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ABSTRACT 

 The most critical biochemistry in an organism supports the central dogma of molecular 

biology: transcription of DNA to RNA and translation of RNA to peptide sequence. Proteins are 

then responsible for catalyzing, regulating and ensuring the fidelity of transcription and 

translation. At the heart of these processes lie selective biomolecular interactions and specific 

dynamics that are necessary for complex formation and catalytic activity. Through advanced 

biophysical and computational methods, it has become possible to probe these macromolecular 

dynamics and interactions at the molecular and atomic levels to tease out their underlying 

physical bases. To the end of a more thorough understanding of these physical bases, we have 

performed studies to probe the motions and interactions intrinsic to the function of biomolecular 



complexes: modeling the dual-base flipping strategy of alkylpurine glycosylase D, dynamically 

tracing evolution and epistasis in the 3-ketosteroid family of nuclear receptors, discovering the 

allosteric and conformational aspects of transcription regulation in liver receptor homologue 1, 

leveraging specific contacts in tyrosyl-DNA phosphodiesterase 2 for the development of novel 

inhibitor scaffolds, and detailing the experimentally observed connection between solvation and 

sequence-specific binding affinity in PU.1-DNA complexes at the atomic level. While each study 

seeks to solve system-specific problems, the collection outlines a general and broadly applicable 

description of the biophysical motivations of biochemical processes. 
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CHAPTER 1. DNA REPAIR, GENE REGULATION AND SPECIFIC AIMS 

1.1 Glycosylases and base excision repair 

Erroneous chemical modification of DNA by endogenous or exogenous factors is a 

frequent event, occurring up to 10,000 times per cell per day[1]. These lesions, if left unchecked, 

can have deleterious effects, causing mutation and strand breaks[1]. The most common type of 

damage occurs to single bases through, e.g. oxidation and alkylation. Single-nucleotide damage 

is repaired through the base excision repair (BER) pathway (Figure 1.1.1). In BER, a damage-

specific glycosylase first identifies a damage site, rotates the damaged nucleotide out of the base 

stack and into an active site competent to hydrolyze the N-glyscosidic linkage[2, 3]. Upon 

hydrolysis and product release, the newly formed apurinic/apyrimidinic (AP) site is acted upon 

by endonuclease, lyase, polymerase and ligase activities to restore the proper Watson-Crick 

(WC) nucleotide. 
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Figure 1.1.1 The base excision repair process.  
In base excision repair, glycosylases first identify, extrude and excise a DNA lesion. AP-endonuclease, 
lyase, polymerase and ligase activity follow to restore the proper Watson-Crick sequence. 
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Glycosylases’ fundamental role in BER, the identification and removal of damaged 

nucleobases, is generally carried out in three stages. The first stage is the search process, 

characterized by both one-dimensional sliding along DNA and three-dimensional hopping, with 

the glycosylase probing base pairs for thermodynamic instability indicative of nucleobase 

damage. In the second stage, the glycosylase rotates the damaged nucleoside out of the base 

stack in a process referred to as “base flipping.” By exploiting lesion-specific properties to 

promote eversion of damaged nucleobases over canonical WC base pairs, glycosylases may 

employ base flipping as part of the lesion recognition process. After base flipping, the 

glycosylase hydrolyzes the nucleobase from the deoxyribose ring, leaving an AP site to be 

processed by the remaining BER machinery[4]. 

1.2 Topoismerase-induced double strand break repair  

The bulk of DNA in eukaryotes exists in tightly compacted nucleosome structures in the 

cellular nucleus[5]. Prior to replication or transcription, the DNA must be unpacked to be 

accessible to the replication and transcription-related enzymatic complexes. Due to its tight 

packing, nucleosomal DNA necessarily has much higher twist and writhe numbers relative to 

canonical, B-form DNA. To maintain that degree of geometric distortion, the topology of the 

DNA, referred to as the link number, must be altered. The mathematical relationship between 

twist (T), writhe (W) and link (L) are given by the very simple equation 

𝑇 +𝑊 = 𝐿 (1.1) 

Unpacking superhelical DNA for accessibility requires that the linking number be 

changed, so that the DNA can relax and expand from the highly compact twist and writhe 

nucleosomal state. DNA topology is altered by DNA topoisomerases [6, 7]. There are six 

topoisomerases encoded in the human genome, acting on a broad range of nucleic acid substrates 
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and are grouped into three families; Top1, Top2 and Top3, based on the mechanism of link 

number alteration[8]. 
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Figure 1.2.1. Topoisomerase 2 relieves superhelical tension.  
Topo2 first cleaves duplex DNA (panel A-B) to allow for downstream DNA to pass through (C), before 
finally religating the strands (D). 
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Top2 first creates tyrosyl-DNA phosphodiester linkages and a double-strand break (dsb) 

in the DNA, allowing the the duplex to pass through the dsb to change the linking number 

(Figure 1.2.1). After this process is complete, Top2 religates the DNA. Although necessary, 

inducing double-strand breaks in DNA carries a high degree of risk, potentially resulting in cell 

death if the religation step of topoisomerase activity is not carried out to completion. Top2 can 

become incompetent to relieve its tyrosyl-phosphodiester linkages and must be catalytically 

removed from the DNA by tyrosyl-DNA phosphodiesterase 2 (TDP2)[9]. Double strand break 

repair enzymes can then religate the DNA duplex, preventing cell death. 

Because topoisomerase activity is most prevalent during replication and tumor cells 

undergo division at a vastly higher rate than adult somatic cells, topoisomerase activity is an 

attractive chemotherapeutic target. A class of chemotherapeutics, known as Top2 poisons and 

comprised of popular pharmaceuticals such as etoposide, acts to trap Top2 to the substrate DNA, 

rendering the usually transient Top2-induced double-strand break permanent and therefore 

halting replication and tumor growth[10]. Unfortunately, TDP2 activity reduces the efficacy of 

Top2 poisons by reversing the Top2-DNA linkage. Therefore, TDP2 is a highly valuable target 

for inhibitor discovery efforts aimed at producing a compound that exhibits synergism with Top2 

poisons. 

1.3 Nuclear receptor mediated gene regulation 

While epigenetic alterations serve to promote chromatin packing, a long-term gene 

regulation strategy, nuclear receptors (NRs) carry out the crucial task of signaling specific genes 

that require transcription in the short term[11, 12].  NRs generally consist of a ligand binding 

domain (LBD) and a DNA binding domain (DBD), connected by a long, disordered peptide 

loop. The DBD serves to anchor the NR to a gene-specific recognition sequence[13]. Signaling 
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molecules, e.g. hormones and metabolites, bind specific NR LBDs, signaling for the activation or 

repression of NR-specific genes. Once activation or repression has been signaled to the LBD, the 

LBD binds to a coregulator, triggering the coregulator to chemically modify either the histone, or 

other regulatory proteins in a signaling cascade to induce activation or repression[11, 14]. 

NR LBDs share highly homologous tertiary structure, typically consisting of a 3-layer 

alpha-helical sandwich[15]. LBDs generally possess two binding sites: firstly, small-molecule 

binding pockets that accommodate specific signaling molecules (e.g. hormones) and secondly, a 

coregulator peptide binding site capable of interacting with co-activators and co-repressors, 

depending on the signaling molecule. Whether the LBD binds a co-activator or co-repressor is 

dictated by whether the bound small molecule signals for activation or repression[16]. The 

physical mechanism through which this activation/repression preference is communicated has 

not been conclusively determined, although some form of allostery has been theorized to play a 

role[17]. 

DBDs are responsible for anchoring the NR to recognition sequences associated with 

specific genes[18]. Sequence specificity for an NR is of prime importance, but its basis is a very 

convoluted puzzle involving electrostatics, sequence-dependent conformational deformation 

energies, protein-DNA contacts and solvation energies. Further complicating matters, the 

members of some NR families (such as the ubiquitous glucocorticoid receptor family) are highly 

homologous, sharing a common evolutionary ancestor, yet exhibit very different sequence 

preferences and binding affinities[19]. 

1.4 Specific aims 

The variety of biological systems and methodologies discussed in this dissertation is broad. 

However, the overarching theme can be summarized as the study of a subset of physical rationale 
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for the behavior of biomolecular systems: how dynamical description of how single 

biomolecules and small biomolecular complexes behave and analyses of the physical interactions 

between biomolecules. The specific aims of this research are to: 

1) Study the biological process of base flipping at the atomic level, using AlkD as a case-

study, tying the thermodynamics of the process to specific conformational events and 

contact rearrangements. A common enzymatic strategy is to greatly shift chemical 

equilibrium via small adjustments in the environment. AlkD is an example of this; while 

remaining an essentially rigid scaffold, AlkD lowers the energetic barrier to base flipping 

on the order of 10 kcal/mol by the strategic placement and adjustment of protein-DNA 

contacts. 

2) Develop a descriptive model of molecular evolution wherein the impact of evolutionary 

mutations on the function of a protein can be observed using network theory and 

community analysis. Dynamical network analysis techniques are uniquely suited for 

mapping the minute concerted motions underlying a biomolecule’s function. The DBDs 

of the 3-ketosteroid family of nuclear receptors maintain extremely high sequence 

identity, with relatively few and small mutations throughout evolution having altered 

each member’s DNA binding affinity. Although the mutations are subtle, network 

analysis is able to uncover significant changes in the dynamical topology of 3KS DBDs, 

resulting in their altered behaviors. 

3) Identify and trace an allosteric path using dynamical networks, through the LRH-1 LBD. 

Allostery is well understood in many systems as it pertains to enzymatic activity and 

biomolecular interactions. The exact atomic-scale phenomena that allostery is rooted in 

are less clear. In all examples of allostery, there must be a mechanism by which 
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interactions at one site on a biomolecule are transmitted to another site, whether by 

contact rearrangements or changes in the dynamics of the system. The LRH-1 LBD 

coordinates transcription by binding coregulator peptides in one site and exhibits 

coregulatory specificity depending on the identity of ligand bound in a spatially separate 

binding site. Dynamical networks are again employed to trace the subtle allosteric 

motions between the ligand-binding and coregulator-binding sites. 

4) Identify inhibitor candidate scaffolds by exploiting contacts in an enzyme-substrate 

binding cleft. Small-molecule inhibitors frequently disrupt enzymatic activity by binding 

in an active or binding site to preclude activity. Because enzymes have evolved substrate-

specific contacts to optimize substrate binding affinity, one successful inhibitor design 

strategy is to structurally mimic the substrate, taking advantage of the same contacts. 

TDP2 exhibits a ssDNA binding cleft with many potential target contacts. Beginning 

with a lead compound known to bind and inhibit TDP2, docking and virtual screening 

methodologies are used to discover new scaffolds that benefit from exploiting specific 

substrate-binding residues, and can be experimentally shown to inhibit TDP2 function. 

5) Illustrate the utility of solvation and solvent-mediated contacts in biomolecular complex 

formation. While direct contacts between biomolecules in complex are more heavily 

studied, solvation and solvent-mediated contacts play a major role in modulating binding 

affinity, contributing in both enthalpy and entropy. The very structurally similar, but 

sequence-diverged ETS-family DBDs, Ets-1 and PU.1 have experimentally been shown 

to have very different DNA-binding affinities in different solvent environments, with 

PU.1-DNA binding affinities apparently relying on multiple water-mediated contacts, 

while Ets-1-DNA binding affinities do not. By monitoring solvent placement and 
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electrostatic environment, relative entropic and enthalpic contributions from solvent can 

be spatially mapped onto a biomolecular complex. Integration of these quantities with 

respect to volume yields direct thermodynamic evidence of the importance of solvation in 

ETS-DNA binding, and the energetic isosurfaces provide detailed qualitative information 

about the localization of water in the complex.  
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CHAPTER 2. METHODS 

The power of modern computational resources has allowed for a proliferation of methods 

capable of simulating and analyzing large molecular systems over biologically relevant 

timescales. For biomolecular systems, simulation protocols are generally geared towards 

generating large ensembles of realistic conformations and take advantage of the inherent 

stochastic and ergodic nature of molecular systems. From these ensembles, statistical mechanical 

treatments yield thermodynamic and kinetic data while standard statistical techniques such as 

principle component analysis and graph analysis can yield important structural information and 

highlight important motions and correlations relevant to conformational transitions. 

2.1 Molecular Dynamics 

Molecular dynamics (MD) has become one of the most-utilized methods for molecular 

simulations in the literature[20]. While there are many variations of MD, the core underlying 

procedure is to calculate interatomic forces, integrate Newton’s equations of motion with respect 

to a discrete timestep and finally update atomic coordinates. This sequence of events is iterated 

many times until a sufficiently large ensemble of structures or a sufficiently long time series is 

generated for analysis.  

To initiate an MD simulation, atomic coordinates for the system of interest must be 

known. Sources for such structures include x-ray crystallography, NMR and homology 

modeling. Solvent and salt are then added to the system, thus completing the initial setup. The 

system is then usually subjected to minimization, whereby the atomic coordinates are slowly 

moved down the potential energy gradient defined by the MD forcefield. Finally, initial atomic 

velocities are randomly selected from the Boltzmann distribution at the desired temperature, thus 

initiating the MD simulation. 
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2.1.1 The Molecular Dynamics Forcefield 

The accurate calculation of interatomic forces is the foundation of MD. However, due to 

the analytical complexity of atomic interactions, approximations are made to make MD 

computationally tractable: atomic bonds and angles are treated with Hooke’s Law, torsions are 

treated sinusoidally and van der Waals interactions are calculated with an empirically derived 6-

12 Lennard-Jones potential. Electrostatic potential is represented, without approximation, by 

Coulomb’s Law. Finally, improper torsions can be used to enforce planarity in aromatic rings. 

This set of interactions, generally represented in the form of potential energy dependent on the 3-

dimensional atomic coordinates of the system (R), is referred to as the MD forcefield[21]: 

𝑉 𝑅 = 𝑘!"#$ 𝑟 − 𝑟!,!"#$
! + 𝑘!"#$% 𝜃 − 𝜃!,!"#$%

! + 𝑘! 1 + cos 𝑛𝜙 −!"#$%"&$!"#$%&!"#$%

𝛿 + 𝑘! 𝜑 − 𝜑!,!"#$%#&$
! + !

!
!!!!

!!!!!!"
+ 𝜀!"

!!"
!!"

!"
− 2 !!"

!!"

!
 !!!!!"#$%#&$'   (2.1) 

where k represents a force constant, naught-subscripts indicate equilibrium values, q represents 

atomic charge, rij is the interatomic distance between the atoms with indices i and j, and Dij is the 

optimum interatomic distance for van der Waals interactions. Bonds, angles, torsions and 

impropers are referred to as bonded interactions, whereas coulombic and van der Waals 

interactions are termed nonbonded interactions. The halving of the nonbonded terms double 

summation eliminates for double-counting and nonbonded self-interactions are ignored.  

The parameters in eq. 2.1 are fitted from a number of sources; bond and angle force 

constants derived from spectroscopic studies, equilibrium bond lengths, triatomic angles and 

torsional angles are calculated using quantum mechanical (QM) optimizations, torsional angle 

barriers and Lennard-Jones parameters are fitted to QM potential energy surface (PES) scans, 

and atomic charges are fitted using the RESP method[22]. 
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 Many research groups have independently developed forcefields, for example AMBER, 

GROMACS and CHARMM[23-25]. Functional differences between the forcefields are minimal, 

with the choice of a forcefield for a study being left primarily to the researcher’s preference. 

While these forcefields have roots dating back to the 1960s[26], most are frequently updated to 

improve fidelity with experimental results. As MD simulation lengths increase, previously 

unobserved flaws in the forcefield become apparent and forcefield parameters are adjusted 

accordingly. 

 MD forcefields explicitly ignore electrons, representing atoms as point charges 

surrounded by a soft van der Waals sphere. This approximation also necessitates the permanence 

of atomic bonds throughout an MD simulation, meaning that atomic bonds cannot be formed nor 

broken, restricting MD simulations to the exploration of conformational transitions and 

disallowing chemical reactions from taking place. 

2.1.2 Force Integration and Trajectory Accumulation 

 Instantaneous per-atom force vectors can be calculated as the gradient of the potential 

energy with respect to the atomic coordinates: 

𝐹 = −∇𝑉(𝑅) (2.2) 

Force can then be related to acceleration via 

𝐹 = 𝑚𝑎 = 𝑚 !!!
!"!

 (2.3) 

Acceleration can be integrated with respect to time, yielding 

𝑅 = !
!
𝑎𝑡! + 𝑣𝑡 + 𝑅! (2.4) 

where R is the updated atomic coordinates, a is the instantaneous acceleration, v is the 

instantaneous velocity and R0 is the initial atomic coordinates before force integration. In 

practice, the differential dt in eq. 2.3 is a discrete timestep, denoted from here on as Δt. The 
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choice of this timestep is critical to capturing physically realistic molecular motions in a practical 

period of computational time; overly short timesteps will require too many steps and an 

unrealistic number of calculations to be completed while overly long timesteps will allow atoms 

to overshoot realistic positions, e.g. two atoms may become perfectly superimposed. The 

timestep is usually chosen to be 2fs, ~1/5 of the timescale of hydrogen bond-angle vibrations. 

 In principle, there are a number of algorithmic schemes for carrying out force integration, 

with variations of the Verlet algorithm being most popular in practice[27]. The logic of the 

Verlet algorithm proceeds as follows. First, the two 4th order Taylor series about R(t) for forward 

and reverse system evolution are: 

𝑅!!! = 𝑅! + 𝑣!∆𝑡 +
!!
!!
∆𝑡! + !

!
∆𝑡! + 𝑂∆𝑡!  (2.5) 

𝑅!!! = 𝑅! − 𝑣!∆𝑡 +
!!
!!
∆𝑡! − !

!
∆𝑡! + 𝑂∆𝑡!  (2.6) 

where b is the third derivative of position with respect to time and O is the order of magnitude 

for higher terms in the Taylor series. Slight rearrangement and summing of equations 2.5 and 2.6 

yields 

𝑅!!! = 2𝑅! − 𝑅!!! +
!!
!
∆𝑡! + 𝑂∆𝑡!  (2.7) 

Equation 2.7 provides a way to propagate atomic positions, conveniently avoiding direct 

calculation of atomic velocities, and with an error on the order of ∆𝑡!. 

 After each round of force integration, atomic coordinates can be saved as a snapshot of 

the system at the current step. The accumulation of these snapshots is a physically realistic time-

evolution trajectory that can be analyzed for thermodynamic, conformational and dynamical 

characteristics. 
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2.1.3 Handling of Nonbonded Interactions 

 Nonbonded interactions pose a more daunting computational task than do bonded 

interactions, because there are potentially O(n2) nonboned interactions in a system of n atoms. To 

reduce the cost of calculating nonbonded interactions, a distance cutoff is set around each atom. 

Within the cutoff, all nonbonded interactions are computed directly. Due to the rapid spatial 

decay of the Lennard-Jones potential’s r-6 dependence, van der Waals interactions outside of a 

carefully chosen cutoff can be safely ignored. Coulombic interactions do not decay as rapidly 

and are generally treated with the particle mesh Ewald (PME) method[28]. 

 PME considers all electrostatic interactions between particles in the unit cell, given by the 

Coulombic component of eq. 2.1 

𝑉 = !
!

!!!!
!!!!!!"

 !!!!  (2.8) 

Extending eq. 2.8 to include electrostatic interactions in neighboring periodic cells yields 

𝑉 = !
!

!!!!
!!!!|!!"!!"|

 !!!!!  (2.9) 

where N is the desired number of periodic units and L is the unit cell length in a given direction. 

Equation 2.9 converges very slowly and is very expensive to calculate directly. The Ewald 

method then breaks the distance dependence of eq. 2.9 potential into short-range and long-range 

terms 

!
!
= !(!)

!
+ !!!(!)

!
 (2.10) 

The first term on the right hand side is the short-range component, while the second is the long-

range component. 𝑓(𝑟) is taken to be 𝑒𝑟𝑓𝑐(𝑟). Each atom is then represented as a point charge 

with local neutralizing charge in the form of a Gaussian distribution 

𝜌! 𝑟 = !!!!

!!/!
𝑒!!!!! (2.11) 
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resulting the in the short-range term of the Ewald sum taking the form 

𝑉 = !
!

!!!!
!!!!|!!"!!"|

!"�!(! !!"!!" )
|!!"!!"|

 !!!!!  (2.12) 

 The neutralizing Gaussian charges in eq. 2.11 is corrected by adding a background charge 

distribution 

𝑉 = !
!

!
!!!

!!!!
!!!!

!!!

!!
exp (− !!

!!!
)𝑐𝑜𝑠(𝑘 ∙ 𝑟!") !!!!!  (2.13) 

where k are reciprocal vectors. Eq. 2.13 is the long-range component of the Ewald summation. 

 An optimized selection of 𝛼 is critical to computational efficiency; small values of 𝛼 lead 

to faster convergence of eq. 2.13, while larger values of 𝛼 cause eq. 2.12 to converge more 

quickly. 

 The PME method has been further optimized by treating 2.13 as a Fourier series and 

applying the ubiquitous discrete fast Fourier transform for summation of the long-range terms. 

Furthermore, some MD engines, such as NAMD, smooth the reciprocal-space discretized point 

charges over multiple grid points with an Euler spline[29].  

2.1.4 Solvent and the Simulation box 

 While MD can be performed in vacuo[30], solvent interactions and explicit electrostatic 

screening play central roles in the functioning of biomolecules, motivating the use of explicit 

solvent for all studies in this dissertation. Numerous computationally efficient water models exist 

for MD[31], with one of the most popular being the TIP3P model used throughout this 

dissertation. TIP3P water sets rigid bonds between all three atom pairs in each water molecule at 

equilibrium lengths, eliminating multiple degrees of freedom while maintaining minimal 

deviations from experimentally measured bulk properties. 

 MD simulations are typically performed under the canonical (NVT), microcanonical 

(NVE) or isothermal-isobaric (NPT) ensembles; with N, V, T, P and E indicating constant 
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number of particles, volume, temperature, pressure and total energy respectively. There are 

numerous schemes for enforcing constant temperature and pressure in MD[32-34]. While the 

NVE and NVT ensemble possess computational advantages, NPT most closely replicates 

laboratory conditions and is used for all of the production simulations herein. 

2.2 Partial Nudged Elastic Band 

 There are often high energetic barriers associated with biochemical transitions and the 

conformations associated with these transition states are often of great interest. Crossing 

energetic barriers is a rare phenomenon and artificial forces must frequently be added to observe 

transition states in MD. Minimum free energy path (MFEP) methods have been developed to 

trace the conformational transition of a system between endpoints, through saddle points near 

barriers and valleys elsewhere[35-37]. The MFEP and nearby phase space represent the 

exponentially most likely states for the system to reside in and contribute most heavily to 

conformational ensembles during a transition, and are therefore most important to calculating 

thermodynamic properties and other ensemble statistics. One such MFEP definition method is 

the partial nudged elastic band (PNEB)[38]. In the PNEB, two endpoints are first defined 

structurally. Multiple copies, known as beads, of each endpoint are then generated. Each bead is 

simulated independently, with linear, per-atom forces (𝐹∥) imposed to position the conformation 

of each bead between its neighbors, parallel to the MFEP. This parallel force is defined as 

𝐹!
∥ = [𝑘!!! 𝑃!!! − 𝑃! − 𝑘!(𝑃! − 𝑃!!!) ∙ 𝜏]𝜏  (2.15) 

where i is the bead index, k is a chosen force constant, Pi are the collective Cartesian coordinates 

of bead i and 𝜏 is the tangent vector to the MFEP. Forces are applied on a per-atom basis after 

rmsd alignment between neighboring beads at every timestep. While the beads are stretched into 
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a smooth band by the parallel force, the MD forcefield acts perpendicularly to the band (𝐹!) to 

sample the local energetic terrain, moving beads into local minima: 

𝐹!! = −∇𝑉 𝑃! + (∇𝑉(𝑃!) ∙ 𝜏)𝜏 (2.16) 

where V(Pi) is the potential energy landscape with respect to atomic coordinates. The total forces 

acting on a bead in PNEB are then: 

𝐹! = 𝐹!
∥ + 𝐹!!  (2.17) 

As the beads are interpolated from the PNEB forces, the MD simulation ensures that they sample 

in physically reasonable regions of the phase space. PNEB optimization protocols typically 

consist of multiple stages, changing the system temperature and PNEB force constants to move 

the band toward the MFEP, in an analogous manner to simulated annealing. After the MFEP is 

fully optimized, the beads hold conformational clues about the biochemical process and can also 

be used as starting points for path sampling methods. 

2.3 Umbrella Sampling 

 Due to the timescale limitations of MD imposed by computational hardware, many 

enhanced sampling methods have been developed to more adequately sample chemical or 

physical processes and, usually after post-processing, generate realistic equilibrium ensembles 

suitable for thermodynamic and kinetic analysis[39-41]. One family of enhanced sampling 

techniques seeks to restrain the system at various points along a reaction coordinate and simulate 

biased ensembles along the reaction coordinate. The conformational positions along the reaction 

coordinate chosen for sampling can be generated with an MFEP method, like the PNEB. 

