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ABSTRACT 

Small molecules interacting with DNA is an emerging theme in scientific research due to 

its specificity and minimal side-effect. Moreover, a large amount of research has been done on 

finding compounds that can stabilize G-quadruplex DNA, a non-canonical secondary DNA 

structure, to inhibit cancerous cell proliferation.  G-quadruplex DNA is found in the guanine-rich 

region of the chromosome that has an important role in protecting chromosomes from 

unwinding, participate in gene expression, contribute in the control replication of cells and more.  

In this research, rationally designed, synthetic cyanine dye derivatives, which were tested under 

physiologically relevant conditions, were found to selectively bind to G-quadruplex over duplex 

DNA and are favored to one structure over another.  The interactions were observed using UV-



vis thermal melting, fluorescence titration, circular dichroism titration, and surface plasmon 

resonance analysis.  For fluorescence and selectivity properties, cyanine dyes, therefore, have the 

potential to become the detections and/or therapeutic drugs to target cancers and many other fatal 

diseases. 
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1 

1 INTRODUCTION  

1.1 DNA and the route to cancer therapeutics 

Human genomes contain approximately 3 billion deoxynucleic acid (DNA) base pairs 

that are stored neatly in the 46 chromosomes in the nucleus.  The nature of the DNA base pairs 

creates a unique genetic material that is significant in cellular function, stability and 

maintenance.  When required, the DNA is then unwrapped and transcribed into mRNA, 

translated into protein, and then the protein can perform cellular functions.  Each step is strictly 

regulated by checkpoints to maintain stability for cellular survival.  Despite the strict regulations, 

some mutations occur and are repaired while others are permanently mutated.   

 

Cancer cells multiply uncontrollably and can also spread and affect other areas of the 

body (called Metastais).  Cancer is one of the leading causes of death in the world, with 

approximately 8.2 million related deaths reported in 2012 alone 
1
.  Different techniques have 

been used and studied purposely to inhibit the cancer cell growth and proliferation.  DNA is one 

of the main targets due to its significant role in cellular activity.  By targeting specific sequences 

of DNA using small molecules, the cancerous cell growth and proliferation can be blocked with 

minimal side effects.  Targeting different types of DNA structure/sequence is essential for 

creating treatments to cure not only cancer but also other diseases.  

 

The first DNA structure was found to be a B-type with the properties of a right-handed 

double helical structure and with Watson and Crick hydrogen bonds that have been verified by x-

ray crystallography 
2
 (Figure 1.1).  However, DNA can have other hydrogen bond arrangements, 

such as reversed Watson-Crick, G•T wobble, and Hoogsteen hydrogen etc.  The difference in the 

hydrogen-bond arrangements showed other significant DNA structures such as right handed A-
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type duplex, left-handed Z-type duplex, and other non-canonical DNA such as quadruplex, and i-

motifs
3
.  Representatives of non-B DNA structures are found in Figure 1.2.  It has been reported 

that non-B DNA structures can induce genetic instability in cells 
4
.  Consequently, variation in 

other non-canonical DNA structures has been used as the drug target.  Here, G-quadruplex 

DNAs were studied due to their significant function in replication potential and self-sufficiency 

in cancer growth. 

 

 

Figure 1.1.  General B-type DNA structure. In T•A base pairing, O4 and N3 

of Thymine pair with N6 and N1 of Adenine, respectively.  In C•G base 

pairing, N4, N3 and O2 of Cytosine pair with O6, N1, and N2 of Guanine, 

respectively.  Picture source: https://en.wikipedia.org/wiki/DNA 
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Figure 1.2.  Some representations of non-B DNA with simplified structures. 

(a) G-quadruplex. (b) i-motif (i-tetraplex). (c) Hairpin structure with Z-

conformation. (d) Parallel triplex. (e) A-motif. (f) d(ATATATCT) DNA 

antiparallel duplex 
5
. 

 

1.2 G-quadruplex DNA 

G-quadruplex (G-4) DNA is an excellent target to study in DNA:drug interactions due to 

its stability and distinctive arrangement in solution. Ivan Bang, in 1910, discovered that 

concentrated guanylic acid forms a clear gel in water and the tetrameric structure was later 

explained by Gellert et al. 
6
.  G-quadruplex DNA is found in many biologically important 

regions and is currently a target to be investigated for anticancer therapeutics
7
.  Approximately 

85 - 90% of human tumors show increases in telomerase activity and more than 50% show 

deregulation of transcription factors within the proto-oncogene promoter region
8
.  Recent studies 

have shown that small molecules which can selectively stabilized G-4 DNA can inhibit these 

activities and induce apoptosis to prevent further replication of mutated cells
9
.   
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G-4 DNA (Figure 1) is made up of 2 G-quartets bonded by Hoogsteen hydrogen bonds 

(N1 bonded with O6 and N2 bonded with N7), and stabilized by mono cations to form a unique 

secondary structure 
10

.  Different cations create different complex stability in which K
+
 promotes 

the most stable quadruplex followed by Rb
+
, Na

+
, Cs

+
, and Li

+ 11
.  However, potassium (K

+
) and 

sodium (Na
+
) are the common cations in cells and they are generally used in the experimental 

buffer solutions.  The G-4 loop is usually small with 1-7 nucleotides between the G-4 and the 

smaller the loop the more stable the DNA is 
12

. 

