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Abstract

Digital inequality is one of the most critical issues in the
knowledge economy.  The private and public sectors have
devoted tremendous resources to address such inequality, yet
the results are inconclusive.  Theoretically grounded empi-
rical research is needed both to expand our understanding of
digital inequality and to inform effective policy making and
intervention.  The context of our investigation is a city
government project, known as the LaGrange Internet TV
initiative, which allowed all city residents to access the
Internet via their cable televisions at no additional cost.  We
examine the residents’ post-implementation continued use
intentions through a decomposed theory of planned behavior
perspective, which is elaborated to include personal network
exposure.  Differences in the behavioral models between
socio-economically advantaged and disadvantaged users who
have direct usage experience are theorized and empirically
tested.  The results reveal distinct behavioral models and
isolate the key factors that differentially impact the two
groups.  The advantaged group has a higher tendency to
respond to personal network exposure.  Enjoyment and confi-
dence in using information and communication technologies,
availability, and perceived behavioral control are more
powerful in shaping continued ICT use intention for the
disadvantaged. Implications for research and practice are
discussed.

Keywords:  Digital divide, digital inequality, IT policy,
technology acceptance, socio-economic inequality
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Introduction

The Internet represents tremendous opportunities for ad-
vancing social, economic, educational, and governmental
development (U.S. Advisory Council on the National Infor-
mation Infrastructure 1996).  However, digital inequality
between individuals with different  backgrounds prevents the
socio-economically disadvantaged from exploring digital
opportunities (Lenhart 2002; OECD 2001).  Digital
inequality, in this research, refers to inequality in the access
and use of information and communication technologies
(DiMaggio et al. 2004).  Survey studies have indicated that
digital inequality exists across a variety of demographic,
ethnic, and geographic dimensions (Katz and Aspden 1997;
Lenhart 2002; NTIA 1998, 1999, 2000, 2002; OECD 2001).
Among these dimensions, income and education—which
suggest one’s socio-economic status—have exhibited the
most significant power in distinguishing use or nonuse of
information and communication technologies (ICT) (Jung et
al. 2001; Lenhart 2002).  Other factors also tend to correlate
with these two.  Thus, in this study, we use income and
education to differentiate between the socio-economically
advantaged and disadvantaged and focus on their behavioral
differences in using ICT.

Digital inequality is a substantial global problem, even in
developed countries such as the United States.  Quite ironi-
cally, the United States (birthplace of the Internet) has fallen
behind in the household adoption of high-speed Internet.  One
reason for this is digital inequality.  Ranked fourth worldwide
by OECD in 2001, U.S. high-speed Internet penetration
slipped to twelfth in 2006.  In a similar ranking by Inter-
national Telecommunication Union, the United States slipped
from thirteenth in 2004 to sixteenth in 2005.  This relative
slowdown in high-speed Internet penetration signals a prob-
lem that may threaten future U.S. economic development,
governmental efficiency, social structure, and ultimately the
ability to compete in the global market.

Digital inequality is a complex, multifaceted, problem and
there is growing recognition that material, cognitive, and
social resources are required to address it effectively (De
Haan 2004; Payton 2003; Van Dijk and Hacker 2003).  Much
of the previous research on digital inequality has focused on
descriptively profiling adoption rates, or the extent of ICT
access, among advantaged versus disadvantaged groups (De
Haan 2004; DiMaggio et al. 2001).2  While examining trends
in digital inequality is useful, these studies have been cri-

ticized as atheoretical (DiMaggio et al. 2001; Kvasny 2002).
To confront the problem substantively and to guide future
policy initiatives, digital inequality researchers have empha-
sized the importance of developing a theoretical under-
standing of the how and why questions related to the
phenomenon (DiMaggio et al. 2001).  In this research, we
draw on both sociology literature and the theory of planned
behavior to explore differences in continued use behavior
between socio-economically advantaged and disadvantaged
groups in response to a government sponsored initiative to
address digital inequality.

Many people stubbornly cling to the belief that digital
inequality can be solved by addressing a single factor:
technology access (e.g., Kvasny 2002; Van Dijk and Hacker
2003).  As a result, most governmental digital inequality
initiatives have emphasized technology access.  One problem
with these technology-centered initiatives is that they assume
that technology access is the key hurdle to overcome
(DiMaggio et al. 2001; Kvasny 2002).  However, we know
from prior literature, which has examined a variety of ICT
(e.g., e-mail, Windows, e-banking, text editor, Web, etc.), that
providing technology access and creating conditions for its
initial usage is only the first step and does not guarantee
continued intention to use ICT (e.g., Agarwal and Prasad
1997; Bhattacherjee 2001; Davis 1993; Karahanna et al. 1999;
Szajna 1996).  This line of research has indicated that
understanding post-implementation acceptance is essential as
benefits from ICT occur through sustained use.  Consistent
with the research in this literature stream, we use the general
term user acceptance to represent individuals’ continuance
usage intention of the sponsored technology (e.g., Agarwal
and Prasad 1997; Szajna 1996).  To recap, government initia-
tives to implement ICT will not alter the state of digital
inequality unless there is continued use.

Unfortunately, limited theoretical understanding exists on
what it takes to sustain continued use intention among the
socio-economically disadvantaged.  Government policy
makers often make the implicit assumption that the advan-
taged and disadvantaged will respond to the same technology
in similar ways (Hoffman et al. 2001).  But, is this assumption
valid?  Will the drivers of continued use intention be the same
and exert similar influence for the advantaged and the
disadvantaged when they are provided access to the same
technology?  The purpose of this study is to gain a better
understanding of user acceptance of ICT provided to citizens
through a governmental digital inequality initiative.  Toward
this end, we investigate differences in the underlying factors
affecting continued use intention for socio-economically
advantaged and disadvantaged groups by comparing their
behavioral intention models.  The above discussion leads to
our major research question:

2Adoption in most digital inequality literature refers to having ICT access
(e.g., NTIA 2000, 2002); similarly, adopters, or “the haves,” usually refers
to individuals who have ICT access.
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In the context of governmental digital inequality
initiatives that provide ICT access, how do the
overall behavioral models for continued use com-
pare for the socio-economically advantaged and
disadvantaged?

Theory, Research Model,
and Hypotheses

Digital Inequality

Norris (2001) argued that digital inequality relates to deeper
patterns of social inequality.  While there exist various forms
of social inequality, DiMaggio et al. (2004) specifically
indicated the need to investigate socio-economic inequality
among those who have ICT access.  They urged scholars to
examine whether people with different socio-economic
backgrounds have different behavioral patterns and whether
these behavioral differences may diminish once everyone has
easy access to ICT.  When it comes to understanding digital
inequality, the focus on socio-economic inequality is quite
reasonable, especially given that income and education exert
the most power in explaining use and nonuse (Jung et al.
2001; Lenhart 2002).

Socio-economic inequality has been associated with
differential behavioral patterns in such fields as sociology,
marketing, education, health psychology, and child develop-
ment.  Socio-economic status essentially brings about a
synergy of social and economic forces that derive from assets
internal to individuals and resources contained in their
surrounding environments (Bornstein and Bradley 2003).
Life factors such as income, education attainment, health
status, unemployment rate, mortality rate, and so on tend to
correlate and be distributed unequally across the socio-
economic continuum in a gradational pattern that is unfavor-
able to the socio-economically disadvantaged (Bornstein and
Bradley 2003; Williams 1990).  Consequently, these distinc-
tions have been construed as internal and external resources,
or constraints, that, together, shape experiences and oppor-
tunities, living and working conditions, place in society, and
even ways in which the world is viewed (Mayer and Buckley
1970; Williams 1990).  What is especially challenging for the
disadvantaged is that when encountering constraints in these
resources, factors related to behavioral control can have more
serious behavioral consequences than would be experienced
by the socio-economically advantaged, leading to an unequal
impact that further marginalizes the disadvantaged (e.g.  Fan
and Eaton 2001; Kessler 1979; Krause and Stryker 1984,
Wheaton 1985; Williams 1990).

In this research, we view digital inequality from a socio-
economic perspective; and the behavior of interest to us
relates to the continued use of ICT after the technology has
been made available.  Surprisingly, the phenomenon of digital
inequality has seldom been studied from the theoretically rich
perspective of ICT acceptance.  Consistent with calls for more
theory-based research into the psychological factors affecting
digital inequality (DiMaggio et al. 2001; Jackson et al. 2001),
we use a theory of planned behavior (TPB) perspective to
identify and compare post-implementation behavioral inten-
tion models for the socio-economically advantaged and disad-
vantaged.  The basic TPB model was elaborated to tap into
the complex social and behavioral aspects associated with the
digital inequality phenomenon.

Theory of Planned Behavior as the
Theoretical Framework

Psychological theories, such as the technology acceptance
model (TAM), the theory of reasoned action (TRA), and the
theory of planned behavior (TPB), have been applied to study
ICT acceptance, including post-implementation ICT accep-
tance by individuals who have interaction experience with the
technology (i.e, Davis 1993; Hong et al. 2006; Szajna 1996;
Taylor and Todd 1995a).  Since digital inequality concerns
disproportionate ICT innovation behavior, psychological
theories for ICT acceptance provide an excellent base to
advance theoretical development of this phenomenon.  Speci-
fically, TPB is suggested as an ideal framework for under-
standing ICT acceptance in homes (Venkatesh and Brown
2001), as well as acceptance by individuals who have had
some usage experience (Taylor and Todd 1995a).  TPB
suggests that attitudes (A), subjective norms (SN), and
perceived behavioral control (PBC) will influence the indi-
vidual’s behavioral intention, which will in turn determine the
individual’s behavior (B).  Unlike other theories that have
been applied to examine ICT acceptance (e.g., TRA and
TAM), TPB captures information about social and behavioral
control factors (Mathieson 1991; Taylor and Todd 1995b).
As these factors are crucial to understand digital inequality
(Kvasny 2002), TPB serves as an ideal theoretical foundation
for this study.

In this study, we are concerned with causal mechanisms that
shape continued use intention in a volitional use context.
Specifically, the context is one where, through the implemen-
tation of an initiative designed to address digital inequality,
individuals have not only received the technology and infor-
mation about it but also have direct experience with the use of
the  technology.  These conditions, then, enable individuals to
form stable behavioral intentions for continued use in the
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future.  While behavioral intention is the best predictor for
future behavior when the behavior is volitional and the
individual has the information to form stable behavioral
intentions (Ajzen 1991; Karahanna et al. 1999; Sheppard et al.
1988), some researchers have recommended investigating
actual behavior (e.g., Kim and Molhotra 2005).  This may be
especially useful when investigations are concerned with the
causal mechanisms other than behavioral intention that
influence behavior in non-volitional or quasi-volitional con-
texts or when the focus is on the consequences of ICT use.
Figure 1 presents the research model with continued use
intention specified as the dependent variable of interest.  TPB
is displayed in Block 1.  Table 1 lists construct definitions and
sources.

