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ABSTRACT 

Green roofs can be an effective mitigation strategy to offset the environmental impact 

that urbanization has on the environment. The roof area for the city of Atlanta and for the 

Georgia State University campus was used to compare the effectiveness of green roofs at 

removing pollutants, abating stormwater runoff, and reducing the urban heat island at different 

scales. Results show that the warmest part of the city is the urban core with a mean of 33.5°C, 

which is also the area of the city with the highest percentage of impermeable surfaces at 91%. At 

the GSU scale, green roofs can reduce land surface temperature in the urban core up to 2.62°C, 

remove up to 73 kg of atmospheric pollutants annually, and reduce stormwater runoff by up to 

32.3% annually. Results were less significant at the Atlanta scale due to the large amount of 

vegetated surfaces that already exist. 
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1 INTRODUCTION  

1.1 Background 

Despite the strides made in reducing the impacts of urbanization on the environment in 

major cities across the globe, stormwater runoff and the urban heat island effect are increasingly 

becoming the leading environmental threats facing urban populations. Studies have shown that 

ambient air temperatures in urban areas will increase at a faster rate than the nearby rural areas 

due to climate change (Pompeii & Hawkins, 2011), increasing the risk of heat related mortality 

for urban residents (Saha, Davis, & Hondula, 2014). The high percentage of impervious surfaces 

associated with urbanization have caused stormwater runoff to frequently overwhelmed the 

sewer systems designed for much lower flow capacities, causing sewage overflows into streams 

and creeks that often run through neighborhoods (Zhang et al., 2015). High urban ambient air 

pollution has been linked to a variety of negative health outcomes such as reduced cognition in 

children (Calderón-Garcidueñas & Torres-Jardón, 2012), adult onset asthma (Jacquemin et al., 

2015), as well as depression (Calderón-Garcidueñas et al., 2015). The Clean Air Act (CCA) of 

1970 was an effort to reduce ambient air pollution in the United States, none the less, Atlanta, 

Georgia struggles to control ambient air pollution due to the rapid and sprawling nature of the 

city’s growth (Goldberg, 1998). Thirty four years after the passage of the CCA a correlation 

between low birth weight babies and ambient air pollution still existed in Atlanta (Darrow, Klein, 

Strickland, Mulholland, & Tolbert, 2011). Often, the populations most at risk of poor health 

outcomes due to exposure to ambient air pollution also reside in the areas of the city that are also 

the hottest due to the urban heat island effect (Johnson & Wilson, 2009).  

The urban heat island (UHI) phenomenon is defined as an increase of surface temperatures 

in urban settings above the surface temperatures of the surrounding rural areas (Huang, Zhou, 
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& Cadenasso, 2011) and this phenomenon exacerbates extreme heat events (EHE). A 

combination of factors including the amount of vegetation present in any given area, 

antecedent soil moisture, synoptic atmospheric conditions, the materials that the built 

environment is constructed from, as well as the size and scale of the built environment, all 

contribute to produce a UHI that contains elevated and spatially diverse temperatures (Johnson 

& Wilson, 2009). The frequency and amplitude of EHEs is expected to increase due to climate 

change, putting already vulnerable populations such as the elderly and the poor at an even 

greater risk of heat related mortality (Davis, Knappenberger, Michaels, & Novicoff, 2003).  

The major environmental benefits of having green roofs on buildings in urban areas is their 

potential to help mitigate the urban heat island (Lilliana et al, 2013), reduce ambient air 

pollution and stormwater runoff (Rowe, 2011), and potentially reduce the mortality rate in 

urban areas during an extreme heat event (Johnson & Wilson, 2009). 

It is important to understand the effects of green roofs on the urban environment of humid 

sub-tropical cities because it is predicted that with climate change, the humid sub-tropical 

climate will grow to encompass most of the northeastern and Midwestern U.S. by the end of 

the century.  
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Figure 1 ThePredicted Progression of the Humid Sub-Tropical Climate 
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1.2 Green Roofs 

A green roof is a vegetated layer that is grown on a building roof with the intention of 

replacing that part of the natural landscape that was destroyed when the building was 

constructed. They typically fall into two classification schemes: extensive or intensive, based on 

the depth of growing medium used. An extensive green roof consists of a shallow growing 

medium of three to six inches and is capable of supporting shallow rooted and short plants such 

as sedums and small grasses. An Intensive green roof consists of growing medium greater than 

six inches and can support a wider variety of vegetation such as shrubs, trees, and vegetables 

(U.S. Environmental Protection Agency Office of Atmospheric Programs, 2008). How effective 

a green roof is at mimicking a naturally vegetated space depends on several factors: the depth of 

the growing medium, the type of plants growing on the roof, synoptic climate conditions, and the 

degree of moisture present in the growing medium (Santamouris, 2014). These variables make it 

difficult to extrapolate the results of green roof studies from one region of the U.S. to another.  

Adding greenspace at ground level in an urban setting may be impossible, so taking 

advantage of the real estate afforded on commercial roofs to increase greenspace is a key 

strategy for UHI mitigation. Urban areas have a smaller temperature differential between 

daytime and evening when compared to rural or suburban areas due to the inefficient cooling of 

the built environment at night (Buyantuyev, 2009). The albedo (a measure of reflectance) of a 

surface has a strong influence on the primary drivers that regulate surface temperature: the 

atmospheric boundary layer, emissivity, surface roughness, evaporation, and the heat capacity of 

an object. Vegetation has a low heat capacity and increases surface roughness, evaporation, and 

emissivity; all characteristics that reduce surface temperature (Fernando, 2001). Through these 

mechanisms, green roofs can help mitigate urban heat islands with taller buildings experiencing 

greater cooling load decreases, and the greatest reduction in cooling occurring on the hottest 
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summer days (Perini, 2014). While green roofs can produce cooling effects top to bottom, these 

effects are most pronounced inside the building the roof sits on and are negligible for pedestrians 

at ground level (Peng, 2012) (Lilliana, 2013). However, the aggregated cooling extents of urban 

greenspaces has been shown to be an effective mechanism for reducing the urban heat island 

(Dugord, 2014). A reduction of 1-3°C in the urban heat island effect was found when a 

combination of cool and extensive green roofs were modeled for urban areas throughout 

southern California, although the heating effects generated by transportation systems was not 

included in the model used to estimate near surface temperature changes (Georgescu, 2015) 

(Akbari, Pomerantz, & Taha, 2001). 

 Green roofs can lower surface temperatures directly through the mechanisms 

mentioned in the preceding paragraph, and also indirectly through a reduction of heat producing 

processes that occur during the production of cool air inside buildings. Direct effects can be 

measured and felt immediately while indirect effects may not be quantified until a green roof has 

been established for some time and are often difficult to account for (Akbari, 2001). While it is 

impossible to quantify the benefit of reducing mortality from an extreme heat event, it is possible 

to quantify other indirect costs associated with the reduction of air pollution, energy costs, and 

stormwater runoff utilizing a Net Present Value analysis (Clark, Adriaens, & Talbot, 2008). 

Quantifying both direct and indirect costs is an essential part of valuating the benefits of green 

roofs as together they have the potential to inform and guide policy decisions (Farrugia, Hudson, 

& McCulloch, 2013). When both direct and indirect effects are quantified, the costs associated 

with installing and maintaining a green roof are recovered within 14 – 20 years depending on the 

number of cooling and heating degree days, with warmer regions experiencing greater savings 

for an equal number of cooling days as a moderate climate (Thevenard, 2011).  Thus removing 



6 

one of the largest barriers to widespread adoption of green roof technology (Clark, Adriaens, & 

Talbot, 2008).  

 

Figure 2  Comparitive Analysis of Radiative Heat Flux of Green Roofs Versus White Roofs Versus Conventional 

Roofs (Gaffin, Rosenzweig, Eichenbaum-Pikser, Khanbilvardi, & Susca, 2010). 