 

 

Figure 1.3.  G-quadruplex DNA. G-quartet structure (top) shows the 

hydrogen binding via the N7-N2 and O6-N1 of the guanine bases (blue), the 

K
+ 

center (gray) in between the G-quartet provides stability of the overall G-

4 DNA structure.  Examples of G-4 DNA arrangements (bottom) shows that 

the bases can interact through many possible ways.  Anti (light blue) and syn 

(dark blue) glycosidic torsion angles, linking loops (red) and 5′ to 3′ direction 

(arrows). 
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G-4 DNA can be parallel or anti-parallel, unimolecular or polymolecular, and 

intermolecular or intramolecular in which the arrangement depends strictly on the sequence, loop 

length, and physiological environment.  The structure of G-quartets and some possible 

formations of G-4 DNA can be found in Figure 1.3. The glycosidic torsion angle is shown in 

Figure 1.4. 

 

Figure 1.4.  Glycosidic torsion angles. 
 

1.2.1 Human Telomerase 

Human telomere have the ability to stabilize the end of DNA by forming unique G-4 

structures 
13

.  They function to prevent chromosome unwinding and end fusion. In somatic cells, 

the chromosome shortening after each cell cycle is due to the end replication problem 
8a

.  Due to 

these behaviors, after certain cycles and chromosomes are shortened, the cell will eventually 

approach cell death.  This process is called Hayflick limit 
14

.  However, in cancer cells, the 

telomerase enzyme is highly active and can elongate the 3′- end region of the telomeres which 

allows the DNA polymerase to continue replicating.  Therefore, the cells will escape the 

Hayflick limit which will become cancerous. 
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The human telomere repeats have many possible structures, orientations combinations, 

and possible folds. A few of human telomere G-4 DNA structures are listed below.  The basket 

form in the Na
+
 solution using NMR (PDB 143D), the parallel form in K

+ 
using crystal structure 

(PDB 1KF1), and hybrid 1 (PDB 2HY9) and hybrid 2 (PDB 2JPZ) in the K
+ 

solution using 

NMR-derived 
15

. The structures are shown in Figure 1.5. 

 

Figure 1.5.  Human telomerase published PDB structures.  Chimera 1.9 PDB 

structures (top), simplified structures (bottom) and PDB numbers.  From left 

to right: hTel in Na
+
, antiparallel hTel in K

+
, hybrid 1 in K

+
, and hybrid 2 in 

K
+
 buffer. Light blue: anti glyosidic torsion and dark blue: syn glyosidic 

torsion.  Arrows indicate 5′ to 3′ direction. 
 

1.2.2 cMyc proto-oncogene 

The cMyc proto-oncogene has a slightly different mechanism than human telomerase due 

to its location in the chromosome 8 q24.1 
16

.  The cMyc gene is located in the region that has 

three exons and two introns and its main function is to be involved in control of cell cycles, 

development, metabolism, protein biosynthesis, microRNA regulation, apoptosis and 
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differentiation.  However, genetic mutation can take place due in cell replication or gene 

translocation.  This can cause the activation of proto-oncogene to oncogene and the cells will be 

overexpressed.  In the region of cMyc oncogene transcription, there is a G-rich region that can 

form G-4 DNA on physiological conditions.  By targeting this cMyc DNA region, the activation 

of proto-oncogene can be silenced.  This DNA structure, in the K
+ 

solution, is very stable in 

parallel form (Figure 1.6).  Inhibition of the cMyc protein pathway is an optimum route to human 

cancer therapy.  

 

 

Figure 1.6.  cMyc DNA structure.  Chimera PDB structure (left), simplified 

structure (right).  The structure consists of three double chain reversals to 

form a parallel structure.  Arrows indicate 5′ to 3′ direction. 
 

1.3 G-4 DNA and ligand binding mechanism 

Overview of ligand inhibition of telomerase and the cMyc activity pathway is shown in 

Figure 1.7.  In this study, two types of G-4 DNA were used due to its significance in cancer cell 

research, human telomere (hTel22) and promoter oncogene (cMyc19).  Pathways are shown in 

Figure 1.7.  Finding compounds that can selectively target one over the other is a critical step in 

understanding the mechanism of G-4 compound interactions.  Several binding modes of small 

molecules with G-4 DNA are possible; such as by loop binding, in the grooves, and end-stacking 
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(Figure 1.8).  However, there is no evidence of compounds interact with G-4 DNA through 

intercalator binding motifs, experimentally. 

 

 

Figure 1.7.  Overview of ligand inhibiting telomerase (A) and cMyc promoter 

(B) activity pathway.  Color blue, green, red, and orange represents guanine, 

adenine, thymine, and cytosine respectively. Gray dash lines represent 

hydrogen bonds.  Light blue showed anti bases while dark blue are syn.  

Orange line represent hemiprotonated cytosine*-cytosine base pairing. Grey 

arrows showed the pathway. Small black arrows indicate 5′ to 3′ direction. 

 
 

 

Figure 1.8.  Possible drug:G-4 DNA binding modes  
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1.4 Small molecules binding G-4 DNA in literature 

Some compounds that are known to interact with G-4 DNA, listed in Figure 1.9, have the 

complex ring systems.  In addition, these molecules also have hydrophobic and bulky properties 

to minimize duplex DNA binding.  Many of the known ligands have strong binding interaction 

with G-quadruplex DNA with the KD in ranges from 20 nM to 3 μM.  Many have π-π end-

stacking binding modes and many also have addition components to interact with the loops and 

grooves of G-4 DNA. 

