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ABSTRACT 

Sparse Matrix-Matrix multiplication (SpMM) is a fundamental operation over irregular 

data, which is widely used in graph algorithms, such as finding minimum spanning trees and 

shortest paths. In this work, we present a hybrid CPU and GPU-based parallel SpMM algorithm 

to improve the performance of SpMM. First, we improve data locality by element-wise 

multiplication. Second, we utilize the ordered property of row indices for partial sorting instead 

of full sorting of all triples according to row and column indices. Finally, through a hybrid CPU-

GPU approach using two level pipelining technique, our algorithm is able to better exploit a 

heterogeneous system. Compared with the state-of-the-art SpMM methods in cuSPARSE and 

CUSP libraries, our approach achieves an average of 1.6x and 2.9x speedup separately on the 

nine representative matrices from University of Florida sparse matrix collection.  

INDEX WORDS: Sparse matrix-matrix multiplication, Data locality, Pipelining, GPU 
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1 INTRODUCTION  

Sparse matrix-matrix multiplication (SpMM) is one of the most critical operations in 

numerous application areas, such as International Thermonuclear Experimental Reactor (ITER) 

[1] and climate prediction [2] in computational sciences and social network, national security, 

and system biology in data sciences. For example, SpMM is a fundamental building block for 

algebraic multigrid method in ITER and shortest path problem [20] in social network 

applications. Compared to well-studied sparse matrix-vector multiplication (SpMV) [3-8], 

SpMM is more challenging because of its sparser feature. 

1.1 Background and Problem  

SpMM operation multiplies a sparse matrix A of size 	m´k with a sparse matrix B of size 

	k ´n, and produces sparse matrix C of size 	m´n . The output matrix C is usually denser than both 

the two input sparse matrices A and B, sometimes even totally becomes a dense matrix if A or B 

has a high nonzero element ratio. Compressed storage formats are used in SpMM, like 

coordinate (COO) and compressed row storage (CSR) formats, to make it possible to process 

very large sparse matrices. Compressed formats save storage space, but the performance of 

matrix-matrix multiplication in sparse cases is not comparable to dense cases. That’s because of 

the irregular data accesses pattern brought by sparse data structures. Research on sparse matrix 

vector multiplication (SpMV) also shows similar behavior [3-8]. 

In recently years, graphics processing units (GPUs) have brought a new chance to high 

performance computing, which promise much higher peak floating-point performance and 

memory bandwidth than traditional CPUs. Plenty of research [3-8] has improved its application’s 

performance on GPUs. Several literatures [9-15] optimize SpMM performance on GPUs, greatly 

improving its performance compared to CUDA libraries (like cuSPARSE [10] and CUSP [11]). 
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However, when applying these optimizations to applications we also need to consider the time of 

data transfer, rather than assuming that data is already located in GPU memory.  

Data transfer part occupies more than 50% in the SpMM of CUSP library according to our 

experiments, making it a bottleneck when calling them in real applications. Our work designs a 

new SpMM algorithm, a hybrid CPU-GPU SpMM (hySpMM) to separate regular operations 

from the general ESC algorithm in one aspect, and the other is to make it possible to overlap 

between data transfer and computation. Thus, SpMM can be more applicable to real applications 

especially for large-scale data.  

1.2 Motivation of this Study  

We analyze and profile ESC SpMM algorithm, and get three observations, which are 

irregular data access, redundant sorting, and expensive data transfer. 

1.2.1 Irregular Data Access 

Irregular data access is observed in expansion stage, where the multiplication between 

elements of A and B needs indirect memory access. From algorithm 1, expansion stage of ESC-

SpMM multiplies each of A 	
a

ik( )  with a corresponding nonzero element of B 	
b

kj( )
. The row index 

of 	
b

kj  is the same with the column index of	
a

ik . Since the nonzero elements in A are always stored 

in a row-major pattern, e.g. in CSR and COO formats, nonzero elements in A are processed row 

by row. Whereas nonzero elements in the same row have a wide range of column indices, 

making the access of bkj be not contiguous. Besides, matrix B is accessed column by column. If 

CSR format is used, like in ESC-SpMM and CUSP-SpMM, element accesses are very 

inefficient.  