1.2.1 The Influence of Green Roofs on the Urban Heat Island 

Urban Heat Island (UHI) is a term that refers to the increased surface temperatures that 

the urban built environment causes relative to the surrounding rural area. Urban environments 

generally have reduced vegetative land cover, an increase in impervious surfaces, and consist of 

a built environment that creates urban canyons, all of which contribute to increased surface 

temperatures, especially at night (Targino, Krecl, & Coraiola, 2014). Loss of vegetative land 

cover reduces environmental cooling via evapotranspiration and also reduces surface albedo 

causing an increase in heat absorption (Coseo & Larsen, 2014). The tall buildings characteristic 

of an urban center have been shown to be the primary factor in the creation of the UHI (Heisler 

& Brazel, 2010) because the thermal properties of the building materials used in urban built 

environments change the radiative flux through heat absorption during the day and radiant heat at 

night (Huang, Zhou, & Cadenasso, 2011).  These factors raise the minimum daily temperature 

(nighttime temperature) within the urban boundary, and it is the amplitude of the minimum daily 
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temperature that has been linked to an increase in mortality during an EHE (Luber & McGeehin, 

2008).  The more heat the UHI absorbs and stores during the day, the more heat the UHI radiates 

at night in the form of infrared radiation, latent heat flux, and sensible heat flux, raising 

nighttime temperatures, human discomfort, and increasing the potential for heat related mortality 

among urban residents (Luber & McGeehin, 2008, Alexander, 2011).   

 

Figure 3  This graphic demonstrates the effect that the urban built environment has on the diurnal temperature 

range. The 5am temperature over the urban area remains elevated. Figure courtesy of the Minnesota Department of 

Health.  

 

Due to climate change, the UHI effect is expected to become more severe. Prior to 1930 

there were few positive trends associated with minimum and maximum temperature extremes 

regardless of the level of urbanization of the recording station (Easterling et al, 2000).  However, 

for the time period 1950-1996, Gaffen and Ross (1998) noted a positive trend in extreme daytime 

and nighttime temperatures, primarily in urban areas indicating a correlation between rising 

minimum daily temperatures and increasing atmospheric greenhouse gases. The warming trend 

has been found to be approximately three times greater in urban areas than in rural areas, and 

twice as great in urban areas as in suburban areas for the years 1960-1996 (DeGaetano & Allen, 
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2002). Other studies show that for the period from 1951 to 1989 there has been an increasing 

trend in the minimum daily temperature (nighttime temperature) while there has been no 

corresponding increasing trend in maximum daily temperatures, meaning that nights are 

generally warmer now than they have been in the past, a trend exacerbated by the UHI 

(Easterling, 2000) (Alexander et al., 2006). In a humid climate the UHI may only have a 3˚- 4˚C 

differential during the day between the urban core and surrounding rural areas, while at night the 

differential can increase to approximately 11˚C (Jenerette et al., 2007). The trend of rising 

minimum daily temperatures has been found to occur on the global scale, ruling out regional bias 

(Alexander et al., 2006).     

 

1.2.1.1 Land Cover and the Urban Heat Island 

1.2.1.1.1 Vegetation 

The urban built environment has the potential to increase the effect that an EHE has on 

mortality rates via the urban heat island effect, especially in the poorest neighborhoods of a city. 

Understanding how climate change impacts urban centers is important because the majority of 

heat related morbidity and mortality occurs in large cities, with the majority of those deaths 

happening among the city’s poorest residents (Harlan, Brazel, Prashad, Stefanov, & Larsen, 

2006). Microclimates exist within the urban arena creating spatial variations in temperature 

within the urban boundary that correspond to the socio-economic status of the population (Hope 

et al., 2003).  Urban poverty, especially in the age 65 and up demographic, has been shown to be 

the most influential variable on mortality when studying the urban spatiality of EHEs (Johnson & 

Wilson, 2009). Proximity to the urban core has not been shown to be a significant factor for 

determining the spatial characteristics of mortality within the UHI, rather it is the spatial and 



9 

vegetative configuration of the neighborhood within the urban core that largely determines the 

extent of the UHI effect (Harlan, Brazel, Prashad, Stefanov, & Larsen, 2006). Poor city residents 

often lack financial and political resources necessary to mitigate the factors that lead to 

neighborhood scale warming, including increasing vegetative cover, reducing the density of 

housing, and creating vegetated open space (Harlan, Brazel, Prashad, Stefanov, & Larsen, 2006).   

                  

Figure 4 Vegetation has a profound effect on land surface temperature. Photo courtesy of Dr. Stuart Gaffin, 

Columbia University Earth Institute, Center for Climate Systems Research.  

 

1.2.1.1.2 Soil Moisture 

Antecedent soil moisture has been shown to be negatively correlated with surface 

temperatures at both the local and regional scale. The lower the soil moisture content on a 

regional scale, the higher the maximum temperature during an EHE (Durre, Wallace, & 

Lettenmaier, 2000) (Mueller & Seneviratne, 2012). Dry soils reduce the latent heat cooling that 

normally occurs at nighttime, increasing the minimum daily surface temperature and amplifying 

surface temperature anomalies by nearly 40% (Fischer, Seneviratne, Vidale, Lüthi, & Schär, 

2007).  
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Figure 5 Credit Nature.com 

 

Soil moisture does not only influence surface temperature by reducing the latent heat 

flux, it also influences tropospheric circulation patterns by creating a positive feedback 

mechanism via a surface heat low and enhanced ridging in the mid-troposphere (Vose, Karl, 

Easterling, Williams, & Menne, 2004). Reinforcing the findings of this study were the results of 

another study that found that extremely hot days are more influenced by soil moisture deficit 

than are days of average temperatures, largely due to atmospheric circulation changes (Mueller 

& Seneviratne, 2012). EHEs in Europe have been shown to be enhanced by dry soil conditions in 

the Mediterranean area, indicating that reduced soil moisture conditions not in proximity of 

urban centers can influence urban climate due to the coupling of atmosphere and soil moisture 

dynamics (Vautard et al., 2007). The changes in atmospheric circulation patterns caused by 

reduced soil moisture conditions can lead to a weakening of nighttime winds which means that 

cooling by advection is also reduced and thus daily minimum temperatures are increased 

(Grossman-Clarke, Zehnder, Loridan, & Grimmond, 2010). 
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for an equal number of cooling days as a moderate climate (Thevenard, 2011).  Thus 

removing one of the largest barriers to widespread adoption of green roof technology (Clark, 

Adriaens, & Talbot, 2008).  

1.2.2 The Influence of Green Roofs on Pollutants 

The removal of ground level ozone from the atmosphere by vegetation is difficult to 

quantify since ozone is considered a secondary pollutant. The level of ozone present in the near 

surface atmosphere depends upon the presence of the precursors necessary to form ozone: 

volatile organic compounds, solar radiation, and NOx. The formation of ozone happens in the 

atmospheric boundary layer at time scales of approximately 1 hour (Anderson et al., 2001). 

Atmospheric conditions conducive to creating a high ozone days in Atlanta, GA occurred on 

days that were hot, had low humidity, and had low atmospheric mixing heights early in the day 

and high atmospheric mixing heights in the evening (Diem, 2009). The convective currents carry 

the ozone from the surface up to a stream of fast moving air that is the major mechanism for 

atmospheric pollutant transport and occurs at about 30m above the surface (Anderson et al., 

2001). In Atlanta, Georgia, high ozone days are associated with atmospheric conditions where 

the metropolitan area is on the western side of an atmospheric trough that encourages the 

transport of ozone precursor pollutants into the Atlanta metro region from the Ohio River Valley 

(Diem, et al 2010). 

Vegetation can act as both a source and a sink for ground level ozone; as a source of 

biogenic volatile organic compounds that are precursors to the formation of ozone, and as a sink 

via wet or dry deposition, and chemical conversion via absorption. Vegetation sinks pollutants as 

atmospheric gases can be absorbed by vegetation and either stored in the mass of the plant or 

converted to other gases via respiration; or pollutants may stick to the exterior mass of the plant 
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until they are either absorbed by the plant or they are washed off and adsorbed into the soil 

(Currie & Bass, 2008). Trees can also produce biogenic VOC’s such as isoprene and 

monoterpenes that are the precursors to the formation of ground level ozone (Mochizuki et al., 

2015). When planning a landscape project in an urban setting it is vital to select tree species that 

are low VOC emitters in order to reduce the amount of ozone that would form from any biogenic 

VOC’s emitted by the installed vegetation (Churkina, Grote, Butler, & Lawrence, 2015). Trees 

are not the only type of vegetation contributing to the biogenic VOC inventory; expanses of lawn 

grasses emit significant amounts of VOC’s each time they are cut (Churkina, Grote, Butler, & 

Lawrence, 2015) and expanses of lawn grasses are also strongly associated with land parcels that 

produce excess heat thereby contributing to the urban heat island (Stone & Rodgers, 2001). 