 

 
BRACO-19 

17
 

  
TMPyP4 

18
 
19

 

 
RHPS4 

20
 

 
Telomestatin 

21
 

 
Bis-triazole 

22
 

 
dihydroindolizino 

indole 
23

 

 
Berbamine (P) 

24
 

 
Phthalocyanine 

25
 

 
Phenanthroline- 

dicarboxylate ester 
26

 

Figure 1.9.  G-quadruplex DNA stabilizer ligands 
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1.5 Cyanine dyes 

Cyanine dyes are unique due to many applications in pharmaceutical and textiles such as 

fluorescence labels and interaction for bio-molecules through covalent or non-covalent bonding 

11, 27
. Cyanine derivatives contain multiple aromatic rings and conjugated linkers which allow π-π 

stacking modes.  The common structure of cyanine dyes are comprised of two nitrogen-

containing heterocycles in which one is positively charged and is linked by a π-conjugated 

polymethine chain with an odd number of carbons.   

 

Structures of a generic cyanine dye and its heterocyclic components which were used in 

this study are found in Figure 1.10.  Each component in cyanine dyes have the property to non-

covalently bond to the DNA, such as; the heterocyclic ring π-conjugated polymethine chain is 

suitable for base stacking, an alkyl group for hydrophobic interaction, trimethylammonium for 

backbone/grooves charged interaction, halogen to increase van der Waals interaction, and bulky 

dimethyl groups to prevent duplex DNA groove binding.  A set of pentamethine cyanine dyes 

that have been published, show binding selectivity with cMyc19 G-4 DNA 
28

.   

 

 

Figure 1.10.  The structure of a generic cyanine.  The aromatic ring system is 

in dashed lines while the R group is trimethylammonium or an alkyl chain.  

The common chain length is tri, penta, and heptamethine with n= 1, 2, and 3 

respectively. 
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1.6 General experimental methods 

1.6.1 Absorption titration 

Absorbance titration was done to monitor the change in spectral properties as G-4 DNA 

was titrated in cyanine dyes solution.  An existence of an isosbestic point in absorbance is an 

indication of a newly binding complex detected.  The decrease in intensities (hypochromicity) 

and red-shifts of the wavelength indicate possible formation of stacked species.  The titration 

was done using two types of G-4 DNA (cMyc19 and hTel22) and the data was used for a quick 

comparison. 

 

1.6.2 Thermal melting 

The UV-vis thermal melting temperature (Tm) is a temperature in which a mid-transition 

between renature and denature of DNA was observed 
29

.  Tm experimentally shows the stability 

of the secondary structure of DNA as the temperature increases leading to the change in 

absorbance.  Therefore, larger changes of the thermal melting temperature (ΔTm) indicate 

stronger ligand DNA complexes while small change indicates weaker interactions.  The 

wavelength of 260 nm is used for the duplex DNA because nucleic bases absorb strongly at 260 

nm 
30

.  Whereas, the wavelength of 295 nm was used for G-4 DNA thermal determination due to 

the maximization of the hypochromic shift between the folded and unfolded state 
31

.  The Tm 

value is observed at the half point of the normalization of the graphs.  The analysis of the thermal 

melting curves is shown in Figure 1.11. 
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Figure 1.11.  Melting curves were analyzed based on the normalized 

absorbance of the thermal spectra with the change in temperature. The Tm 

was recorded at the normalized absorbance of 0.5.  The change in Tm was 

detected by the difference in between the Tm of complex and of the free DNA. 

 

1.6.3 Fluorescence titration 

Fluorescence is a phenomenon in which a molecule being excited by absorbing a photon 

which induces its passage from singlet ground electronic level (S0) to a vibrational relaxation and 

then return to its ground state after the loss of energy.  The titrations are done to compare the 

interaction activity binding of the compounds in different quadruplex motifs, since the thermal 

melting defined that the compound favors the interaction with quadruplex DNA over duplex 

DNA.  The analysis, fluorescence enhancement, was observed by comparing the change in 

intensity of the compound interaction with DNA for compounds within the same family.  

Fluorescence enhancement (FE) is calculated using the equation below. 

𝐹𝐸 =
Fluorescence intensity of ligand: DNA complex

Fluorescence intensity of free ligand
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1.6.4 Circular Dichroism  

CD is the difference between left and right handed circularly polarized light of chiral 

molecules 
32

.  CD titration is beneficial to show empirical measurement of change in 

conformation as compounds are being titrated into the DNA solutions.  In G-4 DNA, three 

topologies take place: parallel, antiparallel, and hybrid structures with uni, bi, tri, or tetra-

molecular assembly.  Different topologies and assembly will yield different CD profiles in the 

DNA region of ~ 260 – 350 nm.  

 

Figure 1.12.  CD spectra of 2μM cMyc (left) and hTel22 (right) in 50 mM K
+
 

salt.  Arrows indicate significant peak area. 
 

In the study, two types of G-4 DNA were used: hTel22 and cMyc19.  The human 

telomeric sequence, hTel22, showed three peaks, a shoulder (295 nm), a strong positive peak at 

265 nm and a negative peak at 240 nm, which are the characteristic for the hybrid 3+1 G-

quadruplex structure
33

.  On the other hand, cMyc G-quadruplex DNA showed a positive peak at 

295 nm and a negative peak at 240 nm which are distinctive for a parallel G-quadruplex 

structure
33

.  The CD spectra of cMyc19 and hTel22 are shown in Figure 1.12.  The changes in 
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CD spectra in the course ligand addition reveal the binding modes of the ligand-DNA 

interactions. 

