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ABSTRACT 

Viral transmission from the environment can occur via fomites, but there is uncertainty 

about which factors most affect viral persistence on fomites. Children are a population highly 

susceptible to viral infection, and sharing common fomites like toys may spread infection. The 

objective of this research was to assess the survival of enveloped viruses on the surfaces of 

children’s toys, using bacteriophage ϕ6 as a surrogate for enveloped human viruses. The survival 

of infectious ϕ6 virions was observed over a 24 hour period at 22°C and relative humidities of 

40% & 60%. On the surface of children’s toys, ϕ6 was better able to persist at 60% RH (log10 

reduction< 2 log10) over a 24 hour period than it was at 40% RH (log10 reduction> 6 log10). If ϕ6 

virus persists on toy material for up to 24 hours, then viral transmission via shared fomites is 

certainly significant. 

INDEX WORDS: Viral inactivation, Enveloped virus, Transmission, Surrogate, Relative 
humidity, Temperature 
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1 INTRODUCTION  

Viral particles consisting of an outer layer of lipids in addition to their protein capsid are 

called enveloped viruses. Orthomyxoviruses such as influenza viruses H1N1and H5N1 as well as 

Coronoavirus  SARS-CoV and other coronaviruses (CoV) are examples of very pathogenic 

strains of enveloped viruses [13]. These viruses are responsible for causing many respiratory 

tract infections that often result in fatality in humans. The WHO estimates that seasonal 

influenza epidemics alone will result in about 3-5 million cases of severe illness, and about 

250,000 to 500,000 deaths globally [21]. Respiratory viruses can be transmitted from person to 

person through a variety of modes. For instance, influenza can be transmitted via contaminated 

fomites or inanimate objects, droplets from infected persons, and persistent droplet nuclei 

suspended in aerosols [5]. The efficiency of various modes of transmission depends partly on the 

survival of the virus in the environment before it interacts with its next host, and the efficiency 

with which enveloped viruses spread from one host to the next depends partly on which mode of 

transmission leaves viruses most vulnerable to inactivation [10]. In environments where a large 

number of people interact with shared surfaces, there could be continuous contamination of those 

surfaces with virus and subsequent spread of the virus throughout that population [5]. If viral 

infection stemming from interaction with contaminated fomites is a major source of viral 

persistence and spread within a population, then it is extremely important to understand which 

type of environmental conditions are conducive to a virus’s survival on shared surfaces and the 

risks associated with those surfaces [5]. This knowledge could better equip agencies to foster 

indoor environmental standards specifically targeted at the inactivation of enveloped viruses 

using a variety of strategies – controlling/maintaining relative humidity, maintaining 

temperature, fresh air ventilation within buildings, or surface decontamination/disinfection 
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protocols [13]. Such standards could prove effective at preventing illness from viruses, especially 

for vulnerable populations such as children. 

It has generally been accepted that enveloped viruses are more sensitive to environmental 

conditions and have limited survival outside of their host when compared to non-enveloped 

viruses. Many studies have concluded that humidity is an extremely important factor impacting 

virus survival but there is a large amount of variation in the findings of these studies [13]. Some 

studies suggest that as humidity increases, viral inactivation increases [2, 8, 9]. Others suggest 

that lower humidity levels increase viral inactivation [2, 6]. Currently there is no consensus as to 

a defined minimum or maximum relative humidity that reduces a virus’ survival or ability to 

infect a new host [13]. Another, often missing, component in some of the existing literature is the 

significance of the amount of time the virus is exposed to various environmental conditions and 

how time impacts survival under these conditions [13]. There are also studies that assess virus 

survival on household surfaces [5]. Virus survival on fomites or surfaces is dependent upon 

several factors, e.g. the fomite or surface characteristics (porosity, chemical residue, etc.), the 

matrix surrounding the virus, and the environmental conditions.  

If viruses can survive on a fomite for a period of time, than it is probable that viral 

transmission through direct contact with the contaminated fomite can occur [5]. Virus survival 

and recovery from children’s toys are an exceptional choice because toys are often communal 

objects. In daycare facilities, schools, or even in homes with multiple children close in age, toys 

are often shared and circulated from child to child. Children also represent a susceptible 

population to viral infection. Understanding the factors influencing the persistence of viruses on 

fomites under varying simulated indoor environments could have a profound impact on how we 

approach creating environments conducive to viral inactivation, how we reduce the number of 
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cases of disease, particularly amongst susceptible populations, and how we evaluate the risk 

posed by contaminated objects that are shared, like children’s toys. Therefore, the objective of 

this experiment is to assess how relative humidity, temperature, and time influence survival of an 

enveloped virus surrogate, bacteriophage ϕ6, on plastic children’s toys. 
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2     Research Design & Methods 

