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NUMERICAL SOLUTIONS TO TWO-DIMENSIONAL INTEGRATION PROBLEMS

by

Alexander D. Carstairs

Under the Direction of Valerie Miller, PhD

ABSTRACT

This paper presents numerical solutions to integration problems with bivariate integrands. Using

equally spaced nodes in Adaptive Simpson’s Rule as a base case, two ways of sampling the domain

over which the integration will take place are examined. Drawing from Ouellette and Fiume,

Voronoi sampling is used along both axes of integration and the corresponding points are used as

nodes in an unequally spaced degree two Newton-Cotes method. Then the domain of integration

is triangulated and used in the Triangular Prism Rules discussed by Limaye. Finally, both of these

techniques are tested by running simulations over heavily oscillatory and monomial (up to degree

five) functions over polygonal regions.

INDEX WORDS: Delaunay Triangulation, Voronoi Sampling, Simpson’s Rule, Adaptive Simpson’s
Rule, Quadrature
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Chapter 1

INTRODUCTION

The subject of numerical integration is an essential topic in any numerical analysis course, and

while there has been extensive research into numerical techniques, there is no unifying technique

that works for all integrands. Choosing a technique can be based on many factors, but ultimately

the decision will depend on the application. In the field of computer graphics, numerical integration

is essential in determining the lighting of an object. In [9], Fiume and Ouellette outline several

techniques for applications in computer graphics problems all of which must balance the numerical

efficiency of the method with the aesthetics of the final image, i.e. sacrificing numerical accuracy for

a better looking image. One of the methods outlined by Fiume and Ouellette is a one-dimensional

Voronoi diagram-based sampling of the domain of integration. In this thesis this sampling technique

will be expanded in two ways.

The first method is to perform the one-dimensional Voronoi sampling described in [9] along

each axis of integration to get two sets of n points. Then the Cartesian product of those two sets

is taken to create an n × n grid of nodes, which can then be used in a quadrature method. The

second method will be to triangulate the domain of integration using a Delaunay triangulation.

These methods will be described in greater detail along with some relevant background theory of

each in Chapters 1 and 2, respectively. The Voronoi sampling will be implemented in an adaptive

Newton-Cotes method of degree two, and the Delaunay triangulation will be implemented in the

midpoint, trapezoidal and Simpson’s rules described in [3]. These methods, along with adaptive

Simpson’s rule and Monte Carlo integration, will be used to integrate a variety of test functions

described in [14] and the set of monomials given in [8]. The results of these numerical simulations

will be discussed in Chapter 3.
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1.1 Voronoi Sampling

In this section, the reader is introduced to the basics of Voronoi diagrams. The following

definitions of the Voronoi diagrams are consistent with those given in [2] and [9]. The topic of

Voronoi diagrams dates back to the 1600s to Descartes where he used the idea that a set S of

sites (point sites) p in a space M are given and the region of a site p consists of all points s such

that the influence of p is the strongest. This concept emerged independently in various fields of

science such as biology to model and analyze plant competition; robotics to find an optimal path

to avoid a set of obstacles; and meteorology to determine regional rainfall from a discrete set of

rain gauges. In most of these cases, names particular to the field of study have been used, e.g.

Thiessen polygons are used in meteorology. The mathematicians Dirichlet and Voronoi would be

the first to formally introduce the concept while working with quadratic forms, and the resulting

structure has been given the name Dirichlet tessellation or Voronoi diagram [2].

Figure 1.1. Descartes’ diagram of the regions of influence for point sites [2]

Definition 1.1.1. Let S ⊂ R2 be a set of points x1, x2, . . . , xn for n ≥ 3 and p ∈ R2 with d(xi, p)

given as some metric. For any xi, xj ∈ S and i 6= j, let

B(xi, xj) = {p | d(xi, p) = d(xj, p)}

2



be the bisector of xi and xj, i.e. B(xi, xj) is the perpendicular line through the center of the line

segment connecting xi and xj. Thus, the bisector separates the halfplane

D(xi, xj) = {p | d(xi, p) < d(xj, p)}

containing xi from the halfplane D(xj, xi) containing xj.

Figure 1.2. Dividing halfplanes with bisector.

Using the halfplane described above, the Voronoi diagram can now be defined.

Definition 1.1.2. Let the Voronoi region of xi be given as

Vi = V (xi, S) =
⋂

xj∈S,i6=j

D(xi, xj)

with respect to S where Vi is an open set in the topological sense. Then the Voronoi Diagram of

S is defined as

V (S) =
⋃

xi,xj∈S,i6=j

Vi ∩ Vj

where V is the closure of set V , i.e. the open set V unioned with its boundary.

Scaling the above definitions down to a one-dimensional diagram creates a sampling method

that iteratively selects points on an interval [a, b]. First, let x1 = a and x2 = b and have x3 be

3



Figure 1.3. 2D Voronoi Diagram

a randomly chosen number from the uniform distribution over (a, b). Then the next n points are

determined by constructing the Voronoi regions corresponding to the location of the sample points

that already exist in the sequence. Let Vi represent the Voronoi region of xi and be defined as

Vi = {x ∈ [a, b] | |x− xj| ≤ |x− xi|, for all j ∈ [1, n+ 3]}

for i ∈ [1, n + 3]. Let VM be the longest line segment as defined above with ties being broken

randomly. The next sample point in the sequence would the midpoint of the line segment corre-

sponding to VM . The abbreviation Vm is used to denote a Voronoi sampling sequence of n additional

points where m = n+3. In Fig 1.4, a quick example of the Voronoi sampling is given. Let a = −2,

b = 10 and x3 = 5. First, the midpoint (bisector) between the three points is found, which give us

m1 = 1.5 and m2 = 7.5. Then each Voronoi region is formed: V1 = (−2, 1.5), V2 = (7.5, 10) and

V3 = (1.5, 7.5). Since V3 is the longest Voronoi region, the next point to be added to the sequence

is x4 = 4.5. The code written in MATLAB c© is given in Appendix A.

Figure 1.4. Voronoi Sampling

4



1.2 One-Dimensional Newton-Cotes Quadrature

Now it is necessary to derive a generic one-dimensional quadrature method for integrating

over [a, b]. Given three arbitrary points a, m and b, where a < m < b, Lagrange interpolation is

used to find a degree two polynomial to approximate our function f(x). This polynomial is given

by

p(x) =
3∑
j=1

f(xj)Lj(x),

where Lj(x) is the Lagrange polynomial

Lj(x) =
3∏

i=1,i 6=j

x− xi
xj − xi

, j = 1, 2, 3

Thus, p(x) may be written as

p(x) =
3∑
j=1

f(xj)Lj(x) = f(a)
(x−m)(x− b)
(a−m)(a− b)

+ f(m)
(x− a)(x− b)

(m− a)(m− b)
+ f(b)

(x− a)(x−m)

(b−m)(b− a)
= τ

(1.2.1)

Assuming that p(x) approximates some function f(x) that needs to be integrated then

∫ b

a

f(x)dx ≈
∫ b

a

p(x)dx =
3∑
j=1

wjf(xj) = w1f(a) + w2f(m) + w3f(b),

where the weights wj are given by

wj =

∫ b

a

Lj(x)dx.

All of these steps are similar to those for the derivation of an arbitrary Newton-Cotes method

using equally spaced points and are given in almost any numerical analysis textbook. Indeed, a

derivation of Simpson’s rule (sometimes referred to as Simpson’s 1/3 Rule) generally follows from

1.2.1 by exploiting the equal spacing of the points and gives a nice simplification.

Setting up a general spacing of points yields

b− a = α + αc = α(1 + c)

5



b−m = α

a−m = −cα,

which simplifies the right hand side of Equation (1.2.1) to get

τ =
1

α2c(1 + c)
[f(a)(x−m)(x− b)− f(m)(1 + c)(x− a)(x− b) + cf(b)(x− a)(x−m)] (1.2.2)

To find the weights w1, w2 and w3 of f(a), f(m) and f(b), respectively, the function g(x) =

(x− u)(x− v) is integrated, which yields

∫ b

a

(x− u)(x− v)dx =
1

2

[
(b− u)(b− v)2 − (a− u)(a− v)2

]
− 1

6

[
(b− v)3 − (a− v)3

]
= γ.

The right hand side of the above equation, γ, can then be simplified further according to the

following values of u and v:

(i) If u = m, v = b: γ = 1
6
α3 (1 + c) (2c− 1)

(ii) If u = a, v = b: γ = −1
6
α3(1 + c)3

(iii) If u = a, v = m: γ = −1
6
α3(1 + c)2(c− 2)

Replacing the weights in (1.2.2) with the values above and simplifying gives

3∑
j=1

f(xi)Lj(x) =
α(1 + c)

6c

[
(2c− 1)f(a) + (1 + c)2f(m) + c(2− c)f(b)

]
.

This gives us our quadrature formula

I(f) =

∫ b

a

f(x)dx ≈ α(1 + c)

6c

[
(2c− 1)f(a) + (1 + c)2f(m) + c(2− c)f(b)

]
= I(p).

For the error, the equation

R(x) = I(f)− I(p) =

∫ b

a

f ′′′(α)

3!
(x− a)(x−m)(x− b)dx

6



is examined, and the function f is assumed to be at least three times differentiable over [a, b].

Since the cubic polynomial function changes sign over the interval [a, b], R(x) is broken into two

integrals in order to apply the weighted Mean-Value Theorem for Integrals:

R(x) =
f ′′′(α1)

6

∫ m

a

(x− a)(x−m)(x− b)dx+
f ′′′(α2)

6

∫ b

m

(x− a)(x−m)(x− b)dx,

where α1 ∈ (a,m) and α2 ∈ (m, b). It is now clear that only the general form of the integral above

is needed in order to proceed with the error analysis. Thus,

β =

∫ v

u

(x− a)(x−m)(x− b)dx

= (v − u)

[
1

4
(v + u)(v2 + u2)− a+m+ b

3
(v2 + uv + u2) +

am+ ab+ bm

2
(u+ v)− amb

]
.

Simplifying β according to the following values of u and v:

(i) If u = a and v = m: β = (m−a)3
12

[2b−m− a]

(ii) If u = m and v = b: β = (b−m)3

12
[2a−m− b]

gives the total error R(x) to be

R(x) =
f ′′′(α1)

6

(m− a)3

12
[2b−m− a] +

f ′′′(α2)

6

(b−m)3

12
[2a−m− b] . (1.2.3)

Assuming that f ′′′ is essentially constant on [a, b], then

R(x) ≈ A

6

(m− a)3

12
[2b−m− a] +

A

6

(b−m)3

12
[2a−m− b]

=
A

72

[
(m− a)3 [2b−m− a] + (b−m)3 [2a−m− b]

]
=
A

72
(b− a)3 [2m− b− a] ,

so R(x) = 0 if f(x) is a polynomial of degree ≤ 2. This is to be expected since quadratic

interpolation is only guaranteed to be exact if f(x) is of degree ≤ 2. Using c = 1

7



(b−m = α and a−m = −α) for the above error analysis, the same degree of accuracy for Simp-

son’s rule, but Simpson’s rule should have an extra degree of accuracy. The extra degree of accuracy

comes from the cancellation of the term containing f ′′′ from the derivation of Simpson’s rule using

Taylor polynomials instead of Lagrange polynomials. To show this, Simpson’s rule is derived using

a Taylor expansion centered around the point m = b+a
2

to approximate f(x). Integrating the

Taylor expansion from a to b to yields

∫ b

a

f(x)dx = f(m)(b− a) +
f ′(m)

2

[
(b−m)2 − (a−m)2

]
+
f ′′(m)

6
[(b−m)3 − (a−m)3]

+
f ′′′(m)

24

[
(b−m)4 − (a−m)4

]
+
f (4)(ξ)

120

[
(b−m)5 − (a−m)5

]
= f(m)(b− a) +

f ′(m)

2

[
(α)2 − (−α)2

]
+
f ′′(m)

6

[
(α)3 − (−α)3

]
+

f ′′′(m)

24

[
(α)4 − (−α)4

]
+
f (4)(ξ)

120

[
(α)5 − (−α)5

]
= 2αf(m) + α3f

′′(m)

3
+ α5f

(4)(ξ)

60

=
α

3
[f(a) + 4f(m) + f(b)] + α5f

(4)(ξ)

60
.

The f ′ and f ′′′ terms cancel, and the additional degree of accuracy is gained for Simpson’s rule.

The Voronoi sampling and quadrature are implemented in the function vadapt3 and are given

in Appendix B.

1.3 Delaunay Triangulation

According to Aurenhammer and Klein, Voronoi was the first to consider the dual of the

Voronoi diagram where he stated that any two point sites are connected if their regions share a

boundary. Later, Delaunay defined the dual in the following way:

Definition 1.3.1. Two point sites are connected if and only if the two sites lie on a circle whose

interior contains no point in S where S is the set defined in Definition1.1.1.

For this, the dual was given the name Delaunay tessellation or Delaunay triangulation. Given

a Voronoi diagram, one can easily construct a Delaunay triangulation by connecting the center

xi of a Voronoi region with the center of each adjacent Voronoi region for all xi ∈ S [2], but

8



⇐⇒

Figure 1.5. Creating a Delaunay Triangulation from Voronoi diagram

it is not necessary to have a Voronoi diagram first. Using an alternate definition of a Delaunay

triangulation, a given triangulation can be checked to see if it is Delaunay.

Definition 1.3.2. A circumcircle is the circle that passes through the endpoints xi and xj for the

edge xixj and endpoints xi, xj and xk of triangle xixjxk for all combinations of i, j and k .

Definition 1.3.3. Let T be a triangulation with m triangles and a set of n points S where each

element of S is a vertex of a triangle ti ∈ T for i = 1, . . . ,m. T is considered Delaunay if and only

if the circumcircle of every ti contains no other vertex in S.

Figure 1.6. Checking the Delaunay criterion holds for each triangle.

Both definitions 1.3.1 and 1.3.3 are known as the Delaunay criterion or empty circle prop-

erty for edges (1.3.1) and triangles (1.3.3), and are implemented in several algorithms used for

creating Delaunay triangulations. Since an edge only has two points, it can have infinitely many

circumcircles, but only one of the circumcircles has to be empty for the criterion to hold. On the

other hand, triangles will have a unique circumcircle defined by its three vertices, so there is only a

need to check that the one circle is empty. A main advantage of using a Delaunay triangulation is

9



that it maximizes the minimum angle of all of the triangles within the triangulation of a given set

of points, which helps avoid skinny triangles. As the number of triangles increases, the triangles

appear more uniform in size as shown in Table 1.1. This reduces the risk of peaks on the function

that is being integrated from being cut off by large skinny triangles, which improves the stability

of the calculations performed on the mesh. In graphics, the uniformity of the triangles yields a

nice mesh for the shading and texturizing of an image [15].

10



Table 1.1. Delaunay triangulations of 20 points through 110 points with the triangulation at
every 10 points shown.
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Chapter 2

ALGORITHMS

There are three types of algorithms used in the construction of Delaunay triangulations:

incremental insertion algorithms, divide-and-conquer techniques, and a sweepline techniques. The

simplest are the incremental insertion algorithms, and they can be expanded to be used in higher

dimensions. The algorithms that use the divide-and-conquer or sweepline techniques are faster

than the incremental insertion techniques in two dimensions but are difficult to generalize (if at

all) to higher dimensions. To construct the Delaunay triangulation in this thesis, two algorithms are

combined: the method dtris2 from the GEOMPACK package and the Bowyer-Watson algorithm.

Both algorithms are incremental insertion algorithms, which means they maintain a Delaunay

triangulation into which points are inserted [5]. First, dtris2 is used to triangulate the set of

initial points including the vertices along the boundary of integration and a randomly chosen

point within the boundary. The centroid of the largest triangle is then inserted using the Bowyer-

Watson algorithm. In the following sections, each algorithm is examined and shown how they are

implemented into our integration problem.

