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By 
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ABSTRACT 

This study utilizes an integrated remote sensing approach to augment settlement pattern 

research in the Yalahau Region of northern Quintana Roo, Mexico. The region has a long history of 

human occupation and an environment ranging from coasts, freshwater wetlands, forests, to fields 

and towns all above a porous karst geology. By utilizing various sensors (LiDAR, GeoEye and 

Landsat) and collection methods (satellite, aerial) as well as post-processing (band combinations, 

component analyses and indices) and cross-referencing the data, it is possible to generate a signature, 

which strongly correlates with evidence of prehistoric occupation. Field verification of a selection of 

identified signatures was conducted to assess the presence of human cultural material. The results of 

this investigation are presented together with other regional settlement pattern data in order to 

assess the status of a number of methodological and archaeological questions and supplement other 

regional data already available. 
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1 Introduction 

Investigations into the prehistory of what is now Quintana Roo date back to the very first 

decades of the colonization of Mexico (Means et al. 1974; Peck 2005; Restall and Chuchiak 2002). 

Centuries later, John Lloyd Stephens and Frederick Catherwood (Figure 1) brought the Yucatan 

Peninsula (presently encompassing the Mexican states of Yucatan, Quintana Roo and Campeche) 

back to English speaking populations, publishing illustrations of their travels as well as a popular- 

narrative of years of travel in the area (Roberts 2000; Stephens 1963, 1969). Human occupation in 

the Yucatan dates to the Paleoindian period (Chatters et al. 2014). Evidence for Maya occupation of 

the region begins during the Middle Preclassic period (c. 800 B.C.). Maya populations existed 

throughout the region during the Preclassic, Classic and Postclassic periods; however, population 

levels fluctuated through time. Modern residents of the area today are descendants of those Maya 

populations (Brainerd 1956; Castañeda 2004; Gabbert 2001). The modern environment of Quintana 

Roo consists of both high and low tropical forests and wetlands sitting atop porous limestone 

bedrock. The tropical environment makes site discovery challenging, with visibility often limited to a 

few meters in the forest (Chase 2014; Chase, et al. 2014; Garrison 2007).  

As archaeological investigations have shifted away from the center/site paradigm, and towards 

“Landscape Archaeology”, emphasis has expanded on studies of households, hinterlands and other 

terms for sites which are investigated not for their grandiosity but for the mundane, routine and day-

to-day nature of the cultural material available for study (e.g. Ashmore 1984; Hendon 2010; Hutson 

et al. 2007; Iannone et al. 2014). These types of investigations are multi-scalar, emphasizing center-

periphery interactions as well as human-environment interactions (Ashmore 2002; Freter 2004; 

Hutson et al. 2008 Montmollin 1988; Redman 1999; Turner and Sabloff 2012). Therefore, 

understanding both the distribution of human occupation on a landscape and the types of activities  
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Figure 1 - Catherwood Plate XVI: Kab'ah 
 

taking place there have become key components of interpreting the archaeological record (Chase 

2014; Crumley 1994; Fedick 2014; Glover 2012; Lucero et al. 2011, Lucero, et al. 2014). 

This increased emphasis on past human environmental interaction has coincided with the 

recent surge in environmental research related to climate change. In fact, archaeologists around the 

world have been contributing unique knowledge about these interactions to the current global 

political debate on climate change (Chase and Scarborough 2014; Sandweiss and Kelley 2012). This 

has led to increased funding for the relevant sects of archaeology. For example, the National Science 

Foundation (NSF) has made available grants for researchers investigating Coupled Human Natural 

Systems both in the present and past (NSF Solicitation 14-601). NOAA has also funded human-

environment interaction research in the Yalahau region in previous field seasons (Glover et al. 2012). 
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Archaeological. Aiding these investigations are aerial and satellite remote sensing and computer-

based tools, which I will now discuss. 

Archaeologists have utilized maps and photographs to gain a different perspective on 

archaeological sites since before the transformation of the discipline from relic hunting into a 

science (Barber 2009; Deuel 1969). A.V. Kidder and Charles Lindbergh conducted early scientific 

aerial survey of archaeological sites. More recently, the advent of Geographic Information Systems 

(GIS) in archaeology has opened up many avenues for research (Ebert 2004; Fitzjohn 2007; Fletcher 

and Winter 2008; Gillings 2012; Rennell 2012). Remote sensing platforms have become considerably 

more capable since the days of hot air balloons carrying medium format cameras. Today, multiple 

platforms are available ranging from personal Unmanned Aerial Systems (Fernández-Hernandez et 

al. 2015) to airplanes (Chase, Chase, et al. 2014; Prufer et al. 2015; Doneus and Kuhteiber 2013) to 

satellite-based systems (Parcak 2009; Hixson 2013). The explosion in available data has been 

accompanied by an equally large number of notions on how to best incorporate these data into 

archaeological research (Custer et al. 1986; Doyle et al. 2012; Garrison 2010; Garrison et al. 2008, 

2011; Giardino 2011). 

For the purposes of this thesis, remotely sensed data will be utilized to deduct and test the 

location of previously undocumented archaeological sites and geographic or geological features of 

archaeological interest. The region of interest is the Yalahau of northern Quintana Roo, Mexico. 

Defined by Dunning as one of the unique adaptive zones of the Maya lowlands, the Yalahau region 

presents a unique set of factors with regards to subsistence practices and therefore past livelihood 

(Dunning et al. 1998; Fedick et al. 2000).  For the purposes of this study, I will continue to utilize 

the 20 km buffer proposed by Glover (Glover 2012) as a boundary for the region (see Figure 2). Not 

relying solely on a single sensor or platform, but instead utilizing various platforms (i.e., Landsat, 

GeoEye-1 and IKONOS multi and hyperspectral imagery as well as SRTM and airborne LiDAR 
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derived elevation models) strengthens the data upon which interpretations can be made. This also 

greatly increases the complexity of analysis, and requires understanding nuances of the various 

platforms used and how best to process data for archaeological purposes. 

1.1 Overview of Thesis 

The questions addressed by this thesis are diverse and derived from previous research in the 

region. Primarily, this thesis seeks to determine whether or not remotely sensed data can be used to 

detect undocumented prehistoric human settlement in the Yalahau region. Tied with this are a 

number of secondary questions about the relationship between settlement and environment that 

have been raised by previous studies to which remotely sensed data may provide some insight. In 

addition, a methodological comparison between conventional survey and remote sensing based 

survey is addressed. 

I examine the results of this program of remote sensing and verification in the context of the 

previous field survey (Glover’s Yalahau Region Settlement Pattern Survey; Glover 2006, 2012) upon 

which my own research is based. Glover raises three issues in his dissertation for which remotely 

sensed data may provide some insight. The first of these is the primary question of this thesis – what 

sites were missed using informant-based survey? The other two issues raised by Glover are the lack 

of settlement in what appears to be a low-lying zone to the east of the wetlands and whether or not 

the apparent lack of settlement in the area around Kantunilkin was a sampling error. Data from 

Daniel Leonard’s dissertation research (2013) also greatly enhanced this project. During 

investigations in the regional wetlands, Leonard came across a number of previously undocumented 

sites. I present Leonard’s findings in the context of my own research as a form of de-facto field 

verification, as some of the previously unknown archaeological sites Leonard reports finding are 

locations shown to have various remote sensing signatures correlated with human habitation. 
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Figure 2 - Location of the Region of Study, ESRI National Geographic Basemap 
 

Context is essential in order to frame my research project that I call the Space Settlement 

and Environment Project (SSEP). To that end, Chapter 2 provides an overview of the theoretical 

positioning upon which this research is based. Background information is provided on the 
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geography, biology, environment and history of the Yalahau region in Chapter 3, including 

information about previous archaeological research in the region. Chapter 4 explains the various 

methods utilized in remote sensing data acquisition, processing, interpretation and validation. 

Chapter 5 presents the results of the survey, including maps, diagrams and descriptions for 

anomalies identified as well as those verified in the field (either by myself or by colleagues). In 

Chapter 6, I discuss the results of the research questions in the context of the theoretical positioning 

found in Chapter 2. I compare the different methods used in this project and the YRSPS upon 

which my own research is based.  I conclude with an examination of future research directions with 

regards to the continued use of remote sensing.  

2 Theoretical Orientation of Research 

Though not an archaeologist, Heinrich Schliemann produced many maps and plans through 

the course of his excavations in what he deemed ancient Troy (Schliemann 1884). Spatial 

interpretation, at all scales, has long been an integral part of the archaeological discourse (Ashmore 

2002; Ebert 2004). Ashmore (2002:1173) states “[m]yriad scholars, in the United States and 

elsewhere, have long sought to reconstruct social (or societal) organization from the archaeological 

record, as viewed through artifacts and features mapped across space (e.g., Chang 1958; Childe 1951; 

Fox 1932).” Aerial photography in archaeology goes back to some of the earliest aviators (Barber 

2009; Deuel 1969), and remote sensing techniques have continued to develop (Comer and Harrower 

2013; Ebert 1984; Giardino 2011; Giardino and Haley 2006; Lasaponara and Masini 2011; Parcak 

2009). Trends in archaeological cartography have followed those broader themes in archaeological 

theory as well as in cartographic, geographic and social theory.  

I treat the use of remotely sensed data in archaeology as a part of a process, conducted in 

parallel and integrating with research questions at many levels - as opposed to a standalone method 
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with definitive inputs and outputs. Regardless of the source, resolution, or analytical method used, 

mapped data is still a representation of the real world, and not the real world itself. As long as this is 

acknowledged, it is possible to effectively incorporate GIS into a program of archaeological 

research. Acknowledging that this exchange must work both ways, I situate this research within the 

broader framework of historical ecology, which I discuss below.  

The completion of a map of Teotihuacan in 1970 (Millon 1970) after 8 years of work in 

recording every possible feature in painstaking detail (Millon 1964) is an example of the state of 

spatial archaeology prior to the advent of GIS technology. This project can be seen as an 

archaeological implementation of what Crampton and Krygier term “Scientific Cartography” 

(Crampton and Krygier 2005:20), which is the use of techniques, method and theory for creating 

ever more precise and accurate maps. According to Crampton and Krygier the development of this 

theoretical paradigm during and after World War II was for the purpose first of waging war and then 

rebuilding Europe (Crampton and Krygier 2005). 

Critics of this stance, among them Crampton and Krygier, contend that map accuracy is a 

subjective quality, which is constrained by the social and political contexts within which a given map 

is created. Post-processual archaeology and critical cartography both recognize the situated-ness of 

knowledge (Crampton and Krygier 2005; Trigger 2006). Both stem from broader philosophical 

trends, notably postmodernist philosophy on the creation of knowledge, as Trigger explains: 

“Postmodernists agreed that there could never be a single objective version of human affairs; instead 

there were multiple versions or truths seen from different standpoints, such as those of poor and 

rich, winners and losers, females and males, different professions and various ethnic groups” 

(Trigger 2006:446). Mark Monmonier and Blij (1996:2) bring this point back around to mapped data 

succinctly: “A single map is but one of an infinitely large number of maps that might be produced 

for the same situation or from the same data.” The sustained critique of forced objectivity in 
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scientific inquiry; whether stemming from post-processual archaeologists, critical cartographers, or 

their like-minded peers in other disciplines; has undoubtedly had an impact on the uses of GIS and 

other forms of computation in archaeology. 

Geographic Information Systems, like other informational paradigms should be viewed as 

one of many possible tools to investigate archaeological (and ultimately anthropological) research 

questions. Those research questions, and the specific integration of GIS into research questions 

depends on the social, political and theoretical contexts within which the research questions are 

formed. Gillespie illustrates the issues archaeologists face as consumers of cartographic theory in her 

examination of the cartographic history of Complex A at the site of La Venta (Gillespie 2011). 

Gillespie notes that the variety and diversity of styles and representations present in many decades of 

mapping archaeological work at the site has led to more confusion than clarity in regards to the 

appearance and structure of the complex – and because it has since been destroyed, the variety of 

maps are all that remains. There is a simultaneous duality with regards to mapping in archaeology – 

maps must balance convention with effectiveness, and must often convey spatially and temporally 

complex information. Gillespie’s assessment of the maps of Complex A illustrates the importance of 

documenting the process involved in the creation of maps, if only for the later assessment of the 

methods used. 

2.1 History of GIS in Archaeology 

David Ebert (2004:319) identifies GIS as the set of software tools “for the collection, 

storage, retrieval, [and] manipulation of spatial data from the real world.” The introduction of GIS 

has simply made the previously established workflows within spatial analysis far easier to 

accomplish, and broadened the possibilities for innovation. Ebert conceptualizes GIS in archaeology 

as three hierarchical categories of visualization, management and analysis (Ebert 2004:320). 

Cartographic uses fall under the category of visualization. This is simply the translation of mapping 
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techniques for archaeological sites from ink and paper drafting to computerized mapping (GIS). 

Management is the collation and recordation of site location data, artifact data, soil stratigraphy, 

architectural contexts and project metadata for the purposes of resource management. Analysis 

comprises the highest level in Ebert’s hierarchy of uses. In this level, GIS is used to derive and test 

social theory. This hierarchical approach, while not complete, provides a general overview of the 

roles GIS technology can play in archaeological investigations. Technological advances, both in 

software capabilities and in the quality and availability of data will continue to aid archaeologists in 

answering diverse research questions. 

