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Abstract

Decision making and intervention against infectious
diseases require analysis of large volumes of data,
including demographic data, contact networks, age-
specific contact rates, mobility networks, and health-
care and control intervention data and models. In this
paper, we present our Networks-Of-Traces for Epidemic
Spread Simulations (NOTES2) model and system which
aim at assisting experts and helping them explore exist-
ing simulation trace data sets. NOTES2 supports anal-
ysis and indexing of simulation data sets as well as pa-
rameter and feature analysis, including identification of
unknown dependencies across the input parameters and
output variables spanning the different layers of the ob-
servation and simulation data.

Introduction
Real-time and continuous analysis and decision making for
infectious disease understanding and intervention involve
multiple aspects, including (i) estimating transmissibility
of an epidemic disease, such as influenza (Abubakar et al.
2012); (ii) forecasting the spatio-temporal spread of pan-
demic disease at different spatial scales (Merler et al. 2011);
(iii) assessing the effect of travel controls during the early
stage of the pandemic (Colizza et al. 2007); (iv) predicting
the effect of implementing school closures (Wu et al. 2010);
and (v) assessing the impact of pharmaceutical interventions
on pandemic disease (Ferguson et al. 2005; Deodhar et al.
2014) through simulations. While highly modular and flexi-
ble epidemic spread simulation software, such as GLEaMviz
(Van den Broeck et al. 2011) and STEM (STEM 2014), ex-
ist, these suffer from two major challenges that prevent real-
time decision making:
• Data and model complexity: A sufficiently useful dis-

ease spreading simulation tool requires models, including
demographic data, social contact networks, age-specific
contact rates, local and global mobility patterns of indi-
viduals (Balcan et al. 2009; Merler and Ajelli 2014), epi-
demiological parameters for the infectious disease (e.g.,
infectious period), and control intervention data and mod-
els. Moreover, these dynamically evolve over time due to
∗Supported by NSF grants #1318788 and #1339835.
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Figure 1: Simulation trace exploration interface of NOTES2

preventive actions taken by individuals and public health
interventions, requiring continuous adaptation.

• Complexity of the simulation and observation data:
Epidemic simulations track 10s or 100s of inter-
dependent parameters, spanning multiple layers and geo-
spatial frames, affected by complex dynamic processes
operating at different resolutions. Moreover, generating
an appropriate ensemble of stochastic epidemic realiza-
tions may require multiple simulations, each with differ-
ent parameters settings corresponding to slightly differ-
ent, but plausible, scenarios (Barrett, Eubank, and Smith
2005; Chao et al. 2010). Thus, running and interpret-
ing simulation results (along with the real-world obser-
vations) to generate timely actionable results are difficult.

In this paper, we present Networks-Of-Traces for Epi-
demic Spread Simulations (NOTES2) to assist experts in ex-
ploring large simulation ensembles (Figure 1). The NOTES2
system supports

• analysis and indexing of simulation data sets, including
extraction of salient multi-variate temporal features from
the inter-dependent parameters, spanning multiple layers
and spatial-temporal frames, driven by complex dynamic
processes operating at different resolutions.

• parameter and feature analysis, including identification
of unknown dependencies across the input parameters and
output variables spanning the different layers of the obser-
vation and simulation data.
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Related Works
Temporal Data Analysis. There are various multi-variate
temporal data models, such as the multi-variate structural
time series model (Harvey and Koopman 1997; Silva, Hyn-
dman, and Snyder 2010).

Analysis of relationships (correlations, transfer func-
tions, and causality) among time series is expensive (Rein-
sel 2003). A common representation of multi-variate data
evolving over time is a tensor (multidimensional array)
stream.

Tensors and tensor streams are often analyzed for their
underlying structures through tensor decomposition algo-
rithms (Carroll and Chang 1970; Harshman 1970; Tucker
1966). An alternative to tensor decomposition is to use prob-
abilistic and generative models, such as Hidden Markov
models (HMMs) and Dynamic Topic Modeling, DTM (Blei
and Lafferty 2006).