2.1 Point Insertion Algorithms

The earliest incremental insertion algorithm was developed by Lawson [11] and is based on

edge flips. When a vertex is inserted, the triangle that contains the new point is found, and the

point is connected to the vertices of the containing triangle by inserting three new edges. (If the

new point falls on the edge of an existing triangle, the edge is deleted, and the point is connected

to the four vertices of the containing quadrilateral by inserting four new edges). The edges are

placed into a stack and are tested to determine if they pass the Delaunay criterion. If not, then

an edge flip is performed to remove the non-Delaunay edge. With each flip two new edges are
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added to the stack, and the algorithm ends when the stack is empty yielding a globally Delaunay

triangulation. A pictorial representation of Lawson’s algorithm is given below.

Table 2.1. Lawson’s algorithm.

In 1981 A. Bowyer and D. Watson simultaneously presented an algorithm that does not

depend on the use of edge flips and can easily be generalized to arbitrary dimensionality [11]. Our

implementation of the Bowyer-Watson algorithm is given below and starts

with already having a Delaunay triangulation of n points with a new point, xn+1, to be added.

1) Determine which triangle contains xn+1. Delete this triangle and add its neighbors to a stack.

2) Pop a triangle off the stack and determine if the new point is within the circumcircle of the
triangle. If yes, delete the triangle and add the neighboring triangles to the stack.

3) Repeat 2 until stack is empty.

4) Triangulate the deleted region (The method dtris2 is used, which is discussed in the next
section and our implementation is discussed in Chapter 3.).

5) Inserting the triangulation from 4 into the space that was voided by the deleted triangles
provides the new Delaunay triangulation.
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Figure 2.1 shows the insertion of a point using the Bowyer-Watson algorithm. The Bowyer-Watson

algorithm can also be implemented from scratch with no preexisting triangulation. First, three

points are chosen that created a bounding triangle that encloses all of the points that need to

be triangulated. The algorithm as outlined above then follows. Once all of the points have

been inserted, the bounding triangle is then deleted along with all of its connections to the inner

triangulation.

Figure 2.1. Bowyer-Watson Algorithm: A: Circumscribing circles that contain the new point
with the edges to be deleted ; B: resulting triangulation

As stated above, this algorithm easily generalizes to higher dimensions. When the new point

is inserted, the tetrahedron that contains the point is found, deleted and its neighbors are placed

into a stack. The tetrahedra in the stack are then checked to determine if their circumsphere is

empty. If the circumsphere is not empty, then the corresponding tetrahedron is deleted. Once the

stack is empty, the empty polyhedron that is left is “triangulated” and the process is repeated

until all points are inserted [11].

In its simplest form, this algorithm is not robust against roundoff error, though. A degenerate

case can develop in which two triangles have the same circumcircle, but only one of them is deleted

due to roundoff error, and the triangle that is not deleted is between the new vertex and the

triangle that was not deleted. This gives an empty cavity that is not empty, and the resulting

triangulation of the cavity would be“nonsensical” [11]. This problem can be avoided by using

Lawson’s algorithm instead. Lawson’s algorithm is not absolutely robust to roundoff error, but

failures occur much more sparingly compared to the simplest Bowyer-Watson algorithm. The
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Bowyer-Watson algorithm can be implemented with a depth-first search of the containing triangle

and will perform equally as robust as Lawson’s algorithm. Another advantage of Lawson’s is

that it is slightly easier to implement due in part because the topological structure maintained

throughout the process stays a triangulation [11]. The Bowyer-Watson was chosen due to the nice

pairing that it has with the method dtris2 below. The method keeps track of a neighbor matrix,

which virtually negates the search time for the triangles that are effected by the new insertion

point. The time complexity is discussed in further detail in Section 2.3.

There are many other methods that can be used for creating a Delaunay triangulation such

as divide-and-conquer approaches. The first O(n log n) algorithm to create a Delaunay triangula-

tion was a divide-and-conquer approach that first created a Voronoi diagram then was dualized to

form the Delaunay triangulation. Due to the unnecessarily complicated process, another divide-

and-conquer approach was developed that directly constructed a Delaunay triangulation. In this

approach, the existing set of points are recursively divided into two groups, each group is trian-

gulated separately, and the groups are then merged together [7]. This algorithm proved to be as

intricate and cannot easily be implemented in higher dimensions. The approach proved to not be

as useful as Bowyer-Watson for our application for two reasons. First, this approach could have

been used instead of the Bowyer-Watson algorithm, but it would triangulate the entire set of points

after every point insertion as opposed to Bowyer-Watson, which only requires the triangulation of

a small subset after each point insertion. Secondly, the divide-and-conquer approach could have

been used in place of dtris2, but since dtris2 is only used for small subsets of triangles, there

was no added benefit to using the divide-and-conquer approach given its intricacy.

Another well-known approach is the sweepline method. This algorithm can also be imple-

mented in O(n log n), and it builds a triangulation by sweeping a horizontal line vertically across

the plane with the triangulation accreting below the sweepline. When the sweepline collides with

a vertex, a new edge is created connecting the vertex to the sweepline. Once the sweepline reaches

the top of the circumcircle of a Delaunay triangle, the algorithm determines there is no other

vertex inside that circumcircle; thus, the triangle is created. This method also has restrictions

generalizing to higher dimensions and is not as easily implemented as the incremental insertion

methods. Similar to the divide-and-conquer approaches, the sweepline algorithm assumes that the

points to be triangulated are predetermined, so this method does not fit our particular application
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Figure 2.2. A: Edge e1 is not locally Delaunay since there is no empty circumcircle, perform edge
swap; B: e′ is locally Delaunay; C: the left triangle does not have an empty circumcircle, so not
Delaunay, perform edge swap; D: both triangles have empty circumcircles, so both are locally
Delaunay

[7],[11].

2.2 Incremental Delaunay Triangulation Algorithm with Edge Flips

The method dtris2 as described by Joe [5] is a variation of the algorithm given by Sloan [12].

Sloan’s algorithm combines the techniques from the Bowyer-Watson and Lawson algorithms. First,

a super triangle is created that encompasses all of the points to be triangulated. Then a point P

is inserted into the triangulation. The triangle that contains P is found, and P is connected to the

three vertices of the containing triangle to create three new triangles. The Lawson flip algorithm is

then used to make sure the triangulation is still Delaunay. This process is repeated until all points

have been inserted [12]. Joe uses the same outline for dtris2 but disregards the initial bounding

triangle and initially sorts the points lexicographically [5]. The algorithm in dtris2 is outlined

below by starting with a set of points S that needs to be triangulated.

1) Sort S using an ascending indexed heap sort to obtain the sorted set of indices Ss.

2) Take the first three points according to Ss and create the first triangle.

3) Add the next point according to Ss and connect the new vertex to the vertices that are

“visible” to the new point.

4) Check to make sure the new triangles are Delaunay. If not, perform edge swaps until all

triangles are Delaunay. These edge swaps are shown in Figure 2.2.

5) Repeat steps 3 and 4 until all points have been added to the triangulation.
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The code for dtris2 translated into MATLAB c© is given in Appendix C. A crucial component

of this algorithm is that edge swapping guarantees the new triangles created are both Delaunay.

Welzl [13] provides the following proposition and proof that guarantees any four points that are

not cocircular have exactly one Delaunay triangulation.

Proposition 2.2.1. Given a set P ⊂ R2 of four points that are in convex position but not cocir-

cular. Then P has exactly one Delaunay triangulation.

Proof. Let P = pqrs be a convex polygon (as shown in Figure 2.3). There are two triangulations

of P : a triangulation T1 using the edge pr and a triangulation T2 using edge qs. Now consider the

family C1 of circles through the edge pr, which contains the circumcircles C1 = pqr and C ′1 = rsp

of the triangles in T1. By assumption s is not on C1. If s is outside of C1, then q is outside of C ′1.

Consider the process of continuously moving from C1 to C ′1 in C1 (left image in Figure 2.3) then

point q is “left behind” immediately when going beyond C1 and only the final circle C ′1 “grabs”

the point s.

Similarly, consider the family C2 of circles through pq, which contains the circumcircles C1 =

pqr and C2 = spq, the latter belonging to a triangle in T2. As s is outside of C1, it follows that

r is inside C2. Consider the process of continuously moving from C1 to C2 in C2 (right image in

Figure 2.3). The point r is on C1 and remains within the circle all the way up to C2. This shows

that T1 is Delauny, where as T2 is not.

The case that s is located inside C1 is symmetric; just cyclically shift the roles of pqrs to

qrsp.

2.3 Complexity

Now the time complexity of the dtris2 method and the Bowyer-Watson algorithm are ana-

lyzed. Let T be the time it takes to triangulate a set of n additional points be given as

T =
n∑
k=1

Tk + Sk, (2.3.1)

where Tk is the amount of time it takes to find the triangle that contains the new point and Sk

the time it takes to find all of the triangles in the cavity. Since the neighbor relations are given
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Figure 2.3. Circumcircles and containment for triangulations of four points [13]

in dtris2, Sk = O(1) because it is proportional to the number of triangles in the cavity not the

number of points. The reason for this is that the search for the neighboring triangle becomes

obsolete as the number of points in the triangulation increases. Experimentally, the number of

triangles in the cavity per iteration is less than ten, so as n increases the number of triangles

affected stays essentially constant; thus, making Tk the dominating factor. In the worst case the

complexity of Tk is O(k), which gives us O(n2) [1]. This worst case scenario happens when all

existing triangles’ circumcircles contain the new point at every point insertion. However, in the

typical case, the number of triangles to be deleted at each point insertion does not depend on the

number of existing triangles as described above. Combining an O(n log n) multidimensional search

for the triangle that contains the new point and the saved information of the neighbor relations

between triangles, the Bowyer-Watson algorithm computes the Delaunay triangulation of n points

in O(n log n).

In [5], Joe discusses the time complexity of dtris2 and determines it to also be O(m logm).

Since the method is only used for the initial set of points and the vertices along the hull of the cavity

along with the new point, then as n increases, m stays relatively constant and is significantly smaller

than n. Thus, the time complexity of dtris2 and Bowyer-Watson together is still O(n log n).

Whenever implementing a geometric algorithm, two problems always need to be addressed:

geometric degeneracies and numerical errors. For the Delaunay triangulation, four or more co-

circular points will result in a non-unique triangulation [6] as shown in Figure 2.3. In such a

case dtris2 will produce the triangulation on the left. Since it inserts points in lexicographically
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increasing order, triangle p1p2p3 will be created first. The point p4 will be added and triangle

p2p3p4 is created. It then checks to make sure that the triangulation is Delaunay, which it is,

so the method will move to the next point without considering the triangulation on the right.

Another geometric degeneracy that needs to be considered is if three or more points are too close

to being co-linear. In this case, dtris2 checks for a “healthy” triangle when inserting a new point.

It determines this by checking if the third point is to the left or right of a directed ray between

the initial two points of the triangle. If the third point is within a certain tolerance of the directed

ray, the method will break and return a fatal error.

Figure 2.4. Two valid Delaunay triangulations with four co-circular points.

Numerical errors are more difficult to handle. As discussed in Section 2.1, there is a degenerate

case for roundoff error in the Bowyer-Watson algorithm. Mavriplis also discusses this issue with

round-off error in [7]. In general, the nature of the problem will determine the accuracy require-

ments of the inputs and outputs. For our implementation, double-precision arithmetic is used, and

it proves to be very robust. An occasional error occurs when inserting several thousand points in

dtris2 that appears to happen when two points are too close to each other, which illustrates the

round-off error problems described in Section 2.1. Since the error rarely occurred, the iteration

was simply skipped but noted during the simulation process using a try/catch block.

2.4 Delaunay Integration

Now the triangulation of the integral domain is implemented in the triangular prism rules

described in [3] to approximate the integral

∫∫
D

f(x, y)dxdy, (2.4.1)

where D is the domain of integration that has been triangulated into n triangles. First, replace the
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function f(x, y) above with a two variable polynomial function p2 of total degree 2 whose values

at the points (x1, y1), (x2, y2), and (x3, y3) and (x1+x2
2

, y1+y2
2

), (x2+x3
2

, y3+y3
2

), and (x3+x1
2

, y3+y1
2

) are

equal to the values at f(x, y) at the same points. Then the “signed volume” under the surface

given by p2(x, y) is the “volume” of the paraboloidal triangular prism with its base Di, the lengths

of the 3 parallel edges equal to f(x1, y1), f(x2, y2), f(x3, y3), and the heights at the midpoints of

the sides are equal to the values of f(x, y) at those midpoints. This gives us a “cubature”[3] rule

in two variables that is analogous to Simpson’s rule in one-variable and is given by

∫∫
Di

f(x, y)dxdy ≈ Area(Di)

3

[
f(
x1 + x2

2
,
y1 + y2

2
) + f(

x2 + x3
2

,
y2 + y3

2
) + f(

x3 + x1
2

,
y3 + y1

2
)

]
,

(2.4.2)

where Di ∈ D for all i = 1, 2, . . . , n. Although the 2D Simpson’s rule is the main method in which

our triangulation is implemented, the midpoint and trapezoidal equivalents described in [3] are

also used for added performance comparison.

For the midpoint rule, let (s, t) be the centroid of Di and replace the function f(x, y) from

2.4.1 with the constant function p0(s, t). The “signed volume” under the surface given by p0 is the

“volume” of the triangular prism with the base Di and height f(s, t). This gives the “cubature”

rule as

∫∫
Di

f(x, y)dxdy ≈ Area(Di)f(s, t) = Area(Di)f

(
x1 + x2 + x3

3
,
y1 + y2 + y3

3

)
,

where Di ∈ D for all i = 1, 2, . . . , n. Now replace the function f(x, y) in 2.4.1 with a two variable

polynomial function p1 of total degree 1 whose value at (xi, yi) is equal to f(xi, yi) for i = 1, 2, 3.

The “signed volume” under the surface given by p1(x, y) is the “volume” of the obliquely cut

triangular prism with base Di, and the length of the three parallel edges are f(x1, y1), f(x2, y2)

and f(x3, y3). This gives us the two variable trapezoidal rule defined by

∫∫
Di

f(x, y)dxdy ≈ Area(Di) [f(x1, y1) + f(x2, y2) + f(x3, y3)] ,

where Di ∈ D for all i = 1, 2, . . . , n [3].
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2.5 Monte Carlo Integration

Monte Carlo methods are numerical methods that depend on taking random samples to ap-

proximate their results. Monte Carlo integration applies this process to the numerical estimation

of integrals. In this section some of the fundamental properties of Monte Carlo integration as de-

scribed by Jarosz are given. All of the definitions and descriptions below are consistent with those

found in [4] but can be found in most sources that discuss probability and Monte Carlo methods.

Suppose random variable X, then the cumulative distribution function, or CDF, of X is defined

as

cdf(x) = P {X ≤ x} (2.5.1)

The corresponding probability density function, or PDF, is defined as the derivative of CDF, i.e.

pdf(x) =
d

dx
cdf(x). (2.5.2)

From 2.5.1 and 2.5.2, an important relationship forms that allows us to determine the probability

that a random variable lies between two values:

P {a ≤ x ≤ b} =

∫ b

a

pdf(x)dx.

Now the expected values and variance of a random variable are investigated. Consider the

random variable Y = f(x) over a domain µ(x) then the expected value is defined as

E [Y ] =

∫
µ(x)

f(x)pdf(x)dx, (2.5.3)

and the variance is defined as

σ2 [Y ] = E
[
(Y − E [Y ])2

]
, (2.5.4)

where σ is the standard deviation and is the square root of the variance. From 2.5.3 and 2.5.4, it

can easily be shown that the following will hold for any constant a:
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E [aY ] = aE [Y ] , (2.5.5)

σ2 [aY ] = a2σ2 [Y ] .

Furthermore, the expected value of the sum of random variables Yi is equal to the sum of their

expected values:

E

[∑
i

Yi

]
=
∑
i

E [Yi] . (2.5.6)

Combining these properties, 2.5.4 simplifies to the following:

σ2 [Y ] = E
[
Y 2
]
− E [Y ]2 .

Now, suppose f(x) is to be integrated over [a, b]:

F =

∫ b

a

f(x)dx.