Many diverse archaeological projects have implemented GIS programs (e.g. Ashmore 2002; 

Bevan and Conolly 2002; Doyle et al. 2012; Eckardt et al. 2009; Fitzjohn 2007; Fletcher and Winter 

2008; Garrison 2010; Garrison et al. 2008, 2011; Glover 2012; Kosiba and Bauer 2013; Sharon et al. 

2004; Sayer and Wienhold 2013) especially for locational context information integral to any 

archaeological reporting. Data used in this thesis from previous projects was collected, stored, 

analyzed and incorporated in the form of GIS data – including ceramic data as well as structures, 

platforms and pyramids. 

Mapping of archaeological remains for the purposes of complex spatial analysis is common, 

even predating GIS. For example, Folan et al. (1983) examined the correlation of paleo-

climatological data to sociopolitical circumstances, and Drennan (1984) examined long distance 

trade, both in the Maya region without the use of modern GIS. Today these types of analysis would 

generally be conducted in GIS as a matter of course. 

More involved than data storage is the use of modeling to predict the location of 

undocumented sites. Specifically, modeling assigns probability to space, with regards to the 

likelihood of the presence of human cultural material. Verhagen and Whitley (2012) provide an 

account of the history of predictive modeling in archaeology. According to Verhagen and Whitley 
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(2012:3) such models can take on two forms: inductive and deductive. Inductive models utilize 

known site locations and statistical regression of environmental data to extrapolate site probability to 

unknown areas. Deductive models utilize hypothetical explanations for site location and are not 

based on known site locations. The theoretical and practical implications of such models are widely 

debated. Processual and post-processual thought have played a major role in developing and 

critiquing the use of predictive models respectively. Perhaps the most compelling criticism of 

predictive modeling is that archaeologists relying on models will never be certain of locating all 

archaeological resources and materials in a given area (Verhagen and Whitley 2012:5). This problem 

is most apparent when such models are used to drive the implementation of a survey project in the 

absence of a mechanism for feedback of field experience into the survey design. 

The inductive methodology most commonly utilized in archaeological site modeling may 

suffer a severe bias towards reinforcing what is already known about site distribution. As a brief 

example, consider Loebel (2012), who examined the patterns of Midwestern fluted point 

distribution. In Loebel’s analysis, these points, often used in research to purportedly reconstruct 

patterns of Paleo-Indian period land use, were subject to a significant form of confirmation bias 

from factors such as modern population, geological processes, and intensity of prior archaeological 

research. Loebel’s analysis has significant implications for the validity of inductive models for site 

location. As Verhagen and Whitley (2012:54) point out “it is illusory to think that we will be able to 

detect all archaeological remains in an area without stripping it completely.” Though I would point 

out that it may absolutely be possible to detect all the remains, as a scientist working with current 

technology it would be impossible to be certain of detecting everything without excavating and 

screening 100% of the soil in the zone in question (“stripping it completely”). Even then, questions 

would remain as to what evidence present in the ground at the conception of the excavation was lost 
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in the very process of excavation – for example botanical remains in soil. Further, did human beings 

even take part in activities that would leave any record at all hundreds or thousands of years later?  

Knowing that we cannot ever recover a full record of the past, and knowing that what we do 

recover can be biased significantly in ways we do not always notice, the validity of inductive models 

must be examined very closely and they must not be implemented uncritically. Specifically, such 

models inherently limit and possibly exclude the possibility of finding novel sites that do not fit, or 

cannot be predicted by the model. Further, because a particular location exhibits a remote sensing 

signature indicative of habitation does not secure status as a site of habitation.  

Predictive modeling does have more practical applications, despite acknowledged theoretical 

deficiencies. Leslie Reeder et al. (2012) utilize GIS to record site locations and assess site 

vulnerability on and off the California coast. Their study integrates modern climatological and 

environmental models with known site locations not to assess social theories but to determine site 

vulnerability to environmental changes such as erosion. Reeder et al. encourage archaeologists to 

quantify threats to the archaeological record with modern environmental models, and the synergy 

between their objectives and methods is compelling. However, it is important to acknowledge that 

by integrating the models of other fields into archaeological research, researchers become consumers 

of the theoretical paradigms of that field and model. It is, therefore, critical to evaluate how well 

those theories integrate with aims of the research project. Regardless of academic discussion, 

Cultural Resource Management firms and many State Historic Preservation Offices in the United 

States as well as some equivalent agencies internationally have bought into predictive models 

uncritically which has led to a gap in the application of these models and current theoretical trends. 

Quantitative methodologies are not unique to GIS within archaeology. 

David Hurst Thomas (1978) provides a compelling account of the use and misuse of 

quantitative statistical methodologies in archaeology dating back to the very beginnings of the New 
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Archaeology. These critiques and criticisms are as applicable to GIS (and any other quantitative 

methods) today as they were in 1978. In science more generally, Jacob Cohen’s (1994) scathing 

assessment of the null-hypothesis method of significance testing in the context of psychology rings 

true for archaeology as well. Close reading of the Thomas (1978) and Cohen (1994) articles reveal 

the same basic criticism: scientists applying statistics to research questions do not know enough 

about statistics. 

I must emphasize here that I am not rejecting out of hand the utility of quantitative statistics 

in archaeology. In my view what is most critical to take away from Cohen and Thomas is to not rely 

on a single set or type of data when interpreting answers to research questions, and in particular to 

not rely solely on statistical tests when making interpretations. Statistical significance and correlation 

can provide compelling evidence, which will lend credence to a given interpretation of a given set of 

data. However, correlation must not be mistaken for causation. Simply because a given model works 

does not mean that the underlying social interpretations are true. A keen, critical eye and careful 

thought must be applied to any analytical method, including statistics. Approaches which employ a 

variety of quantitative, qualitative or interpretive data are preferred. Statistics can help build or reject 

an argument – but only with critical thought, and preferably with the help of many supporting lines 

of evidence. 

2.2 Recent Trends in Archaeological GIS 

Recent developments in archaeological GIS include attempts to integrate concepts from 

post-processual archaeological thought with GIS. Landscape archaeology, phenomenology and other 

more interpretive realms of inquiry within archaeology have all made use of GIS technology. Wendy 

Ashmore (2002) has called upon archaeologists to socialize spatial lines of inquiry. Many researchers 

engaged in the sorts of socially driven spatial investigations Ashmore encouraged have utilized and 

benefited from advances in GIS technology and data. 
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Viewshed analysis is a common GIS function utilized by landscape archaeologists (Doyle et 

al. 2012; Ebert 2004; Eckardt et al. 2009). Viewshed analysis is “a map of locations that are 

visible/not visible from a given location, derived from a digital elevation model” (Ebert 2004:329). 

The result of this operation is a map of only two values - one value representing visible locations, 

and another those not visible. Viewshed can be interpreted in many different ways in an 

archaeological setting. Doyle et al. (Doyle 2012; Doyle et al. 2012) utilize viewshed along with cost 

surface analysis to model movement and visibility and possibly territoriality near Tikal. Eckardt et al. 

(2009) utilized viewshed to ascertain the relationship between Roman barrows and the surrounding 

landscape. Fairén-Jiménez (2007) examined Neolithic rock art in Britain through the lens of 

visibility. Fletcher and Winter (2008) applied GIS to visibility at sites in the Middle East. In India, 

Mack (2004) examined viewsheds with relation to different temples. In the US, Jones (2006) 

examined Onandaga site location with respect to viewshed in New York State.  In these cases the 

use of viewshed is an attempt to ascertain how landscape was perceived in the past through 

modeling sight lines. 

Viewshed analysis, despite ostensibly direct acknowledgment of the biomechanics of human 

sight, is not without critics (Fitzjohn 2007; Gillings 2012; Llobera 2007, 2012; McEwan and Millican 

2012; McEwan 2012; Rennell 2012). Mark Gillings (2012) criticizes viewshed as an example of the 

“toolbox” problem in GIS. That is: the tendency of archaeologists to compromise nuance in order 

to fit the research question to preexisting GIS methods (Gillings 2012). Many critics also attempt to 

reconcile the toolbox nature of the viewshed analysis capabilities present in GIS software with the 

experiential and phenomenological theories that are often prevalent in landscape archaeology. In 

particular, viewshed is known to assume a level of deforestation, which can be difficult to support 

empirically throughout time in the Maya area, though many population estimates for major centers 

may imply it (Doyle 2012). McEwan (2012), McEwan and Millican (2012) and Gillings (2012) all 
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recommend the construction of middle range theories bridging critical and practical aspects of 

incorporating GIS within archaeological research, as well as further innovation in GIS tools developed 

specifically to suit archaeological investigations. 

Middle Range Theory, according to L. Mark Raab and Albert C. Goodyear (1984), is the 

concept of abstracting social theories from ostensibly empirically obtained inputs used to test them. 

For Raab and Goodyear, effective implementations of middle range theory serve as a form of 

“proof” in the mathematical sense, a chain of logic or series of propositions which abstract and 

bridge data with theory. Simultaneously this serves as a check both on untestable pontification and 

uncritical empiricism. This idea can be used to incorporate GIS based analytical methods into social 

theories reliant on other sources of data. McEwan (2012), McEwan and Millican (2012) and Gillings 

(2012) encourage the further development of theories for utilizing GIS based inputs to test higher 

order theory. 

Many critics of GIS cite the work of Marcos Llobera in innovating with GIS software tools 

to investigate interpretive archaeological problems. Llobera (2007) utilized a concept of banded 

viewsheds to better understand inter-visibility in Roman barrows, a problem discussed earlier 

(Eckardt et al. 2009). By breaking the viewshed from its binary visible/not visible computer friendly 

method, Llobera (2007) attempted to incorporate the nuance of human visual perception into the 

software analysis by creating range limited viewsheds at near, mid and far break points established by 

other researchers. Rennell (2012) also utilized banded viewsheds, incorporating field survey distance 

classes into their viewsheds. This allows a researcher to present a derived viewshed in a more 

nuanced way, representing the differential perception of human vision over increasing distances. 

2.3 Geospatial Revolution: Critical Theory and Remote Sensing 

Recent calls for and developments in Middle Range Theory within Archaeology have 

coincided with a vast increase in availability and quality of data about the earth’s surface (Chase, 
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Chase, et al. 2014; Chase et al. 2012, 2011; Prufer et al. 2015; Parcak 2009; Hixson 2013; Doneus and 

Kuhteiber 2013). The data becoming available in the projects and volumes cited has improved or 

eased the implementation of traditional archaeological methods like pedestrian survey and manual 

excavation. In the case of Caracol (Chase et al. 2011; Chase, Chase, et al. 2014; Chase et al. 2012) 

LiDAR based survey methodology has expedited mapping of the landscape surrounding the site 

immensely. For the Caracol project, LiDAR based survey is one form of survey input, along with 

traditionally conducted pedestrian architectural surveys and many other sources of data. All are used 

to interpret the site. 

For Chase and colleagues (2012:12916) improvements in spatial technology can be seen akin 

to the advent of C14 dating: “[a]rchaeological research revolves around temporal and spatial data; 

thus advances in either parameter can be transformative.” However, given the toolbox problem 

identified by Gillings (2012) with GIS methods. This toolbox problem can also be applied more 

broadly to other archaeological and anthropological methods – say with relation to available isotopic 

assays both permitting and constraining certain types of bioarchaeological investigation. 

Archaeologists must acknowledge and include these constraints in the theoretical positioning of 

their work. 

The issues of how to integrate remotely sensed data into a program of archaeological 

research are not relegated simply to elevation derived viewshed. Satellite imagery is increasingly 

available at ever-higher resolutions to archaeological researchers. The edited volumes by Douglas 

Comer and Michael Harrower (2013) and Sarah Parcak (2009) explore recent possibilities in satellite 

remote sensing in archaeology. The chaine opertaire concept presented by Doneus and Kuhteiber 

(2013) for integrating national LiDAR data sets into archaeological research in Europe provides a 

useful mechanism for explicitly situating remotely sensed data in general within an extant framework 
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of archaeological research. This concept requires the researcher make explicit the links between the 

decisions made at all stages of remote sensing research. 

Mentioned above, Wendy Ashmore has issued a call for archaeologists conducting spatial 

analysis to engage more fully with the social aspects of archaeology. Ashmore posits the concept of 

“life history of place” (2002:1178) as one way to accomplish this socialization. She defines this 

concept as “examining evidence for human recognition, use, and modification of a particular 

position, locality, or area over the full time span of its existence” (2002:1178). By so doing, Ashmore 

is in essence calling for the construction of a middle range theory explicitly establishing links 

between GIS and other forms of spatial analysis and broader theorization within archaeology. In 

response to Ashmore’s challenge, this study establishes links, but also acknowledges the possible 

gaps, between observed material culture, remote sensing data and the “decisions and dispositions” 

of human beings in the past. I aim to further answer this challenge by being explicit in how the 

theoretical framework of Historical Ecology has informed this study in design, implementation and 

interpretation. 