A third alternative is to leverage AutoRegressive In-
tegrated Moving-Average (ARIMA) and multi-variate
ARIMA based analysis, which separates a time series into
autoregressive, moving-average, and integrative components
for modeling and forecasting (Mills 1990).
Time Series Search. In many applications, when compar-
ing two sequences or time series, exact alignment is not
required. Instead, whether two sequences are going to be
treated as matching depends on how similar they are; thus,
this difference needs to be quantified. This is commonly
done through distance measures which quantify the mini-
mum number (or cost) of symbol insertions, deletions, and
substitutions needed to convert one sequence to the other.
Dynamic time warping (DTW) distance (Ding et al. 2008;
Keogh 2002; L.Ye and E.Keogh 2009; Yu et al. 2007), used
commonly when comparing continuous sequences or time
series can be thought of as a special case.
Diffusion in Networks. Kempe et al. were among the first
teams who have investigated the problem of optimizing the
network for maximum spread (Kempe, Kleinberg, and Tar-
dos 2003). Watts and Dodds also studied the conditions un-
der which nodes in a network become influential (Watts
and Dodds 2007). (Chen, Wang, and Wang 2010) proposed
a heuristic algorithm, based on local influence regions, to
identify nodes in a network that maximize the spread of
influence. In (Shakarian, Subrahmanian, and Sapino 2010),
the authors focused on learning diffusion models and study-
ing the impact of one node on the others in the network
through reasoning with previously learned diffusion models,
expressed via generalized annotated programs. (Leskovec et
al. 2007) focuses on the related problem of optimal sen-
sor placement to observe information cascades within the
network, including disease outbreaks in a population, con-
taminant distribution within a water distribution network,
and information flow within the blogosphere. (Kim, Candan,
and Sapino 2012) noted that, while details differ, the var-
ious propagation models have two common properties: (a)
decay with distance, and (b) reinforcement. Unfortunately,
most models focus on the steady state of the propagation in
the network and ignore the temporal dynamics of the diffu-
sion itself. Moreover, most (if not all) of these works focus
on a single parameter, whereas we need to track temporal

dynamics of multiple inter-dependent parameters.

Networks-of-Traces for Epidemic Simulations
If effectively leveraged, models reflecting past outbreaks,
existing simulation traces obtained from simulation runs,
and real-time observations incoming during an outbreak can
be collectively used for better understanding the epidemic’s
characteristics and the underlying diffusion processes, form-
ing and revising models, and performing exploratory, if-then
type of hypothetical analyses of epidemic scenarios.

There are five major types of data associated to epidemic
spread simulations.
• Network layers: An epidemic simulation requires one or

more layers of networks, from local and global mobility
patterns to contact networks.

• Disease models, describing the epidemiological parame-
ters relevant to a simulation and the parameter dependen-
cies necessary in the computation of the disease spread.

• Simulation traces: For a given disease study, researchers
and decision makers often perform multiple simula-
tions, each corresponding to different sets of assumptions
(disease parameters or models) or context (e.g. spatio-
temporal context, outbreak conditions, interventions).

• Disease observation traces: These include real-world ob-
servations relating to particular epidemic, including the
spread and severity of the disease and observations about
other relevant parameters, such as the average length of
recovery or percentage of infectious individuals that un-
dergo pharmaceutical treatment.

• External interventions: In an outbreak, public health and
disease control agencies implement various medical or so-
cial interventions, quarantines and/or school closures.
We collectively refer to these data (network layers, dis-

ease models, simulation traces, observation traces, and in-
terventions) as the networks-of-traces (NT) data.

Leveraging the NT Model for Disease Spread
Simulation Understanding and Analysis

Epidemic spread simulations are complex. However, param-
eter dependencies and the network structures of the layers
(e.g. mobility, social contact networks) are implicitly evident
in the simulation traces and these carry temporal features
(that may correspond to major changes in the underlying
networks and/or temporal dynamics) that are robust against
noise. The detection of these robust multivariate features
constitutes the first step towards leveraging the NT data for
understanding epidemics’ characteristics and the diffusion
processes, revising models, and performing exploratory, if-
then type of hypothetical analyses of epidemic scenarios.

Networks-of-Traces (NT) Feature Extraction
An NT data trace is multi-variate and the analysis of the rele-
vant processes requires multi-variate temporal features span-
ning multiple inter-dependent trace parameters. Intuitively, a
robust temporal feature in a multi-variate time series corre-
sponds to a multi-variate segment of the series which sig-
nificantly differs from its neighborhood. The multi-variate
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Figure 2: Each row corresponds to a time series of inci-
dences for a sample epidemic simulation and each dot cor-
responds to the center of an identified multivariate feature

segment is represented by a center, 〈µt, µv〉, and a scope,
〈σt, σv〉. Intuitively, µt marks the center of the segment in
time and σt is the corresponding time interval. On the other
hand, µv is one or more nodes/variates of the graph on which
the segment is centered and σv denotes all the graph vertices
covered by the segment.

Figure 2 shows an epidemic simulation heatmap, where
each row corresponds to a different state. In the fig-
ure, centers of identified features are highlighted by white
dots. The figure also expands one of these robust fea-
tures (tail end of the epidemic on a set of neighboring
states): the center, 〈µt = 125, µv = {TX}, is marked
with a blue dot and its scope, 〈σtime = [111, 139], σv =
{AR,LA,NM,OK, TX}〉, is visualized using rectangles.

