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Abstract

Background: Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious
public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could
guide local prevention and control strategies.

Methodology/Principal Findings: We employed statistical models to analyze HFRS case data together with environmental
data from the Dongting Lake district during 2005–2010. Specifically, time-specific ecologic niche models (ENMs) were used
to quantify and identify risk factors associated with HFRS transmission as well as forecast seasonal variation in risk across
geographic areas. Results showed that the Maximum Entropy model provided the best predictive ability (AUC = 0.755).
Time-specific Maximum Entropy models showed that the potential risk areas of HFRS significantly varied across seasons.
High-risk areas were mainly found in the southeastern and southwestern areas of the Dongting Lake district. Our findings
based on models focused on the spring and winter seasons showed particularly good performance. The potential risk areas
were smaller in March, May and August compared with those identified for June, July and October to December. Both
normalized difference vegetation index (NDVI) and land use types were found to be the dominant risk factors.

Conclusions/Significance: Our findings indicate that time-specific ENMs provide a useful tool to forecast the spatial and
temporal risk of HFRS.
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Introduction

Hemorrhagic fever with renal syndrome (HFRS), a rodent

borne disease caused by hantaviruses, is clinically characterized by

fever, haemorrhage, headache, back pain, abdominal pain and

acute kidney damage in humans [1]. China currently has the

highest incidence of HFRS globally; approximately 90% of the

total HFRS case incidence is reported in this country [2]. In

particular, Hunan Province in south-central China reports one of

the highest HFRS incidence rates in China. The Dongting Lake

district, which is located in northeastern part of the Hunan

province and is known as ‘‘the land of fish and rice’’, is considered

a typical hotspot of HFRS [3]. The number of reported cases in

Dongting Lake district has been as high as 2,232 HFRS cases in

1995.

The transmission of HFRS has been closely associated with

rodent populations, land use patterns, elevation, vegetation types

[2,4,5], as well as temperature, humidity, and rainfall [1]. Rodent

habitat and rodent behavior can be influenced by temperature,

precipitation and land use [6,7], thus indirectly affecting the

transmission dynamics of HFRS. Based on ecological niche models

(ENMs), Wei et al. found that risk areas of hantaviruses infections

in rodents coincided with human HFRS cases, and the distribution

of infected rodents was closely correlated with land cover and
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elevation in the Shandong Province [8]. We have previously

employed maximum entropy models to successfully predict the

potential risk areas of HFRS in the middle and lower reaches of

Xiangjiang River in China [9]. Furthermore, we have also found

that the HFRS transmission in Changsha is significantly

influenced by elevation, temperature and rainfall by using genetic

algorithms in a rule-set production (GARP) model [10]. ENMs

have also been used to explore the ecological requirements of

disease and predict its potential distribution [11,12]. However,

there is a scarcity of studies that link temporal variations in disease

incidence with the corresponding environment. Time-specific

ENMs have been proved useful to predict the transmission risk of

disease in both space and time and characterize the dynamic

ecological requirements [13].

The ecological niche comprised a set of environmental

conditions that allow a species to maintain its population over

time. Hence, the ecological niche of a species may be conservative

and could remain unchanged for a long time. ENMs can be used

to exploit the conservatism of ecological niches to explore the

ecological demands of a species [14]. By combining data on

human cases, hosts, pathogens and their environment, ENMs can

be useful to quantitatively relate the occurrence of diseases with

environmental variations, analyze transmission patterns at differ-

ent spatial-temporal scales, identify risk factors, and predict

potential risk areas. Hence, ENMs provide a useful tool to support

public health decision making for prevention and control of

diseases [15].

In this study, we evaluated GARP, Maximum Entropy models,

logistic regression models and DOMAIN model together with

human HFRS records and environmental variables to generate

predictions of HFRS risk in the Dongting Lake district, China.

Time-series ENMs based on the optimal model were also

constructed to investigate the seasonal variations of risk across

areas in the Dongting Lake district.

Materials and Methods

Study area
Dongting Lake is located in the northeast of Hunan Province in

China, between 28u309,30u209 N and 110u409,113u109 E. It is

the second largest fresh water lake in China, covering 2,820 km2.

The Dongting Lake district has a subtropical humid monsoon

climate with annual average temperature of 16.4–17.0uC, an

annual average precipitation ranging 1200–1550 mm, and an

annual average humidity of 80%. Hence, this setting provides a

potentially suitable environment for rodent populations and HFRS

transmission. Hunan Province is a well-established HFRS

epidemic area where the Dongting Lake district is one of the

most affected epidemic areas in this province [3,16]. The

Dongting Lake district comprising Yueyang, Changde and Yiyang

around the Dongting Lake were selected for our study region

(Figure 1).