Consistent with TPB, attitude should affect continued use
intention for both the advantaged and the disadvantaged.
However, it is also important to consider Triandis’s (1971)
argument that the impact of social norms decreases once
behavior takes place.  After gaining direct experience, indi-
viduals turn to their own experience to evaluate behavioral
consequences, and rely less on referents’ opinions.  In the
context of ICT, evidence has shown that the influence of SN
on behavioral intention attenuates after individuals have used
the technology, as their attention shifts more toward outcome
expectations (Karahanna et al. 1999).  Thus prior research
would suggest that for individuals who have usage experi-
ence, attitude should have a stronger impact on continuance
intention than SN (i.e., $1 > $2 as in Figure 1).

Our first hypothesis relates to the differential effect of PBC on
continued use intention for the advantaged and disadvantaged.
Prior work has suggested that socio-economic status can
moderate the relationship between behavioral control and its
consequences (Hoffman 2003; Kessler 1979).  For example,
comparably stressful events can have more serious influence
on the socio-economically disadvantaged (SED) than their
advantaged peers (Kessler 1979).  Stressors, such as divorce,
lack of parental supervision, or chronic illness, have a
stronger negative impact on children from disadvantaged than
advantaged socio-economic backgrounds (Fan and Eaton
2001; Hoffman 2003).  It is also the case that the socio-
economically disadvantaged (SED) with poor health habits
have worse health than the socio-economically advantaged
(SEA) who exhibit the same health behaviors (Pratt 1971).
The core argument is that equivalent levels of sense of control
differentially impact the socio-economically advantaged and
disadvantaged groups, and constrain the disadvantaged more
(Krause and Stryker 1984; Wheaton 1985; Williams 1990).
While sense of control describes one’s expectancy about
control over life behavior in general, perceived behavioral
control in TPB refers to control over a specific behavior of

interest (Ajzen 1991).  Although the target behavior may dif-
fer in scope, both concepts concern individuals’ belief in their
ability to control behavior.  Accordingly, we expect PBC to
have a greater influence on continued use intention for the
socio-economically disadvantaged than for the socio-
economically advantaged.

H1: Socio-economic status will moderate the
positive relationship between perceived behav-
ioral control and continued use intention such
that the relationship is stronger for the SED
group than for the SEA group.

Decomposing TPB

Following Taylor and Todd (1995b) and Venkatesh and
Brown (2001), we decomposed the three TPB belief
constructs.  This decomposition can generate managerial
information about specific factors that influence continuance
intention.  With the aim of providing guidance to policy
makers in the formulation of initiatives to address digital
inequality, we decomposed the TPB belief constructs to
reflect specific underlying factors based on a detailed
literature review.

The Attitudinal Belief Structure (Block 2)

Drawing on motivation theory, Davis et al. (1992) differen-
tiate between extrinsic motivation and intrinsic motivation for
ICT usage.  In their study of the determinants of ICT accep-
tance at home, Venkatesh and Brown (2001) identified two
key attitudinal beliefs:  utilitarian outcomes (UO) and hedonic
outcomes (HO) (see Table 1 for construct definitions).3  Utili-
tarian outcomes refers to the expected utility gained by using
the technology.  Individuals’ attitudes toward using an ICT
will change as their evaluation of the behavioral outcomes
changes (Davis 1989; Davis et al. 1989).  Hedonic outcomes
refers to the enjoyment derived from the process of using an
ICT (Venkatesh and Brown 2001).  IS researchers have
pointed to the importance of the hedonic aspect of ICT usage
as a determinant of household ICT innovation behavior (e.g.,
Van der Heijden 2004; Venkatesh and Brown 2001).  For de-
cades, researchers in consumer behavior have acknowledged
that people have differential dispositions toward utilitarian or
hedonic behaviors (e.g., Holbrook 1986; Venkatraman and
MacInnis 1985).  Recent digital inequality studies have also
found that the socio-economically disadvantaged, particularly

3UO approximates the concept of perceived usefulness.
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Figure 1.  Research Model

those with lower education attainment, tend to use ICT more
for entertainment purposes, while the advantaged tend to use
ICT in an instrumental way (Bonfadelli 2002; Shah et al.
2001).

A theoretical explanation for the differential nature of ICT
usage by the socio-economically advantaged and the socio-
economically disadvantaged is that the pleasure and satisfac-
tion derived from using a technology is more important for the
disadvantaged, whereas the utility obtained from using a tech-
nology is more critical for the advantaged.  As the SEA are
better educated and tend to have more access to and experi-
ence with ICT (Norris 2001; NTIA 1999), they are in a better
position than the SED to appreciate utilitarian ICT usage.
Moreover, the SED exhibit greater tendencies than the SEA
for hedonic activities, such as gambling and substance abuse,
to avoid life difficulties that they believe to be out of their
control (Parker and Endler 1996).  As the hedonic use of ICT

permits people to immerse in a virtual world and escape from
reality (Venkatesh and Brown 2001), we suggest the SED will
place more importance on the hedonic impact of ICT use than
the SEA.  Thus, in determining ICT innovation behavior,
utilitarian outcomes may have a higher impact for the socio-
economically advantaged, while hedonic outcomes may have
a higher impact for the socio-economically disadvantaged.  

H2: Socio-economic status will moderate the posi-
tive relationship between utilitarian outcomes
and attitude such that the relationship is
stronger for the SEA group than for the SED
group.

H3: Socio-economic status will moderate the posi-
tive relationship between hedonic outcomes and
attitude such that the relationship is stronger
for the SED group than for the SEA group.
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Table 1.  Construct Definitions and Sources
Construct Definition Sources that Inform Construct

Attitude Individual’s evaluation of the behavior of interest Ajzen 1991; Ajzen and Madden 1986

Utilitarian Outcomes
(UO)

The extent to which performing the behavior
enhances the effectiveness of personal related
activity

Davis 1989; Rogers 2003; Venkatesh
and Brown 2001

Hedonic Outcomes (HO) The pleasure and inherent satisfaction derived from
performing the behavior of interest

Davis 1989; Venkatesh 1999;
Venkatesh and Brown 2001

Subjective Norms (SN) The perceived expectation from an individual’s key
referents to perform the behavior of interest

Ajzen 1991; Ajzen and Madden 1986

Family, Relatives,
Friends, and Peers’
Influence

The perceived expectation from family, relatives,
friends and peers for an individual to perform the
behavior of interest 

Karahanna et al. 1999; Venkatesh and
Brown 2001; Taylor and Todd 1995b

Governmental Influence The perceived expectation from the government
institutions for individuals to perform the behavior of
interest

Lynn et al. 1995; Keil et al. 2003;
Kvasny 2002

Perceived Behavioral
Control (PBC)

An individual’s perception of existence or
nonexistence of required resources and opportunities
to perform the behavior of interest

Ajzen 1991; Ajzen and Madden 1986

Self-Efficacy (SE) The belief in one’s capabilities to organize and to
execute the course of action required to attain a goal

Bandura 1977; Compeau and Higgins
1995

Perceived Ease of Use
(PEOU)

The degree to which an individual believes that
performing the behavior of interest would be free of
effort

Davis 1989; Davis et al. 1989

Availability The availability of the technology to perform the
behavior of interest

Kvasny and Keil 2002; Meader et al.
2002; Taylor and Todd 1995b

Personal Network
Exposure  (PNE)

The proportion of adopters in an individual’s personal
network

Fligstein 1985; Palmer et al. 1993;
Valente 1995

Continued Use Intention The intention to continue using the technology Ajzen 1991

The Normative Belief Structure (Block 3)

Evidence suggests that key members from one’s social
network may exert normative influence upon one’s innovation
behavior (Valente 1995), since they have more chances to
exchange important information (Childers and Rao 1992;
Cocanougher and Bruce 1971).  Such members may include
family, relatives, friends, and peers (Childers  and  Rao 1992).
The subjective norms that shape an individual’s behavior will
be influenced by expectations from these salient referents
(Taylor and Todd 1995b).

H4: Family, relatives, friends, and peers’ influence
will be positively related to subjective norms for
both the SEA and the SED groups.

Government institutions are important in facilitating the
diffusion of ICT innovation (King et al. 1994) and reducing
digital inequality (DiMaggio et al. 2001).  While researchers
have suggested the need to study such effects (DiMaggio et
al. 2001; Kvasny 2002), few digital inequality studies have
examined governmental influence on individual ICT inno-
vation behavior.

Governments that devise initiatives to address digital
inequality generally expect these interventions to help citi-
zens, particularly the disadvantaged, access and use ICT,
develop digital skills for work opportunities, and eventually
attain improvements in quality of life (see Crump and Mcllroy
2003; Kvasny 2002; Van Winden 2001).  Studies have found
that governments may use systematic approaches to raise
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awareness and interest among citizens about these initiatives.
They can use different media channels, including com-
municating directly with citizens, to explain the benefits of
using ICT and to offer training and technical support (e.g.,
Kvasny 2002; Van der Meer and Van Winden 2003).  From
the citizen’s perspective, these institutional efforts to en-
courage and facilitate ICT use convey the message that the
government is committed to their interests and has taken their
needs and requirements into consideration (Kvasny 2002).  In
fact, prior research has revealed that government agencies
may serve as important referents whose expectation affects
individual innovation acceptance (Lynne et al. 1995).  Thus,
governmental expectation may influence individuals’ ICT
innovation behavior.  In this research, the governmental
influence construct captures this perceived governmental
expectation.

H5: Governmental influence will be positively
related to subjective norms for both the SEA
and the SED groups.

The Behavioral Control Belief Structure (Block 4)

Based on the literature review, PBC is decomposed into three
important behavioral control factors:  self-efficacy (SE)
(Taylor and Todd 1995b), perceived ease of use (PEOU)
(Ajzen 1991; Mathieson 1991), and availability (Lenhart
2002).

Self-efficacy has long been suggested as the key determinant
for behavioral control (Bandura 1977) and for ICT implemen-
tation (Compeau and Higgins 1995).  Moreover, Eastin and
LaRose (2000) have argued that self-efficacy is critical in
understanding digital inequality.  Empirically, studies have
revealed that self-efficacy affects ICT usage (Eastin and
LaRose 2000) and that a lack of confidence, or self-efficacy,
is one of the most important factors deterring the disadvan-
taged from accessing and using ICT (see Bishop et al. 2001;
Crump and Mcllroy 2003).  Researchers have also suggested
that psychological factors associated with an individual’s
sense of control may affect the socio-economically disadvan-
taged to a greater degree than the socio-economically
disadvantaged (e.g., Kessler 1979; Krause and Stryker 1984;
William 1990).  For example, studies have shown that self-
efficacy plays a more important role in affecting perceived
health and depression for those in difficult socio-economic
conditions than those who are better off (Schwarzer and
Jerusalem 1995).  Following this logic, SE should have a
stronger influence on PBC for the disadvantaged.

H6: Socio-economic status will moderate the posi-
tive relationship between self-efficacy and per-

ceived behavioral control such that the rela-
tionship is stronger for the SED group than for
the SEA group.