2.4 Historical Ecology 

“The composite place-the local landscape and its constituent natural and accumulated 

cultural elements-remained a critical arena and set of referents for mapping social and political 

change.” 

- Wendy Ashmore (2002:1179) 

 

The “life history of place” called for by Ashmore requires assessing human impacts on past 

environments. In this study I examine how human beings manipulated and continue to manipulate 

the landscape to their own ends and how in turn the landscape has guided and constrained human 
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activity. I view these factors at a regional scale, through the lens of available remotely sensed data. 

Life history of place envisions the landscape as a sort artifact – the sum total activities of any 

number of generations of human beings imprint themselves upon the landscape. But in this model, 

the life history of place, we must acknowledge that a place has history, and a life, both at the hands of 

humans and beyond. 

Human beings around the world have adapted to a great diversity of environments and at 

the same time have changed them (Crumley 1994). Historical Ecology, or Landscape History, – the 

theoretical framework laid out by Carole Crumley recognizes the explicitly interrelated nature of 

human relationships with the environment. This framework brings together physical and natural 

sciences with historical and archaeological frameworks. The aim of this is to resolve perceived 

deficiencies in integrating the growing body of environmental data with historical, archaeological and 

other explicitly human focused avenues research. As Crumley identifies, the advent of computer 

assisted GIS data manipulation has allowed for the mapping of environmental change over time, 

which when integrated with data on human activities can help to illuminate the possible dialectical 

relationships between humans and the environment (2006:1173). 

By incorporating a number of remotely sensed data sets, discussed in Chapter 4, along with 

the previous archaeological research as discussed in Chapter 3, my aim is to determine what utility 

remote sensing has in the aid of settlement pattern research in the region. By combining multiple 

data sets from interrelated projects that are oriented at various aspects of the archaeological record, 

it is possible to assess the utility of remotely sensed data with regards to the interpretation and 

analysis of the diversity of archaeological features found in the Yalahau region, to be discussed in 

chapter three. 
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2.5 Conclusions 

This research is one component in a series of projects that are “filling in” the picture of 

settlement use and human modification of the Yalahau region. This aids in understanding the 

specific dialectical interactions between humans and the environment that influenced sociopolitical 

development within the Yalahau region and that have impacted the landscape in such a way that 

they are still observable today. By building on these attempts at using post-structural theory in 

overcoming possible pitfalls of GIS based analysis, and by integrating multiple sources of data – 

archaeological, geological, hydrological, satellite and airborne remote sensing – this project aims to 

assess the utility of remote sensing for detecting long term human impacts on the environment. By 

first starting from a position that acknowledges the theoretical limitations of the methods used, I 

seek to understand the pitfalls in order to avoid them. I posit that by understanding the limitations 

and wielding the strengths of these various remotely sensed data I can more effectively conduct 

archaeological research, primarily the settlement pattern research to which I seek to contribute.  

3 Natural, Cultural and Archaeological Background 

The Yalahau region of northern Quintana Roo represents a unique opportunity to examine 

the interactions between human beings and their environment (e.g., Fedick et al. 1995; Glover 2012). 

The abundant wetlands of the Yalahau region are resource rich (Leonard 2013). Underlying the 

region is a layer of porous limestone, which creates a karstic landscape. Along the eastern part of the 

peninsula is the eastern block fault zone, a zone of horst and graben geology forming a series of 

long, low lying areas running north to south, known as the Holbox Fracture zone (Ward et al 

1985:1-12). Chemical dissolution of the karstic limestone in this already low-lying area had an impact 

in the development of the Yalahau Region wetlands (Perry 2002). This landscape is home to an 

extensive network of caves, many submerged along the eastern coast of the peninsula (Beddows 
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2003, Fedick 2014, Lesser and Weidie 1988, Ward et al. 1985). In this region, rapid infiltration of 

surface water below the surface results in a lens of freshwater above a layer of salt water, with the 

fresh water lens thicker further from the coast (Beddows 2003:29). There are a number of other 

related karst features in the region including Corchales (deep, soil filled depressions), Lagunas (shallow 

ponds) and Rejolladas (shallow soil filled depressions) but the most famous feature of this landscape 

is the cenote.  Cenotes punctuate the porous landscape and ideally contain water at the bottom. The 

cenote at Bolonchen (Figure 3) is an example of how important these geologic features were within 

Maya culture. Here Stephens and Catherwood observed a community collecting water and making 

offerings within the cenote. The edited volume from Prufer and Brady (2005) provides an overview 

for the context of ritual use of caves, cenotes, rock shelters and other features common of the 

limestone landscape of Quintana Roo. 

In order to discuss Maya beliefs about caves, it is important to establish the concept of ch’en. 

In this paper, and many other modern investigations of caves the English word “cave” is used in the 

sense of the Maya word ch’en. The word ch’en has be translated variously as “cave” or “well” but 

perhaps the most important translation is that of “hole in the Earth” (Brady 1997; Laughlin 1975). 

This concept is important, because in order to understand caves and the rituals taking place there in 

emic terms we must attempt to understand how the ancient Maya themselves conceptualized caves 

(Brady 1997). The translation of “hole in the Earth” allows for a very broad definition of cave, 

which encompasses many features present in a karst landscape which have different names in 

English, and therefore might be ignored in cave studies. These include traditional horizontal caves, 

sinkholes, depressions, fissures, rock shelters, cenotes (defined above), and various manmade holes 

(e.g. chultuns or storage pits) (Brady 1997). Epigraphic evidence from Vogt and Stuart (2005) 

provides a reading of ch’en for a previously un-deciphered Maya glyph, leading to many new 

discussions about caves in the field of epigraphy.  
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Figure 3 -Catherwood Plate XX: Well at Bolonchen 
 

Physical evidence of ritualism and caves as special places dates back to the very beginnings 

of cave archaeology (Butler 1934; Gordon 1897; Stephens 1841 and 1843) and continues through 

today (Brady and Prufer 2005; Brady and Rissolo 2006; Halperin et al. 2003; Ishihara-Brito et al. 

2011; Moyes et al. 2009; Prufer and Brady 2005; Prufer and Dunham 2009; Prufer and Hurst 2007; 

Weishampel et al. 2012). Vogt and Stuart (2005) provide, in addition to their epigraphic 

interpretations, ethnographic evidence for the sacred, ritual nature of caves for the Maya, along with 
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Brady and Kindon (2005), Adams and Brady (2005) and Petryshyn (2005[1968]). Caves, both natural 

and completely artificial abound both within Maya sites throughout the region, and dispersed across 

the countryside within the Yalahau region. 

The recent nature of this analysis of architecture and karst topography means that not many 

sites have been systematically surveyed for cave associations. Even when such surveys are 

undertaken the rugged nature of the terrain can present challenges in locating cave sites. Weishampel 

et al. (2012) examined airborne LIDAR for the site of Caracol in an attempt to locate cave sites. The 

survey was partially successful but they note that the methodology used precludes the identification 

of horizontal cave features, which are very common in the karst topography of the region. Even if 

survey is undertaken for the express purpose of locating cave features, the Maya often took steps to 

bury entrances, as Brady (1997) observed at Dos Pilas. 

3.1 Natural History of the Yalahau Region 

The Yalahau region wetlands are geologic features, with fractures in the limestone bedrock 

resulting in flat areas of lower elevation within the already flat and low Yucatan Peninsula (Fedick et 

al. 2000; Fedick 2014; Leonard 2013; Wollwage et al. 2012). Lowlands grade slowly and shallowly 

into upland areas with relatively higher elevation, areas of forest in various states of growth from 

primary regrowth to proper high forest, with high canopies and open spaces between large trees. 

Dunning et al. (1998) defines the Yalahau region as a distinct physiographic zone that presents 

unique opportunities and constraints for subsistence practices. The region is defined geographically 

and geologically, and subsequently environmentally, by the lowland wetlands, known locally as 

sabanas, and the seasonal wetland resources they provide access to. For the purposes of this study, 

the Yalahau region refers to the area encompassed by a 20 km buffer extending from the dry season 

limits of the wetland sabanas (Figure 4), following Glover’s (2012) definition as mentioned above. 
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Figure 4 - YRSPS Known Sites 
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The general low lying nature of the northern Yucatan Peninsula, means that slight relief in 

terms of elevation can have dramatic impacts on the flow of water. The wetland sabanas are fed by 

rain and the underlying water table – which is itself dependent on a number of factors, including sea-

level (Fedick et al. 2000; Fedick 2014; Glover 2012; Leonard 2013). The sabanas are pulse based, 

filling with water in the rainy season, and discharging it into Laguna Holbox (Leonard 2013). Sea 

level – thus the water table, and consequentially, the sabanas – were up to one meter lower in the 

rainy season during the Terminal Preclassic (75 BC – AD 400)(Fedick 2014; Leonard 2013). This 

lower maximum for the water level means that the wetlands would have been considerably narrower 

during their high water level during this time period. 

Further research by Daniel Leonard (2013) in the regional wetlands, the focus of his 

dissertation project, has broadened the evidence of human modification of the wetlands, previously 

reported by Fedick and colleagues (Fedick et al. 2000). Investigations into wetlands elsewhere in the 

Maya region (Beach et al. 2009; Dunning et al. 2002; Pope and Dahlin 1989) confirm the importance 

of these resources, especially during the Preclassic. Intensive modification of the wetlands is 

correlated with the increase in human activity and populations in the region as reported by Leonard 

(2013). 

Despite the intensive utilization of the wetlands, sites are generally located in upland 

contexts. However, recent research by Leonard (2013) shows structures do exist within 10 meters of 

the margins of some wetlands, however the aforementioned rise in sea level since the Terminal 

Preclassic may be causing the encroachment of the wetlands at some sites. The largest sites within 

the region are all located at the margins of the region, near the edge of the study area. Sites close to 

the wetland were located in upland contexts, with access to both the wetland and upland resources. 

Understanding of settlement pattern data within the region is aided by further refining our 
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interpretation of the relationship between sites and the wetlands used to delineate the region, a task 

which remote sensing can assist with. 

3.2 Culture History of the Yalahau Region 

In an attempt to relate the conception and results of this thesis back to the broader 

anthropological questions currently under debate in the Yalahau, I recap the current, general 

understanding of the chronology of the region, first addressing the general culture-history of the 

Maya Lowlands from the Preclassic through the Colonial period (Table 1). Ceramic data (Amador 

2010) support two primary periods of occupation in Yalahau region, the Terminal Preclassic (75 

B.C. – A.D. 400) and the Postclassic (A.D. 1100/1200 – 1521). The first documented human 

presence in the region, however, begins in the Middle Preclassic period (approx. 700 B.C.) (Glover 

et al. 2011; Rissolo et al. 2005). Research (Glover 2012, Glover and Stanton 2010) has shown that 

the vast majority of settlement occupation in the Yalahau region dates to the Terminal Preclassic (75 

B.C./ A.D. 100 - A.D. 400). By the Early Classic period, many sites in the region were abandoned, 

with a notable exception at Vista Alegre (Glover et al. 2011). This widespread depopulation at most 

sites throughout the region continues until around A.D. 1100 or 1200, at which time there is a 

reoccupation of many sites throughout the region (Amador 2010; Glover 2012; Leonard 2013). 

Table 1 - Chronology of the Region (after Glover 2006:350) 

Time Period Beginning End 

Middle Preclassic 700 B.C. 200 B.C. 

Late Preclassic/Early Classic 200 B.C. A.D. 600 

Late/Terminal Classic A.D. 600 A.D. 1200 

Postclassic A.D. 1200 A.D. 1521 

Post-Contact A.D. 1521 Present Day 

 

By Late Preclassic (200 B.C. - A.D. 250), the entire lowlands experience a population surge, 

including the Yalahau region (e.g., Bey et al.1998; Glover 2012; Stanton 2000). This increase in 

population also corresponds, according to Glover (2012) with an increase in monumental 
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architecture in the region. Ceramic series from this time period are widespread and represent some 

of the most common ceramic material recovered regionally in Glover’s YRSPS (2012). This phase 

represents the peak occupation of the Yalahau region. Supporting the ceramic data is the presence of 

the Megalithic architectural tradition at a number of sites in the region.  This is a distinct 

architectural tradition dating to the Late Preclassic and Early Classic periods and is present elsewhere 

in the northern Maya lowlands (Glover 2012; Mathews 2001; Taube 1993). 

Following the Terminal Preclassic apogee in a population is a regional abandonment during 

the Classic Period.  The lack of Classic period diagnostic architecture and more importantly the lack 

of polychrome pottery and slate wares in the region support this interpretation (Glover 2012). The 

primary exception during this time period seems to be at the island port site of Vista Alegre, where 

the occupation extends into the Classic period and seemingly peaks in the Terminal Classic. The 

population boom during the Late/Terminal Preclassic period is not seen by Glover or others 

(Amador 2010; Glover 2012) as indicative of large-scale migration into the area. Rather, the ceramic 

data point to a build-up of a local Chicanel ceramic sphere from an earlier Nabanche tradition 

(Rissolo et al. 2005). 