Unbiasing of the ensembles yields relative probabilities of the system residing in a given state, 

which can be related to energies from 

𝑃(𝑅) ∝ 𝑒!!(!)/!!! (2.18) 
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where R is the system’s coordinates in phase space, E represents free energy, kB is the 

Botlzmann constant and T is temperature in Kelvin. The compilation of these energies along the 

reaction coordinate yields a potential of mean force (PMF) that serves as an effective free energy 

profile for the process. Most commonly, a PMF is given in terms of either Gibbs free energy or 

Helmholz free energy, determined by whether the simulations are carried out in the isothermal-

isobaric or canonical ensemble, respectively. An extremely popular example of these methods is 

umbrella sampling (US). In US, an artificial spring is imposed on the system to restrain it to a 

region of the reaction coordinate: 

𝐹!"! = 𝐹!! +
!
!
𝑘(𝜉 − 𝜉!)! (2.19) 

where 𝐹!"! is the total instantaneous force vector acting on the system, 𝐹!! is the force on the 

system due to the forcefield and the final term describes a harmonic potential applied to the 

system at position 𝜉 along the reaction coordinate, about a window center at 𝜉!. There are many 

options for reaction coordinates, with the only general rules being that the chosen coordinate is 

well-behaved and varies along with the progress of the chemical process being studied. US can 

be performed along multiple reaction coordinates simultaneously by adding more harmonic 

terms to eq. 2.19, and is then capable of producing multi-dimensional PMFs that can be analyzed 

for interplay between the chosen reaction coordinates. However, sampling time increases 

proportional to the power of the number of dimensions, resulting in much more computational 

effort being required to adequately sample higher-dimension reaction spaces. 

2.3.2 Weighted Histogram Analysis Method 

 Biasing simulations to restrict sampling to a small volume of the phase space, as in US, is 

conceptually and mathematically simple. However, the ensembles generated in US are biased 

and therefore physically unrealistic. Furthermore, because there are many windows along the 
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reaction coordinate, all of the biased ensembles must be considered simultaneously to construct a 

PMF. Unbiasing of the ensemble is critical to the efficacy of US and is accomplished through a 

post-processing calculation known as the weighted histogram analysis method (WHAM)[42]. In 

WHAM, the positions from every snapshot of every window are first binned along the reaction 

coordinate, followed by the iterative solution of the following two equations: 

𝑃 𝜉 = !!(!)!
!!!

!!!"# ([!!!!!!
!!! (!)]/!!!)

 (2.20) 

𝐹! = −𝑘!𝑇𝑙𝑛[ 𝑃 𝜉 exp − ! !
!!!!"#$ ] (2.21) 

where i indexes the individual windows, with N being the total number of windows, n represents 

bin population, U is the biasing potential, F is the change in free energy, P is the unbiased 

probability and kBT is defined as above. The resulting set of Fi are the PMF for the process. The 

primary assumption in applying eq. 2.20 and eq. 2.21 is that neighboring windows sample an 

overlapping portion of the reaction coordinate, to ensure that the Fi are continuous. While 

simpler methods exist that rely on fixing system replicas along the reaction coordinate, 

measuring the force gradients applied through the constraints and integrating the forces along the 

reaction coordinate to obtain a PMF, these methods suffer from a lack of certainty of the 

continuous nature of the reaction coordinate. The requirement that neighboring windows have 

sampling overlap in the US/WHAM method ensures a continuous PMF. 

2.4 Dynamical Network Analysis 

 Network analysis (sometimes known as graph analysis) encompasses a very widely 

adopted set of methods for studying the dynamics of systems comprising many individual 

components, such as computer networks, social networks, biomes and physical systems[43]. 

Each individual in the system is represented by a node in a network, with edges connecting 
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interacting individuals and the weight of each edge representing an arbitrary measure of the 

strength of interaction between the individuals it connects. 

 The definition of nodes in biomolecular systems is arbitrary, but most commonly taken to 

be each residue in a protein[44], while nucleobases and ribophosphate groups are split into 

separate nodes in nucleic acids. Edges are then placed nearby nodes and weighted according to 

the Cartesian covariance between the nodes during an MD simulation: 

𝑤!,! = 𝐸[ 𝑥! − 𝑥! 𝑥!−𝑥! ] (2.22) 

where w is the edge weight between nodes i and j, 𝑥 represents the coordinates of the node, 𝑥 

represents the average coordinates of the node throughout the simulation and E expresses the 

expectation value of the argument. The network holds key, often subtle, dynamical information 

about the correlated motions within the system. These motions can be linked to conformational 

phenomena relevant to biological processes. There exists a multitude of network analysis 

methodologies to address or highlight various aspects of a network. 

2.4.1 Suboptimal Paths 

 Communication between two nodes, here termed the source and sink, separated by 

multiple edges can occur through many different paths in a well-connected network. In the case 

of dynamical network analysis for MD simulations, the network is undirected, rendering the 

terms source and sink interchangeable. The shortest path between a source and a sink is referred 

to as the optimal path. However, there are a number of slightly longer, nearly-optimal paths that 

will also contribute significantly to communication between the source and sink. These are 

known as suboptimal paths and they must be taken into account to adequately map the flow of 

communication between source and sink[44]. For MD system networks, these communication 

pathways carry the bulk of allosteric transmissions between source and sink. 
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 When determining the length of a suboptimal path, the edge lengths comprising the path 

are summed. In the case of molecular dynamics systems, these lengths are taken to be the 

Cartesian covariance between the nodes joined by an edge. The calculation for suboptimal path 

length is  

𝐿! = −log (𝑤!)!  (2.23) 

where 𝐿! is the length of the path, summed over all edge lengths belonging to said path. Edge 

lengths are defined as −log (𝑤!) because stronger correlations correspond to shorter distances in 

network space. All suboptimal paths under an arbitrary length cutoff are assumed to contribute 

significantly to allosteric signaling and combine to form an allosteric tether between source and 

sink. 

2.4.2 Community Analysis 

 While network structures can be informative, they are often far too complex to analyze 

visually for large biomolecules. Community analysis is a tool for segregating groups of nodes 

into larger, semi-autonomous communities[45]. In a biomolecule, communities indicate heavily 

self-interacting groups of residues and can be used to visualize general dynamical topology and 

highlight general functional sites. 

 Many methods exist to separate networks into communities[45]. One popular method, 

Girvan-Newman (GN)[46], is especially well-suited for analysis of MD-based networks due to 

the absence of free parameters in the algorithm, leading to simpler implementation and use. The 

GN algorithm is executed as follows: edges are assigned betweenness values, where betweenness 

is calculated as the number of shortest paths between any two nodes that traverse the edge; edges 

are removed from the network individually, in order of decreasing betweenness, calculating 

modularity at each iteration and identifying communities (groups of nodes not connected to the 
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rest of the network), until no edges remain; finally, the highest modularity community structure 

is returned. The key metric in GN, modularity, is defined as 

𝑄 = !
!!

[𝐴!" −
!!!!
!!

]!" − !!!!!!
!

 (2.24) 

where 𝑄 is modularity[47], 𝑘! is the degree of node v, 𝐴!" is the adjacency matrix, 𝑠! is the 

membership of node v and m is the total number of edges in the graph. The adjacency matrix 

contains a 1 at position v,w if there is an edge between nodes v and w, and 0 elsewhere. The 

degree of node v is the number of edges connected to node v. Community membership, s, is set 

as 1 or -1, depending on which community a node belongs to. It should be noted that that eq. 

2.24 is defined for two communities, leading to hierarchical community splitting in practice.  

 While the modularity optimization method rigorously defines the optimal community 

structure, the number of communities generated from an MD simulation, especially in relatively 

rigid complexes where thermal noise contributes significantly to the overall dynamics, can be 

excessive or errant. A minor adaptation of the GN algorithm has been developed for use in this 

dissertation, wherein a modularity cutoff is set, as a percentage of the optimal modularity, with 

the final community structure being that which possesses the fewest communities while 

maintaining a modularity value that lies within the cutoff. Very small reductions in modularity 

can lead to large reductions in the number of communities GN produces, yielding more 

interpretable community structures with similarly high modularity scores to the optimal 

structure. 

2.5 Molecular Mechanics-Poisson Boltzmann surface area 

 Binding energetics are of special importance in biophysics, determining equilibrium 

constants for complex formation, inhibitor efficacy and various transition rates. While 

nonbonded energies can be calculated from an MD trajectory according to the forcefield, the 
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forcefield approximations render such calculations inadequate for the accurate estimation of 

binding energetics. Molecular mechanics – Poisson-Boltzmann surface area (MM-PBSA) 

calculations are a more accurate, thermodynamic cycle-based approach to measuring binding 

enthalpy[48]. The thermodynamic cycle solves for the solvated binding free energy of the 

complex 

∆𝐺!"#$,!"#$ = ∆𝐺!"#$,!"#$$% + ∆𝐺!"#$,!"#$%&' − (∆𝐺!"#$,!"#$%& + ∆𝐺!"#$,!"#"$%&!)  (2.25) 

where 

∆𝐺!"#$ = 𝐺!"!#$%&'$($)#,!!!" − 𝐺!"!#$%&'$($)#,!!! + ∆𝐺!!"�!"!!"#$ (2.26) 

and 

∆𝐺!"#$$% = ∆𝐸!! − 𝑇∆𝑆!"# (2.27) 

∆𝐺!!"#$%!!"#$ is an empirical term proportional to the solvent accessible surface area of the 

moiety, ∆𝐸!! is the change in intramolecular energies from the MD forcefield and is generally 

negligible and therefore ignored, ∆𝑆!"# is a normal mode analysis-based entropic estimate that 

is frequently dropped when comparing similar systems, and 𝐺!"!#$%&'$($)# is the energy attributed 

to electrostatic interactions, given as 

𝐺!"!#$%&'$($)#  = − !
!

𝜌(𝑟)𝜙(𝑟)𝑑𝑟 (2.28) 

where the electrostatic potential, 𝜙 𝑟 , is solved for from the Poisson-Boltzmann equation 

∇𝜀 𝑟 ∇𝜙 𝑟 − 𝜀 𝑟 𝜆 𝑟 𝜅! !!!
!
sinh !" !

!!!
= −4𝜋𝜌(𝑟) (2.29) 

𝜌(𝑟) is the free charge density, q is the charge of an electron, 𝜆 𝑟  is the Debye length at the 

simulation ionic strength, and 𝜅! is a switching function set to one in electrolyte-accessible 

regions and zero elsewhere. The difference in electrostatics terms in eq. 2.26 represents the 

polarization work associated with solvating the complex, by varying the permittivity parameter.  
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 MM-PBSA binding energies can be decomposed on per-residue and pairwise interaction 

bases by considering only interactions involving a residue or residue pair. While the solvation 

terms in eq. 2.25 are not pairwise-decomposable, there are schemes to satisfactorily approximate 

pairwise interaction energies[49]. Pairwise interaction energies can be instructive in designing 

mutational studies and designing inhibitors to exploit specific contacts.  

2.6 Grid Inhomogeneous Solvation Theory 

 Solvent-solute interactions are important across a spectrum of biological processes, from 

catalysis to binding interface recognition. Grid inhomogeneous solvation theory (GIST) provides 

a convenient mathematical framework and computational tool for analyzing solvation 

energetics[50]. In GIST, solvent energies are decomposed into enthalpic and entropic terms 

∆𝐺 = ∆𝐸!" + ∆𝐸!! + ∆𝑆!"#$% + ∆𝑆!"#$�! (2.30) 

where the subscripts s and w denote solute and water, respectively; ∆𝑆!"#$% is the translational 

entropy of the solvent and ∆𝑆!"#$%& is the orientational entropy of the solvent. ∆𝐸 is calculated 

from the forcefield nonbonded energies. ∆𝑆!"#$% is given as  

∆𝑆!"#$% = −𝑘!𝜌! 𝑔 𝑟 ln𝑔(𝑟)𝑑𝑟 (2.31) 

where 𝑔 𝑟 ≡ 𝜌(𝑟)/𝜌!, 𝜌! is the number density of bulk solvent and 𝜌(𝑟) is the number density 

function of the system. ∆𝑆!"#$%& is given as 

∆𝑆!"#$% = −𝑘!𝜌! 𝑔 𝑟 𝑆!(𝑟)𝑑𝑟 (2.32) 

with 

𝑆! 𝑟 = !!!
!!!

𝑔 𝜔 𝑟 ln𝑔 𝜔 𝑟 𝑑𝜔 (2.33) 

and 𝑔 𝜔 𝑟 ≡ 𝜌 𝜔 𝑟 /𝜌!. In GIST, the simulation box is divided into discrete voxels, with eq. 

2.30 solved for the time-averaged properties in each voxel. The resulting volumetric energetic 

information can be integrated with respect to volume to yield the thermodynamic components of 
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solvation, restricted to specific regions of interest or across the entire system. Visualization of 

energetic isosurfaces is a useful diagnostic for localizing solvation hotspots. 
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CHAPTER 3. ALKYLPURINE GLYCOSYLASE D EMPLOYS DNA SCULPTING AS A 

STRATEGY TO EXTRUDE AND EXCISE DAMAGED BASES 

3.1 Abstract 

Alkylpurine glycosylase D (AlkD) exhibits a unique base excision strategy. Instead of 

interacting directly with the lesion, the enzyme engages the non-lesion DNA strand. AlkD 

induces flipping of the alkylated and opposing base accompanied by DNA stack compression. 

Since this strategy leaves the alkylated base solvent exposed, the means to achieve enzymatic 

cleavage had remained unclear. We determined a minimum energy path for flipping out a 3-

methyl adenine by AlkD and computed a potential of mean force along this path to delineate the 

energetics of base extrusion. We show that AlkD acts as a scaffold to stabilize three distinct 

DNA conformations, including the final extruded state. These states are almost equivalent in free 

energy and separated by low barriers. Thus, AlkD acts by sculpting the global DNA 

conformation to achieve lesion expulsion from DNA. N-glycosidic bond scission is then 

facilitated by a backbone phosphate group proximal to the alkylated base. 

3.2 Author Summary 

DNA repair efficiency is critically dependent on the function of DNA glycosylases. 

These versatile enzymes perform a remarkably discriminating search for DNA lesions, followed 

by damage-specific base extrusion into to the enzyme’s active site and removal of the damaged 

bases. Our work elucidates the mechanism of Bacillus cereus AlkD, representative of a 

superfamily of alkylpurine glycosylase enzymes that function differently from all other known 

glycosylases. AlkD does not employ any direct contacts to the alkylated lesion. Instead, it relies 

on DNA backbone contacts to extrude the lesion’s base-pairing partner. The alkylated base is 

flipped into solvent allowing N-glycosidic bond hydrolysis to occur with no apparent assistance 
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from any protein side chains. Our work contributes to understanding of this unique base 

extrusion and excision strategy. We determined a minimum energy path for flipping out a 3-

methyl adenine base by AlkD and computed an effective free energy profile for this transition. 

We show that lesion extrusion relies on DNA sculpting to break up the process into two steps 

characterized by low free energy barriers and a stable intermediate. AlkD provides a rigid 

scaffold to accommodate the three distinct DNA conformations and positions a phosphate group 

to facilitate scission of the alkylated base.  

3.3 Introduction 

 Despite its remarkable stability, DNA is subject to a variety of reactions. Left unchecked, 

these processes could impair the transmission of vital genetic information and threaten the 

integrity of the genome. To cope with genomic instability cells have evolved elaborate DNA 

repair mechanisms. Many cancer therapies are directly impacted by the efficiency of DNA 

repair. Antitumor drugs often act by inducing DNA lesions, thus, blocking replication in rapidly 

dividing cancer cells[51]. Upregulating DNA repair is a common mechanism in tumors to 

develop resistance to chemotherapy. Conversely, suppression of repair activity sensitizes cancer 

tissues to chemotherapies targeting DNA[51-54]. Specifically, alkylating agents can give rise to 

alkylpurine lesions[55] such as 3-methyl adenine (3mA) and 7-methyl guanine (7mG). 

Alkylpurine lesions carry a positive formal charge on the base, resulting in a sheared base pairing 

orientation and a comparatively labile N-glycosidic linkage that is prone to spontaneous 

hydrolysis. Not only are these lesions cytotoxic themselves, their propensity for spontaneous 

depurination could result in other, more deleterious forms of damage (e.g. single-strand or 

double-strand DNA breaks)[56, 57]. Alkylation lesions are processed by the cell’s base excision 
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repair (BER) machinery[58-60] to replace the damaged base with its correct Watson-Crick 

analog.  

In BER, DNA N-glycosylases are the first line of defense against damage in genomic 

DNA. These enzymes efficiently and specifically recognize and excise single-base lesions[2, 61]. 

Structures of glycosylase enzymes reveal that DNA binding is accompanied by a multitude of 

conformational changes preceding active site chemistry. Specifically, nucleotide flipping (base 

extrusion) is a commonly employed strategy wherein a deoxynucleotide swings out of the DNA 

helix and is accommodated in the enzyme’s catalytic pocket. This process has been the object of 

intense experimental focus for over two decades. Nonetheless, consensus has not been achieved 

regarding the pathways and molecular events that accompany base extrusion. Indeed, 

controversy has persisted regarding the precise role of the glycosylase (active or passive) in 

dislodging lesions from DNA. A number of alkylpurine-specific glycosylases have been 

characterized[62-65]. Bacillus cereus AlkD belongs to a unique superfamily of N3- and N7-

alkylpurine glycosylases (present in all three domains of life) that function differently from all 

other known glycosylases[66-68]. Commonly, DNA glycosylases must flip damaged nucleotides 

out of the DNA base stack into damage specific pockets and must also accommodate the 

resulting DNA distortion by intercalating a side chain into the stack to replace the extrahelical 

nucleotide. To achieve efficient N-glycosidic bond scission, glycosylases must also provide side 

chains suitable to act as a general base in catalysis. By contrast, AlkD does not employ any direct 

contacts to the alkylated lesion. Instead, it relies on DNA backbone contacts to extrude the 

lesion’s base-pairing partner. The alkylated base is flipped into the cytosol, allowing for 

hydrolysis to occur with no apparent assistance from any protein side chains[67].  
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3.4 Results and Discussion 

3.4.1 Pathway and energetics of base pair opening and lesion extrusion by AlkD 

Previous studies of DNA flipping[69-73] have relied primarily on intuitive reaction 

coordinates such as a pseudo torsional angle. However, AlkD works by sculpting the DNA 

backbone. A local reaction coordinate such as a pseudo dihedral is, in this case, inadequate. To 

describe such complex conformational transitions of DNA it is advantageous to employ path 

optimization methods such as the partial nudged elastic band (PNEB)[38, 74]. A key requirement 

is that the initial and final states in the transition be known. In this respect, crystal structures of 

AlkD with DNA containing a 3-deaza-3mA or tetrahydrofuran (THF) are available to represent 

the pre-extrusion and post-excision complexes[67]. From these structures we constructed and 

equilibrated models for the initial and final AlkD/3mA-DNA states and then computed a 

minimum energy path (MEP) for base extrusion of 3mA by AlkD using PNEB (Figure S1). 

Umbrella sampling was then performed to describe the free energy profile of this conformational 

transition using molecular dynamics[75]. The reaction coordinate 𝜉 for the transition was defined 

as 𝜉 = rmsdi – rmsdf where rmsdi(f) denotes root-mean-square deviation from the initial and final 

state. For clarity 𝜉 was further normalized to vary from 0 to 1 (corresponding to the initial and 

final state, respectively). Among the advantages of ξ as a reaction coordinate is the ability to 

adequately describe global DNA bending induced by AlkD and to distinguish between concerted 

and sequential base flipping events. While the PNEB optimization involved all atoms of the 

AlkD/DNA complex, the definition of 𝜉 involved rmsd over the nucleic acid heavy atoms alone. 

Additionally, we modeled B-form DNA with identical sequence and applied steered molecular 

dynamics to rotate the base opposite the 3mA out of the base stack. Umbrella sampling was 

performed with the same protocol as for the AlkD/DNA complex, except 𝜉 involved rmsd over 
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the lesion pair and the base pairs immediately above or below in the stack. The obtained PMF 

profiles are shown in Figure 3.4.4.1. The reference profile suggests that base flipping in 

canonical B-DNA in the absence of AlkD proceeds with a steep initial rise in free energy as soon 

as the base departs from the stack. At 𝜉 value of 0.4, ∆G reaches ~10 kcal/mol and continues to 

increase to ~14 kcal/mol albeit with a lesser slope afterward. The extruded state is thus 

represented by a broad plateau region with no apparent stabilization of the nucleotide anywhere 

outside the initial stacked conformation. Previous work on base flipping[20] in DNA is fully 

consistent with this view of the extrusion process.  
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Figure 3.4.1.1. AlkD binding flattens the free energy landscape for lesion extrusion from DNA.  
Effective free energy profiles for base flipping in the presence (red line) and absence (blue line) of AlkD. 
The rmsd-based reaction coordinate, ξ was normalized to vary from 0 to 1. 
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Here we show that AlkD association to DNA substantially lowers the energy barrier for 

base flipping and provides a relatively flat free energy landscape characterized by three stable 

states (Figure 3.4.1.2) denoted as initial, intermediate and final (fully extruded). Notably, the 

barriers that separate these states are ~3.9 and 3.0 kcal/mol, respectively. Two separate flipping 

events are resolved in the PNEB path and the PMF. The opposing base is extruded first and 

accommodated in a shallow pocket on the surface of AlkD. In this orientation the nucleotide is 

stabilized primarily through residue contacts to the DNA backbone, while the base itself remains 

solvent exposed. Two factors contribute to the observed barrier: (i) strain accompanying the 

opposing base rotation around the DNA backbone; and (ii) water penetration into the space 

previously occupied by the base in the DNA stack. The way AlkD relieves both of these factors 

after the initial barrier is to severely kink the DNA substrate while still preserving the 3mA 

position in the base stack. Analysis of the umbrella sampling windows with the program 

Curves+[76] reveals that AlkD moderately bends the DNA in the initial state by 12.7°; severely 

kinks the DNA near the lesion in the intermediate state by 26.9°; and straightens the DNA to a 

negligible bend of 3.6° in the final state. The origin of the second barrier in the PMF is the 

rotation of the 3mA lesion out of the DNA stack. Collapse of the water filled cavity left by the 

base and repositioning of two contacts to the lesion strand (Thr39 and Arg43) leads to the final 

fully extruded state. Base stack compression restores stacking interactions and removes the DNA 

kink. We note that the three stable states are almost equivalent in terms of free energy with initial 

and final differing by just ~2 kBT units of thermal energy. Thus, AlkD specifically stabilizes the 

extruded state allowing sufficient lifetime of 3mA in the cytosol to accomplish hydrolysis. The 

low barriers among the three states could ensure frequent transitions on the ms timescale 

associated with base flipping.  
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Figure 3.4.1.2. AlkD's sculpting of the DNA substrate results in three stable conformations along 
the flipping pathway. The three stable states in the AlkD/3 mA-DNA PMF. A) initial state; B) 
kinked intermediate state; and C) fully extruded (final) state. DNA bending is shown schematically 
in black. 
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3.4.2 Structural determinants for DNA bending, double base flipping and catalysis by AlkD  

As a complement to its unique strategy, AlkD is structurally comprised almost entirely of 

HEAT-repeat motifs, more commonly known to mediate protein-protein rather than protein-

nucleic acid interactions[68]. In AlkD, repeats 2 through 6 are comprised of two antiparallel 

helices H1 and H2 that are oriented with a minor right-handed twist. The carboxy-terminal helix 

(H2) lines the concave surface of the DNA binding cleft and provides positively charged residues 

to recognize the non-lesion DNA strand (Figure 3.4.2.1a). The nucleotide opposite to the 3mA is 

extruded into a shallow pocket on the protein surface with no specific contacts to the base 

(Figure 3.4.2.1b). The only major polar interaction involves the Arg148 residue, which doubly 

hydrogen bonds to the 3’ phosphate group of the extruded base. Two bulky tryptophan residues, 

W109 and W187, flank the DNA backbone to the 3’ and 5’ ends of the extruded base, sterically 

hindering rotations about the DNA backbone. These contacts are formed during the transition 

from the initial to the intermediate state and persist in the final state.  
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Figure 3.4.2.1. AlkD recognizes DNA through HEAT repeat motifs.  
A) Overall architecture of the AlkD-DNA complex with residues contacting the DNA backbone shown 
explicitly and labelled; B) The mode of recognition of the extrahelical thymine base opposite to the 3 mA 
lesion. DNA is shown in stick representation and as a transparent colored surface. AlkD is shown in 
cartoon representation. 
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Surprisingly, the large conformational transitions of the DNA are accompanied by only 

minor changes in the AlkD conformation (Figure 3.4.2.2). Energy decomposition with the 

NAMDenergy plugin of VMD[77] shows a rise in DNA conformational energy (primarily from 

the torsional component) and a concomitant increase in favorable protein-DNA interactions as 

base extrusion proceeds from initial to intermediate to final state. This corresponds to side chain 

adjustment of the residues contacting the DNA in these state (Figure 3.4.2.2a). At the same time 

we found that the change in rmsd from initial to final (computed over all heavy atoms of AlkD) 

was only ~2 Å. Thus, AlkD requires no significant motion of the protein itself to flip and expose 

the 3mA lesion. Instead, it provides a concave positively charged groove that is wide enough to 

accommodate multiple DNA conformations with different degrees of bending. Indeed, the only 

significant switch in AlkD-DNA contacts corresponding to the second barrier in the PMF was 

the observed repositioning of residues Thr39 and Arg43 with respect to the lesion strand (Figure 

3.4.2.2b). These two residues shifted their hydrogen bonds by one phosphate group in the 3’ 

direction along the DNA backbone. Repositioning Thr39 and Arg43 has the dual effect of 

energetically stabilizing the final extruded 3mA conformation and discouraging 3mA reinsertion 

into the DNA stack.   
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Figure 3.4.2.2. AlkD provides a scaffold to accommodate multiple DNA conformations with 
different degrees of bending.  
A) DNA substrate in the initial (red), intermediate (gray) and final (blue) states of AlkD base extrusion. 
AlkD is represented in cyan. Minimal side chain movement is sufficient to accommodate the DNA 
conformational transitions; B) Shift in hydrogen bonding contacts from the intermediate to the final state. 
Two AlkD residues, Arg43 and Thr39, making direct contacts to the lesion strand shift their binding 
positions along the DNA backbone. 
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 Sculpting the DNA substrate to promote 3mA base eversion is obviously necessary for 

removal of the lesion. However, solvent exposure is not sufficient to explain the 230-fold 

catalytic rate enhancement (over the spontaneous rate of hydrolysis) offered by AlkD[68]. 