GPU architecture suffers more from data irregularity, because of its much smaller cache 

size than CPU. For our test platforms, Intel Xeon i7-2660K has 8MBytes L2 cache, while 
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NVIDIA is only configured with 1.5MBytes L2 cache. We measure cache miss ratio of SpMM 

in CUSP library using NVIDIA visual profiler [16]. The cache miss ratios are shown in figure 

1.1, tested on NVIDIA GeFore Titan. X-axis represents the names of input sparse matrices, the 

details of which are given in table 4.2 in section 4. Y-axis shows the L2 cache hit ratios. The 

average cache miss ratio is about 25%, showing potential space for optimization. Data 

irregularity feature of SpMM drives us to design new algorithm for GPU. One approach is to 

reorganize nonzeros into a more regular memory access according to SpMM algorithm. That is 

to design a data structure which is in accordance with program behavior.  
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Figure 1.1 Cache miss ratio of CUSP-SpMM. 

 

1.2.2 Redundant Sorting 

After the expansion stage, ESC-SpMM obtains an intermediate triple list	
C

triples , including 

duplicated elements. Sorting is employed to get an ordered triple list 	
C

triples
¢
. Then the following 

compression stage can do reduction on the triples which are contiguous in location and also have 

the same indices. Though row indices of 	
C

triplesare already sorted according to the input matrix A 

Which is stored row-by-row in CSR/COO format, two-key sorting is still necessary, otherwise 

only sorting by column indices will ruin the sorted order of row indices.  
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ESC-SpMM uses radix sort for the two-key sorting, and counting sort is employed in it. As 

we know, Radix sort has a limitation that the keys are small integers because the time complexity 

become un-linear from O(nk) to O(nlogn) when the index is very large, which is not satisfied by 

large matrix. Our aim is to design an algorithm suitable for both large and small-scale matrices, 

radix sort and counting sort are not suitable any more. 

In ESC-SpMM, since the input matrices A ad B are stored row-by-row, the intermediate 

matrix is already sorted in their row indices. If we separate rows and consider only one row at a 

time, generally only one-key sorting is needed, which is more timesaving than two-key sorting. 

And we also eliminate the limitation of matrix size. 

1.2.3 Expensive Data Transfer 

Many researches on SpMM assume sparse matrices are already located on GPU memory 

[10-13]. This is reasonable when running SpMM as a single kernel, while it is opposite in an 

application view. As a real application, data (sparse matrices) are generated inside an application. 

Take algebraic multi-grid as an example, the sparse matrices used in iterative solvers are built in 

its setup stage. Different matrices may be generated due to different coarsen strategies used in 

setup stage [17]. Before running SpMM, data transfer is an indispensable stage. 

We profile the runtime of the SpMM algorithm in CUSP library using matrix “cage12” 

from university of Florida collection. Data transfer occupies about 86% of total running time, 

which is the most expensive part in SpMM algorithm. To push SpMM optimization ahead and 

make it applicable to real applications, we need to reduce the data movement overhead. 

1.3 Main Contribution 

 In this work, our contributions are as follows: Firstly, we present a hybrid CPU-GPU 

SpMM algorithm (four-stage algorithm) to isolate the irregular memory access from 
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multiplication kernel, and allocate different algorithm stage to different platforms. In this way, 

our algorithm improves data locality and parallelization. Secondly, we employ pipelining 

strategy to overlap data transfer and computation, fully utilizing CPU and GPU resources. This 

optimization makes data transfer insignificant to the whole SpMM algorithm. Thirdly, compared 

to CUSP and cuSPARSE, our algorithm obtains 1.6x and 2.9x speedup on average respectively. 

