut off (Berk 2009, Zang 2010). The complexity parameter evaluates the cost of 

adding another variable with the gain in accuracy. Using 10-fold cross validation, the complexity parameter was 

selected and used as a stopping criterion to control the size of the tree.    

  Since decision tree classification algorithms are biased towards classifying based on the majority group, 

and this data was imbalanced, we incorporated a loss matrix into the classification tree by weighting how much 

to penalize false negative classification in a given choice split (Japkowicz 2001).   This approach has been shown 

to have superior properties to using either over-sampling or under-sampling to balance groups (Wan, 2014, 

Drummond 2003,Batistia 2004).  We evaluated a non-weighted tree and a tree weighted based on the ratio of 

the outcome in our data by considering model performance in terms of sensitivity, specificity, area under the 

curve (AUC), and interpretability of the tree. 

 In parallel, we explored conditional inference trees, another type of recursive partitioning model using 

party package in R.  Candidate predictors applied to split nodes to minimize misclassification and was based on 

the permutation test to compute p-values (Berk 2009, Hothorn 2006). Predictors were chosen based on the 
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smallest p-value first, and performed iteratively within subgroups until no other statistically significant 

predictors were found.  Using this algorithm, cases could be weighted to account for imbalance in outcome. The 

weights were included in the computation of permutation test p-values.  We considered several values of 

weights and assessed model performance using AUC. 

Results 

 The study enrolled, 1778 cases with MSD during 2008to 2012. Pathogens were identified in 1,436 cases 

of which 719 cases had only one pathogen identified.  Of the 719 single pathogen cases, 90 (12.5%) were 

rotavirus positive.  In univariable analysis, the following clinical features were associated with rotavirus positivity 

at alpha =.05:  age, onset in a warm-dry month, vomiting >3 times in 24 hours, not having a fever, restless or 

irritable, presence of dry mouth, abnormal mental status, and being admitted to the hospital. 

 We constructed a training data set, which reserves some observations for testing, with 575 MSD cases 

with a single pathogen. Of these 73 were rotavirus positive.  The initial unweighted classification tree resulted in 

a single node tree, after pruning, with an AUC of .50 and thus was a non-informative model. We identified a 

weight of misclassifying false negatives (Type II error) to misclassifying false positives (Type I) as 8:1 respectively 

reflected the ratio of the outcome in the data. In addition, this misclassification weight generated the tree with 

the most interpretable tree, with 13 nodes, and the greatest AUC. The resulting diagnostic algorithm is shown in 

Figure 3.1A.  The first splitting feature is the child’s age in months, with the cut point of 18 months of age. Each 

node indicates the proportion of rotavirus cases in each subgroup, on the right side, and the proportion of 

rotavirus negative on the left side.  Following the right most branch of the tree reveals that among children less 

than 18 months of age and with vomiting ≥ 3 times in past 24 hours that 24% of observation are rotavirus 

positive, 76% rotavirus negative, and that the subgroup total is 33% of the original sample. The 24% prevalence 

of rotavirus in this subgroup is much greater than the 13% prevalence in the un-partitioned training data.  Green 

nodes indicate subgroups likely to be rotavirus negative while blue nodes represent sub groups with increased 

probability of rotavirus positive.  The same diagnostic algorithm is alternatively displayed in Figure 3.1B to 
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demonstrate the raw frequencies of rotavirus positive cases present in each node.  Among the 373 children with 

vomiting and less than 18 months of age, 65 are rotavirus positive (of the starting 73 positive cases in the 

training data set).  The AUC of the classification tree was .816 on the training data and .6125 on the test data 

(Figure 3.2). 

 The unweighted conditional inference tree produced a single partition of only age, but statistically chose 

the cut point of 13 months (Figure 3.3). The greatest probability of rotavirus positivity among MSD cases less 

than or equal to 13 months of age.  The weighted tree model, with rotavirus positive cases weighted two times 

greater than rotavirus negative cases, generated 6 partitions with age remaining the primary partition (Figure 

3.4).   The largest group identified was children ≤18 months of age and with vomiting present and also had the 

highest probability of being rotavirus positive. The second largest group was children ≤18 months of age, 

without vomiting, enrolled in warm-dry months.  None of the MSD cases aged ≤ 18 months of age, enrolled in 

cool-wet months, and with a normal skin pinch test were positive for rotavirus.  We considered varying weights 

for the rotavirus cases, and while other weights produced higher AUC values, they produced extraordinarily 

large trees.  For example, a condition inference tree with rotavirus cases weighted 5 times more than rotavirus 

negative cases produced a tree with 17 nodes.  Comparison of sensitivity, specificity and AUC values are 

illustrated in Figure 3.5.  

Discussion 

Using a classification tree approach, we aimed to develop a clinical decision tool for delineating viral 

causes of diarrhea from bacterial or parasitic causes.  The demographic feature of age was the strongest 

predictor of rotavirus infection as was the first node identified in both tree algorithms. The increased risk of 

rotavirus infection in infants is well documented (Omore 2015, Kotloff 2013). The second most important clinical 

feature was the presentation with vomiting of 3 or more times in 24 hours, which was recently highlighted in 

another study (Gasparinho 2016). This study highlighted the sub-group and the risk of rotavirus within each 
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group.    The classification tree also highlighted subgroups within infants that were less likely to have rotavirus. 

For example, infants presenting for care during cold-wet months were less likely to be rotavirus positive. 

Both the recursive partitioning classification tree and the conditional inference tree offered visual 

interpretations of the data and groups likely to have rotavirus. However, this study had several limitations. 

While classification tree have demonstrated easily interpreted output that are similar to how clinicians make 

decisions, they are sensitive to the data used for the algorithm. If any selection bias exists in the study data and 

the biased variable is chosen early in the algorithm, that error will be propagated throughout the tree making it 

not useful in other settings. Another limitation is the clinical features presented here may not be the best 

indicators to distinguish rotavirus infections.  Aside from vomiting, other clinical features were not strong 

classifiers indicating either the set of features or details may be lacking.  Acute gastroenteritis infections can 

present similar features despite the numerous etiological causes, thus it’s possible that diagnosis based on 

symptoms, particularly among children with MSD, is severely limited. 

Our tree-based models highlight the importance of vomiting and season in considering viral causes of 

diarrhea.  This simplified message could be useful in training health care providers in settings of high rotavirus 

prevalence when considering treatment options.  Training using classification tree diagrams that can be 

displayed may offer easier reminders.  Reducing antibiotic use for infants that present with vomiting in warm-

dry months is a simplified formula that would have a large impact on reducing the misuse of antibiotics.  

However, it is important to note that other factors not collected in this study might influence the clinical 

decision for treatment and future studies should evaluate whether using a decision tree is effective for health 

care provider training and practice, in particular in rural resource limited settings. 
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Figure 3.1 A. Rotavirus classification tree using demographic and clinical profiles 
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Figure 3.1B. Rotavirus classification tree using demographic and clinical profiles 
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Figure 3.2.  Comparison of classification tree performance on training (blue) and test (red) data.
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Figure 3.3. Unweighted conditional inference tree for rotavirus classification 

 

Figure 3.4. Weighted conditional inference tree for rotavirus classification 
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Figure 3.5. Comparison of conditional inference tree performance by weight 
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Chapter 4.  Identifying water, sanitation, and hygiene risk factors among 

children <5 years old with moderate-to-severe diarrhea in rural western 

Kenya, 2008-2011: using random forest methods 
 

Ayers TL1, 6 *, O’Reilly CE1, Luo R6, Omore R2,3,  Ochieng B2,3, Farag TH4, Nasrin D4, Panchalingam S4, Nataro JP4, 

Kotloff KL4, Levine MM4, Oundo J5, Parsons MB 1, Bopp C1, Laserson K2, Stauber CE6,  Breiman RF7, Mintz E1 , and 

Hoekstra RM1 

 

Abstract 
Objective: The use of predictive methods in the analysis of diarrheal disease research is limited. Risk factor 

analyses of diarrheal diseases are complicated because of numerous potential exposures that are often 

correlated. Newer analytic and machine learning techniques are available that are capable of handling a large 

numbers of variables and describing complex relationships. This study investigates the use of machine learning 

approaches, specifically random forest (RF) methods to identify water, sanitation, and hygiene (WASH) factors 

associated with diarrheal disease in children less than 5 years old. The newer approach of RF was compared to 

the traditional analytic approach of using logistic regression models for evaluating WASH risk factors for 

moderate-to-severe diarrhea (MSD).  