Robust Feature Detection Let Y (t) = 〈Y1(t), ..., Ym(t)〉
be a multi-variate trace, from time t = 1 to t = n. As
in (Lowe 2004), we detect stable multi-variate features at the
extrema of the scale space. However, unlike (Lowe 2004)
(which operates on images with two ordered dimensions;
i.e., rows and columns of pixels), extracting multi-variate
features of the simulation trace Y (at various temporal and
variate scales) requires detecting local maxima and comput-
ing gradients relative to not only the (ordered) time dimen-
sion, but also to the underlying variate graph.
Time-and-Variate Smoothing. We construct the scale space
of Y (t) (corresponding to the versions of the series
smoothed at different temporal and variate scales) relying
on the following time-and-variate smoothing process:

• Let Yi(t, st) indicate a version of uni-variate series, Yi,
smoothed with parameter st: Yi(t, st) = G(t, st) ∗ Yi(t),
where ∗ is convolution in t and G(t, st) is the Gaussian.
Let Y (t, st) = 〈Y1(t, st), .., Ym(t, st)〉 be a version of Y ,
where each uni-variate series is independently smoothed.

• Let us also define the variate smoothing function,
S(R, sv, X) = [G(0, sv)I +

∑∞
(j=1) 2 × G(j, sv)R

j ]X ,
where (a) R is an m × m matrix describing the variate
dependencies, (b) X = 〈X1, ..., Xm〉 is a m-vector, and
(c) sv is a variate smoothing parameter. Since G(j, sv) ap-
proaches 0 quickly as j increases, the smoothing term in
front of X can be approximated by a finite summation.

The time-and-variate smoothed version of Y (t, s) at scale
s = 〈st, sv〉 is defined as Y(t, s) = (H1(s); ...;Ht(s)),
where Ht(s) = S(H, sv, Y (t, st)) is the version of
Y (t, st) = 〈Y1(t, st), ..., Ym(t, sT )〉, variate-smoothed at
scale sv at time instant, t.
Iterative Scale Space Construction. We construct the scale
space by incrementally smoothing Y (both in time and vari-
ates) starting from an initial scale s0 = 〈st,0, sv,0〉. Let
Yi(t, s) be a time-and-variate smoothed version of Yi(t) at
scale s = 〈st, sv〉. Given a pair, k = 〈kt, kv〉, of time and
variate scale multipliers, we add the three scale-space neigh-
bors (or ss-neighbors) of Yi(t) into the scale space:

Yi(t, k ◦t s) ≡def Yi(t, 〈kt × st, sv〉),
Yi(t, k ◦v s) ≡def Yi(t, 〈st, kv × sv〉), and

Yi(t, k ◦t,v s) ≡def Yi(t, 〈kt × st, kv × sv〉).

The process continues iteratively until maximum temporal
and variate scales (bounded by the length of the simulation
trace and the number of variates) are met.
Local Extrema Detection. For detecting extrema, for each
Yi(t, s) in the constructed scale space, we compute

Dt
i(t, s) = abs(Yi(t, s)−Yi(t, k ◦t s)),

Dv
i (t, s) = abs(Yi(t, s)−Yi(t, k ◦v s)),

Dt,v
i (t, s) = abs(Yi(t, s)−Yi(t, k ◦t,v s)).

Local extrema are identified by considering each 〈i, t, s〉
triple and comparing max(Dt

i(t, s), D
v
i (t, s), D

t,v
i (t, s))

against the 78 ss-neighbors of 〈i, t, s〉 in terms of time
(before, same time, after), variates (impacting, same vari-
ate, impacted by), and scales (smaller, same scale, larger).
Poorly defined extrema (i.e., an extremum that has a large
principal curvature in one direction but a small one in the
perpendicular direction) are eliminated.
Feature Descriptor Creation. Let us be given a triple
〈i, t, s〉. Let also N and M be two integers such that N ∼
3σt and M ∼ 3σv . We create the local feature descrip-
tor corresponding to this triple using a 2N × 2N matrix
W : Let Y(i,s) be the time series Yi at scale s; then, for
all −N < a ≤ N and −N < b ≤ N , W [a, b] is de-
fined as follows: (a) if b > 0, W [a, b] = (RbY(i,s))[t + a];
(b) if b = 0, W [a, b] = Y(i,s)(t + a), and (c) if b < 0,
W [a, b] = (R−1)bY(i,s))[t+ a].

Finally, we construct a (2u×2v×c)-dimensional descrip-
tor for the triple 〈i, t, s〉 in the form of a gradient histogram
based on the matrix, W : we sample c gradient magnitudes
on the descriptor using a 2u× 2v grid superimposed on the
matrix, W . A Gaussian weighting function is used to reduce
the magnitude of elements further from the center.