A study using Detroit, MI as a study area estimated that if 20% of the city’s roofs were 

converted into extensive green roofs, then approximately 889 tons of NO2 could be removed 

from the atmosphere (Clark, Adriaens, & Talbot, 2008). Research using Chicago, IL as the study 

area found that of the pollutants directly removed by an extensive green roof, ozone accounted 

for 52%, NO2 for 27%, PM10 for 14%, and SO2 for 7% of the total pollutants removed. Peak 

pollutant removal occurred in May which corresponds to the peak growing season in the Chicago 

area (Yang, Yu, & Gong, 2008). Green roofs also reduce atmospheric pollutants indirectly by 

reducing the demand for air conditioning, which in turn reduces the amount of coal burned to 

produce the energy to operate HVAC systems leading to a reduction in primary emissions 

(Rosenfeld, Akbari, Romm, & Pomerantz, 1998). 

1.2.3 The Influence of Green Roofs on Stormwater Management 

Stormwater runoff poses a threat to municipal water supplies and has the potential to 

contaminate urban waterways. Rain that would have been absorbed or evapotranspirated by 
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plants on naturally vegetated land, runs off of the impervious surfaces of the urban built 

environment and enters the municipal waste water treatment system instead (Morgan, Celik, & 

Retzlaff, 2013). Calling it one of the top reasons that water quality standards are not being met in 

urban areas, the U.S. Environmental Protection Agency has deemed stormwater runoff as the 

biggest threat to water quality nationwide (Garrison & Horowitz, 2012). 

One of the primary benefits of a green roof is their ability to reduce and slow the 

stormwater runoff from precipitation events, preventing municipal sewer systems from becoming 

overwhelmed and overflowing. According to the EPA SWMM model, conventional roof 

consisting of impervious surface has a stormwater run-off rate of 88%. Naturally vegetated land 

has an annual stormwater run-off rate of about 40%, generally occurring during either intense 

precipitation events or events that occur when the soil is still saturated from a previous storm. 

How close a green roof comes to approximating the natural environment in terms of run-off 

depends on the depth of the growing medium and the type of vegetation on the roof (Nardini, 

Andri, & Crasso, 2012). During small precipitation events a green roof has been shown to be 

very effective at reducing peak runoff and increasing lag time and duration of response time 

(Polinsky, 2009). An extensive green roof has been estimated to have the ability to capture 35% 

to 100% of precipitation, depending on the growth medium and the size of the precipitation event 

(Zhang et al., 2015). 

Green roofs also act as a filter for stormwater by removing many of the pollutants that are 

present before they reach the watershed. The concentration of Total Suspended Solids (TSS) can 

be reduced, and pH can be increased when stormwater is filtered through a green roof (Zhang et 

al., 2015) (Morgan, Celik, & Retzlaff, 2013). The overall pollutant load added to the watershed 

is decreased because the amount of runoff is been decreased.  However, certain pollutants have 
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been shown to increase in runoff from a green roof, particularly phosphorous and potassium with 

the amounts of these pollutants decreasing as the roof ages (Garrison & Horowitz, 2012).  

1.3 Research Question and Objectives 

            Climate plays a large role in the energy performance of a green roof since their 

performance is closely linked to the ability of plants to evapotranspirate and intercept solar 

radiation.  What is not well known are the potential effects of green roofs in warmer and wetter 

urban areas in the United States; therefore, this research focuses on Atlanta, the largest city in the 

southeastern United States.  Peer reviewed studies on green roof technology specific to the 

Atlanta study area have not been done, creating an opportunity for research as shown in figure 6. 

 

Figure 6 Green roof Study Locations 

 



15 

How closely the addition of green roofs can mimic the natural environment in terms of 

stormwater runoff abatement, pollution removal, and temperature reduction in a city located in a 

sub-tropical climate is rarely studied. The research focus is as follows: How and to what extent 

would green roofs improve environmental conditions in a humid subtropical city?  The 

objectives derived from this question are (1) determine the spatiality of the Atlanta urban heat 

island, (2) determine the extent of stormwater runoff generated by impervious surfaces in 

Atlanta, and (3) determine the potential of a green roof to help reduce atmospheric pollutants 

NO2, SO2, 03, and PM10. 

 

 

 

2 The Study Area 

 

Figure 7 Atlanta, GA 



16 

2.1 Atlanta 

As one of the fastest growing metropolitan areas in the United States, the urban form of 

Atlanta has grown unencumbered by the physical boundaries that often limit the spatial extent of 

major metropolitan cities (Figure 7). By modeling Atlanta’s growth patterns, Yang and Lo 

(2002) have predicted that almost all of Atlanta’s greenspace could disappear if current growth 

patterns persist and state that specific actions would need to be taken to encourage the 

preservation of greenspace. Already, the sprawling nature of the Atlanta Metropolitan Statistical 

Area (MSA) has led to an increase in ambient temperature in the urban core due to the advection 

of air heated in the suburban/urban interface (Stone & Rodgers, 2001). The sprawling nature of 

the Atlanta MSA has also led to a multinucleated structure where nodes of downtown-like 

development exist (Fujii & Hartshorn, 1995) and this leads to a spatially heterogeneous UHI 

(Buyantuyev & Wu, 2010).  

Atlanta is classified as a humid subtropical climate using the Koppen Climate System. 

This climate is characterized by hot and humid summers and mild to cool winters, and plentiful 

precipitation year round (Diem, 2013). Figure 8 shows the annual temperature and precipitation 

distribution of Atlanta.  

 

Figure 8 Atlanta Climograph 
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2.2 Georgia State University  

 The ability to stymie the impacts of urbanization on the environment are often deployed 

in a patchwork style because urban properties are generally owned and controlled by disparate 

corporate entities with no ties that bind them together. Universities located in an urban setting are 

ideally suited to help mitigate the urban heat island phenomenon due and their large campus 

footprint under the control of a single owner, which allows for a cohesive plan of action over a 

large area. Located in the heart of Atlanta, Georgia State University has developed a campus 

landscape master plan that will add greenspace to a campus dominated by impervious surfaces 

such as concrete and asphalt. Largely ignored in the master plan is the expanse of real estate that 

exists on the rooftops of the campus buildings. A thorough understanding of the potential impact 

of installing green roofs on the Georgia State University (GSU) campus may increase the 

likelihood that the university will adopt green roofs as part of their master plan for the campus.  
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Figure 9  Georgia State University 

 

 

Georgia State University is considered an open, urban campus meaning that the streets 

and sidewalks that transect the campus are public thoroughfares owned and maintained by the 

city of Atlanta (Figure 9). Located in the southeastern region of the United States, the climate of 

Atlanta is categorized as humid sub-tropical (Diem, Hursey, Morris, Murray, & Rodriguez, 

2010). Given the unique structure and situation of each urban environment, and given that the 

structure and environment play large roles in the effectiveness of green roofs to mitigate the 

urban heat island, the results from a study performed on one city may not be replicated when the 

study area is changed. Climate conditions unique to Atlanta effect the number of heating and 
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cooling days buildings require, and also affects the vegetative growing season that in turn 

determines the effectiveness of green roof technology.  

The campus of Georgia State University was chosen because of its location in downtown 

Atlanta, an area that largely consists of impermeable surfaces and little green space. Another 

factor in the choice of using GSU as the study region is the commitment that the GSU 

administration has made to increasing green space on campus. Georgia State University has 

developed a campus Master Plan that will create more green space at the street level, but ignores 

the vast expanse of exposed surface on campus rooftops. Satellite imagery shows that the 

rooftops of GSU buildings are largely composed of dark materials that absorb solar radiation 

during the day and become very hot, then slowly release this heat at night diminishing the 

diurnal temperature differential that leads to the UHI effect and increases EHE related mortality 

(Davis, Knappenberger, Michaels, & Novicoff, 2003). Importantly, the GSU Facilities 

Administration has expressed a desire to learn more about the benefits of green roofs at GSU 

with the intention of possibly installing one or more green roofs on campus. The information 

gained through this study has the potential to lead to an outcome that may have real world 

impacts. 
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Figure 10 False color IR image of the GSU Campus 

 

The GSU campus in high resolution, false color IR image in figure 10 shows the lack of 

vegetation and the large amount of impervious surface that exists on the GSU campus. 

3 Methods 

Determining the spatiality of the Atlanta urban heat island allowed for deeper analysis of 

the possible factors driving the formation of the UHI. Impervious surface rasters and NDVI 

rasters were created and correlated to the land surface temperature rasters. Stormwater runoff 

analysis combined with the impervious surface analysis created a complete picture of the current 
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runoff situation and based on this future scenarios were created to model climate change impacts. 

Landsat 5 images have a thermal band that can be converted to LST at the 120m scale, which is a 

much finer resolution than temperature readings reported from area weather stations can provide. 