 

1.6.5 Surface plasmon resonance 

Surface plasmon resonance (SPR) is a powerful technique used to answer selectivity, 

kinetics, and affinity properties of the binding between ligand with its target DNA 
34

.  Diagrams 

of SPR instrumentation and sensorgram components are shown in Figure 1.13 and Figure 1.14.  

The binding constant is measured in response unit (RU) which is proportional to the molecular 

mass on the sensor chip surface. Therefore the “more molecules” or “higher molecular weight 

molecules” which bind to the DNA will have higher change in RU.  The illustration in Figure 

1.15 shows how steady-state fitting curve is obtained from the experimental results.  One and 

two site steady-state fittings are used depending on the number of molecule bind/G-4 DNA.  It 

has been previously found using NMR that pentamethine cyanine dyes interact with G-4 DNA 

through two site steady-state 
28

.  The molecules was first bind to 3’-end of the DNA and then to 

the 5’-end of the G-4 DNA quartet.  

 

ONE SITE: r = (K1 Cfree)/ (1  +  K1 Cfree) 

TWO SITE: r = (K1 Cfree  +  2 K1 K2 Cfree
2
)/ (1+ K1Cfree) + K1 K2 Cfree

2
) 
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Figure 1.13.  Surface Plasmon Resonance diagram of the instrument.  The 

polarized light source is shine through the prism and measure the samples 

interaction and as the samples from through the chips creating the change in 

refractive index.  The changes are then reflected out of the prism to be being 

measured using the optical detection unit resulting in the sensorgrams. 
 

 

Figure 1.14.  SPR sensorgram and its components described in steps.  1) 

buffer was injected to stabilize the flow rate and making sure that it contains 

no trace of contamination, DNA (curve line)  2) ligand (blue dots) are then 

injected creating association rise in RU  3) The process is then followed by an 

injection of buffer to remove the samples to measure the dissociation 

constant  4) A regeneration buffer (orange dots) is injected to remove any 

remaining samples on the chips and  5) the injection of buffer to bring the 

base line to constant baseline level for the next ligand injection. 

 



16 

 

Figure 1.15.  The steady-state fit was done by selecting the RU at 10 s before 

dissociation at certain compound concentration. 
 

1.7 Goals 

Cancer have threatening many lives for decades, therefore many researches have been 

done to find the compound that can selectively targeting and inhibit the active oncogene 

promoter region of the DNA.  G-4 DNA is among the most target topic in cancer therapeutics 

treatment due to its significance higher order structure and its participating in many gene 

expressions.  The goal of the study is to analyzing synthesized cyanine dyes with different 

modification of chemical features to precisely recognizing specific structure and sequence 

formation of G-4 DNA.  Obtaining compound with specific DNA sequence recognition can also 

eliminate toxicity during the cancer therapeutics treatment.  Variety of techniques was used to 

analyze structural selectivity, sequence selectivity and binding modes of drug:DNA complex. 
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2     MATERIALS AND METHODS 

Experiments were done to selected cyanine dyes against the target DNAs since some 

dyes have very low solubility and poor physical properties. 

 

2.1 DNAs and cyanine dyes preparation 

The series of cyanine dyes used in this study had been synthesized by Dr. Maged 

Henary’s research group (Georgia State University) and their purity was verified by NMR and 

elemental analysis. Stock concentrations have been made in double deionized water (ddH2O) to 

desired concentration.  Structures are shown in Figure 2.1- Figure 2.4 and in the Appendix. 

 

DNA (Integrated DNA Technology Coralville, IA USA) sequences were dissolved in 

ddH2O.  Concentrations were determined spectroscopically at the of wavelength of 260 nm with 

extinction coefficient (ɛ260) by using the nearest neighbor method 
35

.  DNA sequences and their 

ɛ260 are listed below in Table 2.1.  

 

Table 2.1:  DNA sequences and its extinction coefficients used in the 

experiments. 

DNA Sequences ɛ260 (L mol
-1

 cm
-1

) 

cMyc19 (19 mers) 
5′-AGGGTGGGGAGGGTGGGGA-3′ 

5′-*biotin/AGGGTGGGGAGGGTGGGGA-3′ 
200,600 

hTel22 (22 mers) 
5′-AGGGTTAGGGTTAGGGTTAGGG-3′ 

5′-*biotin/AGGGTTAGGGTTAGGGTTAGGG-3′ 
228,500 

T4loop (24 mers)** 

duplex 

5′-CGGAATTCGCTTTTGCGAATTCCG-3′ 

T-loop 
219,100 

* Biotin DNA is used only for SPR experiments. 

** T4loop is used due to its common sequence used in duplex DNA minor groove binding 

studies. 
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Figure 2.1.  Symmetrical heptamethine dye analogs.  The common structure 

is characterized by a two trimethylammonium substituted indolenine ring 

connected by a 7-carbon linker.  Label: blue as parent compound, red as 

modification in ring system, orange as different halogen, and green as meso 

chloro-phenyl ring in the linker chain.  
 

 

Figure 2.2.  Unsymmetrical trimethine dye analogs.  The common structure 

is characterized by a trimethylammonium substituted indolenine ring 

connected by 3-carbon linker to an alkyl substituted benzo[cd]indole ring.  

Label: blue as the parent compound, red as different linker chain length, 

orange as different halogen or heterocycle modification, and green as alkyl 

modification. 
 