The integral, F , can then be approximated by averaging samples of the function f at random

points from a uniform distribution between a and b. Given a set of n uniform random variables

Xi ∈ [a, b) with corresponding PDF of 1
b−a , then the Monte Carlo estimator for F is

〈F n〉 = (b− a)
1

n− 1

n∑
i=0

f(Xi). (2.5.7)

Since 〈F n〉 is a function of Xi, then it is a random variable as well, and this notation will be used

to denote that 〈F n〉 is an approximation of F using n samples. Intuitively, equation 2.5.7 can be

viewed two ways: 1) the estimator in 2.5.7 computes the mean value of the function f(x) over [a, b]

and multiplies by length of the interval (b − a), or 2) by moving (b − a) inside the summation,

the estimator is choosing the height at a random evaluation of the function and averaging a set of

rectangular areas computed by multiplying this height by the length of the interval (b − a). It is

now easy to show that the expected value of 〈F n〉 is F :
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E [〈F n〉] = E

[
(b− a)

1

n

n−1∑
i=0

f(Xi)

]

= (b− a)
1

n

n−1∑
i=0

E [f(Xi)] from eqns. 2.5.5 and 2.5.6

= (b− a)
1

n

n−1∑
i=0

∫ b

a

f(x)pdf(x)dx from eqn. 2.5.3

=
1

n

n−1∑
i=0

∫ b

a

f(x)dx since pdf(x) =
1

b− a

=

∫ b

a

f(x)dx

= F.

As n increases, the estimator 〈F n〉 becomes closer to F , and due to the Strong Law of Large

Numbers, the exact solution is guaranteed in the limit:

P
{

lim
n→∞
〈F n〉 = F

}
= 1.

For the one-dimensional case, the convergence rate is determined by looking at the convergence

rate of the estimator’s variance:

σ [〈F n〉] ∝ 1√
n
.

Even though the convergence rate is slow compared to other one-dimensional techniques, it does

not get exponentially worse like many other techniques as the dimension increases. For instance,

a deterministic quadrature requires using nd samples for a d-dimensional integral, but the Monte

Carlo techniques provide the ability to choose any arbitrary number of points. The estimator,〈F n〉,

can easily be extended to multiple dimensions by using random variables drawn from arbitrary

PDFs and solving the following:

F =

∫
ω

f(x̄)dx̄,

where x̄ = x1, . . . , xd. Equation 2.5.7 now changes to
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〈F n〉 =
1

n

n−1∑
i=0

f(Xi)

pdf(Xi)
.

Similar to before when showing E [〈F 2〉] = F for pdf(x) = 1
b−a , the extended estimator has the

correct expected value:

E [〈F n〉] = E

[
1

n

n−1∑
i=0

f(Xi)

pdf(Xi)

]

=
1

n

n∑
i=0

E

[
f(Xi)

pdf(Xi)

]

=
1

n

n−1∑
i=0

∫
ω

f(x̄)

pdf(x̄)
pdf(x̄)dx̄

=
1

n

n−1∑
i=0

∫
ω

f(x̄)dx̄

=

∫
ω

f(x̄)dx̄

= F.

As mentioned above the convergence rate stays constant at O( 1√
n
) with the added dimensions, so

σ [〈F n〉] ∝ 1√
n
.

The convergence rate can be improved by a variety of techniques that mainly deal with reducing

the variance using more advanced sampling techniques, but for our purposes, the convergence rate

at O( 1√
n
) is satisfactory.
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Chapter 3

IMPLEMENTATION AND NUMERICAL RESULTS

In this chapter the implementation of the algorithms and theory that was presented in the

previous chapters is given. Then test functions are defined, and the numerical results given by

testing our implementations versus other known techniques discussed in Chapter 2 are also dis-

cussed. First, the adaptive Newton-Cotes quadrature discussed in Section 1.2 is tested against

adaptive Simpson’s. Then adaptive Simpson’s is compared to Simpson’s rule over the Delaunay

triangulation described in equation (2.4.2). Finally, the performance of all of the techniques are

compared to each other simultaneously.

3.1 Implementation

In Sections 2.1 and 2.2, the Bowyer-Watson algorithm and the method dtris2 were inves-

tigated. These methods were combined to create a hybrid method that is based mainly on the

Bowyer-Watson algorithm. Starting with an array, P , that contains the four points representing the

vertices of the rectangular integration domain and one randomly chosen point within the rectangle,

the initial triangulation is constructed using the dtris2 method. From this initial triangulation,

dtris2 produces three outputs: the number of triangles, a matrix verts that gives the vertices

of each triangle and another matrix nabes that gives the neighbor relations of the triangles. The

columns of each matrix refers to a triangle in the triangulation, i.e. column one refers to triangle

T1, column two refers to triangle T2, etc. The values of verts are indices referencing the location

of the point within P , and the values of nabes are positive or negative and reference a triangle
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(> 0) or a boundary edge (< 0). For example, let

verts =


2 5 5 2

1 1 3 5

5 3 4 4


and

nabes =


−7 1 2 1

2 −10 −14 3

4 3 4 −3


then T1 has vertices visited counterclockwise P2, P1 and P5, and T1 also neighbors triangles T2 and

T4 along the edges P1P5 and P5P2 with edge P2P1 being a boundary edge.

Then the affected region is found by determining which triangles’ circumcircles contain the

new point. The boundary of the affected region is then stored in a temporary matrix with the

newly inserted point. The region is then triangulated using dtris2. If the region is concave then

the triangles that are created from bridging the concave vertices are deleted. If the region is convex

then the triangulation is correct, and there is no need to delete any triangles.

Now that the affected region is triangulated, it needs to inserted back into the main trian-

gulation. To do this, the referencing between the neighbor and vertex matrices of the affected

region need to be inserted into the neighbor and vertex matrix for the main triangulation. First

the point references in the vertex matrix are corrected. When triangulating the affected region

with m points, dtris2 labels the points 1, 2, . . . ,m, so the references need to be changed to their

original numbering from P that consists of n points. Similar to the vertex matrix for the affected

region, the neighbor matrix is also updated to reflect the numbering of the whole triangulation.

While correcting the numbering of nabes, the entries that are boundary edges for the affected

region are set to 0 if they are not a boundary edge for the entire triangulation. If they are a

boundary edge for both the affected region and larger triangulation, then the entry remains the

same. Then the vertex and neighbor matrices for the affected region are merged with verts and

nabes corresponding to the overall triangulation. This is done by first noticing that if m triangles

were affected, then the new triangulation consists of m + 2 triangles, so each column in nabes

is filled with one from the affected region’s triangulation and the two extra triangles are placed
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onto the end. The corresponding columns in the vertex matrix for the affected region are added

in the same manner to verts. The vertex matrix is now complete and describes the triangulation

with the new point added. Lastly, all of the zeros in nabes are changed to their correct triangle

references, and all of the negative entries are updated as well. The triangulation is now complete

with correct vertex and neighbor matrices, verts and nabes, respectively. The code can be found

in Appendix D.

The algorithm described above is used in the cubature rules described in Section 2.4. The

implementation of each of the cubature rules follows the same general outline with the only differ-

ence being at what points the function is being evaluated as given by each rule. First, an initial

triangulation is found using dtris2 along with the areas of each triangle. The areas are then placed

array in increasing order, and a matrix containing the boundary edge information is also created.

Then the functions is “integrated” using one of the three cubature rules described in [3] (Simpson’s,

midpoint and trapezoid). The error is then calculated to see if it is within the given tolerance.

If the volume is not within the given tolerance then the triangle with largest area is selected for

refinement, and its centroid is computed. This point becomes the new point to be inserted and

the algorithm above is run to determine the new triangulation. After triangulating, the areas of

the triangles affected during the triangulation are deleted, and the new ones are calculated and

sorted in ascending order. The two arrays of areas are then merged together. This process repeats

until the volume is within the given tolerance or a maximum number of iterations is reached.

This method involving the cubature rules is not implemented adaptively, so the error at each step

is compared to the previous step. However, the Voronoi Newton-Cotes method is implemented

adaptively similar to our base case of the two-dimensional adaptive Simpson’s Rule.

3.2 Integrands

In [14], Yu and Sheu examine solving the following double integral using the Mean-Value

theorem for integrals:

∫ 2π

0

∫ R

0

f(r, θ, s, φ, n)drdθ,
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where s, φ,R ∈ R, R > 0, n ∈ Z+ and f(r, θ, s, φ, n) is one of the following functions:

A(r, θ, s, φ, n) = r exp

[
n∑
k=0

(
n

k

)
sn−krk cos [(n− k)φ+ kθ]

]
cos

[
n∑
k=0

(
n

k

)
sn−krk sin [(n− k)φ+ kθ]

]
,

(3.2.1)

B(r, θ, s, φ, n) = r exp

[
n∑
k=0

(
n

k

)
sn−krk cos [(n− k)φ+ kθ]

]
sin

[
n∑
k=0

(
n

k

)
sn−krk sin [(n− k)φ+ kθ]

]
,

(3.2.2)

C(r, θ, s, φ, n) = r sin

[
n∑
k=0

(
n

k

)
sn−krk cos [(n− k)φ+ kθ]

]
cosh

[
n∑
k=0

(
n

k

)
sn−krk sin [(n− k)φ+ kθ]

]
,

(3.2.3)

D(r, θ, s, φ, n) = r cos

[
n∑
k=0

(
n

k

)
sn−krk cos [(n− k)φ+ kθ]

]
sinh

[
n∑
k=0

(
n

k

)
sn−krk sin [(n− k)φ+ kθ]

]
,

(3.2.4)

E(r, θ, s, φ, n) = r cos

[
n∑
k=0

(
n

k

)
sn−krk cos [(n− k)φ+ kθ]

]
cosh

[
n∑
k=0

(
n

k

)
sn−krk sin [(n− k)φ+ kθ]

]
,

(3.2.5)

F (r, θ, s, φ, n) = r sin

[
n∑
k=0

(
n

k

)
sn−krk cos [(n− k)φ+ kθ]

]
sinh

[
n∑
k=0

(
n

k

)
sn−krk sin [(n− k)φ+ kθ]

]
.

(3.2.6)

Even though n can be an any integer such that n ≥ 1, it is only chosen to be between 1 and 3.

When n is increased, the results would become quite large (≥ 106) most of the time, which made it

more difficult to get a good graph and harder to determine what could be causing the inaccuracies.

The methods were also tested on functions of the form

∫ d

c

∫ b

a

xiyjdxdy

where a, b, c, d ∈ R, i, j ∈ Z+ and i+ j ≤ 5.

Analytical solutions for each f(r, θ, s, φ, n) is provided by Yu and Sheu, so the relative errors

of each trial could easily be calculated. Similarly, the analytical solutions for the monomials can

be found, so the relative error could easily be calculated.

3.3 Results

The Voronoi Newton-Cotes method is initially tested against Simpson’s rule on the set of

monomials described above. During the first several runs, the Voronoi sampling only chose 3
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additional points between our boundaries at each step similar to how Simpson’s rule finds the

three midpoints (quartiles) between the boundaries. For all of the simulations shown in the ta-

ble, a tolerance of ε = 0.0001 is used, and the function is integrated over four randomly chosen

points to create a rectangle with vertices a = −0.00884120840760527, b = 2.71855632151155, c

= 2.88900981641759, d = 3.44868288240732. The full results of one of the simulations are given

in Table E.1 in Appendix E, and the graphs of the functions are given in Table F.1 in Appendix

F. From Table 3.1, it is obvious that the Voronoi Newton-Cotes Method is exact (within machine

epsilon) for polynomials of degree two or less but is not always exact for the polynomials of degree

three. As given in Equation 1.2.3, this is expected since the interpolating polynomial is only exact

through degree two, and there is no additional degrees of accuracy since the error term is only

proportional to f (3). Also, it is clear that Simpson’s rule is exact through degree three as expected

as illustrated in Table 3.1.

Table 3.1. Condensed Voronoi Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (AS) on
Monomials with a = −0.00884120840760527, b = 2.71855632151155, c = 2.88900981641759, d =
3.44868288240732 and ε = 0.0001.

i j AS Time AS Rel. Error VNC Time VNC Rel. Error

0 0 0.008355225 1.45465E-16 0.007077289 0
0 1 0.000445179 1.83618E-16 0.000605689 1.83618E-16
0 2 0.000444923 1.15589E-16 0.000636664 1.15589E-16
0 3 0.000717303 1.45154E-16 0.028169894 4.20143E-08
1 0 0.00050585 0 0.000657144 0
1 1 0.000572153 1.35526E-16 0.000752119 2.71052E-16
1 2 0.000714487 3.41259E-16 0.000930037 3.41259E-16
2 0 0.000655608 1.18479E-16 0.000882165 1.18479E-16
2 1 0.000450042 4.48665E-16 0.000632312 1.49555E-16
3 0 0.000457722 1.16218E-16 0.498908685 8.96198E-08

For the higher degree (≥ 4) polynomials shown in Table E.1 in Appendix E, the Voronoi

Newton-Cotes method performs adequately giving four additional orders of accuracy for the given

epsilon in many cases. However, there are three cases that notably stand out: f(x, y) = x3y2,

f(x, y) = x4y1 and f(x, y) = x5, which are examined further in Table 3.2. Originally the maximum

number of iterations was set to 5000, and all three of those cases reached the maximum number,

so the maximum iterations was increased to see how many it would take to achieve a desirable

accuracy. When increasing the maximum iterations to 15000, the following results were found and
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are shown in Table 3.2. The relative errors again give us an additional four or five digits of accuracy

Table 3.2. 15000 Max Iteration Voronoi Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (AS)
on Monomials with a = −0.00884120840760527, b = 2.71855632151155, c = 2.88900981641759, d
= 3.44868288240732 and ε = 0.0001.

i j AS Time AS Rel. Error VNC Time VNC Rel. Error Iterations

3 2 0.000457210 0 3.063991277 1.30530E-08 6497
4 1 0.116197996 4.03868E-08 4.288516134 2.32547E-09 9069
5 0 0.211611352 7.10947E-08 7.329204530 3.50050E-08 14869

and even outperform adaptive Simpson’s rule on one of the runs. Unfortunately, the amount of

time taken spiked drastically. Since the desired accuracy was finally achieved, the next step was

to try to improve the speed of the method.

As stated above, the trials were initially run using the adaptive Voronoi Newton-Cotes with

the Voronoi sampling only being used for three additional points along each axis. When examining

the intermediate steps of both methods, the Voronoi Newton-Cotes had very long streaks of not

adding any values to the total volume. This meant it was spending a lot of time finding an accurate

enough approximation to be able to move on to the next quadrant. When looking at how the points

were generally distributed between the two values, there were large gaps on the tails of the interval

giving large areas to approximate over on the ends, which would then need more refinement. Since

Simpson’s rule uses the midpoints of each cell at every step, the empty space is filled much more

evenly than with the Voronoi sampling; therefore, Simpson’s rule was always using significantly

fewer iterations. In an effort to correct this, more points were sampled at each step (19 additional

for a total of 21 with the endpoints) but would only use the first, second and third quartiles of

the sampling. As shown in Table 3.3, the guaranteed accuracy through degree two for Voronoi

Newton-Cotes and degree three for Simpson’s rule remains unchanged. In Table E.2, the times for

the larger degree polynomials and did end up improving with the accuracy remaining roughly the

same as before. Since increasing the number of points helped the speed of the algorithm and also

gave us similar accuracy, the Voronoi sampling of 19 points over the three point method is used inn

the rest of the trials described in this thesis. Even with the additional increase in speed, adaptive

Simpson’s provides both better accuracy and speed on these simple functions overall, though. Now

both methods are tested on more complicated functions.
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Table 3.3. Condensed Voronoi Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (AS) on
Monomials with additional sampling and a = −0.00884120840760527, b = 2.71855632151155, c =
2.88900981641759, d = 3.44868288240732 and ε = 0.0001.

i j AS Time AS Rel. Error VNC Time VNC Rel. Error

0 0 0.001667055 0 0.005648840 1.45465E-16
0 1 0.000532987 0 0.001388274 3.67237E-16
0 2 0.000424188 2.31179E-16 0.001337843 0
0 3 0.000500475 1.45154E-16 0.022388000 4.90503E-08
1 0 0.000477947 0 0.001335283 4.29461E-16
1 1 0.000468731 1.35526E-16 0.001387250 0
1 2 0.000577018 0 0.001409522 1.70629E-16
2 0 0.000573178 2.36958E-16 0.001332467 4.73917E-16
2 1 0.000468475 2.99110E-16 0.001327091 1.49555E-16
3 0 0.000555770 1.16218E-16 0.432514594 4.00847E-08

Next tests were run on the functions described above from [14] using Voronoi Newton-Cotes

and Simpson’s rule. For all of the simulations shown in Table 3.4, again a tolerance of ε = 0.0001

is used, and the function is integrated over the rectangle given by a = 0, R = 5.480255137, c = 0,

d = 2π with R being a randomly chosen point. The parameters s, φ and n are randomly chosen

to be s = 2.444171059, φ = 5.69125859039527 and n = 1.