Methods: The Global Enteric Multicenter Study (GEMS) was a prospective case-control study of children under 

the age of 5 with MSD from 2008 to 2012 in Kenya. Controls were matched to cases enrolled at sentinel health 

care facilities by age, sex, and nearby village.  Cases and controls were extensively surveyed about WASH 

exposures and subsequently directly observed at a single follow-up visit. Both logistic regression and RF models 

were constructed considering over 50 WASH exposure variables collected. Models were run for the overall data 

and also stratified by age. RF models were then compared to logistic regression models using area receiver 

operating characteristic curve (AUC) statistics. 

Results: There were 1,718 cases and 2,388 controls enrolled in Kenya with complete follow-up visits. Both 

logistic regression and RF models identified the importance of having a travel time of greater than an hour to a 

water source as a risk factor for MSD in all models. In addition, exposure to rodents was identified as a risk 

factor and having a large household size was protective for toddler and older children in both logistic and RF 

models. RF models identified a few different exposures, such as retaining the protective effect of household size 

for infant models, however model performance was similar between logistic regression and RF models. 
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Conclusions: In this methodological study, the RF classification approach performed similar to traditional logistic 

regression approaches for predicting risk factors for MSD. Future WASH research, in other settings, should 

consider this approach and whether it may highlight important exposure pathways previously overlooked.  This 

study supports the use of RF analytic approaches as an alternative statistical approach for identifying WASH risk 

factors. 

Introduction 
Data mining techniques, such as random forest (RF), have predominantly been limited to the use of 

exploring high-throughput laboratory data (e.g.- molecular markers) and in clinical decision rules (e.g- scoring to 

predict outcome from surgical intervention) (Maier 2015, Kasthurirathne 2016,Walsh 2015, Forsberg 2015). The 

primary advantages of these newer analytic approaches is their ability to consider a large numbers of variables 

and ability to identify complex interactions.  Despite these advantages, RF methods have yet to be considered as 

an epidemiological approach for identifying risk factors for diarrheal diseases. 

One of the Millennium Development Goals is to reduce the mortality rate of children under five years of 

age by two-thirds. In order to achieve this goal improvements in water, sanitation, and hygiene (WASH) needs to 

occur. Identifying which interventions will have the greatest impact for diarrhea-related morbidity and mortality 

in children is difficult. Causal pathways for diarrhea in children <5 years of age are complex, largely in part 

because there is considerable number of potential environmental exposures associated with WASH and they are 

often inter-related.   

Alternative modeling strategies for exploring exposures should be examined. Most epidemiological 

studies conducted to assess risk factors for diarrhea in children investigate WASH exposures using logistic 

regression models. Not only are these exposures often inter-related with one another, they are also nested. 

Several studies have attempted to disentangle the effects of water and sanitation (Gundry 2004, Eisenberg 

2007, Fink 2011, and Fuller 2015).  Some studies conclude that improved water has little to no impact if 

sanitation is not simultaneously improved while others describe that the water improvements have a substantial 
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impact alone but can be capitalized upon when sanitation improvements occur concurrently (Fuller 2015). It 

remains unclear whether these improvements are co-dependent or simply amplify the effects of each other.   

Since environmental exposures are numerous, are part of transmission groupings and are often 

correlated, statistical methods that do not require absence of collinearity nor a linear relationship with the 

outcome should be explored. Identification and estimation of WASH risk factors could be considered a machine 

learning task. RF is one of the most attractive methods for classification problems because it can consider a 

combination of various classifiers to perform a classification problem jointly (Breiman 2010).  RF methods 

provide a classification algorithm with advantages over logistic regression in that it can appropriately handle 

searching across a large number of binary variables that may be correlated, which is often the case for WASH 

variables.  RF methods are a method that expands upon the classification tree method proposed by Breiman 

(Breiman 1998 and Breiman 2001). RF classification creates separate sub samples of the data. The results of 

these multiple classifiers are then assigned based on the majority vote. The data excluded from each sub-sample 

is used to compute the Out-Of-Bag (OOB) error rate.  

The assessment of WASH risk factors have generally been constrained to logistic regression models in 

which a pre-selected small set of variables can be evaluated. Newer analytic techniques capable of assessing a 

large number of related variables may better predict MSD outcomes and facilitate prioritization of interventions. 

In this proof-of-concept study, a machine learning approach is evaluated for attributing illnesses to WASH risk 

factors. 

Materials and Methods 

Study design and data collection 

 The Global Enteric Multi-center Study (GEMS) was a prospective case-control study of moderate-to-

severe diarrhea (MSD) conducted during 2008-2012. An MSD case was defined as a child with a diarrheal illness 

<7 days duration comprising ≥3 loose stools in 24 hrs and ≥1 of the following: sunken eyes, skin tenting, 

dysentery, required IV rehydration, or hospitalization.  Controls were enrolled using the Demographic 
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Surveillance System (DSS) and were matched to cases by age, sex, and geographic proximity. Controls were 

required to be free of diarrhea seven days prior to enrollment.  At enrollment, both case and control caregivers 

were surveyed about numerous WASH exposures including animal exposures.  In addition, a single follow-up 

home visit was made approximately 60 days later and additional WASH exposures were directly observed. 

Study setting and population 

The Kenya study site was located in rural western Kenya in the districts of Gem and Asembo in Siaya County 

(formerly Nyanza Province) during January 31, 2008 and January 29, 2011.  Subsequent to this timeframe, the 

study was funded for an additional 11 months in the districts of Asembo and Karemo in Siaya County as the 

Kenya Medical Research Institute (KEMRI)/CDC Kenya DSS moved to a new area during this time period.  

Statistical analyses 

  Exposure variable frequencies and logistic regression models were performed using SAS 9.3 

(Cary, NC). Exposures were explored using univariable logistic regression models using both conditional models, 

for matched sets of cases and controls, and unconditional models (i.e. unmatched analysis). Univariable 

estimates and 95% confidence intervals are reported. Since transmission routes are likely to differ by child 

developmental stages (e.g. crawling vs not crawling, walking, etc.), three additional separate models were 

performed for each age group.  Age groups were defined as infants (0–11 months), toddlers (12–23 months), 

and older children (24–59 months).  Multivariable logistic regression models were developed by first selecting 

variables demonstrating statistical significance in univariable logistic models and then performing backwards 

elimination until all variables retained remained significant at p < .05.  Gender was included in all unconditional, 

multivariable logistic regression models since controls were enrolled based on this as a matching criteria. Self-

reported hygiene, especially among caregivers of severely ill children, were likely biased and were excluded from 

all age stratified multivariable models (Cotzen 2015, Halder 2010, Manun'Ebo 1997 ,Curtis 1993, Stanton 1987). 

An overall RF model was constructed using the 51 exposures and exposure groups to predict MSD case 

or control status using R Statistical Software and the randomForest package. Similar to logistic models, self-
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reported hygiene and sanitation variables were excluded and the reduced set of 41 exposures were considered 

for all age stratified models. The number of variables randomly considered at each split (m) started with 

approximately the square root of the number of independent variables under consideration (Katz, 2010).  

Subsequently, other values of (m) the number of variables were considered if the OOB error was reduced by .10 

or more, using the tuneRF  function in randomForest package. To describe the relative importance of WASH 

exposures, we computed variable of importance measures based on the mean decrease accuracy measure.  The 

RF models were then compared to the standard logistic regression models. Models were compared using area 

under the receiver operating characteristic curve (AUC).   

Results 

 There were 1,778 cases and 2,448 controls from the 4 year GEMS Kenya data set.  Among those, 1,718 

cases and 2,388 had completed follow-up surveys and were included in this analysis.  Demographic and 

exposure frequencies among cases and controls are presented in Supplemental Table 1.  Estimates from 

univariable logistic regression for both unconditional and conditional models remained similar between models, 

with the exception of age, one of the matching variables. In the overall data, not stratified by age, having a large 

number of household members and having finished floors were identified as having significantly protective 

effect for MSD in logistic regression.  Risk factors for MSD among WASH and animal exposures were identified as 

the following: presence of rodents around the home, using an unimproved water source, having a travel time of 

greater than an hour to a water source, and having observed feces near home or in yard in both logistic 

regression and RF models. Self-reported hand washing behavior at key times demonstrated statistically 

significant protective effects and were subsequently excluded for age stratified risk factor models.  (S4.1). 