Data collection and management
Data on HFRS cases reported in Yueyang, Changde and

Yiyang city from 2005 to 2010 were obtained from the Hunan

Center for Disease Control and Prevention (CDC). A total of 296

HFRS cases during the 6-year period were initially diagnosed

clinically according to diagnostic criteria from the Ministry of

Health of the People’s Republic of China [17]. Each case record

contained information about sex, age, residential address, and the

date of onset of symptoms, but it did not include information to

distinguish infections caused by different types of hantaviruses. All

cases that were geocoded by residential address using Google

Earth were distributed mainly in the southeast and southwest of

the district, near Dongting lake.

Data on precipitation and temperature from 2005 to 2009 were

obtained from the China Meteorological Data Sharing Service

System. Land use type data were obtained from the Second

National Land Survey and were categorized as cultivated land,

forest, grass, residential land, water, permanent wetlands and

barren or sparsely vegetated by remote sensing images and an

uniform standard of visual interpretation. If land use types or

classification boundary can not be distinguished clearly in remote

sensing images, then field survey and measurements on the spot

are needed to define land use types. The compound topographic

index (CTI) was obtained from the United States Geological

Survey. CTI is also known as the topographic wetness index,

which is calculated by the confluence area of upstream and the

landscape slope. CTI codes a comprehensive terrain variable,

which water and sediment transport in a particular landscape, is a

very effective metric to predict soil attributes. Elevation values

were derived from the digital elevation model (DEM) with a spatial

resolution of 1 km. Slope was calculated from DEM data. The

Human Footprint Index (Geographic), a comprehensive reflection

of population density, infrastructure, land use, and dredge

shipping and road construction, was obtained from the Center

for International Earth Science Information. The Monthly

normalized difference vegetation index (NDVI) value was

obtained from the International Scientific Data Service Platform.

Data on eco-geographical characteristics were obtained from the

International Environmental Protection Organization Association,

and the distance to the nearest water source was calculated from

maps (Table 1). Data were analyzed in ArcGIS 9.3 (ESRI Inc.,

Redlands, CA, USA), and the environmental variables were

resampled to generate a raster dataset with a spatial resolution of

0.00833u (nearly 1 km).

Ecological niche models
GARP, an integrated spatial analysis system for predicting the

distribution of species, is composed of a set of rules, or if-then

relationships [15]. The set of rules is developed through

evolutionary refinement by testing and selecting rules on random

subsets of training data sets to explore the relationship between the

non-random distribution of species and the environment [15,18].

The primary principle of the GARP model is to use iterative

calculation, selection rules, evaluation, verification, include or

reject so that the final outcome is an optimal model [19].

Occurrence points were divided randomly into two parts: an

extrinsic testing dataset (50%), which was used for model

evaluation, and a training dataset (50%) which was used for

model development. The average area under the receiver

operating characteristic (ROC) curve (AUC) was used to evaluate

predictive accuracy of the GARP model. Here HFRS cases and

environmental variables from 2005 to 2009 were iteratively

calculated to obtain 10 models. Then an overall average model

was obtained by overlapping the resulting 10 models and was

tested by using the remainder HFRS cases reported in 2010.

Finally, HFRS cases in 2010 were assigned the value of 1, while

1,000 randomly sampled points in the study region were assigned

the value of 0 to calculate predictive accuracy.

MaxEnt is a machine learning method, which estimates density

and species distributions by finding the probability distribution of

maximum entropy to constraints representing an unknown

distribution [20,21]. Based on the known distribution of HFRS

cases and environmental data, MaxEnt simulated niche require-

ments for the species and inferred the potential distribution

[20,21]. Maximum entropy probability distributions were

Time-Specific ENMs and HFRS Risk in Dongting Lake
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obtained from HFRS data and environmental variables iterated 10

times in this study. Then the maximum probability occurrence

model was calibrated based on the background data.

Logistic regression modeling is a spatial modeling method of

biodiversity for determining potential habitat. Logistic regression is

a probabilistic non-linear regression, and it is a common statistical

analysis method that defines dependent variables as the qualitative

variables [22]. The HFRS cases occurrence rate is calculated by

the index of the parameter estimate value to export independent

variables, which affect the probability of HFRS in logistic

regression. Multivariable logistic regression methods based on

data sampling calculate regression coefficients (occurrence rate) for

each independent variable. The corresponding regression coeffi-

cient is interpreted as the rate of change of the logit function per

unit of change of a specific variable. Here, cases from 2005 to 2009

were assigned the value of 1, and 1,000 randomly points were

assigned the value of 0. Analyses were carried out using a

backward stepwise procedure in the stats library of R.