 

Parent Compound 

Parent Compound 
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Figure 2.3.  Symmetrical pentamethine dye analogs.  The common structure 

is characterized by two trimethylammonium substituted indolenine ring 

connected by 5-carbon linker, and a center linker substituted.  Label: blue as 

a parent compound, red as heterocycle modification, orange as different 

halogen, and green as modified linker. 

 

Parent Compound 
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Figure 2.4.  Benzothiazole pentamethine dye analogs.  The common structure 

is characterized by two two trimethylammonium substituted indolenine ring 

connected by 5-carbon linker.  Label: blue as a parent compound, red as 

modification in ring system, orange as different alkyl substituents/ring, and 

green as polar side chain.  

 
 

2.2 Experimental buffer 

Tris-HCl/K
+
 experimental buffer was made with 10 mM Tris-base (Fisher Scientific 

Chemicals), 50 mM KCl (Fisher Scientific Chemicals), and 1 mM EDTA (Fisher Scientific 

Chemicals) in double deionized H2O (ddH2O) with the addition of 1 N HCl (Fisher Scientific) to 

adjust the pH to 7.4 (Accumet pH meter 910, Fisher Scientific). 

 

2.3 Absorbance titration 

The DNAs were diluted in the pH 7.4 50 mM Tris-HCl/K
+
 buffer to the desired 

concentration, annealed in a hot water bath to around 95 °C and cooled slowly to room 

Parent Compound 
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temperature overnight.  A sample containing 2 µM of compound with pH 7.4 50 mM Tris-

HCl/K
+
 buffer in 1 cm quartz cuvettes was scanned from 200 to 800 nm using a Varian Cary 300 

Bio UV-vis spectrophotometer (Santa Clara, CA).  Titrations were performed by increasing pre-

annealed DNA concentration until the saturation point was reached. 

 

2.4 Thermal melting 

A sample of 3 µM in single strand DNA sequence in Tris-HCl-50 mM K
+
 buffer at pH 

7.4 and specific ratios (buffer, 1:1, 2:1, 4:1, and 6:1) of synthesized cyanine compounds were 

prepared in 1 cm quartz cuvettes.  The samples were denatured at 95 °C and retained for 3 min at 

90 °C, and the samples were then annealed at 25 °C with/without the presence of compound and 

retained for 15 min.  The absorbance increase was measured at a rate of 5 °C/min while the 

temperature was increased to 95 °C.  The experiments were done in the Varian Cary 300 Bio 

UV-vis thermal melting spectrophotometer (Santa Clara, CA) with the wavelength of 295 and 

260 nm for G-4 and duplex DNA, respectively.  The methods have been experimentally verified 

to have the same results as having the cells scanned for 4 ramps: DNA melting from 25 – 95 °C, 

DNA annealing for 95 – 25 °C, then melting at 25 – 95 °C, and again annealing at 95 – 25 °C. 

 

2.5 Fluorescence titration 

Multiple concentrations of compound were scanned through the Varian Cary 300 Bio 

UV-vis spectrophotometer (Santa Clara, CA) from 800 - 200 nm to search for the excitation 

wavelength (λex) using the slit band width of 2 nm and the scan rate of 60 nm/min.  DNA was 

diluted in the pH 7.4 Tris–HCl/ 50 mM K+  buffer to the desired concentration, then denatured in 

a hot water bath to around 95 °C and cooled slowly to room temperature for annealing overnight.  
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1.0 µM of compound in pH 7.4 50 mM Tris-HCl/K
+
 buffer was transferred to the spectroscopy 

cuvette and scanned at room temperature and constant pressure conditions.  The titration samples 

were scanned using a Fluorescence Spectrophotometer (Varian Cary Eclipse, Walnut Creek, CA) 

with an appropriate emission wavelength (λem) range based on the λex of the compound.  Each 

step was done by increasing the concentration of pre-annealed DNA until there was no change in 

fluorescence intensity. 

 

2.6 Circular dichroism 

A concentration of 2 - 3 µM of DNA was denatured at 95 °C, slowly cooled to room 

temperature to anneal in pH 7.4 50 mM Tris-HCl/K
+
 buffer, then stored at room temperature 

overnight.  The samples were scanned using 1 cm quartz cuvettes at a rate of 50 nm/min, the 

response time of 1 s, and a wavelength range of 530 - 220 nm using a Jasco J-810 CD 

spectropolarimeter (Easton, MD).  The instumental program was set so the buffer results were 

the average of two scans whereas the samples were an average of four scans. 

 

2.7 Surface plasmon resonance 

Biosensor SPR experiments were performed with two-channel BIAcore X100 optical 

biosensor system (BIAcore, Inc.) and streptavidin-coated sensor chips. DNAs used were single 

stranded hairpins to prevent dissociation during the injection.  DNAs were immobilization by an 

extensive wash of HBS-EP+ buffer (GE Healthcare, Inc.) followed by activation buffer (1 M 

NaCl and 50 mM NaOH) and the washing of the HBS-EP+ buffer.  Similar techniques showing 

successful results have been reported 
28, 36

. 

 

Buffers: All buffers were filtered and degassed in 20 µm (Millipore).  
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 HBS-EP+ experimental buffer for DNA immobilization (GE Healthcare, Inc.): 100 mM 

HEPES, 150 mM NaCl, 30 mM EDTA, 0.5% (v/v) surfactant polysorbate (P20), pH 7.4 

 HEPES experimental buffer for samples:  10 mM HEPES, 50 mM KCl, 1 mM EDTA, 

0.005% (v/v) P20 (GE Healthcare, Inc.), pH 7.4. 