Ajzen and his colleagues (Ajzen 1991; Ajzen and Madden
1986) claimed that PBC is related to the perceived ease or
difficulty in conducting a behavior.  Specifically, Ajzen
(1991) noted that PBC “refers to people’s perception of the
ease or difficulty of performing the behavior of interest” (p.
183).  Most IS studies in the past have positioned PEOU as an
attitudinal determinant (e.g., Davis 1989).  Some have alter-
natively suggested that PEOU is associated with behavioral
control (e.g., Mathieson 1991; Venkatesh 2000).  The logic
for this association is that the ease or difficulty of ICT use
affects individuals’ beliefs about the control they have on the
use of the technology.  Recent empirical evidence also sup-
ports this view of PEOU being associated with behavioral
control in the contexts of home PC acceptance (Brown and
Venkatesh 2005; Venkatesh and Brown 2001) and of elec-
tronic commerce (Pavlou and Fygenson 2005).  Consistent
with this stream or research, we treat PEOU as a behavioral
control belief.

Technological complexity is one major barrier that causes
ICT nonuse (Lenhart 2002), and people strongly desire easy-
to-use technologies (Katz and Aspden 1997).  When facing a
difficult challenge, the advantaged, relative to the disadvan-
taged, can more flexibly and effectively cope with issues to
neutralize downside effects (Fan and Eaton 2001; Kessler
1979; Pearlin and Schooler 1978).  In this vein, when inter-
acting with an ICT, the relatively higher educational attain-
ment of the advantaged should enable them to more flexibly
cope with the complexity embedded in the technology, thus
minimizing the impact of the difficulty or ease in operating
the technology on their perceived control.  Therefore, PEOU
should have a stronger impact for the socio-economically
disadvantaged than the advantaged.

H7: Socio-economic status will moderate the posi-
tive relationship between perceived ease-of-use
and perceived behavioral control such that the
relationship is stronger for the SED group than
for the SEA group.

Prior digital inequality studies have indicated that cost and
availability are barriers that prevent people, especially the
disadvantaged, from successfully using ICT (Lenhart 2002).
Given that government digital inequality initiatives tend to
subsidize the financial expenditure of ICT access, this study
focuses on the availability issue.

Availability, or the accessibility of the technology when
needed, represents another behavioral barrier, especially for
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the socio-economically disadvantaged.  In many situations,
technological access is provided in theory; but in practice, the
technology may not be available when people want to use it.
In a study about the use of a computer resource center, Taylor
and Todd (1995b) suggested that if there were not enough
computers available for all the students who wanted to use the
center concurrently, this might represent a barrier for ICT use.
Therefore, when there are more users than units of tech-
nologies, or the competition for access is high, availability
can surface as a behavioral barrier.  If such availability con-
straints emerge for ICT implemented through a governmental
digital inequality intervention, the disadvantaged’s lower
disposable economic and material resources, in comparison to
the advantaged’s, puts them in a weaker position to address it.
Such a constraint is, therefore, expected to have a greater
influence on PBC for them.

H8: Socio-economic status will moderate the posi-
tive relationship between availability and per-
ceived behavioral control such that the rela-
tionship is stronger for the SED group than for
the SEA group.

Personal Network Exposure

Since innovations often involve uncertainty and many innova-
tions have low visibility, an individual’s innovative behavior
can be influenced strongly by how other members in that
individual’s personal network respond to the innovation
(Valente 1995, p. 70).  Valente (1995) proposed the construct
personal network exposure (PNE) which represents the cumu-
lative proportion of adopters in one’s personal network.
While subjective norms in TPB captures one aspect of social
influence, it does not capture the aggregate personal network
exposure.  Further, subjective norms focus solely on the
“expectation” from “important others,” while PNE accounts
for the “observed” aggregate behaviors in one’s overall
personal network.  Therefore, PNE is conceptually distinct
from subjective norms.  

Valente contended that the larger the proportion of individuals
in one’s personal network that are engaged in an innovation
behavior, the more likely it is that the individual will take on
the same behavior.  The direct effect from personal network
exposure to continued use intention represents this causal
mechanism.  The concept of perceived critical mass intro-
duced by Lou et al. (2000) and Li et al. (2005) represents a
related construct, which refers to the degree to which a person
believes that most of his or her peers are using a particular
innovation (Lou et al. 2000).  As in the case of PNE, individ-

uals with a higher perceived critical mass will have a greater
intention to continue using the technology (Li et al. 2005; Lou
et al. 2000).  

We offer two reasons—one relates to prior experience and the
other relates to education—on why personal network expo-
sure should have a stronger effect on the socio-economically
advantaged than the disadvantaged.

First, individuals have a tendency to interpret information in
a way that is more congruent with their prior experience and
preexisting knowledge structure (Bobrow and Norman 1975;
Klapper 1960).  Studies have found the SEA in general have
greater ICT access and use (Lenhart 2002; NTIA 1998, 1999,
2000); and the SED tend not to view ICT as a priority of daily
living, especially those for whom life is a day-to-day struggle
(Crump and Mclloy 2003).  Arguably, as the SEA are
generally more familiar with ICT relative to the SED,
information about ICT innovation, such as from personal
networks, should be more consistent with their experience and
knowledge structures.

Second, the higher education of the SEA relative to the SED
allows them to more readily access and comprehend
information signals related to ICT innovations (De Haan
2004).  Their education facilitates the absorption and com-
prehension of information (Hilgard and Bower 1975), such as
from personal networks, and makes them more responsive to
innovation triggers that require thought stimulation and
cognitive effort (Venkatraman and Price 1990).

The above arguments on prior experience and resource
conditions suggest that the SEA may be more susceptible to
the influence of personal network exposure than the socio-
economically disadvantaged.

H9: Socio-economic status will moderate the posi-
tive relationship between personal network
exposure and continued use intention such that
the relationship is stronger for the SEA group
than for the SED group.

Control Variable

The existence of an alternate mode of Internet access in the
household may reduce an individual’s need to use whatever
Internet access is offered through public policy interventions
aimed at addressing digital inequality.  Since a PC is the
dominant mode of household Internet access, the ownership
of an Internet PC was measured and used as a control variable
for continued use intention.
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Research Method

The Free Internet TV Initiative in
LaGrange, Georgia

LaGrange, with a population of 27,000, is located 60 miles
southwest of Atlanta, Georgia.  The LaGrange city govern-
ment, unlike most municipal governments in the United
States, finances their operation by collecting sales tax and
generating revenue by providing services without charging
property tax (Keil et al. 2003; Meader et al. 2002).  The
services offered include electricity, natural gas, sanitation, and
telecommunications to both commercial and residential
customers.  In the 1990s, the city government created a two-
way 750 MHz hybrid coaxial and fiber-based system with 18
fiber optic nodes around the city.  Each node further connects
between 500 and 900 households via coaxial cable.  In addi-
tion to cable TV and broadband services offered via this infra-
structure, in April 2000, city officials devised a three-way
contract with the cable company (Charter Communications)
and an Internet service provider (Worldgate Communications)
to use the excess bandwidth to provide an Internet TV service
to every household at no additional cost.  Thus, residents were
able to receive household Internet service without paying
anything beyond the basic cable fee of $8.70 per month.4  One
of the chief aims of this city-wide initiative was to address
digital inequality.

The Internet TV used a television-based Internet access
device.  Subscribers received a free wireless keyboard and
digital set-top-box, which connected the cable and TV.  Users
could use the wireless keyboard to browse the Internet via
their TV.  At the rate of 158 Kbits per second, the connection
speed was nearly three times higher than the typical dial-up
service (56 Kbits/sec).  Subscribers also enjoyed unlimited
access, a free e-mail service, 5 MB of web space, and a
technical support hotline that was available seven days a week
(Keil et al. 2003).  Training was available in the community
center, over cable TV, as well as through the technical support
hotline.  The Internet TV was user-friendly in that users did
not have to install or maintain an operating system or
application programs.  However, the Internet TV did not
allow printing, storing files, or browsing websites that
required software plug-ins (e.g., Adobe Acrobat and Apple
QuickTime).  Users also could not use the Internet TV and
watch TV simultaneously.

The LaGrange Internet TV (LITV) initiative is believed to be
the first project in the world in which a city government
offered free high-speed Internet access and service to every
household (National Public Radio 2000).  Compared to a
typical Internet PC, the Internet TV was easier to use, yet
more limited in its capability.  Still, the Internet TV repre-
sented a chance to connect for those who might not otherwise
explore high-speed household Internet access and all that it
has to offer.  The LITV initiative provided a unique oppor-
tunity to study post-implementation ICT acceptance across
socio-economically advantaged and disadvantaged groups in
response to a government initiative designed to eliminate
economic barriers and provide universal access.  Our interest
here was to evaluate how the behavioral intention models for
continued use differed across the two groups.

Data Collection

A survey instrument was developed to collect the quantitative
data needed for model and hypothesis testing.  For most
constructs in the research model, Likert-type scale items were
adapted from existing measures (see Appendix C).  Following
prior research measuring the proportion of adopters in a social
system (Fligstein 1985; Palmer et al. 1993), a single item
using a 10-level interval scale ranging from 0 to 100 percent
was used for personal network exposure.  The survey instru-
ment was pretested with 20 subjects from LaGrange and
minor modifications were made prior to its full-scale
administration.

In summer 2003, the survey instrument was administered to
all LaGrange households of record who had implemented the
digital set-top boxes needed to use the Internet TV.
According to the city’s records, this included approximately
3,500 households, or 38.9 percent of the 9,000 eligible
households.  The survey was mailed to each household where
the LITV had been implemented, with two waves of reminder
postcards mailed one week and three weeks after the initial
survey.  The adult member of the household who had used
LITV the most was requested to respond to the survey.

In all, 526 residents responded to the mail survey, indicating
that the government had implemented the technology within
their homes and that they had used it, yielding a raw response
rate of 15.03 percent.5  Adjusting for the number of non-

4Because of poor reception of broadcast TV signals in LaGrange, the
majority of the population has the cable connection.  In those few cases
where a household wanted to use LITV but could not afford the cable fee, the
city was willing to provide free cable connection.

5As indicated by some researchers, the general response rate for mail survey
of the general public has been decreasing to lower than 20%, 15%, and even
10% in the past few decades due to the increasing use of this method
(Harbaugh 2002; Steeh 1981).  This decline has also been seen in some IS
research (Pinsonneault and Kraemer 1993; Ravichandran and Rai 2000).
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deliverable surveys, the overall adjusted response rate was
19.5 percent.  Finally, after excluding cases with missing or
incomplete responses, 451 complete and usable surveys were
retained for quantitative analysis.  A total of 96 percent of the
respondents reported first using LITV at least one year prior
to the data collection, and the remaining 4 percent first used
it between two and six months prior to the data collection.
Thus, all respondents had direct experience with the tech-
nology for a sufficient time to formulate stable intentions of
their future LITV usage.

To investigate possible nonresponse bias, a wave analysis was
conducted to compare the indicators of key constructs as well
as demographic profiles between the early and late respon-
dents.  Since the second wave postcard reminder was mailed
three weeks after the initial mail, subjects responding within
three weeks were classified as early respondents, while those
responding later than three weeks were classified as late
respondents.  A t-test of the key variables collectively showed
that the late respondents were quite similar to the early ones,
suggesting that if there is any nonresponse bias, it would be
minimal.