The DOMAIN model uses the Gower metric to calculate a

point-to-point similarity based on distance and the proximity in

the environmental space; the point of the maximum similarity is

selected by comparing the point-to-point similarity within a certain

distance [23]. The Gower metric can provide a suitable means of

quantifying similarity between two points, which uses range

standardization to equalize the contribution from each environ-

mental attribute. This method of standardization is preferred over

variance standardization in this application because it is less prone

to bias arising from dense clusters of the sampled points. Similarity

is calculated as 1 minus the standard distance between two points.

The maximum similarity values generated are not probability

estimates, but degrees of classification confidence. DOMAIN is

based on a continuous similar function, which is flexible for the

simulation of the species distribution [23].

Time-specific ENMs were constructed to predict disease

dynamic transmission changes in time and space based on the

optimal ENM that was previously calculated. Monthly HFRS

occurrences, environmental data and monthly NDVI, as well as

Figure 1. Location of study area, showing Dongting Lake district, China, 2005–2010.
doi:10.1371/journal.pone.0106839.g001

Table 1. List of environmental variabl used in ENMs to assess HFRS potential risk levels in Dongting Lake District, 2005 to 2009.

Variables Source Type and time

HFRS cases Hunan Center for Disease Control and Prevention Monthly data, 2005–2010.

DEM Geospatial Data Cloud (http://datamirror.csdb.cn) 2005–2009

Temperature China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn) Average annual data, 2005–2009.

Precipitation China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn) Average annual data, 2005–2009.

NDVI International Scientific Data Service Platform (http://datamirror.csdb.cn/) Average monthly data, 2005–
2009.

Eco-geographical data International Environmental Protection Organization Association (http://iepoasc.cn.
china.cn)

Average annual data, 2005–2009.

Land use types the Second National Land Survey Yearly data, 2005.

Human Footprint Index (Geographic) Center for International Earth Science Information (http://www.ciesin.columbia.edu/) Average annual data, 1995–2004.

CTI United States Geological Survey (http://eros.usgs.gov) Average annual data

Distance to water source Calculated in ArcGIS 9.3 Average annual data, 2005–2009.

Slope Calculated in ArcGIS 9.3 Average annual data, 2005–2009.

doi:10.1371/journal.pone.0106839.t001

Time-Specific ENMs and HFRS Risk in Dongting Lake
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differences between the particular month and the two previous

months were included in the modeling process. A total of three

month-specific remotely sensed data layers were selected on

different time scales to capture changes in the environment across

seasons.

Results and Analysis

Comparisons of ENMs results
Thirty eight HFRS cases, distributed near the southeast and

southwest of Dongting lake in 2010, were used to validate the

predictive power of our model. The predicted risk areas of the

GARP model were categorized into low-risk (,0.3), medium-risk

(0.3 to 0.6), and high-risk areas (0.6 to 0.9). Findings indicated that

only 4 out of 38 cases were distributed at low-risk areas while the

remainder of the cases occurred at high-risk areas (Figure 2a).

Evaluation data were merged with 10,000 randomly selected

background points and entered into a ROC analysis together with

all of the cases that occurred in 2010 in order to derive an AUC

estimate, a measure of the predictive accuracy of the GARP

model. The AUC was estimated at 0.723 (95% CI: 0.671,0.774,

SD = 0.026, P,0.001).

The results of the MaxEnt model showed that the monthly

average NDVI (from April to September and November;

cumulative contribution rate of 62.7%), land use (cumulative

contribution rate of 7.9%), human footprint index (contribution

rate of 7.8%), DEM (contribution rate of 5.5%), ecosystem

(contribution rate of 4.5%), distance from the water (contribution

rate of 3.1%) and CTI (contribution rate of 2.7%) were the main

environmental variables that influenced the spread of HFRS. Our

results showed that predicted high-risk areas were consistent with

the actual distribution of cases in 2010; 8 out of 38 cases were

distributed at medium risk areas while the remainder cases

occurred in high-risk areas (Figure 2b). The corresponding AUC

was estimated at 0.775 (SD = 0.04).