Following widespread depopulation of the region between A.D. 100 and 400, reoccupation 

begins around A.D. 1100/1200 (Amador 2010) and continues until the Contact period (Andrews 

2002, Andrews and Jones 2001). Postclassic ceramic material was present at 24 of 35 sites were 

ceramic materials were collected as part of Glover’s YRSPS (Glover 2012), indicating a broad 

reoccupation. Significantly, the primary architectural influence at this time period seems to stem 

from the East Coast as evidenced by sites like San Ángel (Gallareta Negron and Taube 2005), which 

has Postclassic period painted murals in a style identified to be affiliated with the East Coast and 

speaks to connections with the broader Mesoamerican world. 
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3.3 Relevant Archaeological Research 

Archaeological research in northern Quintana Roo has a sporadic but long history. 

Investigations by Ramos (1946) and Sanders (1955) revealed the presence of archaeological remains 

at sites throughout Quintana Roo, including the Yalahau region. Analysis of the historical political 

geography of Yucatan by Ralph L. Roys has also contributed to our understanding of the region 

(Andrews 1984; Roys 1957). More recently the research of Karl Taube and Scott Fedick took place 

under the umbrella of the Yalahau Region Human Ecology Project (YRHEP). 

The YRHEP was initially led by Scott L. Fedick and Karl Taube (Fedick and Taube 1995). 

Subsequently, Fedick and Jennifer Mathews directed the project (Fedick and Mathews 2005). Taube 

(1993) examined the megalithic architectural tradition within the Yalahau region, a topic revisited by 

Mathews (2001) and Glover (2006, 2012). The YRHEP worked at the site of Naranjal and 

subsequently at the El Eden wetlands and the site of T’isil, where the project documented the most 

densely occupied site known within the region.  

Other research from the Yalahau region includes Mathews’ work Radiocarbon dating 

architectural mortar from the site of El Naranjal (Mathews 2001), Sorensen’s examination of Late 

Preclassic site planning principles at T’isil (Sorensen 2010), Wollwage and colleagues who examined 

the depositional chronology of the cenote at the center of the site of T’isil (Wollwage et al. 2012), 

Shaw and Mathews’ edited volume Quintana Roo Archaeology (Shaw and Mathews 2005) includes 

contributions from a number of scholars working in the Yalahau region. Recent research by the 

Proyecto Costa Escondida, directed by Glover and Rissolo, has focused on coastal sites like Vista 

Alegre (Glover, Rissolo, and Mathews 2011; Glover and Rissolo 2010; Glover et al. 2012).  

The dissertation research of Dominique Rissolo (2003) further confirmed the importance of 

cave resource utilization for the people of the Yalahau region. In this project, Rissolo surveyed 

anthropogenic impacts in caves within the Yalahau region, and found evidence of similar activities as 
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found elsewhere within the Maya region. As established above, caves play an important role in Maya 

culture across the Maya region, the confirmation of the importance of these features within the 

Yalahau region was crucial in determining methods to be used. 

The dissertation research of Jeffrey Glover, the Yalahau Region Settlement Pattern Survey, 

provides one of the two bases for this research (Glover 2006). In that project, Glover identified 104 

sites within the Yalahau region. This total number includes sites previously known (n=52) and the 

52 sites that he identified during his dissertation research. This database of locations served as the 

basis upon which this thesis was built. Glover broke the regional sites down into a simple 4 rank 

hierarchy, Yalahau rank 1 being the largest regional sites, and Yalahau rank 4 being the smallest. In 

that study, Glover identified sites primarily through the use of informant-based survey. This method 

has advantages and disadvantages, but the primary qualification for this form of survey is that 

effectiveness is directly proportional to the amount of time spent in a given area of the landscape. 

What this means is that the effective limits of the survey are the areas where the informants you 

have contacted regularly frequent. There are, however, still portions of the Yalahau region that 

remain unexplored to archaeologists due to the lack of local guides. This is a critical issue that 

remote sensing can help remedy, and I return to it below. 

The Yalahau Region Wetland Survey, the dissertation project of Daniel Leonard (2013) 

provides a valuable set of additional site locational information. This survey focused on the 

modifications to the region’s wetlands by the ancient Maya, as well as the relationship between sites 

and the wetlands. In addition to many rock alignments within the regional wetlands that Leonard 

surveyed, he registered five new sites. 

3.4 Conclusions 

The site location information provided in these dissertations as well as the rich contextual 

information available from other research in the area made this thesis research possible. The 
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research questions addressed by this thesis stem from what is now more than 30 years of ongoing 

research into the Yalahau region, as discussed above. Building upon the work of Glover (2006) and 

Leonard (2013), I seek to add to the growing settlement pattern data within the Yalahau Region. The 

fractured limestone geography (Tulaczyk et al. 1993) has produced regional wetlands that have a 

demonstrated significance for prehistoric peoples (Beach et al. 2009; Dunning et al. 1998; Fedick et 

al. 2000; Leonard 2013). Understanding the pattern of human use and habitation of the landscape of 

the Yalahau is critical for interpreting answers to questions that have arisen with regards to the 

sociopolitical organization of the region. The primary question this thesis seeks to address is: What 

undocumented sites still exist within the Yalahau Region? There are a number of angles from which 

this question could be answered, as demonstrated by the location of five new sites during the course 

of Leonard’s separate, wetland focused work without the benefit of remote sensing anomaly 

detection (Leonard 2013). Other valid methods would include survey by transects (Ford and Fedick 

1992) or through randomized sampling (Garrison 2007). However, given this question and, bearing 

in mind my interest in and discussion of GIS analysis for the purposes of archaeological research, I 

decided to approach these questions from a Remote Sensing angle, incorporating the GIS data from 

the YRSPS (Glover 2006) and the YRWS (Leonard 2013). The specific remote sensing methods 

utilized to answer this question are described in the next chapter.  

4 Methods 

As discussed in more detail above (see Chapter 2), this chapter outlines the specific remote 

sensing chaine opertaire (Doneus and Kuhteiber 2013) utilized in this research – the middle range 

theory, as it were, allowing the construction of interpretations from heterogeneous sources of 

information. In the following sections I address data collection and data processing for each of the 

remote sensing systems utilized for this thesis. Within Section 4.1 I examine Geoeye-1, followed by 
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Landsat. Within the elevation section I evaluate Airborne LiDAR and Shuttle Radar Topography 

Mission (SRTM) derived DEM’s. For each of these systems, I address what is detected as well as 

how the system acquires its data. I discuss data availability and access restrictions as well as post-

processing methods utilized to analyze the data from each system. Also critical to understanding the 

limitations of this thesis is an understanding of the limits of coverage for remotely sensed data. To 

that end each data set used is presented with relevant specific scene information. In section 4.3 I 

bring these aspects together and discuss the limitations of the selected methods. 

In the case of Yalahau region, research is only beginning to integrate remotely sensed data 

with research questions. For the purposes of this study, the primary use of remote sensing is in 

supplementing and validating regional survey data. To this end, as discussed in Chapter 2, situating 

human activity in the Yalahau region requires acknowledgement of the importance environmental 

factors play in decisions related to human habitation - as well as the acknowledgment of the 

significance of the impacts that human activity can have on the environment. With this in mind, for 

multispectral imagery both GeoEye-1 and Landsat were selected.  For elevation SRTM and Airborne 

LiDAR were the chosen platforms. The reasoning behind these selections is given in their respective 

sections below. 

4.1 GeoEye-1 

The geospatial imagery company Digital Globe has a great deal of multispectral coverage 

available – though the frequency of repeat coverage can be irregular. For this thesis I applied for and 

received an imagery grant from the Digital Globe Foundation. In applying for this grant I had to 

make certain decisions. The economic (and physical data storage) realities did not allow for the 

request of all imagery for the Yalahau region from every satellite operated by Digital Globe. I did 

request this initially and it was, as expected, rejected – however the narrative associated with my 

application prompted them to suggest that I restrict the area requested and that I pick which satellite 
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passes I was interested in – with the promise of acceptance. I based the area selection on a cross 

section of the various microenvironments and the presence of known sites – as well as imagery 

availability and percentage of cloud cover (Figure 5). In the end I selected scenes from the GeoEye-

1 satellite, which has Near Infrared, Red, Green and Blue and Panchromatic bands and has 

approximately 45 cm pixel resolution. Because the spatial coverage of this data set is limited, and the 

repeat coverage sporadic, the ability to detect undocumented archaeological remains with this sensor 

is also limited; a point I make more clearly below. The high spatial resolution means smaller, more 

detailed scenes. Lesser spatial coverage and less frequent repeat coverage make it difficult to obtain 

the single scene broad area coverage free of clouds. Lower spectral resolution but higher spatial 

detail makes it more difficult seek out spectral signatures. These limitations mean that this sensor 

was not used for the primary purpose of this thesis – detecting undocumented sites – and will not be 

addressed with the results in Chapter 5 as a result. 

Table 2 - GeoEye-1 Scenes used for this thesis 

Satellite Date Scene Identifier 

GeoEye-1 February 14, 2011 162658 

GeoEye-1 June 25, 2013 163002 

GeoEye-1 April 23, 2012 163827 

 

4.2 Landsat 

While waiting on the results of the application to the Digital Globe Foundation, I began 

working through historic Landsat imagery trying to find scenes free of cloud cover to use as a 

baseline. The 16 day per satellite repeat coverage of the Landsat system offered by LANDSAT 7 

during the early years of that satellite provided a welcome contrast to the often cloud filled one-off 

scenes available from commercial providers. The more complete picture afforded by LANDSAT 

comes at the cost of spatial resolution. Landsat 7 and 8 have 30 m pixel resolution for the bands of 

interest. The higher spatial resolution but “only” 4 bands of the GeoEye-1 satellite can be  
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Figure 5 - GeoEye-1 Coverage 
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conceptualized in contrast with the broad spectral coverage of Landsat sensors. Bands are ranges of 

light that can be detected by a given sensor. Red, Green and Blue bands correspond with those 

colors in the visible spectrum. Other ranges like near infrared are beyond human vision. A system 

that has more bands can detect more ranges of light. Landsat data is available for free through the 

United States Geological Survey (USGS). The charts below depict the primary bands used with the 

LANDSAT Sensors (after http://landsat.usgs.gov/band_designations_landsat_satellites.php). 

Table 3 - Bands Utilized  

Landsat 5 Landsat 7 Landsat 8 

Band 1 – Blue Band 1 –Blue Band 2 –Blue 

Band 2 – Green Band 2 –Green Band 3 – Green 

Band 3 – Red Band 3 – Red Band 4 – Red 

Band 4 – Near Infrared Band 4 – Near Infrared Band 5 – Near Infrared 

Band 5 – Middle Infrared 1 Band 5 – Middle Infrared 1 Band 6 – Middle Infrared 1 

Band 7 – Middle Infrared 2 Band 7 – Middle Infrared 2 Band 7 – Middle Infrared 2 
 

Table 4 - Landsat Scenes used for this thesis 

Satellite Date Scene ID 

Landsat 5 TM+ April 17, 1984 LT501904519841 

Landsat 5 TM+ January 14, 1985 LT501904519850 

Landsat 7 ETM+ October 28, 1999 LE701904519993 

Landsat 7 ETM+ April 14, 2003 LE701904520031 

Landsat 8 OLI April 20, 2014 LC801904520141 

Landsat 8 OLI December 16, 2014 LC801904520143 

Landsat 8 OLI February 11, 2015 LC801804620150 

4.3 Tasseled Cap 

It was at this time that I learned about the Tasseled Cap processing method (Kauth and 

Thomas 1976) employed by Hixson (2013) near Chunchucmil to locate undocumented sites. Based 

on Hixson’s successes, this method might well produce similar results in Yalahau. This methodology 

is a form of principle component meta-analysis (Baig et al. 2014; Crist and Cicone 1984; Hixson 

2013; Huang et al. 2002; Kauth and Thomas 1976). This method uses a predefined algorithm to 

extract subtle categories of pixels that are “brightness”, “greenness” and “wetness”. Each of these 

categories takes as input all the bands of the LANDSAT sensor except the thermal infrared one, and 
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in the case of Landsat 8, the coastal aerosol band. It processes them, ostensibly to extract the desired 

principle component in a grayscale image. This operation, with all the bands as input, is performed 

three times - once for each of the principle components. By taking those three components, and 

compositing them together as Red, Green and Blue bands – with brightness being red, greenness 

being green and wetness being blue. Figure 6 illustrates how each band of spectral data from the 

Landsat satellite contributes to each of the three principle bands of a tasseled cap, brightness, 

greenness and wetness. 

 

Figure 6 - Tasseled Cap Diagram (after Daniels 2012:15) 
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The calculation of each of the three bands can be expressed as a function, with each value in 

each raster band multiplied by a coefficient and then added to the other bands. For different satellites, 

the calculated coefficient values differ (Baig et al. 2014; Crist and Cicone 1984; Huang et al. 2002; 

Kauth and Thomas 1976). Building on the Esri ArcMap Model builder toolbox provided by Daniels 

(2012) for the creation of tasseled cap images – I added the capability to produce tasseled cap results 

from Landsat 8 imagery – based on the coefficients provided by Baig et al. (2014). The tables below 

illustrate the tasseled cap coefficients used for various satellite sensors. 