This information can be combined with land classification and NDVI analysis to form a 

comprehensive picture of what is happening in the Atlanta metro area with regards to fine 

resolution temperature mapping. The potential for low impact development (LID) practices to 

mitigate stormwater runoff can be estimated after first determining current runoff amounts and 

then modeling possible LID scenarios. Data about the amount of surface area in Atlanta covered 

by roofs was used to determine the total contribution that roofs make to LST and the effect that 

various mitigation scenarios might have on the UHI. Building footprint data were obtained from 

Open Street Map via Metro Extracts (http://metro.teczno.com/). 

 

3.1 Land Surface Temperature 

 Days representative of a typical summer day were determined based on the National 

Weather Service Heat Index (HI). Hourly temperature data for Hartsfield Jackson International 

Airport, Peachtree Dekalb Airport, and Atlanta Fulton County Airport were downloaded from 

the National Weather Service for the years 1999 – 2014. The heat index (T) for each day during 

the months of June, July, and August (JJA) for this study period were calculated, as well as the 

85th, 90th, 93rd, and 95th percentiles for each day in order to prevent bias from having too many 

EHE, or unusually cool days. Daily maximum temperatures (Tmax) were then analyzed to 

determine where they fell in relation to the average temperature for that day during the study 

period to determine what days could be categorized as an extreme heat event (EHE).  

http://metro.teczno.com/
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 Once ‘typical’ days were identified, satellite images were reviewed in order to find an 

image that was taken on a ‘typical’ day, and was also cloud free. Level one satellite imagery was 

obtained from the U.S. Geological Survey database (Earthexplorers.usgs.gov). To establish a 

baseline for our results and make sure that this day represented a typical spatial distribution of 

temperature in Atlanta, all the cloud free images for JJA during the study period were analyzed 

in an identical manner to the EHE. Due to differences in water vapor content in the atmosphere 

which can alter at-sensor brightness values, it is not appropriate to compare the derived LST 

between different time periods. Instead, the spatiality of the temperature distribution across the 

image acquisition dates should be the primary focus of the comparative analysis (Chen, Zhao, Li, 

& Yin, 2006). To account for this, a composite from the processed images was derived and used 

as a representation of a typical summer day in Atlanta.  

The Landsat 5 TM images that were chosen were converted to visual representations of 

land surface temperatures using the method developed by Sobrino et al. (Sobrino, Jiménez-

Muñoz, & Paolini, 2004). Using remote sensing image processing software, the images were 

subset so that only the Atlanta region was subjected to image processing and analysis. 

Atmospheric correction was applied to each image to counteract the distortion that wind speed, 

specific humidity, and air temperature have on path of solar radiation and thus on the final 

computation of LST (Dousset & Gourmelon, 2003). A Normalized Difference Vegetative Index 

(NDVI) raster was produced from each image using Landsat band three (red) and four (near 

infrared) as shown in Equation 1: 

Equation 1 NDVI 
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Landsat 5 produces 8 bit images composed of pixels with digital number (DN) values 

assigned to them ranging from 0 – 255 and corresponding to the surface reflectance assigned to 

that pixel. DN’s need to be converted to radiance values for the derivation of LST via equation 2 

(Barsi, Hook, Schott, Raqueno, & Markham, 2007): 

Equation 2 Radiance 

 

Where R = radiance 

.055376 = Landsat 5 gain value for band 6 

Tb = DN thermal band (band 6) 

1.18243 = Landsat 5 bias value for band 6 

These radiance rasters were then converted to temperature rasters, expressed in degrees 

Kelvin using equation 3 (Yale, 2010): 

 

 

 

Equation 3  Radiance to temperature in Kelvin 

 

 

Where: 

1260.56 is a band specific thermal conversion constant in kelvin 

607.76 is a band specific thermal conversion constant in w-2*ster*μm 

Br is the radiance band created in the previous step. 
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The resulting temperature raster contains values that reflect the at-sensor brightness 

temperature in degrees Kelvin. Further processing is required to complete the conversion to land 

surface temperature. 

 An emissivity raster was developed for each image from the NDVI rasters created 

in equation 1, using equation 4 (Sobrino, Jiménez-Muñoz, & Paolini, 2004).However, there are 

several assumptions associated with the execution of this formula: 

1. NDVI values less than 0.2 are considered bare soil and an emissivity value of .972 is 

assumed.  

2. NDVI values greater than 0.5 are considered healthy vegetation and an emissivity value 

of .99 is assumed. 

3. NDVI between .2 and .5 are considered mixed pixels and so equation 4 must be used to 

calculate the emissivity values of these pixels. Steps to completing this equation in can be 

found in Appendix A. 

Equation 4 Emissivity 

ƐTb  + .986 

Where ƐTb is the emissivity of thermal band 6. 

.004 is the standard deviation of the emissivities of 49 soil spectra. 

.986 is the average emissivity of the soil rasters and the vegetated rasters. 

Pv is the percentage of vegetation present in a pixel and is calculated using 

equation 5: 

Equation 5 Percentage Vegetation 

Pv = 2 

Where Pv is the percentage of vegetation per pixel with NDVI between 0.2 – 0.5. 
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NDVImin is 0.2 

NDVImax is 0.5 

 

      

 The next step in converting the satellite images to LST maps is to use the raster 

created in equation 15 as part of equation 16 (Weng, Lu, & Schubring, 2004): 

Equation 6 Land Surface Temperature in Kelvin 

LST =  

Where LST is the land surface temperature expressed in degrees Kelvin. 

Tb is the thermal band raster. 

Wp is the peak wavelength of the emitted radiance. 

Equation 7  Land Surface Temperature 

C = h*c / s (1.438 * 10-2 m K) 

Where h is Planck’s Constant (6.626 * 10-34 Js). 

s is the Boltzman Constant (1.38 * 10-23 J/K). 

c is the speed of light (2.998 * 10-8 m/s). 

The new raster produced as the result of equation 6 represents the LST in degrees Kelvin 

so it needs to be converted into degrees Celcius using the equation 8: 

Equation 8  Convert Kelvin to Celcius 

Tc =  

Where Tc is temperature expressed in degrees Celsius. 

3.2 Spatial Investigations of Land Surface Temperature 

Giving context to the LST maps was essential for understanding the meaning behind their 

spatial temperature distributions. A shapefile of the Atlanta Neighborhood Political Units 

(NPU) was obtained from the Atlanta Regional Commission GIS database. Atlanta consists of 
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25 NPU’s that are operated by citizens to create a liaison between city government and the 

citizenry. The Atlanta NPU’s were extracted from the LST raster so that statistics would not 

include pixels outside of the city of Atlanta boundary. The raster produced from this process 

was used to run zonal statistics in order to get descriptive temperature statistics per NPU, 

including the Tmin, Tmax, and Tavg.  

The mean of the pixels with the top 5% of land surface temperatures and the mean of the 

pixels with the bottom 5% of land surface temperatures were examined to find out the range of 

LST in Atlanta. The means of the top and bottom 5% were also analyzed for their numerical 

difference in order to see if there was consistency between the image days in terms of peak 

values and low values. Extreme hot and cold values were identified for each day. To determine 

the environmental impact that green roofs may have at the city and campus scale, land surface 

temperatures for 6 cloud free summer days were created. Pearsons R was also used to check for 

spatial correlation of heat between the image days in order to determine if there was a consistent 

spatial distribution of heat in the city of Atlanta.  

Further visualization of the spatiality of the urban heat island in Atlanta was 

necessary to see the extent and magnitude of the temperature gradient.  The raster derived 

from the means of each of the typical, cloud free, summer days was used to visualize the 

Atlanta urban heat island. Using the GSU campus as the centroid, three two mile wide, 

circular buffers were created in order to see if a temperature gradient exists from the GSU 

campus outward. In total this created four zones, including the GSU campus, where the 

mean temperature for each zone was derived using zonal statistics.  

 



27 

3.2.1 Analysis of the Relationships between Land Cover and Land Surface Temperature  

The extent of vegetative land cover varies widely across the Atlanta metro region. 

Analyzing land cover was necessary to see if a relationship exists, and how strong that 

relationship might be, between land cover and LST at the NPU level.  Impervious surface 

data was downloaded from the National Land Cover Database (2011) and clipped to match 

the Atlanta shapefile extent. The NLCD dataset is raster data at 30m resolution based on 

Landsat data from 2011.  This data, which was downscaled to 30m in its original form, was 

scaled up to 120m extent in order to match the resolution of the Landsat TM thermal band 

resolution and prevent the introduction of an ecological fallacy. The percent of impervious 

surface per NPU was calculated and then tested for significant correlation with mean NPU 

temperatures using Pearson’s product-moment correlation tests (one-tailed; α = 0.01) with 

t. 

