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Control of the 2002–2003 severe acute respiratory
syndrome (SARS) outbreak was based on rapid diagnosis
coupled with effective patient isolation. We used uncertain-
ty and sensitivity analysis of the basic reproductive number
R0 to assess the role that model parameters play in out-
break control. The transmission rate and isolation effective-
ness have the largest fractional effect on R0. We estimated
the distribution of the reproductive number R0 under perfect
isolation conditions. The distribution lies in the interquartile
range 0.19–1.08, with a median of 0.49. Even though the
median of R0 is <1, we found that 25% of our R0 distribution
lies at R0 > 1, even with perfect isolation. This implies the
need to simultaneously apply more than one method of
control. 

Severe acute respiratory syndrome (SARS), a viral res-
piratory disease, has been reported in 32 countries as of

July 11, 2003. SARS is believed to have originated in
Guangdong Province, China, in November 2002 (1).
Researchers at the Erasmus Medical Center in Rotterdam,
the Netherlands, identified a coronavirus as the agent
responsible for infecting 8,437 persons worldwide, with
813 deaths as of July 11, 2003 (2). According to recent epi-
demiologic data from Hong Kong (3), a person exposed to
SARS enters an incubation period with a mean length of
6.4 days. Symptomatic persons in that study were hospital-
ized at a mean rate of 1/4.85 days–1. Those who recovered
were discharged a mean of 23.5 days after diagnosis, while
the mean period to death was 35.9 days after diagnosis.
Because no specific treatment for SARS exists, control of
the epidemic relied on rapid diagnosis and isolation of
patients (1), an approach that is reported to be effective (4).
However, most early SARS cases in Toronto occurred in
hospitals, with movement of SARS patients between hos-
pitals contributing to the disease’s initial spread (5). In

Taiwan, 94% of SARS cases occurred through transmis-
sion in hospital wards (6), and similar effects occurred in
Hong Kong and Singapore (7). Although the SARS epi-
demic was eventually controlled, the measures used to
achieve that control varied greatly in scope from one place
to another. Control of an outbreak relies partly on identify-
ing what disease parameters are likely to lead to a reduc-
tion in the reproduction number R0. Here we calculate the
dependence of R0 on model parameters.

Methods
Two models of the SARS epidemic that incorporate the

effects of quarantine and early detection of new cases but
assume perfect isolation were recently introduced (8,9). A
slightly different model was used to quantify the role that
fast diagnosis and efficient isolation of patients played in
Toronto’s outbreak (10). This model predicted control in
Toronto and showed that lack of immediate action would
have been catastrophic (11). The model incorporates dif-
ferences in the population’s susceptibility (3) by dividing
the population into classes S1 (high risk) and S2 (low risk).
A low-risk group in the age range <19 years can be
observed from the age-specific incidence in Hong Kong
(3). The low-risk class (S2) has a reduced susceptibility to
SARS, measured by the parameter p (0 < p < 1). While
p = 0 denotes no susceptibility to SARS, p = 1 indicates
that both susceptible classes are equally susceptible to
SARS. Initially, S1 = ρN and S2 = (1-ρ)N, where N is the
total population size and ρ is the initial proportion of fully
susceptible (S1) persons. Susceptible persons exposed to
SARS enter the exposed class (assumed to be asympto-
matic) with a rate proportional to β and remain there for a
mean incubation period of 1/k. The possibility of reduced
transmission from the exposed class is included through
the parameter q (0 < q < 1), a relative measure of infec-
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tiousness. Once symptomatic, exposed persons progress to
the infectious class (illness not yet diagnosed), where they
may recover at the rate γ1, die at rate δ, or enter the diag-
nosed class at rate α. Isolation mechanisms may be put in
place in the diagnosed class to reduce their impact on
transmission. The relative infectiousness after isolation has
begun is measured by the parameter l (0 < l < 1) so that
l = 0 denotes perfect isolation and l = 1 denotes ineffective
isolation.

Basic Reproductive Number (R0)
The basic reproductive number (R0) is the average num-

ber of secondary cases generated by a primary case. If R0
< 1, an epidemic can not be sustained. On the other hand,
if R0 > 1, an epidemic typically occurs. 