Age stratified multivariable logistic regression models 

 

For age stratified logistic regression models, the largest effect estimate for all three age group models 

was having a travel time to water source of greater than an hour. For the infant models travel time to water 



Assessing moderate-to-severe diarrhea in children 
 

47 
 

source (OR 2.69, CI 1.73 -4.18) and feces visible in house or yard (OR  1.65, CI 1.15-2.37) had the largest effect 

size estimates (S2). However, having an unimproved water source explained the largest number of infant cases. 

Toddler and children models contained the only risky animal exposure of rodents (OR 1.56 CI 1.22-1.99 for 

infants; OR 1.33, CI 1.03-1.72)(S4.3 and S4.4). 

Overall RF results 

 

  In the overall RF model which was developed using all potential predictors including age, the variables of 

importance were identified and plotted (Figure 4.1). The variable with the highest importance measure was 

identified as the self-reported measures of not washing hands after defecation and disposing of children’s feces 

in open. Self-reported hygiene and sanitation variable were excluded. The overall RF model generated using the 

reduced number of exposure variables resulted in same the same error rate. The most important variable, based 

on mean decrease in accuracy, for classification of MSD was having a travel time of greater than hour to water 

source, followed by the protective effect of having a large household size (Figure 4.2). 

Age stratified RF analysis 

 

In age stratified RF models, 800 infant, 474 toddler, and 444 older children cases were analyzed 

separately.  In all three age specific models, the number of variables considered at each node that produced the 

lowest OOB error was 3. Similar to the overall model, having a travel time greater than an hour to water source 

followed by the protective effect of large household size, were the most important variables for predicting 

infant MSD cases.  Important factors for classifying toddler and older children MSD cases were the child being 

given untreated water and access to sanitation facilities. Rodent exposure was an important predictor of MSD 

classification in the toddler model (Figure 4.3, 4.4, 4.5). 

Comparison of RF and logistic regression models 
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 All RF models predicted MSD cases with an AUC greater than 0.54, with the highest AUC of .61 in the 

toddler age group. Similarly, logistic regression models had high AUC estimates for toddler and older children 

specific models with .67 and .69.  Only the older children specific logistic regression model was significantly 

outperformed the RF model (Table 4.5).  In all models, logistic regression models selected similar exposures to 

the RF models.  The RF models tended to rank 1-2 additional variables that lacked statistical significance in 

logistic regression in the top five. For example, the second most important exposure identified by RF in the 

infant model was having a large household size but lacked statistical significance in logistic regression. Having a 

large household size was selected in top five exposures for predicting MSD in all three age specific RF models, 

however was only retained in toddler and older children models. 

Discussion 
We found the results from RF models did not differ greatly from logistic regression models when 

comparing in feature selection or model performance.  Both identified exposures that tended to have large 

effect sizes regardless of proportion of cases explained.  For example, both highlighted the importance of the 

time it takes to reach the water source and MSD in infants in this study corroborating other studies that have 

also independently explored the association between travel time to water source and diarrheal disease rural 

western Kenya (Nygren 2016).  Identifying factors in both methods supports the importance of their role in MSD. 

While there were many similarities between the variables highlighted in both logistic regression and RF, a 

primary difference was the emphasis that RF placed on the protective demographic features such household 

size in both toddler and older children models.  In addition, having more than one child under 5 years of age was 

a significant protective effect in older children logistic models and was the second most important variable for 

RF models. In this study, RF results did not differ from logistic regression models in terms of conclusions 

however, in studies from other geographic regions with less homogeneity in exposures would likely results in 

differences between models. 
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This study presented a proof -of-concept analysis of the use of RF methods for identifying risk factors for 

MSD, but has several limitations. First, this study was limited by the exposures captured and their frequencies. 

Many of the exposures of interest had relatively low frequencies which reduced the statistical power in logistic 

regression and potentially the data space for random forest. RF and logistic regression models performed 

equally, but none of the models would be considered robust with AUCs below .70 for all models. RF models 

error rates ranged from 32-38%, thus this data might be missing important features necessary to improve 

classification of MSD. Secondly, many of the exposures of interest were collected based on self-reports which 

are known to be potentially biased (Halder 2010).  In our study, cases of MSD were enrolled at sentinel health 

facilities when presenting for care and care givers were asked about many water and hygiene practices.  

Conversely controls were asked these self-reported measures during a home visit, thus reporting bias might be 

lower.  While we attempted to address this by excluding these variables in our models, it limited our ability to 

identify the contribution and importance of hygiene.  Finally, a limitation specific to RF, is that variable 

importance and inferences about variables are not as easy to interpret as estimated Odds ratios produced from 

logistic regression models.  Machine learning techniques, such as RF, do currently suffer some interpretability 

issues however as their use increases in epidemiology additional methods for converting in population 

attributable fractions may become more widely used and understood (Gu 2015). 

Despite these limitations, this study demonstrates the usefulness of applying a machine learning 

approach to WASH studies. RF performed as well as logistic regression for predicting MSD cases and should be 

considered as an alternative for variable selection is studies with a large number of exposures to explore and 

with potentially complex relationships including interactions. The methods employed here serve as an example 

that could be utilized for WASH studies in other geographic settings. In our analysis, logistic regression and RF 

models produced similar conclusions supporting the notion that RF methods may be an appropriate method for 

assessing WASH risk factors.  Future analyses should evaluate the ability of these methods to highlight important 

exposures missed by traditional algorithms. 
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Figure 4.1. Variables ranked by mean decrease accuracy for all age groups 

 

 

Figure 4.2. Variables ranked by mean decrease accuracy for all age groups, excluding self-reported hygiene 

exposures 
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Figure 4.3 Random forest variable importance plots by age group excluding self-reported hygiene exposures 
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Figure 4.4 Comparison of odds ratio estimates from logistic regression and variable importance measures 

from random forest 

 

 

 

Table 4.5 Comparing model performance between logistic regression and random forest 

Model Logistic AUC (95% CI) RF AUC (95% CI) 

Infant models 0.59 (.57 -.62) 0.54 (.51-.57) 

Toddler models 0.67 (.64 -.70) 0.61 (.58 -.64) 

Older children models 0.69 (.66 - .72) 0.59 (.56 -.63) 
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Chapter 5. Integrated discussion 
 

The first paper examined the impact of model selection strategies on the description and variability of 

diarrheal etiologies associated with MSD.  The study used LASSO methods and demonstrated consistency in 

large signal detection across model selection methods, while identifying some variability in less frequently 

occurring two-way interactions. The second study addressed the feasibility of assessing etiologies in the absence 

of laboratory diagnostics. While an extensive panel of laboratory diagnostics were supported during the active 

study period, they are not sustainable nor are they available for point-of-care treatment in most areas of Africa. 

The ability to differentiate enteric viruses from bacterial causes at the clinical setting, in the absence of 

laboratory diagnostics, is imperative for judicious use of antibiotics and in reducing antimicrobial resistance as a 

result of over prescribing. Classification trees using clinical profiles for identifying rotavirus infections were 

developed.  Both the recursive partitioning classification tree and a conditional inference tree highlighted that 

the at risk sub-population of children less than 18 months of age with rotavirus are likely to predominantly 

present for care with vomiting during warm-dry months. The rotavirus classification trees presented a useful 

algorithm for understanding the data structure and identifying high-risk groups among correlated clinical 

features.  Finally, the third study explored methods for investigating the numerous and complex environmental 

exposures associated with enteric disease transmission using random forest techniques. Random forest 

methods offered a non-parametric alternative to logistic regression and highlighted the association of distance 

to water source and household member size with MSD for toddlers and older children.  

A principal finding in all three studies was that machine learning methodological approaches, such as 

LASSO, classification trees, and random forest, are useful and feasible to implement in epidemiological studies.  

All three approaches used in this dissertation provided additional information and understanding of the data 

beyond using a singular logistic regression model.  The results from all three machine learning approaches were 

supported by comparable logistic regression results indicating their usefulness as epidemiological tools.  The 

limitations of feature selection and analysis of data in situations of limited sample size, large number of variables 



Assessing moderate-to-severe diarrhea in children 
 

57 
 

to investigate, correlated predictors, and complex interactions are present in nearly all areas of epidemiological 

research, not just diarrheal diseases in developing countries. This dissertation offers an exploration of 

methodological alternatives that should be used more frequently in diarrheal disease epidemiology, and in 

public health in general.  