To further examine the issue of nonresponse bias, we adopted
the general procedure used by Ravichandran and Rai (2000).
Telephone interviews were conducted with 140 randomly
sampled nonrespondents.  Interviewees were asked about
reasons for nonresponse.  The top three reasons for non-
response were (1) did not like to fill out any survey or threw
it away (28 percent), (2) did not receive survey (27 percent),
and (3) too busy and did not have time to complete the survey
(14 percent).  The main reasons given for nonresponse were
general issues that would be expected in any survey research
and were not topic relevant.  However, a small portion of non-
respondents’ reasons might be specific to the survey theme,
such as “did not know anything about computers” (2 percent),
and/or “did not like LITV” (5 percent).  While caution should
always be exercised when generalizing from survey data,
there appears to be little or no evidence of a threat from
nonresponse bias.

As discussed earlier, income and education, which suggest
one’s socio-economic status, have proven to be strong pre-
dictors for ICT use (Jung et al. 2001; Lenhart 2002).  These
two variables6 were therefore used to classify subjects as
socio-economically advantaged or disadvantaged using
Ward’s method of hierarchical cluster analysis (Hair et al.
1998).  The analysis yielded two clusters with 307 socio-
economically advantaged subjects in one and 144 disad-

vantaged subjects in the other.  As expected, a comparison of
the two groups’ profiles reveals considerable difference (see
Tables 2 and 3).  The socio-economically disadvantaged
relative to the advantaged were more likely to have lower
income and education level and consist of more elder and
younger, African American, and female individuals.  Such a
profile is consistent with the findings in most national surveys
(NTIA 1998, 1999, 2000, 2002).

Next, to verify the representativeness of the respondents, in
terms of income and education, and that of the classified
advantaged and disadvantaged, two additional analyses were
performed.  Public data containing the median household
income and average education level for each census block in
the city of LaGrange were acquired from the U.S. Census
Bureau.  The correlations of household income, as well as
education level, between the survey and census data across all
census blocks were calculated.  The high correlation values
obtained (Table 4) support the representativeness of the
survey respondents relative to the LaGrange population.

To further evaluate the representativeness of the extracted
clusters, a ratio of the number of advantaged respondents to
the number of the disadvantaged for each block group was
computed.  In effect, this ratio characterizes the socio-
economic status of a block group.  As can be seen in Table 5,
the ratio demonstrated high correlation with both the census
median household income and average education level across
all block groups, indicating that the extracted clusters are
representative of the advantaged and disadvantaged groups in
the city of LaGrange.

Data Analysis and Results

Measurement Model

Partial least squares (PLS), which uses component-based esti-
mation, maximizes the variance explained in the dependent
variable, does not require multivariate normality of the data,
and is less demanding on sample size (Chin 1998).  For these
reasons, PLS-Graph 3.0 was used for the data analysis.  The
measurement and structural models were first evaluated
separately for the socio-economically advantaged and
disadvantaged groups, before cross-group comparisons were
conducted.

For the measurement model, each construct was modeled to
be reflective, with one exception:  FRPF is modeled as forma-
tive.  Its items, which tap into influence from friends, family,
relatives, and peers, do not necessarily have to covary, are not
interchangeable, and the direction of causality is from the
items to the latent construct (Jarvis et al. 2003).

6Both income and education level were operationalized as ordinal scales.  No
indication of nonresponse bias was observed on these two variables.
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Table 2.  Descriptive Statistics of Respondents
Disadvantaged Advantaged

Household Income
< 10,000 28.8% 0.0%
10,000 – 14,999 23.7% 0.0%
15,000 – 24,999 38.1% 4.3%
25,000 – 34,999 8.5% 14.5%
35,000 – 49,999 0.9% 22.7%
50,000 – 74,999 0.0% 22.7%
75,000 – 99,999 0.0% 14.2%
> = 100,000 0.0% 21.6%
Education Level
Some Elementary/High School 20.9% 0.0%
High School Diploma 64.4% 26.2%
College Degree 14.7% 42.4%
Post Graduate 0.0% 31.4%
Age
18 – 30 11.4% 5.7%
31 – 40 15.0% 12.2%
41 – 50 19.3% 26.1%
51 – 60 14.3% 22.7%
> 60 40.0% 33.3%
Gender
Male 18.6% 44.3%
Female   81.4% 55.7%
Ethnic Group
White American 15.9% 40.3%
African American 81.8% 53.5%
Other 2.3% 6.2%

Table 3.  Comparison of Demographics between Disadvantaged and Advantaged
Test Mann-Whitney Test Chi-Square Test
Statistics Z-Score Sig. Chi-Square Sig.
Income -15.22 0 Not Applicable
Education -10.97 0 Not Applicable
Age -0.22 0.824 Not Applicable
Gender Not Applicable 48.01 0
Ethnic Not Applicable 55.14 0



Hsieh et al./Understanding Digital Inequality

108 MIS Quarterly Vol. 32 No. 1/March 2008

Table 4.  Correlation Between Survey and Census Data Across All Block Groups
Dimension Correlation

Median Household Income (Survey Data versus Census Data) 0.83

Average Education Attainment (Survey Data versus Census Data) 0.85

Table 5.  Correlation between Advantaged Versus Disadvantaged Ratio and Census Data 
Dimension Correlation

Ratio (# of advantaged / # of disadvantaged) versus Median Household Income  (Across 30 block
groups)

0.81

Ratio (# of advantaged / # of disadvantaged) versus  Average Education Attainment  (Across 30
block groups)

0.84

For all constructs, the internal consistency and convergent
validity were evaluated by examining the item–construct–
loading, composite reliability, and average variance extracted
(AVE).7  For individual item reliability, item loadings are
higher than 0.707 (Chin 1998) (see Appendix A).  As shown
in Table 6, the values of composite reliabilities are all higher
than 0.707 (Nunnally and Bernstein 1994), and values of
AVE are all above 0.50 (Fornell and Larcker 1981).  Next,
discriminant validity was assessed by examining if the
squared correlation between a pair of latent variables was less
than the AVE associated with each construct (Appendix B1
and B2).  Furthermore, we calculated item cross-loadings
based on the procedure recommended for PLS (Gefen and
Straub 2005).  Each item loaded higher on its principal
construct than on other constructs (Appendix A).  While
cross-loadings derived from this procedure will be inevitably
higher than from typical exploratory factor analysis (Gefen
and Straub 2005), the cross-loading differences were much
higher than the suggested threshold of 0.1 (Gefen and Straub
2005).  These results collectively suggest good measurement
properties for both groups.  Table 6 also lists the means and
standard deviations for constructs.

Structural Model

With an adequate measurement model in place, the structural
model was independently tested for socio-economically
advantaged and disadvantaged groups.  A bootstrap analysis
was performed with 500 subsamples, with sample size set
equal to the SEA and SED sample sizes (n = 307 and n = 144,
respectively).  The resulting models for both groups explained
a significant amount of variance in the dependent and
mediating variables.  Figure 2 presents the standardized path
coefficients and the explained construct variances.

As noted earlier in the theory section, the proferred knowl-
edge from the technology acceptance literature is that atti-
tudes play a greater role than social norms in shaping the
behavioral intention for individuals who have had direct
experience in using the technology.  While we requested
respondents who had used LITV the most in the household to
participate in the survey, the collected data enabled us to
evaluate the relative influence of attitudes and subjective
norms on continued use intention.  As can be seen in Figure 2,
for both groups, the path from attitude to BI is significant,
whereas the path from SN is not.  In addition, the association
between attitude and BI is indeed significantly higher than the
association between SN and BI (t = 1.97 for the SED; t =2.5
for the SEA).8  This finding is consistent with past studies on
the relative importance of attitude and SN for BI for experi-
enced users, suggesting that the respondents indeed had first-
hand LITV usage experience.

7When formative constructs exhibit high internal consistency, retaining
multiple indicators is problematic due to multicollinearity problems (Jarvis
et al. 2003).  In these situations, such as with FRPF in our case (average
correlation equals 0.92 for the SED, 0.95 for the SEA), a linear composite
based on unit means of indicator scores can be used.  Given the high
correlation among the indicators, this unit mean-based index score is
naturally highly correlated with index scores derived using alternate
weighting schemes (Rozeboom, 1979).  Moreover, the use of unit means, as
opposed to factor scores, is recommended when new measures are used and
transferability is desired (Hair et al, 1998).  Accordingly, we use a unit mean-
based index score for FRPF in subsequent analysis.

8 We used the following equation [T = (rxy – rvy) • sqr ((n-3)(1+ rxv)) / sqr (2
• (1– r2xy – r2vy – r2xv + 2 • rxy • rxv • rvy )), where x = UO, v = HO, y =
ATT, n = sample size],  as per Cohen and Cohen (1983), to compare the
relative strengths of the associations between constructs.
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Table 6.  Descriptive Statistics and Reliability of Constructs

Construct†

Disadvantaged Group Advantaged Group
Mean
(S.D.)

Composite
Reliability AVE‡

Mean
(S.D.)

Composite
Reliability AVE‡

Attitude (3) 5.76 (1.74) 0.99 0.98 4.86 (1.87) 0.99 0.96
Utilitarian Outcomes (4) 5.37 (1.83) 0.99 0.95 4.09 (2.18) 0.99 0.97
Hedonic Outcomes (3) 5.69 (1.85) 0.99 0.98 4.27 (2.26) 0.98 0.97
Subjective Norms (2) 3.83 (2.16) 0.98 0.96 2.74 (2.02) 0.98 0.96
Fam., Rel., Fri., & Peers (1)* 4.01 (2.18) NA NA 2.84 (2.02) NA NA
Governmental Influence (2) 4.23 (2.27) 0.96 0.93 3.81 (2.12) 0.97 0.94
PBC (3) 5.77 (1.59) 0.95 0.85 6.05 (1.49) 0.95 0.87
Self-Efficacy (3) 5.89 (1.68) 0.97 0.92 5.76 (1.73) 0.97 0.92
Perceived Ease of Use(4) 5.49 (1.80) 0.95 0.82 4.96 (1.87) 0.93 0.78
Availability(2) 2.57 (1.73) 0.90 0.82 2.52 (1.55) 0.88 0.79
Continued Use Intention (3) 4.91 (2.37) 0.98 0.95 3.31 (2.55) 0.99 0.96
Personal Network Exposure(1) 0.42 (0.29) NA NA 0.31 (0.26) NA NA
Internet PC Ownership (1) 0.20 (0.40) NA NA 0.66 (0.47) NA NA

*Influence of family, relatives, friends, and peers is a formative construct whose score is computed as a unit mean of four items.
†The number in parentheses indicates the items in the scale. ‡Average Variance Extracted.