Predictions derived from the logistic model indicated that the

occurrence of HFRS was associated with NDVI in the months of

May, June and November as well as with CTI, DEM, the human

footprint index, land use, and temperature. The predicted risk

areas were divided into low-risk areas (,0.3), away from the

Dongting Lake area, medium risk areas (0.3 to 0.6), and high-risk

areas (0.6 to 0.9) which were distributed in the southeast and west

of the study area. Verification results with 38 cases of HFRS

showed most cases were in the low-risk areas with a corresponding

AUC estimated at 0.746 (95% CI: 0.715,0.777, SD = 0.016, P,

0.001) (Figure 2c).

NDVI covering the months April-June, October and Novem-

ber, CTI, DEM, and distance from water source turned out to be

the main environmental variables influencing the transmission of

HFRS in the Dongting Lake area based on the DOMAIN model.

The predicted risk areas were mainly distributed around Dongting

Lake (Figure 2d) while the AUC was estimated at 0.651.

A comparison of the four models indicated that low-risk areas of

HFRS incidence always occurred far away from Dongting Lake

whereas the high risk areas always focused on the southeast and

northwest of Dongting Lake. These results were consistent with the

actual HFRS case distribution in 2010. The predicted HFRS risk

zones were similar according to the GARP and MaxEnt models,

except for areas in the northwest of the Dongting Lake which were

classified as high-risk according to the GARP model. While these

Figure 2. Results of ENMs predictions of HFRS potential risk areas in Dongting Lake district, 2010. (a) predictions by GARP model; (b) by
MaxEnt model; (c) by Logistic model; (d) by Domain model.
doi:10.1371/journal.pone.0106839.g002

Time-Specific ENMs and HFRS Risk in Dongting Lake
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areas resulted in medium risk based on the MaxEnt model, the

results of MaxEnt were more consistent with the actual case

distribution in 2010. A comparison of the results obtained from the

MaxEnt and logistic models revealed that high and medium risk

areas yielded by the logistic model were smaller than those

predicted by the MaxEnt model. The validation cases were mostly

located in low-risk areas. Results from the DOMAIN model only

demonstrated two disease regions indicating occurrence or non-

occurrence. However, this analysis did not yield a clear prediction

of risk as the accuracy of this prediction was not high. Based on the

prediction accuracy, the MaxEnt model had the largest AUC

value (0.775) followed by the logistic model. The DOMAIN had

the smallest AUC value (0.651). Hence, the MaxEnt model

provided the highest predictive power of all studied models.

The results of time-specific ENMs
Compared with ENMs, results obtained from the time-specific

ENMs were more precise and rigorous. Not surprisingly our

modeling results showed that risk areas changed according to

seasons. Specifically, the area of HFRS risk was limited in March,

May and August while high-risk areas occurred in June, July and

October to December and were mainly distributed around

Dongting Lake and showed statistically significantly higher risk

than in other months. High-risk areas always appeared southeast

of the Dongting Lake while low-risk areas always clustered

southwest and northwest of our study area (Figure 3). The models

provided the best performance during spring and winter. Over

50% of monthly cases were clustered in high-risk areas (Table 2).

Our findings obtained from the Jackknife method showed that

NDVI was the main factor associated with the HFRS case

distribution followed by land use, DEM, and the landscape slope.

Differences in NDVI between a particular month and the two

previous months did not have much influence on HFRS. NDVI in

November, December and January had little impact on HFRS

about two months later. NDVI in April, May, November and

December were found to be the main risk factors for HFRS. The

highest incidence of HFRS was in spring (NDVI was between 0.5

and 0.7) and in winter (NDVI was between 0.4 and 0.5). DEM had

a great impact on HFRS transmission in January, February, June

and July, and the risk of HFRS decreased with the increase of

DEM. Moreover, construction land was the main risk land type

Figure 3. The results of time-specific ENMs highlighting temporal changes in HFRS potential risk levels in Dongting Lake district.
doi:10.1371/journal.pone.0106839.g003

Time-Specific ENMs and HFRS Risk in Dongting Lake
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associated with HFRS transmission between June and September

(Table 3).

Discussion

We have explored the environmental risk factors and forecasted

potential risk areas for HFRS infections in the Dongting Lake

district by using time-specific ENMs. Using the best model

according to AUC values, we generated time series ENMs for

further assessment of potential risk areas, and investigated the

temporal and spatial distribution patterns of HFRS in the

Dongting Lake district. High-risk areas predicted by the MaxEnt

model were consistent with HFRS cases reported in 2010,

providing the maximum AUC value among all the four models.

Time-specific ENMs showed that HFRS incidence was high in the

Dongting Lake district, and risk areas varied significantly across

seasons. Model performance was especially good in spring and

winter. Predicted risk areas were small in March, May and August,

and high in June, July and October to December. High-risk areas

were concentrated southeast and southwest of Dongting Lake.

