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PRIMER
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Abstract
Carefully calibrated transmission models have the potential to guide public health officials

on the nature and scale of the interventions required to control epidemics. In the context of

the ongoing Ebola virus disease (EVD) epidemic in Liberia, Drake and colleagues, in this

issue of PLOS Biology, employed an elegant modeling approach to capture the distributions

of the number of secondary cases that arise in the community and health care settings in

the context of changing population behaviors and increasing hospital capacity. Their find-

ings underscore the role of increasing the rate of safe burials and the fractions of infectious

individuals who seek hospitalization together with hospital capacity to achieve epidemic

control. However, further modeling efforts of EVD transmission and control in West Africa

should utilize the spatial-temporal patterns of spread in the region by incorporating spatial

heterogeneity in the transmission process. Detailed datasets are urgently needed to char-

acterize temporal changes in population behaviors, contact networks at different spatial

scales, population mobility patterns, adherence to infection control measures in hospital

settings, and hospitalization and reporting rates.

Ebola virus disease (EVD) is caused by an RNA virus of the family Filoviridae and genus
Ebolavirus. Five different Ebolavirus strains have been identified, namely Zaire ebolavirus
(EBOV), Sudan ebolavirus (SUDV), Tai Forest ebolavirus (TAFV), Bundibugyo ebolavirus
(BDBV), and Reston ebolavirus (RESTV). The great majority of past Ebola outbreaks in hu-
mans have been linked to three Ebola strains: EBOV, SUDV, and BDBV [1]. The Ebola virus
([EBOV] formerly designated Zaire ebolavirus) derived its name from the Ebola River, located
near the epicenter of the first outbreak identified in 1976 in Zaire (now the Democratic Repub-
lic of Congo). EVD outbreaks among humans have been associated with direct human expo-
sure to fruit bats—the most likely reservoir of the virus—or through contact with intermediate
infected hosts, which include gorillas, chimpanzees, and monkeys. Outbreaks have been re-
ported on average every 1.5 years [2]. Past EVD outbreaks have occurred in relatively isolated
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areas and have been limited in size and duration (Fig. 1). It has been recently estimated that
about 22 million people living in areas of Central and West Africa are at risk of EVD [3].

An epidemic of EVD (EBOV) has been spreading in West Africa since December 2013 in
Guinea, Liberia, and Sierra Leone [8]. A total of 18,603 cases, with 6,915 deaths, have been
reported to the World Health Organization as of December 17, 2014 [9]. While the causative
strain associated with this epidemic is closely related to that of past outbreaks in Central Africa
[10], three key factors have contributed disproportionately to this unprecedented epidemic:
(1) substantial delays in detection and implementation of control efforts in a region character-
ized by porous borders; (2) limited public health infrastructure including epidemiological sur-
veillance systems and diagnostic testing [11], which are necessary for the timely diagnosis of
symptomatic individuals, effective isolation of infectious individuals, contact tracing to rapidly
identify new cases, and providing supportive care to increase the chances of survival to EVD in-
fection; and (3) cultural practices that involve touching the body of the deceased and the associ-
ation of illness with witchcraft or conspiracy theories.

Figure 1. Time series of the temporal progression of four past EVD outbreaks in Congo (1976, 1995, 2014) [4–6] and Uganda (2000) [7]. Case
incidence was normalized by the total number of cases reported for each outbreak.

doi:10.1371/journal.pbio.1002057.g001
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EBOV is transmitted by direct human-to-human contact via body fluids or indirect contact
with contaminated surfaces, but it is not spread through the airborne route. Individuals become
symptomatic after an average incubation period of 10 days (range 2–21 days) [12], and infec-
tiousness is increased during the later stages of disease [13]. The characteristic symptoms of
EVD are nonspecific and include sudden onset of fever, weakness, vomiting, diarrhea, head-
ache, and a sore throat, while only a fraction of the symptomatic individuals present with hem-
orrhagic manifestations [14]. The case fatality risk (CFR), calculated as the proportion of
deaths among the total number of EVD cases with known outcomes, has been estimated from
data of the first 9 months of the epidemic in West Africa at 70.8% (95% CI 68.6–72.8), in broad
agreement with estimates from past outbreaks [12].