 HBS-N buffer (GE Healthcare, Inc.):  100 mM HEPES, 150 mM NaCl, pH 7.4 

 Activation buffer:  1 M NaCl and 50 mM NaOH 

 Regeneration buffer:  10 mM glycine pH 2.5 

 

Immobilization:  A streptavidin (SA) coated sensor chip was docked and HBS-EP+ 

buffer was elute over the flow cells at a rate of 30 µL/min to remove unbound/residual 

streptavidin from the sensor chip until a stable baseline was achieved.  Activation buffer was 

then elute at a rate of 30 µL/min with a contact time of 180 s to prepare the streptavidin for DNA 

immobilization.  

 

Sample preparation and experimental conditions:  A new command was created for cell 2 

(leaving cell 1 as blank) with continuous flow of buffer in the rate of 5 µL/min until the baseline 

was stabilized.  About 20 nM of biotin-labeled DNA (dissolved in HBS-EP+ experimental 

buffer) was being injected into cell 2.  Continuous injection of DNA was done until the change in 

RU reached about 330 - 350 RUs for steady state experiments.  Compound preparation in serial 

dilutions from 2 – 400 nM of compound was prepared in HEPES experimental buffer.  The 

experiments were set so that the contact time was 180 s, dissociation time was 900 s, and the 

regeneration buffer had the contact time of 60 s with a stabilization period of 180 s.  Experiments 

were done under the set temperature of 25 °C.  
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3 RESULTS AND DISCUSSION 

3.1 Symmetrical heptamethine cyanine dyes 

General structure of the symmetrical heptamethine cyanine dyes are shown in Figure 3.1.  

The set of the dye structures are shown in Figure 2.1 as well as in the thermal melting data 

(Table 3.1).  The structures are different by the aromatic heterocyclic rings modification, 

different halogen substituents and the meso chloro derivatives in the center.  The structure 

minimization showed a flat planar heterocyclic system from one heterocyclic system to another.  

The alky trimethylammonium substituents have the flexibility to rotate and therefore can be 

above or under the planar ring. 

 

Using the Spartan energy minimization, this set of compounds has a planar structure that 

is most fit for π- π base interaction.  The positively charges trimethylammonium interact with the 

negative charge on the DNA. 

 

 

R1 = H, Br, Cl, F R2 = H,  (meso chloro) 

Figure 3.1.  Symmetrical heptamethine cyanine dyes general structure.  

Chemdraw (left) and the structure minimization using Spartan’10 (right). 
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3.1.1 Thermal melting 

Thermal melting was conducted for an initial selectivity scan of dyes against G-4 and 

duplex DNA.  Examples of melting curves of dyes in different G-4 DNA and duplex DNA are 

shown in Figure 3.2 and the Tm values are collected in Table 3.1. All thermal Tm values were 

conducted at a 4:1 ratio and some are done at additional ratios. 

 

 

Figure 3.2.  Thermal melting graphs of MM21 with hTel22 (left) and duplex 

DNA (right).  Experiments were done with 3 µM hTel22 in Tris–HCl/ 50 mM 

K
+
  buffer at pH 7.4 with 1 nm slit width and an absorbance taken at 295 and 

260 nm for hTel22 and duplex DNA respectively.  The ratios are drug:DNA. 
 

According to thermal melting data (Table 3.1), these set of dyes showed a strong binding 

interaction with hTel22 DNA and little or no change with duplex DNA.  The meso chloro 

derivatives (EAO92, EAO108, MM21, and EAO110) showed a large increase in the hTel22 

binding compared to the other compounds.  The thermal melting data for MM21 (without 

halogen) versus EAO92 (bromo), EAO109 (fluro), and EAO108 (chloro) proved that 

halogenated indolenine rings do not create a significant difference in thermal stability.  However, 
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the highly electronegative fluoro substituted compounds showed an unfavorable effect on 

thermal stability with hTel22 G-4 DNA (EAO109 vs MM21).   

 

Substituting dimethyl indolenine (MM21) to a benzothiazole (EAO110) does not 

significantly changes the thermal stability however it does showed slight increase in binding with 

the duplex DNA. 

 

Table 3.1:  Tm analysis for symmetrical heptamethine cyanine dyes with 

hTel22 and duplex DNA. 

 

ΔTm (°C) 

hTel22 (3 µM) 

(Tm = 60 °C) 

ΔTm (°C) 

duplex DNA (3 µM) 

(Tm = 74 °C) 

Ratios 

Structures 

[1:1] [2:1] [4:1] [6:1] [4:1] 

 

  

11.8 

 

1.2 

 

3.6 5.7 22.1 * 0.6 

 

  

10.4 

 

2.1 

 

3.0 8.6 21.4 * 2.7 

 

  9.3  1.4 
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12.2 

 

0.8 

 

4.0 13.1 22.9 24.7 1.3 

 

2.5 4.5 8.8 11.7 1.0 

 

3.1 9.0 21.8 > 28 4.3 

Blue box: parent compound 

Ratios are [drug:DNA] 

The errors occur within +/- 0.5 °C, based on experimental reproducibility. 

* Aggregation/ Tm cannot be determined. 
 

 

Fluorescence experiments were done but with a low change in intensity.  SPR 

experiments were done but due to sticky/aggregation problems sensorgrams were not useful.  No 

results are shown. 