The coefficient values for the creation of the tasseled cap raster via the model diagramed above 

were ascertained by calibrating the Landsat sensor to a very well ground-truthed target area for the 

calibration of the brightness, greenness and wetness metabands from the discrete spectral bands of 

the Landsat sensor. Essentially, this method is a specialized pre-calibrated version of principle 

component analysis, with the variation between bright green and wet bands calibrated to reflect 

something which in theory meaningfully reflects what is on the ground. As I discuss below, based 

initially on the work utilizing tasseled cap at Chunchucmil discussed earlier (Hixson 2013), this method 

did indeed prove to be useful in the location of undocumented sites in the Yalahau region.  

Table 5 - Landsat 5 Tasseled Cap Coefficients (Crist and Cicone 1984:257) 
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Table 6 - Landsat 7 Tasseled Cap Coefficients (Huang et al. 2002:1744) 

 

Table 7 - Landsat 8 Tasseled Cap Coefficients (Baig et al. 2014:428) 

 

4.4 Shuttle Radar Topography Mission (SRTM) 

The Shuttle Radar Topography Mission was an attempt to build a global digital elevation 

model using Synthetic Aperture Radar flown on the Space Shuttle by NASA (Bamler 1999; Koch 

and Heipke 2001; Koch et al. 2002). The digital elevation data from this mission is freely available 

from the USGS Earth Explorer Platform (USGS.gov/earth explorer). SRTM has been used 

previously in the region (Fedick 2014; Glover 2006; Leonard 2013). Because of the limited area 

covered by the LiDAR provided by INEGI, the SRTM data are still the only available elevation data 

for much of the Yalahau region (Figure 7). 
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Figure 7 - SRTM DEM (USGS/NASA) 
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4.5 Airborne LiDAR 

The availability of a state maintained LiDAR (Light Detection and Ranging, after Opitz and 

Cowley 2013) data set for a portion of our study area came as some surprise, but the Instituto Nacional 

Estadistica y Geografia kindly provided access to one of the first such data sets collected in Mexico 

(Instituto Nacional de Estadistica y Geografia). LiDAR utilizes electronic distance measurement or 

phase variance to ascertain the direction and distance of a given point from the LiDAR device. 

When deployed on an aircraft, LiDAR also becomes known by another acronym – ALS (Airborne 

Laser Scanning). This greatly increases the speed of coverage available, if the data is accessible. The 

LiDAR data available for the Yalahau region does not cover the entire study area (Figure 8) but was 

focused on the heavily populated Caribbean coastal area. 

INEGI delivered the data in three forms, two digital elevation models (DEMs) and a nube de 

puntos (point cloud). Full waveform LiDAR data (Doneus et al. 2008) was not available from INEGI. 

The Digital Elevation Models derived from the LiDAR data were labeled superficie (surface) and 

terreno (terrain). These elevation models have a resolution of ten meters per pixel. According to the 

metadata provided with the data, the superficie DEM was generated based on the raw point cloud 

with no vegetation or human build structures removed. The terreno DEM was post-processed to 

automatically remove all vegetation and structures. Due to the known limited utility of large 

footprint LiDAR for archaeology (Chase et al. 2011:390) the point cloud provided by INEGI was 

not reprocessed. Large footprint data like that for the northern part of Quintana Roo has a density 

of much less than 1 point per meter. By contrast, the small footprint LiDAR data obtained by the 

Chase’s at Caracol is exceptional at identifying structures (See Figure 9) even through dense forest 

canopy, with a point cloud density much greater than one point per meter. 

The previously mentioned LiDAR based work at Caracol (Chase et al. 2011, 2012; Chase, 

Chase, et al. 2014) does represent a fundamental improvement in the ability to rapidly survey large  
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Figure 8 - LiDAR Terreno DEM (INEGI) 
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Figure 9 - Example Small Footprint LiDAR (Chase et al. 2012:12918) 
 

segments of the earth’s surface quickly. However, there are significant questions about the true 

efficacy of surface survey in Mesoamerica. Johnston (2002) and Sweely (2005) in particular offer 

interesting perspectives on this question. Johnston examined the classification and terminology 

surrounding surface survey and surface architectural detection, elucidating categories of visible, 

hidden and invisible architecture – separating the concept of protrusion from visibility. Johnston 

clarifies that a hidden structure which is nonetheless protrusive from the earth’s surface can 
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eventually be detected by increasing the intensity of survey, while invisible structures can never be 

detected from the surface alone, but will require ground disturbing activity or at least subsurface 

sensing to detect. LiDAR does represent what is currently the most intensive survey method 

possible without having to result to costly stripping excavations. 

Sweely successfully utilized electromagnetic resistivity to guide excavation in the search for 

buried dwellings and other features invisible from the surface. Unfortunately, geophysical methods 

are not equally applicable or efficacious around the world, or even throughout Mesoamerica (e.g., 

Kvamme 2003; Sweely 2005). Further, variable soil depths in the already shallow northern lowlands 

are even lower within the Yalahau region, meaning surface architecture may date to the Preclassic (as 

early as 700 B.C.), so buried structures are less of a concern specifically within the Yalahau region. 

Neither LiDAR results, nor the middle range theory used to situate such results differ significantly 

from conventional archaeological survey used to assess settlement in Mesoamerica – claims of total 

coverage with regards to remote sensing and settlement should be examined closely. The questions 

posed by Johnston and Sweely with regards to the presence of invisible dwellings or structures 

within the Maya are not resolved through the use of LiDAR remote sensing.  

4.6 Topographic Position Index 

The Topographic Position Index (TPI) method is one way of analyzing the position of sites 

on the landscape. At the simplest level, TPI assesses whether a given cell is above or below a 

neighborhood average – the size of which is variable (Weiss 2001). I applied TPI at variable 

distances to both the SRTM and Airborne LiDAR derived digital elevation models, as described 

above. While the application of TPI is subject to the specific topography in question (De Reu et al. 

2013), the validity of the method for detecting potential below canopy karst openings has been 

established elsewhere in the world (Doctor and Young 2013; Kobal et al. 2015) as well as within the 

Maya area (Weishampel et al. 2011). This method has also been used to detect terracing in both the 
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Maya area (Hightower et al. 2014) and in Asia (Sas Jr et al.). However, this method was applied to 

much higher quality digital elevation models than those made available from the INEGI LiDAR or 

the SRTM data. Because the TPI only takes as input elevation data, the quality of that elevation data 

dictates the quality of the resultant TPI raster. TPI was also assessed for all known sites in the 

Yalahau region, as a corollary to Glover (2006), who analyzed the elevation of sites on the landscape. 

Rather than simply looking at the elevation – TPI allows one to assess a sort of qualitative status of 

the position of a given archaeological site on the landscape – whether it is on terrain which is higher 

or lower on average than the surrounding terrain. As Weiss (2001) points out, TPI is scale 

dependent, meaning it is suitable for multi-scalar analyses. TPI can assess this metric with a 

neighborhood reference of 10 meters or 10 kilometers. 

4.7 Methodological Limitations and Concluding Thoughts 

Previous attempts to remotely sense settlement within the Maya region have met with mixed 

success. Saturno and colleagues (2007) found great utility in using the IKONOS sensor to detect 

undocumented archaeological sites in the area immediately around San Bartolo, from major centers 

to smaller settlements. However, when Garrison and colleagues (2008) reapplied the techniques used 

by Saturno to the broader region, the results were much less useful. Garrison and colleagues (2008) 

attribute this difference in effectiveness to regional variation and temporal differences in the 

imagery. Further research by Hixson (2013) also supports this conclusion, although Hixson was 

dealing with Landsat imagery. Hixson found that only one image out of dozens showed any sign of a 

spectral signature in the area around Chunchucmil. 

Because this thesis is a remote sensing project, the major limitation of this project is in the 

availability of data. Neither Landsat, nor GeoEye-1 has complete coverage of the Yalahau region 

free of cloud cover and the LiDAR coverage is limited as well. As this thesis relies upon multiple 

lines of evidence – including each of the remote sensing platforms as well as first hand survey and 
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second hand collegial reporting (made by peers working in the region) – the interpretative strength 

relies upon the agreement and coherence of multiple lines of evidence. It is towards these lines of 

evidence that I now turn in the next chapter. 

5 Results 

This thesis presents the results of a pilot study into the efficacy of remote sensing to both 

complement and enhance other methods of settlement pattern survey in Yalahau region of the 

northern Maya Lowlands. This chapter utilizes the following sources of site location data – the 

Yalahau Region Settlement Pattern Survey (Glover 2006) and the Yalahau Region Wetland Survey 

(Leonard 2013). Specifically, I developed and calibrated my understanding of the ways in which 

archaeological sites manifest in remotely sensed data using the data of the Yalahau Region 

Settlement Pattern Survey, cited above. The work of the Yalahau Region Wetland Survey has 

contributed in two ways – first in helping to understand the possible ways in which human activities 

in relation to the wetlands have developed over time, up to and possibly including the depopulation 

of the Yalahau region, as discussed in Chapter 3. Second, the Yalahau Region Wetland Survey 

identified a number of new sites in the region – three of which had already been marked as possible 

sites and candidates for field verification through my remote sensing results. 

During the summer 2014 field season, I visited and verified the presence of prehistoric Maya 

structures at two such anomalous sites. As discussed in Chapter 4, despite, high resolution and 

useful visual and near infrared spectrum bands, GeoEye-1 did not prove to be useful for 

distinguishing patterns in the imagery useful for remotely detecting sites. As such, GeoEye-1 is not 

discussed further in this chapter, except where applicable as a base layer. 

In sections 5.1 and 5.2, I address the use of digital terrain models from SRTM and Airborne 

LiDAR data sets for the detection of cenotes and other subsurface openings due to the sociocultural 

importance of these features in Maya culture. I utilize the Topographic Position Index (TPI) tool as 
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a possible model for the extraction of culturally significant cenote features. In section 5.3 I present 

the results of the use of LANDSAT data for the remote detection of archaeological features using 

the Tasseled Cap transformation in the Yalahau region, examining the YRSPS (Glover 2006) the 

YRWS (Leonard 2013) and this study, the Yalahau Region Space Settlement and Environment 

Project. 

 Table 8 shows the status of the YRSPS in the context of this project. Twenty-five of the 104 

YRSPS showed signatures strong enough that I am reasonably certain I would have been able to 

identify their location based on the remotely sensed data. Twenty-seven of the 104 YRSPS sites were 

unable to be located by the remotely sensed data, either due to cloud coverage or due to the lack of a 

visible signature. Fifty-one YRSPS sites were located in terrain too disturbed to be confident of the 

presence or absence of a signature. The significance of these results I return to below. 

Table 8 - Status of YRSPS Sites 

Status Number of Sites 

Located 25 

Not Located 27 

Disturbed 51 

 

5.1 LiDAR 

As discussed in Chapter 4, the LiDAR data available for the Yalahau region (Figure 8) is not 

entirely suitable for the detection of structures. The coarse resolution and filtering algorithms used 

by INEGI can obscure site architecture. The, the analysis in this section presents the results of the 

assessment of the INEGI LiDAR data for the detection of prehistoric archaeological remains. 

The two DEMs yield different results at different sites, likely due to differences in vegetative 

cover and effects from the filtering algorithm utilized in the production the DEM’s. As discussed in 
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Chapter 4, the LiDAR point cloud were not reprocessed due to the low density of points. Figures 10 

and 11 show the site of Kimin Yuk. The 1 m contour lines are from Glover’s (2006:404) total station 

map of the major architectural features at the site. Figure 10 shows Kimin Yuk in the superficie 

DEM. Figure 11 shows the same site in the terreno DEM. The differences here are stark. Neither 

DEM captures the two corchales - east and west of the site core. The surface DEM does show 

elevation that appears to correspond with what was mapped by Glover. This detail is lost in the 

processing required to produce the terrain model; however, we should consider that this is by design 

– both architecture and vegetation are supposed to be removed in the production of the terrain 

model without regard to age. 

While the structures can be seen within the superficie DEMs at both Vista Alegre and Kimin 

Yuk, Figures 12 and 13 show the island site of Vista Alegre overlaid on the superficie and terreno 

DEMs. Interestingly, in the terreno DEM the structure at Vista Alegre remains visible, though with 

much lower relief relative to with the surrounding terrain.  

Figures 14 and 15, depicting the site of Ox Mul, exhibit an opposite signal from that seen at 

Kimin Yuk. At Ox Mul the site appears to be more visible in the terreno processed DEM, though 

the site still appears to be visible in the Superficie DEM. Despite this, it would be incredibly difficult 

to claim in any of the above images that the architecture that can be seen would be identified as such 

did we not already know that they were structures. The LiDAR DEM as provided by INEGI is 

unsuitable for reliably detecting surface architecture in the Yalahau region. There are however, other 

uses for the LiDAR data. 