Table 3.4. Voronoi Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (AS) on Functions A-F
with a = 0, R = 5.480255137, c = 0, d = 2π, s = 2.444171059, φ = 5.69125859039527, n = 1 and
ε = 0.0001.

f
Type

AS Time AS Rel. Error VNC Time VNC Rel. Error

A 11.8374406 2.729767377 16.11166813 1.182096082
B 12.04885046 1.418534859 16.38065796 0.842777814
C 12.13505427 1.611736343 16.61918614 1.067504856
D 13.03777242 2.358085297 17.13948942 0.634025761
E 12.37735201 2.191400672 18.07931543 0.806867337
F 12.78167719 1.697312935 17.24927674 0.899201229

It is clear to see from Table 3.4 that neither Simpson’s rule nor the Voronoi Newton-Cotes

method performs well on the six functions. Looking at the graphs of these functions in Table

3.5, these functions have fairly sharp high and low peaks and are also oscillatory. Simpson’s rule

is known to break down with oscillatory functions, e.g. integrating |sin(x)| from [0, 2π] using

Simpson’s rule arrives at an area of 0 when the true area should be 4. Considering most of the
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functions appear to have equally high and low peaks, a similar cancellation could be affecting the

results. It is easy to see that the Voronoi Newton-Cotes method could also run into a similar

problem given the right function and “midpoint.”

Table 3.5. Graphs of Functions A-F with a = 0, R = 5.480255137, c = 0, d = 2π,
s = 2.444171059, φ = 5.69125859039527, n = 1 and ε = 0.0001.

Similar to our simulations comparing the methods on monomials, the results displayed in

Table 3.4 have a maximum number of iterations of 5000. As before, the maximum number of

iterations was increased, this time all the way to 20000, but this did not improve the accuracy by a

significant amount (rarely getting even one additional order of accuracy). Ignoring the accuracy and

looking at the times it took to complete the simulation, Simpson’s rule still trumps the Newton-

Cotes method. Since both of the simulations are now executing the same number of iterations

(5000), it is highly likely the time difference is attributed to the extra work the Voronoi Newton-

Cotes has to do to perform the extra sampling.

Now that the Voronoi Newton-Cotes method and Simpson’s rule have been compared against

each other, Simpson’s rule is now compared against the Simpson’s rule analog using the Delau-

nay triangulation, which will be called Simpson’s cubature rule, that was discussed in Section

2.4. Similar to the analysis performed above for the Voronoi Newton-Cotes and Simpson’s rule,
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the performances of Simpson’s rule and Simpson’s cubature rule will first be compared over the

monomials to make sure the expected guaranteed accuracies hold. Then they will be tested on

the higher degree monomials. Both methods use a tolerance of ε = 0.0001 over the rectangle a

= −1.62110966800282, b = −1.37432067059289, c = −3.3239379751915, d = −1.72003265166653.

The results for the entire simulation are given in Table E.3 in Appendix E. Looking at Table 3.6,

both Simpson’s rule and Simpson’s cubature rule perform well through degree three and two poly-

nomials, respectively. Simpson’s cubature rule does not give us the extra third order of accuracy

as shown earlier when comparing the Voronoi Newton-Cotes and Simpson’s rule, but it does yield

an additional two to three extra orders of accuracy, which is still quite adequate.

Table 3.6. Simpson’s Cubature Rule (SC) v. Adaptive Simpson’s Rule (AS) on Monomials with a
= −1.62110966800282, b = −1.37432067059289, c = −3.3239379751915, d = −1.72003265166653
and ε = 0.0001.

i j SC Time SC Rel. Error AS Time AS Rel. Error

0 0 0.016313693 2.80482E-16 0.000848376 2.80482E-16
0 1 0.005531337 7.78505E-16 0.000447996 6.67290E-16
0 2 0.006637502 5.11924E-16 0.000467707 5.11924E-16
0 3 0.025780223 2.19831E-05 0.000461051 2.54077E-16
1 0 0.005419978 1.87274E-16 0.000468731 1.87274E-16
1 1 0.005155789 1.48513E-16 0.000481531 1.48513E-16
1 2 0.009143973 3.05773E-06 0.000441084 6.83606E-16
2 0 0.005003726 4.99029E-16 0.000488443 7.48543E-16
2 1 0.005474249 2.78244E-06 0.000503547 3.95743E-16
3 0 0.004566226 1.31798E-07 0.000488187 0

When looking at their differences in speed, Simpson’s cubature rule is quite slow, even for

functions for which it is exact, compared to Simpson’s rule. Similar to the Voronoi Newton-Cotes

rule, Simpson’s cubature rule has to take the extra time to triangulate. The triangulation is slightly

more time consuming than the Voronoi sampling, so this is why there is a larger gap on average

between Simpson’s cubature rule and Simpson’s rule than the gap between Voronoi Newton-Cotes

and Simpson’s rule.

Looking at the higher degree (≥ 4) polynomials in Table E.3, Simpson’s cubature rule performs

about the same as it did for degree three in terms of accuracy. In the majority of cases, it gives at

least one additional order of accuracy but does not perform as well as adaptive Simpson’s. There

are a couple exceptions where they perform equally as well or the Simpson’s cubature performs
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better such as f(x, y) = x4 and f(x, y) = x5. Since Simpson’s cubature is always slower or the

same speed as Simpson’s rule, it is easy to see that it does an adequate job, but Simpson’s rule

outperforms it in all categories for the simple functions, which is to be expected.

Table 3.7. Voronoi Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (AS) on Functions A-F
with a = 0, R = 1, c = 0, d = 2π, s = 1.83468664481796, φ = 5.71912370455419, n = 1 and ε =
0.0001.

f
Type

SC Time SC Rel. Error AS Time AS Rel. Error

A 0.181542123 0.008030536 2.271972965 3.01322E-08
B 0.162510249 0.009020936 2.453636943 2.98341E-08
C 0.091698284 0.000826563 1.233137896 3.37518E-07
D 0.263396794 0.125639992 1.315914670 1.77746E-05
E 0.447086736 0.054360408 1.355982622 2.10402E-06
F 0.071517238 0.025073541 1.362870489 5.59632E-08

Simpson’s cubature and Simpson’s rule are now compared on the functions A-F . Table 3.7

shows that even though adaptive Simpson’s gives much better accuracy, Simpson’s cubature is

either quicker or the same speed as Simpson’s rule. Looking at the figures in Table 3.8, the graphs

still have peaks and valleys like the previous example, but they are much less steep (only reaching

as high as ten as opposed to several thousand in the previous example) and do not seem to be as

oscillatory as the previous example. This definitely helps the accuracy of each method, but mainly

helps Simpson’s rule. Over the many simulations run, it was noticed that the convergence for these

functions is quite slow. Since Simpson’s cubature is not implemented adaptively, the method will

stop when the current iteration and the previous iteration are within ε of each other. These two

facts combined lead to the method terminating too early, which also explains its performance in

speed.

Lastly, all of the methods presented in the previous chapters including Monte Carlo integration,

midpoint rule, and trapezoid rule are compared against one another. Tables E.4 and E.5 in

Appendix E contain the accuracy and run times for each method, and the graphs of each monomial

are given in Table F.2 in Appendix F. Table 3.9 confirms that the midpoint Delaunay triangulation

is accurate through constant functions (with a bonus of accuracy through degree one), and the

trapezoidal Delaunay triangulation method is accurate through degree one, but both of their

accuracies dip significantly as the polynomials have higher degree.
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Table 3.8. Graphs of Functions A-F with a = 0, R = 1, c = 0, d = 2π, s = 1.83468664481796,
φ = 5.71912370455419, n = 1 and ε = 0.0001.

The Monte Carlo method is also shown in Table 3.9 and was run for 50000 iterations. This

number proved to be large enough to give a competitive accuracy without taking a significant

amount of time. Since the Monte Carlo method is not a deterministic quadrature like the other

methods, there is no guaranteed exactness for a specific degree (except when f(x, y) is constant), so

it does not perform as well with regards to accuracy for the lower degree polynomials when the other

methods are exact. However, Table 3.9 illustrates that it still does a good job of approximating

the functions and consistently provides three digits of accuracy.

For the lower degree (≤ 3) polynomials given in Table E.4, adaptive Simpson’s still remains

the superior choice in both time and accuracy. The Voronoi Newton-Cotes and Simpson’s cubature

rule perform giving several digits of accuracy and occasionally matching adaptive Simpson’s rule.

Both still lag behind in speed as shown in Table E.5, which is consistent with the analysis provided

above.

Now the methods are compared on monomials with degree ≥ 4. Two interesting cases are

examined further with their results presented in Tables 3.9 and 3.10 as well. When f(x, y) =

x2y2 our Voronoi Newton-Cotes method and Simpson’s rule provide exact solutions with Monte
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Carlo and Simpson’s cubature rule performing respectably giving three digits of accuracy. Even

though Simpson’s rule and the Voronoi Newton-Cotes provide the same level of accuracy, adaptive

Simpson’s rule is roughly three times faster than the Voronoi Newton-Cotes, so Simpson’s rule is

still a superior choice. On the other hand, Voronoi Newton-Cotes still provides better accuracy

and speed than the other four methods.

When f(x, y) = x5, it is clear that with respect to accuracy Simpson’s rule, Simpson’s cuba-

ture and Monte Carlo perform the best with the midpoint and trapezoid Delaunay triangulations

performing about the same and Voronoi Newton-Cotes performing the worst. However, when re-

viewing each method’s performance with respect to time, adaptive Simpson’s rule is the second

worst performer with Simpson’s cubature rule and Monte Carlo performing the best. As discussed

earlier with both Simpson’s rule and the Voronoi Newton-Cotes method, additional iterations can

be expensive with respect to time. The Voronoi Newton-Cotes and Simpson’s rules are still capped

at only 5000 iterations, but in this case, that amount is still too expensive. If needed, the itera-

tions could be increased to gain more accuracy with Simpson’s rule, but given its performance on

this example, the added digits of accuracy could be extremely expensive with time. The Voronoi

Newton-Cotes method performs the worst in both accuracy and speed, which could be improved

by increasing the number of sampled points to greater than 19, but based on previous results, this

could marginally increase the accuracy but not improve the speed at all.

Table 3.9. Condensed accuracy only for Midpoint Delaunay triangulation (MDT), Trapezoid
Delaunay triangulation (TDT), Simpson’s cubature (SC), Adaptive Simpson’s (AS), Vorono
Newton-Cotes (VNC) and Monte Carlo (MC) on Monomials with a = 2.51778949114543, b =
5.67194769326589, c = −2.98410546965195, d = 5.22175955533465 and ε = 0.0001.

i j
MDT Rel.

Error
TDT Rel.

Error
SC Rel.
Error

AS Rel.
Error

VNC Rel.
Error

MC Rel.
Error

0 0 1.37263E-16 1.37263E-16 0 1.37263E-16 2.74525E-16 0
0 1 1.22684E-16 1.22684E-16 1.22684E-16 0 1.22684E-16 0.005362692
1 0 1.34083E-16 0 1.34083E-16 0 0 0.001456460
2 2 0.041796026 0.391609471 0.003020576 2.90959E-16 2.90959E-16 0.006233964
5 0 0.022003814 0.087866804 0.001089610 0.009776169 0.888547317 0.004548625

Lastly, each of the methods is compared over the functions A-F . As seen previously and now in

Table 3.11, none of the methods provide much accuracy on the oscillatory functions. Monte Carlo

is a little bit of an exception since it provides two to three digits of accuracy for all but function A.

36



Table 3.10. Condensed time only for Midpoint Delaunay triangulation (MDT), Trapezoid
Delaunay triangulation (TDT), Simpson’s cubature (SC), Adaptive Simpson’s (AS), Vorono
Newton-Cotes (VNC) and Monte Carlo (MC) on Monomials with a = 2.51778949114543, b =
5.67194769326589, c = −2.98410546965195, d = 5.22175955533465 and ε = 0.0001.

i j
MDT
Time

TDT Time SC Time AS Time VNC Time MC Time

0 0 0.264221362 0.048522268 0.021801254 0.006768572 0.017867854 0.352805694
0 1 0.010175386 0.009185188 0.005659591 0.000578810 0.004228822 0.308191995
1 0 0.005873861 0.00499195 0.005412554 0.000433404 0.001324019 0.305286168
2 2 0.172706884 0.024697353 0.053885158 0.000398588 0.001289971 0.303935782
5 0 0.159462088 0.113784976 0.038072452 1.719201267 6.147717949 0.30707687

From Table 3.11, Simpson’s rule and the Voronoi Newton-Cotes both perform extremely poorly

with regards to accuracy and time. Analyzing the graphs of the functions in Table 3.13, the

functions again have fairly steep peaks and valleys with a couple of graphs maxing out in the

low thousands. As discussed earlier, the high peaks and valleys that appear in all of the graphs

could cause issues with the Newton-Cotes based methods.The maximum iterations could also be

increased to greater than 5000, but this would only increase the run times of adaptive Simpson’s

and Voronoi Newton-Cotes, which are already extremely long compared to the other methods as

shown in 3.12.

Table 3.11. Accuracy only for Midpoint Delaunay triangulation (MDT), Trapezoid Delaunay
triangulation (TDT), Simpson’s cubature (SC), Adaptive Simpson’s (AS), Vorono Newton-Cotes
(VNC) and Monte Carlo (MC) on functions A-F with a = 0, R = 4.310689426030381, c = 0,
d = 2π, s = 2.35651382285138, φ = 0.387434275655817, n = 1 and ε = 0.0001.

f
Type

MDT Rel.
Error

TDT Rel.
Error

SC Rel.
Error

AS Rel.
Error

VNC Rel.
Error

MC Rel.
Error

A 0.683714451 10.03800011 0.352786127 1.554339606 1.061044439 0.132485128
B 0.6990499 8.567750035 0.471139253 1.418966123 1.049486153 0.020218433
C 0.607982921 2.107507132 0.437277931 1.263018939 0.72749257 0.081858071
D 0.620570225 0.185445349 0.026569987 2.142429562 1.288711192 0.009542655
E 0.017144236 2.145806657 3.902967839 1.81321621 1.228863182 0.002194894
F 4.43223692 2.388462115 3.178847867 1.369362554 1.176581187 0.03489333
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Table 3.12. Time only for Midpoint Delaunay triangulation (MDT), Trapezoid Delaunay triangu-
lation (TDT), Simpson’s cubature (SC), Adaptive Simpson’s (AS), Vorono Newton-Cotes (VNC)
and Monte Carlo (MC) on functions A-F with a = 0, R = 4.310689426030381, c = 0, d = 2π,
s = 2.35651382285138, φ = 0.387434275655817, n = 1 and ε = 0.0001.

f
Type

MDT
Time

TDT Time SC Time AS Time VNC Time MC Time

A 0.155683822 0.160757179 0.173916472 12.23576955 17.99852238 2.672148681
B 0.240922523 0.183981267 0.16088441 12.23258725 17.25799038 2.696071642
C 0.268317065 0.204237321 0.124068137 12.82676935 17.25403164 2.747159004
D 0.476965478 0.105453539 0.230742016 12.74109161 17.56966932 2.702983829
E 0.296183923 0.241752978 0.029039326 12.81275861 17.46210201 2.725147064
F 0.085615529 0.193632883 0.052914928 12.95576287 17.38970056 2.761395790

Table 3.13. Graphs of Functions A-F with a = 0, R = 4.310689426030381, c = 0, d = 2π,
s = 2.35651382285138, φ = 0.387434275655817, n = 1 and ε = 0.0001.
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Chapter 4

CONCLUSIONS AND FUTURE WORK

This thesis presents two methods for solving a numerical integration problem: a second de-

gree Newton-Cotes method combined with a Voronoi sampling technique and using a Delaunay

triangulation to divide the integration domain into triangles to integrate over. These two methods

are compared to a midpoint and trapezoid rule over triangles, adaptive Simpson’s rule and Monte

Carlo integration. In Chapter 3 the results are presented and show that the Voronoi Newton-Cotes

method and Delaunay triangulation Simpson’s rule perform adequately on simple functions such

as monomials, but neither performs nearly as well as adaptive Simpson’s with regards to accuracy

and speed. When comparing their performances over more complicated functions such as those

found in the first part of Section 3.2, all of the methods perform poorly in accuracy and run time

and are not viable methods for solving these problems. In the end, the Voronoi Newton-Cotes and

Delaunay triangulation methods can provide adequately accurate results most of the time, but

adaptive Simpson’s is still more reliable in both accuracy and speed.