1.4 Organization of the Thesis 

The rest of the paper is organized as follows. Introduction and motivation is presented in 

section 1. Section 2 gives an outline of ESC SpMM algorithm, and illustrates GPU architecture 

features. What’s more related work is also presented in this part. The hybrid CPU-GPU SpMM 

algorithm (hySpMM) is proposed in section 3. We first describe our new data structure, and then 

explain the four stages of hySpMM algorithm, which are pre-processing, multiplication, partial 

sorting, and compression. Furthermore, detailed optimization approaches are given, one is 

pipelining between data transfer and pre-processing and multiplication stages. We show 

experiment results on representative sparse matrices in section 4, as well as analyze the cache 

and memory behavior of our SpMM algorithm. Conclusion is presented in section 5. 
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2     PRELIMINARY AND RELATED WORK 

We introduce a popular ESC algorithm of sparse matrix-matrix multiplication (SpMM). 

ESC-SpMM is used in CUSP library [10], but CUSP employs an improved version of it, like 

optimization on load balance, sorting algorithm, and etc. We use the basic ESC algorithm to get 

its fundamental idea in this section, while in section 3 and section 4 we’ll bring in more details 

about SpMM in CUSP to compare experiment results and illustrate the differences from our new 

algorithm. Then we illustrate GPU architecture features, especially the ones related to our 

optimizations. 

2.1 ESC-SpMM 

ESC-SpMM algorithm follows from the inner product view of multiplication. Each 

nonzero entry of C is computed as follows: 

		
C

i , j
= A

i ,:
×B

:, j
= A

i ,k
B

k , j
k

å  

Whether 
		
C

i , j
is a nonzero entry depends on both the i

th
-row in A and the j

th
-column in B. 

ESC-SpMM consists of three stages, expansion, sorting, and compression, which are shown in 

algorithm 1. The first stage implements the inner product between rows of A and columns of B, 

and then generates an intermediate matrix Ck which is represented by a triple list (COO format). 

Ck is usually larger than the final result C, because of more than one values are computed for a 

		
C

i , j
. Thus, we need to combine triples with the same row and column indices together. Due to the 

disordered distribution of the triples, sorting algorithm is employed to sort the triple list 

according to the two indices. Then the triples with the same indices will be continuous, and then 

compressed to get the result matrix C.  
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1 M <- slice(A)

   for k=0,…,M

2       Ck <-expand (Ak, B)

3       Ck <-  sort (Ck)

4       Ck <-  compress (Ck)

5         C <-  construct (C)       

Algorithm 1:  SpMM

Input: A, B

Output: C

 

ESC-SpMM algorithm gives a basic approach to SpMM operation, whereas there is space to 

improve its performance. CUSP optimized load balance, sorting algorithm of ESC-SpMM. In 

this paper, we illustrate three observations on ESC-SpMM and show our solution to improve it. 

2.2 GPU Architecture and Concurrent Kernels 

Modern general-purpose graphics processing units (GPUs) are fully programmable many-

core platforms. NVIDIA’s Fermi GPU architecture consists of multiple streaming 

multiprocessors (SMs) each consisting of 32 cores, each of which can execute one floating point 

or integer instruction per clock. SMs employ a Single Instruction Multiple Thread (SIMT) 

architecture. A group of 32 threads called a warp is the minimum execution unit. Once scheduled 

on a SM, the threads in a warp share the same instruction and can execute in a fairly synchronous 

fashion. In addition, The SMs are supported by a second-level cache (L2 cache).The L2 cache 

covers GPU local DRAM as well as system memory. 

From version 5.0, Compute Unified Device Architecture (CUDA) enables dynamic 

parallelism by letting a kernel function launch new kernels. Moreover, it also enables creation 

and use of streams and events without CPU involvement. A stream, which is a sequence of 

commands that execute in order, allows the overlapping of data transfer and computation in CPU 

and GPU. Different streams may execute concurrently. The Fermi architecture supports the 

simultaneous execution of kernels. The benefits are 1) utilization of whole GPU by simultaneous 
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execution of small kernels and 2) time savings by overlapping kernel execution with device to 

host memory copy. 