As discussed in Chapter 4, the Topographic Position Index (TPI) is a method that assesses 

whether a given pixel is above or below a neighborhood value, the size of which is determined by 

the researcher. TPI Rasters were calculated using the Land Facet Corridor tools in Esri ArcMap 10.1 

(Weiss 2001) on the terreno digital elevation model. In this case, the neighborhood was set to  
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Figure 10 - Kimin Yuk 1m Contour, Terreno DEM 
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Figure 11 - Kimin Yuk 1m Contour, Superficie DEM 
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Figure 12 - Vista Alegre 1m Contour, Terreno DEM 
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Figure 13 -Vista Alegre 1m Contour, Superficie DEM 
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Figure 14 - Ox Mul .5m Contour, Terreno DEM 
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Figure 15 - Ox Mul .5m Contour, Superficie DEM 
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Circular and the range set to 200 meters. The purpose of this was to test whether or not TPI could 

be used to detect karstic features of interest – generally depressions such as rejolladas and corchales as 

well as proper cenotes, with water at the bottom. 

Figure 16 is the terreno DEM of a known cenote. By extracting the values present in the TPI 

data, the TPI value associated with features of interest could be outlined. Figure 17 shows the same 

region classified with TPI. Figure 18 is the classified anomaly representative of the karstic feature of 

interest, based on the TPI value. The overall result of this operation is a map of locations likely to 

yield karstic depressions. Figure 19 shows a selection of the LiDAR terreno DEM along the eastern 

portion of the wetlands. Figure 20 shows the 200m neighborhood TPI and Figure 21 is the classified 

TPI with a circular neighborhood of 200 meters. 

TPI also indicates the presence of an apparent feature rich zone, coincident with a zone 

containing a large number of sites. A corresponding feature free zone also exists within the regional 

wetlands (Figure 22). However, a combination of factors may have conspired to create this area as 

an artifact of the chaine opertaire rather than a true effect. The relatively shallow water table (Fedick 

2014; Leonard 2013) means that the water level (and the lowest elevation) in any karstic features 

forming in the wetland zone would present as shallow lagunas, with little to no surface relief making 

them undetectable by TPI, and is one possible explanation for the cenote free zone.  

Of the 67 Cenotes recorded in the region by Glover (2006), 18 were not covered by the 

LiDAR. Of the 59 features within the LiDAR coverage 17 were identified using TPI. However, the 

lack of size data with regards to the cenotes in the YRSPS data hinders a more precise assessment of 

the efficacy of this method using that data. The resolution of the DEM means that smaller features 

would be difficult to detect. Figures 23 and 24 depict a further possible high-density zone further 

south. The primary efficacy of this method is in the location of undocumented karstic features 
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across the entire range of such manifestations in the Yalahau, including cenotes, rejolladas and 

corchales, which have been shown to have a variety of culturally significant associations. 

 
Figure 16 - Cenote Detail, Terreno DEM 
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Figure 17 - Cenote Detail, TPI 
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Figure 18 - Cenote Detail, Classified TPI 
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Figure 19 - LiDAR Selection, Terreno 
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Figure 20 - Topographic Position Index, TPI 200m - LiDAR Terreno 
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Figure 21 - TPI Classified 
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Figure 22 – Lack of Features in Wetlands? 
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Figure 23 - YRSPS Cenotes and Classified TPI 
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Figure 24 - YRSPS Cenotes, Classified TPI. Possible High Density Zone 
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5.2 SRTM 

The figures discussed in this section demonstrate how prehistoric sites in the Yalahau region 

appear in the SRTM DEM data. The site of Kimin Yuk is visible only as a general rise in the terrain 

– individual buildings are not distinguishable in the 90 m resolution DEM (Figure 25). Vista Alegre 

(Figure 26) is similarly generalized – just a few pixels higher than the surrounding terrain but the 

individual structures are too small for the pixel resolution. The SRTM DEM was the only available 

source of elevation data for the entire region at the time of the YRSPS (Glover 2006) to examine site 

elevation. 

As can be seen from Figures 25 and 26, the low resolution limits the utility of the data for 

making meaningful interpretations of archaeological data – interpretations would be generalized, 

with only a few pixels representing complex architecture. In addition, when compared with the 

LiDAR DEM (Figures 27 and 28), the triangular low elevation area on the eastern margins of the 

Yalahau region, bordered by Kimin Yuk to the south and Ox Mul to the north in the SRTM DEM 

disappears. This zone, which Glover (2006) identified, may be an artifact of vegetation and not 

necessarily resultant of true elevation change. While the SRTM data was never seen as an ideal data 

set, the primary premise of synthetic aperture radar is that vegetation is penetrated and minimally 

reflected in the resultant digital elevation model. At least for the Yalahau region this is thrown into 

 question by the LiDAR data available in the eastern half of the region. Further examination of this 

region via Landsat in section 5.3 sheds more light on this situation.   

5.3 Landsat Results 

The analysis of Landsat imagery forms the bulk of this thesis. This section reports the results 

of this analysis in the context of both the aforementioned Yalahau Regional Settlement Pattern 

Survey (Glover 2006) data and the Yalahau Region Wetland Survey Project (Leonard 2013) data. 

This section also contains results from the field verification component of this project. The primary  
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Figure 25 - Kimin Yuk, SRTM DEM 
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Figure 26 - Vista Alegre, SRTM DEM 
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Figure 27 - SRTM DEM for Comparison 
 



65 

 

Figure 28 - LiDAR (Terreno) DEM for Comparison 



66 

method used for the analysis of Landsat data was the Kauth-Thomas transformation, also known as 

Tasseled Cap, described in detail in Section 4.3 (Baig et al. 2014; Crist 1985; Huang et al. 2002; 

Kauth and Thomas 1976). 

Landsat 5, Landsat 7 and Landsat 8 imagery processed into band composite tasseled cap 

images were examined visually for evidence of any sort of contrasting spectral signature associated 

with known archaeological sites. Anthropogenic impacts on tropical forest vegetation have been 

detected elsewhere in the Maya region with approximate dates of 1000 years or more before present 

(Hightower et al. 2014), as a result of agricultural terracing. I present in section 5.4.1 a selection of 

sites from the YRSPS representing the different ways in which sites manifest in tasseled cap imagery. 

Following the work seeking site-correlated spectral signatures utilizing the known sites of the YRSPS 

data, a number of anomalous locations were identified. Recent work in the regional wetlands by 

Leonard (2013) resulted in three of those anomalous locations being confirmed as having 

archaeological remains, described in section 5.4.2. Further field verification work for this thesis 

confirmed the locations of two other sites, reported on in section 5.4.3. 

5.3.1 Yalahau Region Settlement Pattern Survey Sites 

Utilizing the YRSPS sites and wetland outlines as a baseline, I examined tasseled cap (TC) 

images derived from the Landsat scenes detailed in Table 4, the only scenes out of dozens examined 

which showed any contrast at all (see Garrison et al. 2008; Hixson 2013). In total 9 anomalies were 

identified from the data available, their locations are in Figure 29. Figure 30 was derived from the 

Landsat 5 scene dated April 17, 1984. The image shows the sites Conil and San Ramon along with 

wetland Sabana Zanja, along the right side. As described in Chapter 4, the Wetness, Greenness, and 

Brightness bands are composited as blue, green, and red respectively. The wetlands appear red in 

this image likely due to a dry season condition. Figure 31 from October of 1999 shows the wetlands 

as blue and thus wet. The differences between dry season and wet season imagery can be drastic, and  
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Figure 29 - Anomalies 
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Figure 30 - Sabana Zanja Area, 1984 TC 
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Figure 31 - - Sabana Zanja Area, 1999 TC 
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as was suggested by Hixson (2013), rainy season imagery did yield generally brighter and 

greener signatures (which would show up as yellow in the tasseled cap) over known sites, as well as 

over some locations where there were not known to be sites. 

The first location where this phenomenon was noticed was on the eastern side of the 

wetlands. In Figure 32, there are several smaller sites identified by Glover for the YRSPS, along with 

Anomaly 1. Site 14, Site 23 and Site 18 are near Anomaly 1. This tasseled cap image from 1999 was 

used to target the area for further investigation due to the striking similarities between the signatures 

of the forest over Site 18. Site 23 appears to have had some more recent event resulting in the hard 

edges of the anomaly seen to the north and west of Site 23 in Figure 33. Site 14 has some sort of 

contrast as well. This signature is bluer and thus indicative of generally wetter conditions. Also of 

note in this image are the number of potential cenote features – at this scale they show-up as only a 

few very intense wet pixels in the area surrounding these features. Figure 34 shows a known karstic 

feature in TC, overlaid with the TPI outline of the feature. 

 The interior zone of the wetlands was another area where the lack of informant knowledge 

gathered by Glover was seen as a possible hindrance for a complete understanding of the settlement 

patterns in the Yalahau region. Examination of this zone resulted in a number of anomalous 

candidates beyond Anomaly 1 and 2, mentioned already. The area south of Vista Alegre contains 

three anomalous signatures, Anomalies 5, 6 and 7 as seen in Figure 35. In this image the sites of San 

Ángel A and B are visible in addition to Vista Alegre. The intense signature present over these sites 

guided the interpretation of the anomalous signatures in this zone. Anomalies 3 and 4 are shown in 

Figure 36. Further west and north of the modern town of Solferino, I spotted another anomaly, 

Anomaly 8. This is shown in Figure 37 in relation to Anomaly 2. 
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Figure 32 - Anomaly 1 and Nearby Sites 



72 

 
Figure 33 - Differing Signatures near Anomaly 1 
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Figure 34 - Depressions from TPI, 1999 TC 
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Figure 35 - Anomalies 5, 6 and 7; 2014 TC 
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Figure 36 - Anomalies 1, 3 and 4; 1999 TC 
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Figure 37 - San Ramon Area and Anomalies 2, 5 and 8 2014 TC 
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5.3.2 Yalahau Region Wetland Survey Sites 

The dissertation research of Daniel Leonard (2013) provided an excellent opportunity to validate a 

number of the anomalous signatures identified in section 5.3.1. During the course of his research 

Leonard identified 5 previously undocumented sites (Figure 38). Of these sites, Tio Feliz was located 

near anomalies 5 and 6 and Esperanza Chico was located near Anomaly 7. Two others, La Mensura 

and Sakakal were not identified as possible sites in the remotely sensed data. Sakakal consists of a 

single structure on the banks of a wetland. Leonard comments (Leonard 2013:487-497) that there 

were no other apparent structures nearby. This site is beyond the LiDAR coverage, and does not 

show up in the Landsat TC images, likely due to the presence of only a sole structure. The last site 

identified by Leonard, Xpalma, is likely the site reported by Glover as Site 56. 

5.3.2.1 Tio Feliz (Anomalies 5 and 6) 

The site of Tio Feliz is on the banks of the wetland known as San Pastor. This wetland was 

surveyed as part of the YRWS. In addition to the site core depicted in the figures, another mound 

was located on the other side of the San Pastor wetland at the rough location of anomaly 6, but was 

not mapped (Leonard 2013:183-196). The site, the wetland and the anomaly are both shown in 

relation to the Landsat Tasseled cap (Figure 39) and LiDAR superficie (Figure 40) and terreno 

(Figure 41) DEMs. The site of Tio Feliz does not appear significantly anomalous in terms of 

elevation, however, it is clear from the superficie DEM (Figure 42) that the area was in fact cleared 

at the time of the acquisition of that data. Unpublished photos of the area from Daniel Leonard 

(Figures 43, 44, and 45) show the zone relatively cleared. 

5.3.2.2 Esperanza Chico (Anomaly 7) 

 South of Tio Feliz is another location indicated as a possible site, which was identified as a 

site through the work of Leonard (2013:213). Anomaly 7 is the site of Esperanza Chico and adjacent  
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Figure 38 - Sites Identified by Daniel Leonard 
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Figure 39 - Tio Feliz, 1999 TC 
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Figure 40 - Tio Feliz, Superficie DEM 
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Figure 41 - Tio Feliz, Terreno DEM 
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Figure 42 - Tio Feliz Detail, Superficie DEM 
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Figure 43 - Tio Feliz, Str-4 (Photo from Daniel Leonard) 

 
Figure 44 - Tio Feliz, Str-5 (Photo from Daniel Leonard) 
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Figure 45 - Tio Feliz, Str-5 and Srt-6 (Photo from Daniel Leonard) 
 
to the wetland of the same name. Figure 46 shows the site in relationship to Tio Feliz. The site of 

Esperanza Chico is located on the banks of an L shaped wetland extending along the east and south 

of the site, as show in Figure 47, the terreno DEM, and Figure 48, a Landsat TC image. Leonard 

identified a number of structures at Esperanza Chico (Figures 49 and 50). 

5.3.2.3 La Mensura 

 Another site, La Mensura (Leonard 2013:410), is located in the interior wetland zone, and 

was not identified from any remotely sensed data, even though this site was within the LiDAR 

coverage area. It is possible that the terreno LiDAR model (Figure 51) does show STR-1 at La 

Mensura (Figure 52). However, with the terreno DEM there are the issues with relying on the 

detection of structures in a DEM which has been post processed to explicitly remove (modern)  
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Figure 46 - Esperanza Chico and Surrounding Area 
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Figure 47 - Esperanza Chico, Terreno DEM 
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Figure 48 - Esperanza Chico, 2014 TC 
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Figure 49 - Esperanza Chico, Str-1 (Photo from Daniel Leonard) 
 

 

Figure 50 - Esperanza Chico, Str-5 (Photo from Daniel Leonard) 
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Figure 51 - La Mensura, Terreno DEM 
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Figure 52 - La Mensura, Str-1 3D (Created by Jeffrey Vadala; Leonard 2013:418)  
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structures, as was described in Section 4.5. Structures are not distinguishable in the superficie DEM 

(Figure 53). Only one TC image (Figure 54) was available for this area due to cloud coverage and the 

lack of visibility from a suitable season. The single TC image which shows the area around La 

Mensura does have a possible signature visible, however this was very near to an area of cloud cover, 

and as a result the area of La Mensura was not closely examined until the data from Leonard 

documented the site there, as the cloud cover obscures nearby areas and makes the picking out of 

signatures difficult. 