2.1 Propagation of Virus Stock 

Bacteriophage ϕ6 was propagated in Pseudomonas syringae (host) using the soft agar 

preparation method [3]. 30mL of host bacterial culture was grown for 24 hours with shaking at 

100rpm at room temperature (22°C). 2mL of ϕ6 virus stock was added and incubated with 

shaking for an additional 24 hours. 0.5mL of this virus culture and 0.5mL of host culture were 

added to 30mL of soft agar (0.7% agar), dispensed into tryptic soy agar (TSA) plates, and 

incubated at room temperature for 24 hours. The top layer was then harvested, pooled and 

centrifuged (5900g, 30 minutes at 4°C), and stored as stock in tryptic soy broth (TSB) with 20% 

glycerol at -80°C. 

2.2 Suspension Media Experiments 

Host was prepared by adding a 1.5mL volume of host to 150mL of TSB and incubating 

with shaking at 22°C for 24 hours. 100µL of ϕ6 virus stock (stored at -80C in 20% glycerol) was 

diluted into 900µL of deionized water (DIW) and 900µL of 1X PBS (8.0g NaCl2, 0.2g KCl, 

0.12g KH2PO4, 0.91g Na2HPO4 /liter of DIW). 10µL of virus suspended in DIW (target 

concentration ~107 plaque-forming units (PFU)) was added to 6 toy coupons (UV sterilized 2cm 

x 2cm pieces of a child’s toy). 10µL of virus suspended in 1X PBS was added to an additional 6 

toy coupons. 3 coupons from each group of 6 were immediately placed in tubes containing 5mL 

of 1.5% beef extract (BE) (~7.5 pH) using sterile forceps and placed on a shaker (220rpm) at 

22°C for 20 minutes. These coupons represented the concentration of virus at t=0hr in both DIW 

and 1X PBS. Samples were serially diluted in TSB and assayed using the double agar layer 

method. Plates were incubated at room temperature ~22°C for 24 hours. The remaining 3 

coupons for each group were placed in 60% humidity chamber at ~22°C. Controlled humidity 
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and temperature environments were created using sealed glass tanks containing saturated salt 

solutions (40% - magnesium chloride, 60% - magnesium nitrate). After 2 hours, each coupon 

was placed into a tube containing 5mL of 1.5% beef extract and placed on the shaker (220rpm) at 

22°C for 20 minutes. These coupons represent infectious virus concentration at t=2hr in DIW 

and 1X PBS. After 24 hours incubation, the number of plaques on each plate were counted to 

quantify the number of infectious viruses remaining at after 2 hours in DIW and 1X PBS and the 

log reduction of viruses was calculated log10 (Nt/N0), where Nt is the number of viruses at time t 

and N0 is the number of viruses at t=0.  

2.3 Core Survival Experiments 

The core survival experiments were carried out in a similar fashion as the suspension 

media experiments. 100µL of ϕ6 virus stock was diluted into 900µL of DIW. 10µL of virus 

suspended in DIW (target concentration ~107 plaque-forming units (PFU)) was then added 12 

coupons. 3 coupons were immediately added to tubes containing 5mL of 1.5% BE (~7.5 pH) 

using sterile forceps and placed on a shaker at (220rpm) for 20 minutes. These coupons 

represented the concentration of virus at t=0hr. Samples were serially diluted in TSB and assayed 

using the double agar layer method. Plates were allowed to incubate at room temperature ~22°C 

for 24 hours. The remaining BE eluent was stored at -80°C. The 9 remaining coupons were 

grouped into groups of 3 and were placed in either the 40% or 60% humidity chamber at ~22°C. 

Every 2 hours, 1 group of coupons was removed from the humidity chamber and the above 

procedure was repeated. These experiments were completed at 6-hour intervals (t=2hr, t=4hr, 

and t=6hr) up to 24 hours for both relative humidity levels at ~22°C. After 24 hours of 

incubation, the number of plaques on each plate were counted to quantify the number of 

infectious viruses remaining at each time point and the log reduction of viruses was calculated 
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log10 (Nt/N0). When ϕ6 virus could not be recovered from the plaque assay for the 7-dilution 

titer, the remaining volume of viral eluent (recovered virus in 1.5% BE) was divided into equal 

volumes and plated onto TSA plates with 1mL of host and 5mL of TA. The data was analyzed 

using Excel 2011 (Mac) and GraphPad Prism 5 (GraphPad). The data was fitted to the Weibull 

model by completing log transformations of the parameter log NT/N0 and plotting them against 

the log transformation of time, t, for survival at each relative humidity [1,7]. Linear regression 

analysis was conducted to determine the slope of the inactivation line and to predict the shape of 

the survival curve at each set point of relative humidity. 
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3     RESULTS 

3.1 Suspension Media Experiments 

To determine whether the choice of suspension media (PBS vs. deionized water) affected 

virus survival, virus survival in PBS was compared to deionized water (Figure 1).       