The LST, NDVI, and Impervious Surface rasters were converted to point data that was 

analyzed to see if a correlation existed between LST and NDVI, and LST and Impervious 

Surface using Pearson’s product-moment correlation tests (one-tailed; α = 0.01) with t. 

Pearsons R was also used to check for spatial correlation of heat between the image days in order 

to determine if there was a consistent spatial distribution of heat in the city of Atlanta.  

An Atlanta-specific dataset was created using a high-resolution satellite imagery. 

Worldview 2 satellite imagery has a panchromatic spatial resolution of 0.5m and a multi-spectral 

resolution of 1.86m, providing highly detailed land cover data. The impervious surface analysis 

was performed using an unsupervised classification with 30 initial classes and 20 iterations, with 

the 30 initial classes being reclassified into two classes: impervious and pervious.  
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Scatterplots were created and tested for significant correlations between LST and 

impervious surface for each image day using Pearson’s product-moment correlation tests 

(one-tailed; α = 0.01) with t. The percent of impervious surface per NPU was calculated and 

then correlated using Pearson’s R with the mean temperature raster developed from Landsat data 

for this study.  

Scatterplots were also created for the Normalized Difference Vegetative Index (NDVI), a 

measure of the health, or ‘greenness’ of vegetation. The NDVI is expressed as a ratio with 

healthier vegetation having a higher value. The NDVI scatterplots were also tested for significant 

correlations with LST for each image day.  

High resolution Worldview 2 imagery of the city of Atlanta was analyzed for impervious 

surface and NDVI at the .5 meter scale. The Worldview 2 satellite is owned by Digital Globe, 

who requires that each image have at least a 2 kilometer width in every direction of the area of 

interest. This necessitated adding a buffer to the exterior of the image in order to widen the 

narrowest parts of the city of Atlanta boundaries to acceptable standards for the NDVI analysis.  

3.2.2 Extraction of Atlanta Roofs and Examination of Roof Surface Temperatures 

To understand the impact that green roofs have on the city of Atlanta it was necessary to 

extract roof data of Atlanta, and of GSU. Data about the amount of surface area in Atlanta 

covered by roofs was used to determine the total contribution that roofs make to stormwater 

runoff and the effect that various mitigation scenarios might have. Building footprint data were 

obtained from Open Street Map via Metro Extracts (http://metro.teczno.com/). 30m temperature 

values were examined only for roofs equal to or larger than 14,400m2 since this is equivalent to a 

single Landsat TM thermal band pixel, the finest resolution available for this study. Histograms 

of the roof temperatures were created to determine the temperature range of relatively hot and 

http://metro.teczno.com/
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relatively cool roofs. The contribution that roofs have to total LST, and to LST under various 

green roof scenarios was estimated using equation  

3.3 Estimation of Pollutant Removal 

There are no studies that quantify the amount of pollutants removed from the atmosphere 

by green roofs in a humid subtropical climate. The values for this study are based on a study 

focused on Chicago, IL (Humid Continental climate type) and assumed that a roof consists of 

short grasses. Total annual pollutant removal rates were calculated for the city of Atlanta and the 

GSU campus for scenarios assuming 10%, 20%, 50%, and 100% of roofs being vegetated. 

Pollutants examined included NO2, SO2, PM10, and O3 using coefficients from Yang et al (2008) 

for short grasses, multiplied by the percentage of roof area covered by vegetation.  Differences in 

pollution removal between species was examined using values from a study by Speak et al 

(2012) that compared a cultivar of the popular green roof plant Sedum album, to three species of 

grasses in a study based in a Marine West Coast climate type. Removal rates per species were 

calculated at the city of Atlanta scale and the GSU campus scale using different green roof 

percentage scenarios of 10%, 20%, 50%, and 100%. Results were derived using the potential 

roof area vegetated multiplied by the coefficient from the study.  

3.4 Estimation of Mean Surface Temperature and Cumulative Stormwater Runoff under Multiple 

Scenarios 

Mitigating stormwater runoff is one of the primary reasons cited for the installation of a 

green roof. The green roof partially mimics the land that existed before the land was built on, but 

the degree to which a green roof performs in that capacity depends upon the depth of the 

growing medium and the type of vegetation present on the roof. Most precipitation that falls on 

metro Atlanta annually, falls in the form of rain. While it does snow in Atlanta, precipitation is 
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not held in this state for more than a few days and it quickly becomes available to vegetation as it 

melts. This means that monthly precipitation totals represent precipitation immediately available 

for evapotranspiration and is not held in crystalized form until Spring.  

Four green roof scenarios were used to estimate the impact that vegetative roofs might 

have on Atlanta LST: City extents of present day coverage, 10%, 20%, 50%, and 100% of 

vegetated roofs. The hypothetical temperatures were derived based on a formula that weighted 

the percentage of impervious surface, roof area, and percent of green roof coverage as shown in 

equation 9. This analysis was repeated at the GSU campus scale in order to see if scale made any 

difference in LST scenarios.  

Equation 9 Estimating LST for Various Green Roof Scenarios 

 

 

Where the estimated temperature of a green roof at 11a.m. was determined by subtracting 

18°C from the mean temperature of the roofs (Dvorak & Volder, 2013) 

Similar scenarios were used to analyze stormwater runoff at the GSU campus and the 

Atlanta scale with the additional variable of growing medium depth. Green roofs are cultivated 

in a special growing medium that ideally should consist of 20% organic matter to 80% inorganic 

matter according to FLL guidelines.  The EPA Stormwater Management Model (SWMM) was 

used assuming the following parameters: a drain rate of standing water of .04 inches per hour, 

land cover of 41% forest, 19% lawns, and 40% impervious surface. Precipitation and evaporation 

data for the past 30 years was retrieved from Atlanta Hartsfield Jackson International Airport.  
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3.4.1 Stormwater Runoff 

An estimate of the annual amount of stormwater runoff was necessary in order to form a 

complete picture of the effects that green roofs may have on the environment. The total amount 

of impervious surface as calculated from the Worldview 2 satellite image was used to estimate 

the total annual stormwater runoff from impervious surfaces in Atlanta. The EPA National 

Stormwater Calculator was used to determine what the total annual stormwater runoff would be 

with varying degrees of re-vegetated areas to see what impact native vegetation has on the 

amount of annual runoff.  

The amount of annual stormwater runoff that the roofs of Atlanta and the GSU campus 

contribute was calculated to see what the conventional roofs contributions are to stormwater 

runoff at different scales. The EPA National Stormwater calculator was again enlisted to help 

formulate the impact that green roofs of varying depth would have on the runoff. Future runoff 

amounts were also estimated based on climate models that predict the southeastern region of the 

U.S. becoming warmer and wetter as the climate changes. The results from the EPA SWMM 

were converted into gallons and totals were calculated for Atlanta and GSU. 

The EPA National Stormwater Calculator is based on the EPA Stormwater Management 

Model (SWMM) which takes into account different soil types, topography, and hydraulic 

conductivity. This analysis used 30 years of weather data from Hartsfield Jackson International 

Airport, and assumes a drain rate of .4 inches per hour, and a land cover composition of 41% 

forest, 19% lawns, and 40% impervious surfaces for the city of Atlanta. While these assumptions 

do not perfectly reflect the conditions found throughout metro Atlanta, they are a good 

approximation that allows for a comparative analysis between different green roof scenarios 

involving varying depths of growing medium.  
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3.4.2 Precipitation  

In order to construct a current climograph for Atlanta, daily precipitation data was 

acquired from the National Oceanic and Atmospheric Administration (NOAA) from 1985 – 

2014. The mean temperature and the mean precipitation was derived from this data set for each 

month of the year. An analysis of the annual soil moisture budget was also based on this data set 

to determine what months have a surplus of soil moisture and what months have a deficit of soil 

moisture. This information will help to determine evapotranspiration rates and green roof 

performance.  

 

4     RESULTS 

4.1 Roofs in Atlanta 

The impervious surface analysis reveals that Atlanta consists of 40% impervious surface, 

with 25% of that impervious surface being roofs. This means that in Atlanta, roofs comprise 10% 

of total surface area. 