Recent biochemical evidence has pointed to AlkD’s role in stabilizing a catalytically competent 

conformation by positioning a phosphate group in proximity to the lesion ribose. The 

mechanistic proposal is that the phosphate would serve a role analogous to a protein carboxylate 

group in stabilizing the developing positive charge on the lesion ribose in the transition state 

(TS)[78]. In our MD simulation of the extruded state we observe persistent direct interaction of 

the lesion with the phosphate in position -2 (Figure 3.4.2.3). However, the interaction occurs 

through hydrogen bonding to the 3mA base rather than the ribose ring. This is reasonable as the 

3mA base carries a formal positive charge. Thus, it is possible AlkD employs an alternative 

strategy to stabilize the TS by differential hydrogen bonding to the 3mA lesion. Altering 

hydrogen bonding to the base in the TS is not unprecedented and has also been proposed to 

contribute to catalysis by the prototypical glycosylase UDG[79]. This does not preclude a role 

for the phosphate stabilizing the ribose charge if the distance to the ribose decreases further in 

the TS complex. 
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Figure 3.4.2.3. Persistent hydrogen bonding contact observed between the 3 mA base and the 
phosphate in position -2 along the lesion strand. 
Phosphate groups are numbered starting from the 3 mA lesion at position 0. 
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3.5 Conclusions 

In summary, lesion extrusion by AlkD relies on DNA sculpting to break up the process 

into two steps, which are characterized by low free energy barriers and a stable intermediate. The 

end result is a flattened free energy landscape along the path from the initial to the fully extruded 

state. The rigid arrangement of HEAT-repeat helices results in a C-shaped, positively charged 

cleft providing a scaffold to accommodate three distinct DNA conformations with different 

degrees of bending. Finally, excision of the 3mA base itself is dependent on the natural chemical 

instability of the alkylpurine N-glycosidic linkage and on a phosphate group suitably positioned 

to interact with the lesion in the extruded state. In this respect, the AlkD/DNA complex acts 

much like a DNAzyme, using the DNA backbone for catalysis. However, binding to AlkD’s C-

shaped cleft is required to achieve a catalytically competent conformation. 

3.6 Methods 

3.6.1 Model Construction 

 Models for the pre- and post-extrusion states (denoted initial and final) were constructed 

from two AlkD/DNA crystal structures[67] (Protein Data Bank accession codes 3JX7 and 3JXZ, 

respectively). The partial nudged elastic band method (PNEB)[38, 74] requires an identical 

number of atoms in each replica of the band. Therefore, the DNA sequence in the final model 

was changed to match the DNA construct for the initial model. This construct comprised a 9 

base-pair DNA duplex with lesion strand sequence 5’-ACT(3mA)ACGGG-3’. The protein-DNA 

complexes were solvated with 9,977 TIP3P water molecules[80] in a box with dimensions 73.9 x 

64.0 x 72.9 Å. Hydrogen atoms, Na+ counterions and solvent were introduced using the Xleap 

module of AMBER11[81] with the AMBER Parm99SB parameter set[82] and refined 

parameters for nucleic acids dihedrals (BSC0)[83]. 3mA force field parameters were determined 
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with the Antechamber module[84, 85] of AMBER. Partial charges for 3mA were obtained by 

RESP fitting after DFT calculations performed at the BLYP/6-31G*[86] level with the 

Gaussian03[87] program.   

3.6.2 Equilibration Protocol 

The systems were equilibrated using the NAMD 2.8 code[75, 88] and minimized for 

10,000 steps with harmonic restraints on the protein and nucleic acid atoms to remove 

unfavorable contacts. The systems were then gradually brought up to 300 K in the NVT 

ensemble while keeping the protein and nucleic acid atoms restrained. The equilibration was 

continued for another 2 ns in the NPT ensemble and the harmonic restraints were gradually 

released. Next, the simulations were continued for additional 11 ns of unrestrained molecular 

dynamics to ensure fully equilibrated initial and final states for PNEB. 

3.6.3 Path Optimization 

 To determine a MEP connecting the pre- and post-extrusion AlkD configurations we 

employed the PNEB method - a chain-of-replicas method that involves concurrent optimization 

of a number of copies of the simulated system (denoted as replicas or beads). We chose to 

represent the path by a total of 30 replicas - 15 copies of the equilibrated initial and final states, 

respectively. By gradually spreading the replicas from the initial and final states we allow the 

PNEB optimization process to discover the MEP in a fully unbiased way. All atoms of the 

AlkD/DNA complex were included in the path optimization. Simulations were carried out with a 

1-fs integration step in the NVT ensemble at 300K. The minimum and maximum values for force 

constants between replicas were varied in from 0 to 4.5 kcal mol-1 Å-2  (kmin) and from 0.25 to 4.5 

kcal mol-1 Å-2  (kmax). The PNEB protocol involved gradual ramping up of the force constant over 
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2 ns and subsequent scaling down to 2.0 kcal mol-1 Å-2 over another 4 ns. The PNEB band was 

optimized at 300K for 5ns and then gradually brought back to 0 K in the last 1 ns.  

 Additionally, we modeled canonical B-form DNA with sequence identical to the 9-mer 

from the AlkD/DNA complex. Equilibration involved 1,000 steps of minimization, 5 ps of NVT 

dynamics to bring the temperature to 300 K and 200 ps of dynamics in the NPT ensemble. After 

equilibration, we applied SMD to rotate the thymine base opposite the 3mA lesion out of the 

base stack. The base was rotated 180° through the minor groove with constant velocity for 4 ns.  

3.6.4 Umbrella Sampling Protocol 

 Umbrella sampling was performed to compute a PMF along the optimized PNEB path 

using the collective variables module of NAMD 2.8[75, 88] The collective variables module has 

a predefined RMSD variable (root-mean-square deviation of a group of atoms with respect to a 

reference structure). The module first calculates the best superposition of the atom group onto 

the set of reference coordinates before evaluating RMSD. The reaction coordinate (RC) was 

defined as 𝜉 = rmsdi – rmsdf  where rmsdi(f) denoted root-mean-square deviation from the initial 

and final state, respectively. Each PNEB replica provided a configuration that was used to 

initiate an umbrella sampling window. Difference RMSD from initial and final was computed for 

this bead configuration and a harmonic umbrella potential (k = 3.0 kcal mol-1 Å-2) was applied 

and centered at the computed ξ value. The collective variable module internally distributes the 

applied force onto the selected atoms according to the definition of the RC to maintain small 

deviation from the center of each window. For the AlkD/DNA complex ξ was defined over the 

nucleic acid heavy atoms. For the reference DNA system, ξ was defined over the heavy atoms of 

the lesion pair and the base pairs immediately above or below in the DNA stack.  The production 

runs were performed in the NPT ensemble (1 atm and 300 K) for 10 ns per window with the 
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smooth particle mesh Ewald algorithm[89], short-range non-bonded cutoff at 10 Å and a 

switching function applied at 8.5 Å. The r-RESPA multiple timestep method[27] was employed 

with a 2-fs time step for bonded interactions, 2-fs for short-range non-bonded interactions and 4-

fs for electrostatic interactions.  

 To analyze the results we used the weighted histogram analysis method (WHAM) as 

implemented in the code by Alan Grossfield[90] The first 2 ns from each window were 

considered equilibration and only the subsequent 8 ns were used for analysis. In total, 26 

windows were sufficient to ensure uninterrupted coverage of the RC for WHAM calculations. 

Error bars were calculated by repeating the WHAM calculations in 2 ns increments (from 2 to 8 

ns over the trajectories) and computing standard deviation. For the canonical B-form DNA 

control runs we carried out umbrella sampling with a 3.0 kcal mol-1 Å-2 harmonic restraint 

imposed on the RC with the same protocol as for the AlkD/DNA complex. Since the B-DNA 

systems required less time to reach convergence, we ran each window for 5 ns.   
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CHAPTER 4. DISTAL SUBSTITUTIONS DRIVE DIVERGENT DNA SPECIFICITY 

AMONG PARALOGOUS TRANSCRIPTION FACTORS THROUGH SUBDIVISION OF 

CONFORMATIONAL SPACE  

4.1 Abstract 

Many genomes contain families of paralogs - proteins with divergent function that 

evolved from a common ancestral gene after a duplication event.  To understand how paralogous 

transcription factors evolve divergent DNA specificities, we examined how the glucocorticoid 

receptor and its paralogs evolved to bind activating response elements [(+)GREs] and negative 

glucocorticoid response elements (nGREs). We show that binding to nGREs is a property of the 

glucocorticoid receptor (GR) DNA binding domain (DBD) not shared by other members of the 

steroid receptor family.  Using phylogenetic, structural, biochemical, and molecular dynamics 

techniques, we show that the ancestral DBD from which GR and its paralogs evolved was 

capable of binding both nGRE and (+)GRE sequences due to its ability to assume multiple DNA-

bound conformations. Subsequent amino acid substitutions in duplicated daughter genes 

selectively restricted protein conformational space, causing this dual DNA-binding specificity to 

be selectively enhanced in the GR lineage and lost in all others.  Key substitutions that 

determined the receptors’ response element binding specificity were far from the proteins’ DNA-

binding interface and interacted epistatically to change the DBD’s function through DNA-

induced allosteric mechanisms. These amino acid substitutions subdivided both the 

conformational and functional space of the ancestral DBD among the present-day receptors, 

allowing a paralogous family of transcription factors to control disparate transcriptional 

programs despite high sequence identity. 
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4.2 Significance Statement 

Most organisms contain families of related proteins that evolved from duplication of an 

ancestral gene.  Using the example of DNA binding by the steroid hormone receptors, this work 

examines the structural mechanisms by which these related proteins evolved separate functions 

during their history.  We show that a functionally promiscuous ancestor was capable of accessing 

multiple protein conformations to bind disparate DNA sequences.  This functional and 

conformational diversity were divided among daughter genes after gene duplication, allowing 

evolutionarily related proteins to generate disparate transcriptional outcomes in response to 

signaling input. 

4.3 Introduction 

Gene duplication is a key factor in the acquisition of novel protein function over 

evolution[91].  Most species, including humans, encode numerous families of paralogs – genes 

with divergent function that evolved from a common ancestral gene after a duplication event. 

Many models have been proposed to explain how new functions arise and are subdivided among 

paralogous proteins[92], and promiscuity of ancestral genes is hypothesized to be a major factor 

in the evolution of novel functions in protein families[[93, 94] but see [95]]. Understanding these 

processes is critical for a deeper understanding of molecular evolution as well as for developing 

therapies to target specific proteins contained within larger gene families.  In this article, we 

consider the example of dual DNA-binding specificity by the glucocorticoid receptor (GR), a 

member of the steroid hormone receptor (SR) family.  Composed of six members, the SR family 

is responsible for mediating the intracellular effects of steroid hormones, which are cholesterol-

derived molecules that effect long-range, long-lasting physiological effects in target tissue[96, 

97]. 
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GR is capable of both activating[98, 99] and repressing[100-102] transcription.  To 

activate transcription, GR’s DNA binding domain (DBD) cooperatively dimerizes on inverted 

repeat activating glucocorticoid response elements, or (+)GREs (Fig. 1A)[103]. All 3-keto SRs – 

comprising of the glucocorticoid, mineralocorticoid, and androgen and progesterone receptors – 

bind to identical DNA sequences termed (+)GREs.  The structural basis of GR-mediated 

transcriptional repression has remained less clear; however, recent work has shown that negative 

glucocorticoid response elements, or nGREs, play a role in GR-mediated transcriptional 

repression[102].  At nGREs, monomeric GR DBD binds to an everted repeat with negative 

cooperativity [104](Figure 4.4.1.1A). GR down-regulates the transcription of many anti-

inflammatory genes, making GR agonists a mainstay of treatment of diseases such as asthma and 

arthritis[105].  However, GR’s closest paralog, the mineralocorticoid receptor (MR), causes a 

pro-inflammatory transcriptional state when activated[106].  Despite their opposing effects on 

inflammation, GR agonists prolong the lifespan of MR-/- mice, indicating that GR and MR share 

some overlapping transcriptional effects[107].  Likewise, in prostate cancer cells, GR activation 

can compensate for the pharmacological blockade of the androgen receptor [108].  Thus, 

separate members of the SR family can exhibit both overlapping and distinct transcriptional 

effects, yet the evolutionary mechanisms driving this phenomenon are unknown. 

In this work, we demonstrate that despite their shared affinity for (+)GREs, GR is the 

only 3-keto SR capable of nGRE binding and subsequent transcriptional repression.  

Surprisingly, we find that nGRE-binding was a feature of the ancestral 3-keto SR DBD, and this 

feature was selectively retained and improved in the GR lineage throughout SR evolution.  We 

show that a small number of amino acid substitutions differentially affected nGRE- and (+)GRE-
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binding among SR DBDs, leading the SRs to become a family of transcription factors with 

specific and diverse responses to steroid hormone signaling input. 

4.4 Results 

4.4.1 DNA substrates dictate conformation of the GR DBD 

As a dual DNA/RNA binding protein, GR binds a diverse number of nucleic acid 

substrates - including (+)GRE DNA, nGRE DNA, mRNA, and the lincRNA Gas5 – through its 

DBD[109]. To determine if GR’s nucleic acid substrate alters the conformation of its DBD, we 

performed 2D [1H,15N] HSQC on 15N-labeled human GR (hGR) DBD free in solution as well as 

bound to both a consensus (+)GRE and an nGRE from the TSLP promoter (Fig. 1A-B).  As 

expected, GR binding to both the (+)GRE and nGRE caused marked chemical shift perturbations 

within the GR DBD.  Strikingly, the GR DBD adopted distinct conformations when bound to an 

nGRE versus an (+)GRE, in agreement with the crystal structures solved of GR DBD – (+)GRE 

and GR DBD – nGRE complexes[110, 111] (Figure 4.4.1.1A).  Residues comprising the GR 

DBD’s dimerization loop, such as Ala458, Gly459, and Arg460, showed significant chemical 

shift perturbations when bound to (+)GRE DNA, but not nGRE DNA, supporting the notion that 

the GR DBD binds to the TSLP nGRE as two monomers[104].  Additionally, NMR peaks for 

arginine side chains appeared when the DBD was bound to nGRE, indicating altered rates of 

exchange of DBD-(+)GRE and DBD-nGRE complexes. 
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Figure 4.4.1.1 The glucocorticoid receptor (GR) DNA binding domain (DBD) adopts distinct 
conformations to activate and repress transcription.   
(A) At left, the NMR structure of free GR DBD in solution[112] is shown.  The GR DBD can dimerize on 
an inverted repeat (+)GRE element[111] to activate transcription (center), or can bind as two monomers 
on an nGRE (right) to repress transcription[104]. (B) NMR spectra of 15N-labeled GR DBD in the 
absence of DNA (left), or bound to (+)GRE DNA (center) or nGRE DNA (right). DNA contacting 
residues (e.g. G439 or K442) are shifted upon nGRE or (+)GRE binding, but residues of the dimerization 
loop (red) are substantially shifted upon (+)GRE binding but not binding to the TSLP nGRE. Differences 
between (+)GRE- and nGRE-bound GR DBD occur at other residues, including the appearance of NMR 
peaks for arginine side chains when bound to nGRE (lower right), indicating altered rates of exchange of 
DBD-(+)GRE and DBD-nGRE complexes.  Together, these results indicate that GR DBD adopts two 
distinct conformations in order to activate or repress transcription when bound to DNA (See also SI 
Appendix, Fig. S1). (C) All 3-keto SR DBDs bind to a consensus (+)GRE with nanomolar affinity, but 
only hGR binds to nGREs with nanomolar affinities (D). (E) While full-length hGR is capable of 
repressing a constitutively active nGRE-containing reporter, MR is not, despite high sequence and 
structural (F) similarity within the DBDs[110, 111]. 
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Further 2D [1H,15N] HSQC experiments with differing DBD:DNA molar ratios indicate 

that GR DBD – nGRE binding is characterized by two non-identical, monomeric binding events.  

In particular, GR DBD residues at the protein-DNA interface are affected by higher 

concentrations of GR DBD relative to nGRE DNA, whereas residues at the dimerization 

interface are not. This demonstrates that two dimerization-independent GR-DNA binding events 

occur between the GR DBD and the TSLP nGRE.  

4.4.2 GR is the only SR capable of binding nGREs 

The 3-keto SRs exhibit extremely high sequence conservation within the DBD.  This 

sequence conservation is mirrored by functional conservation at (+)GREs: all 3-keto SRs are 

capable of binding to a consensus (+)GRE with high affinity (Figure 4.4.1.1C).  However, in 

vitro binding experiments demonstrate that GR is the only SR capable of binding with nanomolar 

affinity to the TSLP nGRE (Figure 4.4.1.1D). 

To test whether the inability of the non-GR 3-keto SRs to bind nGREs extends to cellular 

repression of nGRE-containing promoters, we tested the ability of MR - GR’s closest paralog - to 

repress a constitutively active promoter containing the TSLP nGRE.  In line with in vitro binding 

results, MR was unable to repress transcription from this element (Figure 4.4.1.1E), confirming 

that GR and MR exhibit a divergence in function at nGREs, which is quite remarkable 

considering their high sequence identity within the DBDs as well as the small size of the domain 

(75 amino acids).  Moreover, the x-ray crystal structures of the GR[111] and MR[110] DBDs 

bound to (+)GRE DNA are superimposable, suggesting that subtle structural and evolutionary 

mechanisms underlie the functional differences among the 3-keto SRs (Fig. 1F). 
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4.4.3 DBD-nGRE binding and subsequent repression is a feature of the ancestral 3-keto SR 

To trace the evolutionary history of divergent response element specificity among the 

SRs from their well-established phylogeny[19], we reconstructed sequences of ancestral DBDs 

from key nodes within the 3-keto SR evolutionary lineage. All ancestral sequences were strongly 

supported (mean posterior probabilities between 0.96 and 0.99 across sites) with very few 

ambiguously reconstructed residues.  

We used overlap-extension PCR to insert these DBDs into the full-length hGR and tested 

their ability to both activate a simple (+)GRE reporter and repress the TSLP nGRE under a 

constitutively-active promoter.  All extant and ancestral proteins within both the GR and MR 

lineage activated a (+)GRE reporter (Figure 4.4.3.1A-B).  Surprisingly, the AncSR2 DBD, the 

common ancestor of all 3-keto SRs, was able to repress the TSLP nGRE from baseline, although 

this activity was not significant when corrected for multiple comparisons (Figure 4.4.3.1C).  This 

slight repressive ability was retained in the AncCR DBD, the common ancestor of both GR and 

MR, lost in the ancestral MR (AncMR), and enhanced in the GR lineage (Figure 4.4.3.1C-D).  In 

particular, a dramatic increase in the ability of GR to repress nGREs occurred between AncGR to 

AncGR2, which represents the GR protein in the common ancestor of all jawed vertebrates and 

all bony vertebrates, respectively [113] (Figure 4.4.3.1C).  
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Figure 4.4.3.1 The GR lineage improved upon an ancestral cellular repressive function that was lost 
in MR.   
(A) Reconstructed ancestral DBDs were inserted into full-length human GR using overlap-extension PCR 
and transfected into HeLa cells with the indicated reporter and treated with 1 µM dexamethasone (or 
aldosterone, for human MR only). All DBDs in the GR lineage, including AncSR2, are capable of 
activating a (+)GRE reporter (B); similar results are found in the MR lineage (C). (D) The AncSR2 DBD 
is capable of repressing transcription from an nGRE-containing promoter, and this ability was retained in 
the GR lineage and further enhanced at the AncGR2 node.  (E) The ability to repress at the TSLP nGRE 
was lost in the MR lineage at AncMR, consistent with in vitro binding data (See also SI Appendix, Fig. 
S3). (F) To summarize, (+)GRE and nGRE-binding and repressive ability of SR DBDs are mapped onto 
their phylogeny. (+)GRE binding was derived at the AncSR2 node[114], along with a moonlighting 
nGRE binding and transrepressive function.  While (+)GRE binding was preserved throughout the clade, 
nGRE binding was lost at AncCR and AncSR3 and preserved (and enhanced) in the GR lineage.  Green 
circles represent the ability of a given DBD to bind to and activate from a consensus (+)GREs.  Red 
circles indicate the ability of a DBD to repress the TSLP nGRE in cells more or less than 50% (large and 
small circles, respectively).  Above each branch are the amino acid substitutions between each node, 
using hGR numbering. 
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Remarkably few mutations led to divergence of function within this small protein domain 

– allowing a unique opportunity to pursue the detailed mechanisms by which functions are 

altered and distributed among paralogous proteins.  To illuminate the biochemical and structural 

mechanisms by which repression at nGREs was selectively retained and enhanced in the GR 

lineage, we recombinantly expressed and tested all ancestral DBDs for in vitro binding to both 

(+)GRE and nGRE DNA. All ancestral DBDs bound to a consensus (+)GRE, as expected given 

the ability of all extant 3-keto SR DBDs to activate from these sequences (Figure 4.4.1.1E and 

ref. [115]).  The ancestral 3-keto SR, AncSR2, bound nGREs with affinity in the high nanomolar 

range, implying that nGRE-binding originated at the ancestor of all 3-keto SRs and was then 

retained in GR. Unlike hGR, the AncSR2 DBD displayed no negative cooperativity on nGREs; 

instead, negative cooperativity of DBD-nGRE binding emerged gradually along the lineage from 

AncSR2 to hGR [104].  

The ancestral capacity to bind the TSLP nGRE was lost along the lineage leading to 

AncSR3, the common ancestor of the androgen and progesterone receptors (Figure 4.4.3.1E). 

Only three historical amino acid substitutions occurred along this branch. We found that none of 

the individual changes affected the affinity of AncSR2 for nGREs or (+)GREs.  When combined, 

however, the three mutations ablated nGRE binding, pointing to a strong epistatic interaction 

among historical substitutions.  Along the other lineage - leading towards the GR and MR - the 

ancestral capacity to bind nGRE was retained in AncCR, ancestor of MR and GR, despite two 

amino acid changes in the DBD sequence.  After the duplication of AncCR to produce separate 

GR and MR genes, nGRE binding was lost in the lineage leading to MR, consistent with cellular 

repression data (Figure 4.4.3.1C).  A single historical substitution mediated this loss in function, 
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and our experiments indicate that this mutation interacted epistatically with the two earlier amino 

acid substitutions during the AncSR2-AncCR interval to abolish nGRE binding.   