Multi-Group Analysis for Differences Across
Advantaged and Disadvantaged Groups

To test our hypotheses associated with differential behavioral
impact, we compared the coefficients of individual paths
between the two structural models.  This analysis is similar to
a test of the moderation effect of socio-economic status on the
path strength across groups.  To do so, it was necessary to
first assess whether the latent constructs were perceived in a
similar fashion between the advantaged and disadvantaged
(Carte and Russell 2003).  An examination of Appendix A
suggests that the loading patterns are the same and factor
loadings are very similar, thus permitting between-group path
comparison.9  Chin (2004) notes that, when variances are not
too different across groups, a t-test can be applied to assess
statistical differences in path coefficients for each pair of
paths.  Alternatively, the Smith-Satterthwait (S-S) test with a
pooled error term should be used if the variance varies pro-
foundly across groups.  Only 2 of the 12 factors exhibit dif-
ferent variance across groups.  Given that the variances are
not too different, we first examined the path differences using
t-tests.  To evaluate the stability of these results when an
assumption of unequal variance is made, we also applied the
S-S test.  The results from the application of the t-test and the

S-S test identify the same set of paths to differ across
groups.10  The direction of the differences (> or <) can be
evaluated by comparing the estimated coefficients from the
two groups.  Six pairs of paths were found to be different
between the groups (Table 7).  Thus, the results of the PLS
analysis provide evidence of the moderation effect of socio-
economic status on the behavioral models for continued ICT
use.

To further investigate the type of moderation effect of SES, to
ensure that the detected moderation was not an artifact of
unequal measurement error across subsamples, and to eval-
uate if the conclusion regarding the type of moderation is
sensitive to nonlinear effects of the predictors on the criterion,
we applied the moderated regression analysis (MRA) proce-
dure proposed by Sharma et al. (1981).  The results of these
analyses provide additional evidence in support of SES
moderating the strength of relationship between identified
criterion and predictor variables (see Appendix F).

In addition to applying moderated regression analysis to vali-
date the moderation effect of socio-economic status, we eval-
uated if the detected moderation was an artifact of the mea-
surement model, which in PLS is idiosyncratic to the sample.
While there is prima facia supporting evidence of identical

9A supplementary measurement invariance analysis was performed to further
validate the similarity of measurement models between the two groups. The
results in Appendix D provide additional support for measurement
invariance.

10Our findings are consistent with Chin’s (2004) assertion that with sufficient
sample size, such as in our scenario, results obtained from the two tests
should be similar.
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Figure 2.  Structural Model

Table 7.  Path Comparison
Path SE Disadvantaged SE Advantaged

H1: PBC  BI 0.27 (0.084)** > 0.05 (0.039)  N.S.
H3: Hedonic Outcome  Attitude 0.46 (0.076)** > 0.30 (0.053)**
H6: Self-Efficacy  PBC 0.58 (0.085)** > 0.33 (0.078)**
H8: Availability  PBC –0.16 (0.078)** > 0.07 (0.069) N.S.
H9:  Personal Network Exposure  BI 0.21 (0.022)** < 0.35 (0.047)**
Control Internet PC Ownership  BI –0.09 (0.067) N.S. < –0.33 (0.057)**

Path coefficient is significant at:  **p < 0.01,  *p < 0.05; N.S.:  Path coefficient is not significant.
a. One-tailed tests were performed as the direction of differences was hypothesized.
b. Availability was operationalized such that a higher value connotes a greater constraint.
c. Numbers in parentheses are the standard errors.
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loading patterns and similar item loadings across the samples
for the SEA and SED, we used the measurement model results
from the other group to compute the latent scores and then
reevaluated the structural models.  In other words, we
computed the latent construct scores for the SEA using the
estimated measurement model (item loadings) of the SED and
then compared the structural models across the two groups.
We repeated this procedure, where we computed the latent
scores for the SED using the measurement model (item
loadings) of the SEA and, again, compared the structural
models across groups.  The results are similar to those
reported earlier, ruling out the threat that the observed moder-
ating effect is due to idiosyncrasy of loadings associated with
the samples.

Finally, given the high proportion of females in the SED
sample, we wanted to rule out the possibility that the modera-
tion results detected earlier were because of gender rather
than socio-economic status.  Prior IS studies have indicated
that the influence of some factors on use intention may vary
according to gender (e.g., Venkatesh and Morris 2000).  To
evaluate the moderation role of gender, we split the sample
and compared the behavioral models of males and females.
Based on these results, there are no common differences
between the behavioral models for females and males and
between the behavioral models for the advantaged and disad-
vantaged, with one exception:  the path from self-efficacy to
PBC is stronger for females than males and for the disadvan-
taged than the advantaged.  Additionally, we compared the
behavioral models of SED and SEA female groups.  The
results reveal similar differences between the behavioral
models for SEA and SED females and those between the
advantaged and disadvantaged with one exception:  there is
no difference in the relationship from self-efficacy to PBC
between the SEA and SED female groups.  Thus, regardless
of socio-economic status, gender moderates the relationship
between self-efficacy and perceived behavioral control.

We took several actions to address the potential threat of
common method bias (CMB).  First, the instrument contains
different scale formats to reduce scale commonality
(Podsakoff et al. 2003).  After data collection, we performed
the Harmon one-factor test recommended by Podsakoff and
Organ (1986).  A factor analysis combining independent and
dependent variables revealed no sign of a single-factor
accounting for the majority of covariance.  Next, following
the recommendation of Podsakoff et al. (2003) and the analy-
tical procedure used by Liang et al. (2007), we added a
common method factor to the PLS model.  The indicators of
all constructs were associated reflectively with the method
factor.  Then, each indicator variance explained by the prin-
ciple construct and by the method factor was computed.  The
results in Appendix E  show that (1) only 3 out of the 31

method loadings are significant, and (2) while the average
substantively explained variance for an indicator is 0.906, the
common method-based variance is only 0.003.  In addition,
results of the structural models demonstrated different levels
of significance for path coefficients.  The above evidence
collectively suggests that common method bias is not a
significant issue in this study.

Discussion

In total, the results support six of the nine hypotheses (Table
8) and reveal six paths with differential impact between the
advantaged and disadvantaged groups (Table 7).  Contrary to
our expectations, utilitarian outcomes and PEOU had no
differential impact, and governmental influence did not
influence subjective norms for either group.

Attitudinal Influence and Antecedents

In line with prior studies, attitude had a stronger influence
than SN on continuance intention for our subjects (Figure 2).
In determining attitude, hedonic outcomes, as predicted, was
marginally more influential for the disadvantaged than the
advantaged.  However, utilitarian outcomes had no differen-
tial impact on attitude across groups, and thus H2 was not
supported.  Utilitarian outcomes of ICT can possibly be
classified into different levels of sophistication.  Given the
nature of the technology offered by the government to citizens
in our context, the measurement items of UO focused on
simple ICT functions like communication and information
search.  The results revealed no differential motivational
influence based on socio-economic status toward using ICT
for these basic purposes.  Nevertheless, the hypothesized
differential motivational impact may be more salient for
advanced functions like investment analyses or other complex
analytical tasks, since the SEA are more likely to have greater
exposure to utilitarian applications and to better understand
their potential benefits, thus appreciating these functions more
strongly.  Future research should further examine this
conjecture.

Social Influence:  Subjective Norms
and Personal Network Exposure

Subjective norms was primarily shaped by expectation from
important referents in one’s social network.  In contrast,
governmental influence was not significant for either group,
and thus H6 was not supported.  A post hoc analysis revealed
that when the path from FRPF to SN was removed, govern-
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Table 8.  Hypotheses Testing Results
Type of 

Hypothesis Supported Not Supported

Differential 
Impact Across 
Groups 

Stronger Influence for the Disadvantaged
H1:  PBC  BI
H3:  Hedonic Outcomes   Attitude
H6:  Self-Efficacy  PBC
H8:  Availability   PBC

H7:  PEOU  PBC

Stronger Influence for the Advantaged
H9:  Personal Network Exposure  BI H2:  Utilitarian Outcomes  BI

Same Impact 
Across Groups

H4:  Family, Relatives, Peers, and  Friends’ Influences  SN H5:  Governmental Influence  SN

mental influence significantly affected SN.  Thus, in the
presence of normative influence from one’s key referents,
government influence does not play a key role in shaping
subjective norms.  Importantly and consistent with past
research, once users have directly experienced using the
system, subjective norms is not influential for continued use.

While subjective norms per se was not found to be important,
our results suggest that the social network still affects post-
implementation ICT acceptance through personal network
exposure.  As we hypothesized, the effect of PNE was
stronger for the advantaged than for the disadvantaged.  As
delineated earlier, while SN concerns the expectation from
“important” referents, PNE focuses on “observing” the
aggregate manifest behavior across one’s personal network.
The advantaged did indeed appear to be more sensitive in
responding to such a signal.

Behavioral Control Influence and Antecedents

Consistent with our conjectures, perceived behavioral control
(PBC), self-efficacy, and availability were more critical in
determining continuance intention for the disadvantaged than
the advantaged.  Note that because gender also had a
moderating effect on the path from self-efficacy to PBC, this
relationship needs to be probed further in future research.
Interestingly, the salient negative impact of availability for the
disadvantaged suggests that potential conflict between
household members who wanted to watch TV and those who
wanted to use the Internet TV may have created accessibility
issues.  Our probing of this issue through open-ended face-to-
face discussions with a few respondents from the socio-
economically disadvantaged cluster confirmed that such
conflicts were commonplace among household members, with

each member wanting to use the same device for different
purposes.  The functionality of the TV, once a mass media
appliance, was expanded to serve as a multi-purpose home
device.  The elaborated functionality induced competition for
this resource, which is an issue that has not surfaced in prior
research on ICT acceptance.  Such access-related considera-
tions suggest that even when certain services are free, the
necessity of sharing the ICT in the case of the SED dampens
their perceived behavioral control.  

Contrary to our expectation, perceived ease of use had no
differential influence across groups, thus H8 was not sup-
ported.  One possible reason for this insignificant result may
be the user-friendly design of the Internet TV, which appears
to have addressed the coping challenges that the SED are
likely to face when interacting with ICT that is less user-
friendly.

Regardless of the impact of SE, PEOU, and availability on
PBC, PBC only affected behavioral intention for the disad-
vantaged.  This finding reinforces a key point:  even when the
technology is made available, disadvantaged individuals still
need to deal with psychological and material barriers that are
not addressed directly by technology-centered interventions.

Internet PC Ownership

On average, the advantaged, relative to the disadvantaged,
had a higher level of ownership of Internet PCs (66 percent
versus 20 percent).  This ownership understandably exerted
a damping effect on the advantaged’s intention to continue
using the Internet TV.  Interestingly, the disadvantaged’s
Internet PC ownership had little influence on their contin-
uance intention.  Our face-to-face interviews on this issue
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suggest two possible explanations for the insignificant
relationship.  Some of the disadvantaged, who already had
Internet PCs, wanted to use the Internet TV rather than buying
another computer, so that other family members could use the
existing Internet PC.  In this scenario, the Internet TV served
as an alternative device to meet the high demand for Internet
access within these households.  Some disadvantaged, how-
ever, participated in the LITV initiative because it allowed
them to discontinue their paid Internet service and save the
monthly subscription fee.  Both explanations, to a certain
degree, reflect how the socio-economic status of the disad-
vantaged may have resulted in Internet PC ownership not
having a negative effect on their behavioral intention of
continued use.

