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Summary
The reproductive cycle in the nematode Caenorhabditis

elegans depends in part on the ability of the mature oocyte

to ovulate into the spermatheca, fuse with the sperm during

fertilization, and then exit the spermatheca as a fertilized egg.

This cycle requires the integration of signals between the

germ cells and the somatic gonad and relies heavily on the

precise control of inositol 1,4,5 triphosphate (IP3)levels. The

HLH-29 protein, one of five Hairy/Enhancer of Split (HES)

homologs in C. elegans, was previously shown to affect

development of the somatic gonad. Here we show that HLH-

29 expression in the adult spermatheca is strongly localized to

the distal spermatheca valve and to the spermatheca-uterine

valve, and that loss of hlh-29 activity interferes with oocyte

entry into and egg exit from the spermatheca. We show that

HLH-29 can regulate the transcriptional activity of the IP3

signaling pathway genes ppk-1, ipp-5, and plc-1 and provide

evidence that hlh-29 acts in a genetic pathway with each of

these genes. We propose that the HES-like protein HLH-29

acts in the spermatheca of larval and adult animals to

effectively increase IP3 levels during the reproductive cycle.

� 2012. Published by The Company of Biologists Ltd. This is

an Open Access article distributed under the terms of the

Creative Commons Attribution Non-Commercial Share Alike

License (http://creativecommons.org/licenses/by-nc-sa/3.0).

Key words: Hairy/enhancer of split, Transcriptional regulation,

Spermatheca-uterine valve, Somatic gonad

Introduction
The basic helix loop helix (bHLH) transcription factors are

critical regulators of early development (Maroto et al., 2008;

Barnes and Firulli, 2009; Egoz-Matia et al., 2011), with roles in

regulating organogenesis and neurosensory development (Pin

et al., 2001; Ligon et al., 2006; Zhao et al., 2006; Du and Yip,

2011). Members of the Hairy-Enhancer of Split (HES) subfamily

act primarily in response to Notch signaling (Fischer and Gessler,

2007; Kageyama et al., 2007), and are known for roles in neural

(Kageyama et al., 2008; Li et al., 2008; Webb et al., 2011) and

cardiovascular (Fischer et al., 2004; Xin et al., 2007; Wiese et al.,

2010) development. In humans, mutations in the HES genes are

often associated with neuroblastoma (Axelson, 2004;

Stockhausen et al., 2005), neuroendocrine tumors of the breast,

lung, and prostate (Hartman et al., 2009; Lu et al., 2010;

Nasgashio et al., 2011), and early developmental disorders

(Sparrow et al., 2008; Sparrow et al., 2010). While members of

the bHLH superfamily are also needed post-embryonically for

metamorphosis (Lo et al., 2007; Parthasarathy et al., 2008; Bitra

et al., 2009), sexual development and gamete formation (Van

Wayenbergh et al., 2003; Ballow et al., 2006; Lu et al., 2008),

and maintaining homeostasis (Zhou et al., 2009; Li et al., 2010;

Long et al., 2010), little is known about the post-embryonic, non-

developmental roles of the HES family proteins.

Ovulation in Caenorhabditis elegans is a tightly regulated

process that demonstrates how cells and tissues must coordinate

major signaling events to function. Critical to the ovulation cycle

are a series of communication events between the proximal

oocyte and sperm, and between the gametes and the surrounding

sheath cells of the somatic gonad (Han et al., 2010; see Fig. 1).