5.3.2.4 Xpalma 

 Xpalma (Leonard 2013:394) was likely previously identified by Glover (personal 

communication) as Site 56 during the course of the YRSPS, yet this site was never reached. This site 

also lies outside the zone of LiDAR coverage. The only available DEM is the SRTM DEM (Figure 

55). Landsat coverage of Xpalma is challenged due to cloud cover. The 1984 image proves the only 

real un-obscured view of Xpalma, and no signature is apparent (Figure 56). It is possible this site 

does have a signature that is as of yet undetected, as cloud coverage was present in most of the 

Landsat scenes. 

5.3.3 Space, Settlement, and Environment Project Sites (This Thesis) 

Anomaly 1 was the first unknown site identified for this thesis. Anomaly 1 is located near 

Sites 14, 18 and 23, which were previously identified as part of the YRSPS. This site was identified 

with the assistance of Johnny Bogle, a fellow GSU student and Ignacio Sancho Torres, our local 

guide. Anomaly 1 consists of at least two small, low mounds and at least one possibly modified 

depression (Figure 57). This site was identified through the use of Landsat 7 imagery processed 

utilizing the tasseled cap. Based upon my visual inspection, the structures at Anomaly 1 appeared to 

rise no more than two meters in elevation, however brush cover, time and labor constraints 



92 

prevented me from making an accurate map of the structures observed and the underlying 

topography. 

 

Figure 53 - La Mensura, Superficie DEM 
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Figure 54 - La Mensura, 1999 TC  
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Figure 55 - Xpalma, SRTM DEM 
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Figure 56 - Xpalma, 1985 TC 
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Figure 57 – Anomaly 1 Depression, Don Ignacio Right for Scale 
 

 

Figure 58 - Anomaly 1 - Coursed Stones 
 

Structure 1 measured approximately 30 m by 30 m, using tape and compass to measure and 

was less than 1 m in height, based on visual inspection. This structure was low, flat and broad. The 

limits of this structure were difficult to delineate due the vegetative cover, which also hindered 
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photography of such a platform. Because I was unable to clear the structure proper maps were not 

possible. Some cut stones were observed in place on Str-2 (Figure 58), and a broken cut stone was 

observed within a depression or possible aguada (see Figure 59). The second structure was 

somewhat taller, approximately 1.5 meters tall but was smaller in area. In addition, some potsherds 

were located on the surface (Figures 60-62), but not collected for further analysis due to the 

limitations of the permit under which the reconnaissance was being performed – no artifacts were to 

be collected, photographs only.

 

Figure 59 - Anomaly 1 Depression, Cut Block Left 

 
Figure 60 - Anomaly 1, Probable Striated Sherd 
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Figure 61 – Anomaly 1, Rim Sherd 
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Figure 62 – Anomaly 1, Eroded Sherd 

5.3.3.1  Anomaly 2 

The site located at Anomaly 2 is a small site located almost due south of the site of San 

Ramon, a Rank 2 site identified by Glover (2006). The site was identified through the use of Landsat 

VII imagery processed utilizing the tasseled cap methodology. Anomaly 2 has at least one low 

mound. The present height of this mound was difficult to assess due to the vegetative coverage and 

some past disturbance. Access to this site is via a highly over-grown road. According to Don Samuel 

(Figure 63), my guide for the day, the location to which we traveled was the location of a ranch 

some number of decades in the past, but within his living memory. I saw evidence of this. Fences, 

barbed wire and even what appeared to be an outhouse were all covered in vegetation, but still 

present on the site. In addition to this, Don Samuel pointed out where he said he had previously 
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seen what he knew to be Maya ceramics. Here, Don Samuel and I found a few potsherds on the 

surface that I photographed but did not collect (Figure 64). He indicated that what I interpreted be a 

mound (presently a raised area of rocky soil where we had found the ceramic material) had been 

much larger initially, perhaps a meter and a half high, but that the people responsible for the 

previous ranch had used heavy equipment and had essentially bulldozed the structure. My visual 

inspection of this site supports this claim. The present status of the mound and the claim of a 

previous height of more than one meter coupled with the clear presence of Maya ceramic material all 

support this argument. The rainy conditions at the site limited photography to the ceramic material.  

 

Figure 63 - Don Samuel 
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Figure 64 - Anomaly 2 Sherds, Probable Carolina Bichrome Right  

5.4 Conclusions 

Utilizing the methods outlined in Chapter 4, I analyzed the existing regional settlement data, 

the YRSPS (Glover 2006), through the lens of remote sensing. Though LiDAR was not effective for 

the prospection of archaeological sites, it was successful in delimiting the location of possible 

cenotes and other karstic features, which are often connected with Pre-Columbian settlement. 

SRTM Data was also problematic in terms of elevation. The most effective remote sensing tool, of 

those available for use in the Yalahau, was Landsat imagery utilizing the Tasseled Cap 

transformation. Nine anomalies were defined (Table 9) as part of the SSEP. Of these, three were 

shown to correspond with two sites recently identified during the YRWS (Leonard 2013). Two more 

anomalies were confirmed as newly identified sites through the SSEP. Four anomalies identified 

during this thesis have yet to be accessed due to time and budget constraints. 
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Table 9 – Anomalies 

Anomaly Status 

1 SSEP New Site 

2 SSEP New Site 

3 Anomaly – Unable to access 

4 Anomaly – Unable to access 

5 YRWS Site - Tio Feliz 

6 YRWS Site - Tio Feliz 

7 YRWS Site - Esperanza Chico 

8 Anomaly – Unable to access 

9 Anomaly – Unable to access 

 

6 Discussion 

This section discusses the integration of the results of this thesis with the previously existing 

research in the region. The questions posed in section 1.1 can be summed up thusly: What can be 

gained in the understanding of settlement pattern from the inclusion of remote sensing data for 

research in the Yalahau region. More specifically, do the areas perceived during the course of 

Glover’s(2006) informant led YRSPS to be lacking archaeological sites actually lack sites, or was this 

an artifact of the methods used. The claim of depopulated status for the region during the Classic 

period is unfortunately reliant on a lack of evidence – a tenuous position when archaeological sites 

can be completely missed as a result of 5 meters of thick jungle. This position requires there be no 

other sites in the region that might yield significant Classic period occupations. Glover (2012) is 

certain that the survey methodology employed in the YRSPS captured all sites with architecture 

larger than residential, and a sample of those with only residential features. This contention is further 

supported for the northern portion of the Yalahau by the results presented in this thesis, though the 

relatively small anomaly at Kimin Yuk allows for the possibility that a large site could be present at 

one of the as of yet unverified anomalies. Two other secondary questions, about the lack of 

settlement in the area around Kantunilkin as well as the presence of a low elevation area on the 

eastern side of the study are also addressed in sections 6.1 and 6.2 respectively. 



103 

Anomalies that have been physically verified all fall into Glover’s Yalahau site ranking 

scheme as Rank 4 sites, which are the smallest sites composed of dispersed residential architecture. 

Anomaly 1 was hypothesized to be comparable in size to the nearby unnamed distributed residential 

groups, Sites 14, 18 and 23 based on the apparently comparable magnitudes of their respective 

signatures. When physically verified, the architecture located at Anomaly 1 was in fact comparable to 

the architecture reported at Sites 14, 18 and 23. Anomaly 5 was predicted to be the same, and the 

physical verification of the site resulted solely in house mounds. If this comparison holds true for 

sites of larger scale, then the largest anomaly which has yet to be verified in person has the potential 

to yield architecture comparable in size to a Rank 3 site in the Yalahau regional rankings – the 

addition of which would not significantly alter the current understanding of the sociopolitical 

relations within the region. 

6.1 Kantunilkin Area 

One caveat to Glover’s (2012) analysis of settlement pattern was the possibility of sampling error 

with regards to the presence of smaller centers and residential sites around Kantunilkin, which may 

have been one of the largest regional centers but is now mostly beneath the modern town of the 

same name. Figure 65 depicts the area to the east of the site and modern town of Kantunilkin. The 

anomalous location (Anomaly 9) in this image is based upon the report of a mound somewhere 

southwest of the wetland at that location (Daniel Leonard, personal communication 2015). This led 

to a more intensive examination of the area in question and the  
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Figure 65 - Kantunilkin Area 1999 TC 
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identification of a signature similar in appearance to that at Anomaly 1. The abundance of active and 

fallow cleared areas across the zone makes it difficult to see any possible anomalies. Figure 66 from 

2014 shows a signature which looks similar to those found over the site just to the north, around 

San Ramon, however the 1984 image does show what appears to be cleared fields in that general 

area. Between these two images, it is challenging to present a definitive answer. Given the general 

lack of anomalous signatures in the zone however, it is unlikely there is another center between 

Kantunilkin and the wetlands, though there may be some isolated structures throughout the zone.  

6.2 Eastern Elevation Anomaly 

Another observation made by Glover (2006) was the apparent low area extending north of 

Kimin Yuk and to east of Nohoch Pich as seen in Figure 67 and discussed above. The terreno 

LiDAR DEM does not show any large depression like the one visible in SRTM Data. Glover 

identifies this area as being mostly devoid of sites according to the local informants he was working 

with. The low elevation was the proposed explanation for the lack of sites in the region, and given 

that this explanation conflicts with the available LiDAR DEM, can remotely sensed data help 

confirm the absence of sites in this zone? Landsat images of the area present an intriguing 

possibility. Figure 67, a TC image from 1984 shows the area with no spectral signature over the low 

elevation zone from the SRTM data. In Figure 68, a seeming palimpsest of anomalous signatures is 

apparently coincident with the SRTM low zone. The SRTM mission was flown on the Space Shuttle 

Endeavour in the year 2000 (Bamler 1999). It’s possible what is reflected in the SRTM elevation data 

is actually whatever event is reflected in the 1999 TC signature, possibly showing the impact of 

Hurricane Mitch, which hit the region in 1998 (Landsea et al. 2014; Whigham et al. 2003). 
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Figure 66 - Kantunilkin Area, 2014 TC 
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Figure 67 - YRSPS Eastern Depression, 1984 TC 
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Figure 68 - YRSPS Eastern Depression, 1999 TC).  
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The second facet of this zone still up for debate, like the area around Kantunilkin, was 

whether the apparent lack of sites within the zone was due to an actual lack of sites or a sampling 

error due to the informant based methodology. Examining the area around Kimin Yuk and Site 7, it 

is apparent that there was some signature present in this area over Maya sites, as Figure 69 illustrates. 

This signature was different, however, than those seen just to the north, near Anomaly 1 and Site 18, 

though the images are nearly 15 years separated. They were also taken with different satellites, under 

different seasonal conditions. The TC image from 2015 (Figure 70) shows different signatures for 

the same sites, however the apparent signature over Site 7 in Figure 69 has been lost, yet the 

signature over the site of Kimin Yuk is now much more typical of the Brighter and Greener 

signature documented elsewhere. Examining the site of Kimin Yuk in detail (Figure 71), it is possible 

to see that the constraint of the boundary of the signature over the site does not appear to be 

directly related to the presence of documented architecture, however an intriguing alternative 

explanation for this correlation is the presence of hidden or invisible (after Johnston 2002) 

anthropogenic modification to the landscape. Testing this hypothesis would require excavations, 

which were not within the scope of this project. The anomaly around Site 7 is different and much 

bluer than the anomaly over Kimin Yuk, except for the areas of directly above architecture, the 

significance of which I discuss below. 

I cannot understate the role that the previous data available in the region (Glover 2006, 

Leonard 2013) has had in allowing these sorts of interpretations. Without baseline data to reference 

and a wealth of experience in the various micro-biomes within the Yalahau, ascertaining signal from 

noise in the symphony of multi- and hyper-spectral data would have been an impossible task. At the 

same time, picking signal from noise in this data can greatly enhance the interpretive power of local 

informant knowledge about a region. 
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Figure 69 - Kimin Yuk, 1984 TC 
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Figure 70 - Kimin Yuk, 2015 TC 
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Figure 71 - Kimin Yuk Detail, 2015 TC 
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6.3 Methodological Synthesis 

While remote sensing focused research may be able to contribute knowledge to archaeology, 

the utility of these data in archaeology depends on the creativity of the researcher in linking 

variations in data to variation in human activity in the past. Though I was able to identify a number 

of the previously identified YRSPS sites in the remotely sensed data, my ability to do so was greatly 

enhanced by the previous research in the area. The high number of YRSPS sites located within 

zones too recently disturbed for reliable remote sensing assessment cements the utility of informant 

based and other physical survey for assessing prehistoric settlement. Likewise, remote sensing allows 

the research to build on past experiences and to explore when no local guide may be available. The 

availability of free Google Earth imagery has allowed for virtual flyover surveys of the region 

(Fedick 2014). The compatibility of these methods is significant – both remote sensing and physical 

survey can, and should, be used together, one to improve the other. Each method has strengths and 

weaknesses, however together the complementary methods produce a picture that is more complete 

than either would be alone. 