There are a couple improvements that could be made to the Simpson’s rule with Delaunay

triangulation. To improve the accuracy of the Delaunay cubature rule, it could be implemented

adaptively by comparing locally instead of globally after each step. In the hybrid algorithm the

dtris2 method and the Bowyer-Watson algorithm are combined. Since the triangulation puts the

method at a disadvantage compared to adaptive Simpson’s rule, the algorithm could be improved

to attempt to reduce the time taken to triangulate. To do this, the Bowyer-Watson algorithm

could be implemented using an object-oriented language such as Java and create a data structure

that could hold all of the information for the triangle such as its vertices, neighbors and centroid.

This would eliminate the use of the dtris2 method entirely, which could improve the run time of

the triangulation. The next step would be to perform a similar analysis in higher dimensions to

see how our particular method handles the curse of dimensionality, which most methods struggle
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to handle.
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Appendix A

VORONOI SAMPLING MATLAB CODE

1 function y = Voronoi6 ( a , b , n o o f p t s )
2

3% Voronoi6 samples p o i n t s between a and b accord ing to the midpoint
o f

4% voronoi c e l l s .
5

6 x (1 , 1 ) = 1 ;
7 x (1 , 2 ) = a ;
8 x (2 , 1 ) = 3 ;
9 x (2 , 2 ) = a + (b a )∗rand (1 ) ;
10 x (3 , 1 ) = 2 ;
11 x (3 , 2 ) = b ;
12

13

14

15 n = 3 ;
16 numpts = 3 ;
17

18 for j = 0 : no o f p t s 2
19 V = zeros (n+1 ,1) ;
20 V1 = zeros (n+1 ,1) ;
21 x1 = sort rows (x , 2 ) ;
22

23

24% Find Midpoints
25 for k = 1 : n 1
26 V(1) = a ;
27 V( k+1) = ( x1 ( k+1 ,2)+x1 (k , 2 ) ) /2 ;
28 V(n+1) = b ;
29 end
30

31% Find Voronoi C e l l s
32 for i = 1 : n
33 V1(1) = 0 ;
34 V1( i +1) = V( i +1) V( i ) ;
35
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36 end
37

38 mul t ip l e = f a l s e ;
39 maxwidth = 0 ;
40 maxrow = 2 ;
41

42 % Determine where the max width o f a V c e l l occurs
43 for q = 2 : n+1
44 i f abs (V( q ) V(q 1 ) )>=maxwidth
45 i f abs (V( q ) V(q 1 ) )>maxwidth
46 maxwidth = abs (V( q ) V(q 1 ) ) ;
47 maxrow = q ;
48 else
49 mul t ip l e = true ;
50 end
51 end
52 end
53

54 newpt = (V(maxrow 1 ) + V(maxrow) ) /2 ;
55

56 % Determine where the p o i n t w i l l go
57 for r = numpts : 1 : 2
58 i f newpt<x1 ( r , 2 ) && newpt>x1 ( r 1 , 2 )
59 newrow = r ;
60 end
61 end
62

63% newrow
64 % S h i f t a l l t he p t s down to make p l a c e f o r new pt
65

66 for s = numpts : 1 : newrow
67 x1 ( s +1 , : ) = x1 ( s , : ) ;
68 end
69

70 % Add new pt in the vacated row
71 n = n+1;
72 x1 (newrow , 1 ) = numpts+1;
73 x1 (newrow , 2 ) = newpt ;
74 x1 (newrow , 3 ) = 0 ;
75 numpts = numpts+1;
76

77 x = x1 ;
78 end
79

80 y = x ( : , 2 ) ’ ;
81

82 end
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Appendix B

VORONOI NEWTON-COTES MATLAB CODE

1 function [ approx , count ] = vadapt3 (a , b , c , d , to l , s , phi , n , exp1 , exp2 ,
funcID )

2

3% Area o f e n t i r e g r i d f o r e p s i l o n purposes
4A = (b a ) ∗(d c ) ;
5

6 l e v e l = 1 ;
7NQ = 0 ;
8

9 approx = 0 ;
10 bool = 1 ;
11 count = 0 ;
12

13 coords = [ 1 , 3 , 1 , 3 ;
14 3 , 5 , 1 , 3 ;
15 3 , 5 , 3 , 5 ;
16 1 , 3 , 3 , 5 ] ;
17

18 while bool == 1 && count < 15000
19 count = count + 1 ;
20% a
21% b
22% c
23% d
24 % Determining 3 new voronoi p o i n t f o r the p a r t i c u l a r quadrant
25 x1 = Voronoi6 ( a , b , 3 ) ;
26 y1 = Voronoi6 ( c , d , 3 ) ;
27

28 x=x1 ;
29 y=y1 ;
30% x = [ x1 (1) , x1 (6) , x1 (11) , x1 (16) , x1 (21) ] ;
31% y = [ y1 (1) , y1 (6) , y1 (11) , y1 (16) , y1 (21) ] ;
32 % Area o f quadrant to determine p o r t i o n o f e n t i r e g r i d
33 A hat = (b a ) ∗(d c ) ;
34

35
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36 % Simpson ’ s over whole area then sum of simpson ’ s over 4 e q u a l
quadrants

37 Q = simp ( x (1 ) , x (3 ) , x (5 ) , y (1 ) , y (3 ) , y (5 ) , s , phi , n , exp1 , exp2 , funcID
) ;

38 Q1 = simp ( x (1 ) , x (2 ) , x (3 ) , y (1 ) , y (2 ) , y (3 ) , s , phi , n , exp1 , exp2 ,
funcID ) ;

39 Q2 = simp ( x (3 ) , x (4 ) , x (5 ) , y (1 ) , y (2 ) , y (3 ) , s , phi , n , exp1 , exp2 ,
funcID ) ;

40 Q3 = simp ( x (3 ) , x (4 ) , x (5 ) , y (3 ) , y (4 ) , y (5 ) , s , phi , n , exp1 , exp2 ,
funcID ) ;

41 Q4 = simp ( x (1 ) , x (2 ) , x (3 ) , y (3 ) , y (4 ) , y (5 ) , s , phi , n , exp1 , exp2 ,
funcID ) ;

42 Q hat = Q1+Q2+Q3+Q4 ;
43

44 QQ = [ abs (Q1) ,abs (Q2) ,abs (Q3) ,abs (Q4) ] ;
45 pushOrder = [ 1 , 2 , 3 , 4 ] ;
46 [QQ1, pO1 ] = bubbleSort (QQ, pushOrder ) ;
47

48 epse s ( count ) = ( A hat/A)∗ t o l ;
49 Qs( count ) = Q Q hat ;
50

51 i f (abs ( ( A hat/A)∗ t o l ) == 0)
52 disp ( ’ Oops ’ ) ;
53 e l s e i f abs (Q Q hat ) > ( A hat/A)∗ t o l
54 l e v e l = l e v e l + 1 ;
55 NQ = NQ + 1 ;
56

57 % Pushing 4 corners o f quadrants onto s t a c k wi th l e v e l and
e p s i l o n

58% p i l e (NQ, : ) = push ( x (1) , x (3) , y (3) , y (5) , l e v e l , t o l ) ;
59% p i l e (NQ+1 ,:) = push ( x (3) , x (5) , y (3) , y (5) , l e v e l , t o l ) ;
60% p i l e (NQ+2 ,:) = push ( x (3) , x (5) , y (1) , y (3) , l e v e l , t o l ) ;
61% p i l e (NQ+3 ,:) = push ( x (1) , x (3) , y (1) , y (3) , l e v e l , t o l ) ;
62 for i 4 = 1 :4
63 p i l e (NQ + i 4 1 , : ) = push ( x ( coords (pO1( i 4 ) ,1 ) ) , x (

coords (pO1( i 4 ) ,2 ) ) , . . .
64 y ( coords (pO1( i 4 ) ,3 ) ) , y (

coords (pO1( i 4 ) ,4 ) ) , l e v e l , t o l ) ;
65 end
66

67 NQ = NQ + 3 ;
68 else
69 approx = approx + Q hat ;
70 end
71

72 % t a k i n g top quadrant o f f top o f s t a c k & r e a s s i g n v a r i a b l e s
73 i f NQ>0
74 z hat = pop ( p i l e ,NQ) ;

46



75

76

77 a = z hat (1 ) ;
78 b = z hat (2 ) ;
79 c = z hat (3 ) ;
80 d = z hat (4 ) ;
81 l e v e l = z hat (5 ) ;
82 t o l = z hat (6 ) ;
83 NQ = NQ 1 ;
84 else
85 bool = 0 ;
86

87 end
88

89 [ epse s ; Qs ] ;
90 end
91

92

93 end
94

95 function s1 = simp ( alpha , v1 , beta ,gamma, w1 , de l ta , s , phi , n , exp1 , exp2 ,
funcID )

96 c1 = ( v1 alpha ) /(beta v1 ) ;
97 mu = beta v1 ;
98

99 h = mu∗(1+c1 ) /(6∗ c1 ) ;
100 s1 = h∗ ((2∗ c1 1 ) ∗simp2 ( alpha ,gamma, w1 , de l ta , s , phi , n , exp1 , exp2 ,

funcID ) + . . .
101 (1+c1 ) ˆ2∗ simp2 ( v1 ,gamma, w1 , de l ta , s , phi , n , exp1 , exp2 , funcID )

. . .
102 +(2 c1 )∗c1∗simp2 (beta ,gamma, w1 , de l ta , s , phi , n , exp1 , exp2 ,

funcID ) ) ;
103 end
104

105 function s2 = simp2 ( x bar ,gamma, w2 , de l ta , s , phi , n , exp1 , exp2 , funcID )
106 c2 = (w2 gamma) /( de l ta w2) ;
107 nu = delta w2 ;
108

109 k = nu∗(1+c2 ) /(6∗ c2 ) ;
110 s2 = k∗ ((2∗ c2 1 ) ∗ f 1 ( x bar ,gamma, s , phi , n , exp1 , exp2 , funcID ) + . . .
111 (1+c2 ) ˆ2∗ f 1 ( x bar , w2 , s , phi , n , exp1 , exp2 , funcID ) +(2 c2 )∗c2∗ f 1

( x bar , de l ta , s , phi , n , exp1 , exp2 , funcID ) ) ;
112 end
113

114 function z2 = push (a , b , c , d , l e v e l , t o l )
115 z2 (1 ) = a ;
116 z2 (2 ) = b ;
117 z2 (3 ) = c ;
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118 z2 (4 ) = d ;
119 z2 (5 ) = l e v e l ;
120 z2 (6 ) = t o l ;
121 end
122

123 function z3 = pop ( array1 , n s t u f f )
124 z3 (1 ) = array1 ( n s tu f f , 1 ) ;
125 z3 (2 ) = array1 ( n s tu f f , 2 ) ;
126 z3 (3 ) = array1 ( n s tu f f , 3 ) ;
127 z3 (4 ) = array1 ( n s tu f f , 4 ) ;
128 z3 (5 ) = array1 ( n s tu f f , 5 ) ;
129 z3 (6 ) = array1 ( n s tu f f , 6 ) ;
130 end
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Appendix C

DTRIS2 MATLAB CODE

1

2 function [ tri num , t r i v e r t , t r i n a b e ] = d t r i s 2 ( point num , p )
3

4% DTRIS2 c o n s t r u c t s a Delaunay t r i a n g u l a t i o n o f 2D v e r t i c e s .
5%
6% Discuss ion :
7%
8% The r o u t i n e c o n s t r u c t s the Delaunay t r i a n g u l a t i o n o f a s e t o f

2D v e r t i c e s
9% using an incrementa l approach and d i a g o n a l edge swaps .

V e r t i c e s are
10% f i r s t s o r t e d in l e x i c o g r a p h i c a l l y i n c r e a s i n g (X,Y) order , and
11% then are i n s e r t e d one at a time from o u t s i d e the convex h u l l .
12%
13% Modif ied :
14%
15% 07 February 2005
16%
17% Author :
18%
19% O r i g i n a l FORTRAN77 v e r s i o n by Barry Joe .
20% MATLAB v e r s i o n by John Burkardt .
21%
22% Reference :
23%
24% Barry Joe ,
25% GEOMPACK a s o f t w a r e package f o r the g e n e r a t i o n o f meshes
26% using geometr ic a lgor i thms ,
27% Advances in Engineer ing Software ,
28% Volume 13 , pages 3 2 5 3 3 1 , 1991.
29%
30% Parameters :
31%
32% Input , i n t e g e r POINT NUM, the number o f v e r t i c e s .
33%
34% Input , r e a l P(2 ,POINT NUM) , the v e r t i c e s .
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35%
36% Output , i n t e g e r TRI NUM, the number o f t r i a n g l e s in the

t r i a n g u l a t i o n ;
37% TRI NUM i s e q u a l to 2∗POINT NUM NB 2 , where NB i s the

number
38% of boundary v e r t i c e s .
39%
40% Output , i n t e g e r TRI VERT(3 ,TRI NUM) , the nodes t h a t make up

each t r i a n g l e .
41% The e lements are i n d i c e s o f P. The v e r t i c e s o f the t r i a n g l e s

are
42% in counter c l o c k w i s e order .
43%
44% Output , i n t e g e r TRI NABE(3 ,TRI NUM) , the t r i a n g l e ne ighbor

l i s t .
45% P o s i t i v e e lements are i n d i c e s o f TIL ; n e g a t i v e e lements are

used f o r l i n k s
46% of a counter c l o c k w i s e l i n k e d l i s t o f boundary edges ; LINK =

( 3 ∗ I + J 1 )
47% where I , J = t r i a n g l e , edge index ; TRI NABE(J , I ) r e f e r s to
48% the ne ighbor a long edge from v e r t e x J to J+1 (mod 3) .
49%
50 tr i num = 0 ;
51 t r i v e r t = [ ] ;
52 t r i n a b e = [ ] ;
53

54 t o l = 100 .0 ∗ eps ;
55%
56% Sort the v e r t i c e s by i n c r e a s i n g ( x , y ) .
57%
58 indx = r 8 2 v e c s o r t h e a p i n d e x a ( point num , p ) ;
59

60 p = r82vec permute ( point num , p , indx ) ;
61

62%
63% Make sure t h a t the data p o i n t s are ” r e a s o n a b l y ” d i s t i n c t .
64%
65 m1 = 1 ;
66

67 for i = 2 : point num
68

69 m = m1;
70 m1 = i ;
71

72 k = 0 ;
73

74 for j = 1 : 2
75
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76 cmax = max ( abs ( p( j ,m) ) , abs ( p( j ,m1) ) ) ;
77

78 i f ( t o l ∗ ( cmax + 1 .0 ) < abs ( p( j ,m) p( j ,m1) ) )
79 k = j ;
80 break
81 end
82

83 end
84

85 i f ( k == 0 )
86 fpr intf ( 1 , ’\n ’ ) ;
87 fpr intf ( 1 , ’DTRIS2 Fatal e r r o r !\n ’ ) ;
88 fpr intf ( 1 , ’ F a i l s f o r po int number I = %d\n ’ , i ) ;
89 fpr intf ( 1 , ’ M = %d\n ’ , m ) ;
90 fpr intf ( 1 , ’ M1 = %d\n ’ , m1 ) ;
91 fpr intf ( 1 , ’ X,Y(M) = %f %f \n ’ , p (1 ,m) , p (2 ,m) ) ;
92 fpr intf ( 1 , ’ X,Y(M1) = %f %f \n ’ , p (1 ,m1) , p (2 ,m1) ) ;
93 error ( ’DTRIS2 Fatal e r r o r ! ’ )
94 return
95 end
96