After receiving molecular signals from the sperm, the proximal

oocyte undergoes maturation and sends its own signal to the

gonadal sheath cells to amplify contractions that were initiated by

the sperm-derived signals (Greenstein, 2005; Govindan et al.,

2006). These oocyte-derived signals, which include the C.

elegans epidermal growth factor homolog, LIN-3, also activate

the dilation of the distal spermatheca valve. Ovulation occurs

when the oocyte is propelled into the spermatheca. Sheath cell

contractions, dilation of the distal spermatheca valve, and dilation

of the spermatheca-uterine (SP-UT) valve after fertilization all

require intracellular calcium release that is induced by LIN-3

dependent, inositol triphosphate (IP3) signaling in the

spermatheca and sheath cells (Clandinin et al., 1998; Bui and

Sternberg, 2002; Yin et al., 2004). Here we show that the HES-

like protein HLH-29 controls spermatheca entry and exit by

altering the expression of genes required for IP3 signaling,

thereby providing one of the first links between a HES protein

and the coordination of a rhythmic post-embryonic biological

process.

Materials and Methods
Nematode handling and strains
The following strains were used: N2 Bristol wild-type (Brenner, 1974); TM284,
hlh-29(tm284); SL232, unc-51(e1189) fog-2(q71)/fog-2(q71) rol-9(sc148);
PS2286, unc-38(x20) lfe-2(sy326); PS3656, ipp-5(sy605). Transgenic lines
carrying an integrated hlh-29::GFP transgene were previously described
(McMiller et al., 2007). Culture growth and synchronization by alkaline
hypochlorite treatment were as previously described (Lewis and Fleming, 1995).

Brood Size and Epistasis Analysis
Animals were raised for at least two generations at 22 C̊ prior to the start of assays,
and were fed bacteria producing dsRNA for either the control gene unc-55 or for
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the test genes (Kamath and Ahringer, 2003). It should be noted that because hlh-28

and hlh-29 produce identical mRNAs, RNAi against hlh-29 mRNA also knocks
down hlh-28 mRNA. Therefore, the RNAi effects described here may be the result
of knockdown of both hlh-28 and hlh-29 and we will refer to this treatment as hlh-

29/hlh-28 RNAi. For brood size assays and for ovulation assays with fog-2

animals, L4 stage hermaphrodites were serially transferred to fresh plates every
24 hours throughout their egg laying period. For epistasis analysis, L1 stage
animals were fed control bacteria for 56 hours at 22.5 C̊ and then moved,
individually, to 35 mm NGM plates seeded with bacteria producing the
appropriate dsRNA. Eggs and oocytes were counted twice: when the adult
hermaphrodite was first removed from the plates, and again 24 hours later. The

data are presented as the number of viable progeny (brood size), and oocyte
percentage (number oocytes/(number oocytes + viable progeny). Inviable and

abnormally shaped eggs were eliminated because we could not consistently
differentiate between fragmented eggs and fragmented oocytes. Finally, the hlh-

29(tm284) animals used for these assays were homozygous for the tm284 allele.

Time-lapse Microscopy
Animals were anesthetized with 0.1% levamisole (Govindan et al., 2009), mounted
on 2.0% agarose pads and imaged using a 60X oil-immersion objective with a
Nikon Eclipse 90i microscope equipped with a Nikon Coolsnap CCD camera.

Fig. 1. HLH-29 is expressed in the adult spermatheca

during ovulation. (A) Ovulation in wild-type animals is
stimulated when major sperm (MSP) proteins bind to
receptors on the proximal oocyte and the proximal gonad to
stimulate meiotic maturation and gonad contractions,
respectively. The oocyte then secretes LIN-3 protein,

which binds to the receptor protein LET-23 and amplifies
the gonad contractions. LET-23 activation also triggers the
dilation of the distal spermatheca valve. The oocyte is
propelled into the spermatheca, where it is fertilized and
subsequently expelled through the SP-UT valve into the
uterus. (B–G) hlh-29::GFP expression in the spermatheca

of animals bearing an integrated transcriptional reporter
construct. Corresponding DIC images are shown on the left
of each epifluorescence micrograph. (B,C) Lateral view,
L2/L3 stage. Cells of the somatic primordium are circled.
(D,E) Dorsal view, early L4 stage. Anterior spermatheca is
circled; arrow indicates uterus and vulval lumen.
(F,G) Lateral view, adult stage. Posterior spermatheca is

circled; arrow indicates vulva muscles.