 

 

 

 

 

 

 



Supplemental Table 2.1. All pathogens tested and frequencies among cases and controls

Cases Controls

N=1778 (%) N=2448 (%)

Enterotoxigenic E. coli any ST
a 176 (9.9) 103 (4.2)

Enterotoxigenic E. coli LT only
a 103 (5.8) 142 (5.8)

Enteroaggregative E. coli 268 (15.1) 400 (16.3)

Typical Enteropathogenic E. coli 135 (7.6) 120 (4.9)

Atypical Enteropathogenic E. coli 97 (5.5) 157 (6.4)

Enterohaemorrhagic E. coli  (EHEC) 0 0

Shigella spp. 130 (7.3) 55 (2.3)

Aeromonas 1 (.06) 4 (0.2)

Vibrio cholerae  O1 7 (.39) 0

Vibrio O139 0 0

Salmonella Typhi 0 0

Non-typhoidal Salmonella 95 (5.3) 84 (3.4)

Campylobacter 253 (14.2) 327 (13.4)

Rotavirus 253 (14.2) 49 (2.0)

Norovirus -GI 54 (3.0) 97 (4.0)

Norovirus -GII 88 (5.0) 100 (4.1)

Adenovirus non-40/41 45 (2.5) 58 (2.4)

Adenovirus 40/41 40 (2.3) 23 (0.9)

Astrovirus 31 (1.5) 36 (1.5)

Sapovirus 56 (3.2) 73 (3.0)

Cryptosporidium 195 (11.0) 104 (4.3)

Giardia 329 (18.5) 578 (23.6)

Entamoeba histolytica 16 (0.9) 8 (0.3)
a  ST (heat stable toxin) and LT (heat labile toxin)

Pathogen variable

Pathogens -Bacterial

Pathogens -Viral

Pathogens -Parasitic



Table 2.2 Comparison of selected pathogens by model selection method, infants (0-11 months old)

Cases Controls

n=829 (%) n= 896 (%) BE LASSO BE

α =.05 λ max (1SE) α =.05 λ  max(1SE) λ  min(1SE)

Enterotoxigenic E. coli any ST 79 (9.5) 37 (4.1) 2.75 (1.72 - 4.39) * 2.86 (1.88 - 4.37) 2.87 (1.88 - 4.38) 2.79 (1.82 - 4.27) 5 5

     and Adenovirus 40/41 Present 0.11 (0.01 - 2.55)

     and Adenovirus 40/41 Present 2.9 (1.8 - 4.69)

Enterotoxigenic E. coli LT only 47 (5.7) 66 (7.4) 0.72 (0.46 - 1.11) 1 0

Enteroaggregative E. coli 176 (21.2) 221 (24.7) ** * 2 1

     and Norovirus -GII Present 2.41 (0.94 - 6.16) 2.23 (0.93 - 5.33)

     and Norovirus -GII Absent 0.76 (0.57 - 1.01) 0.78 (0.6 - 1.02)

Typical EPEC 88 (10.6) 61 (6.8) * 2.02 (1.31 - 3.11) 1.84 (1.28 - 2.65) 1.82 (1.26 - 2.61) ** 5 5

     and Shigella  spp. Present 0.24 (0.03 - 2.02)

     and Shigella  spp. Absent 2.1 (1.36 - 3.22)

     and Non-typhoidal Salmonella  Present NA

     and Non-typhoidal Salmonella Absent 1.95 (1.34 - 2.83)

Atypical EPEC 48 (5.8) 48 (5.4) 1.16 (0.74 - 1.81) 1 0

Shigella spp. 42 (5.1) 9 (1) * 7.36 (3.19 - 16.98) 7.04 (3.37 - 14.71) 7.24 (3.47 - 15.13) 7.69 (3.66 - 16.14) 5 5

     and typical EPEC Present 1.12 (0.17 - 7.45)

     and typical EPEC Absent 9.62 (3.7 - 25.05)

Non-typhoidal Salmonella 43 (5.2) 44 (4.9) ** 1 1

     and typical EPEC Present NA

     and typical EPEC Absent 1.52 (0.95 - 2.44)

Campylobacter jejuni 98 (11.8) 94 (10.5) 1.22 (0.85 - 1.75) 1.18 (0.85 - 1.64) 2 0

Campylobacter coli 33 (4) 45 (5) 0.78 (0.47 - 1.29) 1 0

Rotavirus 159 (19.2) 19 (2.1) 16.97 (9.06 - 31.79) 17.43 (9.26 - 32.81) * 13.78 (8.43 - 22.53) 14.48 (8.83 - 23.74) 5 5

     and Norovirus -GII Present 2.34 (0.43 - 12.91)

     and Norovirus -GII Absent 15.14 (9.03 - 25.38)

Norovirus -GI 30 (3.6) 33 (3.7) 1.38 (0.81 - 2.36) 1 0

Norovirus -GII 63 (7.6) 50 (5.6) 1.56 (1 - 2.44) ** * * 4 4

     and rotavirus Present 0.26 (0.05 - 1.46)

     and rotavirus Absent 1.66 (1.1 - 2.51)

     and Enteroaggregative E. coli. Present 3.63 (1.6 - 8.25) 3.33 (1.55 - 7.15)

     and Enteroaggregative E. coli Absent 1.14 (0.66 - 1.96) 1.16 (0.71 - 1.9)

Adenovirus non-40/41 18 (2.2) 14 (1.6) 1.59 (0.76 - 3.34) 1.51 (0.71 - 3.19) 2 0

Adenovirus 40/41 25 (3) 12 (1.3) 3.35 (1.53 - 7.34) * 3.03 (1.48 - 6.19) 3.06 (1.5 - 6.25) 3.02 (1.48 - 6.19) 5 5

     and Enterotoxigenic E. coli any ST Present 0.15 (0.01 - 3.24)

     and Enterotoxigenic E. coli any ST Absent 3.93 (1.74 - 8.89)

Astrovirus 10 (1.2) 5 (0.6) 2.57 (0.85 - 7.83) 2.41 (0.78 - 7.41) 2 0

Sapovirus 19 (2.3) 16 (1.8) 1.64 (0.81 - 3.31) 1.76 (0.86 - 3.57) 2 0

Cryptosporidium 119 (14.4) 52 (5.8) 3.28 (2.22 - 4.84) 3.25 (2.2 - 4.79) 3.52 (2.48 - 5) 3.49 (2.46 - 4.96) 3.52 (2.47 - 5.01) 5 5

Giardia 75 (9) 101 (11.3) excluded excluded excluded excluded excluded

Entamoeba histolytica 6 (0.7) 5 (0.6) 0 0

5 6 5 8 13

1 2 1 0 2

6 6 6 5 6

Number of main effects in model

Number of interaction terms in model

Number of significant variables

Variable
Conditional Unconditional Num of 

methods 

including 

variable

Num of 

methods 

variable sig.