4.4.4 GR evolved enhanced inter-monomer allostery at nGREs 

After establishing that GR alone retained an ancestral ability to bind to nGREs, we 

sought to obtain the structural mechanisms by which this expanded DNA specificity was 

uniquely retained and enhanced in the GR lineage.  The crystal structure of the AncSR2 DBD – 

TSLP nGRE complex reveals that the GR-nGRE binding orientation and sequence specificity 

originated at the ancestor of all 3-keto SRs, before the emergence of vertebrates[116] (Figure 

4.4.4.1A-B), despite the superior ability of GR DBD to repress nGRE-mediated transcription in 

cells (Figure 4.4.3.1C). NMR data from (+)GRE- and nGRE-bound GR (Figure 4.4.1.1) indicate 

that DBD conformation differs when bound to distinct response elements, and such allosteric 

changes have been shown to affect transcriptional output[111, 117].  Molecular dynamics (MD) 

trajectories followed by community and sub-optimal path analysis of the SR – DNA complexes 

show that AncSR2’s daughter proteins in the GR and MR lineage contain more complex 

community organizations, resulting in diverging allosteric communication upon DNA binding 

among AncSR2-derived paralogs: at nGREs, the community connecting DBD monomers is 

much larger in hGR versus AncSR2, indicating that DNA-mediated inter-monomer 

communication and resulting negative cooperativity at nGREs[104] is enhanced in hGR 

compared to AncSR2 (Figure 4.4.4.1C-F).  At (+)GREs, the community structure of AncSR2 

bound to a (+)GRE is relatively simple compared to human MR (hMR) and hGR, with each 

monomer consisting of one large community (α and β) in direct allosteric communication, with 

some communication diverted through residues in the protein dimerization loops and through the 

DNA response element itself.   
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Figure 4.4.4.1 Although nGRE binding orientation, stoichiometry, and sequence specificity 
originated at the common ancestor of all 3-keto SRs, GR is capable of enhanced DNA-mediated 
allosteric communication at nGREs.  
(A,B) hGR retains ancient amino acid-DNA contacts to ensure sequence specificity when binding nGREs, 
as shown by the AncSR2 – nGRE (c) and human GR – nGRE crystal structures [104]. (C,D) Community 
analysis of nGRE-bound AncSR2 and human GR DBDs[104].  At nGREs, each DBD monomer 
communicates through a central community (community C).  Community C largely consists of DNA in 
the AncSR2 DBD – DNA complex, but this community is expanded to include part of the GR protein in 
the human GR DBD – DNA complex.  (E, F) The larger community in hGR, relative to AncSR2, 
enhances communication between DBD monomers at nGREs, as also shown by suboptimal path analysis 
between the AncSR2 monomers (panel E; 4,158 pathways) and human GR monomers (panel F; 26,165 
pathways) when nGRE-bound.  This enhanced communication correlates to an increase in negative 
cooperativity at nGREs observed throughout the GR lineage. 
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In contrast to both AncSR2 and hGR, such extensive DNA-mediated communication 

between DBD monomers is not a feature of the MR branch of the SR phylogeny.  MD 

trajectories and resulting community analysis of the AncMR – (+)GRE and MR – (+)GRE 

crystal structures[110], reveal a qualitatively different community organization and routes of 

communication, compared to their GR paralogs.  A greater fraction of the total communication 

between AncMR monomers occurs directly through the dimerization interface, as opposed to 

through the DNA, relative to the GR lineage – a trend more pronounced in hMR.  Given the link 

between transcriptional output and allosteric communication[111, 117], the fracturing of the 

community organization and weakening of allosteric cohesiveness leads to a network in AncMR 

and hMR with decreased intra-DNA allosteric communication.  This correlates with weaker 

binding to nGRE sequences, where protein dimerization does not occur.  It is noteworthy that all 

amino acid substitutions driving these allosteric changes occurred far from the DNA binding 

surface, which is likely necessary to maintain (+)GRE.   

4.4.5 Subtle, irreversible structural changes enhanced nGRE binding 

To understand the effects of the key historical substitutions on nGRE binding, we 

determined the X-ray crystal structures of several ancestral DBDs in complex with a nGRE or 

(+)GRE.  We found that Gly425Ser - the key substitution in the GR lineage that enhanced 

repression at nGREs (Figure 4.4.3.1) - is involved in a change in conformational freedom of the 

DBD. In the AncGR2 – DNA crystal structure, the sidechain of Ser425 is solvent exposed and 

makes no contacts with DNA or the remainder of the GR DBD (Figure 4.4.5.1A-B).  Due to the 

conformational freedom granted by glycine residues (Figure 4.4.5.1C), we hypothesized that 

subtle changes in backbone conformation may underlie the large effect caused by the Gly425Ser 

substitution.  All extant and ancestral 3-keto SRs (other than GRs) contain the ancestral glycine 
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and occupy glycine-only backbone conformations when bound to (+)GREs, as visualized by a 

Ramachandran plot (Figure 4.4.5.1D-F). Intriguingly, the AncSR2 – (+)GRE crystal 

structure[114] contains two dimers; Gly425 of one dimer occupies glycine-only Ramachandran 

space and Gly425 of the second dimer occupies general Ramachandran space (Figure 4.4.5.1D), 

indicating that AncSR2 may be more dynamic and able to occupy a wider range of 

conformational ensembles.  The Gly425Ser substitution at the AncGR2 node locked the GR 

lineage into a restricted subset of Ramachandran space, as compared to the MR and AncSR3 

lineages (Figure 4.4.5.1E-F). MD trajectories show that position 425 of AncGR2 occupies a 

separate subset of Ramachandran space from AncGR, eliminating any artifacts from crystal 

packing (Figure 4.4.5.1G). As a result of these conformational changes, community analysis 

reveals that the Gly425Ser substitution decreases direct communication of the two DBD 

monomers via the dimerization interface and instead increases inter-protein communication via 

DNA on activating elements, a trend that is preserved in hGR. 
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Figure 4.4.5.1 A single amino acid substitution far from the DNA binding interface – Ser425Gly – 
led to an improvement in nGRE binding through subtle effects in SR backbone conformation.  
(A) Location of Ser425 within the overall crystal structure of the AncGR2 DBD – (+)GRE complex; 
Ser425 is solvent exposed and contacts no other side chains in AncGR2 (B). (C) Ramachandran plot of 
the AncSR2 and extant human DBDs. Non-glycine (“general”) amino acids in a protein polymer are 
restricted in their backbone conformations (phi/psi angles) as compared to glycine residues (dark vs. light 
green, respectively). (D); AncSR2 and hGR DBDs occupy general Ramachandran space at position 425, 
in contrast to the other three extant human DBDs.  (E) hGR’s conformational space was decided at the 
AncGR2 node, where the Gly425Ser substitution occurred.  (F) MR retains a glycine at the homologous 
position, and assumes a backbone conformation only accessible to glycine residues. (G) Backbone 
conformation of AncGR- and AncGR2-(+)GRE complexes differs over the course of 200 ns MD 
trajectories. (H,I) Comparison of binding between WT and S425G GR DBD at a consensus (+)GREs and 
the TSLP nGRE.  (J) Reporter gene assay of a constitutively active reporter gene controlled by the TSLP 
nGRE; full-length WT or Ser425Gly GR were transfected at indicated amounts into HeLa cells co-
transfected treated with dexamethasone.  (K,L) Comparison of binding between WT and Gly607Ser MR 
DBD at a consensus (+)GRE and the TSLP nGRE .  (M) The Ser425Gly mutation reverts GR to an MR-
like backbone conformation.  
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Reversal of this substitution (Ser425Gly) in hGR causes the protein to retain high-affinity 

binding to a (+)GRE but to lose much of its affinity for nGREs (Figure 4.4.5.1H-I); similarly, in 

cells, full-length GR with the Ser425Gly mutation is a much less potent repressor of the TSLP 

nGRE (Figure 4.4.5.1J).  Together, these data indicate the two amino acid changes between 

AncGR2 and hGR, Ile420Leu and Phe478Tyr, locked hGR into dependence on the Gly425Ser 

substitution for even low-affinity binding to nGREs, a hypothesis supported by sequence 

alignments and similar to the evolutionary ‘ratchet’ observed in SR ligand binding domains[118, 

119].  The crystal structure of the GR DBD Ser425Gly mutant bound to DNA reveals that 

residue 425 reverts to a glycine-only conformation (Figure 4.4.5.1M), confirming that backbone 

conformation is the likely mechanism for the large-effect seen by the Gly425Sser substitution.  

Even when not bound to DNA, 2D [1H,15N] HSQC NMR experiments reveal that reversal of the 

Gly425Ser substitution in the hGR DBD results in large conformational changes in residues 

comprising the DNA-binding interface, consistent with the historical substitution’s effects on 

DNA-mediated inter-protein communication.  Mutation of residue 425 to a non-glycine amino 

acid, such as alanine, does not cause a loss of nGRE binding, confirming that backbone 

dynamics are responsible for the effects of the Gly425Ser substitution. Intriguingly, the 

Ser425Gly mutation has been widely studied in the context of hGR and shown to have 

deleterious effects on the repression of T-bet, AP-1, and NF-κB by hGR[120-123], suggesting 

DNA binding-mediated effects play a larger role in pro-inflammatory transcriptional repression 

by the GR than has been previously assumed.   

Although the historical Gly425Ser substitution conferred nGRE-mediated repression at 

the AncGR-AncGR2 transition, it is not sufficient to improve affinity for nGREs when 

introduced into the human MR (Figure 4.4.5.1K-L). This result indicates an additional role for 
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epistatic mutations during steroid receptor DBD evolution: either mutations occurred in the 

lineage leading to AncGR - but not that to MR - which were necessary for Gly425Ser to yield 

repression at nGREs, or restrictive mutations occurred in the lineage leading to MR, which 

prevented Gly425Ser from having that same effect.  In either case, amino acid substitutions that 

do not affect function on (+)GREs modified the capacity of other mutations to affect function 

nGREs, changing the evolutionary potential of the protein in a lineage-specific fashion.  

Together, the epistatic and function-switching mutations caused the diverging paralogs to follow 

evolutionary paths that yielded similar transcription factors that control distinct transcriptional 

programs and effect specific responses to signaling input. 

4.5 Discussion 

These results illuminate the mechanism by which closely related transcription factors 

with similar function and high sequence identity can evolve distinct specificity to alternate 

response elements.  In this case, a moonlighting ancestor, the AncSR2 DBD, developed a weak 

affinity for and repressive ability at nGREs, likely as it evolved toward a (+)GRE-binding 

phenotype[114].  This nGRE-binding ability was subsequently lost at two independent time 

points during 3-keto SR evolution, but maintained and enhanced in the lineage leading to 

modern-day hGR (Figure 4.4.3.1).  These findings strongly support the hypothesis that 

subdivision of ancestral promiscuous functions is an important mechanism of divergent function 

among paralogs[124]. 

The detailed biochemical, structural, and molecular dynamics studies described here 

present a unified view of the molecular basis for alternate response element specificity among 

paralogous transcription factors.  In this case, enhancement of nGRE-binding ability in the GR 

lineage and its loss in the MR and AncSR3 lineages were critical for development of divergent 
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DNA specificity.  Both computational and directed evolution studies have implicated epistasis as 

a primary factor in molecular evolution[125, 126], and studies of historical protein divergence 

have established a major role for epistasis in specific cases[119, 127-132].  

In the two loss-of-function events described here, three amino acid substitutions combine 

to accomplish a loss of nGRE binding with no effects on (+)GRE binding.   The temporal order 

in which these substitutions occurred can be partially resolved on the phylogeny: the two 

earliest-occurring changes did not change binding to either element, but once they were in place, 

addition of the third and last substitution abolished nGRE binding and regulation. These findings 

demonstrate that initially ‘neutral’ amino acid substitutions lay the necessary groundwork for 

later function-changing mutations with which they interact epistatically. The mutations that 

drove functional divergence among the 3-keto SRs were far from the DNA-reading α-helix, 

presumably because binding to both nGREs and (+)GREs requires the same DNA-binding 

interface of the SR proteins, likely imposing strong selective constraint on this region of the 

protein in all DBDs in the family.     

Functional promiscuity and conformational dynamism have been hypothesized to 

contribute to protein evolvability [124, 133], but there have been very few direct studies of the 

historical evolution of a protein’s occupancy of the ensemble of potential conformers[134, 135]. 

Our findings reinforce the importance of these factors.  We found that the ancestral 3-keto SR, 

AncSR2, was capable of binding both nGREs and (+)GREs (Figure 4.4.3.1).  To bind both 

response elements, our NMR experiments show that the hGR DBD accesses two conformational 

states (Figure 4.4.1.1A-B), and it is likely that other members of the family that exhibit nGRE 

binding - including AncSR2 - utilize a similar mechanism for their promiscuous functions.  Our 

observations suggest that the ancestral promiscuity and conformational dynamism was retained 
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and refined in hGR, and is likely a feature of the many DNA/RNA binding proteins encoded 

within the human genome[109].  Our results are consistent with previous hypotheses that 

‘evolvable’ proteins may exist in closely-related but functionally distinct conformers whose 

distribution may be easily perturbed by mutation[136].  In the case of the SRs, the Gly425Ser 

substitution at the AncGR to AncGR2 transition led to a discrete partitioning of Ramachandran 

space between the GR and MR lineage (Figure 4.4.5.1C-F).  Despite the significant distance of 

residue 425 from the DBD’s DNA binding interface (Figure 4.4.5.1A-B), its alteration was 

sufficient to change the evolving proteins’ occupancy of conformational space and confer 

alternate DNA binding specificity on MR and GR.  In this way, two paralogous DNA binding 

domains evolved specific control over distinct transcriptional programs, despite their high 

primary sequence identity and structural similarity. 

4.6 Materials and Methods 

4.6.1 Protein expression and purification 

Proteins were expressed as described previously[104, 110].  Proteins were cloned into 

pMCSG7 vector, which contains an N-terminal 6X His tag.  The expression vector was 

transformed into BL-21(DE3)pLysS E. coli, which were grown in TB media and induced with 

300 µM IPTG at an OD of ~0.8 for 4 hours at 30 °C.  Cells were lysed via sonication in 20 mM 

Tris 7.4, 1 M NaCl, 25 mM imidazole, and 5% glycerol.  SR DBDs were purified from the 

supernatant using a nickel affinity chromatography column (HisTrap) with fast protein liquid 

chromatography (FPLC).  Gel filtration via FPLC was used to further purify the DBDs into a 

buffer of 20 mM Tris 7.4, 100 mM NaCl, and 5% glycerol.  Protein was concentrated to ~4 

mg/ml and flash frozen in liquid N2 until further use. 
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4.6.2 Protein – DNA binding assays 

All DNA oligos for this study were purchased from Integrated DNA Technologies.  For 

DNA binding assays, increasing amounts of indicated protein were added to 10 nM of 5’ 

carboxyfluorescein-labeled DNA oligos and fluorescence polarization values were measured 

using a Biotek Synergy plate reader.  All binding experiments were performed in 100 mM NaCl, 

20 mM Tris-HCl pH 7.4, and 5% glycerol.  Sequences used for binding assays were: (+)GRE: 

5’-(FAM)CCAGAACAGAGTGTTCTGA-3’ and 5’-TCAGAACACTCTGTTCTGG-3’; TSLP 

nGRE: 5’-(FAM)CCGCCTCCGGGAGAGCTG and 5’ - CAGCTCTCCCGGAGGCGG - 3’, 

where (FAM) indicates the position of the carboxyfluorescein dye.  hGR-TSLP nGRE and hMR 

– (+)GRE binding data were also reported in refs [104, 110].  GraphPad Prism was used for 

fitting of data, and cooperativity was calculated using the one-site specific binding model with 

hill slope.  In all panels, points or bars indicate mean, and error bars represent s.e.m.   

4.6.3 Crystallization and structure determination 

All structures were crystallized via hanging drop vapor diffusion.  The AncSR2 – TSLP 

nGRE complex was crystallized in 0.1 M HEPES (pH 7.5), 10% PEG 20000, 5% glycerol, and 

5% ethanol.  The AncGR – (+)GRE complex was crystallized in 0.1 M HEPES (pH 7.5), 12% 

PEG 20000, and 5% glycerol.  The AncGR2 – (+)GRE complex was crystallized in 0.1 M 

HEPES (pH 7.5) and 15% PEG 8000.  The AncMR – (+)GRE complex was crystallized in 0.1 M 

MES (pH 6.5), 20% PEG 6000, and 5% glycerol.  The GR Ser425Gly – (+)GRE complex was 

crystallized in 0.1 M HEPES (pH 7.5), 20% PEG 8000, and 4% ethylene glycol.  Proteins were 

flash-cooled in liquid N2 after soaking in cryoprotectant consisting of the crystallization 

condition plus additional PEG and glycerol.  DNA constructs used for crystallization were 5’ - 

CGCCTCCGGGAGAGCT - 3’ and 5’ – AGCTCTCCCGGAGGCG - 3’ for the AncSR2 - TSLP 
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nGRE complex; and 5’- TCAGAACACTCTGTTCTG -3’, and 5’- 

CCAGAACAGAGTGTTCTG -3’ for the AncGR-, AncGR2- AncMR- and hGR Ser425Gly-

(+)GRE complexes. 

Data were collected at Southeast Regional Collaborative Access Team (SER-CAT) 22-ID 

(or 22-BM) beamline at the Advanced Photon Source (APS), Argonne National Laboratory, 

Argonne, IL, USA.  Supporting institutions may be found at www.ser-cat.org/members.html.  

Data were processed using HKL-2000 and phased with molecular replacement using PHASER in 

the PHENIX suite, and refined using phenix.REFINE[137, 138].  COOT was used for model 

building[139], and both PyMOL (Schrodinger, LLC) and Chimera[140] (Resource for 

Biocomputing, Visualization, and Informatics at the University of California, San Francisco) 

were used for structure visualization and figure generation.  The PDB_REDO server was also 

used for structure optimization and validation[141].   Sample electron density for all structures 

reported here is located in Fig. S12. 

4.6.4 Molecular dynamics simulations and network analysis 

Eight systems were prepared for molecular dynamics (MD) simulation: (+)GRE- 

AncSR2 (PDB 4OOR), AncGR (PDB 5CBX), AncGR2 (PDB 5CBY), hGR (PDB 3G6R), 

AncMR2 (PDB 5CBZ), hMR (PDB 4TNT); nGRE- AncSR2 (PDB 5CC0), and hGR (PDB 

4HN5). Each protein monomer was capped with acetyl and N-methyl groups at the N- and C- 

termini, respectively. The complexes were placed in a rectilinear simulation box extending no 

less than 12 Å from the protein-DNA along each dimension. The systems were solvated with 

TIP3P[142] water molecules. Na+ and Cl- ions were added to maintain neutral charge with 

excess 0.15M NaCl concentration to mimic physiological conditions.  Systems were set up with 
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the xLeap module of the AmberTools11[85] package with the parm99-bsc0 forcefield[143, 144].  

Cys-Zn2+ tetrahedral geometries in the zinc fingers were maintained using dummy atoms. 

All minimization and MD was performed with the NAMD2.9 simulation package[145] 

using a 2-fs timestep, the r-RESPA method[146] for force integration, and the SHAKE[147] 

algorithm to restrain bonds all bonds involving hydrogen atoms.  Non-bonded interactions were 

calculated within a 12 Å cutoff, with a switching function applied between 10 Å and 12 Å.  

Long-range electrostatics were treated with the smooth particle mesh Ewald (PME) 

scheme[148], with full electrostatics calculated every 2 steps and 1-4 interaction scaling set at 

0.83.  Each system was subjected to 10,000 steps of conjugate gradient minimization, followed 

by a 200 ps MD simulation in the NVT ensemble, with 5 kcal/mol×Å2 harmonic restraints on all 

protein and DNA heavy atoms, while smoothly heating from 0-300 K.  Seven stages of restraint 

release were then carried out in the NPT ensemble in 1 ns segments, incrementally releasing first 

protein sidechains, followed by protein backbone, DNA nucleosides, and finally DNA backbone 

heavy atoms.  An unrestrained, 20 ns NPT simulation was performed to fully equilibrate the 

system.  Each system was then sampled for 200 ns in the NPT ensemble. 10,000 evenly spaced 

frames were taken from each trajectory for network analysis in the NetworkView[149] plugin of 

the VMD[150] visualization and analysis program. 

Network theory was employed to highlight evolutionary alterations in the allosteric 

network of 3-KS complexes.  Networks are constructed by defining all protein alpha-carbon and 

DNA C1’ atoms in a system as nodes and using Cartesian covariance as a measure of 

communication within the network. Any pair of nodes that reside within a 4.5 Å cutoff for more 

than 75% of the MD trajectory are connected via an edge, with the weight of the edge being 

proportional to the covariance between the nodes. From this raw data, networks were resolved 
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into communities, which are groups of nodes with correlated motions, using the Girvan-Newman 

algorithm. While constructing the community graphs, the minimum number of communities 

possible were generated while maintaining at least 92.3% of the maximum modularity[47] to 

prevent excessive community subdivision. The magnitude of communication flow between 

communities was quantified by the total betweenness[151] of all edges that transition between 

communities.  In the case of the nGRE complexes, suboptimal paths between monomers and 

through the DNA were identified using the Floyd-Warshall algorithm[152]. 

4.6.5 Cellular activation and repression assays 

HeLa cells were transfected with 10 ng of the indicated receptor, 50 ng of the indicated 

firefly luciferase reporter, and 10 ng of Renilla luciferase under the control of the constitutively 

active pRL-TK promoter.  For transfection, OptiMEM media without antibiotics was used with 

FuGene HD, according to the manufacturer’s protocols.  Otherwise, HeLa cells were passaged in 

MEMα (Life Technologies) supplemented with 10% stripped FBS (Atlanta Biologicals) and 

penicillin/streptomycin (Life Technologies).  Twenty-four hours after transfection, cells were 

treated with 1 µM dexamethasone, except for hMR conditions in which aldosterone was used.  

Twenty-four hours after ligand treatment, firefly and Renilla luciferase activities were measured 

using the DualGlo kit (Promega) according to the manufacturer’s protocol on a Biotek Synergy 

plate reader. 

In all figures, *, **, ***, and **** indicate P < 0.05, 0.01, 0.001, and 0.0001, 

respectively and points or bars indicate mean, and error bars represent s.e.m.  In Figure 4.4.1.1F 

and Figure 4.4.3.1, one-way ANOVA followed by Tukey’s post-hoc test was performed, except 

for hMR vs reporter in Figure 4.4.3.1C (Student’s t test), where the full-length MR protein was 

used.  For Figure 4.4.5.1J, two-way ANOVA with Sidak’s multiple comparisons test was used. 
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4.6.6 NMR  

15N-labeled GR DBD and S425G were expressed in Escherichia coli BL21(DE3) pLysS 

cells as TEV-cleavable hexahistidine-tagged fusion proteins using M9 media, with 15NH4Cl as 

the sole nitrogen source.  Proteins were purified through a Ni-NTA column against a 500 mM 

imidazole gradient, using wash buffer containing 50 mM Tris (pH 8.0), 100 mM NaCl, 15 mM 

imidazole, 1 mM TCEP.  The hexahistidine tag was subsequently cleaved with TEV protease 

overnight at 4 °C.  The protein solutions were passed through the Ni NTA column anew, and the 

flow through containing purified protein was collected.  Proteins were verified to be >99% pure 

by SDS-PAGE.  

NMR data were collected on a 700 MHz Bruker NMR instrument equipped with a QCI 

cryoprobe.  For DNA experiments, the 19-nt GRE and TSLP nGRE DNA duplexes were 

reconstituted in 20 mM phosphate (pH 6.7), 100 mM NaCl, 1 mM TCEP, 10% D2O buffer to 

1.7-2.0 mM, subsequently annealed by denaturing at 95 °C for 3 minutes and equilibrated to 

room temperature (20-23°C) overnight. For protein experiments, 2D [1H,15N]-HSQC spectra 

were collected at 25 °C  for ~250 uM of free 15N-labelled GR DBD protein and complexed with 

1.5:1 of GRE or 0.44:1/2.1:1 of TSLP nGRE DNA duplex in the same NMR buffer. Chemical 

shift perturbations were assigned using previously published GR DBD NMR chemical 

shifts[117] and calculated using the minimum chemical shift perturbation procedure. Data were 

processed using Bruker Topsin and analysed with NMRViewJ (OneMoon Scientific, Inc). 

4.6.7 Phylogenetics and ancestral sequence reconstruction 

Annotated protein sequences for nuclear receptors were downloaded from 

UniPROTKB/TrEMBL, GenBank, the JGI genome browser, and Ensembl. Australian lungfish 

(Neoceratodus forsteri) receptor sequences were amplified by degenerate PCR from frozen 
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tissue samples (kind gift of Angel Amores). Steroid receptor sequences were amplified by 

degenerate PCR, and full-length sequences were obtained by 5’ and 3’ nested rapid amplification 

of cDNA ends (RACE) using the SMART-RACE kit (BD Biosciences, Palo Alto, CA). A total 

of 234 steroid and related receptor sequences containing both DNA binding and ligand binding 

domains were aligned using the Multiple Sequence Alignment by Log-Expectation (MUSCLE) 

program[153]. The alignment was checked to ensure alignment of the nuclear receptor AF-2 

domain and manually edited to remove lineage-specific indels. The N-terminal variable region 

and hinge region were removed from the alignment file, as these areas could not be aligned 

reliably among sequences.  

Phylogenies were inferred from these alignments using PHYML v2.4.5[154] and the 

Jones-Taylor-Thornton model with gamma-distributed among-site rate variation and empirical 

state frequencies, which was the best-fit evolutionary model selected using the Akaike 

Information Criterion implemented in PROTTEST software. Statistical support for each node 

was evaluated by the chi-squared confidence statistic derived from approximate likelihood ratio 

calculations[155].  