The basic reproductive number derived from our model
(10) is given by the formula

.

This equation includes 10 parameters of which 2, the
diagnostic rate (α) and the relative infectiousness during
isolation (l), are widely recognized as being amenable to
modification by medical intervention. The transmission
rate (β) is defined as the number of persons infected per
infectious person per day. This differs from R0, which is
the average number of secondary cases that an infectious
person generates when introduced into a susceptible popu-
lation. Definitions for the remaining parameters are pro-
vided in Table 1.

Parameter Estimation
Baseline values for k, γ2, δ, and α are taken from the

mean values estimated in reference 3. Because whether
asymptomatic persons (exposed class) can transmit the
disease is not known, we have fixed q = 0.1 (the relative
infectiousness of exposed, asymptomatic persons) as in
reference 10. 

The model parameters Θ = (β, l) are fitted to Hong
Kong data (2) by least squares fit to the cumulative num-
ber of cases C (t, Θ) (equation 1 in reference 10). All other
parameters are fixed to their baseline values (Table 1). We
used a computer program (Berkeley Madonna, R.I. Macey
and G.F. Foster, Berkeley, CA) and appropriate initial con-
ditions for the parameters for the optimization process,
which was repeated 10 times (each time the program is fed
with two different initial conditions for each parameter)
before the “best fit” was chosen. The best fit gives β = 0.25
and l = 0.43. We also estimated the relative infectiousness
after isolation (l) for the case of Singapore (l = 0.49) by
following the least squares procedure described above.
However, for the case of Toronto, not enough data were
available on the initial growth of the outbreak. Hence, we
only estimated l from Toronto data after control measures
were put in place on March 26 (10,11), where l = 0.1. We
used the transmission rate (β) obtained from Hong Kong
data as the baseline value (Table 1). 

We revised earlier estimates for ρ and p (10) (both
affect R0) using data from the age distribution of residents
and the age-specific incidence of SARS in Hong Kong, as
reported (3). The revised estimates are ρ = 0.77 (the initial
proportion of the population at higher risk) and p = 1/3 (the
measure of reduced susceptibility in S2). The lower-risk
subpopulation lies in the age range <19. It constitutes
approximately 23% of Hong Kong’s population (3). The
fact that most of the SARS cases included in the epidemi-
ologic studies of the Toronto outbreak (5) were transmitted
in hospitals limits the use of general demographic data
from Toronto in the estimation of ρ and p. Hence, we used
the parameters estimated from the situation in Hong Kong.
Baseline values for all the parameters are given in Table 1.

Uncertainty Analysis for R0
We carried out an uncertainty analysis on the basic

reproductive number (R0) to assess the variability in R0 that
results from the uncertainty in the model parameters. We
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Table 1. An extended definition for the transmission rate (β) is the number of persons infected per infectious person per day while the 
basic reproductive number (R0) is the average number of secondary cases an infectious individual can generate when this rate is 
introduced into a susceptible population 
Parameter Definition Baseline value 
pa Reduction in risk of infection for class S2 0.33 
ρ a Initial proportion of the population at higher risk for SARS 0.77 
βb Transmission rate per day 0.25 
1/ka Mean incubation period (days) 6.37 
1/γ1 Mean infectious period (days) 28.4 
1/γ2

a Mean infectious period for persons with diagnosed SARS (days) 23.5 
1/α Mean period before diagnosis (days) 4.85 
δa Induced death rate per day 0.0279 
q Relative measure of infectiousness for the exposed class 0.1 
lc Relative infectiousness after isolation has begun [0,1] 
aBaseline values for k, γ

2
, α, ρ, p and δ have been taken from reference 3.  