Hierarchical group LASSO
Pathogens -Bacterial

Pathogens -Viral

Pathogens -Parasitic



Table 2.3 Comparison of selected pathogens by model selection method, toddlers (12-23 months old)

Cases Controls

n=491 (%) n=808 (%) BE LASSO BE

α =.05 λ  max (1SE) α =.05 λ  max(1SE) λ  min(1SE)

Enterotoxigenic E. coli any ST 58 (11.8) 41 (5.1) 3.11 (1.94 - 5.01) 3 (1.87 - 4.82) 2.77 (1.79 - 4.26) 2.77 (1.79 - 4.26) 2.82 (1.82 - 4.38) 5 5

Enterotoxigenic E. coli LT only 33 (6.7) 48 (5.9) 1.35 (0.83 - 2.21) 1 0

Enteroaggregative E. coli 57 (11.6) 107 (13.2) 0 0

Typical EPEC 30 (6.1) 39 (4.8) 1.48 (0.89 - 2.48) 1 0

Atypical EPEC 27 (5.5) 56 (6.9) 0.68 (0.4 - 1.15) 0.73 (0.44 - 1.21) 1 0

Shigella spp. 35 (7.1) 26 (3.2) 3.04 (1.75 - 5.29) 2.91 (1.68 - 5.05) 2.98 (1.75 - 5.06) 2.98 (1.75 - 5.06) 3.1 (1.81 - 5.29) 5 5

Non-typhoidal Salmonella 27 (5.5) 24 (3) 2.51 (1.35 - 4.64) 2.29 (1.24 - 4.23) 2.34 (1.31 - 4.17) 2.34 (1.31 - 4.17) 2.32 (1.29 - 4.15) 5 4

Campylobacter jejuni (363) 43 (8.8) 53 (6.6) 1.73 (1.08 - 2.79) 1.72 (1.07 - 2.77) 1.4 (0.9 - 2.17) 3 2

Campylobacter coli (216) 28 (5.7) 60 (7.4) 0.75 (0.46 - 1.23) 1 0

Rotavirus 75 (15.3) 21 (2.6) 9.08 (5.12 - 16.1) 9.27 (5.23 - 16.42) 7.67 (4.63 - 12.72) 7.67 (4.63 - 12.72) 7.99 (4.81 - 13.3) 5 5

Norovirus -GI 13 (2.6) 28 (3.5) 0 0

Norovirus -GII 17 (3.5) 32 (4) 1 0

Adenovirus non-40/41 16 (3.3) 30 (3.7) 0 0

Adenovirus 40/41 11 (2.2) 9 (1.1) 1.82 (0.7 - 4.74) 1 0

Astrovirus 11 (2.2) 15 (1.9) 1.69 (0.75 - 3.77) 1 0

Sapovirus 20 (4.1) 34 (4.2) 0 0

Cryptosporidium 54 (11) 39 (4.8) 3.33 (2.01 - 5.49) 3.37 (2.04 - 5.56) 2.82 (1.81 - 4.38) 2.82 (1.81 - 4.38) 2.91 (1.86 - 4.54) 5 5

Giardia 115 (23.4) 218 (27) 0 0

Entamoeba histolytica 6 (1.2) 2 (0.2) 9.27 (1.54 - 55.96) 6.44 (1.26 - 32.9) 6.44 (1.26 - 32.9) 6.52 (1.27 - 33.42) 4 4

7 7 6 6 13

0 0 0 0 0

7 6 6 6 6

Number of main effects in model

Number of interactions in model

Number of significant variables

Num of 

methods 

variable sig.

Hierarchical group LASSO

Pathogens -Bacterial

Pathogens -Viral

Pathogens -Parasitic

Num of 

methods 

including 

variable

Variable
Conditional Unconditional



Table 2.4 Comparison of selected pathogens by model selection method, young children (24-59 months old)

Cases Controls

n=458 (%) n=744(%) BE LASSO BE

α =.05 λ  max (1SE) α =.05 λ  max(1SE) λ  min(1SE)

Enterotoxigenic E. coli any ST 39 (8.5) 25 (3.4) 3.06 (1.75 - 5.33) 2.93 (1.67 - 5.16) 3.15 (1.86 - 5.34) 3.21 (1.89 - 5.44) 3.21 (1.89 - 5.44) 5 5

Enterotoxigenic E. coli LT only 23 (5) 28 (3.8) 0 0

Enteroaggregative E. coli 35 (7.6) 72 (9.7) 0.75 (0.47 - 1.22) 1 0

Typical EPEC 17 (3.7) 20 (2.7) 0 0

Atypical EPEC 22 (4.8) 53 (7.1) 0.65 (0.37 - 1.14) 1 0

Shigella spp. 53 (11.6) 20 (2.7) 6.84 (3.65 - 12.84) 6.95 (3.68 - 13.1) 5.26 (3.08 - 8.98) 5.24 (3.07 - 8.95) 5.24 (3.07 - 8.95) 5 5

Non-typhoidal Salmonella 25 (5.5) 16 (2.2) 3.18 (1.64 - 6.14) 3.24 (1.67 - 6.29) 3.19 (1.67 - 6.07) 3.04 (1.59 - 5.83) 3.04 (1.59 - 5.83) 5 5

Campylobacter jejuni 30 (6.6) 45 (6) 0 0

Campylobacter coli 20 (4.4) 30 (4) 0 0

Rotavirus 19 (4.1) 9 (1.2) 4.48 (1.84 - 10.89) 4.45 (1.84 - 10.76) 4.28 (1.89 - 9.7) 4.36 (1.92 - 9.9) 4.36 (1.92 - 9.9) 5 5

Norovirus -GI 11 (2.4) 36 (4.8) 0.48 (0.22 - 1.04) 0.45 (0.22 - 0.92) 0.41 (0.2 - 0.86) 0.41 (0.2 - 0.86) 4 0

Norovirus -GII 8 (1.7) 18 (2.4) 0 0

Adenovirus non-40/41 11 (2.4) 14 (1.9) 0 0

Adenovirus 40/41 4 (0.9) 2 (0.3) 4.28 (0.74 - 24.93) 4.28 (0.74 - 24.93) 2 0

Astrovirus 10 (2.2) 16 (2.2) 0 0

Sapovirus 17 (3.7) 23 (3.1) 0 0

Cryptosporidium 22 (4.8) 13 (1.7) 2.82 (1.36 - 5.87) 2.95 (1.41 - 6.17) 2.77 (1.35 - 5.65) 2.68 (1.31 - 5.5) 2.68 (1.31 - 5.5) 5 5

Giardia 139 (30.3) 259 (34.8) 0 0

Entamoeba histolytica 4 (0.9) 1 (0.1) 6 (0.56 - 64.25) 6 (0.56 - 64.25) 2 0

5 8 6 8 8

0 0 0 0 0

5 5 6 4 4

Num of 

methods 

variable sig.

Hierarchical group LASSO

Pathogens -Bacterial

Number of interactions in model

Num of 

methods 

including 

variable

Pathogens -Viral

Pathogens -Parasitic

Number of main effects in model

Number of significant variables

Variable
Conditional Unconditional



Characteristic n % n %  OR (95% CI) P-value

Demographic:

Median age in months 8 (1-46) 12 (1- 59) <0.001*

Female sex 80 49% 232 42% 1.34 (.94 - 1.90) 0.10

Cool-wet month 41 25% 233 42% 0.46 (0.31 - 0.69 ) <0.001

Self reported symptoms at enrollment:

Median days of diarrhea 3  (1-7) 3 (1-7) 0.44*

Stool type:

    -watery 104 64% 334 60% ref

     -rice water 3 2% 8 1% 1.20 (.31 - 4.62 ) 0.79

     -sticky mucoid 56 34% 194 35% .93 (.64 - 1.34 ) 0.69

     -bloody 0 0% 18 3% NA 0.98

Dysentery 4 2% 54 10% 0.23 (0.08 - 0.65 ) < 0.01

Blood in stool 6 4% 75 14% 0.24 (0.1 - 0.57 ) 0.00

Vomiting 3 or more times in 24 hrs 114 70% 268 48% 2.48 (1.71 - 3.61 ) <0.001

Very thirsty 148 91% 472 86% 1.79 (0.99 - 3.26 ) 0.06

Drank less 44 27% 106 19% 1.56 (1.04 - 2.34 ) 0.03

Unable to drink 14 9% 17 3% 2.97 (1.43 - 6.16 ) < 0.01

Belly pain 114 71% 354 65% 1.29 (0.88 - 1.9 ) 0.19

Fever 118 72% 404 73% 0.97 (0.66 - 1.44 ) 0.89

Irritable 136 83% 395 71% 2.03 (1.29 - 3.19 ) 0.00

Lethargy 87 53% 288 52% 1.06 (0.75 - 1.5 ) 0.76

Loss of conciousness 22 13% 45 8% 1.76 (1.03 - 3.04 ) < 0.05

Rectal straining 18 11% 47 9% 1.35 (0.76 - 2.4 ) 0.30

Rectal prolapse 0 0% 10 2% 0.99

Cough 106 65% 327 59% 1.29 (0.9 - 1.86 ) 0.17

Difficulty breathing 35 21% 91 16% 1.39 (0.9 - 2.15 ) 0.14

Convulsion 2 1% 6 1% 1.13 (0.23 - 5.68 ) 0.88

Observed symptoms at enrollment:

Very thirsty 137 85% 431 78% 1.51 (0.94 - 2.43 ) 0.09

Drinks poorly 33 20% 75 14% 1.63 (1.04 - 2.57 ) < 0.05

Sunken eyes 159 98% 526 95% 2.12 (0.73 - 6.12 ) 0.17

Wrinkled skin 46 29% 82 15% 2.31 (1.53 - 3.5 ) < 0.001

Restless/irritable 119 73% 346 62% 1.63 (1.1 - 2.39 ) < 0.01

Lethargy 30 18% 50 9% 2.27 (1.39 - 3.72 ) < 0.01

Dry mouth 127 78% 445 80% 0.86 (0.56 - 1.32 ) 0.50

Fast breathing 33 20% 77 14% 1.57 (1 - 2.47 ) 0.05

Medical assessment symptoms:

Chest indrawing 5 3% 5 1% 3.47 (0.99 - 12.15 ) 0.05

Sunken eyes 160 98% 546 99% 0.78 (0.2 - 2.98 ) 0.72

Dry mouth 38 23% 120 22% 1.10 (.73 - 1.67 ) 0.65

Abnormal skin pinch 56 34% 145 26% 1.48 (1.02 - 2.15 ) < 0.05

Mental status abnormal 127 78% 354 64% 1.99 (1.32 - 3 ) <0.001

Rectal prolapse 0 0% 5 1% NA 0.98

Bipedal edema 5 3% 6 1% 2.89 (0.87 - 9.6 ) 0.08

Abnormal hair 5 3% 32 6% 0.52 (0.2 - 1.35 ) 0.18

Wasted /very thin 13 8% 60 11% 0.71 (0.38 - 1.34 ) 0.29

Skin has 'flaky paint' appearance 4 2% 19 3% 0.71 (0.24 - 2.11 ) 0.54

Requires IV  rehydration 35 21% 72 13% 1.83 (1.17 - 2.87 ) < 0.01

Hospital admission 26 16% 56 10% 1.69 (1.02 - 2.79 ) < 0.05

* Wilcoxon-rank sums test

Rotavirus-positive Rotavirus -negative 

    N=163 N=554

Supplementary Table 3.1 Comparing clinical features of rotavirus positive and rotavirus negative moderate-to-severe 

diarrhea cases at enrollment



Supplemental table 4.1. Case and controls exposure frequencies and univariable logistic regression estimates

Cases     (n= 

1718) Case%

Controls  

(n= 2388) Control% OR (95% CI) mOR (95% CI)

Demographic and household exposures

Age groups

   0-11 months (infants) 800 47% 869 36% ref ref

   12-24 months (toddlers) 474 28% 786 33% 0.66 (0.56 - 0.76) 1.85 (0.15 - 23.47)

   24 -59 months (children) 444 26% 733 31% 0.66 (0.57 - 0.77) 0.93 (0.07 - 12.2)

Female 737 43% 1037 43% 0.98 (0.86 - 1.11) 0.47 (0.06 - 3.68)

Both parents live in household 1154 67% 1653 69% 0.91 (0.8 - 1.04) 0.91 (0.79 - 1.04)

Caretaker completed primary school 769 45% 1097 46% 0.95 (0.84 - 1.08) 0.92 (0.81 - 1.05)

Household contains >5 members 709 41% 1243 52% 0.65 (0.57 - 0.73) 0.64 (0.56 - 0.73)

Household has >4 members sleeping there 799 47% 1232 52% 0.82 (0.72 - 0.92) 0.81 (0.71 - 0.93)

Household has > 1 rooms used for sleeping 774 45% 1195 50% 0.82 (0.72 - 0.93) 0.82 (0.72 - 0.93)

> 2 children <5 years old love in household 1059 62% 1590 67% 0.81 (0.71 - 0.92) 0.77 (0.67 - 0.87)

Finished floor in house* 316 18% 510 21% 0.83 (0.71 - 0.97) 0.87 (0.73 - 1.03)

Animal Exposures

     Goats 957 56% 1314 55% 1.03 (0.91 - 1.16) 1 (0.88 - 1.14)

     Sheep 513 30% 665 28% 1.1 (0.96 - 1.26) 1.08 (0.93 - 1.24)

     Dog 1091 64% 1564 65% 0.92 (0.81 - 1.04) 0.92 (0.8 - 1.05)

     Cat 1147 67% 1637 69% 0.92 (0.81 - 1.05) 0.94 (0.82 - 1.08)

     Cow 1121 65% 1691 71% 0.77 (0.68 - 0.88) 0.76 (0.66 - 0.88)

     Rodents 930 54% 1134 47% 1.31 (1.15 - 1.48) 1.27 (1.11 - 1.45)

     Fowl 1620 94% 2266 95% 0.89 (0.68 - 1.17) 0.94 (0.7 - 1.26)

     Other animals 93 5% 182 8% 0.69 (0.54 - 0.9) 0.67 (0.51 - 0.88)

Any Animal contact (composite) 1707 99% 2359 99% 1.91 (0.95 - 3.83) 2.03 (1 - 4.12)

Water exposures

Enrollment main water source is unimproved + 720 42% 859 36% 1.28 (1.13 - 1.46) 1.28 (1.10 - 1.48)

Follow-up main water source is unimproved+ 755 44% 925 39% 1.24 (1.09 - 1.41) 1.31 (1.13 - 1.52)

Time to travel to water source > 60 min 138 8% 77 3% 2.62 (1.97 - 3.49) 2.44 (1.8 - 3.3)

Water not available daily 126 7% 184 8% 0.95 (0.75 - 1.2) 0.97 (0.76 - 1.24)

In last 2 weeks gave child untreated water 328 30% 373 28% 1.11 (0.93 - 1.32) 1.09 (0.87 - 1.37)

At enrollment, does not treat household water 631 37% 1055 44% 0.73 (0.65 - 0.83) 0.7 (0.61 - 0.8)

At enrollment,does not treat with chlorine 837 49% 1314 55% 0.78 (0.69 - 0.88) 0.71 (0.62 - 0.81)

At follow-up, does not treat water 706 41% 1039 44% 0.91 (0.8 - 1.03) 0.85 (0.74 - 0.97)

   At follow-up, does not treat with chlorine 353 45% 482 45% 1 (0.83 - 1.2) 1.03 (0.79 - 1.35)

At follow-up, water container in home (observed) 1683 98% 2354 99% 0.67 (0.42 - 1.09) 0.77 (0.46 - 1.28)

     Storage container not narrow mouthed 1328 79% 1914 81% 0.86 (0.73 - 1.01) .83 (.70 - .98)

      No cover on container 177 11% 238 11% 1.07 (0.87 - 1.31) 1.03 (0.82 - 1.28)

Hygeine

Self reported, times at which caretaker usually wash hands:

   Before eating 1429 83% 2029 85% 0.87 (0.74 - 1.04) 0.87 (0.73 - 1.03)

   Before cooking 582 34% 894 37% 0.86 (0.75 - 0.97) 0.87 (0.76 - 1)

   Before nursing or preparing baby's food 518 30% 466 20% 1.78 (1.54 - 2.06) 1.65 (1.41 - 1.92)

   After defecation 1325 77% 1292 54% 2.86 (2.49 - 3.28) 2.86 (2.45 - 3.33)

   After cleaning child who defecated 446 26% 780 33% 0.72 (0.63 - 0.83) 0.79 (0.68 - 0.92)

   After handling domestic animals 193 11% 517 22% 0.46 (0.38 - 0.55) 0.46 (0.38 - 0.55)

   Any reported hand washing (composite) 1718 100% 2388 100% NA NA

Wash hands near dwelling/yard (observed at follow-up) 1717 100% 2384 100% 2.16 (0.22 - 20.74) 2.11 (0.18 - 25.27)

    Station used piped water 9 1% 3 0% 4.18 (1.13 - 15.46) 4.37 (1.17 - 16.39)

    Station had basin 1671 97% 2328 98% 0.92 (0.62 - 1.36) 0.86 (0.55 - 1.34)

    Station had soap 887 52% 1208 51% 1.04 (0.92 - 1.18) 1.04 (0.86 - 1.25)

    Station had ash 2 0% 1 0% 2.78 (0.25 - 30.61) 2.56 (0.23 - 29.12)

     No soap or ash at hand wash station (composite) 831 48% 1178 49% 0.96 (0.85 - 1.09) 0.97 (0.81 - 1.16)