4.2 Land Surface Temperature and the Urban Heat Island 

The results of the conversion of the Landsat 5 images to a map of land surface 

temperature (Figure 11) reveal a consistent spatial pattern of heat distribution within 

metro Atlanta between the individual image dates and the mean image dates. This finding 

was confirmed by the results of the temperature correlation analysis between the rasters 

of the image days and the raster of the mean of the image days that revealed a consistent 

spatial relationship with Pearsons R ranging from a low of .897 to a high of .966. 
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Figure 11 LST of 6 Image Days 

 

The weather data from 1999 to 2014 revealed that 74 days fell above the 95th percentile 

or above on the Heat Index scale. One day was identified as meeting all criteria for the defined 

Heat Event Day, and also had a cloud free Landsat satellite image available. This day was 

categorized as Dry Tropical on the Spatial Synoptic Classification System (SSC) and fell in the 

95th percentile of the mean for that day. A second image was classified on the SSC as Dry 

Tropical Plus and fell in the 90th percentile of the mean for that day. Another five cloud free 

images were classified as ‘Typical’ days and four of the five were classified as Dry Moderate 

and one as Transitional in the SSC. 

Based on the raster of the mean LST of the six image days, the mean temperature for the 

roofs of Atlanta on the image days ranged from 33.9°C to 35.9°C, in contrast to the mean LST of 

the entire city of Atlanta of 27.5°C to 30.7°C. When roof temperatures were subtracted from the 

Warmer 
Cooler 

 

rr 



34 

data, the mean LST temperature of Atlanta on the image days was reduced to 26.7°C to 30.1°C, 

indicating that roofs directly contribute to the urban heat island effect. The mean temperature 

reduction in the Atlanta area without roofs from the Atlanta with roofs scenario ranges from .6° - 

.8°(C). 

 

Table 1 Effect of Roofs on Temperature in Atlanta 

 

 

 

 

 

  The 

warmest parts of the city tend to follow the major roadways and commercial development nodes. 

In terms of temperature, two outlier points were found: one is a very large scale server farm 

northwest of the urban core, and the other is a glass factory located south of the urban core. 

Closer to the urban core, the World Congress Center / Philips Arena complex was another hot 

spot, though not to the extent of the server farm or the glass factory while the Georgia Dome had 

the coolest roof. 

Entire City Day1 Day2 Day3 Day4 Day5 Day6 

Temp in C 29.5 27.5 30.7 28.6 29.7 27.9 

       

Mean Roof Day1 Day2 Day3 Day4 Day5 Day6 

Temp in C 36.8 33.9 35.9 35.1 36.6 34.7 

       

City, No Roof Day1 Day2 Day3 Day4 Day5 Day6 

Temp in C 28.7 26.7 30.1 27.8 28.9 27.1 
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Figure 12 Map of the Atlanta Urban Heat Island Gradient 

 

 

 

The urban core of Atlanta is the warmest area of the city with a mean temperature of 33°C, 

and a temperature gradient that decreases with distance from the urban core (Figure 12). 

 The difference between the mean temperature of the top 5% and the mean temperature of 

the bottom 5% reveal that the image days are fairly spatially consistent with their peak 
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temperature and their low temperature ranges as shown in Table 2. Examining the pixels 

identified as the hottest and coolest on each image revealed that the warmest pixels are the 

darkest rooftops while the coolest pixels are the roofs lightest in color or with the densest 

vegetation. 

 

Table 2 Top 5% and Bottom 5% of Mean Pixel Values 

 

 

 

The histogram analysis of roofs with areas greater than 14,400m2 show the 

distribution is normal and fairly consistent in terms of the mean and the range of values 

(Figure 13).  



37 

 

Figure 13 Histograms of Image Days 

 

 At the scale of the NPU, it is no surprise to find that the NPU’s with the highest 

amount of impervious surfaces also have the highest mean LST. GSU is part of NPU M and 

this NPU has the highest percentage of impervious surface of all the Atlanta NPU's at 76% 

(Figure 14).  
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Figure 14 Impervious Surface by Atlanta NPU 

 

NPU M is also the warmest NPU with a mean temperature of 33.5°C.  The mean 

correlation coefficient of impervious surface and land surface temperature in Atlanta is a 

strong .80.     There was no significant correlation between race and temperature or 

population and temperature. 



39 

 

Figure 15 Map of the distribution of impervious surfaces in Atlanta by NPU 
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4.3 Relationship between land surface temperature and vegetative cover 

Scatterplots as shown reveal a strong negative correlation between NDVI and 

temperature (Figure 16). The correlations range from -.79 to -.84, indicating that as NDVI 

increases, LST decreases with a significance of 0.0000. 

 

Figure 16 Scatterplots of NDVI and LST 
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4.4 Relationship between land surface temperature and impervious surfaces 

Scatterplots as shown reveal a strong positive correlation between impervious 

surface and temperature (Figure 17).  Correlations range from .79 to .81 indicating that as 

the amount of impervious surfaces increase, temperatures tend to rise.  

 

Figure 17 Impervious Surface Scatterplots 
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Figure 18 High Resolution of Atlanta and a Buffer Region 

 

Figure 18 shows the result of a high resolution impervious surface analysis of Atlanta at 

the different scales: City, downtown, and Centennial Olympic Park. Technical parameters 

prevented the processing of the NDVI image at the NPU scale.  
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Figure 19 High Resolution Mean NDVI of Atlanta Per Census Tract 

 

At the GSU campus scale, high resolution imagery analysis for impervious surface and 

NDVI in figure 20 shows the extent of impervious surface and vegetation. It is easy to visually 

determine that the GSU campus is largely impervious surface and lacks vegetative cover. The 

high resolution impervious surface classification had a strong 89% accuracy rate. 
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Figure 20 High resolution analysis of Impervious Surface and NDVI for the GSU Campus 

 

4.5 Potential impacts of extensive green roofs on Atlanta’s surface temperature 

The re-introduction of vegetation and subsequent reduction in impervious surfaces by the 

addition of green roofs resulted in a 1.59° C reduction in LST at the city scale if 100% of roofs 

over 14,400m2 were vegetated (Figure 21). The temperature decreases linearly with an increase 
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in green roof coverage. This means that installing green roof technology may have a significant 

impact on the urban heat island. 

 

 

Figure 21 Impact on Land Surface Temperature Due to Green Roofs at the City Scale 
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At the scale of the GSU campus, the same analysis reveals a markedly different result. If 

100% of GSU roofs were vegetated then the LST reduction increased to 2.62°C (Figure 22). 

 

 

 

Figure 22 Impact on Land Surface Temperature Due to Green Roofs at the GSU Campus Scale 
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4.6 Pollutant Removal 

Green roofs are an effective way to increase the atmospheric pollutant rate in an urban 

setting at both the city scale and the campus scale in absolute terms. The pollutant removal for 

the city of Atlanta revealed that green roofs would make a small impact on the overall amount of 

pollution removal rate that is currently taking place. 

 

Figure 23 Annual Pollutant Removal Rates for the city of Atlanta 

 

Figure 23 shows that even at a rate of 100% vegetated roofs for the entire city, green roofs would 

only increase atmospheric pollution removal by a maximum of about 12%.  
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An analysis of species performance in pollution removal reveals a significant difference 

in the ability of different plant species to remove PM10 from the atmosphere. Sedums proved to 

be a poor performer in relation to Fescue rubra (Figure 24). 

 

Figure 24 Species Level Analysis of PM10 Removal 

 

 However, at the scale of the GSU campus the results are much more dramatic. Using the 

GSU campus footprint, the landcover analysis revealed that the GSU campus consists of 91% 

impervious surface (Figure 25).  

 

The rates for pollutant removal for the GSU campus were based off the results of this 

analysis and reveal a striking increase in the amount of pollutant removal due to the presence of 
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green roofs. If 100% of the GSU roof area were to be vegetated than a striking 70% - 75.34% 

increase in atmospheric pollutant removal is predicted.  

 

 

Figure 25 Annual Pollutant Removal at the GSU Campus Scale 

 

 With 100% of roofs at GSU vegetated with S. album, only 55.38 kg of PM10 

would be removed compared with 423.24 kg that could be removed by F. rubra (Figure 26).  
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Figure 26 Species Level PM10 Removal - GSU Campus Scale 

 

 

4.7 Stormwater Runoff 

Traditional urban development practices result in a high level of impervious surfaces that 

direct stormwater directly into municipal sewer systems. This results in approximately 

41,269,808,992 gallons of stormwater runoff annually from all impervious surfaces, taking a 

12% evaporation rate into account. Green roofs can mitigate anywhere from .06% - 3% of this 

run off depending on the depth of the growing medium, reducing total stormwater runoff by 
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approximately  275,438,102 - 1,400,143,687 gallons annually if 100% of Atlanta roofs are green 

roofs based on 49.58 inches of precipitation annually (Table 3). 