HLH-29 regulates IP3 signaling in C. elegans 262

B
io

lo
g
y

O
p
e
n



Images were captured at 3 second intervals over a 115 minute period using NIS-
elements, version 3.2 software (Nikon). Audio video interleave (AVI) files were
generated by NIS-elements and compressed using H.264, then exported as moving
picture experts group, standard 4 (MPEG-4) movies using Xilisoft Video
Converter Ultimate, Version 6.0.7. Because ovulation occurred sporadically in
hlh-29(tm284) homozygous animals due in part to variable defects in the gonad
morphology, we used hlh-29/hlh-28 RNAi treated hlh-29(tm284) heterozygotes to
capture ovulation by time lapse microscopy.

Gene Expression Analysis
Gene expression analysis, including total RNA extraction, cDNA synthesis, and
real-time PCR were carried out as previously described (Felton and Johnson,
2011). Total RNA was extracted from late L4 or early adult stage populations, and
cDNA synthesis reactions were performed in 50 mL reaction volumes containing
10.0 mg of total RNA. Real time PCR assays were performed with Taqman Gene
Expression Assays (Applied Biosystems) specific for each putative target
(supplementary material Table S1), using relative quantitation with
normalization against the endogenous control gene pmp-3 (Hoogewijs et al., 2008).

Egg-laying Measurements
Egg-laying in the presence of food was assayed using synchronized cultures that
were fed for 72 hours after hatching at 22 C̊. Two hermaphrodites were placed
onto seeded, 35 mm NGM plates and incubated at 22 C̊. After two hours, the
number of eggs and unfertilized oocytes were counted. Animals that did not
produce progeny or who ruptured through vulva (exp) during the assay were
excluded. For this assay N530; each experiment was repeated in triplicate.

For egg laying assays in the absence of food, each culture of L1 stage animals
was fed bacteria producing the appropriate dsRNA for 72 hours. Animals were
then picked onto an unseeded NGM plate and allowed to crawl around for
30 minutes so that all bacteria could be removed from their bodies.
Hermaphrodites were then placed individually into each well of a 48-well tissue
culture plate containing 25 mL of M9 buffer, and incubated at 22 C̊ for 1 hour.
Animals that ruptured through the vulva while in buffer or that displayed
anatomical defects were excluded from the assay. For this assay, N5288; each
experiment was repeated 5 times.

Results and Discussion
HLH-29 is expressed in the spermatheca and plays a role
in egg-laying

Previously, we reported that RNAi knockdown of hlh-29 and the
duplicate gene hlh-28 results in the exploded through vulva (exp),

protruding vulva (pvl), and accumulated endomitotic oocytes
(emo) phenotypes (McMiller et al., 2007). Additionally, a fraction
of RNAi animals failed to form a uterus, failed to develop one of

the two gonad arms, or accumulated either unfertilized or emo
oocytes in the uterus. These phenotypes are also evident in animals
that carry null alleles of either hlh-29 or hlh-28. Both hlh-29 and

hlh-28 are expressed in all cells of the EMS lineage in early
embryos (Broitman-Maduro et al., 2005; Neves and Priess, 2005).
The post-embryonic expression pattern of hlh-28 is unknown;
however an hlh-29::GFP transcriptional reporter is expressed in

cells of MS descendants that give rise to the adult spermatheca and
vulva muscles (McMiller et al., 2007). Together, these data suggest
a pleiotropic role for HLH-29 and HLH-28 in reproduction. We

sought to better understand the role of HLH-29 in reproduction and
we reasoned that any functional differences between the identical
proteins HLH-29 and HLH-28 would be due solely to differences

in timing and location of expression. It should be noted, however,
that because hlh-29 and hlh-28 are identical genes, with the
exception of an additional exon in hlh-28 that is believed to be
removed via splicing (McMiller et al., 2007), RNAi knockdown of

hlh-29 also results in knockdown of hlh-28. This raises the
possibility that the RNAi phenotypes described below may be the
result of reduction in the activities of both genes.