Sanitation

Disposes of child’s feces in open 587 34% 1108 46% 0.6 (0.53 - 0.68) 0.52 (0.45 - 0.6)

Disposes of child’s feces in open (observed) 606 36% 786 34% 1.11 (0.97 - 1.27) 0.99 (0.85 - 1.16)

Household access to sanitation facility:

    Private household facility 216 13% 402 17% 0.7 (0.57 - 0.86) 0.74 (0.59 - 0.92)

    Shares facility with 1-2 households 550 32% 778 33% 0.93 (0.79 - 1.09) 0.95 (0.8 - 1.13)

    Shares facility with ≥3 households 415 24% 474 20% 1.15 (0.96 - 1.37) 1.17 (0.97 - 1.42)

    No facility 465 27% 609 26% ref ref

Human feces visible in defecation area 588 34% 785 33% 1.06 (0.93 - 1.21) 1.03 (0.86 - 1.23)

Human feces visible in house or yard 138 8% 136 6% 1.45 (1.13 - 1.85) 1.36 (1.05 - 1.75)

Cold/wet month 700 41% 1008 42% 0.94 (0.83 - 1.07) 0.64 (0.34 - 1.18)



Supplemental table 4.2 Infant case and controls exposure frequencies and logistic regression estimates

Cases     

(n=800) Case%

Controls  

(n= 869) Control% OR (95% CI) aOR (95% CI)

Demographic and household exposures

Female 323 40% 351 40% 1 (0.82 - 1.22) 1.06 (.87 - 1.29)

Both parents live in household 542 68% 598 69% 0.95 (0.77 - 1.17)

Caretaker completed primary school 362 45% 411 47% 0.92 (0.76 - 1.12)

Household contains >5 members 366 46% 434 50% 0.85 (0.7 - 1.02)

Household has >4 members sleeping there 392 49% 448 52% 0.9 (0.75 - 1.09)

Household has > 1 rooms used for sleeping 371 46% 412 47% 0.96 (0.79 - 1.16)

> 2 children <5 years old love in household 536 67% 620 71% 0.82 (0.66 - 1)

Finished floor in house* 144 18% 166 19% 0.93 (0.73 - 1.19)

Animal Exposures

     Goats 443 55% 474 55% 1.03 (0.85 - 1.25)

     Sheep 231 29% 247 28% 1.02 (0.83 - 1.26)

     Dog 499 62% 552 64% 0.95 (0.78 - 1.16)

     Cat 524 66% 593 68% 0.88 (0.72 - 1.08)

     Cow 522 65% 609 70% 0.8 (0.65 - 0.98) .78 (.63 - .96)

     Rodents 434 54% 443 51% 1.14 (0.94 - 1.38)

     Fowl 750 94% 812 93% 1.05 (0.71 - 1.56)

     Other animals 50 6% 67 8% 0.8 (0.55 - 1.17)

Any Animal contact (composite) 792 99% 857 99% 1.39 (0.56 - 3.41)

Water exposures

Enrollment main water source is unimproved + 379 47% 348 40% 1.35 (1.11 - 1.64)

Follow-up main water source is unimproved+ 371 46% 346 40% 1.3 (1.07 - 1.58) 1.29 (1.06 - 1.58)

Time to travel to water source > 60 min 73 9% 30 3% 2.81 (1.81 - 4.34) 2.69 (1.73 - 4.18)

Water not available daily 60 8% 73 8% 0.88 (0.62 - 1.26)

In last 2 weeks gave child untreated water 122 24% 88 18% 1.48 (1.09 - 2.01)

At enrollment, does not treat household water 290 36% 366 42% 0.78 (0.64 - 0.95)

At enrollment,does not treat with chlorine 382 48% 486 56% 0.72 (0.59 - 0.87) .70 (.58 -.86)

At follow-up, does not treat water 324 41% 382 44% 0.87 (0.71 - 1.05)

   At follow-up, does not treat with chlorine 161 44% 160 43% 1.04 (0.77 - 1.38)

At follow-up, water container in home (observed) 785 98% 857 99% 0.67 (0.31 - 1.47)

     Storage container not narrow mouthed 630 80% 689 80% 0.99 (0.78 - 1.27)

      No cover on container 82 11% 90 11% 1 (0.73 - 1.37)

Hygeine

Self reported, times at which caretaker usually wash hands:

   Before eating 654 82% 711 82% 1 (0.78 - 1.28)

   Before cooking 246 31% 309 36% 0.8 (0.66 - 0.99)

   Before nursing or preparing baby's food 296 37% 218 25% 1.75 (1.42 - 2.16)

   After defecation 614 77% 449 52% 3.09 (2.5 - 3.81)

   After cleaning child who defecated 226 28% 304 35% 0.73 (0.59 - 0.9)

   After handling domestic animals 80 10% 199 23% 0.37 (0.28 - 0.49)

   Any reported hand washing (composite) 800 100% 869 100%

Wash hands near dwelling/yard (observed at follow-up) 799 100% 866 100%

    Station used piped water 2 0% 0 0%

    Station had basin 777 97% 842 97% 1.09 (0.61 - 1.94)

    Station had soap 394 49% 421 49% 1.03 (0.85 - 1.25)

    Station had ash 0 0% 0 0%

     No soap or ash at hand wash station (composite) 406 51% 447 52% 0.97 (0.8 - 1.17)

Sanitation

Disposes of child’s feces in open 312 39% 430 50% 0.65 (0.54 - 0.79)

Disposes of child’s feces in open (observed) 299 38% 291 34% 1.2 (0.98 - 1.47)

Household access to sanitation facility:

    Private household facility 107 13% 147 17% 0.67 (0.49 - 0.92)

    Shares facility with 1-2 households 252 32% 272 31% 0.85 (0.66 - 1.1)

    Shares facility with ≥3 households 183 23% 192 22% 0.88 (0.67 - 1.16)

    No facility 228 29% 210 24% ref

Human feces visible in defecation area 264 33% 287 33% 1 (0.81 - 1.22)

Human feces visible in house or yard 79 10% 54 6% 1.65 (1.15 - 2.37) 1.61 (1.12 - 2.32)

Cold/wet month 319 40% 354 41% 0.96 (0.79 - 1.17)



Supplemental table 4.3. Toddler case and controls exposure frequencies and logistic regression estimates

Cases Controls 

(n=474) Case%  (n= 786) Control% OR (95% CI) aOR (95% CI)

Demographic and household exposures

Female 207 44% 338 43% 1.03 (0.82 - 1.29) 1.03 (.80 - 1.32)

Both parents live in household 322 68% 557 71% 0.87 (0.68 - 1.11)

Caretaker completed primary school 208 44% 362 46% 0.91 (0.73 - 1.15)

Household contains >5 members 182 38% 409 52% 0.57 (0.46 - 0.72) .67 (.52 - .86)

Household has >4 members sleeping there 198 42% 399 51% 0.7 (0.55 - 0.88)

Household has > 1 rooms used for sleeping 196 41% 402 51% 0.67 (0.54 - 0.85)

> 2 children <5 years old love in household 277 58% 499 63% 0.81 (0.64 - 1.02)

Finished floor in house* 90 19% 161 20% 0.91 (0.68 - 1.21)

Animal Exposures

     Goats 269 57% 429 55% 1.09 (0.87 - 1.37)

     Sheep 147 31% 227 29% 1.11 (0.86 - 1.42)

     Dog 305 64% 521 66% 0.92 (0.72 - 1.17)

     Cat 325 69% 547 70% 0.95 (0.74 - 1.22)

     Cow 307 65% 570 73% 0.7 (0.55 - 0.89) .63 (.49 - .83)

     Rodents 253 53% 334 42% 1.55 (1.23 - 1.95) 1.56 (1.22 - 1.99)

     Fowl 446 94% 754 96% 0.68 (0.4 - 1.14)

     Other animals 25 5% 55 7% 0.74 (0.45 - 1.2)

Any Animal contact (composite) 473 100% 774 98% 7.33 (0.95 - 56.57)

Water exposures

Enrollment main water source is unimproved + 185 39% 271 34% 1.22 (0.96 - 1.54)

Follow-up main water source is unimproved+ 205 43% 295 38% 1.27 (1.01 - 1.6) 1.36 (1.06 - 1.76)