NDVI, land use types, DEM and slope were found to be the main

risk factors of HFRS transmission.

The higher performance of the models in spring and winter

mainly resulted from the high incidence of HFRS, as it peaked in

spring and winter. Environmental requirements of disease

outbreaks can be better quantified with a larger number of

human cases, thus resulting in better predictions for spring and

winter. Seasonal variations in risk areas indicated that HFRS

incidence was closely associated with environmental factors which

can affect rodent activities in Dongting Lake district [6,24]. Dense

rodent populations lead to increase contacts between rodents and

humans, which directly influence the incidence of HFRS [25,26].

The incidence of HFRS remained high in the southeast of the

Dongting Lake (Yueyang City), which may have resulted from its

characteristic high humidity (average humidity of 74%), moderate

temperature (annual average temperature of about 18 uC) and

geographical location. HFRS epidemic areas were mostly distrib-

uted in low-lying wet areas or sub-humid regions [2]. High

humidity may not only affect living conditions of host animals,

enhance the infectivity and vitality of hantavirus, but also affect

vegetation growth, subsequently influencing disease risk

[25,27,28]. HFRS incidence was closely associated with temper-

ature. Temperature may influence the distribution and activities of

rodents. The growth of rodent populations may also be associated

with temperature, as temperature may affect the pregnancy rate,

litter size, birth rate and survival rate of rodent populations

[9,28,29].

Our study showed that NDVI, land use type, DEM and

landscape slope were the most important risk factors of HFRS

transmission in the Dongting Lake district. NDVI reflects the level

of vegetation coverage, which comprehensively shows the

geographical characteristics [30]. NDVI in persistently highest

risk areas had an early onset, with significantly higher levels of

green vegetation that lasted longer than at comparable sites [25].

A relatively high NDVI value, with the growing and harvest

seasons of rice taking place from April to November, may provide

shelters for reproduction and increased activities for rodents [7].

As a possible result of the delay between the reproduction of

rodents and outbreaks of diseases among humans, HFRS

incidence was the highest in winter when the NDVI value was

low (between 0.4 and 0.5). NDVI may also be a good indicator of

rodent food availability. For example the fluctuation of food

supplies may influence the rodent population density, thus

indirectly affecting HFRS incidence[31,32]. Cultivated land and
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grassland are the main land use types that affect HFRS incidence.

Rodents have a strong habitat selection for highly covered and less

disturbed habitats, which are commonly found in agricultural

habitats and pastureland habitats [33,34,35,36]. Rodents take

advantage of these habitats for rapid reproduction and safe

foraging and activity that are not easily captured [34].Vegetation

and crops offer cover and food for rodents [36]. The occurrence of

HFRS was highest in flat areas, which may be related to land use

types. Cultivated lands and residential areas are mainly concen-

trated on flat areas where contacts between people and rodents are

more likely to occur.

Limitations of this study should also been acknowledged. Firstly,

the impact of the socio-economic factors and specific human

activities on HFRS incidence were not explicitly considered in our

study. Secondly, specific species of rodent populations were not

characterized in our study area. Finally, HFRS cases were

obtained from a passive surveillance system, and hence some

cases may have been missed. For example, patients with less

serious or non-obvious symptoms may not seek medical care, thus

resulting in underreporting of HFRS incidence. However, we

focused here on analyzing the spatial-temporal spreading patterns

of HFRS rather on estimating the actual burden of HFRS in our

study area.

In conclusion, ENMs have so far been mostly employed to

explore environmental risk factors and predict the potential risk

areas at different spatial scales, without considering temporal

variation in risk. In this study, we studied both the temporal and

spatial distribution patterns of HFRS in the Dongting Lake

district. Our results showed that the potential risk areas were

mainly concentrated around Dongting Lake with significant

seasonal variation. Our findings support the use of spatial-

temporal data to improve our understanding of the transmission

patterns of HFRS more accurately and effectively. Our results also

provide a quantitative basis to guide local control and prevention

measures and have the potential to mitigate the risk and economic

loss associated with HFRS. From a public health perspective, our

results support the need to carry out deratization campaigns in

spring and summer around the Dongting Lake as well as enhance

population immunity by vaccination all year long. Overall, disease

prevention and control measures need to be strengthened in high-

risk areas which vary by month of the year. For instance, public

health campaigns aimed to inform the population about the

importance of improving ventilation and sanitation of the living

conditions in order to reduce the risk of HFRS infection.
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