 

Figure 1. ϕ6 Survival in 1X PBS and DIW. Survival of ϕ 6 virus suspended in 
either deionized water or 1X PBS solution for t=2 hours at 22°C, 60%RH. Gray 
column, survival in DIW; white column, survival in 1X PBS. Bars, 95% 
confidence interval. 

A t test was used to compare virus survival (log NT/N0) in deionized water (n=9) as a 

suspension media to 1X PBS (n=6). Experiments were conducted at 22°C in a controlled 

chamber at 60% relative humidity. There was not a statistically significant difference in virus 

inactivation at t=2 hours between the two types of suspension media (p=0.1564). PBS was used 

as the suspension media for subsequent survival experiments. 
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3.2 Core Survival Experiments 

               

Figure 2. ϕ6 Survival at 22°C over a 24 hour period. Circles, 60%RH. Squares, 
40%RH. Bars, 95% confidence intervals. 

Over a 24 hour period, there was a ~2 log10 reduction (99% inactivation) in the number of 

infectious viruses recovered at 60% RH (Fig.2). At t=8 hours post application to the coupon, the 

number of infectious viral particles declines by ~1 log10 and then remains somewhat stable 

(between 1-2 log10 reduction) up to 24 hours at 60%RH.   

At 40%RH, there was a more rapid decline (~3 log10 reduction, 99.9% inactivation) in the 

number of infectious viral particles recovered after t=2 hours post application of the viruses to 

the coupon, and the level of the inactivation was considerably greater at 40%RH (Fig.2). At t=8 

to 10 hours post-application most trials were below the detection limit for the double agar layer 

plaque assay (>6.5 log10 reduction, 99.9999% inactivation) (n=1, n=1). 
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Figure 3. ϕ6 Survival at 22°C, 60%RH. Circles, second aliquots of virus stock. 
Triangles, first aliquots of virus stock. Bars, 95% confidence intervals. 

In initial survival experiments conducted at 60% RH, two different pools of virus stock 

were used that were propagated at different times using identical methods from the same initial 

seed stock. The survival experiments using the first set of aliquots of virus stock (Fig.3), yielded 

a ~2.5 log10 reduction (99% inactivation) in the number of infectious viruses recovered from the 

coupons after t=4 hours of exposure, reaching ~5 log10 reduction (99.999% inactivation) after 

t=12 hours. However, completing the double agar layer plaque assay under the same conditions 

with aliquots of virus stock created at a later time revealed dissimilar results. Survival 

experiments using the second set of aliquots never reached >2 log10 reduction (99% inactivation) 

in the number of infectious viruses recovered from the coupons even after t=24 hours of 

exposure. It is important to note that the 40% RH survival experiments were also carried out 

using the second set of aliquots (Figure 2). 
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3.3 Linear Regression Analysis Fitting the Weibull Model 

            

            

Figure 4. Linear Regression Analysis Fitting the Weibull Model. (a) Log 
transformations of survival of the second aliquots of virus stock at 40 & 60% RH. 
Squares, log transformations of inactivation  of second aliquots of virus stock at 
40% RH; circles, log transformations of inactivation at 60% RH. (b) Log 
transformations of inactivation of the first and second aliquots of virus stock at 60% 
RH. Triangles, log transformations of inactivation of the first aliquots of virus stock; 
circles, log transformations of inactivation of the second aliquots of virus stock. 

After fitting the data to the Weibull model, a linear regression analysis was conducted for 

each set point of relative humidity. The log transformations of average inactivation (ln(-log10 

(NT/N0))) (response variable) at each time point were plotted against the log transformation of 

the time (ln(t)) at which survival was being evaluated. For the second set of aliquots of virus 

stock, the slopes for the survival plot at 40 and 60% RH are significantly different (p=0.0448). 
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However, the slopes of the survival plot for both sets of aliquots of virus stock at 60% RH were 

not significantly different (p=0.3002).  