Summary

The results suggest very different post-implementation behav-
ioral models, between socio-economically advantaged and
disadvantaged groups, in response to LITV, a government
sponsored digital inequality intervention that emphasized
technology access.  Factors that influenced individuals’ inten-
tion to continue using the technology were different between
the two groups.  Taken as a whole, 58 percent and 40 percent
of the variance in a user’s continuance intention were
explained by the behavioral models for advantaged and disad-
vantaged groups, respectively.  The discrepancy in the ex-
plained variance suggests that there may be additional factors
that are relevant to the disadvantaged that deserve further
consideration.  Such factors may include physical conditions,
emotional variables (e.g., fear and anxiety), employment sta-
tus, family structure (e.g., single parent family), and so forth.

Limitations and Implications

Digital inequality exists across not only individuals but also
nations.  The nature of the inequality may vary tremendously
across countries with different economic development status
(Checchi et al. 2003).  While developed countries like the
United States are eager to stimulate sustained ICT usage,
many underdeveloped nations are still struggling with basic
infrastructure.  People from different countries may also hold
different cultural assumptions toward modern technologies.
Thus, while the findings from this study may be extended to
other similar technology-centered initiatives, the generaliz-
ablity to other nations may be limited to a certain degree.

While digital inequality exists across different socio-demo-
graphic dimensions, we focused on socio-economic status as
the key distinction between advantaged and disadvantaged

groups.  Although it is logical and reasonable to use socio-
economic status for classification since it represents a deep-
rooted inequality in modern society, there may be other
dimensions that are worthy of study.  Future research, for
example, may also look into other groups, such as the dis-
abled, to investigate unique barriers and facilitators of ICT
acceptance.

Today, Internet access is becoming available through a
broader range of devices, including computers, cell phones,
personal data assistants (PDA), Internet TV, and other
emerging technologies.  Although availability of multiple
access mechanisms may influence one’s usage of a specific
innovation, this research, given its focus on ICT innovation
behavior at home, controlled only for the most common form
of Internet access, namely household Internet PC onership.
Future research could shed more light on the impact of all of
these alternative access mechanisms on patterns of home ICT
usage.  

Finally, this research represents a snapshot of the digital
inequality phenomenon.  A longitudinal study tracing indi-
viduals’ pre- and post-implementation behavior may yield a
richer understanding of behavioral patterns, critical factors,
and how these are shaped over time.

Implications for Theory

For digital inequality researchers, this study represents an
important step toward understanding the problem of digital
inequality using a theoretically grounded approach based on
the theory of planned behavior.  This model addresses the
often-cited need to understand the intricacies of user accep-
tance of ICT in the context of digital inequality (Bonfadelli
2002; Van Dijk and Hacker 2003).  It demonstrates that a
TPB-based model can explain a significant amount of vari-
ance in continued use intention both for advantaged and dis-
advantaged groups of a government-sponsored technology
innovation aimed at providing household Internet access.
Most importantly, key between-group differences were theo-
retically deduced and empirically tested.  Thus, from the
standpoint of digital inequality, this study constitutes an
important theoretical contribution to explain the phenomenon.
The observed between-group differences warrant elaboration
and further examination as they represent promising avenues
for insight into differential behavioral patterns and their
causes.

Personal network exposure appears to be a noteworthy factor
that is relevant in the context of digital inequality, suggesting
that researchers should explore other social influence mech-
anisms in addition to subjective norms as well as their collec-
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tive effect.  For instance, information on high aggregate
innovation behavior in the social system provides a cue that
reinforces the social desirability of continued use.  Similarly,
information about the innovation relayed through the mass
media (e.g., TV, radio, and newspapers) exerts another type
of social influence (Rogers 2003; Venkatesh and Brown
2001).  In the early stages of innovation  diffusion, since very
few people have or know about the innovation, mass media
serves as an important information source for early adopters
(Rogers 2003; Valente 1995).

This study also responds to the call for increased attention in
investigating governmental influence on digital inequality
(DiMaggio et al. 2004).  Apparently, the technology-centered
LITV initiative partially achieved its objective by successfully
removing access barriers for citizens.  Meanwhile, expecta-
tions from key referents overshadowed the effect of govern-
mental expectation in shaping subjective norms, even though
these norms had no effect on continued use.  Nonetheless,
besides financial subsidy, technology supply, and normative
expectation, the impact of governmental influence on behav-
ioral intention may operate in other forms such as people’s
trust in the government (e.g., Meader et al. 2002) and training
and support programs (e.g., Kvasny 2002).  These different
forms of influence suggest additional mechanisms that the
government can employ to stimulate user acceptance.  A more
comprehensive conceptualization of possible mechanisms of
governmental influence should further enhance theoretical
development and facilitate effective policy formulation.  For
instance, partnerships between the government and the private
sector, in which the former provides training programs and
the latter provides appropriate applications and infrastructure,
are emerging as potentially powerful mechanisms for ad-
dressing digital inequality.  Illustratively, Project Shiksha, a
Microsoft-sponsored initiative in India, establishes a partner-
ship between state governments, school systems, and Micro-
soft to promote IT literacy and skills among 80,000 teachers
and 3.5 million students in government and government-aided
schools (Microsoft 2006).

Finally, prior digital inequality research has ignored alterna-
tive benefits from ICT usage.  Traditionally, digital inequality
researchers have focused on improving one’s life chances
from technology use.  Thus, when the disadvantaged embrace
technology for “recreational” purposes, it has been viewed as
noncapital-enhancing.  Nevertheless, some researchers have
indicated that recreational use of various kinds of tech-
nologies can have educational value (Prensky 2003), and that
hedonic uses of ICT may result in learning that eventually
contributes to utilitarian outcomes (e.g., Belanger and Van
Slyke 2000).  Thus, given our findings that entertainment
represents a key factor motivating the disadvantaged to use

ICT, and past findings that recreational use represents a
majority of their ICT usage (e.g, Bonfadelli 2002), the value
of entertainment in ICT use deserves careful investigation.
Researchers in digital inequality should tap into the
educational aspect of ICT entertainment and seek to connect
the recreational use to skills and/or opportunities that can
make the disadvantaged better off.

For the field of technology acceptance, our findings suggest
several important theoretical contributions and implications.
First, as Legris et al. (2003) noted, although current ICT ac-
ceptance theories are useful, incorporating additional critical
factors is necessary to improve their explanatory power.  This
study illustrates that TPB can be meaningfully extended
through the addition of personal network exposure, which
captures the behavioral consequences of aggregate social
informational influence.  The addition of the personal network
exposure construct explained 10 percent more of the variance
in the dependent variable.  This strong influence suggests that
aggregate signals about the states and trends of ICT usage can
be used to shape post-implementation intention to continue
use.

Second, the differences in the behavioral models of the SEA
and SED groups, particularly in the continued use context,
shed light on the importance of developing nuanced theories
that can be applied to shape the post-implementation behavior
of specific groups.  Thus, researchers should not only con-
tinue to examine distinctions across diffusion stages but also
evaluate how differences among individuals with different
backgrounds or characteristics impact ICT acceptance.

As the importance of digital technologies range beyond the
scope of organizations, some IS researchers have called for
investigating problems relevant to everyone (Lytras 2005).
Our study is of particular interest and importance in this
respect, as it represents one of the few efforts to investigate
ICT innovation behavior in households and beyond typical
workplace settings.  Specifically, the results identify many
key factors that may not be salient in the context of ICT use
in organizational settings, yet exert significant influence on
individuals’ ICT innovation behavior in the context of digital
inequality.  Behavioral control, for instance, is a critical issue
when cognitive and material resources are of concern.  This
research also identifies a specific form of the social informa-
tional mechanism (i.e., personal network exposure) that can
powerfully affect individuals’ post-implementation behavior.
This result, in particular, extends our understanding from
prior IS research that individuals will rely less on social infor-
mation in shaping ICT behavior after direct interaction with
the technology (e.g., Karahanna et al. 1999, Venkatesh and
Davis 2000).  These findings, as a whole, illustrate the com-
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plexity and dynamics involved in ICT acceptance in non-
workplace settings for the socio-economically advantaged and
disadvantaged.

Implications for Practice

For practitioners, particularly public policy makers and
Internet service providers, understanding what variables affect
post-implementation ICT innovation behavior across groups
is critical to effectively planning and implementing inter-
ventions like the free Internet TV initiative in LaGrange.  This
type of project involves considerable resources from many
stakeholders.  Unsuccessful projects result in a waste of valu-
able resources, which could discourage the government,
residents, and other stakeholders from orchestrating similar
initiatives in the future.  The integrated set of findings from
this research explains why digital inequality interventions
(e.g., the LITV initiative) often fail to achieve high levels of
success.  A policy that focuses not just on reducing or elimi-
nating barriers to technology access but also on comple-
mentary aspects that shape behavioral motivations of
members within targeted groups to continue to use ICT
innovations is essential.

To address digital inequality effectively and economically, we
propose a group alignment strategy to replace the typical
generic policy that treats everyone as the same and offers a
single invariant solution to all populations.  This strategy,
instead, incorporates the behavioral models of different
groups, and configures resources that align with their distinc-
tive needs.  This approach might inevitably incur higher
administration cost for investigating and understanding the
distinctions in behavioral patterns between groups.  Never-
theless, with such knowledge, it entails potentially less imple-
mentation cost since particular resources would be distributed
only to those who need them most.  Such a segmentation and
alignment strategy, we believe, will lead to a more effective
outcome while requiring less total resources.

Based on our analysis of the LaGrange initiative, we believe
that providing access to easy-to-use ICT alone—even at no
cost—is only part of the solution.  The analysis pinpoints
other key factors that affect continued ICT use intention (see
Figure 2).  Understanding these factors and the ones parti-
cularly important for the disadvantaged provide points of
leverage for policymakers and service providers who wish to
address digital inequality and accelerate high-speed Internet
usage in the household.

To devise effective interventions, policy-makers need to
consider personal network exposure, self-efficacy, hedonic

outcome, utilitarian outcomes, PEOU, and availability, as
these offer substantial leverage for the socio-economically
disadvantaged group (Figure 2).  For personal network ex-
posure, one possible avenue to exploit this lever is to establish
mechanisms that enable high exposure to aggregate patterns
of ICT innovative behavior.  It is especially important to
create such signaling mechanisms for the disadvantaged, as
their social networks are characterized by fewer contacts who
are innovative (Putnam 2000).  Opinion leaders, community
centers, and other sources considered to be credible by the
disadvantaged should be effective in relaying information
about aggregate patterns of deployment of the innovation.

Furthermore, to boost the disadvantaged’s confidence in using
ICT, consistent with the self-efficacy literature, interventions
can enable them to repeat successful experiences and learn
vicariously through others’ successful usage, while providing
verbal persuasion when appropriate.  Admittedly, these ap-
proaches may require significant social support.  For example,
verbal persuasion implies human resources that can provide
appropriate oral support and guidance, and vicarious learning
implies circumstances or environments in which group
learning or social exchange can occur.

Moreover, besides the utilitarian advantages of ICT usage,
digital inequality interventions can incorporate services with
special emphasis on the entertainment or hedonic aspect of
usage to attract the disadvantaged.  It is perhaps equally
important to infuse an educational element into such services
so that the disadvantaged can develop useful skills, rather than
just enjoying the technology.  In that way, they may apply the
skills learned for better life opportunities.