97 end
98%
99% S t a r t i n g from p o i n t s M1 and M2, search f o r a t h i r d p o i n t M t h a t
100% makes a ” h e a l t h y ” t r i a n g l e (M1,M2,M)
101%
102 m1 = 1 ;
103 m2 = 2 ;
104 j = 3 ;
105

106 while ( 1 )
107

108 i f ( point num < j )
109 fpr intf ( 1 , ’\n ’ ) ;
110 fpr intf ( 1 , ’DTRIS2 Fatal e r r o r !\n ’ ) ;
111 error ( ’DTRIS2 Fatal e r r o r ! ’ )
112 return
113 end
114

115 m = j ;
116

117 l r = l r l i n e ( p (1 ,m) , p (2 ,m) , p (1 ,m1) , p (2 ,m1) , p (1 ,m2) , p (2 ,m2
) , 0 . 0 ) ;

118

119 i f ( l r ˜= 0 )
120 break
121 end
122

51



123 j = j + 1 ;
124

125 end
126%
127% Set up the t r i a n g l e in format ion f o r (M1,M2,M) , and f o r any o ther
128% t r i a n g l e s you c r e a t e d because p o i n t s were c o l l i n e a r wi th M1, M2.
129%
130 tr i num = j 2 ;
131

132 i f ( l r == 1 )
133

134 t r i v e r t ( 1 , 1 ) = m1;
135 t r i v e r t ( 2 , 1 ) = m2;
136 t r i v e r t ( 3 , 1 ) = m;
137 t r i n a b e (3 , 1 ) = 3 ;
138

139 for i = 2 : tr i num
140

141 m1 = m2;
142 m2 = i +1;
143 t r i v e r t (1 , i ) = m1;
144 t r i v e r t (2 , i ) = m2;
145 t r i v e r t (3 , i ) = m;
146 t r i n a b e (1 , i 1 ) = 3 ∗ i ;
147 t r i n a b e (2 , i 1 ) = i ;
148 t r i n a b e (3 , i ) = i 1 ;
149

150 end
151

152 t r i n a b e (1 , tr i num ) = 3 ∗ tr i num 1 ;
153 t r i n a b e (2 , tr i num ) = 5 ;
154 l edg = 2 ;
155 l t r i = tri num ;
156

157 else
158

159 t r i v e r t ( 1 , 1 ) = m2;
160 t r i v e r t ( 2 , 1 ) = m1;
161 t r i v e r t ( 3 , 1 ) = m;
162 t r i n a b e (1 , 1 ) = 4 ;
163

164 for i = 2 : tr i num
165 m1 = m2;
166 m2 = i +1;
167 t r i v e r t (1 , i ) = m2;
168 t r i v e r t (2 , i ) = m1;
169 t r i v e r t (3 , i ) = m;
170 t r i n a b e (3 , i 1 ) = i ;
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171 t r i n a b e (1 , i ) = 3 ∗ i 3 ;
172 t r i n a b e (2 , i ) = i 1 ;
173

174 end
175

176 t r i n a b e (3 , tr i num ) = 3 ∗ tr i num ;
177 t r i n a b e (2 , 1 ) = 3 ∗ tr i num 2 ;
178 l edg = 2 ;
179 l t r i = 1 ;
180

181 end
182%
183% I n s e r t the v e r t i c e s one at a time from o u t s i d e the convex h u l l ,
184% determine v i s i b l e boundary edges , and app ly d i a g o n a l edge swaps

u n t i l
185% Delaunay t r i a n g u l a t i o n o f v e r t i c e s ( so f a r ) i s ob ta ined .
186%
187 top = 0 ;
188

189 for i = j+1 : point num
190

191 m = i ;
192 m1 = t r i v e r t ( ledg , l t r i ) ;
193

194 i f ( l edg <= 2 )
195 m2 = t r i v e r t ( l edg +1, l t r i ) ;
196 else
197 m2 = t r i v e r t (1 , l t r i ) ;
198 end
199

200 l r = l r l i n e ( p (1 ,m) , p (2 ,m) , p (1 ,m1) , p (2 ,m1) , p (1 ,m2) , p (2 ,m2
) , 0 . 0 ) ;

201

202 i f ( 0 < l r )
203 r t r i = l t r i ;
204 redg = ledg ;
205 l t r i = 0 ;
206 else
207 l = t r i n a b e ( ledg , l t r i ) ;
208 r t r i = f loor ( l / 3 ) ;
209 redg = mod( l , 3 ) + 1 ;
210 end
211

212 [ l t r i , ledg , r t r i , redg ] = vbedg ( p (1 ,m) , p (2 ,m) , point num ,
p , . . .

213 tri num , t r i v e r t , t r i nabe , l t r i , ledg , r t r i , redg ) ;
214

215 n = tri num + 1 ;
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216 l = t r i n a b e ( ledg , l t r i ) ;
217

218 while ( 1 )
219

220

221 t = f loor ( l / 3 ) ;
222 e = mod ( l , 3 ) + 1 ;
223 l = t r i n a b e ( e , t ) ;
224 m2 = t r i v e r t ( e , t ) ;
225

226 i f ( e <= 2 )
227 m1 = t r i v e r t ( e+1, t ) ;
228 else
229 m1 = t r i v e r t (1 , t ) ;
230 end
231

232 tr i num = tri num + 1 ;
233 t r i n a b e ( e , t ) = tri num ;
234 t r i v e r t (1 , tr i num ) = m1;
235 t r i v e r t (2 , tr i num ) = m2;
236 t r i v e r t (3 , tr i num ) = m;
237 t r i n a b e (1 , tr i num ) = t ;
238 t r i n a b e (2 , tr i num ) = tri num 1 ;
239 t r i n a b e (3 , tr i num ) = tri num + 1 ;
240 top = top + 1 ;
241

242 i f ( point num < top )
243 fpr intf ( 1 , ’\n ’ ) ;
244 fpr intf ( 1 , ’DTRIS2 Fatal e r r o r !\n ’ ) ;
245 fpr intf ( 1 , ’ Stack over f l ow .\n ’ ) ;
246 error ( ’DTRIS2 Fatal e r r o r ! ’ )
247 end
248

249 work ( top ) = tri num ;
250

251 i f ( t == r t r i && e == redg )
252 break
253 end
254

255 end
256

257 t r i n a b e ( ledg , l t r i ) = 3 ∗ n 1 ;
258 t r i n a b e (2 , n) = 3 ∗ tr i num 2 ;
259 t r i n a b e (3 , tr i num ) = l ;
260 l t r i = n ;
261 l edg = 2 ;
262

263 [ top , l t r i , ledg , t r i v e r t , t r i n a b e ] = swapec ( . . .
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264 m, top , l t r i , ledg , point num , p , tri num , t r i v e r t , t r i nabe
, work ) ;

265

266 end
267%
268% Now account f o r the s o r t i n g t h a t we did .
269%
270 for i = 1 : 3
271 for j = 1 : tr i num
272 t r i v e r t ( i , j ) = indx ( t r i v e r t ( i , j ) ) ;
273

274 end
275 end
276

277 indx = perm inverse ( point num , indx ) ;
278 p = r82vec permute ( point num , p , indx ) ;
279

280 return
281 end
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Appendix D

BOWYER-WATSON ALGORITHM MATLAB CODE

1 function [ newNumTris , f i na lVe r t , f ina lNabes , boundEdg , cyc l e ,
t r i s L i n k L i s t , . . .

2 convTriAreas , convTriAreaIndex , index , convers ionInd ] = insertNew8
(P, ver t s , . . .

3 new pnt , numTris , nabes , boundEdg , cyc l e , t r i s L i n k L i s t , maxTriIndex )
4

5% Determine which c i r c u m c i r c l e s conta in new pnt
6 index = maxTriIndex ;
7 numYes = 1 ;
8 t r i S t a c k = 0 ;
9 t r i s T e s t e d = maxTriIndex ;
10 countTest = 1 ;
11 countStack = 0 ;
12 for i 2 = 1 :3
13 i f ( nabes ( i2 , maxTriIndex )>0)
14 countStack = countStack + 1 ;
15 t r i S t a c k ( countStack ) = nabes ( i2 , maxTriIndex ) ; % push onto

s t a c k
16 end
17 end
18

19 while ( countStack ˜= 0)
20 t r i I ndTes t = t r i S t a c k ( countStack ) ; % pop o f f s t a c k
21 t r i S t a c k ( countStack ) = [ ] ;
22 countStack = countStack 1 ;
23 countTest = countTest + 1 ;
24 t r i s T e s t e d ( countTest ) = t r i I ndTe s t ;
25 A = zeros ( 2 , 3 ) ;
26 for i 3 = 1 :3
27 A( : , i 3 ) = P( : , v e r t s ( i3 , t r i I ndTes t ) ) ;
28 end
29 i f ( i n C i r c l e (A, new pnt ) == 1)
30 numYes = numYes + 1 ;
31 index (1 ,numYes) = t r i I ndTes t ;
32 for i 4 = 1 :3
33 i f ( nabes ( i4 , t r i I ndTes t )>0 && isempty ( i n t e r s e c t ( t r i sTes t ed ,
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nabes ( i4 , t r i I ndTe s t ) ) ) )
34 countStack = countStack + 1 ;
35 t r i S t a c k ( countStack ) = nabes ( i4 , t r i I ndTe s t ) ; % push

onto s t a c k
36 end
37 end
38 end
39 end
40% index = s o r t ( index , ’ ascend ’ ) ;
41

42% Determine h u l l o f space c o n t a i n i n g new pnt
43 n = length ( index ) ;
44 pntIdxs = zeros (1 ,3∗n) ;
45 for k = 1 : n
46 for s = 1 :3
47 pntIdxs (3∗ ( k 1 )+s ) = v e r t s ( s , index ( k ) ) ;
48 end
49 end
50

51 hu l l Ind = unique ( pntIdxs ) ;
52m = length ( hu l l Ind ) ;
53 hu l lPt s = zeros (2 ,m) ;
54 for q = 1 :m
55 hu l lPt s ( : , q ) = P( : , hu l l Ind ( q ) ) ;
56 end
57

58 newP = [ hul lPts , new pnt ] ;
59 [ ˜ , c o l s ] = s ize (P) ;
60 numPnts = length (newP) ;
61 [ newNumTris , newVert , newNabes ] = d t r i s 2 (numPnts , newP) ;
62 [ newTriAreas , newTriAreaIndex ] = f indAreas ( newVert , newP) ;
63

64% Check f o r c o n v e x i t y o f h u l l , i f concave remove g h o s t t r i a n g l e s
65numNo = 0 ;
66 numGhost = 0 ;
67 for g = 1 : newNumTris
68 i f ( conta in s ( newVert ( : , g ) , numPnts ) == 1)
69 numNo = numNo + 1 ;
70 convexVert ( : , numNo) = newVert ( : , g ) ;
71 convexNabe ( : , numNo) = newNabes ( : , g ) ;
72 else
73 numGhost = numGhost + 1 ;
74 ghos tTr i s (numGhost ) = g ;
75 ghostAreaInd (numGhost ) = g ;
76 end
77

78 end
79% Get r i d o f g h o s t t r i areas and i n d i c e s
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80 convTriAreaIndex = zeros (1 , newNumTris numGhost ) ;
81 convTriAreas = zeros (1 , newNumTris numGhost ) ;
82 for g1 = 1 : numGhost
83 delete = ghostTr i s ( g1 )==newTriAreaIndex ;
84 newTriAreaIndex ( delete ) = 0 ;
85 newTriAreas ( delete ) = 0 ;
86 end
87 newTriAreaIndex ( newTriAreaIndex==0) = [ ] ;
88 newTriAreas ( newTriAreas==0) = [ ] ;
89 convTriAreaIndex = newTriAreaIndex ;
90 convTriAreas = newTriAreas ;
91

92

93 i f (numGhost ˜=0)
94 % Set r e f e r e n c e t h a t was d e l e t e d to zero
95 i f (numNo < newNumTris )
96 for h = 1 : length ( ghos tTr i s )
97 convexNabe ( convexNabe == ghostTr i s (h) ) = 1 ;
98 end
99 end
100

101 % Correct r e f e r e n c i n g o f t r i a n g l e s t h a t f a l l a f t e r one t h a t was
d e l e t e d

102 sub = 0 ;
103 i f (numGhost == 1)
104 y1 = convexNabe > ghos tTr i s (1 ) ;
105 convexNabe ( y1 ) = convexNabe ( y1 ) 1 ;
106 y2 = convTriAreaIndex > ghostAreaInd (1 ) ;
107 convTriAreaIndex ( y2 ) = convTriAreaIndex ( y2 ) 1 ;
108 else
109 for idx = 1 : numGhost 1
110 f i r s t 1 = ghos tTr i s ( idx ) ;
111 second1 = ghos tTr i s ( idx +1) ;
112 sub = sub + 1 ;
113 z1 = convexNabe > f i r s t 1 ;
114 o1 = convexNabe < second1 ;
115 y1 = o1==z1 ;
116 convexNabe ( y1 ) = convexNabe ( y1 ) sub ;
117

118 % Fix area i n d e x i n g f o r t h o s e f a l l i n g a f t e r g h o s t
t r i a n g l e s

119 f i r s t 2 = ghostAreaInd ( idx ) ;
120 second2 = ghostAreaInd ( idx +1) ;
121 z2 = convTriAreaIndex > f i r s t 2 ;
122 o2 = convTriAreaIndex < second2 ;
123 y2 = o2==z2 ;
124 convTriAreaIndex ( y2 ) = convTriAreaIndex ( y2 ) sub ;
125 end
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126

127 sub = sub + 1 ;
128 y1 = convexNabe > ghos tTr i s (numGhost ) ;
129 convexNabe ( y1 ) = convexNabe ( y1 ) sub ;
130 y2 = convTriAreaIndex > ghostAreaInd (numGhost ) ;
131 convTriAreaIndex ( y2 ) = convTriAreaIndex ( y2 ) sub ;
132 end
133 end
134

135 newNumTris = newNumTris numGhost ;
136

137% % Graph c i r c u m c i r c l e s
138% f o r f = 1: l e n g t h ( index )
139% cor = [P( : , v e r t s (1 , index ( f ) ) ) ,P( : , v e r t s (2 , index ( f ) ) ) ,P( : ,

v e r t s (3 , index ( f ) ) ) ] ;
140% [ r , cc ]= c i r c u m c i r c l e ( cor , 1 ) ;
141% hold on
142% % pause
143% end
144% % Graph t r i a n g l e s a f f e c t e d wi th the new t r i a n g u l a t i o n
145% f o r e = 1: newNumTris
146% t r i a n g l e ( : , 1 )=newP ( : , convexVert (1 , e ) ) ;
147% t r i a n g l e ( : , 2 )=newP ( : , convexVert (2 , e ) ) ;
148% t r i a n g l e ( : , 3 )=newP ( : , convexVert (3 , e ) ) ;
149% t r i a n g l e ( : , 4 )=t r i a n g l e ( : , 1 ) ;
150% p l o t ( t r i a n g l e ( 1 , : ) , t r i a n g l e ( 2 , : ) , ’ ’ , ’ co lor ’ , ’m’ , ’ Linewidth

’ , 1 . 5 ) ;
151% hold on
152% % pause
153% end
154% % pause ( . 0 5 )
155% % pause
156 convexConVert = convertVert ( hul l Ind , convexVert , c o l s +1) ;
157

158% wholeP = [P, new pnt ] ;
159% [ numTest , ver tTes t , nabeTest ]= d t r i s 2 ( l e n g t h ( wholeP ) , wholeP ) ;
160% Graph DT as i f we did i t on o r i g i n a l p o i n t s p l u s the new pnt
161% f o r f = 1: numTest
162% t r i a n g l e ( : , 1 )=wholeP ( : , v e r t T e s t (1 , f ) ) ;
163% t r i a n g l e ( : , 2 )=wholeP ( : , v e r t T e s t (2 , f ) ) ;
164% t r i a n g l e ( : , 3 )=wholeP ( : , v e r t T e s t (3 , f ) ) ;
165% t r i a n g l e ( : , 4 )=t r i a n g l e ( : , 1 ) ;
166% p l o t ( t r i a n g l e ( 1 , : ) , t r i a n g l e ( 2 , : ) , ’ ’ , ’ co lor ’ , ’ g ’ , ’ Linewidth