Variable n Standard Error p-value R2 
40% RH 0.4772 0.0914 0.0070 0.9362 
60% RH 1 1.385 0.3512 0.0043 0.8951 
60% RH 2 1.088 0.3519 <0.0001 0.8573 

Table 1. Linear Regression Analysis of the Weibull Function. Linear model fitted with  
ln(log10 NT/N0) as the response variable and ln(t), time, as the predictor to get 
estimations of n = slope of the log time. 

Modeling this experimental data with the Weibull model and comparing the slopes of the 

inactivation plots at each set point of relative humidity, allows for extrapolation of what the 

actual shape of the survival curve may be. Linear regression analysis of this model reveals that 

the model fits the expectation of the data. At 40% RH, the slope (n) of the survival plot = 0.4772. 

When n <1, the rate of inactivation will decrease over time due to significant inactivation at early 

time points. At 60% RH, n >1, indicating that the inactivation of ϕ6 will increase over time at 

this set point of temperature and relative humidity. 
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4 Discussion 

These experiments show that ϕ6 virus is able to persist at 22°C and 60% RH for up to 24 

hours, and potentially longer. The rate of inactivation appears to be slower at 60% RH than at 

40% over a 24 hour period. The rate of inactivation of infectious virions is much more 

pronounced at 40% RH, with virus reaching undetectable levels 8 hours post application (>6 

log10 reduction, ~99.9999% inactivation). However, at 60% RH, the amount of infectious virus 

recovered from the toy coupons declines most around t=8 hours post application, and then 

appears to remain relatively stable up to t=24 hours (~1-2 log10 reduction, ~90-99% inactivation). 

This data suggests that ϕ6 is better able to resist inactivation at 22°C and 60% RH on the surface 

of the toy coupon. This is contrary to some of the existing literature centered on the survival of 

enveloped viruses, where virus survival appears to be more stable at lower relative humidities [2, 

9, 10].  

There is 99.9999% inactivation of ϕ6 within the first 10 hours of exposure to 40% RH. It 

is expected that the rate of inactivation will decrease over time due to the vast majority of virions 

becoming inactivated early on in their exposure to this relative humidity. The plot of survival at 

40% RH supports this prediction. In comparing n at both 40 and 60% RH, the opposite is true for 

the rate of inactivation at 60% RH. Although inactivation of the second aliquots of ϕ6 was no 

greater than 99% inactivation after 24 hours of exposure to the simulated environment, the slope 

calculated from the linear regression analysis suggests that the rate of inactivation will increase 

over time. However, the plot of survival at 60% relative humidity for the second aliquots of virus 

stock does not necessarily support this. Additional experiments carried out beyond 24 hours at 

60% relative humidity are necessary to validate the model prediction. 
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Toys were chosen as a fomite for these experiments because they have been shown to be 

significant sources of viral and bacterial contamination in healthcare settings and nurseries [7, 

11, 16]. Due to their age, children are often much more susceptible to viral and bacterial 

infections. They often lack the immunity provided by previous exposure or vaccination, 

especially when very young [16]. They also exhibit behavior conducive to contracting infections, 

such as putting foreign objects in their mouths or failure to wash their hands. In healthcare and 

nursery environments, toys are communal objects and often shared between children [11]. As a 

result, they are likely significant sources of the spread of infection throughout populations in 

those environments. It has been previously shown that respiratory syncytial virus, an enveloped 

virus, can survive on the surface of toys for up to 6 hours [11]. At 22°C and 60%RH, ϕ6 

inactivation was between 90-99% 8 hours post application to the surface and never reached 

greater than 99% inactivation over a 24 hour period. Although ϕ6 virus is non-pathogenic to 

humans, its survival on the surface of the toy coupon highlights the necessity of examining how 

enveloped viruses become inactivated in indoor environments and the importance of fostering 

effective decontamination protocols for communal objects, like toys, that children interact with 

in these environments. 

Virus survival and persistence on surfaces is influenced by several factors, whether it be 

the viral species, the surface the virus is applied to, the temperature and humidity of the 

environment, or the media the virus is suspended in. It is somewhat difficult to compare the 

findings of this paper with those of the existing literature because each set of experiments differs 

by 1 or more of these factors. For instance, Casanova and Waka completed survival experiments 

using ϕ6 virus and identical research methods [3]. The only major differences between the 

experiments within this paper and the ones used for their experiments was the suspension media 