2.3 Related Work 

There has been a flurry of work [9-15] related to optimization sparse matrix operations, 

mainly focusing on sparse matrix-vector multiplication (SpMV). Some research is optimizing 

sparse matrix-dense matrix multiplication, which is similar to SpMV. In this paper, we studied 

sparse matrix-sparse matrix multiplication (SpMM), which is the most irregular kernel among 

sparse operations. Research on SpMM is not too much, but there are some great results by far.  

NVIDIA CUSP library [11] realized SpMM based on ESC algorithm, and also improved it 

in three aspects: adding a reorder stage, graph-based multiplication, sorting improvement, and 

etc. The reorder stage is grouping rows of similar total work and placing the rows in a non-

decreasing order of the work-per-row. This stage improves load balance, but ruins the sorted row 

indices at the same time. The sorting algorithm should be two-key sorting, which is more 

expensive than one-key partial sorting in hySpMM. Besides, our data partitioning for pipelining 

approach also insures a good load balance. Another NVIDIA library, cuSPARSE, also includes 

SpMM kernel, but it is not open-source and opaque to us. Recently, W. Liu et.al optimized 

SpMM on GPU architecture, their main optimization methods are hybrid method for the result 

matrix pre-allocation, fast merging, and heuristic load-balancing. We don’t care too much about 

the result matrix pre-allocation is because of the hybrid algorithm, that we don’t need to allocate 

all data in GPU memory. Through data partitioning, we pre-calculate the size of sub-matrices 

and use the upper bound strategy to pre-allocate the space for intermediate data. In partial sorting 

stage, we also use concurrent kernel techniques to enhance parallelism on GPU. Combinatorial 

BLAS [15] also supports SpMM, but they focus on a distributed platform. 
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3     Hybrid CPU-GPU SpMM 

We propose a hybrid CPU-GPU SpMM algorithm, hySpMM, trying to solve irregular data 

access, redundant sorting, and expensive data transfer problems we observed. In this section, we 

introduce hySpMM algorithm stage by stage, and also specify which platform (CPU or GPU) 

this stage is designed for. 

3.1 Data Structure 

As mentioned in section 1, though CSR format usually achieves good performance on 

SpMV, its advantage is not so obvious on SpMM. The main reason is that matrix B is accessed 

in column-major pattern, which is very inefficient for CSR format. Besides, although ESC-

SpMM uses CSR format for matrices A and B, but the intermediate results are also stored in a 

triple list, which is COO format. Thus, we choose COO format as the basic sparse format, and 

design a new data structure based on it.  

In SpMM algorithm, there are three sparse matrices, and each of them needs to be stored in 

a sparse format. To avoid irregular data access as much as possible, we design a different data 

structure based on COO format for matrix A and B.  

Generally, data structures are independent with programs/algorithms, only used to store data 

and show some data characteristics. Like COO format, you cannot catch the features of SpMM 

algorithm based on it. This independence makes sure of the isolation of data and algorithm, 

which is good for software engineering. But sometimes, auxiliary data structure (or attributes, or 

information) is very helpful to algorithm’s performance. Our idea is to expose more information 

of SpMM process by data structures.  
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Figure 3.1 New data structure for hySpMM 

 

For matrix A, we add an additional array to mark the repeated times each nonzero are 

involved in the SpMM algorithm. For matrix B, we extend it by storing duplicated triples. The 

order of the triples in B is in accordance with the SpMM multiplication order, from top to down, 

left-to-right for matrix A. The data structure for previous SpMM example is shown in figure 3.1. 

Obviously, the new data structure takes more storage space. We trade space for shorter running 

time. Since each triple in A[i] directly multiplies with triple B[j+i], making sure of the 

contiguous data access for both A and B during multiplication operations. Multiplication is the 

most critical point for SpMM performance excluding data transfer stage. From a first glance, this 

new data structure may not be attractive. However, it opens more possibilities to further 

optimization, especially to solve data transfer problem. 