’ , 1 . 5 ) ;
167% hold on
168% %% pause
169% end
170
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171

172% Determine which t r i s were broken up then r e p l a c e /add new ones to
v e r t s

173 nnn=length ( index ) ;
174 f i n a l V e r t = v e r t s ;
175 conver s ionInd = zeros (1 , newNumTris ) ;
176 for j j j = 1 : nnn
177 f i n a l V e r t ( : , index ( j j j ) ) = zeros ( 3 , 1 ) ;
178 end
179

180 [ ˜ , cc ] = s ize ( v e r t s ) ;
181 numAdded = 0 ;
182 i i i = 1 ;
183 numSplits = zeros (2 , nnn ) ;
184

185 checkBound = zeros ( 1 , 2 ) ;
186% index
187 numOfNumSplits = 0 ;
188 while ( i i i <= nnn)
189

190 s p l i t T r i s = detNewTris ( convexConVert , index ( i i i ) , v e r t s ) ;
191

192 i f ( ( length ( s p l i t T r i s ) == 1 && s p l i t T r i s ˜=0) | | length ( s p l i t T r i s
) == 2)

193

194 numSplits (1 , i i i ) = length ( s p l i t T r i s ) ;
195 f i n a l V e r t ( : , index ( i i i ) ) = convexConVert ( : , s p l i t T r i s (1 ) ) ;
196 conver s ionInd ( s p l i t T r i s (1 ) ) = index ( i i i ) ;
197

198 i f ( numSplits (1 , i i i )==2)
199 numAdded = numAdded + 1 ;
200 newInd = cc+numAdded ;
201 f i n a l V e r t ( : , newInd ) = convexConVert ( : , s p l i t T r i s (2 ) ) ;
202 conver s ionInd ( s p l i t T r i s (2 ) ) = newInd ;
203 numOfNumSplits = numOfNumSplits + 1 ;
204 numSplits (2 , i i i ) = numOfNumSplits ;
205 end
206

207 i i i = i i i + 1 ;
208

209 % I f s p l i t T r i s comes back as zero , save t h a t index , run l i k e
normal

210 % u n t i l another doub le s p l i t i s h i t . F i l l in the f i r s t
s p l i t T r i s

211 % l i k e normal , but i s t e a d o f t a c k i n g s p l i t T r i s (2) onto end ,
r e p l a c e

212 % p r e v i o u s empty s l o t
213 e l s e i f ( s p l i t T r i s == 0)
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214

215 numSplits (1 , i i i ) = 0 ;
216 check = index ( i i i ) ;
217 checkInd = i i i ;
218

219 % The l a s t index ( i i i ) gave s p l i t t r i s o f 0
220 i f ( i i i == nnn)
221 prevInd = find ( numSplits ( 1 , : ) ==2,1, ’ l a s t ’ ) ;
222 prev ious = index ( prevInd ) ;
223 maxInd = max( conver s ionInd ) ;
224 f i n a l V e r t ( : , check ) = f i n a l V e r t ( : , maxInd ) ;
225 conver s ionInd ( convers ionInd==maxInd ) = check ;
226 f i n a l V e r t ( : , maxInd ) = [ ] ;
227 numSplits (1 , checkInd ) = numSplits (1 , checkInd ) + 1 ;
228 numSplits (1 , prevInd ) = numSplits (1 , prevInd ) 1 ;
229 numSplits (2 , prevInd ) = 0 ;
230 numOfNumSplits = numOfNumSplits 1 ;
231 checkBound = [ check , prev ious ] ;
232 break ;
233 else
234 while (1 )
235 % S t a r t a t next index ( i i i ) and go u n t i l you f i n d

another
236 i i i = i i i + 1 ;
237 s p l i t T r i s = detNewTris ( convexConVert , index ( i i i ) ,

v e r t s ) ;
238 numSplits (1 , i i i ) = length ( s p l i t T r i s ) ;
239 f i n a l V e r t ( : , index ( i i i ) ) = convexConVert ( : , s p l i t T r i s

(1 ) ) ;
240 conver s ionInd ( s p l i t T r i s (1 ) ) = index ( i i i ) ;
241 i f ( length ( s p l i t T r i s )==2)
242 f i n a l V e r t ( : , check ) = convexConVert ( : , s p l i t T r i s

(2 ) ) ;
243 conver s ionInd ( s p l i t T r i s (2 ) ) = check ;
244 numSplits (1 , checkInd ) = numSplits (1 , checkInd ) +

1 ;
245 numSplits (1 , i i i ) = numSplits (1 , i i i ) 1 ;
246 checkBound = [ check , index ( i i i ) ] ;
247 i i i = i i i + 1 ;
248 break ;
249 end
250 % Do not encounter another s p l i t t r i s o f 2
251 i f ( i i i == nnn)
252 prevInd = find ( numSplits ( 1 , : ) ==2,1, ’ l a s t ’ ) ;
253 prev ious = index ( prevInd ) ;
254 maxInd = max( conver s ionInd ) ;
255 f i n a l V e r t ( : , check ) = f i n a l V e r t ( : , maxInd ) ;
256 conver s ionInd ( convers ionInd==maxInd ) = check ;
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257 f i n a l V e r t ( : , maxInd ) = [ ] ;
258 numSplits (1 , checkInd ) = numSplits (1 , checkInd ) +

1 ;
259 numSplits (1 , prevInd ) = numSplits (1 , prevInd )

1 ;
260 numOfNumSplits = numOfNumSplits 1 ;
261 numSplits (2 , prevInd ) = 0 ;
262 checkBound = [ check , prev ious ] ;
263 break ;
264 end
265 end
266 end
267 e l s e i f ( length ( s p l i t T r i s )==3)
268 numSplits (1 , i i i ) = 3 ;
269 f i n a l V e r t ( : , index ( i i i ) ) = convexConVert ( : , s p l i t T r i s (1 ) ) ;
270 conver s ionInd ( s p l i t T r i s (1 ) ) = index ( i i i ) ;
271 f i n a l V e r t ( : , cc+1) = convexConVert ( : , s p l i t T r i s (2 ) ) ;
272 conver s ionInd ( s p l i t T r i s (2 ) ) = cc +1;
273 f i n a l V e r t ( : , cc+2) = convexConVert ( : , s p l i t T r i s (3 ) ) ;
274 conver s ionInd ( s p l i t T r i s (3 ) ) = cc +2;
275 numOfNumSplits = numOfNumSplits + 1 ;
276 numSplits (2 , i i i ) = numOfNumSplits ;
277 break ;
278 end
279 end
280

281% Fix convTriAreaIndex to r e p r e s e n t c o r r e c t t r i a n g l e r e f e r e n c e s
282 for i 6 = 1 : length ( convTriAreaIndex )
283 convTriAreaIndex ( i 6 ) = convers ionInd ( convTriAreaIndex ( i 6 ) ) ;
284 end
285 [ trisWithBE , trisWithNoBE , f ina lNabes ] = convertConvexNabe ( convexNabe

, . . .
286 convers ionInd , nabes , index , ver t s , convexConVert , numSplits ,

checkBound , t r i s L i n k L i s t , boundEdg ) ;
287

288% Update LL with new t r i r e f e r e n c e s and edg numbers
289 i f ( trisWithBE ˜=0)
290 for i = 1 : length ( trisWithBE )
291 newE = find ( f i na lNabes ( : , trisWithBE ( i ) )<0) ;
292 x = f i n a l V e r t (newE , trisWithBE ( i ) ) ;
293 oldE = find ( boundEdg ( 1 , : ) == x ) ;
294 t r i s L i n k L i s t (1 , oldE ) = trisWithBE ( i ) ;
295 t r i s L i n k L i s t (2 , oldE ) = newE ;
296 end
297 end
298

299% Find c o r r e c t i o n s to t r i r e f e r e n c e s to t r i a n g l e s t h a t were
boundar ies to
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300% a f f e c t e d area
301 l eng = length ( index ) ;
302 nabesAff = zeros (3 , l eng ) ;
303 for i 5 = 1 : l eng
304 nabesAff ( : , i 5 ) = nabes ( : , index ( i 5 ) ) ;
305 end
306

307 [mmm, nnn ] = s ize ( nabesAff ) ;
308 h i t s = 0 ;
309 for j 5 = 1 :mmm
310 for k5 = 1 : nnn
311 i f ( nabesAff ( j5 , k5 )>0)
312 h i t s = h i t s +1;
313 boundTris ( h i t s ) = nabesAff ( j5 , k5 ) ;
314 end
315 end
316 end
317

318 boundTris = s e t d i f f ( boundTris , index ) ;
319num = length ( boundTris ) ;
320

321 for t1 = 1 :num
322 checkTri = boundTris ( t1 ) ;
323 checkBound = i n t e r s e c t ( f i na lNabes ( : , checkTri ) , convers ionInd ) ;
324 for t2 = 1 : length ( checkBound )
325 checkInd1 = find ( checkBound ( t2 )==f ina lNabes ( : , checkTri ) ) ;
326 checkInd2 = 1+mod( checkInd1 , 3 ) ;
327 checkEdg = [ f i n a l V e r t ( checkInd1 , checkTri ) ; f i n a l V e r t (

checkInd2 , checkTri ) ] ;
328 for t3 = 1 : length ( conver s ionInd )
329 c I = convers ionInd ( t3 ) ;
330 checkCIVert = f i n a l V e r t ( : , conver s ionInd ( t3 ) ) ;
331 f ina lCheck = i n t e r s e c t ( checkCIVert , checkEdg ) ;
332 i f ( length ( f ina lCheck ) == 2)
333 f i na lNabes ( checkInd1 , checkTri ) = convers ionInd ( t3 ) ;
334 break ;
335 end
336 end
337 end
338 end
339

340% Update a l l n e g a t i v e v a l u e s to c o r r e c t numbers us ing ( 3 ∗ I + J 1 )
341 nums = length ( c y c l e ) ;
342 orderedBE = zeros ( s ize ( boundEdg ) ) ;
343 orderedTrisLL = zeros ( s ize ( t r i s L i n k L i s t ) ) ;
344 for Q = 1 : nums 1
345 A = c y c l e (Q) ;
346 orderedBE ( : ,Q) = boundEdg ( : , ismember ( boundEdg ( 1 , : ) ,A) ) ;
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347 orderedTrisLL ( : ,Q) = t r i s L i n k L i s t ( : , ismember ( boundEdg ( 1 , : ) ,A) ) ;
348 end
349

350 orderedTrisLL = [ orderedTrisLL , orderedTrisLL ( : , 1 ) ] ;
351M = length ( orderedTrisLL ) ;
352

353 for R = 1 :M 1
354 inds = orderedTrisLL ( : ,R) ;
355 checkInds = orderedTrisLL (1 ,R+1) ;
356 J = orderedTrisLL (2 ,R+1) ;
357 f i na lNabes ( inds (2 ) , inds (1 ) ) = ( 3 ∗ checkInds+J 1 ) ;
358 end
359

360% Find ne ighbor on edge t h a t was g h o s t boundary and update nabe
a c c o r d i n g l y

361W = length ( trisWithNoBE ) ;
362 tempVert = [ f i n a l V e r t ; f i n a l V e r t ( 1 , : ) ] ;
363

364 for V = 1 :W
365 co lTr i Ind = trisWithNoBE (V) ;
366 ind1 = find ( f i na lNabes ( : , co lTr i Ind )==0) ;
367 bbb = tempVert ( ind1 , co lTr i Ind ) ;
368 aaa = tempVert ( ind1 +1, co lTr i Ind ) ;
369 for X = 1 :num
370 i f ( length ( i n t e r s e c t ( [ aaa , bbb ] , f i n a l V e r t ( : , boundTris (X) ) ) )

==2)
371 f i na lNabes ( ind1 , trisWithNoBE (V) ) = boundTris (X) ;
372 break ;
373 end
374 end
375 end
376

377 newNumTris = numTris+2;
378

379 end
380

381 function yes no = conta in s ( vect , pntCheck )
382

383 a = vect (1 ) ;
384 b = vect (2 ) ;
385C = vect (3 ) ;
386

387 i f ( a == pntCheck )
388 yes no = 1 ;
389 e l s e i f (b == pntCheck )
390 yes no = 1 ;
391 e l s e i f (C == pntCheck )
392 yes no = 1 ;
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393 else
394 yes no = 0 ;
395 end
396

397 end
398

399 function convVert = convertVert ( hul l Ind , newVert , numPnts )
400

401 vect = [ hul l Ind , numPnts ] ;
402 [m, n ] = s ize ( newVert ) ;
403 convVert = zeros (m, n) ;
404 for i i = 1 :m
405 for j j = 1 : n
406 convVert ( i i , j j ) = vect ( newVert ( i i , j j ) ) ;
407 end
408 end
409

410 end
411

412 function s p l i t t r i s = detNewTris ( convexConVert , index , v e r t s )
413 [ ˜ , n ] = s ize ( convexConVert ) ;
414 s p l i t s = 0 ;
415 s p l i t t r i s = 0 ;
416 for j = 1 : n
417 a = v e r t s ( : , index ) ;
418 b = convexConVert ( : , j ) ;
419 i n t s = i n t e r s e c t ( a , b ) ;
420 i f ( length ( i n t s ) == 2)
421 s p l i t s = s p l i t s + 1 ;
422 s p l i t t r i s ( s p l i t s ) = j ;
423 end
424 end
425

426 end
427

428 function [ triWithBound , triWithNoBound , f ina lNabes ] =
convertConvexNabe ( newNabes , . . .

429 convers ionInd , nabes , index , ver t s , convConVert , numSplits ,
checkBound , tr i sLL , boundEdg )

430

431 [ rows , c o l s ] = s ize ( newNabes ) ;
432 f i na lNabes = zeros ( rows , c o l s ) ;
433% Convert from s u b s e t t r i a n g l e r e f e r e n c e s to whole s e t t r i a n g l e

r e f e r e n c e s
434 for i = 1 : c o l s
435 for j = 1 : rows
436 i f ( newNabes ( j , i )<0)
437 f i na lNabes ( j , i ) = newNabes ( j , i ) ;
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438 else
439 f i na lNabes ( j , i ) = convers ionInd ( newNabes ( j , i ) ) ;
440 end
441 end
442 end
443

444% Add nabe o f s u b s e t i n t o nabe o f whole s e t
445 n = length ( conver s ionInd ) ;
446 newFinalNabes = nabes ;
447 for k = 1 : n
448 newFinalNabes ( : , conver s ionInd ( k ) ) = f ina lNabes ( : , k ) ;
449 end
450 f i na lNabes = newFinalNabes ;
451% Determine which t r i a n g l e s shou ld have boundary edges
452m = length ( index ) ;
453 [ ˜ , ccc ] = s ize ( nabes ) ;
454 triWithBound = zeros ( 1 , 1 ) ;
455 numYes = 0 ;
456 numHits = 0 ;
457

458 for L = 1 :m
459 i f ( length ( find ( nabes ( : , index (L) )<0) ) == 1)
460 numYes = numYes + 1 ;
461 triWithBound (numYes) = index (L) ;
462 e l s e i f ( length ( find ( nabes ( : , index (L) )<0) ) == 2)
463 numYes = numYes + 1 ;
464 triWithBound (numYes) = index (L) ;
465 numYes = numYes + 1 ;
466 numHits = numHits + 1 ;
467 triWithBound (numYes) = ccc + numHits ;
468 end
469 end
470% Determine i f a t r i a n g l e was s p l i t , t h a t i t s t i l l has the boundary

edge or
471% i f i t was the added t r i a n g l e , and a l s o check t h a t f o r a s p l i t

t r i a n g l e had
472% i t s s p l i t r e p l a c e d one t h a t go t absorbed
473 ve r t s 1 = [ v e r t s ; v e r t s ( 1 , : ) ] ;
474 i n t e r s 1 = i n t e r s e c t ( triWithBound , t r i sLL ( 1 , : ) ) ;
475