14 

used (1X PBS) and the surface to which the virus was applied; coupons of N95 respirator 

material. ϕ6 virus survival at 22°C appeared to be much more stable at 40%RH (<2 log10 

reduction, 90-99% inactivation) on N95 material then at 60% RH (>3 log10 reduction, 99.9% 

inactivation) over a 24 hour time period [3]. For the survival experiments carried out for this 

paper at 22°C and 40% RH, >3 log10 reduction (>99.9% inactivation) of ϕ6 was achieved after 2 

hours post application of the virus to the coupon. At 60% RH, the level of inactivation (~5 log10 

reduction, 99.999% inactivation) achieved at t=12hr using the first set of aliquots seemed to be 

somewhat comparable to the inactivation achieved by Casanova and Waka (~4 log10 reduction, 

99.99% inactivation). However, the second set of aliquots did not reach >2 log10 reduction (99% 

inactivation) until 24 hours after application of the virus to the coupon. That degree of ϕ6 

inactivation is reached by 6 hours post application by Casanova and Waka. It is also important to 

note that virus stock propagated at different times from the same seed stock appear to have 

varying rates of inactivation (n=1.385, n=1.088) when exposed to identical environmental 

conditions (22°C, 60% RH). The survival plots for the first set of aliquots of viral stock exhibit a 

significantly greater rate of inactivation than the survival plots of the second set of aliquots at 

60%RH. At t=2 hours post application, both populations have similar rates of inactivation, but at 

t=4 hours post application, the inactivation diverges for the two populations of virus. Although 

the rate of inactivation for the first set of aliquots at 60% RH is higher than that of the second set, 

the slopes from the linear regression analysis were not significantly different (p=0.3002).  

In a recent paper, filoviruses ZEBOV (Zaire Ebola virus) and MARV (Lake Victoria 

Marburg virus) were used for long-term survival experiments. Neither virus could be recovered 

from glass, plastic, or metal when applied to the surface at ~22°C, 55±5% RH suspended in 

guinea pig sera or tissue culture media. Virus was only detectable when applied to glass or 
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plastic at 4°C and 55±5% RH, and remained detectable 14 days post application [15]. A 

juxtaposition of this discovery with the results of the experiments using ϕ6 within this paper 

reveals a dichotomy. Although ϕ6 and filoviruses share structural similarities (envelope and 

nucleocapsid), they do not have the same resistance to similar environmental conditions. This is 

also true for viruses of the same species. In another paper, the survival of 2 strains of coronavirus 

in suspension and dried onto various surfaces to estimate the risk of viral transmission on items 

found in hospital settings [17]. They found that when HCV-229E and HCV-OC43 were dried 

onto surfaces, infectious HCV-229E was still detectable up to 6 hours post drying on sterile 

sponges (4% recovery) and aluminum (8% recovery) whereas, HCV-OC43 was undetectable 

(0% recovery) on any surface after 3 hours post drying on those surfaces.  

One interesting explanation for the variation in survival of viruses is what happens at the 

air-water interface (AWI) when viruses are suspended in water on surfaces. The theory is that the 

proteins of virions are strongly attracted to the AWI, especially when suspended in liquids of 

high ionic strength [19, 20]. These proteins are often embedded in the envelope of the virion. 

When these proteins interact with the AWI, they cause the loss of the envelope due to 

hydrophobic interactions and rearrangement of the viral capsid. The rearrangement of the capsid, 

which is a highly organized structure in many viruses, would lead to the release of the viral 

genome and subsequent inactivation of the virus [12]. Other experiments have conclusively 

shown that viruses meeting the AIW become inactivated but it is not the sole reason viruses 

become inactivated [19, 20]. If multiple virions within a suspension become attracted to the AWI 

and form an aggregate of virions, it is possible that those virions at the AWI will become 

inactivated but will also form a barrier, blocking additional virions from reaching the AWI [12, 

19, 20]. At low RH, or over a long period of time at any humidity, it would be expected that the 
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liquid volume would decrease in the suspension due to evaporation, and the viruses will become 

larger aggregates over time (more concentrated). This aggregation could have a protective effect 

for viruses at the interior of the viral suspension [12]. However, at 40% RH, perhaps the benefits 

of aggregation are outweighed by the increased rate of the disappearance of water, leading to 

desiccation. 

Although virally contaminated environmental surfaces can contribute to the transmission 

of virus from one person to another, it is unclear how significant this mode of transmission is. 

This uncertainty stems from the fact that virus survival appears to be quite dynamic, in that it is 

impacted by a number of factors including but not limited to temperature, humidity, surface 

material, and the intrinsic properties of the virus. The impact of one particular environmental 

factor is hard to estimate because each species and/or strain of virus appears to respond to similar 

environmental conditions in a unique way. More investigation is needed to better understand the 

survival kinetics of viruses under various environmental conditions and the factors that confound 

them, particularly at the molecular level.  
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