 

3.1.2 Discussion 

Thermal melting studies suggested that compounds with the meso chloro ring in the central 

linker have a significant impact on the binding and selectivity of G-4 DNA. Further experiments 

are necessary to explain the detail of these cyanine dyes interaction with G-4 DNA.  

Unfortunately, SPR experiments were not very informative due to the sticky nature of the 

molecule to the sensor chips.   
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3.2 Unsymmetrical cyanine dyes 

This set of compounds contains a dimethyl-indolenine derivative and a benzo[cd]indole 

ring connected by a three carbon linker and they are substituted with a charged alkyl 

trimethylammonium substituent.  The series of compounds have an alkyl (N-methyl or N-butyl) 

group and one or two halogen (H, Br, Cl, F) substitution on one or both rings.  The minimized 

structure (Figure 3.3) indicates that the ring systems have a resonance capability that is a perfect 

component to interact with G-4 DNA via π-π base stacking.  

 

 

R1 = H, Br R2 = H, Br, Cl, F R3 = Methyl, Butyl 

Figure 3.3.  Unsymmetrical cyanine dyes general structure.  Chemdraw (left) 

and the structure minimization using Spartan’10 (right). 
 

3.2.1 Thermal melting 

Thermal melting was conducted for an initial scan for selectivity of G-4 or duplex DNA 

in the presence of compound.  An example of the thermal melting curves of these categorized 

molecules is shown in Figure 3.4, and the overall results are listed in Table 3.2.  All thermal Tm 

values conduct at a 4:1 ratio and some are done at additional ratios. 
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Figure 3.4.  Thermal melting graphs of LO14 with hTel22 (left) and duplex 

DNA (right).  Experiments were done with 3 µM hTel22 in Tris–HCl/ 50 mM 

K
+
  buffer at pH 7.4 with 1 nm slit width and an absorbance taken at 295 and 

260 nm for hTel22 and duplex DNA respectively.  The ratios are drug:DNA. 
 

Based on the thermal melting data (Table 3.2), it is obvious that trimethine cyanine dyes 

in the list have a remarkable thermal stability for hTel22 G-4 DNA and little interaction with 

duplex DNA.  This shows that the dyes have high structural selectivity toward G-4 DNA over 

duplex DNA.  ZK4 and ZK14 were used to compare the difference between a monomethine (1-

carbon linker) with a Trimethine (3-carbon linker) and the results showed that the trimethine 

cyanine dyes improved the stability.  The mono linker structure has steric contact between the 

two ring systems that cause a twist and prohibit DNA interaction.  In addition, substituting the N-

methyl with N-butyl also slightly improved the thermal stability.   

 

A benzothiazole-based compounds were reported as a duplex DNA minor groove binder 

37
 but with appropriate modification can lead to higher selectivity toward G-4 DNA interaction 

over duplex DNA.   
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In this study, it has been observed that, at lower drug:DNA ratio [2:1] it showed some 

selectivity to G-4 but unfortunately due to the aggregation properties of this type of molecules 

experiments in higher drug:DNA ratio failed. 

 

Another set of molecules (EAO140 and EAO141), where the polar dioxole has been 

incorporated inside the indolenine ring system, also shows moderate G-4 DNA stabilization at 

lower drug:DNA ratio. Unfortunately, due to the same aggregation property, the higher 

drug:DNA ([4:1]) could not be obtained. 

 

By switching the position of the trimethylammonium and a methyl chain between the two 

aromatic ring systems, in AL78, does not show any changes in the binding affinity with G-4 

DNA.  It binds as strongly as the parent compounds (EAO165). 

 

Table 3.2:  Tm analysis for unsymmetrical trimethine cyanine dyes with 

hTel22 and duplex DNA. 

 

ΔTm (°C) 

hTel22 (3 µM) 

(Tm = 60 °C) 

ΔTm (°C) 

duplex DNA (3 µM) 

(Tm = 74 °C) 

Ratios 

Structures 
[1:1] [2:1] [4:1] [6:1] [4:1] 

 

1 0.5 0.9 1.4 0.3 

 

2.1 7.8 20.6 26.3 2.3 
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4.4 9.9 17.4 22.5 3.6 

 

1.0 2.0 8.7 * 2.3 

 

1.1 4.3 * * 0.6 

 

2.5 10.0 19.6 23.1 1.1 

 

4.3 9.9 18.0 22.0 3.4 

 

4.2 9.2 22.8 23.3 2.2 

 

0 7.4 16.5 22.1 3.5 
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2.5 11.2 20.9 23.3 2.2 

 

2.7 9.0 16.4 21.8 3.3 

 
1.5uM hTel22 

2.2 5.7 6.3 *  

 
1.5uM hTel22 

1.5 4.1 * * 2.0 

1.5 uM hTel22 

2.6 7.1 * * 5.6 

 
1.5 uM hTel22 

3.0 10.2 * *  
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2.9 9.4 17.8 20.8 0.7 

Blue box: parent compound 

Ratios are [drug:DNA] 

The errors occur within +/- 0.5 °C, based on experimental reproducibility. 