 

Table 3 Runoff Scenarios for City of Atlanta 
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At the GSU campus scale, the reduction in stormwater runoff is much more dramatic. If 100% of 

GSU roofs were vegetated, the runoff reduction increased by32.3% (Table 4). 

Table 4 Runoff Scenarios for the Campus of Georgia State University 
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In an undisturbed state, runoff is estimated to be about .67% or 1,537,862,738 gallons annually 

assuming a landcover composition of 80% forest and 20% meadow. Table 5 shows that when the 

percentage of stormwater runoff for various green roof scenarios takes predicted climate change 

trends into account that the increase in runoff is modest. 

 

Table 5 Stormwater Runoff by Percentage for Climate Change Scenarios 

 
 

 

 

The hydrological structure of Atlanta is comprised of a series of small watersheds that 

primarily feed into two larger river basins: the Apalachicola, Flint, and Chattahoochee River 

Basin (ACF) and the Ocmulgee River Basin. The ACF River Basin drains into the Gulf of 

Mexico, while the Ocmulgee River Basin drains into the Atlantic Ocean. The GSU campus spans 

two watersheds, the Proctor Creek Watershed and the Intrenchment Creek Watershed. Since our 
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study area focuses on the GSU Sports Arena specifically, the path of the stormwater runoff from 

that location will be analyzed closely. Stormwater from this location is directed to the 

Intrenchment Creek Watershed where it is transported to through the South River Watershed to 

the South River Wastewater Treatment Facility as shown in Figure 27.  

 

 

Figure 27 Watersheds of Atlanta 
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The Intrenchment Creek and South River Watersheds are part of the Ocmulgee River 

Basin which naturally drains to the Atlantic Ocean as shown in Figure 28. 

 

 

Figure 28 Atlanta River Basins 

 

However, the city of Atlanta Department of Watershed Management diverts this water to 

the Chattahoochee River (ACF River Basin) after processing. Eventually the stormwater from 
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the GSU Sports Arena ends up in the Gulf of Mexico instead of the Atlantic where it would 

naturally drain (Figure 29).  

 

Figure 29 GSU Stormwater Path 

 

5 DISCUSSION 

5.1 The Influence of Green Roofs on the Urban Heat Island in Atlanta and GSU 

With urban areas experiencing a greater increase in minimum daily temperatures 

than their rural surroundings due to climate change, it is expected that EHE related 

mortality will also increase. In addition to mortality, the increasing temperatures will also 
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increase energy consumption as cooling systems work harder and longer to keep 

buildings as comfortable as possible. A by-product of operating a cooling system is that 

they produce heat as a result of mechanical processes, which compounds the urban heat 

island effect that they are working to offset. The warmer the climate, the harder a system 

must work to cool a building and therefore the more heat it produces in an effort to cool 

that building.  ‘Process’ heat in conjunction with the built environment emitting longwave 

radiation prevents the urban core from cooling down at night, thereby increasing the risk 

for EHE related mortality.  

The correlation between impervious surface and temperature is near perfect at .979. 

This can be confirmed visually as the map in figure 7 shows that the warmest area of 

Atlanta is the urban core, followed by major thoroughfares that are lined with commercial 

industry. Roads are typically constructed of dark asphalt, and the commercial areas 

normally consist of asphalt parking lots and buildings with dark roofs. This type of built 

environment is largely made of impervious surfaces so there is no surprise that they are 

also the warmest areas of the city. Conversely, the coolest areas of Atlanta are those areas 

with a low percentage of impervious surfaces and a high percentage of vegetated land. 

This information, combined with the knowledge that extreme heat events will be 

increasing in both magnitude and duration, mean the areas of Atlanta that are most 

vulnerable to heat events can be identified as those with the greatest amount of 

impervious surfaces.  

The urban core, with its high percentage of impervious surfaces and low percentages 

of vegetated space has the highest mean temperature of the metro Atlanta area. Two other 

locations were identified as having extremely high land surface temperatures; one 
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location being an extremely large server farm, and the other location being a glass 

production factory. However, both of these points lie outside of the urban core and their 

temperature influence is localized.  

GSU has been largely responsible for the revitalization of the urban core of Atlanta. As 

the fastest growing university in the University of Georgia System, GSU is responsible for 

the surge in new residential units being built on or near campus to provide housing 

options for GSU students. The revitalization of the urban core has attracted business and 

industry to locate their operations downtown near the GSU campus. For instance, 

Microsoft is locating their new Innovation Center in the Flat Iron Building located 

adjacent to the GSU campus. This movement of people back to the urban core of Atlanta 

means that people are moving into the warmest part of Atlanta, which will increase the 

demand for air conditioning, which will produce even more heat in the process of 

creating cool air and exacerbating the urban heat island effect.  

Knowing the correlation between impervious surface and increased land surface 

temperature in Atlanta is a strong .79 to .82, it follows that a reduction in impervious 

surfaces should reduce land surface temperatures. The results of this study show that LST 

can be decreased by 3°C to 2.97°C at the GSU scale depending on the area covered in 

vegetated roofs. Therefore, increasing the amount of vegetated, pervious surfaces in the 

built environment should be an effective way to mitigate the urban heat island and also 

help mitigate the damaging effects of an extreme heat event in Atlanta. 

Another byproduct of the Atlanta UHI is the enhancement of summer storms due to 

the increase in convective currents and heating produced by the UHI. Maximum 

enhancement occurs northeast of Atlanta in Gwinnett County which is located about 17 
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miles northeast of Atlanta (Diem, 2008). If the UHI effect were minimized, it is possible that 

summer storm enhancement would be reduced which would be an indirect benefit of instituting 

green roof technology. 

5.2 The Influence of Green Roofs on Pollutants in Atlanta and at GSU 

Rooftops present a challenge for successfully growing vegetation due to the harsh 

conditions that occur with changes in elevation. Raising the elevation increases the plants 

exposure to solar radiation and wind and care must be taken to select plants that are able to 

tolerate these conditions. Sedums are a popular choice for extensive green roofs because they 

are drought, wind, and, depending on the cultivar, sun tolerant. Sedums are succulents, 

specifically they are part of the family of succulents that use crassulacean acid metabolism 

(CAM4) which is an adaptation that allows them to tolerate arid conditions. While sedums are 

very good at tolerating arid conditions, they are not as efficient at reducing the surface 

temperature of a green roof as grasses are (Lundholm, MacIvor, MacDougall, & Ranalli, 2010) 

and therefore are not the best vegetation choice if environmental benefits are the primary 

concern. 

Grasses, especially native grasses, are extremely efficient at cooling the surface of the roof  and 

removing PM10 due to their structure and biomass. The limiting factor for grasses is that they do 

need a deeper growing medium than sedums and more irrigation days in order to thrive, and 

therefore require a greater structural load capacity from the building. However, the deeper 

growing medium and the need for irrigation mean a green roof of grasses is more effective at 

cooling because of active evapotranspiration processes and superior energy partitioning 

(Santamouris, 2014). Typical growing mediums for green roof vegetation follows FLL 

guidelines (green roof industry guidelines) that requires 80% inorganic matter and 20% organic 



60 

matter for growing mediums. This composition results in a porous structure that allows more air 

pockets than what is found in typical soils. A greater amount of air in the growing medium 

means there is less thermal conductivity due to the resultant lack of soil moisture which reduces 

heat transmission, lowering the cooling potential of the green roof (Nardini, Andri, & Crasso, 

2012).  

The amounts of pollutants that could be removed from the atmosphere by vegetated roofs is 

likely to be an overestimate. Factors such as the size and structure of the plant, as well as the 

species play a large role in determining the effectiveness of pollutant removal by a green roof. 

Some plant species emit biogenic volatile organic compounds to a greater degree than other plant 

species. For instance, the process of ozone formation is not linear and depends upon the presence 

of UV radiation and NOx in order to produce ozone. However, the presence of NO2 also inhibits 

the production of ozone. OH and NO3 radicals oxidize hydrocarbons (VOC’s) into peroxyacyl 

and hydroperoxyacl that react with NO and turn it into NO2. In the presence of UV radiation, 

NO2 becomes O3. However, O3 reacts with NO to produce NO2 again which reduces the 

availability of OH radicals for hydrocarbon oxidation by forming NHO3, meaning that a decrease 

in NO leads to an increase in O3. This balance between the production of ozone and the 

availability of NOx determines the level of effectiveness that a green roof will have in removing 

ozone from the atmosphere (Hewitt, 1999).  Fernando (2001) states that surface level pollutants 

remain at the surface level until they are forced into the atmospheric boundary level by 

convective or turbulent mixing. The increasing of surface roughness by the addition of 

vegetation can generate shear turbulence up to 2-3 times the height of the vegetative canopy, 

increasing the mixing and dispersion of pollutants including ozone and its precursors. The 

benefit of ozone removal from the atmosphere via wet and dry deposition versus the addition of 



61 

ozone precursors to the atmosphere, coupled with atmospheric mixing generated by a vegetative 

surface is something that is highly dependent upon the species and size of plants that the 

vegetated roof consists of.  