The ancestral DBDs were reconstructed by the maximum likelihood method[156] on a 

two-branch rearrangement of the ML phylogeny that requires fewer gene duplications and losses 

to explain the distribution of SRs in agnathans and jawed vertebrates using the Codeml module 

of PAML v3.14[157] and Lazarus software[158] assuming a free eight-category gamma 

distribution of among-site rate variation and the Jones-Taylor-Thornton protein model. Average 

probabilities were calculated across all DBD sites except those containing indels.  
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CHAPTER 5. UNEXPECTED ALLOSTERIC NETWORK CONTRIBUTES TO LRH-1 

COREGULATOR SPECIFICITY 

5.1 Summary 

Phospholipids (PLs) are unusual signaling hormones sensed by the nuclear receptor liver 

receptor homolog-1 (LRH-1), which has evolved a novel allosteric pathway to support 

appropriate interaction with coregulators depending on ligand status. LRH-1 plays an important 

role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of 

metabolic and neoplastic diseases. While the prospect of modulating LRH-1 via small molecules 

is exciting, the molecular mechanism linking PL structure to transcriptional coregulator 

preference is unknown. Previous studies showed that binding to an activating PL-ligand, such as 

dilauroylphosphatidylcholine (DLPC), favors LRH-1’s interaction with transcriptional 

coactivators to upregulate gene expression. Both crystallographic and solution-based structural 

studies showed that DLPC binding drives unanticipated structural fluctuations outside of the 

canonical activation surface in an alternate activation function (AF) region, encompassing the β-

sheet–H6 region of the protein. However, the mechanism by which dynamics in the alternate AF 

influences coregulator selectivity remains elusive. Here we pair x-ray crystallography with 

molecular modeling to identify an unexpected allosteric network that traverses the protein ligand 

binding pocket and links these two elements to dictate selectivity. We show that communication 

between the alternate AF region and classical AF2 is correlated with the strength of the 

coregulator interaction. This work offers the first glimpse into the conformational dynamics that 

drive this unusual PL-mediated nuclear hormone receptor activation. 
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5.2 Introduction 

Phospholipids (PLs) are best known for their structural role in membranes and as 

synthesis material for potent signaling molecules, such as dicacylglycerol, leukotrienes, and 

inositol phosphates. Recent evidence, however, suggests intact PLs are able to directly modulate 

the activity of transcription factors involved in lipid homeostasis, such as sterol regulatory 

element-binding protein 1 (SREBP-1), and some members of the nuclear receptor (NR) family of 

ligand-regulated transcription factors, including peroxisome proliferator activated receptor α 

(PPARα; NR1C1), steroidogenic factor 1 (SF-1; NR5A1) and human liver receptor homologue-1 

(LRH-1; NR5A2) [159-162]. LRH-1 regulates the expression of genes central to embryonic 

development, cell cycle progression, steroid synthesis, lipid and glucose homeostasis, and local 

immune function [163-170]. Thus, LRH-1 is an enticing pharmaceutical target for the treatment 

of metabolic and neoplastic diseases [164].  

Although the endogenous ligand for hLRH-1 is currently unknown, oral treatment with 

the exogenous PL agonist dilauroylphosphatidylcholine (PC 12:0-12:0; DLPC) lowers serum 

lipid levels, reduces liver fat accumulation, and improves glucose tolerance in a LRH-1 

dependent manner in a diabetic mouse model [171]. Activation of LRH-1 by DLPC drives 

increased glucose uptake by muscle and increases the rate of both glycolysis and glycogen 

synthesis with a concomitant reduction in fatty acid metabolism [172]. These observations 

suggest LRH-1 agonists may resolve glucose homeostasis related-diseases. New evidence 

suggests that LRH-1 may also be targeted to relieve chronic ER stress. Activation of LRH-1 by 

synthetic DLPC or the small molecule RJW100 induces Plk3, which is required for the activation 

of ATF2 and the induction of its target genes, which play a key role in resolving ER stress [173]. 

Given its potential therapeutic value, LRH-1 has been the subject of multiple attempts to identify 
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small molecule modulators [174-177]. These attempts have been met with mixed success due in 

part to our limited understanding of LRH-1’s mechanism of activation. 

 We have shown that DLPC is able to bind directly to the LRH-1 ligand binding domain 

(LBD) and activate the receptor by affecting receptor dynamics in an alternate activation 

function (AF) region, encompassing the β-sheet–H6 region of the protein, to alter co-regulator 

binding preference [178]. Importantly, it seems that DLPC may promote activation by relieving 

LRH-1 from repression by the non-canonical co-repressor NR SHP, which mimics a co-activator 

using the canonical Leu-X-X-Leu-Leu (where X is any amino acid) nuclear coactivator 

interaction motif [179, 180]. In the absence of ligand, the alternate AF is highly dynamic and 

mutations that restrict motion in this region ablate transactivation [178]. SHP is a robust 

corepressor of LRH-1-mediated transactivation in the liver can recognize both apo LRH-1 and 

LRH-1 when bound to a non-ideal ligand such as bacterial PLs in vitro [179, 181, 182]. It is 

unclear how LRH-1 discriminates between SHP and coactivators such as TIF2 that bind using a 

similar LxxLL motif to recognize the active NR orientation. Further, how does human LRH-1 

recognize coactivators in the absence of ligand?  How do PLs varying only in their acyl tail 

composition show differing abilities to drive transactivation?  Which ligand/coregulator states 

are appropriate for in silico ligand design?   

This incomplete understanding of what dictates LRH-1’s PL and coregulator selectivity 

limits our ability to guide the design of robust small molecule modulators for this intriguing 

pharmacological target. To address these questions, we have generated a novel crystal structure 

of the LRH-1–TIF2 complex in an apo state, as well as a higher resolution structure of LRH-1 

bound to E. coli PLs. These crystal structures, in combination with novel lipid binding assays, 

molecular dynamics simulations and principle component analysis (PCA) have allowed us to 
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identify an unexpected allosteric network that may contribute to PL-mediated NR signaling and 

coregulator selectivity. 

5.3 Experimental Procedures 

5.3.1 Reagents 

Chemicals were purchased from Sigma, Fisher or Avanti PLs. pMALCH10T and the 

vector for His tagged TEV were a gift from John Tesmer (UT Austin). pLIC_MBP and 

pLIC_HIS were gifts from John Sondek (UNC, Chapel Hill). Peptides were synthesized by RS 

Synthesis (Louisville, KY). DNA oligonucleotide primers were synthesized by IDT (Coralville, 

IA USA). 

5.3.2 Protein expression and purification 

The human LRH-1 LBD (residues 291–541) was purified as described previously [183]. 

Purified protein was dialyzed against 60 mM NaCl, 100 mM ammonium acetate (pH 7.4), 1 mM 

DTT, 1 mM EDTA and 2 mM CHAPS and concentrated using centrifugal filters with a 10-kDa 

cutoff to 5–7 mg ml−1. For apo LRH-1 crystallization, purified LRH-1 LBD was incubated with 

1,2- ditetracosanoyl-sn-glycero-3-phosphocholine (PC 24:0–24:0) (Avanti Polar Lipids) and 

GSK8470, a weak and labile agonist, at a final PC24:ligand:protein ratio of 20:3:1 [175]. The 

receptor was purified away from unbound PC 24:0–24:0 and the weakly bound agonist by size 

exclusion chromatography, dialyzed against 60 mM NaCl, 100 mM ammonium acetate, pH 7.4, 

1 mM DTT, 1 mM EDTA and 2 mM CHAPS and concentrated to 5–7 mg ml−1. 

5.3.3 Structure determination 

Both the apo LRH-1 LBD–TIF2 complex and the LRH-1 LBD–E. coli PL–TIF2 complex 

crystals were generated by hanging-drop vapor diffusion at 20 °C from solutions containing 1 µl 

of protein at 6.5 mg ml−1 in complex with a peptide derived human TIF2 NR box 3 (+H3N-
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KENALLRYLLDKDD-CO2−) at a 1:4 molar ratio and 1 µl of the following crystal mixture: 

0.7-1 M di-Sodium Malonate, 0.1 M HEPES pH 7.4, 0.5% Jeffamine ED-2001. Crystals were 

cryoprotected in crystallant containing 20% (v/v) glycerol and flash-frozen in liquid N2. Data for 

the apo LRH-1 LBD–TIF2 NRBox3 complex were collected to 1.75 Å resolution at 100 K using 

a wavelength of 0.9999 at 22-BM at the Southeast Regional Collaborative Access Team (SER-

CAT) at the Advanced Photon Source and were processed and scaled with HKL2000 [184]. Data 

for the LRH-1 LBD–E. coli PL–TIF2 complex were collected to 1.75 Å resolution at 100 K 

using a wavelength of 0.9999 Å at 22-ID at the Southeast Regional Collaborative Access Team 

(SER-CAT) at the Advanced Photon Source and were processed and scaled with HKL2000 

[184]. Initial phases for both structures were determined using LRH-1 PDB 1YOK as a 

molecular replacement search model. The structures were refined using the PHENIX suite of 

programs, and model building was carried out in COOT [185, 186]. The final model for the 

LRH-1–TIF2 complex contains LRH-1 residues 300–538 and TIF2 residues 742–752; it shows 

good geometry, with 98.4% and 1.6% of the residues in the favored and allowed regions of the 

Ramachandran plot, respectively. The final model for the LRH-1–E. coli PL–TIF2 NRbox3 

complex contains LRH-1 residues 298–538 and TIF2 residues 743–750; it shows good geometry, 

with 98.7% and 1.3% of the residues in the favored and allowed regions of the Ramachandran 

plot, respectively. Data collection and refinement statistics are listed in Table 1. Coordinates and 

structure factors have been deposited with the Protein Data Bank under accession codes 4PLD 

and 4PLE. 
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Table 5.1.  Data collection and refinement statistics (molecular replacement) 
 
 LRH-1 – TIF2 

NRbox3 
LRH-1 – E. coli PL – TIF2 

NRbox3 
Data collection   
Space group P212121 P21 
Cell dimensions     
    a, b, c (Å) 45.8, 65.7, 83.5 65.9, 76.9, 100.8 
    (°)  90.0, 90.0, 90.0 90.0, 95.5, 90.0 
Resolution (Å) 1.75 (1.81 – 1.75)* 1.75 (1.81 – 1.75)* 
Rmerge 6.6 (30.6) 6.6  (30.9) 
I / sI 18.99 (2.8) 12.8 (3.2) 
Completeness (%) 99.4 (96.22) 92.6 (63.8) 
Redundancy 3.9 (3.3) 3.6 (3.2) 
   
Refinement   
Resolution (Å) 1.75 1.75 
No. reflections 25933 6751 
Rwork / Rfree 18.7 / 22.4 20.67 / 23.4 
No. atoms   
    Protein 2026 8117 
    Ligand/ion 42 493 
    Water 137 378 
B-factors   
    Protein 23.9 27.0 
    Ligand/ion 29.2 37.5 
    Water 29.4 32.7 
R.m.s. deviations   
    Bond lengths 
(Å) 

0.008 0.006 

    Bond angles (°) 
 
PDB 

1.41 
 

4PLD 

1.03 
 

4PLE 
*Data collected from a single crystal. Values in parentheses are for highest-resolution shell.



	
	

	

75	

5.3.4 Local conformational analysis 

ProSMART is an alignment tool that provides a conformation-independent structural 

comparison of two proteins based upon the alignment of corresponding overlapping fragments of 

the protein chains [187]. We performed ProSMART analyses among five LRH-1 structures with 

different bound ligands and coregulator peptides, representing different activation states: apo-

SHP (fully repressed; PDB: 4DOR), apo-TIF2, E. coli PL-SHP (PDB: 1YUC), E. coli PL-TIF2, 

and DLPC-TIF2 (fully activated; PDB: 4DOS). This allowed for a detailed analysis of the local 

structural dissimilarities between two proteins independently of their global conformations. The 

local backbone conformation of available LRH-1 crystal structures were compared to generate 

the Procrustes score, which is the r.m.s.d. of the central residue of two corresponding structural 

fragments of length n, where n is an odd number of amino acids 

5.3.5 Synthesis of NBD-DLPE 

DLPE (dilauroylphosphatidylethanolamine; 50 mg, 90 µmol), NBD-Cl (4-chloro-7-

nitrobenzofuran; 50 mg, 250 µmol), and triethylamine (17.5 uL) were dissolved in 5 mL 1:1 

CHCl3:MeOH and stirred for 2 h at room temperature. The reaction mixture was dried, 

reconstituted in a minimal volume of CHCl3, and purified by TLC on silica in 9:1 CHCl3:MeOH 

(Rf = 0.36). The product was extracted with CHCl3, filtered, and evaporated to yield 37 mg (50 

µmol, 56% yield) NBD-DLPE. Product identity and purity was verified by mass spectrometry, 

with a single peak corresponding to NBD-DLPE at m/z 741.38671. 

5.3.6 Phospholipid binding assays 

To characterize PL-binding, we developed an equilibrium based FRET assay using 

DCIA-labeled LRH-1 LBD as the donor and NBD-DLPE as the acceptor. Recombinant LRH-1 

from E. coli was fluorescently labeled with DCIA (7-diethylamino-3-((4'-
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(iodoacetyl)amino)phenyl)-4-methylcoumarin; Molecular Probes, Inc.; Eugene, Oregon USA) 

according to manufacturer instructions, and further purified by gel filtration chromatography to 

remove excess dye. All experiments were performed in assay buffer containing 150 mM NaCl, 

10 mM Tris HCl (pH 7.4), 5% glycerol, and 0.1% N-octyl-β-D-glucopyranoside. All PL stocks 

were prepared as small unilamellar vesicles via sonication from evaporated chloroform stocks 

reconstituted in assay buffer. The binding affinity of NBD-DLPE to LRH-1 was measured using 

a constant concentration of 150 nM unlabeled or DCIA-LRH-1, and 0 – 100 µM NBD-DLPE. 

Competition assays were performed with constant concentrations of 150 nM DCIA-LRH-1 and 5 

µM NBD-DLPE, with 0 – 100 µM competing PL. Fluorescence intensity was measured on a 

Synergy 4 plate reader (Biotek; Winooski, VT USA) equipped with 380/20 nm excitation and 

460/40 nm emission filters. All assays were performed in triplicate on black 384-well plates in a 

total volume of 50 µL. Data for unlabeled LRH-1 were subtracted from corresponding DCIA-

LRH-1 data to remove background fluorescence, and all background-corrected data were 

expressed as percent fluorescence intensity of fully unbound DCIA-LRH-1 (i.e. 0 M NBD-

DLPE). Data were processed with GraphPad Prism 5 (GraphPad Software, Inc.). 

5.3.7 Reporter gene assays 

Transactivation of wild type and mutant LRH-1 was measured via luciferase-based 

reporter gene assay. HEK 293T cells were seeded into 24-well plates and incubated at 37°C in 

complete media (DMEM supplemented with 10% charcoal/dextran-stripped FBS and 1% 

penicillin-streptomycin) until approximately 90% confluent. Each well was then transiently 

transfected in OptiMem using Lipofectamine 3000 with plasmids encoding firefly luciferase 

under control of the shp promoter (SHP-luc; 500 ng/well), renilla luciferase under constitutive 

activation via the CMV reporter (pRLCMV; 10 ng/well), and wild-type or mutant LRH-1 in the 
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pCI mammalian expression vector (100 ng/well). Transfection was ended after 4h incubation at 

37°C via the replacement of transfection mixture with complete media, and cells were incubated 

overnight. Luciferase activity was measured using the Dual-Glo luciferase assay system 

(Promega; Madison, WI USA). Statistical analyses were performed in GraphPad Prism 5 

(GraphPad Software, Inc.; La Jolla, CA USA), via one-factor ANOVA followed by Dunnett’s 

multiple comparison test using wild-type LRH-1 as a control. Data are the results of five 

independent experiments. All mutations were introduced into the wildtype LRH-1/pCI construct 

using the QuikChange II Lightning Multi site-directed mutagenesis kit (Agilent Technologies, 

Inc.; Santa Clara, CA USA). 

5.3.8 Model construction for molecular dynamics 

Five models were constructed to examine the structural and allosteric impacts of ligand/ 

co-regulator agreement: 1) apoLRH-1 – TIF2 NRBox3, 2) LRH-1 – DLPC – TIF2 NRBox3, 3) 

LRH-1 – E. coli PLs – TIF2 NRBox3, 4) apoLRH-1 – SHP NRBox2, 5) LRH-1 – E. coli PLs – 

SHP NRBox2. Agreement is defined here by simultaneous binding of an activating lipid and 

coactivator or by the binding of a corepressor in the absence of ligand.  In every case, residues 

297-540 from the LRH-1 LBD form the core of the complex, with additions of 2-3 residues at 

either terminus as necessary to maintain consistent sequences between models, using the 

program xLeap, part of the AmberTools11 suite [85]. All five systems were solvated with TIP3P 

water in a rectangular box with equilibrated dimensions of 67 Å X 70 Å X 72 Å and neutralized 

with sodium and chloride ions to a salt concentration of 0.15 M.  

 Briefly, the first model containing the LRH-1 LBD, in the apo state, bound to a TIF2 co-

activator peptide was modeled directly from the novel apoLRH-1 – TIF2 NRBox3 crystal 

structure. The second model, containing DLPC in the binding pocket, bound to a TIF2 co-
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activator peptide was modeled directly from PDB ID 4DOS [178]. The third system, comprised 

of the LRH-1 LBD with the E. coli PL in the binding pocket, bound to a TIF2 peptide was 

modeled from the novel LRH-1 – E. coli PLs – TIF2 NRBox3 crystal structure. While electron 

density in the crystal structure is insufficient to identify the head group of the bound lipid, mass 

spectrometry results suggest phosphatidylglycerol and phosphatidylethanolamine to be the 

predominant PL isoforms [178]. Thus, we modeled a bacterial phosphatidylethanolamine with 16 

and 18 carbons on the sn1 and sn2 position, respectively, derived from PDB ligand EPH, which 

is herein referred to as E. coli PL. The fourth model consists of the LRH-1 LBD, in the apo state, 

bound to a SHP co-repressor peptide, constructed from the LRH-1 LBD (derived from the 

apoLRH-1 LBD – TIF2 NRBox3 structure), with the SHP peptide (PDB ID: 4DOR) [178] 

modeled in place of TIF2 via superposition of LRH-1 LBD residues 340-382 and 533-538. The 

charge clamp specific contacts between LRH-1 residues Arg361 and Glu534 and the SHP 

peptide were enforced with harmonic restraints during the equilibration phase of the molecular 

dynamics simulation and released before the production runs. The final model, LRH-1 

containing DLPC in the binding pocket and bound to a SHP co-repressor peptide was 

constructed from PDB: 4DOS [178] with the SHP co-repressor modeled in place of TIF2 as 

described in the previous model. 

5.3.9 Molecular dynamics 

The CHARMM27 [188] force field for lipids and proteins was employed for all 

simulations. All systems were subjected to 10,000 steps of steepest-descent minimization, heated 

to 300 K under the canonical ensemble for 100 ps. Finally, positional restraints were 

incrementally released first on the protein sidechains, followed by the backbone, under the 

isobaric-isothermal ensemble. Production runs were performed under constant pressure and 
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temperature, totaling 212 ns of unrestrained molecular dynamics for each system, with 12 ns 

discarded as equilibration, resulting in 200 ns of production simulation time per system. All 

simulations were performed with NAMD 2.9 [75], employing the r-RESPA [27] multiple time 

step method, with bonded and short-range interactions evaluated every 2 fs and long-range 

electrostatics evaluated every 4 fs with the smooth Particle Mesh Ewald method [29]. The short-

range non-bonded interactions were calculated used a cutoff of 10 Å with a switching function at 

8.5 Å. The integration time step was 2 fs and the SHAKE algorithm was applied to fix the bonds 

between the hydrogens and the heavy atoms. Parameters and topology for the E. coli PL ligand 

were obtained from the general lipid parameters available in CHARMM27. 

5.3.10 Analysis methodology 

For all analyses, 10,000 evenly spaced frames were taken from the 200 ns production 

runs to allow for sufficient statistical sampling. Covariance matrices were constructed using the 

program Carma [189] over all alpha-carbons to produce per-residue statistics. The NetworkView 

plugin [149] in VMD [150], along with the programs subopt, included in the NetworkView 

package, and Carma were employed to produce dynamical networks for each system, along with 

suboptimal path analyses. The ptraj module of AmberTools11 was used for structural averaging 

as well as Cartesian principal component analysis over protein backbone atoms and, over the 

same 10,000-frame trajectories used for the covariance analyses. Principal components were 

projected onto the molecular dynamics trajectories, with snapshots binned according to their 

displacements along the components. Temporal correlations between modes are lost in this 

approach but heavily sampled regions of the conformational subspace are more easily identified. 
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5.4 Results 

5.4.1 Structure of the apo LRH-1 LBD – TIF complex 

LRH-1 is able to bind to both coactivators and corepressor proteins in the absence of a 

ligand. To visualize the structural perturbations necessary to bind to coactivators in its apo form, 

we crystallized apo LRH-1 LBD bound to a fragment of the coactivator TIF2 and determined its 

structure to 1.75 Å (Figure 5.4.1.1A). There is no visible electron density to support modeling a 

bound ligand. The opening to the ligand binding pocket is constricted by 2 Å, which reduces the 

volume of the ligand binding pocket from 1554 Å3 in the LRH-1 – TIF2 – DLPC complex to 

roughly 940 Å3. (Figure 5.4.3.1A vs B and D). This is in stark contrast to the apo LRH-1 LBD – 

SHP NRBox2 structure reported previously, which lacks electron density for the entirety of the 

alternate AF (Figure 5.4.1.1A vs C). Unlike the ligand binding pocket of rodent LRH-1, the 

ligand binding pocket constriction is not stabilized by any intramolecular interactions [190]. 

However, it is possible that the alternate AF, which comprises nearly one third of the binding 

pocket, may be visible due to fortuitous interactions with a crystallographic symmetry mate. 

Regardless, this shows remarkable flexibility of the ligand binding pocket. 

 The structure contains a single CHAPS detergent molecule that docks on H10 and H12 

via hydrophobic interactions and two hydrogen bonds between the CHAPS 7-OH and Glu-514, 

and the CHAPS phosphate and Tyr-518. CHAPS also makes extensive contact with a 

crystallographic symmetry mate (Figure 5.4.1.1C). Thus, two molecules within the crystal create 

a cleft for CHAPS binding.  
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Figure 5.4.1.1 Structure of the apo LRH-1 LBD–TIF complex.  
A, Ribbon diagram of apo LRH-LBD (α-helices, teal; β-strands, yellow) with the TIF2 NR box 3 peptide 
(orange). The surface bound CHAPS is depicted as sticks (C, pink; O, red; S, yellow; N, blue). The AF-2 
surface is defined by H3, H4 and H12. B, Ribbon diagram of apo LRH-SHP NRBox2 complex (PDB ID 
4DOR) with the unobserved alternate AF region (defined by β1-2 and H6) represented by a dashed line. 
C, Close up view of the bound CHAPS molecules included in the crystallization buffer. 
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5.4.2 Improved structure of the LRH-1 LBD – E. coli PL – TIF2 complex 

To generate a more accurate model for molecular dynamics studies, and as a control in 

our crystallization experiments, we crystallized the LRH-1 LBD – E. coli PL – TIF2 complex 

and determined its structure to 1.75 Å (Figure 5.4.2.1A). This represents an improved resolution 

over the existing LRH-1 LBD – E. coli PL – TIF2 structures, which were both solved to 2.5 Å 

[191, 192]. The structure is highly similar to the previous structures with an r.m.s.d. of 0.6 Å 

over main chain atoms and maintains E. coli PLs in the binding pocket (Figure 5.4.2.1B). The 

lipid acyl tails show a decrease in electron density near their termini, which is similar to previous 

observations for the bound E. coli PLs and the LRH-1 – DLPC complex [178] (Figure 5.4.2.1B). 

This observation further supports the hypothesis that LRH-1 specifically recognizes its PL 

ligands near the glycerolphosphate backbone and the exact position of the acyl tails is less 

important than the amount of space they occupy in the deeper portion of the ligand binding 

pocket.  
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Figure 5.4.2.1 Structure of the LRH-1 LBD–E.coli PL–TIF2 complex.  
A, Ribbon diagram of E. coli PL bound LRH-LBD (α-helices, teal; β-strands, yellow) with the TIF2 NR 
box 3 peptide (green). The bound E. coli PL is depicted as sticks (C, green; O, red; P, magenta) The 
surface bound CHAPS is depicted as sticks (C, yellow; O, red; S, yellow; N, blue). B, 2Fo – Fc electron 
density (contoured at 1 σ) for the bound E. coli PL observed in this structure, along with side chains 
lining the ligand-binding pocket of hLRH-1 that contact this ligand. C, Close up view of the bound 
CHAPS molecules included in the crystallization buffer along H3 and H4 in close proximity to the bound 
PL. Residues within 4.2 Å are depicted as sticks. D, Close up view of the bound CHAPS along H9 which 
interact with a crystallographic symmetry mate and in a postion overalapping the CHAPS site in the apo 
LRH-1 – TIF2 complex. Residues within 4.2 Å of CHAPS are depicted as sticks. 
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The structure contains three CHAPS detergent molecules that dock onto the surface of 

the protein and make interactions with crystallographic symmetry mates. One CHAPS molecule 

is secured in the cleft between H3 and the β-sheets via hydrophobic interactions. A second 

CHAPS molecule mediates contact between two copies of the LRH-1 monomer and is secured 

by hydrophobic interactions along H10 and a hydrogen bond with Glu-515 of one monomer, and 

hydrophobic interactions along H9 and a hydrogen bond with Glu-471 of the second monomer. 