hlh-29 is expressed in most cells of the spermatheca of L4 and
adult animals, and in the vulva muscles, but not in the spermatheca

or vulval precursor cells of younger animals (Fig. 1). Unlike
in wild-type animals, egg-laying rates in hlh-29(tm284) animals

are not responsive to changes in food availability

(supplementary material Fig. S1), and more interestingly, hlh-

29(tm284) animals lay unfertilized oocytes throughout their egg-
laying period. Most of these unfertilized oocytes were endomitotic,

as indicated by disorganized and enlarged nuclei (Iwasaki et al.,
1996); however, hlh-29(tm284) animals also lay unfertilized
oocytes that have distinct, normal-sized nuclei or that appear to
lack a nucleus. To determine whether the unfertilized oocytes

phenotype is solely from exhausting the supplies of active sperm or
is also the result of defective ovulation cycles, we treated fog-

2(q71) animals with RNAi against hlh-29/hlh-28. fog-2 animals do

not produce sperm and can be used to identify genes that function
during ovulation (Govindan et al., 2006). We found that fog-2(q71)

animals eating either OP50 or bacteria producing control RNAi

laid an average of 2.9 oocytes/24 hours at 25 C̊ (SEM 50.449,
n5156), while fog-2(q71); hlh-29/hlh-28(RNAi) animals laid an
average of 28.73 oocytes/24 hours (SEM 51.345, n5190, p-value

54.27e219). While this result does not rule out the possibility that
hlh-29 affects sperm viability and function, it does support a
sperm-independent role for hlh-29 in regulating reproduction.

Ovulation is defective in hlh-29 animals

In wild-type animals, each gonad arm ovulates one mature oocyte
on average of every 23 minutes. In the oocyte, the events leading
up to ovulation include distal nuclear migration, breakdown of

the nuclear envelope, and cortical rearrangement. Ovulation
itself, the propulsion of the mature oocyte into the spermatheca,
requires intense rhythmic contractions of the surrounding gonad

sheath cells, followed by dilation or extension of the distal
spermatheca valve. In wild-type animals, the ovulated oocyte is
fertilized almost immediately, and within five minutes of

ovulation, the fertilized egg emerges through the SP-UT valve
into the uterus (McCarter et al., 1999).

The morphology of the gonad arms is affected in animals
lacking HLH-29 (McMiller et al, 2007), making it difficult to

analyze ovulation in hlh-29(tm284) homozygous animals. HLH-
299s effect on gonad morphology appears to be dose and
developmental stage dependent, and we were able to separate this

phenotype from the ovulation phenotype by subjecting L3 stage
heterozygous hlh-29(tm284) animals, to hlh-29/hlh-28 RNAi.
The ovulation defects were the same in N2 and in hlh-29(tm284)

heterozygous animals treated with hlh-29/hlh-28 RNAi, and also

in hlh-29(tm284) homozygotes. These defects ranged from
complete failure of the oocyte to enter the spermatheca to
complete failure of the fertilized egg to exit the spermatheca. We

found, however, that defective ovulation occurred more
frequently in RNAi treated hlh-29(tm284) heterozygotes than in
N2 animals. Therefore, we used hlh-29/hlh-28 RNAi treat hlh-

29(tm284) heterozygotes, referred to henceforth as hlh-

29(tm284)/+ hlh-29/hlh-28(RNAi) animals, to capture the
ovulation defects by time-lapse microscopy.