Finally, to address the issue of availability will require
significant financial resources.  Consequently, partnerships
among private and public institutions (e.g., federal and state
governments, foundations and philanthropists, and private
corporations) with shared interests in addressing digital
inequality may be effective to deal with this thorny issue.  Of
course, it is imperative that initiatives provide ICT that is easy
to use for members of the targeted group.

Conclusion

Drawing upon the perspective of the theory of planned
behavior, the present research approaches the digital in-
equality phenomenon by comparing the post-implementation
continued use behavioral models between the socio-
economically advantaged and disadvantaged.  This study
empirically examined the two groups’ models of continued
use intention in response to a government initiative that
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offered free high-speed Internet access to every household in
a city.  The findings reveal significant differences in the
behavioral models and identify pivotal factors that shape
continued use of ICT by members of each group.  This study
represents an important step toward developing our theoretical
understanding of the digital inequality phenomenon.  The
results thus provide insights for policymakers to devise
effective interventions to achieve planned outcomes.
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Appendix A

Item-Factor Loadings and Sample Cross-Loadings

SED
Group
Item

Loading

ATT UO HO SN FRPF GII PBC SE PEOU Avail PNE  
U_Int

SEA 
Group
Item

Loading
ATT1 0.99 0.72 0.76 0.46 0.51 0.35 0.27 0.39 0.49 -0.15 0.31 0.47 0.98
ATT2 0.99 0.73 0.78 0.46 0.51 0.33 0.28 0.39 0.51 -0.15 0.32 0.46 0.99
ATT3 0.99 0.78 0.78 0.42 0.48 0.30 0.32 0.44 0.54 -0.12 0.33 0.46 0.97
UO1 0.72 0.98 0.67 0.53 0.56 0.36 0.22 0.37 0.49 -0.09 0.31 0.49 0.99
UO2 0.71 0.98 0.68 0.55 0.58 0.39 0.22 0.34 0.46 -0.06 0.31 0.51 0.99
UO3 0.74 0.96 0.70 0.55 0.59 0.40 0.24 0.37 0.48 -0.06 0.32 0.52 0.98
UO4 0.78 0.98 0.65 0.51 0.55 0.36 0.27 0.40 0.52 -0.06 0.30 0.49 0.98
HO1 0.75 0.69 0.99 0.51 0.56 0.40 0.24 0.39 0.50 -0.03 0.38 0.51 0.99
HO2 0.73 0.70 0.99 0.52 0.57 0.41 0.25 0.41 0.52 -0.02 0.36 0.51 0.99
HO3 0.73 0.70 0.99 0.51 0.56 0.43 0.27 0.42 0.51 -0.02 0.36 0.50 0.99
SN1 0.44 0.55 0.51 0.98 0.78 0.57 0.08 0.16 0.23 0.07 0.37 0.36 0.98
SN2 0.44 0.52 0.50 0.98 0.77 0.57 0.00 0.11 0.20 0.11 0.35 0.30 0.98
FRPF* 0.49 0.57 0.55 0.72 1.00 0.63 0.03 0.17 0.23 0.15 0.37 0.33 1
Gov1 0.31 0.38 0.40 0.59 0.65 0.97 0.07 0.10 0.10 0.21 0.21 0.18 0.97
Gov2 0.33 0.37 0.40 0.54 0.61 0.96 0.10 0.14 0.18 0.17 0.18 0.20 0.97
PBC1 0.27 0.24 0.25 0.06 0.02 0.07 0.94 0.71 0.64 -0.11 0.18 0.36 0.94
PBC2 0.32 0.26 0.27 0.05 0.04 0.07 0.97 0.74 0.69 -0.13 0.17 0.39 0.95
PBC3 0.21 0.18 0.18 -0.01 0.03 0.11 0.86 0.65 0.53 -0.03 0.04 0.30 0.91
SE1 0.37 0.35 0.34 0.13 0.14 0.12 0.71 0.97 0.69 -0.05 0.18 0.51 0.96
SE2 0.41 0.38 0.44 0.15 0.19 0.10 0.71 0.96 0.70 -0.02 0.18 0.53 0.95
SE3 0.40 0.36 0.38 0.13 0.18 0.12 0.70 0.95 0.69 -0.02 0.17 0.50 0.96
PEOU_1 0.42 0.37 0.41 0.11 0.15 0.07 0.73 0.73 0.93 -0.03 0.18 0.41 0.93
PEOU_2 0.39 0.39 0.37 0.14 0.16 0.09 0.61 0.64 0.92 -0.05 0.25 0.33 0.91
PEOU_3 0.58 0.55 0.58 0.25 0.28 0.18 0.57 0.69 0.93 -0.08 0.28 0.41 0.88
PEOU_4 0.52 0.54 0.52 0.35 0.30 0.19 0.53 0.57 0.84 -0.05 0.25 0.40 0.81
Avail_1 -0.21 -0.14 -0.12 -0.02 0.04 0.15 -0.10 -0.05 -0.09 0.91 -0.11 -0.13 0.95
Avail_2 0.02 0.08 0.15 0.23 0.26 0.20 -0.06 0.02 0.02 0.86 0.11 0.12 0.82
PNE 0.32 0.32 0.37 0.37 0.38 0.20 0.14 0.19 0.26 -0.03 1.00 0.40 1
U_Int_1 0.47 0.50 0.51 0.35 0.34 0.20 0.37 0.52 0.40 -0.05 0.40 0.99 0.98
U_Int_2 0.45 0.50 0.47 0.33 0.32 0.17 0.39 0.55 0.45 -0.07 0.38 0.97 0.99
U_Int_3 0.45 0.51 0.51 0.32 0.35 0.20 0.34 0.50 0.39 0.01 0.38 0.97 0.97

PLS item cross-loadings were calculated according to the procedure suggested by Gefen and Straub (2005).  While the cross-loadings for ATT,
UO, and HO are relatively high, the differences between loadings on principal factors and on other constructs are higher than the threshold
suggested by Gefen and Straub.  In fact, only 6 out of the 372 cross-loading differences are between 0.1 and 0.2; all other cross-loading differences
are higher than 0.2.
*FRPF is a formative construct, whose index score is computed as a unit mean of four items.
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Appendix B

Squared Pairwise Correlations and Assessment of Discriminant Validity

B1.  Disadvantaged Group

ATT UO HO SN FPRF
Gov. 
Inf. PBC

Self-
Efficacy PEOU

Avail-
ability PNE Intention

ATT 0.98          
UO 0.73 0.95         
HO 0.69 0.64 0.98        
SN 0.20 0.30 0.26 0.96       
FPRF 0.26 0.34 0.32 0.75 N/A      
Gov. Inf. 0.11 0.15 0.17 0.34 0.43 0.93     
PBC 0.09 0.06 0.06 0.00 0.00 0.01 0.85    
Self-
efficacy 0.17 0.14 0.17 0.02 0.03 0.01 0.60 0.92   
PEOU 0.27 0.25 0.26 0.05 0.05 0.02 0.44 0.54 0.82  
Availability 0.02 0.00 0.00 0.01 0.03 0.04 0.13 0.00 0.00 0.82
PNE 0.11 0.10 0.14 0.14 0.15 0.04 0.02 0.03 0.07 0.00 N/A
Intention 0.22 0.26 0.26 0.10 0.12 0.04 0.14 0.29 0.18 0.00 0.16 0.95

B2.  Advantaged Group

ATT UO HO SN FPRF
Gov. 
Inf. PBC

Self-
Efficacy PEOU

Avail-
ability PNE Intention

ATT 0.96          
UO 0.64 0.97         
HO 0.60 0.76 0.97        
SN 0.29 0.34 0.31 0.96       
FPRF 0.33 0.39 0.33 0.79 N/A      
Gov. Inf. 0.12 0.13 0.12 0.27 0.29 0.94     
PBC 0.04 0.02 0.02 0.00 0.00 0.02 0.87    
Self-
Efficacy 0.09 0.06 0.08 0.00 0.01 0.01 0.40 0.92   
PEOU 0.19 0.18 0.20 0.03 0.05 0.03 0.28 0.52 0.78  
Availability 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.79
PNE 0.27 0.28 0.29 0.25 0.31 0.08 0.03 0.07 0.15 0.01 N/A
Intention 0.38 0.43 0.43 0.26 0.30 0.08 0.02 0.08 0.17 0.01 0.35 0.96

Note:  AVE of every multi-item construct is shown on the main diagonal.  (Personal Network Exposure (PNE) is a single-item construct.)
Squared correlations are off the diagonal.
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Appendix C
Measurement Items for Key Constructs

Construct Items
Sources That Inform

the Construct
Attitude All things considered, using the Internet TV is (1-7 scale)

1. extremely negative …extremely positive 
2. extremely bad…extremely god
3. extremely harmful …extremely helpful

Ajzen 1991
Ajzen and Madden 1986

Utilitarian
Outcomes

Using the Internet TV (Strongly Disagree/Agree ) (1-7 scale)
1. improves my performance for communication & information search.
2. improves my productivity for communication & information search.
3. enhances my effectiveness for communication & information search.
4. is useful for my communication & information search.

Davis 1989
Rogers 2003
Venkatesh and Brown 2001

Hedonic
Outcomes

Using the Internet TV  (Strongly Disagree/Agree ) (1-7 scale)
1. is enjoyable.
2. is pleasant.
3. is fun.

Davis 1989
Venkatesh 1999
Venkatesh and Brown 2001

Subjective
Norms (SN)

(Strongly Disagree/Agree ) (1-7 scale)
1. People who influence me think that I should use the Internet TV.
2. People who are important to me think that I should use the Internet TV.

Ajzen 1991
Ajzen and Madden 1986

Family,
Relatives,
Friends, and
Peers’
Influence

(Strongly Disagree/Agree ) (1-7 scale)
1. My family thinks that I should use the Internet TV.
1. My relatives think that I should use the Internet TV.
3. My friends think that I should use the Internet TV.
4. People I work with think that I should use the Internet TV

Karahanna et al. 1999
Taylor and Todd 1995b
Venkatesh and Brown 2001

Government
Institutions’
Expectation

(Strongly Disagree/Agree ) (1-7 scale)
1. The city government expects me to use the Internet TV.
2. The city government thinks that I should use the Internet TV

Karahanna et al. 1999
Lynne et al. 1995

Perceived
Behavioral
Control
(PBC)

(Strongly Disagree/Agree ) (1-7 scale)
1. I have the resources, knowledge, and ability to use the Internet TV.
2. I can use the Internet TV.
3. Using the Internet TV is entirely within my control.

Ajzen 1991
Ajzen and Madden 1986

Self-Efficacy (Strongly Disagree/Agree ) (1-7 scale)
1. I feel comfortable using the Internet TV on my own.
2. I can easily operate the Internet TV on my own.
3. I feel comfortable using the Internet TV even if there is no one around me to tell me

how to use it.    

Bandura 1977
Compeau and Higgins 1995

Perceived
Ease of Use

(Strongly Disagree/Agree ) (1-7 scale)
1. My interaction with the Internet TV is clear and understandable.
2. Interacting with the Internet TV does not require a lot of my mental effort.
3. I find the Internet TV easy to use.
4. I find it easy to get the Internet TV to do what I want it to do.