1 for each column_index_A i in matrix A do

2     RowIdB<- COOcolIndexA[i]

3     sum[i]<- Prefix_sum(Repeat_A[i])

4     Insert COO_B [RowIdB] to COO_B[sum[i-

1]]

5 end for   

Algorithm 2:  Pre-processing algorithm

Input: A, B, Repeat_A[]

Output: DuplicateB
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To build the new data structure, an additional stage is introduced as pre-processing stage 

(algorithm 2). Pre-processing stage transforms matrices A and B from COO formats to our data 

structure. According to different triple pairs of A and B operating on, the new data structure is 

built to reflect multiplication information. Based on the new data structure, the expansion stage 

of ESC-SpMM is split into two stages, pre-processing and multiplication stages. Multiplication 

stage is shown in algorithm 3. Multiplication stage simply loops all triple pairs (A and B), 

multiplies the two values, and then stores them into the template matrix	
C

triplesas triples. The row 

and column indices of 	
C

triplesare the row indices of A and column indices of B accordingly. The 

new multiplication stage is not only simple, but has more regular data access because of no 

indirect indexing.  

Algorithm 3: Element-wise multiplication
Input: new data structure
Output: intermediate matrix C’

k = 0;
for i=1 to nnz(A) do
    times = repeat_A[i];
    ele_A = mat_A[i];
    for j=1 to times do
       ele_B = dup_mat_B[k];
       C’[k] = ele_A * ele_B;
       k++;
    end
End

 

Except building a new data structure, the main difference from ESC-SpMM algorithm 

(algorithm 1) is splitting one expansion stage into two stages. The irregular behavior is remained 

in pre-processing stage, operating on CPU, while the multiplication stage is processed on GPU 

because of its more regular behavior after pre-processing. Since GPU shows much more 

performance potential on regular data than CPU (like dense matrix-matrix multiplication), the 

new multiplication stage may get higher performance. As we mentioned in section 2, GPU has 
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smaller cache sizes than CPU, moreover GPU is not good at dealing with branches. These 

features make CPU a better choice to execute pre-processing stage. Another benefit of the new 

two stages is providing larger possibilities for overlapping between data transfer and 

computation. We’ll show this in section 4. 

3.2 Partial Sorting 

In ESC-SpMM radix sort is used, taking both row and column indicies as keys. Since row 

indices are already sorted due to the row-by-row execution order in matrix A, we only need to 

sort within a row of matrix	
C

triples . In this paper, we consider input matrix in COO format also 

ordered in row indices, which is the general case of real data sets. However, if we consider all 

triples as a whole, two-key sorting is still necessary since we need to keep row indices still 

ordered after the sorting.  

We propose partial sorting approach in hySpMM. Partial sorting is a straightforward idea 

that we separate triples of 	
C

triples  into different groups by row indices. Each group only consists of 

triples from the same row. In this way, we can only implement a general one-key sorting 

algorithm on one group, which is more time efficient, and this stage is executed on GPU. Though 

partial sorting has benefit due to its one-key sorting characteristics, there is a problem to 

implement it efficiently on GPU. Because of the diverse number of nonzero elements per row, 

GPU cannot be fully utilized if there are not many nonzeros in a row. One method to resolve this 

problem is to use different sorting algorithm for different group. 

After sorting stage, 	
C

triples
¢
 is generated from 	

C
tripleswith row and column indices both sorted. 

Compression stage of hySpMM is the same with that of ESC-SpMM. Compression stage is also 

executed on GPU. Other than the four stages, we also need data transfer stage to copy input 

matrices from CPU to GPU. 
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By now, we have designed a hybrid CPU-GPU algorithm based on ESC-SpMM, to extract 

irregularity and use partial sorting to increase parallelization. The main problem coming with the 

new algorithm is more storage space. We can solve this problem using pipelining strategy, which 

will be introduced in section 3.3. Apart from this, our algorithm shows several advantages. First, 

our algorithm splits the expansion stage of ESC-SpMM into two stages, pre-processing and 

multiplication. In this way, we distinguish regular data locality from the irregular part, allowing 

GPU to develop better performance. Second, this hybrid algorithm allows us to execute two 

different stages (pre-processing and data transfer stages) on different platforms according to their 

characteristics. In this way, we are able to use pipelining strategy to overlap among different 

stages. Last, partial sorting avoids two-key sorting and allows concurrent GPU kernels, which is 

more flexible for sparse matrices. 