bβ = 0.25 is our estimated transmission rate in Hong Kong. 
cl = 0 means perfect isolation, while l = 1 means no isolation. 
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used a Monte Carlo procedure (simple random sampling)
to quantify the uncertainty of R0 to model parameters when
these parameters are distributed. Similar methods have
been used before (12–14). Parameters (k, γ2, δ, α) were
assigned a different probability density function (PDF)
(Figure 1), which is taken from reference 3. The relative
measure of infectiousness of persons after isolation proce-
dures are put in place (l) was assumed to be uniformly dis-
tributed in the interval (0 < l < 1). The observed
heterogeneity in transmission rates during the SARS epi-
demic is modeled here by assuming that β is distributed
exponentially with mean 0.25 person–1 day–1 (our estimate
of the transmission rate in Hong Kong). Parameters q, p,
and ρ are fixed to their baseline values (Table 1). We sam-
pled the set of six parameters (β, k, γ2, δ, α, l) 105 times,
holding q, p, and ρ fixed. We then computed R0 from each
set. A probability density function for R0 is obtained and
can be statistically characterized. Here, we characterize R0
by its median and interquartile range.

Sensitivity Analysis for R0
We performed a sensitivity analysis on R0 to quantify

the effect of changes in the model parameters on R0. Hence,
we rank model parameters according to the size of their
effect on R0. Partial rank correlation coefficients (12–15)
were computed between each of the parameters (with the
exception of p, q, and ρ, which were held fixed) and R0 as
samples were drawn from the distributions, thus quantify-
ing the strength of the parameter’s linear association with
R0. The larger the partial rank correlation coefficient, the
larger the influence of the input parameter on the magni-
tude of R0. Because the distribution of the parameter l

(relative infectiousness after isolation) is not known, we
also studied the sensitivity of R0 to various distributions of
l. Distributions of l used for the Monte Carlo calculation of
the partial rank correlation coefficients are: a) l ∼ β (a = 2,
b = 2) where β is used to denote a beta distribution. Here,
the likelihood of l is bell-shaped with mean 0.5 and vari-
ance 0.05; b) l ∼ β (a = 1, b = 2), the likelihood of l decreas-
es linearly in the [0,1] interval; and c) l ∼ β (a = 2, b = 1),
the likelihood of l increases linearly in the [0,1] interval.

Results

Uncertainty Analysis for R0
The resulting R0 distribution lies in the interquartile

range 0.43–2.41, with a median of 1.10. Moreover, the
probability that R0 > 1 is 0.53. The same Monte Carlo pro-
cedure, but with fixed values of l = 0.1 and α = 1/3 day–1

for Toronto (i.e., after implementing control measures on
March 26), give a median and interquartile range for the
distribution of R0 = 0.58 (0.24–1.18) (Table 2). Similarly,
a lower rate of diagnosis α = 1/4.85 day–1 and the relative
infectiousness after isolation in Hong Kong (l = 0.43) and
Singapore (l = 0.49) gives R0 = 1.10 (0.44–2.29) and 1.17
(0.47–2.47), respectively (Figure 2). Perfect isolation
(l = 0) gives R0 = 0.49 (0.19–1.08). Especially noteworthy
is that even in cases when eventual control of an outbreak
is achieved (Toronto and a hypothetical case of perfect iso-
lation), 25% of the weight of the distribution of R0 lies at
R0 > 1. Furthermore, the median and interquartile range of
R0 are larger when p = 1, as has been assumed (8). In
Figure 3 we show the (β, l) parameter space when R0 < 1
obtained from our uncertainty analysis (14).
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Figure 1. Histograms of the six distributed
parameters appearing in equation 1 with
sample size 105. The transmission rate
was assumed to be exponentially distrib-
uted with mean 0.25, our estimated trans-
mission rate in Hong Kong. Here l is
assumed to have a beta distribution (l ~ β
[1,2]). Alternative distributions for l were
also used as described in the text. All other
distributions were taken from reference 3.