Distal nuclear migration, breakdown of the nuclear envelope,

and cortical rearrangement appeared to occur normally in hlh-

29(tm284)/+ hlh-29/hlh-28(RNAi) animals, suggesting that
HLH-29 is not required for oocyte maturation. This result was

unexpected in light of the fog-2; hlh-29/hlh-28 (RNAi) results
described above. Genes previously shown to influence ovulation
in fog-2 animals are believed to negatively regulate meiotic

maturation. RNAi knockdown of those genes normally increases
maturation rates in unmated fog-2 females, though not to the
same rates as those seen in hermaphrodites or in mated fog-2
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females (Govindan et al., 2006). It is possible that HLH-29 and

HLH-28 function in different tissues to regulate the expression of

two separate sets of genes that are required to separate meiotic

maturation and the initiation of ovulation from physical

movement through the spermatheca. This possibility would

explain why ovulation increases in fog-2; hlh-29/hlh-28 (RNAi)

animals and also may explain why hlh-29/hlh-28 RNAi rescues

the brood size phenotypes of hlh-29(tm284) animals (see below).

Loss of HLH-29 did not appear to affect gonadal sheath

contractions; however, the ability of oocytes and fertilized eggs

to enter and exit the spermatheca, respectively, was affected

(supplementary material Movies 1–3). This ovulation defect was

highly variable and occurred randomly in either gonad arm. We

compared ovulation events over a 90 minute period in wild-type

and in hlh-29(tm284)/+ hlh-29/hlh-28 (RNAi) animals

(supplementary material Table S2), and defined a successful

Fig. 2. Time lapse observations of

ovulation. (A–I) Representative abnormal
ovulation in an hlh-29(tm284)/+ hlh-29/hlh-

28(RNAi) animal. The spermatheca is outlined
in black, the uterus, with developing embryos,
is indicated by UT, and the first four oocytes in
the gonad arm are numbered. Oocyte 1 enters
and exits the spermatheca successfully, but

oocyte 2 is not able to exit until oocyte 3 is
ovulated. All subsequent ovulations are
blocked when oocyte 3 is fragmented
(indicated by 3 and 39) while exiting
backwards through the distal valve.
(J–R) Representative ovulation in an animal

carrying the integrated hlh-29::GFP transgene.
Expression in the spermatheca is concentrated
in the distal (white arrow) and the SP-UT
valves (arrowhead). The ovulating oocyte
(fertilized embryo in P & R) is outlined in red.
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event as entry into the spermatheca followed by unassisted exit

out of the spermatheca within eight minutes. This eight minute

fertilization window is significantly longer than the previously

published wild-type fertilization window of two minutes

(McCarter et al., 1999), and may have resulted in an

underestimation of the number of abnormal ovulation events.

We observed a total of 14 ovulation events in a single gonad arm

of 4 different wild-type animals; all but one of these events

occurred normally, at an average frequency of one every

21.5 minutes. Similarly, N2 animals treated with control RNAi

had normal ovulation events that occurred at an average

frequency of one every 28 minutes (data not shown).

We observed a total of 46 ovulation events in a single gonad arm

of 21 different hlh-29(tm284)/+ hlh-29/hlh-28 (RNAi) animals, 24

of which occurred normally (supplementary material Table S2).

The average frequency of attempted/successful ovulation events in

these animals was one every 41 minutes. This average does not

include the ovulation attempts made by gonad arms that became

blocked within the 90 minute observation period. Failure of either

the distal spermatheca valve or the SP-UT valve to function

properly resulted in fragmented oocytes and embryos which

accumulated in the gonad arms and uterus, or in occupancy of the

spermatheca by multiple oocytes (Fig. 2A–I), some of which

eventually become emo. In 11 of 21 events, abnormal ovulations

were caused by failure of the distal spermatheca valve to function

properly. Oocytes failed to enter the spermatheca (8/11), were

fragmented upon entry because the valve closed prematurely (2/

11), or fell back into the gonad arm (1/11) because the valve failed

to close completely (supplementary material Fig. S2A–C). In 7 of

21 events, abnormal ovulations were caused by failure of the SP-

UT valve to function properly. The most infrequent failures

occurred when the SP-UT valve failed to open at all, resulting in

blockage of the spermatheca (1/7) or of the gonad arm (1/7) by a

fertilized egg. More often, the fertilized egg exited the

spermatheca either unassisted after a prolonged occupancy (1/7),

or as a result of entry into the spermatheca by a second oocyte (4/

7). The fate of the second oocyte included successfully fertilized

and ovulated (1), fragmented exit into the uterus (1/4), forced exit

into the gonad arm (1/4), and rapid exit into the uterus without

fertilization (1/4). Taken together, defective ovulation in hlh-

29(tm284)/+ hlh-29/hlh-28(RNAi) animals appears to be the result

of mechanical failure of both of the spermatheca valves.