The third CHAPS is adjacent to the second, and also mediates contact between two LRH-1 

monomers via hydrophobic interactions with H10 of the first monomer and H9 of the second, but 

does not make any hydrogen bonds with either monomer. The CHAPS molecules contacting two 

LRH-1 monomers are unique relative to the apo LRH-1 LBD – TIF complex, while the CHAPS 

occupying the site near H10 shows a partial overlap with the well ordered CHAPS in the apo 

structure (Figure 5.4.2.1D). In contrast to the excellent electron density for the CHAPS bound in 

the apo LRH-1 LBD – TIF complex, the CHAPS bound at this site in the E. coli lipid bound 

complex shows electron density for only the sterane ring. This is likely due to greater thermal 

motion or reduced CHAPS occupancy at this site in the crystal. Interestingly, CHAPS is docked 

at regions within LRH-1 that show most exchange in HDX studies and the most conformational 

fluctuations in crystal structures. It is possible that these are sites for protein-protein or protein-

lipid interaction in the cell. 

 LRH-1 can bind to several PLs [160, 183, 192, 193], yet only PCs have been shown to 

drive transactivation [171, 178, 192, 193]. It is unclear why LRH-1 responds only to PCs in cells; 

this may be intrinsic to the receptor or due to uncharacterized PL transporters capable of 

delivering PC ligands. In order to elucidate the mechanisms by which PLs differentially activate 

LRH-1, it is critical to determine the effects of head group and tail variation on binding. To 
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characterize differential PL binding, we developed a FRET-based PL-binding assay monitoring 

the ability of NBD-labeled DLPE to bind to DCIA-labeled LRH-1 (Figure 5.4.2.2A). This 

binding event quenches the DCIA fluorescence, which can be recovered upon the competitive 

binding of unlabeled lipids (Figure 5.4.2.2B, E). 
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Figure 5.4.2.2 LRH-1 in vitro lipid binding profile.  
Binding affinities of LRH-1 to PLs of differing head group and tail compositions. A, PL binding was 
measured relative to probe ligand NBD-DLPE via FRET quenching of DCIA-labeled LRH-1. B,  Binding 
affinity of LRH-1 to NBD-DLPE probe. C, Relative binding affinities of competing PLs of differing head 
groups; 5 mM β-cyclodextrin added as indicated. D, Relative binding affinities of competing saturated 
PCs of differing tail lengths. Data are reported are the means + S.E.M. of three independent experiments. 
The presence of an X instead of a bar indicates that no binding was observed. E, Example of an individual 
competitive binding curves for NBD-DLPE displacement. Solid line represents the inclusion of 5 mM β-
cyclodextrin while the dashed line is without 5 mM β-cyclodextrin as described in the methods.  
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Prior to engulfing PLs, LRH-1 must extract PL from the lipid membrane – a step 

typically conducted by PL transport proteins that contain amphipathic structural elements to 

facilitate partitioning in membranes [194-196]. In the absence of lipid chaperones, we find that 

LRH-1 extracts and binds PC, PG, and PI with micromolar affinity, but cannot extract PE, PS, 

PA, SM, ceramide, or sphingosine (Figure 5.4.2.2C). Thus, LRH-1’s ability to bind PLs from 

vesicles is sensitive to the nature of the head group. However, addition of 5 mM β-cyclodextrin, 

a small molecule chaperone widely used for the delivery of hydrophobic small molecules, 

enables the binding of PC, PE, PS, PG, PA, with low micromolar affinity (Figure 5.4.2.2C). 

LRH-1 is unable to bind sphingosine and ceramide despite the presence of β-cyclodextrin 

suggesting that extraction from vesicles is not a limiting factor; rather, these lipids do not fit well 

within the ligand binding pocket. These extracts contain a range of PL isoforms and the PC 

mixture showed the highest maximum displacement of bound NBD-DLPE (Figure 5.4.2.2E and 

data not shown). 

We then investigated LRH-1’s intrinsic selectivity for PL tail composition by testing a 

range of saturated PCs. Surprisingly, only PCs with mid-length chains of 8-16 carbons bind to 

LRH-1, with DLPC showing the strongest affinity. We observed no change in binding with the 

inclusion of 5 mM β-cyclodextrin (data not shown). These findings mirror previously published 

activation data, which demonstrate that LRH-1 is most strongly activated by the 11- and 12-

carbon saturated PCs, DUPC and DLPC [171]. Thus, PL selectivity is driven by the length of the 

fatty acid tails in vitro suggesting that the amount of space filled by the acyl tails is a critical 

determinant of binding. 
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5.4.3 Co-regulator binding interactions are altered by ligand status 

The canonical model of NR activation revolves primarily around a mobile ligand-sensing 

helix (H12), termed the AF-H. When a receptor is bound to an agonist the AF-H packs against 

helices 3 and 4 of the LBD forming a surface, termed activation function 2 (AF-2), which 

enables interaction with coactivator proteins containing a LxxLL motif [197]. This helical 

peptide inserts its leucines into a groove on the AF-2 surface and is further stabilized by a charge 

clamp interactions with Arg 361 on H3 and Glu 534 on the AF-H. An equivalent charge clamp is 

conserved across NRs and represents a general mechanism for activation [198]. LRH-1, like 

some other orphan NRs, is able to form a productive AF-2 in the absence and presence of ligands 

in available crystal structures. This makes inferences regarding ligand potency based on 

backbone positioning within the AF-2 alone challenging. Nevertheless, we compared coregulator 

binding at the AF-2 across all available crystals structures and observed that regardless of the 

ligand state, Arg 361 on H3 forms the expected charge clamp interaction. In contrast, we were 

surprised to find that Glu 534, on the AF-H, does not make the expected charge clamp 

interaction with coregulator peptide under all circumstances (Figure 5.4.3.1). This does not 

appear to be an artifact of crystal packing. Instead, the conformation of Glu 534 correlates with 

an agreement between the ligand and the bound coregulator peptide. Agreement is defined here 

by simultaneous binding of an activating lipid and coactivator or by the binding of a corepressor 

in the absence of ligand. When apo or bound to a poorly activating ligand, Glu 534 is rotated out 

of hydrogen bond distance with the coactivator TIF2 peptide (Figure 5.4.3.1A-C,). In contrast, 

when LRH-1 is bound to a strong agonist such as DLPC, Glu 534 makes the expected hydrogen 

bond with a backbone amide of the TIF2 peptide (Figure 5.4.3.1D). This charge clamp 

interaction is also observed in apo or E. coli PL bound LRH-1 when complexed to a peptide 
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derived from the corepressor SHP (Figure 5.4.3.1E-F). These observations suggest that LRH-1 

has an extensive allosteric network that appropriately tunes the receptors ability to stabilize very 

similar LxxLL motifs present in coactivators and corepressors. 
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Figure 5.4.3.1 AF-2 charge clamp engagement is dictated by ligand-coregulator combination.  
Ligand binding pocket entrance measurements and analysis of Glu 534 – peptide charge clamp 
engagement for the A, apo LRH-1–TIF2 complex, B, LRH-1–E. coli PL–TIF2 complex, C,  LRH-1–
GSK8470–TIF2 complex (PDB ID: 3PLZ), D, LRH-1–DLPC–TIF2 complex (PDB ID: 4DOS), E, apo 
LRH-1–SHP complex (PDB ID: 4DOR), F, LRH-1–E. coli PL–SHP complex (PDB ID: 1YUC).  
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5.4.4 Ligand and coregulator drive differential effects on local residue environment 

Supposition of multiple LRH-1 – ligand structures revealed only subtle differences in the 

coregulator binding surface. We therefore used ProSMART to compare the local residue 

environment to identify how differential ligand and coregulator peptide binding affects local 

structure [187]. Caution of course must be taken with the interpretation of these results since the 

crystal structures included in this analysis are derived from multiple crystal forms.  

LRH-1 shows the greatest conformational similarity between structures where both 

ligand and coregulator status are in agreement within the structural complex (Figure 5.4.4.1). 

Greater conformational dissimilarity is seen when one or both complexes are not in ligand-

coregulator agreement, indicating that such agreement is crucial in maintaining a stable complex, 

regardless of whether that complex is activated or repressed. In all coregulator states, the 

addition of a ligand stabilizes the alternate AF region compared to apo, as demonstrated by the 

high structural dissimilarity seen in this region compared to the apo-TIF2 structure (Figure 

5.4.4.1E, F, H), and the fact that this area could not be modeled in the apo-SHP complex. As 

expected, the highest structural dissimilarity is seen in the AF-2 and alternate AF (β-sheets/ H6), 

the respective interaction sites for the coregulator peptide and PL head group. SHP poorly 

discriminates between apo and bacterial PL – bound receptor, and shows high structural 

similarity throughout the ligand binding domain (Figure 5.4.4.1A). In contrast, the LRH-1 TIF2 

complexes show strong differences with LRH-1 SHP complexes regardless of ligand status, even 

in cases where the ligand is the same or nonexistent (Figure 5.4.4.1B-E, G, I). Thus, unlike SHP, 

TIF2-bound conformations are sensitive to the nature of the bound ligand. All LRH-1 – TIF2 

complexes exhibit moderate or high structural dissimilarity in both the AF-H and the preceding 

loop, and the alternate AF region (Figure 5.4.4.1F, H, J). The greatest agreement among the 
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LRH-1 – TIF2 complexes is seen between the E. coli PL and DLPC bound structures (Figure 

5.4.4.1J), indicating that while TIF2 is sensitive to the presence or absence of a ligand, it does 

not strongly discriminate between ligands so long as one is present. This is consistent with 

previous coregulator recruitment studies, which show only a 3-fold difference in binding 

affinities between TIF2 and E. coli PL or DLPC bound LRH-1 (20.1 µM and 6.5 µM, 

respectively) [178]. Taken together, the ProSMART analyses suggest that ligand-coregulator 

agreement promotes the stabilization of LRH-1 into either an active or repressed conformation, 

with detectable but subtle structural differences between these conformations. These 

conformational variations are also in line with the prior HDX data showing conformational 

variation between the same structural elements (i.e. the alternate AF, the AF2 and in H8 and 9) 

[159]. 
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Figure 5.4.4.1 ProSMART Procrustes central residue analysis of LRH-1 complexes.  
ProSMART analysis of LRH-1 with differentially bound ligands and coregulator peptides. Models were 
colored by the Procrustes score of the central residue of an aligned fragment pair according to the legend 
at top right. Areas colored white were omitted from the analysis. The following pairwise comparisons 
were made: (A) apo-SHP (PDB ID: 4DOR) vs E. coli PL-SHP (PDB ID: 1YUC); (B) apo-SHP vs apo-
TIF2; (C) apo-SHP vs E. coli PL-TIF2; (D) apo-SHP vs DLPC-TIF2 (PDB ID: 4DOS); (E) apo-TIF2 vs  
E. coli PL-SHP; (F) apo-TIF2 vs E. coli PL-TIF2; (G) E. coli PL-SHP vs E. coli PL-TIF2; (H) apo-TIF2 
vs DLPC-TIF2; (I) E. coli PL-SHP vs DLPC-TIF2; (J) E. coli PL-TIF2 vs DLPC-TIF2. 
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5.4.5 The activated LRH-1 complex exhibits coordinated motions 

To analyze the dynamic coupling of structural elements in LRH-1, we computed cross-

correlation (normalized covariance) matrices for the C-α atoms in each of the five systems with 

the program Carma [189]. A covariance matrix contains a great deal of information regarding the 

dynamics within a system, in this case describing the correlation of motions ri and rj for residues 

i and j, taken from their respective α Carbons. Element (i, j) of the covariance matrix is 

calculated as ri − rj( ) rj − ri( ) . In essence, this type of covariance matrix provides a way of 

visualizing whether the motions of two residues within a complex are correlated, anti-correlated 

or non-correlated (i.e. whether the motion over the course of the MD trajectory is related by 

180°) (i.e. whether the motion vectors of the residues are parallel or anti-parallel). A cross-

correlation matrix is simply a covariance matrix that is normalized to vary between -1 (perfectly 

anti-correlated) and 1 (perfectly correlated) (Figure 5.4.5.1).  

The motions in residues within helices 4 through 9 of the LRH-1 LBD become correlated 

upon lipid binding in the presence of a co-activator (Figure 5.4.5.1C). The correlation of these 

motions in the lipid and co-activator bound systems is muted in the apo states as well as the 

DLPC-bound LBD in complex with the SHP peptide (Figure 5.4.5.1A, D). This suggests that 

both lipid and co-regulator binding impact an allosteric network through the LRH-1 core, 

requiring the lipid pocket and AF-H elements to be in agreement to yield an active complex. 

Lipid may therefore allow correlated motions in LRH-1 to favor TIF2 binding while in the apo 

state these motions are eliminated, thereby favoring SHP binding. 
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Figure 5.4.5.1 Correlated motion in LRH-1–PL–coregulator systems.  
Cross-correlation matrices showing correlated and anti-correlated motion over the 200 ns MD simulation 
for A, apo LRH-1–TIF2 complex, B, apo LRH-1–SHP complex, C, LRH-1–DLPC–TIF2 complex, D, 
LRH-1–DLPC–SHP complex, E, LRH-1–E. coli PL–TIF2 complex. 
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We have projected cross-correlation between the lipid head group phosphorus atom and 

all protein residues, for each lipid-bound system studied, onto the LRH-1 structure (Figure 

5.4.5.1F-H). We find that the lipid displays some positive covariance with the β-H6 region of the 

complex, and some negative covariance with H9 and H2. The DLPC – LRH-1 – SHP system 

shows similar behavior, but with smaller magnitudes, likely due to its disagreement status. 

5.4.6 MD simulations demonstrate communication between β-sheet–H6 and the AF-H 

through helices 3, 4, and 5 

We have previously discovered that LRH-1 contains an alternate activation function 

region that encompasses the β-sheet–H6 portion the ligand-binding pocket. Our data suggested 

that the dynamics of this region are coupled to ligand binding and receptor activation [178]. To 

identify the relevant communication pathways contributing to these observations, we constructed 

dynamical networks to identify the most prevalent communication pathways between the β-

sheet–H6 region and the bound co-regulator (Figure 5.4.5.1). Dynamical networks, as defined in 

the field of network theory, describe the communication pathways between components of a 

system. In a dynamical network, every component is taken to be a “node” and a communication 

between two nodes defines an “edge.” In the methodology employed here, each protein residue’s 

α carbon is a node and any two nodes must be within a distance cutoff of 4.5 Å for 75% of the 

MD trajectory and the strength of communication between two nodes, or the “edge weight,” is 

determined from the covariance between the two nodes. A communication path between two 

distant nodes is then a chain of edges that connect them and the optimal path transmits 

communication between two nodes through the fewest number of edges possible and is likely to 

carry more communication than any other single path. The optimal path and a relatively small set 

of slightly longer suboptimal paths are expected to carry the majority of communications 
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between two edges. Monitoring the strength and number of suboptimal paths between two distant 

nodes can yield detailed insight into the strength of communication, or in macromolecular 

systems, allostery.  

 These pathways show much stronger communication when the lipid pocket and AF-H 

domain states are in agreement than otherwise (Figure 5.4.6.1A-E). The number of 

communication pathways increases greatly upon lipid pocket – AF-H state agreement, especially 

expanding outward from the β-sheet–H6 region and into the co-regulator itself. This strongly 

supports our previous hypothesis that the β-sheet–H6 and AF-H regions communicate to control 

LRH-1 activation. Furthermore, the vast majority of communication paths proceed through 

helices 3, 4, and 5. These same helices showed the most protection from deuterium exchange in 

prior HDX studies suggesting that their rigidity may facilitate the flow of information through 

the receptor [178]. Therefore, the allosteric pathway between the β-sheet–H6 region and AF-H 

like traverse through helices 3, 4, and 5 (Figure 5.4.5.1B, D). These helices present an optimal 

tether between the allosteric switches. It is interesting to note that many of the mutations that 

affect LRH-1 PL binding, coregulator sensitivity, and overall activation lie directly on or 

immediately adjacent to this pathway (Figure 5.4.6.1F)[178, 183, 199]. 
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Figure 5.4.6.1 Allosteric paths from binding pocket to co-regulator.  
Allosteric communication pathways between the β-sheet–H6 and co-regulator binding regions of the 
LRH-1 LBD in the A, apo LRH-1–TIF2, B, LRH-1–DLPC–TIF2, C, LRH-1–E. coli PL–TIF2, D, apo 
LRH-1–SHP and E, LRH-1–DLPC–SHP complexes. Cartoon loop view of LRH-1 showing thick loops 
(yellow, LRH-1; green, TIF2; red, SHP) for regions of the protein identified along the allosteric path. F, 
LRH-1 mutations that alter PL binding or coregulator recruitment lie on or adjacent to the allosteric 
pathway. Known mutations of mouse (m) or human (h) LRH-1 LBD are shown as C-α spheres on the 
LRH-1 protein backbone. Mutations shown in green enhance the degree of LRH-1 activation in response 
to coactivator binding; mutations shown in red selectively decrease LRH-1 sensitivity to SHP without 
affecting overall activation; mutations shown in brown decrease overall LRH-1 activity without affecting 
PL binding; mutations shown in blue decrease PL binding and overall activity. 
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5.4.7 Structural and dynamical rationale for lipid and co-regulator agreement 

To identify and functionally significant collective motions of the residues forming the 

allosteric network within LRH-1, we employed principal component analysis (PCA) [200]. In 

PCA, the C-α covariance matrix is diagonalized to yield eigenvectors, denoted as principal 

modes, and eigenvalues, representing the mean square fluctuation along each principal mode. 

Projections of the MD trajectory onto the principal modes are called the principal components. 

By reducing the dimensionality of the data, PCA recapitulates the most important dynamical 

features from the MD trajectories. Thus, the first few principal modes, known as the essential 

dynamics, are likely to describe the collective, global motions of LRH-1 involved in the 

allosteric response to ligand and coregulator binding. 

We have identified two modes that are indicative of the lipid-binding pocket’s state and 

the bound coregulator, named PC1 and PC2 and have projected snapshots from the molecular 

dynamics trajectories onto these modes in Figure 5.4.7.1. To ensure comparability and 

uniformity of the modes studied, we optimized the total root mean square inner product 

(r.m.s.i.p.) across all systems’ essential dynamics. The r.m.s.i.p. method for optimizing subspace 

overlap does not guarantee that the same mode number will be selected from each system, as 

some variation in the ordering of principal modes is expected, even for highly similar 

systems[201]. A table of the modes chosen for PC1 and PC2 and the dot products between these 

modes are included in table 5.4.7.1. 
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Figure 5.4.7.1 Biologically relevant principal modes identified from the projections of the MD 
trajectories on PC1 vs. PC2.  
An outward swing of helix 9, A, contributes to PC1, while opening motions at the mouth of the lipid 
binding pocket, B, result in translation along PC2. Projections of snapshots taken from MD onto PC1 and 
PC2 in C, apo LRH-1–SHP and D, LRH-1–DLPC–SHP, E, apo LRH-1–TIF2, F, LRH-1–DLPC–TIF2, G, 
LRH-1–E. coli PL–TIF2 complexes. Higher densities indicate more populated regions of the 
conformational subspace. Scale bar indicates how many snapshots (out of 10,000) were collected within a 
contour. Green and red rings indicate activating and repressing regions of the subspace, respectively. 
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 Table 5.2 Modes chosen for PC1 and PC2 and the dot products between these modes. 
 
 

PC1 
apo SHP : 

2 dlpc SHP : 3 apo TIF : 3 dlpc TIF : 3 pl TIF : 3 Average +/- 
apo SHP : 2 1.0000 0.0756 0.0626 0.4221 0.4954 0.4111 0.3834 
dlpc SHP : 3 0.0756 1.0000 0.1587 0.4538 0.2609 0.3898 0.3692 
apo TIF : 3 0.0626 0.1587 1.0000 0.2138 0.2337 0.3338 0.3783 
dlpc TIF : 3 0.4221 0.4538 0.2138 1.0000 0.6050 0.5389 0.2931 

pl TIF : 3 0.4954 0.2609 0.2337 0.6050 1.0000 0.5190 0.3112 

        
PC2 

apo SHP : 
4 dlpc SHP : 1 apo TIF : 1 dlpc TIF : 1 pl TIF : 1 Average +/- 

apo SHP : 4 1.0000 0.3522 0.0943 0.5088 0.0987 0.4108 0.3734 
dlpc SHP : 1 0.3522 1.0000 0.1388 0.5782 0.2195 0.4578 0.3457 
apo TIF : 1 0.0943 0.1388 1.0000 0.1446 0.0122 0.2780 0.4071 
dlpc TIF : 1 0.5088 0.5782 0.1446 1.0000 0.3446 0.5153 0.3184 

pl TIF : 1 0.0987 0.2195 0.0122 0.3446 1.0000 0.3350 0.3923 
 
* Modes and dot products selected for PC1 and PC2 via RMSIP. Each system label is formatted as 
“binding-pocket-state coregulator : mode”. Averages of dot products and standard deviations for each 
system with respect to each other system are included. In each PC, the LRH-1—DLPC—TIF2 system 
(highlighted in green) was the most central eigenvector, having the highest average inner product with the 
other systems. 
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In the projections (Figure 5.4.7.1C-G), areas of high density indicate regions of high 

conformational probability. Snapshots from the most densely populated regions of each system’s 

conformational subspace were collected and averaged to obtain representative structures for 

comparison (Figure 5.4.7.1A, B). PC1 is characterized by an outward motion of helix 9 relative 

to helix 8 and the core of the LBD, with the distance from N332 to T422 measuring 29.1 Å in the 

DLPC – LRH-1 –TIF2 model and 26.1 Å in the apo-LRH-1 – SHP model (Figure 5.4.7.1A). PC2 

consists primarily of an opening motion near the mouth of the lipid-binding pocket, with the 

distance from Q444 to N487 measuring 13.9 Å in the most prevalent conformation in DLPC – 

LRH-1 – TIF2 and just 12.6Å for the dominant apo-LRH-1-SHP conformation (Figure 5.4.7.1B). 

Projections of the MD trajectories onto these principal modes (Figure 5.4.7.1C-G) 

illustrates that DLPC binding promotes conformations with high values of PC2, while apo- and 

bacterial long-tail lipid bound states tend to exhibit conformations of lower PC2 magnitude. 

Coregulator binding influences the dominant conformation’s placement along PC1, with all 

TIF2-bound complexes exhibiting primary centroids near +10 and SHP-bound complexes 

exhibiting centroids near -10. It is worth noting that the long-tail E. coli lipid and apo-TIF2 

complexes both share two common clusterings, with the former maintaining nearly equal 

populations near each center and the latter undergoing a population shift toward the repression-

promoting region of the subspace. These results show that lipid binding and coregulator binding 

both impact motions in the LRH-1 LBD and that combinations of those motions result in only 

two distinct and stable conformations: repressing and activating. We also observed that 

“disagreement” complexes exist in mixed populations between the two states. 

R.m.s.d. alignment of the resultant repressing and activating structures (Figure 5.4.7.1A-

B), respectively, reveals an upward shift in helices 2 and 3 in the activated structure perturbs the 
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AF-H backbone by an r.m.s.d. of 1.2 Å. This alters the binding position of the coregulator and 

provides a mechanism by which binding pocket status directly impacts coregulator choice 

through PC2. Similarly, overlaying the average repressing structure from both the apo-LRH-1 – 

TIF and apo-LRH-1 – SHP, the differing binding position of the coregulator presses outward on 

helix 4, causing a slight rearrangement in helices 8 and 9, leading to the motion observed in PC1. 

Interestingly, the large motions identified in PC1 and PC2 encompass the same regions showing 

the highest conformational movement in previous HDX studies [178]. In these prior studies, apo 

LRH-1 shows rapid exchange in helices 2, 3 and 6 (PC1) and helices 8 and 9 (PC2) with 

complete exchange of these elements occurring in 60 seconds. These same elements are the most 

sensitive to ligand status showing the strongest projection in the LRH-1 – phospholipid complex. 