Apart from the advantages our algorithm brings, there are also challenges to pursue high 

performance of it. First, to design a good pipelining approach is critical to hide data transfer 

overhead. Only if the data transfer time is insignificant, it is possible to apply our algorithm to 

real applications. Second, though partial sorting decreases the sorting burden by only sorting 

column indices, there are not so many elements to sort in each row, making it hard to full utilize 

GPU resources, which may harm the performance. Also a big variation of nonzero elements in 

each row requires the sorting algorithm be efficient on both short and long arrays.  Last, further 

optimization considering GPU architecture is needed. In the next section, we’ll address our 

solution to these challenges. 

3.3 Algorithm Optimization 

We state detailed optimization methods for hySpMM algorithm in section 3.3, including 

two main aspects: pipelining and GPU architecture-specific optimization. Inspired from J. Li’s 



14 

work [19] about how to design pipelining algorithm for dense matrix-matrix multiplication on a 

heterogeneous CPU-GPU platform, we state our pipelining strategy as follows. 

3.3.1 Pipelining 

We first analyze the resource usage of the five stages of hySpMM, which are pre-

processing, data transfer, multiplication, sorting, and compression. Resources we considered are 

CPU, CPU memory, PCIe, GPU, and GPU memory. Figure 3.2 shows the resource usage of each 

pipelining step. Except pre-processing stage, all the other four stages are executed on GPU, thus 

they need both GPU and GPU memory. Pre-processing stage executes on CPU, it needs CPU 

and CPU memory. Data transfer can be executed in Direct Memory Access (DMA) pattern, so it 

occupies CPU memory, GPU memory and PCIe bus. There is data dependence between every 

two continuous stages, pipelining can only occurs among the first three stages without resource 

conflicts. Although data transfer stage shares CPU memory with pre-processing stage and GPU 

memory with multiplication stage, since the three stages use different data in CPU (GPU) 

memory between different pipelining steps, CPU (GPU) memory can be shared by more than 

one steps without conflicts. 

 

Figure 3.2 Resource occupancy of the five stages (pre-processing, data transfer, 

multiplication, sorting, and compression) of hySpMM algorithm. 

 

The pipelining strategy is shown in figure 3.3. X-axis is a time line, and Y-axis shows 

different stages. The time of each data transfer block (red one) occupies more than 5 times of the 
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sum of the time of pre-processing and multiplication stages.  About 9% time of data transfer 

stage can be overlapped with pre-processing stage, and 11% overlapped with multiplication 

stage. This is because data transfer is very time-consuming; it occupies most of the execution 

time. Though there is still part of data transfer overhead exposed, most of the computation time 

is overlapped by data transfer. Figure 3.2 and 3.3 show that our pipelining strategy can improve 

algorithm performance by fully utilizing resources.  

Pre-

processing

Memory 

transfer 

Multiplication

time

stage Matrix: Cage12

(n =130228, nnz= 2032536)

 

Figure 3.3 Pipelining strategies on pre-processing, data transfer, and multiplication 

stages. 

 

Two strategies are used to implement our pipelining method. First, the input matrices are 

split into plenty of blocks (data partitioning is stated in section 3.3.2), and each thread is 

responsible for each block pair (including blocks of A and B). Direct Memory Access (DMA) 

method is employed for data transfer. Thus, when a thread is running pre-processing stage, data 

transfer can be executed simultaneously. Furthermore, we use multiple threads to parallelize this 

process, decrease the CPU idle time as much as possible. Second, for the pipelining between data 

transfer and multiplication, we use CUDA streams to concurrently execute asynchronized CUDA 

memory copy functions with CUDA kernels (multiplication stage). 