Time to travel to water source > 60 min 34 7% 24 3% 2.46 (1.44 - 4.2) 2.77 (1.55 - 4.97)

Water not available daily 37 8% 49 6% 1.27 (0.82 - 1.98)

In last 2 weeks gave child untreated water 104 35% 139 32% 1.16 (0.85 - 1.59)

At enrollment, does not treat household water 181 38% 354 45% 0.75 (0.6 - 0.95)

At enrollment,does not treat with chlorine 240 51% 426 54% 0.87 (0.69 - 1.09)

At follow-up, does not treat water 194 41% 328 42% 0.97 (0.77 - 1.22)

   At follow-up, does not treat with chlorine 106 48% 175 48% 1.02 (0.73 - 1.42)

At follow-up, water container in home (observed) 462 97% 772 98% 0.7 (0.32 - 1.52)

     Storage container not narrow mouthed 349 76% 623 81% 0.75 (0.57 - 0.99)

      No cover on container 55 13% 86 12% 1.11 (0.77 - 1.59)

Hygeine

Self reported, times at which caretaker usually wash hands:

   Before eating 397 84% 682 87% 0.79 (0.57 - 1.08)

   Before cooking 175 37% 291 37% 1 (0.79 - 1.26)

   Before nursing or preparing baby's food 144 30% 153 19% 1.81 (1.39 - 2.35)

   After defecation 370 78% 427 54% 2.99 (2.31 - 3.87)

   After cleaning child who defecated 133 28% 261 33% 0.78 (0.61 - 1.01)

   After handling domestic animals 50 11% 174 22% 0.41 (0.3 - 0.58)

   Any reported hand washing (composite) 474 100% 786 100%

Wash hands near dwelling/yard (observed at follow-up) 474 100% 785 100%

    Station used piped water 3 1% 2 0% 2.5 (0.42 - 14.99)

    Station had basin 465 98% 775 99% 0.73 (0.3 - 1.78)

    Station had soap 261 55% 403 51% 1.16 (0.93 - 1.46)

    Station had ash 2 0% 0 0%

     No soap or ash at hand wash station (composite) 213 45% 382 49% 0.86 (0.68 - 1.08)

Sanitation

Disposes of child’s feces in open 130 28% 331 42% 0.52 (0.41 - 0.67) .38 (.27 - .54)

Disposes of child’s feces in open (observed) 148 32% 252 33% 0.95 (0.74 - 1.22)

Household access to sanitation facility:

    Private household facility 57 12% 130 17% 0.81 (0.55 - 1.19) .48 (.30 - .77)

    Shares facility with 1-2 households 164 35% 256 33% 1.19 (0.88 - 1.6) .76 (.51 - 1.12)

    Shares facility with ≥3 households 121 26% 142 18% 1.58 (1.13 - 2.2) .91 (.60 - 1.38)

    No facility 116 24% 215 27% ref

Human feces visible in defecation area 166 35% 247 31% 1.17 (0.92 - 1.49)

Human feces visible in house or yard 36 8% 49 6% 1.24 (0.79 - 1.93)

Cold/wet month 191 0.402954 331 42% 0.93 (0.74 - 1.17)



Supplemental table 4. 4. Children logistic case and controls exposure frequencies and logistic regression estimates

Cases     

(n=444) Case%

Controls  

(n= 733) Control% OR (95% CI) aOR (95% CI)

Demographic and household exposures

Female 207 47% 348 47% 0.97 (0.76 - 1.22) .96 (.74 - 1.24)

Both parents live in household 290 65% 498 68% 0.89 (0.69 - 1.14)

Caretaker completed primary school 199 45% 324 44% 1.03 (0.81 - 1.3)

Household contains >5 members 161 36% 400 55% 0.47 (0.37 - 0.6) .49 (.38 - .65)

Household has >4 members sleeping there 209 47% 385 53% 0.8 (0.63 - 1.02)

Household has > 1 rooms used for sleeping 207 47% 381 52% 0.81 (0.64 - 1.02)

> 2 children <5 years old love in household 246 55% 471 64% 0.69 (0.54 - 0.88)

Finished floor in house* 82 18% 183 25% 0.68 (0.51 - 0.91) .62 (.45 - .86)

Animal Exposures

     Goats 245 55% 411 56% 0.96 (0.76 - 1.22)

     Sheep 135 30% 191 26% 1.24 (0.96 - 1.61)

     Dog 287 65% 491 67% 0.9 (0.7 - 1.15)

     Cat 298 67% 497 68% 0.97 (0.75 - 1.25)

     Cow 292 66% 512 70% 0.83 (0.64 - 1.07)

     Rodents 243 55% 357 49% 1.27 (1.01 - 1.61) 1.33 (1.03 - 1.72 )

     Fowl 424 95% 700 95% 1 (0.57 - 1.77)

     Other animals 18 4% 60 8% 0.47 (0.28 - 0.81) .51 (.28 - .91)

Any Animal contact (composite) 442 100% 728 99% 1.52 (0.29 - 7.86)

Water exposures

Enrollment main water source is unimproved + 156 35% 240 33% 1.11 (0.87 - 1.43)

Follow-up main water source is unimproved+ 179 40% 284 39% 1.07 (0.84 - 1.36)

Time to travel to water source > 60 min 31 7% 23 3% 2.32 (1.33 - 4.03) 2.49 (1.33 - 4.66)

Water not available daily 29 7% 62 8% 0.76 (0.48 - 1.2)

In last 2 weeks gave child untreated water 102 36% 146 37% 0.96 (0.7 - 1.32)

At enrollment, does not treat household water 160 36% 335 46% 0.67 (0.53 - 0.85) .70 (.53 - .91)

At enrollment,does not treat with chlorine 215 48% 402 55% 0.77 (0.61 - 0.98)

At follow-up, does not treat water 188 42% 329 45% 0.9 (0.71 - 1.14)

   At follow-up, does not treat with chlorine 86 44% 147 45% 0.96 (0.68 - 1.38)

At follow-up, water container in home (observed) 436 98% 725 99% 0.6 (0.22 - 1.61)

     Storage container not narrow mouthed 349 80% 602 83% 0.81 (0.6 - 1.1)

      No cover on container 40 10% 62 9% 1.13 (0.75 - 1.72)

Hygeine

Self reported, times at which caretaker usually wash hands:

   Before eating 378 85% 636 87% 0.87 (0.62 - 1.22)

   Before cooking 161 36% 294 40% 0.85 (0.67 - 1.08)

   Before nursing or preparing baby's food 78 18% 95 13% 1.43 (1.03 - 1.98)

   After defecation 341 77% 416 57% 2.52 (1.94 - 3.29)

   After cleaning child who defecated 87 20% 215 29% 0.59 (0.44 - 0.78)

   After handling domestic animals 63 14% 144 20% 0.68 (0.49 - 0.93)

   Any reported hand washing (composite) 444 100% 733 100%

Wash hands near dwelling/yard (observed at follow-up) 444 100% 733 100%

    Station used piped water 4 1% 1 0% 6.64 (0.74 - 59.51)

    Station had basin 429 97% 711 97% 0.88 (0.45 - 1.72)

    Station had soap 232 52% 384 52% 0.99 (0.79 - 1.26)

    Station had ash 0 0% 1 0%

     No soap or ash at hand wash station (composite) 212 48% 349 48% 1.01 (0.79 - 1.27)

Sanitation

Disposes of child’s feces in open 145 33% 347 47% 0.54 (0.42 - 0.69) .34 (.24 - .66)

Disposes of child’s feces in open (observed) 159 37% 243 34% 1.13 (0.88 - 1.45)

Household access to sanitation facility:

    Private household facility 52 12% 125 17% 0.63 (0.43 - 0.94) .41 (.25 - .66)

    Shares facility with 1-2 households 134 30% 250 34% 0.82 (0.6 - 1.11) .50 (.34 - .73)

    Shares facility with ≥3 households 111 25% 140 19% 1.21 (0.86 - 1.69) .65 (.43 - .98)

    No facility 121 27% 184 25% ref

Human feces visible in defecation area 158 36% 251 34% 1.06 (0.83 - 1.36)

Human feces visible in house or yard 23 5% 33 5% 1.16 (0.67 - 2)

Cold/wet month 190 43% 323 44% 0.95 (0.75 - 1.2)
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