5.4.8 Modest disruption of interhelical interactions along the allosteric pathway reduces, 

but does not eliminate, LRH-1 activity 

In order to verify that the allosteric pathway we identified plays a role in LRH-1 

transcriptional activity, we generated mutant forms of LRH-1 designed to perturb the 

communication network between phospholipid and coregulator. We took care to avoid residues 

that make direct contact with the ligand, the AF-2 (coregulator binding) surface or the β-sheet–

H6 (alternate AF) region since these would all be expected to reduce LRH-1 transactivation. We 

instead sought to disrupt LRH-1’s allostery one shell of residues away from these surfaces. Helix 

5 was identified as a central feature of the pathway (Figure 5.4.6.1D,B), as its junction with helix 

10 creates the cleft against which helix 12 docks to establish the AF-2 coregulator binding 

surface (Figure 5.4.8.1A). Moreover, the acyl tails of long-chain PLs dock against these helices. 

We hypothesized that differences in tail length or unsaturation may exert variable amounts of 

pressure against these helices, which is then transmitted along the allosteric network to the AF-2 
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site, affecting coregulator binding. The junction between helices 5 and 10 displays hydrogen 

bonding between residues S383 and E514, and electrostatic interactions between residues E384 

and R507 (Figure 5.4.8.1B). To disrupt these interactions, we generated mutant forms of LRH-1 

(S383A, E384Q + R507H, and S383A + E384Q + R507H) and measured their transcriptional 

activity in HEK 293T cells via luciferase reporter gene assay. 
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Figure 5.4.8.1 Subtle disruption of residues on or near the allosteric pathway reduces LRH-1 
activation.  
A, Close up view of the PL binding pocket of DLPC- (beige/orange) and E. coli PL-bound LRH-1 (blue). 
Helices are shown as cylinders and helix 3 has been hidden. Residues within 4.2 Å of the phospholipid 
are depicted as sticks. B, The junction of helices 5 and 10 is displays hydrogen bonding (red dashes) 
between S383 and E514, and electrostatic interactions between E384 and R507. In the active 
conformation, helix 12 docks against this junction to support the AF-2 coregulator binding surface, 
driving gene transactivation and transrepression. C, Abolition of the electrostatic interaction between 
helices 5 and 10 via at E384Q/R507H mutation causes a subtle but significant reduction in LRH-1 
transcriptional activity. LRH-1 activity was measured via luciferase reporter gene assay in transiently 
transfected HEK 293T cells. Data are the combined results of 5 independent experiments. Statistical 
significance is represented as *: p < 0.05; **: p < 0.01. 
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 These mutant forms of LRH-1 all showed a slight decrease in basal activity, 

which achieved statistical significance specifically upon disruption of the electrostatic interaction 

between E384 and R507 (Figure 5.4.8.1C). Importantly, none of these mutations fully abrogated 

LRH-1 activity, indicating that these mutations did not fatally inactivate the receptor. 

5.5 Discussion 

Robust signaling pathways must not only respond to activating ligands but must 

discriminate against the wrong ones to reduce noise [202]. For LRH-1, this challenge is 

amplified since its ligands include highly abundant intact PLs that comprise a large fraction of 

cell membranes. It is possible that LRH-1 displays an intrinsic set of selection criteria for PL 

isoforms, that PL delivery to the receptor is facilitated by a soluble lipid transport proteins, or a 

combination of the two. Our results show that LRH-1 is able to bind a wide range of PLs in vitro, 

but can extract only PCs, PGs, and PIs from a membrane/ vesicle without assistance from a 

molecular chaperone. Inclusion of a non-specific lipid chaperone, β-cyclodextrin, permits the 

binding of all glycerophospholpids tested. This is in line with structural studies since the 

majority of recognition occurs via contacts with the lipid tails and phosphoglycerol backbone. 

Thus, LRH-1 lipid preference is driven more so by the composition of the PL tails than by the 

head group, which protrudes from the receptor surface.  Remarkably, while LRH-1 can readily 

accommodate a range of medium-chain saturated PLs, affinity is highest for the 11- and 12-

carbon PCs shown to selectively drive receptor activation in cells [171]. 

5.5.1 Lipid mediated allosteric control of a protein-protein binding interface 

Intact PLs are unusual ligands and LRH-1 has evolved to respond to them, via a novel 

allosteric pathway to support appropriate interaction with coregulators depending on the ligand 

status. The idea that ligand binding can drive the selective recruitment of different coregulators 
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has been hypothesized before; previous MD studies have indicated that the SHP – LRH-1 

interaction is weakened upon the binding of phosphatidylserine (PS) to the apo receptor, while 

binding of DAX-1 and PROX1 is strengthened [203], suggesting that an avenue exists for 

communication between the LBP and the AF-2 cleft. While no studies have demonstrated a role 

for PS in the regulation of LRH-1’s target genes, recent HDX studies that compared LRH-1 

bound to E. coli PLs and DLPC demonstrated increased flexibility in both the mouth of the LBP 

and the AF-2 region in DLPC-bound LRH-1 [178]. Furthermore, stabilizing the mouth of the 

LBP in apo hLRH-1 by replacing residues 419-424 with the corresponding mouse LRH-1 

sequence enhances binding of the coactivators TIF-2 and PGC1α [204]. In the absence of PLs, 

the receptor accesses a greater amount of conformational space and readily interacts with 

corepressors. Medium-chain PLs appear to promote productive motions that favor coactivator 

interaction and disfavor SHP interaction, perhaps by suppressing non-activating (non-productive) 

motions to drive selective interaction with coregulators. LRH-1’s allosteric network connecting 

the β-sheet–H6 region may be an evolutionary adaptation that allowed LRH-1 to sense these 

unusually large ligands and discriminate against fatty acids and cholesterol-derived ligands 

which would also fit in the receptor’s large hydrophobic pocket. 

Ideally, structure-function work should be performed and interpreted in the context of the 

full-length protein. Obtaining a structure of the intact receptor has been challenging, likely due to 

the large amount of disorder in the linker region connecting the DNA and ligand binding 

domains. Thus, we modeled systems for which there was empirical structural and biochemical 

data. In addition, LRH-1 transactivation has been shown to be affected by posttranslational 

modifications located on the hinge (i.e. phosphorylation, acetylation and SUMOylation) [170]. 

Phosphorylation of the serine residues S238 and S243 in the hinge region of the human LRH-1 
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by the mitogen-activated protein kinase ERK1/2 enhances its activity [205]. LRH-1 also been 

shown to be acetylated in the basal state and is bound by the small heterodimer partner (SHP)-

sirtuin 1 (SIRT1) transrepressive complex. Surprisingly SIRT1 does not modulate LRH-1 

directly, thus what is driving the acetylation and deacetylation of LRH-1 is not established [206]. 

LRH-1 transactivation is also controlled by SUMO conjugation to lysine 289 [207]. 

SUMOylation was shown to drive LRH-1 localization in nuclear bodies, whereby SUMO-

conjugated LRH-1 is preferentially sequestered in these bodies preventing it from binding to 

DNA [207]. Recently, Dr. Kristina Schoonjans’s lab showed that SUMOylated LRH-1 interacts 

with PROX-1, a corepressor, to control 25% of LRH-1 gene targets in the liver. Mutation of 

lysine 289 to an arginine specifically ablates PROX-1 interaction, without affecting other 

canonical coregulator interactions. 

Emerging evidence suggests that NR activation does not occur via the classically 

described “mouse trap” model, whereby the AF-H swings from an inactive to active state upon 

agonist binding. Both experimental and modeling studies are inconsistent with radical 

repositioning of H12 away from the AF-2 in apoNRs [208-211]. Rather, subtle local 

conformational adaptations are observed in H12 as well as other regions within the LBD such as 

the H11-H12 loop, H3 and H5 [211]. These subtle conformational differences between structures 

may be functionally important, representing a shift between conformational ensembles, but are 

difficult to identify via inspection of superimposed crystal structures. Previous work with both 

steroid receptors and fatty acid sensing NRs, have also revealed remarkable flexibility in this 

region comprising bottom half of the ligand binding pocket including H3, H6-H7 and H11 [212, 

213]. In the absence of ligand, NRs are partially unfolded. Recent NMR studies focused on 

PPARγ show that in the apo state only half of the expected peaks appear on the intermediate 
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exchange timescale (milliseconds-to-microseconds). NMR supports a model whereby NRs 

sample a range of conformations in the apo state. Full-agonists drive this equilibrium towards a 

more classically active conformation by protecting residues comprising the ligand binding 

pocket and AF-2 from intermediate exchange, while partial agonists only partially stabilize the 

regions of the receptor [214]. The β-sheet sheet region may also play an important role in 

mediating PPARγ’s response to ligands [208]. While the dynamics in this region are important 

for mediating ligand action, activation by partial agonists is mediated by the ability of a solvent 

inaccessible serine residue in this region to be phosphorylated [208]. 

Given LRH-1’s limited selectivity criteria in vitro, it is possible that access to 

endogenous ligands are controlled both temporally and spatially by phospholipid transfer 

proteins. For example, phospholipid transfer proteins such as phosphatidylinositol transfer 

protein α and phosphatidylcholine transfer protein are both capable of transporting intact PLs 

into the nucleus [215, 216]. The effect of tail unsaturation has also not yet been studied, but it is 

likely that the bends introduced by cis unsaturation would allow the LRH-1 ligand binding 

pocket to accommodate longer-chain acyl tails promoting potent receptor activation. Given the 

diverse composition of PL tails in vivo, these studies are best guided by lipodimics-based 

identification of endogenous PL ligands. Current limitations in the ability to isolate LRH-1 from 

mammalian tissue has limited the field’s ability to identify endogenous ligands, though these 

studies are underway. 
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CHAPTER 6. DISCOVERY OF SELECTIVE INHIBITORS OF TYROSYL-DNA 

PHOSPHODIESTERASE 2 BY TARGETING THE ENZYME DNA-BINDING CLEFT  

6.1 Abstract 

Tyrosyl-DNA phosphodiesterase 2 (TDP2) processes protein/DNA adducts resulting 

from abortive DNA topoisomerase II (Top2) activity. TDP2 inhibition could provide synergism 

with the Top2 poison class of chemotherapeutics. By virtual screening of the NCI diversity small 

molecule database, we identified selective TDP2 inhibitors and experimentally verified their 

selective inhibitory activity. Three inhibitors exhibited low-micromolar IC50 values. Molecular 

dynamics simulations revealed a common binding mode for these inhibitors, involving 

association to the TDP2 DNA-binding cleft. MM-PBSA per-residue energy decomposition 

identified important interactions of the compounds with specific TDP2 residues. These 

interactions could provide new avenues for synthetic optimization of these scaffolds. 

6.2 Results 

Tyrosyl-DNA phosphodiesterase (TDP) activity is necessary to cleave the tyrosyl-DNA 

linkage between a trapped topoisomerase and its substrate DNA[217]. In humans, there are two 

known TDPs: TDP1 cleaves 3’ type-IB topoisomerase-DNA linkages[218], while TDP2 cleaves 

5’ type-II topoisomerase-DNA linkages[219],[220]. 

Topoisomerase II (Top2) poisons act by trapping Top2 on its DNA substrate, causing the 

normally transient Top2-mediated double strand breaks to become permanent, resulting in cell 

death[221]. For this reason, Top2 poisons are widely used cancer therapeutics. TDP2 activity 

reduces the efficacy of Top2 poisons and is therefore an attractive anticancer drug target, with 

TDP2 deficient cells exhibiting extreme sensitivity to Top2 poisons[219],[222]. The viability of 

TDP2 knockout mice indicates that TDP2 inhibition is theoretically possible without 
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unacceptable side effects[222]. A TDP2 inhibitor could have great potential for synergistic 

effects when used in combination with Top2 poisons and could greatly increase the efficacy of 

such treatments. 

  Small-angle X-ray scattering analysis shows that TDP2 consists of a ~110-residue, disordered 

N-terminal domain and a 255-residue, globular catalytic domain[223, 224]. Only the catalytic 

domain is necessary for phosphodiesterase activity, while the N-terminal tail is thought to 

interact with cellular signaling machinery. Although no structures exist for human TDP2 

(hTDP2), multiple crystal structures of TDP2 have been solved including C. elegans 

(cTDP2)[224] , D. rerio (zTDP2)[224] and M. musculus (mTDP2)[223]. mTDP2 serves as an 

excellent structural homologue to hTDP2, with the variants’ catalytic domains sharing 78% 

sequence identity and nearly 100% sequence. A structure of mTDP2* bound to a substrate analog 

(PDB accession code 4GZ1) shows a short DNA-binding cleft, contacting 3 DNA phosphates, 

leading directly into the active site. Kinetic studies indicate that mammalian TDP2 is highly 

specific for 5’-tyrosine overhangs, as opposed to 3’ overhangs, blunt ends or other adducts, with 

the exception of p-nitrophenol, a compound frequently used as a DNA adduct in screening 

assays[223],[225]. Interestingly, TDP2 shares very similar active site geometry and catalytic 

mechanism with the base excision repair enzyme apurinic/apyrimidinic endonuclease 1 (APE1), 

along with 14% sequence identity and 30% sequence similarity[224]. Despite these similarities, 

TDP2 does not show endonuclease activity. From mutational and structural data, Schellenberg, 

et al. proposed that hydrophobic contacts made to W307 and F325 by the substrate DNA 

backbone serve as the basis for the specificity toward 5’-tyrosine overhangs by forming 

favorable Van der Waals interactions with the substrate deoxyribose ring[223]. Crystal structures 

	
	



	
	

	

112	

of the D. rerio and C. elegans TDP2 homologues in complex with substrate DNA provide further 

evidence that hydrophobic contacts are primarily responsible for substrate binding[224]. Binding 

of a 3’-tyrosine substrate would juxtapose a phosphate group in place of a ribose ring, 

unfavorably forcing a negatively charged group to contact hydrophobic sidechains. Moreover, 

the mutation of certain residues lining the DNA-binding cleft greatly alters catalytic activity in 

hTDP2. Of note are R231, R266, W297 and F315, all of which are important to the activity of 

TDP2 on 4-nucleotide overhang 5’-tyrosine substrate DNA, with mutations being very 

deleterious to catalysis[223]. 

In contrast to TDP2, TDP1 cleaves 3’ adducts and is capable of acting on a relatively 

broad range of substrates[226]. TDP1 also displays some activity against 5’-tyrosine overhangs, 

causing specificity overlap with TDP2[227, 228]. Designing a TDP2 inhibitor is complicated by 

the similar catalytic activity and substrate characteristics of TDP1. A potential inhibitor must be 

strongly selective for TDP2 to limit binding competition by TDP1. Because the TDP2 binding 

cleft may hold the key for TDP2 substrate specificity, it presents a promising region for targeting 

inhibitors that do not have activity against TDP1. 

The discovery of selective TDP2 inhibitors based on toxoflavin and deazaflavin scaffolds 

has recently been reported, in which the authors began the inhibitor search with a high-

throughput in vitro screening of 100,000 compounds[229]. Small molecule docking of this 

scaffold shows that inhibitors of this type are likely to bind in the active site of TDP2, directly 

blocking catalysis. While these compounds show promise, they exhibit slight inhibition of TDP1 

at 100 µM. In addition, toxoflavins and deazaflavins also have undesirable characteristics for 

drug scaffolds. Toxoflavins are susceptible to redox activity and deazaflavins have poor cell 

permeability. 
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The difficulty in predicting the binding selectivity of a compound necessitates a high-

throughput lead screening and optimization protocol. To this end, we have carried out an 

inhibitor discovery protocol (Figure 6.2.1) to identify selective TDP2 inhibitors. Our protocol 

exploits the large scale docking of 11,000 compounds from the 250,000-compound Open 

National Cancer Institute (NCI) Database [230] followed by virtual screening (VS) and in vitro 

assays using whole cell extract (WCE). With this protocol, we have discovered three potent and 

selective small molecule inhibitors of TDP2. Results from molecular docking, molecular 

dynamics (MD), molecular mechanics – Poisson-Boltzmann surface area (MM-PBSA) 

calculations, biochemical and kinetics experiments provide evidence that our inhibitors bind in 

the DNA-binding cleft of TDP2, effectively blocking substrate binding and catalysis. The 

scaffolds of these inhibitors have the potential to be further optimized by targeting specific 

contacts made to residues in the TDP2 binding cleft, increasing both potency and selectivity for 

TDP2.   
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Figure 6.2.1. Flowchart overview of our TDP2 inhibitor discovery process 
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Compound 21, an APE1 inhibitor provided by Dr. Neamati, was chosen to initiate our 

screening protocol to identify hTDP2-selective inhibitors because it inhibited hTDP2 with an 

IC50 of 12, 20 µM (n=2) without affecting hTDP1 up to 200 µM (data not shown). To predict 

how a ligand will bind to hTDP2, a homology model of the catalytic domain was constructed 

from the substrate analog-bound mTDP2 structure (PDB accession code 4GZ1) using the 

program Modeller[231]. Although the homologues have extraordinary sequence similarity, and 

therefore nearly identical secondary structure, minor alterations to the surface of the enzyme can 

influence preferred ligand binding positions. Compound 21 was first docked into the hTDP2 

homology model. Docking was performed with the program AutoDock4[232], after preparing a 

ligand/protein atom-pair interaction grid with AutoGrid4 within the search area. The search area 

was comprised of both the DNA binding cleft and active site, the two regions of the enzyme 

known to directly impact catalytic activity. The three best-scoring docking poses that were 

distinct from the others with respect to ligand conformation and ligand-protein contacts were 

chosen for further analysis. Each pose was simulated for 30ns in MD, using the NAMD2.9 

package[75]. The MD trajectory which resulted in the most stable binding pose was clustered 

with respect to the root mean square deviation (rmsd) of the atomic coordinates of the small 

molecule using the hierarchical clustering algorithm (ε=10.0), as implemented in the ptraj[233] 

MD analysis program. The representative frame from the most populated cluster was then used 

for VS. VS against this dominant conformation was performed as follows: sets of fifty random 

conformers for each compound in the NCI database were first constructed using the Openeye 

Software program Omega[234] and screened for structural and electrostatic similarity to the 

dominant MD conformer using Openeye’s ROCS[235] and EON[236] programs, respectively. 

The 11,000 top hits from the VS, as determined by averaging structural and electrostatic 
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Tanimoto overlaps with the lead compound, were then docked using the AutoDock4 program 

into our hTDP2 homology model.  

From the top 500 docking hits, a set of 178 was selected for optimal structural diversity. 

From these 178 compounds, 95 were available and were tested against recombinant human 

TDP2 (hTDP2) at a single concentration of 1 mM (Figure 6.2.1). 48 active compounds were 

further tested at a single concentration of 100 µM against hTDP2. 11 TDP2-selective inhibitors 

were further evaluated in dose response against both recombinant human TDP2 and TDP1 

(hTDP2 and hTDP1) enzymes (Figure 6.2.1). Four TDP2-selective low micromolar inhibitors i.e. 

not inhibiting hTDP1 up to 111 µM, were checked by LC/MS to assess for their presence in the 

vial and evaluated for their ability to inhibit endogenous hTDP2 within whole cell extracts from 

human TDP2-complemented DT40 chicken cells (hTDP2 WCE). The TDP2-selective inhibitors, 

NSC375976, NSC114532 and NSC3198 were found to inhibit hTDP2 with IC50 values of 3.5 ± 

1.4, 4.1 ± 0.9 and 9.3 µM, respectively while all being inactive against recombinant hTDP1 up to 

111 µM (Figure 6.2.2 and Table 6.2.1). All 3 compounds show robustness while being exposed 

to an increased complexity reaction mixture because they retain low micromolar activity against 

whole cell extracts (WCE) containing endogenous hTDP2 (Figure 6.2.2). 
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Figure 6.2.2. Inhibition of human recombinant TDP2 (hTDP2) and endogenous human TDP2 from 
whole cell extracts (hTDP2 WCE) by NSC379576, NSC114532, and NSC3198.  
Concentrations of compounds are 0.5, 1.4, 4.1, 12.3, 37 and 111 µM. Concentrations of the positive 
control Compound 122 are 0.005, 0.017, 0.05, 0.15, 0.46, 1.4 µM. 
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The inhibition of TDP2 by these 3 compounds was then assessed across species by 

comparing their potencies against human (H. sapiens, hTDP2), mouse (M. musculus, mTDP2) 

and zebrafish (D. rerio, zTDP2) TDP2 enzymes (Figure 6.2.3). Only NSC379576 inhibited 

efficiently all three enzymes with IC50 values of 15 and 5.2 µM for mTdp2 and zTDP2, 

respectively (Figure 6.2.3 and Table 6.2.1). NSC114532 and NSC3198 both inhibited zTDP2 

with IC50 values of 15 and 20 µM, respectively but interestingly, mTDP2 was totally resistant to 

both compounds up to 111 µM (Figure 6.2.3 and Table 6.2.1). These results suggest that the 

TDP2 binding site for both NSC114532 and NSC3198 is not conserved in the mouse enzyme 

similarly to what was recently observed for the first reported selective TDP2 inhibitor 

Compound 1 (Figure 6.2.2)[237]. 
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Figure 6.2.3. Inhibition of human (H. sapiens, hTDP2), mouse (M. musculus, mTDP2) and zebrafish 
(D. rerio,  zTDP2) TDP2 enzymes by NSC379576, NSC114532, and NSC3198.  
Concentrations of compounds are 0.5, 1.4, 4.1, 12.3, 37 and 111 µM. 
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A potential concern with the chemotype of NSC114532 and NSC3198 is the presence of 

a disulfide bond in the center of the structure (Table 6.2.1). The presence of a high concentration 

of DTT (1mM) in the reaction buffer could therefore potentially cleave the molecule in two. To 

study the potential impact of the presence of a reducing agent on the stability of NSC114532 and 

NSC3198, we tested their ability to inhibit hTDP2 in the presence or absence of DTT. We did 

not observe any difference in the inhibition of hTDP2 by these two compounds under these 

conditions, suggesting that both compounds are not affected by the composition of the reaction 

buffer. 
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Table 6.1. IC50 values against human (H. sapiens, hTDP2), mouse (M. musculus, mTDP2) and zebrafish 
(D. rerio,  zTDP2) TDP2 enzymes and against human TDP1 (hTDP1).   
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Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations[238], as 

implemented in the AmberTools14 analysis suite[85], were performed on NSC375976, 

NSC114532 and NSC3198. MM-PBSA is a thermodynamic cycle based method, whereby the 

solvation enthalpies of the complex (∆𝐻!"#$%&'), receptor (∆𝐻!"#"$%&!) and ligand (∆𝐻!"#$%&) are 

estimated independently, then subtracted to obtain the binding enthalpy (∆𝐻!"#$"#%) via:  

∆𝐻!"#$"#% = ∆𝐻!"#$%&' − ∆𝐻!"#"$%&� − ∆𝐻!"#$%& (6.1) 

From MM-PBSA, NSC114532 and NSC3198 were determined to have binding 

enthalpies of -18±12 and -30±7.9 kcal/mol, respectively. NSC114532 and NSC3198 have 

essentially similar binding enthalpies, as expected from their structural similarity and similar 

IC50 values. NSC375976 has a higher binding enthalpy, 0.1±4.7 kcal/mol, than both 

NSC114532 and NSC3198, although it possesses the lowest IC50 of the group. This result is less 

surprising given the dissimilarity of the ligands. It is also possible that the IC50 values do not 

correlate perfectly with the binding enthalpies due to ligand interactions with other species in 

WCE. To compare the binding modes of the three inhibitors, we have performed MM-PBSA per-

residue energy decomposition[239]. This method calculates the enthalpy of each residue’s non-

bonded interactions with the ligand, highlighting residue-ligand contacts that are essential to 

ligand binding, as well as those that are detrimental to it. 

  NSC114532 and NSC3198 are symmetrical molecules around the disulfide bond. 

Because these two compounds are very close structural analogs, their modes of binding are 

strikingly similar, with the majority of the binding enthalpy coming from hydrogen bonding and 

electrostatic interactions between the ligands’ carboxy groups and R231 and R266 (Figure 

6.2.4A and 6.2.4B). 
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Figure 6.2.4. Binding poses and per-residue energy decomposition for residues important to 
binding.  
Per-residue energy decomposition results for (A) NSC114532, (B) NSC3198 and (C) NSC375976. 
Dominant binding poses of  (D) NSC114532, (E) NSC3198 and (F) NSC375976. 
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NSC114532 and NSC3198 each also form favorable hydrophobic interactions with 

residues W297, L313 and F315 that lie in the DNA binding cleft (Figure 6.2.4D and 6.2.4E). 

NSC375976 does not share the basic chemical scaffold of NSC114532 and NSC3198, yet binds 

in nearly the same position (Figure 6.2.4C and 6.2.4F). In contrast to NSC114532 and NSC3198, 

NSC375976 binds predominantly to hydrophobic residues, with W297, L313 and F315 each 

contributing ~-1 kcal/mol in enthalpy. The NSC375976 sulfonate group is not able to form 

favorable electrostatic interactions with R231 and R266, with the adjacent phenyl group clashing 

slightly with R266. All three inhibitors form favorable van der Waals interactions with the T230 

methyl group. The most unfavorable interaction between these inhibitors and hTDP2 is with 

D350. Each inhibitor places hydrophobic functional groups near the charged D350 side chain, 

incurring an enthalpic penalty relative to a solvent-exposed D350.  