Consistent with this mechanical failure, hlh-29 activity

localized to both the distal and proximal valves of the

spermatheca (Fig. 2J-R; supplementary material Movie 4).

Together, these results suggest that HLH-29 is required to

allow successful entry into and exit from the spermatheca.

HLH-29 acts as a positive and a negative regulator of genes
expressed in the adult spermatheca

We tested the effect of loss of hlh-29 activity on genes whose

expression overlapped with hlh-29 in the spermatheca and that

were previously shown to affect ovulation. We found that loss of

HLH-29 reduced the activity of ppk-1 and increased the activities

of plc-1 and ipp-5 (Fig. 3A), three genes required for IP3

signaling. Loss of HLH-29 also caused a 1.3 fold increase in lfe-2

activity, though this change was not found to be statistically

significant.

We looked for genetic interactions between hlh-29 and ppk-1,

ipp-5, and lfe-2 using measurements of brood size and percentage

of unfertilized oocytes (see methods and materials). ppk-1

encodes a kinase that converts phosphatidylinositol-4-phosphate

(PIP) into phosatidylinositol 4, 5-bisphosphate (PIP2), which is

subsequently hydrolyzed by phospholipase C into the second

messengers diacylglycerol (DAG) and inositol 1,4,5-triphosphate

(IP3) (Fig. 3B). Loss of PPK-1 causes the accumulation of

oocytes in the gonad arms due, in part, to the absence of gonadal

sheath contractions during ovulation (Xu et al., 2007). Feeding

newly hatched N2 or homozygous hlh-29(tm284) animals

bacteria producing ppk-1dsRNA resulted in 100% sterility (not

shown). We found that N2 and hlh-29(tm284) animals that

received ppk-1 RNAi after L3 stage produced almost as many

viable progeny as those that were subjected to control RNAi

(Fig. 3B) during the same time period, and so we used these

animals for the epistasis assays. Wild-type animals laid a small

percentage of unfertilized oocytes at the end of their egg-laying

period (Fig. 4A), but this percentage was reduced in ppk-1

(RNAi) animals. hlh-29(tm284) animals laid unfertilized oocytes

Fig. 3. HLH-29 and the IP3 signaling. (A) Transcriptional activity of genes in the IP3 signaling transduction pathway are affected in hlh-29(tm284) animals. Bars
represent the relative fold-change in mRNA levels as detected by RT-qPCR when compared to expression in wild-type animals, error bars represent standard error of
the mean. Fold expression range considered to be the same as wild-type expression is indicated by light gray shading, centered around the value of 1.0. P values are
indicated to the right of each bar. (B) Components of the LIN-3/LET-23 activated IP3 signaling transduction pathway are transcriptionally regulated by HLH-29.
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throughout their egg-laying period and laid a significantly higher

percentage than wild-type animals. This phenotype was

suppressed by ppk-1 RNAi (Fig. 4A), indicating that ppk-1 is

epistatic to hlh-29, and further supporting our molecular finding

that hlh-29 acts upstream of ppk-1.

The enzymes IP3 kinase, encoded by lfe-2, and inositol

polyphosphate 5-phosphatase, encoded by ipp-5, function to

reduce the intracellular levels of IP3 (Clandinin et al., 1998; Bui

and Sternberg, 2002). Loss of either IPP-5 or LFE-2 effectively

increases IP3 levels, but results in only moderate ovulation defects.

ipp-5 animals produce fewer progeny than wild-type animals and

lay unfertilized oocytes because of a hyperactive distal spermatheca

valve (Bui and Sternberg, 2002). lfe-2 animals also have small brood

sizes, but no other ovulation defects are evident (Clandinin et al.,

1998). Interestingly, animals that carry loss-of-function alleles in

both ipp-5 and lfe-2, and animals that over-express lfe-2 are sterile.