Davis 1989
Davis et al. 1989

Availability (Strongly Disagree/Agree ) (1-7 scale)
1. It is difficult for me to use the Internet TV when other members in my household want

to watch TV.
2. Many people in my household want to use Internet TV, and I don’t always get to use it. 

Kvasny and Keil 2002
Meader et al. 2002
Taylor and Todd 1995b

Personal
Network
Exposure

What percent of the people you know in LaGrange has adopted the Internet TV? Fligstein 1985
Palmer et al. 1993
Valente 1995

Behavioral
Intention for
Continued
Use

I intend to continue using the Internet TV (Strongly Disagree/Agree) (1-7 scale)
1. during the next three months.
2. for email, browsing, or searching during the next three months.
3. frequently during the next three months.

Ajzen 1991
Ajzen and Madden 1986
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Appendix D

Supplemental Measurement Invariance Analysis for Group Comparson

To further evaluate the appropriateness to compare path coefficients between the two groups, we applied multigroup measurement invariance
analysis (Doll et al. 1998; Steenkamp and Baumgartner 1998).  Using AMOS 5.0, we performed configural and metric invariance analyses to
evaluate if the measurement models are invariant across the advantaged and disadvantaged groups.  Configural invariance denotes that the
patterns of item loadings are congeneric across groups (Doll et al. 1998; Steenkamp and Baumgartner 1998).  No restrictions are imposed on
metrics across groups when modeling configural invariance (Doll et al. 1998).  Next, metric invariance checks whether items have equal
loadings between groups.  Item loadings are constrained to be equivalent across groups when modeling metric invariance.  If the change in CFI
between these two nested (configural and metric) models is smaller than the suggested threshold 0.01 (Cheung and Rensvold 2002), then metric
invariance is supported, permitting path coefficient comparison between groups.

We applied the analytical procedure described above to assess measurement invariance across the advantaged and disadvantaged groups.  Due
to sample size and model complexity constraints, we performed this analysis separately for each block of the research model.  Configural
invariance analysis revealed the pattern of item loadings to be congeneric across the two groups.  In terms of metric invariance, the changes
in CFI for block 1, 2, 3, and 4 were 0.002, 0.001, 0.001, and 0.002 respectively for each of their nested models.  Given that these values were
all lower than the recommended 0.01 level (Cheung and Rensvold 2002), metric invariance is established, providing additional support for
meaningful path coefficient comparison across groups.
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Appendix E

Common Method Bias Analysis

Item
Substantive Factor

Loading (R1) R12
Common Method

Factor Loading (R2) R22

Attitude (item_1) 0.981 ** 0.962  0.062 0.004
Attitude (item_2) 0.978 ** 0.956 -0.012 0.000
Attitude (item_3) 0.985 ** 0.970 -0.051 0.003
SN    (item_1) 0.999 ** 0.998  0.018 0.000
SN    (item_2) 0.972 ** 0.945 -0.019 0.000
PBC    (item_1) 0.946 ** 0.895 -0.031 0.001
PBC    (item_2) 0.953 ** 0.908  0.002 0.000
PBC    (item_3) 0.885 ** 0.783  0.034 0.001
Utilitarian Outcomes (item_1) 0.992 ** 0.984 -0.008 0.000
Utilitarian Outcomes (item_2) 0.991 ** 0.982 -0.035 0.001
Utilitarian Outcomes (item_3) 0.880 ** 0.774  0.000 0.000
Utilitarian Outcomes (item_4) 0.976 ** 0.953  0.044 0.002
Hedonic Outcomes (item_1) 0.993 ** 0.986  0.000 0.000
Hedonic Outcomes (item_2) 0.976 ** 0.953  0.018 0.000
Hedonic Outcomes (item_3) 0.991 ** 0.982 -0.018 0.000
FRPF (item_1) 0.973 ** 0.947  0.016 0.000
Gov.  Institutions’ Influence (item_1) 0.973 ** 0.947 -0.003 0.000
Gov.  Institutions’ Influence (item_2) 0.969 ** 0.939  0.003 0.000
Self-Efficacy (Item_1) 0.952 ** 0.906  0.013 0.000
Self-Efficacy (item_2) 0.952 ** 0.906  0.010 0.000
Self-Efficacy (item_3) 0.968 ** 0.937 -0.023 0.001
PEOU (item_1) 0.939 ** 0.882 -0.016 0.000
PEOU (item_2) 0.925 ** 0.856  0.081 0.007
PEOU (item_3) 0.913 ** 0.834  0.086 0.007
PEOU (item_4) 0.854 ** 0.729  0.160 ** 0.026
Availability (item_1) 0.811 ** 0.658  0.170 ** 0.026
Availability (item_2) 0.788 ** 0.621 -0.182 ** 0.029
Personal Network Exposure (item_1) 1.000 ** 1.000  0.000 0.000
Intention for Continued Use (item_1) 0.993 ** 0.986 -0.006 0.000
Intention for Continued Use (item_2) 0.989 ** 0.978 -0.011 0.000
Intention for Continued Use (item_3) 0.961 ** 0.924  0.017 0.000
Average 0.950 0.906 0.010 0.003
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Appendix F

Supplementary Analysis on Type of Moderation of Socio-Economic Status

Results of the PLS analysis support the moderation effect of socio-economic status (SES) on some of the hypothesized relationships.  To further
investigate the type of moderation of SES (i.e., pure moderator, quasi-moderator, or homologizer) and to examine if the detected moderation
was not an artifact of unequal measurement error across the subsample (i.e., homologizer), we followed the MRA procedure recommended
by Sharma et al. (1981).  Additionally, we examined if the conclusion regarding the type of moderation is sensitive to nonlinear effects of the
predictors on the criterion.  These additional analyses validate our conceptualization of SES as moderating the strength of the relationships
between the identified criterion and predictor variables.

Description of Moderated Regression Analysis

Sharma et al. (1981) suggest that the Chow test can be used to detect differences across groups in the vector of coefficients of the predictor
variables.  Importantly, they note that, additionally, a distinction should be made among pure moderators and quasi-moderators, and
homologizers, based on the direct and/or moderating effect of the moderator on the predictor and criterion variables.  The moderated regression
analysis (MRA) procedure suggested by them and summarized in Table F1 can be applied to make this assessment.

Based on the MRA guidelines, we can conclude that the moderator variable is
• a pure moderator, if there is an interaction effect and no direct effect with criterion or predictor variables
• a quasi-moderator, if there is an interaction effect and a direct relationship with the predictor, the criterion variable, or both 
• a homologizer, if there is neither a direct effect nor a moderation effect but the detected interaction derives from unequal measurement

errors across subsamples.

Application of MRA Procedure and Findings

Each block in our model contains a criterion variable, a set of predictors, and SES as the moderator.  Accordingly, for each of the four blocks,
we estimated the three MRA equations and applied the Chow test (Chow 1960) to examine for differences across groups in the vector of
coefficients of the predictor variables.

Type of SES Moderation in TPB BLOCK (Block 1)

Behavioral intention (BI) is the criterion variable; attitude (ATT), subjective norm (SN), perceived behavioral control (PBC), personal network
exposure (PNE), and the control variable, Internet PC ownership (IPC), are the five predictors.  Based on the MRA procedure, we find
• For direct effects of the predictors on the criterion (BI), all of them, with the exception of SN, are significant.
• For direct effects of the moderator (SES) on the criterion (BI), a significant relationship is not detected.
• For the interaction effects of SES and the predictors, the Chow test indicates that the vector of coefficients for ATT, SN, PBC, PNE, and

IPC are different across SES groups.

The above results suggest pure moderation of the relationship between the predictors and the criterion variable in this block.

Type of SES Moderation in ATTITUDE BLOCK (Block 2)

Attitude (ATT) is the criterion variable; utilitarian outcomes (UO) and hedonic outcomes (HO) are the predictors.  Based on the MRA
procedure, we find
• For direct effects of the predictors on the criterion (ATT), both UO and HO are significant.
• For direct effects of the moderator (SES) on the criterion (ATT), a significant relationship is not detected.
• For the interaction effects of SES and the predictors, the Chow test indicates that the vector of coefficients for UO and HO are different

across SES.

The results suggest pure moderation of the relationship between the predictors and the criterion variable in this block.
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Table F1.  Moderated Regression Analysis to Determine the Type of Moderation
Type of Effect Equations Decision Rules

Direct Effect of Predictor Y = a + b1 • X • Z is not a moderator if b3 = 0 and b2 … 0.  (i.e.,
Eq2 and Eq3 are not different.)

• Z is a pure moderator, if b2 = 0 but b3 … 0.  (i.e.,
Eq1 and Eq2 are not different from each other
but are different from Eq3).

• Z is a quasi-moderator, if b2 … b3 … 0.  (i.e., All
three equations are different from each other.)

Direct Effect of Predictor 
& Moderator

Y = a + b1 • X + b2 • Z

Interaction Y = a + b1 • X + b2 • Z + b3 • X • Z

Type of SES Moderation in SUBJECTIVE NORM BLOCK

SN is the criterion variable; FRPF and governmental influence (GovInf) are the predictors.  Based on the MRA procedure, we find
• For direct effects of the predictors on the criterion (SN), FRPF has a significant effect while GovInf does not.
• For direct effects of the moderator (SES) on the criterion (SN), a significant relationship is not detected.
• For the interaction effects of SES and the predictors, the Chow test does not detect significance.

The above results suggest no moderation of the relationship between the predictors and the criterion variable in this block.

Type of SES Moderation in PERCEIVED BEHAVIORAL CONTROL BLOCK

PBC is the criterion variable; self-efficacy (SE), perceived ease of use (PEOU), and availability are the predictors.  Based on the MRA
procedure, we find
• For direct effects of the predictors on the criterion (PBC), SE and PEOU have a significant relationship while availability does not.
• For direct effects of the moderator (SES) on the criterion (PBC), a weak significant relationship is detected.
• For the interaction effects of SES and the predictors, the Chow est indicates that the vector of coefficients for SE, PEOU, and availability

are different across SES.

The results suggest quasi-moderation of the relationship between the predictors and the criterion variable in this block.

For quasi-moderation, the interaction effect is ambiguous and can be interpreted as (1) SES moderates the relationship between a predictor and
PBC, or (2) the predictor moderates the relationship between SES and PBC.  To deal with such situations, Sharma et al. (1981) suggest that
the interpretation should be “guided by theory rather than empiricism.”  Given the established body of literature that has theorized and found
evidence of the direct effect of internal control and external control on PBC and our own theoretical reasoning for SES to moderate these
relationships, we conclude that SES is the moderator.

Evaluation of Moderation Confounds from Multicollinearity and Nonlinear Effects

High multicollinearity between the moderator and predictor can induce nonlinear effects that confound interaction (Carte and Russell 2003;
Cortina 1993).  While the correlations between SES and the predictors are low, we did evaluate for the stability of the above moderation results
in the presence of nonlinear effects of the predictors.  When the squared effect of the predictors is controlled for, the moderation effect remains
significant.
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