Post-structural interpretation of the archaeological record acknowledges that the links 

researchers make within data are their own and not necessarily representative of any inherent truth 

about the past. Acknowledging this fact, I submit that interpretations of remotely sensed data that 

incorporate multiple lines of evidence beyond remote sensing – including local knowledge, personal 

observation and human (as opposed to machine) based pattern recognition are preferable to rote 

application of software defined methods of data analysis, such as the uncritical use of viewsheds, 

least cost path analyses or probability modeling. In my view best practices for remote sensing and 

archaeological research revolve around dialogue between disciplines (prehistoric and historic 

archaeologists both local and from abroad, biologists, cultural anthropologist, historians, 

hydrogeologists) and with local stakeholders (land owners, local residents, local informants, regional 
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and national political leaders, local regional and national archaeological permitting authorities). 

Remote sensing cannot and should not replace physical verification of archaeological sites. Likewise, 

an informant-based survey of archaeological remains should not neglect to attempt remote detection 

of archaeological sites, as the presence or absence of informants is not in any way related to the 

presence or absence of archaeological remains. 

I return here to more thoroughly discuss the work of Marcos Llobera (2005), previously 

addressed in Chapter 2, in the context of my own concept of using quantitative methods in a more 

post-structural manner. Llobera utilized GIS tools in a post-structural, post-processual and creative 

manner. By restricting the parameters of the software tool used to derive viewshed based on 

subjective observations about viewing distance and perception with regards to the specific 

biomechanics of human sight, Llobera created a series of concentric viewsheds representing the 

near, mid and far fields of vision. Viewshed analysis has been particularly problematic for 

archaeologists. Because of the name of the tool - “view” shed - the implication of bringing the 

human being into software has appeal that is difficult to ignore. However, the default bounds of a 

viewshed in most software packages are arbitrarily large compared to human perception. One of the 

primary use cases for viewshed type processed data products in industry is for antenna inter-

visibility. Thus Llobera, seeing the possibilities and limits created by the software tool, creatively 

integrated the tool into the program of research he was conducting. By measuring the changes in 

perception and combining personal insight and observation with software tools Llobera (2005) was 

able to use GIS and remote sensing (Digital Elevation Models) to generate and evaluate 

interpretations of the landscape. 

Though this research did not utilize viewshed analysis, the tool has been well debated 

generally in the context of GIS in Archaeology, and I view this debate as a microcosm of the debate 

occurring more generally. Many other researchers sustain the critique on GIS methods (e.g., Frieman 
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and Gillings 2007; Gillings 2012; Loebel 2012; Rennell 2012). These methods are inherently 

statistical (a DEM, is extrapolated using statistical methods) and thus subject to statistical errors. 

This is in addition to taphonomic issues, like erosion, and before a schema (after Johnston 2002) of 

visible, hidden or invisible is even applied to help understand the results. These aspects are the same 

for Landsat data, though there are more bands and so more than one value for a given area. And as 

discussed in Section 4.2, each set of these values represents an area 30 meters by 30 meters, 

coincidentally the same size as the first structure located in this thesis at Anomaly 1. 

Any method utilized must be situated within the program of research for which it was 

performed explicitly with these limitations acknowledged. The purpose of this is to generate a 

dialogue between results, method and theory to produce and document the production of a well-

supported interpretation. It is in this dialectic generation and evaluation of interpretation that I have 

found the most utility in engaging with remotely sensed data. By helping to visualize the 

environment and assist in detecting subtle variation remote sensing data can help to locate 

undocumented sites and uncover cenotes. 

Conversations with “Men of the Monte”, my guides in Yalahau, reveal a wealth of 

knowledge about all aspects of the forest – observations range from the type and age of the forest 

growth to the intentional removal or protection of various species of tree. Genus Manilkara (Chicle) 

and genus Ceiba are protected generally, even during the clearing of Milpa or the cutting of 

boundaries or paths, (known locally as mensuras and brechas, respectively), according to multiple 

guides in multiple towns across the region. These people are present day Yalahau residents, many of 

whom had never met each other and yet they recognized common interest in preserving certain 

resources within the area.  

Those who regularly hunt, gather, farm, work and live in the uplands and lowlands that make 

up the Yalahau region – those who I hired as guides, like my friend Don Ignacio (who led me to the 
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first anomaly I identified as a site) see and perceive a lot more of the forest while walking through it 

than I am able to. Incredibly and perhaps fortuitously, the remotely sensed data I had at my 

fingertips allowed me to visualize variation that I initially missed on the ground – variation which 

Don Ignacio and others with more local knowledge of the landscape are able to see. Take, as an 

example, the following narrative description of the journey through the forest to Anomaly S1. 

6.4 A Walk in the Woods with Don Ignacio 

In preparation for my planned visit to the anomaly, I traced an outline around the anomaly 

as I saw it in the GIS software. I loaded this outline, along with some natural color satellite imagery 

for navigation and orientation onto the GIS equipped tablet that I use as a GPS and data recorder 

for fieldwork. Thanks to the satellite imagery, I could see the presence of a break in the foliage 

indicative of some level of cleared path leading north a number of meters into the forest, and then 

west directly towards the center of the anomaly. Along the way, in my broken Spanish, I explained 

as best I could the purpose and methods of my research to Don Ignacio, who had graciously agreed 

to accompany me as guide. Understanding my interest in both the nature of changes within the 

forest and the archaeology broadened the spectrum of observations from my companion greatly. 

Slight changes in the prevailing vegetation would prompt a brief explanation of the various 

beneficial and detrimental plants. As a former boy scout with a strong allergy to poison ivy, I had a 

very strong interest in the identification of Metopium brownei (chechem or poisonwood). When I 

explained my concern to Don Ignacio, this prompted a careful and deliberate explanation of how do 

identify the plant at all stages of growth from seedling to tree, including an impromptu quiz when 

confronted with a small patch of chechem seedlings. 

Upon arrival at the boundary of the outline, delineated sight unseen the night before the trip, 

Don Ignacio pointed out what was the most striking shift in vegetative coverage thus far. The forest 

behind and to either side of us seemingly ended in what appeared to be a wall of greenery, denser 
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and more intimidating than any of the forest we had traversed previously. Looking back, the forest 

behind us was positively open compared to what lay ahead (Figures 72-76). According to Don 

Ignacio, the brecha we were on was cut in one session, the same width along its entire length, a few 

years previously – yet the path forward was noticeably smaller. Walking forward and looking at my 

GPS, I saw that the outline I made based on the anomaly directly correlated with the visible change 

in the vegetation. Moving forward into the anomaly, many more stones were present on the ground 

surface, eventually giving way to at least two low platforms, which is the site documented in section 

5.3.3. 

6.5 Integrating Interpretation  

While at larger regional sites ceramic data can span from the Middle Preclassic to the Early 

Classic and Postclassic, establishing a clear chronology of use and abandonment is extremely 

problematic for smaller sites distributed throughout the landscape. Infrequent storms in the region 

will often result in communities moving a few kilometers from their previous location after the 

storms pass from modern examples (Glover 2006:645). Would this not have occurred in the more 

distant past as well? Low lying terrain can be extremely susceptible to flooding, and slight changes in 

topography can vastly alter the direction of water flow and severity of flooding. In assessing this sort 

of question, the utility of remote sensing is perhaps less in the quantifiable data. The utility lies 

instead in the subjective quality of interpretations based on multi-system remote sensing.  These 

more nuanced interpretations certainly have the power to enhance future archaeological research in 

the Yalahau region. 

6.6 Recommendations and Conclusions  

There are a number of possible explanations for the anomalous spectral signatures present in 

the Landsat TC 
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Figure 72 - Don Ignacio 

 

 
Figure 73 - Bogle and Vaughan 
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Figure 74 - Managed Resource – Chicozapote Tree with marks of the harvest 
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Figure 75 - Don Ignacio, on his Brecha 

 

 
Figure 76 - The Jungle Closes in as we approach Anomaly  
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images. There is a corollary to the quote from How to Lie with Maps (Monmonier and Blij 1996:2) 

when it comes to mapped data and archaeology. If “[a] single map is but one of an infinitely large 

number of maps that might be produced for the same situation or from the same data” then it 

follows that one map can have any number of interpretations by an audience as to the nature of the 

data underlying the map. It’s clear from both the anomalies identified as archaeological sites for this 

thesis as well as from the already available YRSPS data that structures do not appear to be the 

source or the sole source of much of the spectral signatures. Other possible explanations include 

differential speciation at the location of some sites as a result of legacy effects of the “Managed 

Mosaic” (Fedick 1996) of Maya agriculture. Structures could be impacting access to water for trees 

rooted high above the water table on architecture (Fedick 2014). Alternatively, architecture (in 

particular eroding limestone (Fedick 2014)) may hold water, aiding trees rooted on structures. Future 

research can address these questions as well as further utilize the methods outlined in this thesis for 

site detection in Landsat 8 imagery, which has yet to be acquired. 

6.6.1 Directions for Future Research 

There are two primary avenues for future research following this thesis. First, continued 

acquisition, processing and analysis of remotely sensed data should remain a facet of research in the 

Yalahau region. This will involve the continued request and retrieval of updated commercial and 

publicly available satellite imagery utilizing the methods outlined in Chapter 4 as well as the 

acquisition of new data though the use of unmanned aerial systems. The second general category of 

continued research is in the further verification and fieldwork with regards to the anomalies. This 

research has two primary branches, the first is in visiting and verifying the presence or absence of 

prehistoric materials at the anomalous locations proposed in Chapter 5. The second is in assessing 

what exactly is causing the anomalous signatures in the first place. This work can take the form of 



122 

soil chemistry analysis or ecological analysis, or preferably both. These assessments would help to 

elucidate what impacts are causing the visible spectral signatures, which have been using in this 

thesis to identify undocumented Maya sites. 

6.6.1.1 Ecological and Geochemical Survey 

Almost in contrast to the aerial angle for further research is a program of exploratory 

ecological and geochemical ground-based survey in order better evaluate what potential effects are 

present within the anomalies that may help to further inform the use of remote sensing in the 

Yalahau region. Ecological transects, like those conducted at Vista Alegre, which span some of the 

anomalies already identified may help with the identification of differential distribution of species as 

a possible mechanism to explain the anomalous signature observed. Geochemical survey would 

accomplish the same goal, but from the perspective of how geochemistry may impact remotely 

sensed data. Either of these two factors has the potential to impact vegetation and help to produce a 

spectral signature. Observations about the seasonality of the differences between site and non-site 

(Garrison et al. 2008; Hixson 2013) could inform this research, with ecological survey designed 

temporally to test what effects are present when, with relation to the rainy and dry seasons.  

6.6.1.2 Continued Satellite and UAS Remote Sensing 

There is a clear improvement that can be made upon this type (remote sensing site 

prospection) of research moving forward – Unmanned Aerial Systems (UAS) can greatly enhance 

the capabilities provided by remote sensing discussed throughout this thesis. The primary benefit of 

Unmanned Systems is in the ability to tailor the selection of data to the research questions at hand. 

A primary example would be the capability to customize the capture of Near Infrared Imagery, as 

discussed in Chapter 3, capable of sensing subtle variation in vegetation to rainfall events. As rainfall 

has been seen to correlate to the detectability of signs of human impacts on the environment in 
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remotely sensed data (Hixson 2013), this represents a significant opportunity to increase the 

effectiveness of remote sensing in archaeology. Natural color imagery is also greatly enhanced by 

this sort of tailored data collection. Satellites cannot change course or hold for a day to avoid 

weather that impacts the quality of collected imagery.  

Despite this limitation, the addition of Landsat 8 to the remote sensing toolkit for 

Archaeology was a tremendous boon to this thesis, and I suspect that the data from this freely 

available platform will continue to benefit archaeologists in diverse environments the world over 

including Mesoamerica, even if the path to true utility is not as a cleared thoroughfare but a narrow 

and winding walkway. As newer satellites are launched and new imagery becomes available it will be 

necessary to revisit this topic, and reassess what is possible with the remotely sensed data, however 

this thesis is an example of what can be done with freely available data at this time. Remote sensing 

is not a single tool that can be implemented in a rote fashion. Instead, remote sensing consists of 

many tools, which, together, both make possible and constrain investigation in many disciplines. 

Tools do not themselves cause paradigm shifts in investigatory methods. Remote sensing methods 

present similar yet definitively different possibilities and constraints for the conduct of 

archaeological research. The toolbox problem discussed in chapter 2 exists for all archaeological 

methods and is not unique to remote sensing. Remote sensing and more traditional types of 

archaeological investigation must be implemented in parallel, and together provide a more complete 

picture of the human past than either method is able to alone. I look forward to continuing to work 

at the intersection of remote sensing, GIS, Archaeology and Environmental science as I undertake 

future archaeological investigations. 
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