In the latter case, sterility is caused by failure of the spermatheca-

uterine valve to open (Clandinin et al., 1998), a phenotype very

similar to the ovulation defect of hlh-29(tm284)/+ hlh-29/hlh-

28(RNAi) animals and in support of slightly increased lfe-2 activity

in hlh-29(tm284) animals. In our genetic interaction studies,

lfe-2(sy36); hlh-29/hlh-28(RNAi) animals and ipp-5(sy605); hlh-

29/hlh-28(RNAi) animals laid a significantly higher percentage of

unfertilized oocytes than either wild-type or single mutant animals

(Fig. 3B,C). Additionally, brood sizes were significantly reduced in

hlh-29(tm284), ipp-5(sy605), and lfe-2(sy36) animals when

compared to wild-type, and were reduced further in ipp-5(sy605);

hlh-29/hlh-28(RNAi) and lfe-2(sy36);hlh-29/hlh-28(RNAi) animals.

These results show genetic interactions between hlh-29 and ipp-5

and between hlh-29 and lfe-2, and we suggest that they are

representative of the phenotypes that would be expected in either lfe-

2(gain-of-function); ipp-5(loss-of-function) or lfe-2(loss-of-

function); ipp-5(gain-of-function) animals.

The percentage of unfertilized oocytes in hlh-29(tm284)

animals does not change significantly upon treatment with hlh-

29/hlh-28 RNAi, suggesting that HLH-29 and HLH-28 do not

function redundantly to control ovulation (Fig. 4A). Interestingly,

the brood size data contradicts this interpretation, as hlh-

29(tm284) animals show significantly larger brood sizes after

treatment with hlh-29/hlh-28 RNAi. One possibility for this

discrepancy would be that RNAi artificially induces egg-laying

via a process that is independent of HLH-29 and HLH-28. We do

Fig. 4. Genetic interactions between hlh-29 and selected IP3 signaling genes. (A) Genetic interactions between hlh-29 and ppk-1. (B) Genetic interactions
between hlh-29 and lfe-2. (C) Genetic interactions between hlh-29 and ipp-5. Dark bars represent the percentage of oocytes (unfertilized) laid on plates out of the total
number of viable, fertilized eggs and unfertilized oocytes. Not included in these numbers were irregularly shaped, inviable eggs and egg fragments. White bars
represent the total brood size, or absolute number of viable, fertilized eggs. Data represent the mean of three experiments, error bars represent standard error of the
mean, N was equal to ten, and significance was determined using single factor ANOVA. All animals were compared to N2 eating control RNAi, except in C where

ipp-5 animals were compared to hlh-29(tm284) animals under the same RNAi conditions. * P-value ,0.05; ** P-value ,0.005; *** P-value ,0.0005.
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not believe this explanation is plausible, however, because brood

size was not increased in hlh-29(tm284) animals subjected to
control RNAi when compared to those that were untreated with
RNAi (compare Fig. 4A to Fig. 4C). We suggest that this result

and the fog-2(q71); hlh-29/hlh-28 (RNAi) results presented above
are indicative of a separate function for HLH-28 in controlling
ovulation events upstream of spermatheca entry and exit.