 

5.3 The Influence of Green Roofs on Stormwater Runoff in Atlanta and at GSU 

The results of this study show that shallow, extensive green roofs have a limited ability to 

mitigate stormwater runoff. An annual reduction of 3% of stormwater runoff for the entire city 

of Atlanta if all roofs were vegetated is a modest benefit. Considering the age of the buildings 

in Atlanta and their accessibility, a large portion of rooftops would not be good candidates for 

greening. Therefore, even a 3% reduction in stormwater runoff is unrealistic. However, at the 

GSU scale with its large expanse of impervious surfaces, stormwater runoff can be reduces by 

as much as 32.3% if all roofs were vegetated. Again, this scenario is unrealistic but it does 

demonstrate the impact that increasing vegetated spaces can have when the built environment 

consists of 91% impervious surfaces.  

Total stormwater runoff mitigation is just one metric for measuring the impact vegetated 

roofs have on stormwater runoff. A study that modeled the impact different green roof scenarios 

could have during differing degrees of precipitation events found that green roofs would be 

effective at reducing peak attenuation of runoff. The degree of attenuation modification 

depended on the green roof configuration and the size of the storm event (Polinsky, 2009).   

Since 75% of all impervious surfaces in Atlanta are roads and parking lots, stormwater 

mitigation strategies at ground level will have a greater impact than green roofs do. Incorporating 

bioswales and raingardens into public landscape designs, and using pervious pavements in 
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addition to green roofs are strategies that are increasingly being used by municipalities to control 

stormwater runoff. 

Given the modest decrease in total stormwater runoff from the installation of vegetated roofs, 

can flooding at the city or basin scale be alleviated by green roof technology? The combined 

sewer overflow system of the city of Atlanta can become overwhelmed during very large 

precipitation events causing raw sewage to be discharged into area streams. By reducing peak 

attenuation and total runoff, Versini et al (2015) found that 35% area coverage with green roofs 

can prevent some flooding issues at both the city and basin scale. However, the results of the 

impact green roofs have at the basin scale depend on the potential that the land cover the basin is 

comprised of for the installation of green roofs. It may make more sense to study the downstream 

impact of green roofs at a smaller scale such as the watershed scale where deleterious storm 

effects can be directly related to changes in urban landcover. As the results of this study show, 

the impact on stormwater runoff is the greatest at the GSU scale where the greatest amount of 

impervious surface exists, therefore focusing on the impact of green roofs on the potential to 

mitigate downstream flooding at the watershed scale could be valuable. 

Because of the dynamic nature of the atmosphere, sophisticated modeling beyond the scope of 

this study is needed in order to determine the extent wide deployment of green roof technology 

could offset the urban heat island phenomenon. Fernando (2001) has found that the orientation of 

the built environment to the prevailing winds, as well as distance between buildings and their 

heights influence the behavior of the urban canopy layer and the ability of wind to penetrate the 

urban core at street level. Buyantuyev & Wu (2010) found that the addition of a green roof 

reduces the depth of the planetary boundary layer which has the potential to increase the 

perception of decreased air quality. Fernando (2001) also found that green roofs increase surface 
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roughness thereby causing an increase in convective mixing in the lower levels of the 

atmosphere, possibly causing the perception of air quality increasing. The amount of surface 

roughness created by a green roof depends on the type of green roof is being studied, with an 

intensive green roof increasing surface roughness and an extensive green roof having less of an 

effect on surface roughness(Peng, 2012). Each of these characteristics contributes to determining 

the ambient air temperature but the combination of vector processes (wind) which has both 

magnitude and direction, and scalar data (temperature) which has magnitude only makes it 

difficult to predict how green roofs will impact ambient temperature.  

This study found significant reductions in the LST at the GSU scale with modest 

reductions at the Atlanta scale. This is likely due to the large amount of vegetated surfaces at the 

Atlanta scale and the lack of vegetated surfaces at the GSU scale. Studies modeling the effect of 

widespread deployment of green roof technology are limited by the fact urban atmosphere-

biosphere coupling is a complex process that is confounded by the form and composition of the 

built environment. Therefore, extrapolating the LST results of this study to changes in ambient 

air temperature is not recommended.  

The International Panel on Climate Change (IPCC) models predict that precipitation will 

increase by 5% as global temperatures rise due to the resultant increase in atmospheric water 

vapor. An increase of precipitation on a sewer system already burdened at the current 

precipitation rate will likely increase the number and magnitude of sewer overflow events. It 

becomes even more important to control as much stormwater as possible before it enters the 

municipal sewer system under this scenario. Green roofs can be a significant aspect of 

stormwater mitigation strategies, especially as the depth of growing medium deepens.  
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However, in an urban area where new construction is limited, retrofitting an older 

building for a green roof can be expensive. The typical barriers that prevent the adoption of 

green roof technology are listed in Table eight. Many existing urban buildings encounter all of 

the listed barriers making adoption of green roof technology less likely. New construction is the 

best candidate for the installation of a green roof because many of the barriers can be overcome 

at the design phase of the construction process.  

Table 6 Barrier and Benefits to Green Roof Adoption 
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6 Study Limitations 

The primary limitation of this study is the coarse resolution of the thermal band of the 

Landsat 5 images that were used to determine the spatiality of heat distribution in Atlanta. At 

120m2 per pixel, it is impossible to definitively state what the land surface temperature is at any 

point in the metro region. It is possible to draw conclusions based on the relative distribution of 

temperature at the city scale from this study, but not to state the exact extent temperature 

differs from one point to the next. This study is also limited by the lack of data that pertains 

specifically to the city of Atlanta with regards to green roof studies. There are opportunities for 

research into the impacts that green roofs could have on the city of Atlanta should a green roof 

be installed on the campus. These studies would help inform public policy as it relates to 

growth and development in the face of a warming climate. 

7 Conclusion 

The urban heat island effect is closely correlated with the loss of pervious and vegetated 

surfaces in the urban area. In Atlanta, the urban core has been shown to be the warmest area of 

the metro area and it also has the least amount of pervious and vegetated surfaces in the metro 

area. The high correlation between impervious surface and land surface temperature in Atlanta 

is in agreement with the majority of peer reviewed literature and can confidently be used as the 

best predictor of land surface temperature distribution in Atlanta.  

The presence of a green roof on the GSU campus would offer several benefits including 

pollution abatement, on-site stormwater management, and urban heat island mitigation. The 

scale at which green roofs would need to be deployed in order to offset the negative 

environmental impacts of urbanization depends upon where the green roofs are located. The 
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impact at the GSU scale is much greater than the impact at the Atlanta scale due to the 

abundance of vegetated spaces at the city scale and the lack of vegetated spaces at the campus 

scale. Strategically placing green roofs at the urban core will significantly affect stormwater 

runoff, air quality, and the UHI in Atlanta.  
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APPENDICES  

Appendix A 

A series of conditional statements were needed to execute emissivity rasters in the 

ArcGIS raster calculator, including the creation of ‘masking rasters’ that effectively 

masked the zero values that resulted when using the ‘con’ function in the raster 

calculator.  

NDVI_mask 

Con(("NDVI" <= 0.5) & ("NDVI" >= 0.2), 1) 

 

NDVI 0.2 – 0.5 

"NDVI" * "NDVI_mask" 
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Pv 0.2 – 0.5 

("NDVI2to5" - 0.2) / 0.3 * ("NDVI2to5" - 0.2) / 0.3 

 

Middle NDVI 

0.004 * "Pv2to5" + 0.986 

 

Low NDVI 

Con(("NDVI" < 0.2), 0.973) 

 

High NDVI 

Con(("NDVI" > 0.5), 0.99) 

 

Emissivity < 0.2 

Con(IsNull("lowndvi"),0, "lowndvi") 

 

Emissivity 0.2 – 0.5 

Con(IsNull("middlendvi"),0, "middlendvi") 

 

Emissivity > 0.5 

Con(IsNull("highndvi"),0, "highndvi") 

 

Final Emissivity Raster 

      

 

If the emissivity has NODATA due to bands 3 and 4 having zero values, then use the 

following:  
 

emiss2 = Con("emiss1" ==  0, 0.973, "emiss1")   
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