Two important quantities to understand in the transmission dynamics of EVD are the serial
interval and the basic reproduction number. The serial interval is defined as the time from illness
onset in a primary case to illness onset in a secondary case [15] and has been estimated at 15 days
on average for the ongoing epidemic [12]. The basic reproduction number, R0, quantifies trans-
mission potential at the beginning of an epidemic and is defined as the average number of second-
ary cases generated by a typical infected individual during the early phase of an epidemic, before
interventions are put in place [16]. If R0< 1, transmission is not sufficient to generate a major ep-
idemic. In contrast, a major epidemic is likely to occur whenever R0> 1. When transmission po-
tential is measured over time t, the effective reproduction number Rt, can be helpful to quantify
the time-dependent transmission potential resulting from the effect of control interventions and
behavior changes [17]. Estimates of R0 for the ongoing epidemic inWest Africa have fluctuated
around 2 with some uncertainty (e.g., [12, 18–22]), which are in good agreement with estimates
from past EVD outbreaks [23]. R0 could also vary across regions as a function of the local public
health infrastructure (e.g., availability of health care settings and infection control protocols), such
that an outbreak may be very unlikely to unfold in developed countries simply as a result of base-
line infection control measures in place (i.e., R0< 1) while poor countries with extremely weak or
absent public health systems may be unable to control an Ebola outbreak (i.e., R0> 1).

Mathematical models of disease transmission have proved to be useful tools to characterize
the transmission dynamics of infectious diseases and evaluate the effects of control interven-
tion strategies in order to inform public health policy [16, 24, 25]. There are a limited number
of mathematical models for the transmission and control of EVD, but a number of efforts are
underway in the context of the epidemic in West Africa. The transmission dynamics of EVD
have been modeled on the basis of the simple compartmental susceptible-exposed-infectious-
removed (SEIR) model that assumes a homogenously mixed population [23]. The modeled
population can be structured according to the contributions of community, hospital, and un-
safe burials to transmission as EVD transmission has been amplified in health care settings
with ineffective infection control measures and during unsafe burials [23]. A schematic repre-
sentation of the main transmission pathways of EVD is shown in Fig. 2.

A recent study published in PLOS Biology by Drake and colleagues [26] presents an interest-
ing and flexible modeling framework for the transmission and control of EVD in Liberia. Their
framework is based on a multi-type branching process model in which “multi-type” refers to
the consideration of two types of settings where transmission can occur, while “branching pro-
cess” is the mathematical term to specify a probabilistic model. For instance, in the case of a
single-type branching process, the transmission dynamics are simply described using a single
reproduction number, i.e., the average number of secondary cases produced by a single primary
case. However, when two types of hosts are considered in the transmission process, two repro-
duction numbers are needed to characterize within-group mixing (e.g., within-hospital and
within-community transmission) and two reproduction numbers characterize transmission
between groups (e.g., transmission from hospital to community and vice versa).
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Drake and colleague’s elegant modeling approach describes EVD transmission according to
infection generations by calculating probability distributions of the number of secondary cases
that arise in the community via nursing care or during unsafe burials and in health care settings
via infections to health care workers and visitors. The model explicitly accounts for the hospi-
talization rate—the fraction of infectious individuals in the community seeking hospitalization
(estimated in this study at 60%). However, the number of effectively isolated infectious individ-
uals is constrained by the number of available beds in treatment centers—which are assumed
in this study to operate at twice their regular capacity. It is important to note that the number
of beds available to treat EVD patients was severely limited in Liberia prior to mid August 2014
(Fig. 1 in [26]). Moreover, the rate of safe burials that reduces the force of infection is included
in their model as an increasing function of time. The model was calibrated by tuning six pa-
rameters to fit the trajectories of the number of reported cases in the community and among
health care workers during the period 4 July to 2 September 2014 for a total of four infection
generations during which the effective reproduction number was estimated to decline on aver-
age from about 2.8 to 1.4. The model was able to effectively capture heterogeneity in transmis-
sion of EVD in both the community and hospital settings.

Drake and colleagues [26] employed their calibrated model to forecast the epidemic trajec-
tory in Liberia from 3 September to 31 December 2014 under different scenarios that account
for an increasing fraction of cases seeking hospitalization and a surge in the number of beds
available to isolate and treat EVD patients. Their results indicate that allocating 1,700 addition-
al beds (100 new beds every 4 days) in new Ebola treatment centers committed by US aid

Figure 2. Schematic representation of the transmission dynamics of Ebola virus disease. The main transmission pathways are: (1) Spillover
transmission to humans by direct contact with a reservoir (e.g., fruit bats); (2) within hospital transmission from EVD patients to health care workers; (3) within
household transmission from infected health care workers to their family members; (4) within household transmission during unsafe burials; and (5) inter-
household transmission arising from unsafe burials. Solid arrows indicate a transmission link while dashed arrows denote disease progression (e.g., from
susceptible to infectious or from infectious to dead and infectious).

doi:10.1371/journal.pbio.1002057.g002
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reduces the mean epidemic size to ~51,000 (60% reduction with respect to the baseline scenar-
io), while epidemic control by mid-March is only plausible through a 4-fold increase in the
number of beds committed by US aid and enhancing the hospitalization rate from 60% to 99%
for a final epidemic size of 12,285. Moreover, an additional epidemic forecast incorporating
data up to 1 December 2014 indicated that containment could be achieved between March and
June 2015.