HLH-29 and HLH-28 affect the morphology of the gonad arm

As mentioned above, animals that are homozygous for hlh-

29(tm284) show variably abnormal morphological defects of the
somatic gonad which became more pronounced when animals

were cultured at higher temperatures. Because our data showed
that hlh-29/hlh-28 RNAi can rescue the brood size phenotype of
hlh-29(tm284) animals, we expected that the gonad morphology

defects would also be rescued. Surprisingly, gonad defects were
more pronounced in hlh-29/hlh-28 RNAi treated hlh-29(tm284)

animals than in untreated animals, though the phenotype was still

variably expressed and incompletely penetrant.
Supplementary material Fig. S2D,E shows an animal
representative of the morphology defects seen in some hlh-

29(tm284) hlh-29/hlh-28(RNAi) animals. To identify genes that

may be targeted by either HLH-29 or HLH-28 during gonad
development, and to determine if HLH-28 and HLH-29 may be
jointly regulating expression of those genes, we compared the

activities of the IP3 signaling genes and the activities of six other
genes whose expression overlapped with hlh-29 in at least two
tissues and that were previously shown to affect reproduction

(supplementary material Table S1A) in hlh-29(tm284) and hlh-

29(tm284) animals treated with hlh-29/hlh-28(RNAi). The
expression of five of these genes was affected in hlh-29(tm284)

animals (supplementary material Table S1B). These genes and
the proteins they encode are: nhr-6, a NR4A nuclear receptor
protein required for spermatheca development (Heard et al.,
2010); emb-9, a Type IV basement membrane collagen required

for embryonic morphogenesis (Guo et al., 1991); sca-1, a calcium
transporting ATPase that is predicted to interact with the IP3

receptor protein, ITR-1 (Nehrke et al., 2008); and two genes

required for gonadal morphogenesis, mig-6, an extracellular
matrix protein (Kawano et al., 2009) and pyp-1, nucleosome
remodeling factor (Ko et al., 2007). We found that the expression

of sca-1, nhr-6, emb-9, and most of the IP3 signaling genes was
similarly affected in RNAi treated animals; however, the
expression of pyp-1, mig-6, and the IP3 signaling pathway gene

let-23, was affected differently in RNAi treated hlh-29(tm284)

animals (supplementary material Table S1C). Altogether, these
results suggest that both HLH-28 and HLH-29 are required for
normal development of the somatic gonad.

Conclusions
Our molecular and genetic data indicate that HLH-29 acts in both
the distal spermatheca valve and the spermatheca-uterine valve to

regulate ovulation by mediating IP3 signaling (Fig. 3B). Previous
studies have identified bHLH proteins as regulators of the IP3

receptor genes in mice (Konishi et al., 1999) and in yeast (Shetty

and Lopes, 2010); however, this is the first to show coordinated
regulation of multiple genes within the IP3 signaling pathway.
HLH-29 is a member of the C. elegans REF-1 family, functional

homologs of HES proteins (Neves and Priess, 2005). Our results,
then, are one of the first to demonstrate the involvement of a HES
protein in the modification and regulation of an adult phenotype

and a possible link between IP3 and Notch signaling in this
organism. These results also underscore the importance of tight
regulation of the IP3 signaling cascade, and demonstrate how IP3

signaling can be modulated at multiple inputs in the pathway.
Previous results show that perturbing any of the genes in this
pathway can have moderate to severe effects on ovulation. HLH-

29 seems to act to increase the levels of IP3, either by activating
the ppk-1 gene, or by repressing lfe-2 and ipp-5, two genes
needed to reduce intracellular levels of IP3. Our gene expression
data also suggest that HLH-29 represses the gene for

phospholipase C e, plc-1. This result contradicts our genetic
data, which strongly correlate with ovulation phenotypes seen in
plc-1 loss of function mutants. One plausible explanation is that

the expression levels reported here are indicative of HLH-29
dependent regulation of plc-1 levels in cells outside of the
spermatheca. Finally, our results indicate that HLH-29 regulates

genes required for the development of the spermatheca and of the
somatic gonad, and are particularly exciting in that they
underscore the ability of HES proteins to regulate tissue
morphology and organ development in larval and adult

animals. This study did not directly address the possible roles
of HLH-28 in reproduction; however, treating either fog-2

animals or hlh-29 animals with hlh-29/hlh-28 RNAi increased

the total number of ovulation events in both strains. These results
suggest that HLH-28 may negatively regulate ovulation
separately from HLH-29.
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