  Residues R231, R266, W297, L313 and F315 have all been shown via mutational 

studies to interact favorably with the DNA substrate, with W297 and F315 having been proposed 

to form the basis of TDP2 selectivity towards 5’-tyrosine adducts[223]. Clearly, ligand binding 

in this region of the protein precludes substrate recognition by TDP2, thus inhibiting catalytic 

activity. Forming favorable contacts with the residues that select for 5’ adduct binding is likely to 

be the cause of these inhibitors’ selectivity towards TDP2, as 5’ adducts have been shown to be 

very poor substrates for TDP1. It should be noted that the two distinct molecular scaffolds 

represented by NSC114532, NSC3198 and NSC375976 both take advantage of the same 

structural characteristics of the DNA-binding groove, leaving open the possibility of the 

discovery of other unique scaffolds that have similar binding modes.  

  To further probe the basis of selectivity of NSC114532, NSC3198 and NSC375976, we 

docked each into hTDP1, using the same methodology as with hTDP2, again including both the 
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active site and DNA-binding groove in the search area. The top docking poses from each 

compound identify the hTDP1 active site as the primary binding target. These results do not 

indicate that NSC114532, NSC3198 or NSC375976 bind hTDP1. Rather, they serve simply as an 

indication that, when forced to interact with hTDP1 in silico, these inhibitors preferentially 

interact with the active site. This provides another line of evidence supporting the hypothesis that 

DNA-binding cleft interactions dictate substrate specificity between hTDP1 and hTDP2 and that 

our inhibitors select for hTDP2 over hTDP1 based on many of the same interactions. The 

docking poses of NSC114532 and NSC3198 in hTDP1 are again similar, with both compounds 

forming hydrogen bonds with S399 and K495. NSC3198 stacks one phenyl ring against H263, 

while leaving approximately half of the molecule solvent-exposed with no notable favorable 

interactions with the enzyme. NSC114532 forms no notable favorable stacking interactions with 

either phenyl ring and forms an electrostatic clash between a carboxylate group and G538. 

NSC375976 remains largely solvent-exposed by packing against one wall of the active site while 

reaching slightly into the active site pocket. The only favorable hydrophobic interaction 

NSC375976 forms is between the phenylsulfonate ring and the aliphatic portion of the S459 

sidechain, while the only hydrogen bond to the enzyme is made between the sulfonate group and 

H263. The combination of unfavorable interactions and inability to take advantage of 

nonspecific Van der Waals interactions explains these ligands’ inability to bind to hTDP1 and, 

therefore, their selectivity for hTDP2. 

NSC114532, NSC3198 and NSC375976 can each be tailored to increase binding affinity 

to hTDP2 by improving electrostatic complementarity to the binding cleft to enhance binding 

enthalpy while leaving the Van der Waals contacts in place to maintain selectivity. It is important 

to note that NSC3198 and NSC114532 form very favorable electrostatic interactions with R231 
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and R266, residues that are important to the catalytic function of hTDP2. In the future 

development of these scaffolds, care must be taken to preserve these interactions, meaning that 

the carboxy groups, as well as the 4-atom linker that separates them, appear to be absolutely 

essential to effective binding. NSC375976 can likely form very favorable interactions between 

its sulfonate group and R231 and R266, if the sulfonate group is brought more proximal to the 

center of the compound. NSC375976 holds the lowest IC50 of the compounds studied, taking 

advantage of this potentially very favorable interaction may greatly improve binding 

characteristics.  

6.3 Methods 

6.3.1 Computational methods 

6.3.1.1 Molecular dynamics 

Molecular dynamics simulations were performed with the NAMD 2.9[75] code with the 

AMBER ff99SB forcefield[240]. The smooth particle mesh Ewald method (SPME)[29] was used 

to evaluate long-range electrostatics, with a 12 Å cutoff for non-bonded interactions and a 

switching function between 10 Å and 12 Å. The r-RESP multiple timestep integration 

scheme[27] was employed for force integration. The use of a 2fs timestep was enabled by 

applying SHAKE[241] constraints to all bonds between hydrogen and heavy atoms. The hTDP2 

homology model – ligand complexes were solvated in TIP3P water[142] in a rectangular box 

measuring 67 Å X 68 Å X 72 Å using the XLeap program, a part of the AmberTools 

package[85]. Starting structures were subjected to 10,000 steps of steepest descent minimization, 

followed by heating to 300K in the NVT ensemble for 50 ps, with 10 kcal/molÅ2 restraints on all 

protein and ligand heavy atoms. The systems were then simulated in the NPT ensemble for 2 ns, 
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smoothly releasing the positional restraints. Final production simulations were performed for 

30ns at 300K in the NPT ensemble.  

6.3.1.2 Ligand optimization and parameterization 

Atomic charges were computed with the RESP method[242] in AmberTools after 

geometry minimization in Gaussian09[243]. Forcefield parameters for the ligands were taken 

from the general AMBER forcefield (GAFF)[84], with parameters determined using the 

antechamber functionality in AmberTools and additional force field parameters, when necessary, 

determined using the parmchk program in AmberTools. 

6.3.2 Experimental methods 

6.3.2.1 Recombinant TDP2 assay 

TDP2 reactions were carried out as described previously[244] with the following 

modifications. The 18-mer single-stranded oligonucleotide DNA substrate (TY18, α32P-

cordycepin-3’-labeled) was incubated at 1 nM with 25 pM recombinant human TDP2 in the 

absence or presence of inhibitor for 15 min at room temperature in the LMP2 assay buffer 

containing 50 mM Tris-HCl, pH 7.5, 80 mM KCl, 5 mM MgCl2, 0.1 mM EDTA, 1 mM DTT, 40 

µg/mL BSA, and 0.01% Tween 20. Reactions were terminated by the addition of 1 volume of gel 

loading buffer [99.5% (v/v) formamide, 5 mM EDTA, 0.01% (w/v) xylene cyanol, and 0.01% 

(w/v) bromophenol blue]. Samples were subjected to a 16% denaturing PAGE with multiple 

loadings at 12-min intervals. Gels were dried and exposed to a PhosphorImager screen (GE 

Healthcare). Gel images were scanned using a Typhoon 8600 (GE Healthcare), and densitometry 

analyses were performed using the ImageQuant software (GE Healthcare). 
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6.3.2.2 Whole cell extract TDP2 assay 

DT40 knockout cells (1 x 107) for TDP2 (TDP2-/-) complemented with human TDP2 

(hTDP2) were collected, washed, and centrifuged. Cell pellets were then resuspended in 100 µL 

of CellLytic M cell lysis reagent (SIGMA-Aldrich C2978). After 15 min on ice, lysates were 

centrifuged at 12,000 g for 10 min, and supernatants were transferred to a new tube. Protein 

concentrations were determined using a Nanodrop spectrophotometer (Invitrogen), and whole 

cell extracts were stored at −80 °C. The TY18 DNA substrate was incubated at 1 nM with 5 

µg/mL of whole cell extracts in the absence or presence of inhibitor for 15 min at room 

temperature in the LMP2 assay buffer. Reactions were terminated and treated similarly to 

recombinant TDP2 reactions (see above). 

6.3.2.3 Recombinant TDP1 assay 

A 5′-[32P]-labeled single-stranded DNA oligonucleotide containing a 3′-phosphotyrosine 

(N14Y) was incubated at 1 nM with 10 pM recombinant TDP1 in the absence or presence of 

inhibitor for 15 min at room temperature in the LMP1 assay buffer containing 50 mM Tris-HCl, 

pH 7.5, 80 mM KCl, 2 mM EDTA, 1 mM DTT, 40 µg/mL BSA, and 0.01% Tween 20. 

Reactions were terminated and treated similarly to recombinant TDP2 reactions (see above). 

6.3.2.4 Kinetics experiments 

To determine the kinetic parameters for the inhibition of TDP2 by NSC379576 and NSC114532, 

10 pM of TDP2 was incubated at room temperature with of 5, 10, 20 and 800 nM of cold TY19 

substrate in the absence or presence of 2 and 5 µM of compound in the LMP2 assay buffer 

containing 50 mM Tris-HCl, pH 7.5, 80 mM KCl, 5 mM MgCl2, 0.1 mM EDTA, 1 mM DTT, 40 

µg/mL BSA, and 0.01% Tween 20. All reactions were spiked with 1 nM of 32P-labeled TY19. 

The extent of reaction progression was followed in a time-dependent manner and terminated at 
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different times by adding 1 volume of gel loading buffer. Samples were analyzed by 16% 

denaturing PAGE, and the initial portions of the reaction curves were fitted to a linear equation 

to approximate the pre–steady-state reaction velocities using the Prism software (Graphpad). A 

Lineweaver–Burk plot was then generated with the pre–steady-state reaction velocities and the 

corresponding substrate concentrations. 
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CHAPTER 7. PU.1 AND ETS-1 SEQUENCE SPECIFICITY DIVERGENCE THROUGH 

DIFFERENTIAL ETS-DNA COMPLEX HYDRATION  

7.1 Abstract 

The DNA-binding domains of ETS family transcription factors are highly structurally 

homologous despite strongly divergent primary sequences. At opposite ends of the ETS 

sequence homology spectrum lie the PU.1 and Ets-1 ETS family members (~30% sequence 

homology). This relatively low sequence homology results in high functional divergence, with 

PU.1 and Ets-1 exhibiting strongly differing preferences for DNA binding site sequence, despite 

their very high structural homology (~1.4Å RMSD). While experiments have shown that PU.1 

and Ets-1 sequence preference differences are driven at least partially by hydration and salt 

interactions, the dynamical and conformational differences underlying these effects have 

remained elusive. We have applied Grid Inhomogeneous Solvation Theory (GIST) to molecular 

dynamics trajectories to monitor hydration energetics of in a set of PU.1-DNA and Ets-1-DNA 

complexes differing by PU.1 binding affinity, finding that increases in hydration in the GIST 

analysis correlate well with increases in PU.1 binding affinity. Dynamical network analysis 

reveals that these differences in hydration are coupled to allosteric community formation in the 

DNA. Higher PU.1-affinity sequences exhibit more coherent dynamical DNA communities in 

PU.1.  
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7.2 Introduction 

 The ETS family of transcription factors consist of functionally diverse gene regulators 

that share a structurally conserved DNA-binding domain known as the ETS domain. Typical of 

eukaryotic gene families, ETS domains are results of gene duplication followed by divergent 

evolution [245], resulting in low primary sequence homology and a correspondingly low level of  

functional redundancy [246] on the one hand, but a highly homologous fold with overlapping 

DNA site preferences on the other hand [247]. ETS domains therefore represent excellent model 

systems for studying the biophysical mechanisms responsible for conferring functional 

heterogeneity on structurally homologous systems. To this end, system-level studies have 

focused on extrinsic mechanisms of specificity such as cellular expression profiles [248], relative 

positioning of DNA sites [249], and binding partner proteins [250]. Efforts to identify intrinsic 

determinants of specificity have met more limited success despite a plethora of high-resolution 

structures of ETS domains alone or in complex with DNA. We recently reported that the 

backbone trajectories of the ETS domains of murine PU.1 (Spi1) and Ets-1, the two more 

sequence-divergent ETS paralogs (~30% amino acid homology), aligned to an RMSD of 1.4 Å 

[251], well below the precision of the crystallographic structures themselves (>2 Å). 

 Over the past several years, we have carried out extensive biophysical characterizations 

of the ETS/DNA complex, comparing PU.1 with Ets-1 as model systems, and identified 

remarkable heterogeneity in their interactions with the DNA backbone, ions, and water 

molecules. While the two ETS domains bind their respective optimal sequence with 

indistinguishably high, nM-affinities under physiologic conditions, the underlying 

thermodynamics, binding kinetics and the underlying coupling of complex formation with 

hydration changes, electrostatics, conformational dynamics, and DNA curvature are vastly 
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different, in some cases qualitatively so [251-253]. More recently, we reported that the two 

domains are differentially sensitive to CpG-methylation and in fact oppositely inhibited by with 

hemi-methylated DNA, a phenomenon that arises from the specific effects of CpG methylation 

on DNA backbone structure [254]. 

 One of the most startling aspects of the mechanistic heterogeneity in DNA recognition 

between PU.1 and Ets-1 is the hydration properties of the two ETS domains in their DNA-bound 

state. Using a chemically broad range of cosolutes, we have shown by osmotic stress that, while 

Ets-1/DNA binding leads to a small net release of hydration water, the high-affinity PU.1/DNA 

binding is associated with substantial water uptake [252]. The result is that the high-affinity 

PU.1/DNA binding is distinctly osmotically sensitive, and is substantially destabilized at 

moderate osmolality (<1 osmolal) [253]. Significantly, osmotic sensitivity is lost in binding to 

low-affinity sites. The thermodynamic data, however, do not provide a structure to the 

heterogeneity in hydration of the two ETS paralogs. Here, we report a computational analysis of 

site-specific DNA complexes of the two proteins by molecular dynamics simulation, using their 

respective co-crystal structures [255, 256] as starting points. 

Our computational analyses indicate that PU.1 binding drives sequence-dependent 

hydration differences along the DNA binding groove and at the PU.1-DNA interface. This effect 

is far less pronounced in Ets-1-DNA binding. Furthermore, dynamical network community 

analysis indicates that these hydration effects arise concurrently with differences in the 

dynamical nature of the PU.1-bound DNA, with increased dynamical cohesion in highly-

solvated portions of the binding interface.   
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7.3 Materials and Methods 

7.3.1 Molecular dynamics setup and simulation 

Four DNA sequences were selected for optimal PU.1 affinity differences (binding 

affinities reported as relative to sequence 2): 5’-AAAACCGGAAGTGGG-3’ (-2.46±0.82 

kJ/mol), 5’-AAAAAAGGAAGTGGG-3’ (0 kJ/mol), 5’-AAAAAAGGAAGAGGG-3’ 

(6.02±0.87 kJ/mol) and 5’-AAAAAAGGAATGGGG-3’ (11.14±0.81 kJ/mol)[257]. Each 

sequence was simulated in the absence of protein, in complex with PU.1 and in complex with 

Ets-1, resulting in a total of 12 simulations. DNA-only systems were built using the NAB 

program[258] in the AmberTools14 analysis suite[85]. All PU.1 systems were modeled from the 

crystal structure 1PUE[256]. DNA sequences in the PU.1-DNA complexes were manually 

changed from the original crystal structures by altering atom names and building missing 

coordinates using the xLeap module of AmberTools14. Each PU.1-DNA system was placed in a 

rectilinear waterbox of TIP3P[142] molecules, with no side of the box being less than 10Å from 

the edge of the solute, in xLeap. Counterions and NaCl were then added to reach a salt 

concentration of 0.15M. Finally, each system was parameterized with the AMBER14SB 

forcefield. DNA-only systems were solvated in truncated octahedral waterboxes, with all other 

system preparation details identical to those of the PU.1-DNA systems. All MD simulations were 

performed using the CUDA implementation of PMEMD in AMBER14[259]. A 2fs timestep was 

employed for force integration, with nonbonded interactions calculated directly within a 10 Å 

cutoff and long-range electrostatics calculated via smooth particle mesh Ewald[29]. Each system 

was first minimized using a conjugate gradient for 5,000 cycles, followed by heating to 300K 

over 500ps with 5 kcal/mol Å2 harmonic positional restraints imposed on all solute heavy atoms 

in the canonical ensemble. Harmonic restraints were then iteratively released, first on sidechain 
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and nucleobase atoms, followed by backbone atoms, over 5ns in the isothermal-isobaric 

ensemble. Finally, production runs of 500 ns were performed, with the first 100n s discarded as 

equilibration time, leaving 400 ns for analysis. 

7.3.2 Molecular dynamics trajectory analysis  

Conformational and hydration analyses were performed using cpptraj[233], as 

implemented in AmberTools14. All analyses were performed over 10,000 evenly spaced frames 

from the 400ns production trajectories. Hydration parameters and surfaces were calculated using 

grid inhomogeneous solvation theory (GIST)[50]. In GIST, a spatial grid is analyzed for relative 

water residence times and dynamics, relative to bulk solvent. This data allows for the direct 

calculation of energetic parameters and surfaces. In each case, the GIST grid was set to 

encompass the DNA and DNA-protein interfaces, separated into 0.5 Å voxels.  

Network analysis was performed in the NetworkView[44] plugin of VMD 1.9.1[150]. 

Networks were constructed as follows: a node was assigned to each protein residue, with the 

representative atom chosen to be the Cα, while two nodes were assigned to each nucleotide; one 

comprising the phosphate and ribose atoms and the other comprising the nucleobase atoms. If 

two residues remained within a cutoff contact distance of 4.5 Å for >75% of the trajectory, an 

edge was placed between their respective nodes, with the edge weight set to the nodes’ Cartesian 

covariance. 

7.4 Results and Discussion 

In previous osmotic stress studies of hydration changes in DNA recognition by ETS 

domains, PU.1 and Ets-1 exhibited sharply different osmotic sensitivities that depended only on 

osmolality of the solution, not the identity of the chemically diverse range of osmolytes 

employed [252]. Even nicotinamide, a hydrotrope that exhibits preferential mutual attraction 
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(and a negative osmotic coefficient) in water, destabilizes the high-affinity PU.1/DNA complex 

as well as “typical” co-solutes such as betaine and sucrose [253]. These observations offered 

confidence that the differential effects of the co-solutes between PU.1 and Ets-1 indeed reflected 

the hydration properties of DNA recognition, not any weak interactions with the co-solutes 

themselves. The molecular simulations here are aimed at exploring the structural basis of these 

experimental observations.  

The DNA sites were selected based on experimentally determined affinities for the ETS 

domain of PU.1 [257] in order to examine how hydration changes correlate with DNA sequence 

preference.  
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Table 7.1. Thermodynamic data for GIST analysis and experimental binding free energies. 
SEQUENCE HSOLV 

(KCAL/MOL) 
TSSOLV 
(KCAL/MOL) 

GSOLV 
(KCAL/MOL) 

ΔGBINDING EXP. (KCAL/MOL) 

1 -153 -14 -139 -0.6 
2 -164 -18 -145 0 
3 -103 -18 -85 1.4 
4 -75 -6 -69 2.7 
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7.4.1 GIST solvation free energies correlate with experimental binding free energies 

As shown in table 7.4.1 and figure 7.4.1.1, GIST analysis reveals that binding free 

energies correlate well with the experimentally determined binding free energies for PU.1. While 

a loss in solvent entropy negatively impacts the overall solvation free energy, enthalpic 

contributions dominate PU.1-DNA solvent interactions, accounting for ~80-90% of the total 

solvation free energy in each case at 300K. The magnitude of the solvation energies and binding 

free energies do not match perfectly, indicating that other factors contribute to binding energy, 

most likely sequence-dependent DNA deformation energies [260].  
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Figure 7.4.1.1. GIST solvation energies vs. experimental binding free energies.  
Gist and experimental binding energies correlate well, although despite discrepancy in magnitude. 
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The solvation energy of sequence 2 does not fit the general trend of the other sequences. 

Nearly 400ns into the MD simulation, Arg93, an important DNA-binding interface residue 

capable of direct readout of the consensus portion of the DNA sequence, reorients to form 

contacts away from the consensus site. This reorientation denotes a qualitative shift in PU.1 

binding mode and may represent a statistically significant contribution to the GIST energetics. 

This transition is observed in the other systems, although it occurs later in the trajectory and 

likely does not impact the GIST analysis for the other sequences as greatly.  
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Figure 7.4.2.1. PU.1 networks for sequences. 
PU.1-DNA edges (sequences 1-4 in panels A-D, respectively).  are green, all other network edges are 
blue. A qualitative increase and rearrangement in edges is observed in higher-affinity sequences. 
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7.4.2 Network analysis reveals sequence-dependent shift in binding mode  

Network analysis is a direct measure of the cohesiveness of a complex and the strength of 

specific interactions. As shown in figure 7.4.2.1, PU.1 alters the positioning of the strongest 

contacts from the 3’ end (figure 7.4.2.1, left side of panel A-D left) of the consensus sequence 

DNA strand to the 5’ end, as binding affinity decreases. The rearrangement of edges along the 

DNA-binding interface indicates preferential binding of the highest-affinity DNA sequences at 

the DNA-binding interface and to the 5’ end of the sequence. 
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Figure 7.4.2.2. Summed interface edge weights vs. experimental binding free energies.  
Dynamical coordination is strongly correlated with binding affinity. 
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Finally, quantification of edge weights for the 28 commonly-held and highest-weight 

edges between all systems (figure 7.4.2.2) shows a clear linear relationship between binding 

affinity and dynamical cooperation, as has been observed previously in the case of 3KS nuclear 

receptor DBD community structures[261]. 

 
7.4.3 Ordered solvent increases site-specific complex cohesiveness 

 While solvent ordering decreases rotational and translational entropy, enthalpic 

contributions along the PU.1-DNA interface dominate, thus increasing the overall cohesiveness 

of the complex by mediating electrostatic interactions. Overlaying the GIST free energy 

isosurfaces with the dynamical networks (figure 7.4.3.1) onto the PU.1-DNA complex structures 

clearly illustrates that PU.1-DNA motions are most strongly correlated where solvation is 

greatest, most notably near the consensus binding sequence.  
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Figure 7.4.3.1. Overlay of networks and solvation isosurfaces.  
Network edges collect prominently in regions of the binding interface exhibiting the most solvation. 
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This qualitative connection between ordered solvent placement and dynamical 

coordination provides further evidence of the solvent-mediated PU.1 DNA-binding affinity 

hypothesis proposed from experimental and structural evidence. Interestingly, in all cases 

network edges are placed in correspondence with interface solvation. Increases in complex-

solvent interactions thus drive dynamical cooperation between PU.1 and DNA and enhance 

binding affinity. 

 
7.5 Future work 

 The Arg93 repositioning observed in the MD trajectories is likely to have a major impact 

on both the dynamical networks and solvent ordering in each system. Therefore, the data 

presented in this chapter is merely preliminary and is subject to change. Nonetheless, the 

evidence is strong that the interplay between solvent ordering and complex cohesiveness is the 

driving factor behind PU.1 sequence specificity. As of the writing of this dissertation, the MD 

simulations are being extended into the microsecond regime to improve the statistical sampling 

of all PU.1-DNA contacts and conformational states. Given the high binding affinities of NR 

systems, it is not unrealistic to expect full statistical sampling to require longer timescales. 
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CHAPTER 8. PERSPECTIVE 

8.1 Biomolecular interactions 

 Specific biomolecular contacts determine the structure of biomolecular complexes. These 

interactions are critical to inhibitor and drug design, as shown in the discovery of new TDP2 

inhibitor scaffolds. While the scaffolds are chemically unique, they interact with TDP2 in very 

similar ways, making largely the same contacts. In AlkD, rearrangement of the hydrogen bonds 

formed between Thr39 and Arg43 and the DNA backbone stabilizes the DNA in an unfavorable 

conformation to shift the chemical equilibrium toward base flipping and stabilize the extrahelical 

lesion for a sufficient period of time to promote hydrolysis. Solvation and solvent-mediated 

contacts can also contribute to complex formation. PU.1 modulates sequence-specific binding 

affinities by maximizing favorable hydration. This favorable solvation lowers the binding free 

energy of high-affinity DNA sequences although few differences in direct PU.1-DNA contacts 

are experimentally observed between systems. 

8.2 Motions in biochemical systems 

 Internal motions in biomolecular systems can elucidate and differentiate function. AlkD 

lowers the energetic barrier of a highly unfavorable dual-base flipping mechanism by splitting it 

into two distinct single-base flipping steps, while promoting base stack collapse to stabilize the 

complex at every stage. In LRH-1, PCA reveals two distinct activating and repressing 

conformational states, as well as the intrinsic motions spanning those states. Subtle motions 

represented by suboptimal pathways in LRH-1 reveal an experimentally verified allosteric tether 

linking ligand and co-activator binding sites. Community analysis of the 3-ketosteroid family of 

NR DBDs highlights a dynamically derived link between evolutionary epistasis and binding 

affinities for +GRE complexes and details the allosteric signaling path through DNA that favors 
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GR dimerization on nGRE sequences over SR. Finally, improved solvation energetics in PU.1-

DNA complexes contribute to more strongly concerted internal motions, connecting the 

experimental binding affinities to the solvation dynamics observed in MD. 

8.3 Conclusion 

The studies comprising this dissertation encompass a broad swath of computational 

methods and their applications to a selection of diverse biochemical systems. These works share 

few common threads beyond the biological nature of the questions they have sought to answer. 

However, the physical phenomena underlying these processes are broadly generalizable. An 

expanded knowledge of these phenomena enhances not only the potential for leveraging 

biochemistry in biotechnological pursuits, but also elicits a deeper and more thorough 

understanding of biology at the most fundamental levels. 
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