Feature Search and Alignment
Features extracted from a networks-of-traces data play im-
portant roles in the NOTES2 system. Here, we discuss
how the similarity between two triples, 〈i1, t1, s1〉 and
〈i2, t2, s2〉, and the corresponding descriptors, desc1 and
desc2, are computed in NOTES2. Depending on the use con-
text, feature similarity has three major components:
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Table 1: Target feature parameters
min target feature length ∼ 5 time units
max target feature length ∼ 40 time units
min target feature size ∼ 2 hops
max target feature size ∼ 10 hops
descriptor size 32 (= 2× 2× 8)

• Descriptor alignment: Since the feature descriptors are
gradient histograms, their similarity is measured through
a histogram similarity function (in the experiments, we
use inverse of Euclidean distance).

• Temporal alignment: For temporal alignment between
two features, we consider both the distance between the
temporal centers of the features as well as the degree of
overlap between the temporal scopes of the features.

• Variate alignment: For variate alignment, we consider
both the distance between the variates in the underlying
relationship graph as well as the degree of overlap be-
tween the variates within the scopes of the two features.

Depending on the application, we also consider alignments
of (a) the average amplitudes and (b) sizes of the temporal
and variate scopes of the two triplets. These various compo-
nents of feature similarity are combined using a similarity
merge function, such as max, min, or product based on the
desired matching semantics.

Evaluation
To assess whether the features extracted from epidemic sim-
ulations truly reflect the underlying variate networks, we
created a set of simulations, using the STEM simulator,
based on the US border network, where there is an edge be-
tween states if they share a border, and air network, which is
a clique. For a given pair of transmission and recovery rates,
we created 51 simulations (of length 213 units of time) as-
suming a different US state as the ground zero and recorded
incidence rates1. We then extracted three sets of features
from each simulation, using parameters in Table 1, and as-
suming different connectivity structures:
• Border network (BN): For this case, we used the border

network denoting states sharing borders.
• Air network (AN): In this case, features are extracted as-

suming the air network (which is a clique).
• Random network (RN): In this case, a random graph (with

the same number of edges as the border network) is used
for extracting features.

Given these features and their descriptors, we then com-
puted the confusion for a simulation with ground zero
state, gzi, as confusion(gzi) = AV Ggzj 6=gzi

sim(gzi,gzj)
sim(gzi,gzi)

.
Here the similarity, sim(gzi, gzj), between two simu-
lations with ground zero states, gzi and gzj , is de-
fined as

∑
f∈features(gzi) sim(f, bestmatchj(f)). where

bestmatchj(f) is the best matching feature to f in the sim-
ulation with ground zero state, gzj . Temporal alignment pa-
rameters were set to be equal; αt = βt = 0.5. Variate align-
ment parameters were set to αv = 0 and βv = 0.1, to avoid

1Unless otherwise stated, we use the default STEM parameters

Table 2: Average confusions for simulations with different
transmission and recovery rates.

T.Rate R.Rate BN AN RN
1.0 0.5 0.35 0.36 (1.14×) 0.44 (1.28×)

0.75 0.5 0.23 0.25 (1.06×) 0.32(1.37×)
0.25 0.5 0.37 0.63 (1.73×) 0.49 (1.33×)
1.0 0.25 0.44 0.45 (1.02×) 0.54 (1.23×)

0.75 0.25 0.39 0.45 (1.14×) 0.48 (1.23×)
0.5 0.25 0.29 0.34 (1.15×) 0.39 (1.32×)

(a) features extracted using the border network

(b) features using the air
network (clique)

(c) features using a ran-
dom network

Figure 3: Centers of features extracted using different net-
works (source = “NJ”, trans. rate = 0.75 and rec. rate = 0.5)

penalizing the wrong network alternative. We use the prod-
uct merge function to combine alignment scores.

Intuitively, large confusion implies poor differentiation
power and, if the feature extraction process is effective, then
we expect that (a) the overall confusion will be the lowest
when using features extracted based on a network reflect-
ing the underlying disease propagation, and (b) confusion
will be the highest when we use an inappropriate network
for feature extraction. Table 2 presents results for different
transmission and recovery rates. As we see in this table, us-
ing the border network for feature extraction leads to least
amount of confusion. Moreover, these results conform to our
expectations listed above and Figure 3 helps see why: the
(clique structured) air network ignores disease transmissions
through land borders (especially when the transmission rate
is too small for the flights to have a big impact on the epi-
demic’s diffusion) and, thus, misses useful features. Random
networks, on the other hand, result in significant noise.

Conclusions

In this paper, we presented our networks-of-traces model,
which accounts for layers of disease networks (from local
and global mobility patterns to contact networks), disease
models, simulation and observation traces, and external in-
terventions. The Networks-of-Traces for Epidemic Spread
Simulations (NOTES2) system, based on this model, aims to
assist experts in exploring large simulation trace data sets,
through networks-of-traces feature analysis.
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