Pipelining strategy has three benefits. First, it is more promising to integrate optimized 

SpMM into real applications. Since in real applications data transfer time is not negligible, this 

strategy makes it possible for optimized SpMM kernels in previous research to be applied in real 
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applications. Second, our algorithm is easily tolerant large-scale data. When sparse matrices are 

too large to reside in GPU memory, our algorithm can split the input and output matrices and 

processing them independently and in pipeline. Last, pipelining strategy helps alleviate the 

increased storage space in our algorithm. Our algorithm can make use of the larger CPU memory 

instead of only GPU memory. 

3.3.2 Data Partition 

We partition matrices A and B due to the size of GPU global memory, to make all the three 

sub-matrices fully stored in it. Actually, we also need to consider the intermediate triple list 	
C

triples , 

which consumes more memory than C, and reserve space for it. Upper bound method is used to 

pre-allocate space for 	
C

triples , computing an upper bound of the number of nonzero entries in 	
C

triples  

and allocating corresponding memory space. We consider matrices A and B are square matrices 

both with the size of 	n´n, and with 	
nnz

A and 	
nnz

B as their number of nonzeros. 

		
nnz C

triples( ) = n2 -max p
A

, p
B

, p
A
´ p

B( ) (1)
 

where	
p

A is the number of rows of A with all zeros in it, and 	
p

B is the number of columns of 

B with all zeros in it. This equation means when there is a zero row in A and a zero column in B, 

the corresponding C element in the cross point of this row and this column is zero. Even if there 

is no zero columns in B (		
p

B
= 0

),	
p

Arows in C are filled with zeros. We allocate space for 	
C

triples  by 

excluding these positions. In real applications, especially graph applications, zero rows (or 

columns) are existed in general. The nonzero ratio of 	
C

triples  is 

		
ratio C

triples( ) =1-
max p

A
, p

B
, p

A
p

B( )
n2

(2)
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If both	
p

Aand 	
p

B equals to 0, we have to allocate memory space as a dense matrix. From 

equation 2, the result matrix C usually will be denser than input matrices A and B. 

We use the same method to pre-allocate space for intermediate matrix blocks (	
C

triples

Block

). The 

following equation is used to calculate the partition size.   

		
size(ABlock )+ size(BBlock )+ size(C

triples

Block )£0.9M (3)
 

where M is the size of GPU memory, 	A
Block and 	B

Block are blocks to be processed in each step. 

We only consider 90% available memory space for other temporary data. If we assume nb blocks 

are generated, and use nM to represent the numbers can be stored in GPU memory, equation 3 

transforms to 

		

nnz
A
+nnz

B( )
nb

+nnz C
triples

Block( ) £0.9nM (4)
 

Only nb is need to decide in formation 4, since  	
nnz C

triples

Block( )
 can be estimated its upper 

bound from equation 1, on matrix blocks 	A
Block

and 	B
Block

.  

Another thing we need to considered is the parallelization on CPU. Assume we use np CPU 

threads, and each thread manages a block pair of (	A
Block

,	B
Block

). Thus, we need to divide another np 

factor from nM, to make sure all tasks on GPU can be allocated at the same time. So the 

limitation now is 

		

nnz
A
+nnz

B( )
nb

+nnz C
triples

Block( )£
0.9nM

np
(5)

 

Using inequation 5, we can partition data as even as possible, to make sure the resources are 

fully utilized and insure a good load balance. 
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4 RESULTS 

We test hySpMM performance and compare its performance with both cuSPARSE and 

CUSP libraries. We also give analysis on data locality by observing cache behavior. 

4.1 Data Sets and Platforms 

Our experiments are tested on a heterogeneous platform, with Intel Xeon i7-2600K CPU 

and NVIDIA GeForce Titan GPU. The parameters of the two platforms are listed in table 4.1. As 

we mentioned, GPU has much higher peak floating-point performance, but its cache and memory 

sizes are not comparable to CPU. 