Sensitivity Analysis for R0
The transmission rate β and the relative infectivity dur-

ing isolation (l) are the most influential parameters in
determining R0. The systematic decline in R0 with increas-
ing l in the range [0,1] is illustrated in Figure 4.
Furthermore, our results do not change if we assume the
three distributions mentioned in the Methods section (sen-
sitivity analysis) for the parameter l. Table 3 shows the par-
tial rank correlation coefficients for the other three
possible distributions of l. The transmission rate is ranked
first independent of the distribution of l. The relative infec-
tiousness after isolation is ranked second when l comes
from distributions (a) and (b) and ranked third when it
comes from distribution (c) (see Methods). Our sensitivity
analysis is corroborated by computing local derivatives on
R0 (see online Appendix at http://www.cdc.gov/ncidod/
EID/vol10no7/03-0647_app.htm). Because bounds exist
on how much a given parameter can change in practice,
achieving control (i.e., R0 < 1) can require changing
parameters other than those with the highest partial rank
correlation coefficient. For example, reference 10 showed
that control of the outbreak in Toronto relied on both a

reduction in l and 1/α, even though α is ranked fairly low
by the partial rank correlation coefficient.

Conclusion
We have estimated R0 for the cases of Toronto, Hong

Kong, and Singapore (Table 2) through an uncertainty
analysis shown in equation 1. Our estimates for R0 agree
with the empirical R0 observed from the data of the first
week of the SARS outbreak in Singapore (8). A stretched
exponential distribution fits the resulting distributions of
R0 for the different locations (Figure 2). Even though the
median of R0 is <1 when perfect patient isolation is
assumed (l = 0), we find that 25% of our R0 distribution
lies at R0 > 1. That is, implementing a single method for
control may not be sufficient to contain a SARS outbreak.
Control may require modifying more than one parameter
amenable to intervention. In our model, these parameters
include the diagnostic rate (α), the relative infectiousness
after isolation has begun (l), and the per capita transmis-
sion rate (β). The fact that α and l are not independent, but
are tightly coupled, favors control.

Our expression for R0 incorporates the effects of diag-
nosis-isolation strategies. Moreover, our approach includes
differential susceptibility (p) and effective population size
(ρ). Most models take p = 1, even though data from Hong
Kong show that a low-risk subpopulation lies in the age
range <19, approximately 23% of Hong Kong’s population
(3). The assumption p = 1 thus overestimates R0.

Our sensitivity analysis shows that the transmission
rate (β) and the relative infectiousness after isolation in
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Table 2. The median and the interquartile range (IQR) of the 
distribution of the basic reproductive number (R0) of SARS for 
Toronto, Hong Kong, and Singapore obtained from our 
uncertainty analysis 
Location R0 mean R0 median R0 IQR 

Toronto, Canada (l = 0.10) 0.86 0.58 0.24–1.18 
Hong Kong (l = 0.43) 1.70 1.10 0.44–2.29 
Singapore (l = 0.49) 1.83 1.17 0.47–2.47 

Figure 2. Empiric (dots) and
stretched exponential estimated
probability density function Prob(R0)
= a exp[-(R0/b)c] (solid line) (16) of R0
for the cases of Toronto (a = 0.186, b
= 0.803, c = 0.957, after control
measures had been implemented),
Hong Kong (a = 0.281, b = 1.312, c =
0.858), and Singapore (a = 0.213, b
= 1.466, c = 0.883) obtained from our
uncertainty analysis. The distribution
for the case of perfect isolation (l = 0,
a = 0.369, b = 0.473, c = 0.756) is
shown as a reference.



hospitals (l) have the largest effect on R0. With the excep-
tion of a few measures, such as closing schools, no clear
policies would modify β directly. This means that a sub-
stantial effort must be (and has been) made by the medical
community to modify other parameters, such as the diag-
nostic rate. Hence, the strong sensitivity of R0 to the trans-
mission rate β indicates that efforts in finding intervention
strategies that manage to systematically lower the contact
rate of persons of all age groups promise an effective
means for lowering R0. Such strategies may include using

face masks (the probability of transmission per contact
may be reduced), washing hands, and avoiding large
crowds (large public events).

Associated with the role of screening, diagnosis, and
the effective isolation of patients is the issue of cost. We
cannot ignore or minimize the value of stringent quaran-
tine measures and the probability of compliance combined
with the economic effect of lost wages (thousands were
quarantined in Taiwan, Hong Kong, and Singapore [17]),
the costs associated with screening at airports and hospi-
tals, the cost associated with closing hospitals; and the
costs associated with isolating SARS patients and exposed
persons (see online Appendix for a brief discussion).
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