Other interventions were not explicitly incorporated in their model because it is difficult to
parameterize them in the absence of datasets that permit statistical estimation of their impact

Figure 3. Contrasting epidemic growth in the presence and absence of behavior changes that reduce the transmission rate. In the left panel, the
epidemic grows exponentially fast for a constant average contact rate over time (no behavior changes). In the right panel, the population changes behavior
as public awareness about the disease increases, leading to a gradually decreasing contact rate. The basic reproduction number R0 is set at 2.0 for both
scenarios with and without behavior changes.

doi:10.1371/journal.pbio.1002057.g003

Figure 4. Representative time series of the cumulative number of EVD cases (in log scale) at the district level in Guinea, Sierra Leone, and Liberia.
The district level epidemics are asynchronous and exhibit sub-exponential case growth.

doi:10.1371/journal.pbio.1002057.g004
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on the transmission dynamics. These additional interventions include the use of household
protection kits, designed to reduce transmission in the community; improvements in infection
control protocols in health care settings that reduce transmission among health care workers;
and the impact of rapid diagnostic kits in Ebola treatment centers, which reduce the time to
isolation for infectious individuals seeking hospitalization. Increasing awareness and education
of the population about the disease could have also yielded further reductions in case incidence
by reducing the size of the at-risk susceptible population (Fig. 3) [27]. Nevertheless, some of
these effects could have been indirectly captured implicitly by the time-dependent safe burial
rate parameter in their model.

Importantly, prior models of EVD transmission [23, 28, 29] and the model by Drake and
colleagues have not incorporated spatial heterogeneity in the transmission dynamics. In partic-
ular, the EVD epidemic in West Africa can be characterized as a set of asynchronous local (e.g.,

Figure 5. Epidemic growth in two populations characterized by two different underlying contact networks. Randommixing leads to a rapidly
disseminating infectious disease that spreads exponentially fast. By contrast, disease spread is significantly slower in a highly clustered contact network
because the contacts of recently infected individuals are likely to be already infected by other infectious individuals. The contact networks are shown for
illustration and are composed of a set of nodes (individuals) denoted by red dots while blue lines (links) between nodes denote static contacts. Each solid
blue curve of cumulative cases corresponds to a stochastic epidemic realization of the simple SEIR (susceptible-exposed-infectious-removed) [16], while the
dashed red curve corresponds to the average of 100 stochastic realizations.

doi:10.1371/journal.pbio.1002057.g005
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district) epidemics that exhibit sub-exponential growth, which could be driven by a highly clus-
tered underlying contact network or population behavior changes induced by the accumulation
of morbidity and mortality rates (see Fig. 4 and [30]). EVD contagiousness is most pronounced
in the later and more severe stages of Ebola infection when infectious individuals are confined
at home or health care settings and mostly exposed to caregivers (e.g., health care workers, fam-
ily members) [30]. This characterization would lead to EVD transmission over a network of
contacts that is highly clustered (e.g., individuals are likely to share a significant fraction of
their contacts), which is associated with significantly slower spread relative to the common ran-
dom mixing assumption as illustrated in Fig. 5. The development of transmission models that
incorporate spatial heterogeneity (e.g., by modeling spatial coupling or human migration) is
currently limited by the shortage of detailed datasets from the EVD-affected areas about the
geographic distribution of households, health care settings, reporting and hospitalization rates
across urban and rural areas, and patterns of population mobility in the region. Some of these
limitations may be overcome in the near future. For instance, cell phone data could provide a
basis to characterize population mobility in the region at a refined spatial scale.

The ongoing epidemic in West Africa offers a unique opportunity to improve our current
understanding of the transmission characteristics of EVD in humans. To achieve this goal, it is
crucial to collect spatial-temporal data on population behaviors, contact networks, social dis-
tancing measures, and education campaigns. Datasets comprising detailed demographic,
socio-economic, contact rates, and population mobility estimates in the region (e.g., commut-
ing networks, air traffic) need to be integrated and made publicly available in order to develop
highly resolved transmission models, which could guide control strategies with greater preci-
sion in the context of the EVD epidemic in West Africa. Although recent data from Liberia in-
dicates that the epidemic is on track for eventual control, the epidemic in Sierra Leone
continues an increasing trend, and in Guinea, case incidence roughly follows a steady trend.
The potential impact of vaccines should also be incorporated in future modeling efforts as
these pharmaceutical interventions are expected to become available in the upcoming months.
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