Table 4.1 Platform configurations 

Parameters 
Intel Xeon  

i7-2600K 

NVIDIA GeFore  

Titan  

Frequency 3.4 GHz 876 MHz 

# of cores 4 2048 

LLC# Size 8 MB 1.5MB 

Memory Size 32 GB 6 GB 

Memory 

Bandwidth 
21 GB/s 288 GB/s 

System 

software and 

Library 

Operating system is ubuntu 

and kernel version is linux-3.2.0. 

CUDA 7.0, CUSP v0.4.0, 

CUSPARSE v2 

# 
LLC: Last Level Cache. 

We choose 9 sparse matrices from the University of Florida sparse matrix collection [18], to 

show diverse sparsity features. The matrix set is given in table 4.2. The matrices have various 

sizes and nonzeros per row. 
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Table. 4.2 Benchmark matrices 

Matrices n nnz nnz per row 

Hood 220542 9895422 44 

Atmosmodl 1489752 10319760 6 

Offshore 259789 4242673 16 

Bmwcral 148770 10641602 71 

mono_500Hz 169410 5033796 29 

cage12 130228 2032536 15 

Cca 49152 139264 3 

Poisson3Da 13514 352762 26 

Orsirrl 1030 6858 7 

 

4.2 Performance 

Our hySpMM performance is shown in figure 4.1, counting data transfer time. For the nine 

matrices, their performance numbers vary from 100 MFLOP/s to 1GFLOP/s, due to various 

sparsity features. Our performance number is not attractive because we count data transfer time 

in, to simulate the environment in real applications. Matrices “hood”, “atmosmodl” and “cca” 

achieve relative higher performance, because there matrix size is enough large to benefit from 

the pipeline optimization, what’s more the relatively small number nonzero elements per row 

reduce their pre-processing time. 
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Figure 4.1 Performance 

 

We also compare our performance with that of cuSPARSE and CUSP libraries in figure 4.2. 

Due to the large overhead of data transfer, cuSPARSE and CUSP also show low performance. 
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HySpMM achieves an average speedup of 1.6 times and 2.9 times over cuSPARSE and CUSP 

respectively, which shows the benefit of hySpMM. 
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Figure 4.2 Speedup compared to cuSPARSE and CUSP libraries. 

 

HySpMM separates expansion stage into pre-processing and multiplication stages, the first 

one is executed on CPU and the second one on GPU. Pre-processing stage conserves the 

irregularity, while multiplication stage only contains regular memory accesses, which is more 

beneficial to GPU. We prove hySpMM having better data locality by measuring cache behavior. 

L2 cache hit ratio is measured by NVIDIA visual profiler on the nine matrices (figure 4.3). 

Compared to CUSP, hySpMM obtains close to 90% cache hit ratio on average, which is much 

better than 75% from CUSP. hySpMM improves data locality to improve its overall 

performance. 
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Figure 4.3 Cache behavior comparison between hySpMM and CUSP-SpMM. 
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5 CONCLUSIONS AND FUTURE WORK 

In this paper, we optimized the widely used Sparse Matrix-Matrix multiplication (SpMM) 

on a heterogeneous CPU-GPU platform. Based on basic ESC algorithm of SpMM, we observed 

three problems which affect its performance: (1) data locality problem in the expansion stage, (2) 

redundant operations in the sorting stage, and (3) poor utilization of CPU-GPU pair in processing 

irregular data simultaneously. The new designed hySpMM algorithm solves these problems 

through algorithm optimization, pipelining strategy, and GPU architecture-specific optimization. 

Compared with the state-of-the-art SpMM methods in cuSPARSE and CUSP libraries, our 

approach achieves an average of 1.6x and 2.9x speedup separately on the nine representative 

matrices from University of Florida sparse matrix collection. However, there is still optimization 

space for SpMM. 
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