476 i f (˜ a l l ( checkBound==0))
477 for k1 = 1 : length ( checkBound )
478 ind3 = convers ionInd==checkBound ( k1 ) ;
479 l e n g I n t = length ( i n t e r s e c t ( convConVert ( : , ind3 ) , boundEdg ) ) ;
480 i f ( l en g I n t ==2)
481 triWithBound ( k1 ) = checkBound ( k1 ) ;
482 end
483 end
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484 end
485

486 i f (˜ isempty ( i n t e r s 1 ) )
487 for k2 = 1 : length ( i n t e r s 1 )
488 a2 = i n t e r s 1 ( k2 )==index ;
489 i f ( numSplits (1 , a2 ) == 2)
490 a3 = convConVert ( [ 1 , 2 ] , conver s ionInd==i n t e r s 1 ( k2 ) ) ;
491 b3 = convConVert ( [ 2 , 3 ] , convers ionInd==i n t e r s 1 ( k2 ) ) ;
492 c3 = [ convConVert (3 , conver s ionInd==i n t e r s 1 ( k2 ) ) ,

convConVert (1 , conver s ionInd==i n t e r s 1 ( k2 ) ) ] ;
493 interA = i n t e r s e c t ( a3 ’ , boundEdg ’ , ’ rows ’ ) ;
494 interB = i n t e r s e c t ( b3 ’ , boundEdg ’ , ’ rows ’ ) ;
495 interC = i n t e r s e c t ( c3 , boundEdg ’ , ’ rows ’ ) ;
496 i f ( length ( interA ) ˜= 2 && length ( interB ) ˜=2 && length (

interC ) ˜= 2)
497 triWithBound ( i n t e r s 1 ( k2 )==triWithBound ) = ccc +

numSplits (2 , a2 ) ;
498 end
499 e l s e i f ( numSplits (1 , a2 ) == 3)
500 for k3 = 1 : length ( conver s ionInd )
501 a3 = convConVert ( [ 1 , 2 ] , k3 ) ;
502 b3 = convConVert ( [ 2 , 3 ] , k3 ) ;
503 c3 = [ convConVert (3 , k3 ) , convConVert (1 , k3 ) ] ;
504 interA = i n t e r s e c t ( a3 ’ , boundEdg ’ , ’ rows ’ ) ;
505 interB = i n t e r s e c t ( b3 ’ , boundEdg ’ , ’ rows ’ ) ;
506 interC = i n t e r s e c t ( c3 , boundEdg ’ , ’ rows ’ ) ;
507 i f ( length ( interA ) == 2 | | length ( interB ) ==2 | |

length ( interC ) == 2)
508 triWithBound ( i n t e r s 1 ( k2 )==triWithBound ) =

convers ionInd ( k3 ) ;
509 end
510 end
511 end
512 end
513 end
514 triWithBound ;
515% Determine which t r i a n g l e s shou ld not have boundary edges and s e t

neg
516% entry to zero
517 triWithNoBound = s e t d i f f ( convers ionInd , triWithBound ) ;
518 for K = 1 : length ( triWithNoBound )
519 for Z = 1:3
520 i f ( f i na lNabes (Z , triWithNoBound (K) ) < 0)
521 f i na lNabes (Z , triWithNoBound (K) ) = 0 ;
522 end
523 end
524 end
525

67



526 end
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Appendix E

RESULTS TABLES

Table E.1. Voronoi Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (AS) on Monomials with a
= −0.00884120840760527, b = 2.71855632151155, c = 2.88900981641759, d = 3.44868288240732
and ε = 0.0001.

i j AS Time AS Rel. Error VNC Time VNC Rel. Error

0 0 0.008355225 1.45465E-16 0.007077289 0
0 1 0.000445179 1.83618E-16 0.000605689 1.83618E-16
0 2 0.000444923 1.15589E-16 0.000636664 1.15589E-16
0 3 0.000717303 1.45154E-16 0.028169894 4.20143E-08
0 4 0.005256895 3.11878E-08 0.116979043 3.11815E-08
0 5 0.018198816 9.64697E-09 0.484475327 5.47195E-09
1 0 0.00050585 0 0.000657144 0
1 1 0.000572153 1.35526E-16 0.000752119 2.71052E-16
1 2 0.000714487 3.41259E-16 0.000930037 3.41259E-16
1 3 0.000505338 2.14273E-16 0.025437127 1.05478E-07
1 4 0.005495996 9.21119E-09 0.130504124 1.02836E-09
2 0 0.000655608 1.18479E-16 0.000882165 1.18479E-16
2 1 0.000450042 4.48665E-16 0.000632312 1.49555E-16
2 2 0.000574457 0 0.000780278 1.88292E-16
2 3 0.000786678 1.18226E-16 0.03968156 7.85136E-08
3 0 0.000457722 1.16218E-16 0.498908685 8.96198E-08
3 1 0.000620536 0 1.49217904 5.65809E-08
3 2 0.00045721 0 2.354864375 0.006500369
4 0 0.121101104 4.03868E-08 1.890572353 3.33763E-07
4 1 0.116197996 4.03868E-08 2.345452395 0.028265236
5 0 0.211611352 7.10947E-08 2.349108286 0.184686147
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Table E.2. Voronoi Newton-Cotes (VNC) v. Adaptive Simpson’s Rule (AS) on Monomials with a
= −0.00884120840760527, b = 2.71855632151155, c = 2.88900981641759, d = 3.44868288240732
and ε = 0.0001.

i j AS Time AS Rel. Error VNC Time VNC Rel. Error

0 0 0.001667055 0 0.005648840 1.45465E-16
0 1 0.000532987 0 0.001388274 3.67237E-16
0 2 0.000424188 2.31179E-16 0.001337843 0
0 3 0.000500475 1.45154E-16 0.022388000 4.90503E-08
0 4 0.001801966 3.11878E-08 0.082919108 3.34052E-08
0 5 0.007804850 9.64697E-09 0.432353059 2.63289E-09
1 0 0.000477947 0 0.001335283 4.29461E-16
1 1 0.000468731 1.35526E-16 0.001387250 0
1 2 0.000577018 0 0.001409522 1.70629E-16
1 3 0.000557306 2.14273E-16 0.031654084 1.24042E-08
1 4 0.004736465 9.21119E-09 0.124463397 6.37093E-09
2 0 0.000573178 2.36958E-16 0.001332467 4.73917E-16
2 1 0.000468475 2.99110E-16 0.001327091 1.49555E-16
2 2 0.000460539 1.88292E-16 0.001327347 5.64876E-16
2 3 0.000472827 3.54679E-16 0.036043672 2.80358E-08
3 0 0.000555770 1.16218E-16 0.432514594 4.00847E-08
3 1 0.000464379 1.46700E-16 0.974934778 8.84301E-08
3 2 0.000470011 1.84698E-16 1.876273619 6.47114E-08
4 0 0.118157412 4.03868E-08 1.116981616 1.10403E-05
4 1 0.117699177 4.03868E-08 2.882673811 1.24821E-07
5 0 0.203343378 7.10947E-08 3.297244264 2.83738E-08
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Table E.3. Simpson’s Cubature Rule (SC) v. Adaptive Simpson’s Rule (AS) on Monomials with a
= −1.62110966800282, b = −1.37432067059289, c = −3.3239379751915, d = −1.72003265166653
and ε = 0.0001.

i j SC Time SC Rel. Error AS Time AS Rel. Error

0 0 0.016313693 2.80482E-16 0.000848376 2.80482E-16
0 1 0.005531337 7.78505E-16 0.000447996 6.67290E-16
0 2 0.006637502 5.11924E-16 0.000467707 5.11924E-16
0 3 0.025780223 2.19831E-05 0.000461051 2.54077E-16
0 4 0.005628104 0.000980107 0.008406700 2.76362E-07
0 5 0.025711359 0.000504705 0.030613710 7.71966E-08
1 0 0.005419978 1.87274E-16 0.000468731 1.87274E-16
1 1 0.005155789 1.48513E-16 0.000481531 1.48513E-16
1 2 0.009143973 3.05773E-06 0.000441084 6.83606E-16
1 3 0.027169265 0.000164893 0.000472827 1.69643E-16
1 4 0.024940551 0.000247897 0.031728579 1.72726E-08
2 0 0.005003726 4.99029E-16 0.000488443 7.48543E-16
2 1 0.005474249 2.78244E-06 0.000503547 3.95743E-16
2 2 0.004514515 3.36712E-05 0.000525819 1.06261E-15
2 3 0.009087397 0.000268450 0.000467451 7.91086E-16
3 0 0.004566226 1.31798E-07 0.000488187 0
3 1 0.006894267 1.19500E-05 0.000463611 0
3 2 0.012163975 1.11948E-05 0.000596730 2.01799E-16
4 0 0.005361354 4.93102E-07 0.000466939 3.78813E-07
4 1 0.006172866 3.78024E-05 0.000483579 3.78813E-07
5 0 0.005350859 7.47998E-07 0.000449276 1.87723E-06
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Table E.4. Accuracy only for Midpoint Delaunay triangulation (MDT), Trapezoid Delaunay
triangulation (TDT), Simpson’s cubature (SC), Adaptive Simpson’s (AS), Vorono Newton-Cotes
(VNC) and Monte Carlo (MC) on Monomials with a = 2.51778949114543, b = 5.67194769326589,
c = −2.98410546965195, d = 5.22175955533465 and ε = 0.0001.

i j
MDT Rel.

Error
TDT Rel.

Error
SC Rel.
Error

AS Rel.
Error

VNC Rel.
Error

MC Rel.
Error

0 0 1.37263E-16 1.37263E-16 0 1.37263E-16 2.74525E-16 0
0 1 1.22684E-16 1.22684E-16 1.22684E-16 0 1.22684E-16 0.005362692
0 2 0.031254337 0.312565299 3.20000E-16 3.20000E-16 0 0.001030788
0 3 0.079913262 0.071087959 0.000673081 0 0.288846650 0.000739701
0 4 0.085085066 0.349330409 0.000541126 0.000170947 0.832750855 0.005001589
0 5 0.164348054 0.250576017 0.005319045 0.482681292 0.929758393 0.003924581
1 0 1.34083E-16 0 1.34083E-16 0 0 0.001456460
1 1 0.000343677 0.001646319 0 1.19842E-16 1.19842E-16 0.002003265
1 2 0.030968972 0.071611407 0.000628227 1.56293E-16 1.56293E-16 0.001598617
1 3 0.046836029 0.097188218 0.003659738 0 0.552294340 0.007234298
1 4 0.087317344 0.247612927 0.004180156 0.439828056 0.910577689 0.011503918
2 0 0.004460387 0.012879597 1.24805E-16 2.49611E-16 3.74416E-16 0.001587096
2 1 0.002454287 0.019768922 4.02520E-05 1.11550E-16 3.34651E-16 0.002064355
2 2 0.041796026 0.391609471 0.003020576 2.90959E-16 2.90959E-16 0.006233964
2 3 0.052590909 0.075861068 0.000576465 0 0.764040384 0.014456091
3 0 0.013892921 0.024434128 0.000445991 1.11416E-16 5.39003E-09 0.001646359
3 1 0.005542517 0.016485043 0.001896887 1.99165E-16 2.22670E-08 0.002018411
3 2 0.055330400 0.135658417 0.002939728 0 0.299282761 0.005762480
4 0 0.020762319 0.083940060 0.000124715 1.34399E-10 0.594516070 0.004245154
4 1 0.016455419 0.021512025 0.001381476 1.15998E-10 0.367237377 0.005712344
5 0 0.022003814 0.087866804 0.001089610 0.009776169 0.888547317 0.004548625
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Table E.5. Time only for Midpoint Delaunay triangulation (MDT), Trapezoid Delaunay triangu-
lation (TDT), Simpson’s cubature (SC), Adaptive Simpson’s (AS), Vorono Newton-Cotes (VNC)
and Monte Carlo (MC) on Monomials with a = 2.51778949114543, b = 5.67194769326589, c =
−2.98410546965195, d = 5.22175955533465 and ε = 0.0001.

i j
MDT
Time

TDT Time SC Time AS Time VNC Time MC Time

0 0 0.264221362 0.048522268 0.021801254 0.006768572 0.017867854 0.352805694
0 1 0.010175386 0.009185188 0.005659591 0.000578810 0.004228822 0.308191995
0 2 0.212448951 0.038722941 0.004221398 0.000389372 0.001326323 0.304616223
0 3 0.069382987 0.323772511 0.068109400 0.000453883 6.1294469 0.305803539
0 4 0.108419526 0.111599014 0.054363361 1.694423275 6.034388905 0.305586709
0 5 0.076242439 0.180678132 0.028078824 1.599314592 5.991035482 0.305959953
1 0 0.005873861 0.00499195 0.005412554 0.000433404 0.001324019 0.305286168
1 1 0.112953752 0.094920268 0.004018392 0.000424956 0.001363698 0.300387145
1 2 0.168781675 0.225280823 0.028803296 0.000450556 0.001321203 0.303793959
1 3 0.094807373 0.209948624 0.052410613 0.000420092 6.003799002 0.30607208
1 4 0.106156252 0.135796660 0.079992545 1.650970269 5.999080969 0.305938450
2 0 0.089998973 0.106370010 0.004385236 0.000401660 0.001311475 0.355044391
2 1 0.189325214 0.094818125 0.057345731 0.000575738 0.001439474 0.303675688
2 2 0.172706884 0.024697353 0.053885158 0.000398588 0.001289971 0.303935782
2 3 0.129739761 0.298044512 0.071032123 0.000481275 5.997509913 0.307859966
3 0 0.087928978 0.188436391 0.019048514 0.000416508 3.934356623 0.303384875
3 1 0.160555453 0.220046699 0.032886456 0.000463099 5.764459568 0.305458710
3 2 0.162005423 0.195561824 0.100761618 0.000406780 5.976562154 0.323290212
4 0 0.178353931 0.080940248 0.004267989 0.483936032 6.037025678 0.313836483
4 1 0.115505535 0.355869727 0.046673454 0.454968130 5.989358442 0.309507822
5 0 0.159462088 0.113784976 0.038072452 1.719201267 6.147717949 0.30707687
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Appendix F

SURFACE FIGURES

Table F.1. Graphs of Monomials with a = −0.00884120840760527, b = 2.71855632151155, c =
2.88900981641759, d = 3.44868288240732.

74



Table F.2. Graphs ofMonomials with a = 2.51778949114543, b = 5.67194769326589, c =
−2.98410546965195, d = 5.22175955533465.
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Appendix G

MONTE CARLO MATLAB CODE

1 function [ volume , i t s ] = monteCarlo ( a , b , c , d , numPnts , s , phi , n , exp1 ,
exp2 , funcID )

2

3sum = 0 ;
4 Area = (b a ) ∗(d c ) ;
5 for i = 1 : numPnts
6 samplePnt = point ( a , b , c , d ) ;
7 sum = sum + f1 ( samplePnt (1 ) , samplePnt (2 ) , s , phi , n , exp1 , exp2 ,

funcID ) ;
8 end
9

10 volume = Area∗sum/numPnts ;
11 i t s = numPnts ;
12 end
13

14 function sampPnt = point ( lox , hix , loy , hiy )
15

16 pointx = lox + ( hix lox )∗rand ;
17 pointy = loy + ( hiy loy )∗rand ;
18

19 sampPnt = [ pointx , pointy ] ;
20 end


	Georgia State University
	ScholarWorks @ Georgia State University
	12-16-2015

	Numerical Solutions to Two-Dimensional Integration Problems
	Alexander Carstairs
	Recommended Citation


	ACKNOWLEDGMENTS
	List of Figures
	List of Tables
	Introduction
	Voronoi Sampling
	One-Dimensional Newton-Cotes Quadrature
	Delaunay Triangulation

	Algorithms
	Point Insertion Algorithms
	Incremental Delaunay Triangulation Algorithm with Edge Flips
	Complexity
	Delaunay Integration
	Monte Carlo Integration

	Implementation and Numerical Results
	Implementation
	Integrands
	Results

	Conclusions and Future Work
	References
	Appendices
	Voronoi Sampling MATLAB Code
	Voronoi Newton-Cotes MATLAB Code
	dtris2 MATLAB Code
	Bowyer-Watson Algorithm MATLAB Code
	Results Tables
	Surface Figures
	Monte Carlo MATLAB Code