* Aggregation/ Tm cannot be determined 
 

3.2.2 Surface plasmon resonance 

The SPR of these unsymmetrical cyanine dyes has been carried out to determine the 

binding affinity and specificity for hTel22 and cMyc19 for the compounds with high G-4 DNA 

selectivity in thermal stability.  SPR sensorgrams are shown in Figure 4.5 – 4.11 for cyanine 

binding to immobilized cMyc19 and human telomerase model G-4 DNA structures and binding 

affinity values are collected in Table 3.3.  Refer to Figure 1.15 for detail on how the steady state 

curve was obtained. 
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Figure 3.5.  SPR sensorgram and steady state response fits for ZK14 and 

EAO165 with cMyc19 and hTel22.  Biotin labeled DNAs and drug were 

prepared in 10 mM HEPES buffer containing 50 mM K
+
, 0.05% (v/v) 

surfactant P20 at pH 7.4 and 25 ˚C. The experiment were performed on 

BIAcore X100 optical biosensor systems.   
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Figure 3.6.  SPR sensorgram and steady state response fits for EAO88 and 

EAO75 with cMyc19 and hTel22.  Biotin labeled DNAs and drug were 

prepared in 10 mM HEPES buffer containing 50 mM K
+
, 0.05% (v/v) 

surfactant P20 at pH 7.4 and 25 ˚C. The experiment were performed on 

BIAcore X100 optical biosensor systems.   
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Figure 3.7.  SPR sensorgram and steady state response fits for EAO113 and 

EAO112 with cMyc19 and hTel22.  Biotin labeled DNAs and drug were 

prepared in 10 mM HEPES buffer containing 50 mM K
+
, 0.05% (v/v) 

surfactant P20 at pH 7.4 and 25 ˚C. The experiment were performed on 

BIAcore X100 optical biosensor systems.   
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Figure 3.8.  SPR sensorgram and steady state response fits for EAO166 and 

LO14 with cMyc19 and hTel22.  Biotin labeled DNAs and drug were 

prepared in 10 mM HEPES buffer containing 50 mM K
+
, 0.05% (v/v) 

surfactant P20 at pH 7.4 and 25 ˚C. The experiment were performed on 

BIAcore X100 optical biosensor systems.   
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Figure 3.9.  SPR sensorgram and steady state response fits for EAO141 and 

EAO140 with cMyc19 and hTel22.  Biotin labeled DNAs and drug were 

prepared in 10 mM HEPES buffer containing 50 mM K
+
, 0.05% (v/v) 

surfactant P20 at pH 7.4 and 25 ˚C. The experiment were performed on 

BIAcore X100 optical biosensor systems.   
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Figure 3.10.  SPR sensorgram and steady state response fits for EAO138 with 

cMyc19 and hTel22.  Biotin labeled DNAs and drug were prepared in 10 mM 

HEPES buffer containing 50 mM K
+
, 0.05% (v/v) surfactant P20 at pH 7.4 

and 25 ˚C. The experiment were performed on BIAcore X100 optical 

biosensor systems.   
 

 
Figure 3.11.  SPR sensorgram and steady state response fits for AL78 with 

cMyc19 and hTel22.  Biotin labeled DNAs and drug were prepared in 10 mM 

HEPES buffer containing 50 mM K
+
, 0.05% (v/v) surfactant P20 at pH 7.4 

and 25 ˚C. The experiment were performed on BIAcore X100 optical 

biosensor systems.   
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Table 3.3:  Unsymmetrical trimethine cyanine dyes equilibrium constant 

with different G-4 DNA. 

 
KA1 ; KA2 (M

-1
) 

 
cMyc19 hTel22 

ZK4 ND ND 

ZK103 5.1 x 10
6 

; 3.5 x 10
5
 < 10

5
 

ZK117 7.1 x 10
6 

; 6.6 x 10
5
 4.4 x 10

6 
; 1.8 x 10

6
 

ZK14 2.9 x 10
7 

; 8.1 x 10
6
 6.0 x 10

6 
; 2.0 x 10

6
 

EAO165 5.3 x 10
6 

; 6.1 x 10
5
 3.6 x 10

6 
; 9.1 x 10

5
 

EAO88 3.5 x 10
7 

; 2.8 x 10
6
 8.4 x 10

6 
; 2.9 x 10

5
 

EAO75 4.9 x 10
6
 6.9 x 10

6
 

EAO113 1.4 x 10
7 

; 4.3 x 10
5
 4.4 x 10

6 
; 8.1 x 10

5
 

EAO112 2.0 x 10
7 

; 6.4 x 10
5
 1.2 x 10

7 
; 3.2 x 10

6
 

EAO166 1.1 x 10
8 

; 3.8 x 10
6
 2.6 x 10

6
 

LO14 5.5 x 10
6
 7.9 x 10

6
 

EAO141 5.4 x 10
7 

; 6.3 x 10
5
 3.7 x 10

7 
; 1.1 x 10

5
 

EAO140  4.6 x 10
6 

; 1.1 x 10
5
 

EAO138 1.0 x 10
7
 ; 5.6 x 10

5
 4.4 x 10

6
 ; 2.9 x10

5
 

EAO139   

AL78 1.9 x 10
7 

; 8.1 x 10
5
 3.4 x 10

6 
; 8.1 x 10

5
 

Experiments have the reproducibility within 10%. 

Data with two Ka were fitted using two sites fitting curves whereas the one with 

single Ka value are plotted with one site fitting curves. 
 

One and two steady-state models for SPR fitting were used and the selection of the model 

was based on the lowest Chisq and the highest R-value.  Based on SPR data, it has been observed 

that these unsymmetrical molecules showed 10-fold higher binding affinity with cMyc19 over 

hTel22 G-4 DNA.  Dyes that have N-methyl substituents (EAO165, EAO75, EAO112, and 

LO14) have lower selectivity between the two G-4 DNAs (cMyc19 and hTel22) as they have 

nearly the same binding affinity to both.  On the other hand, a strong binding affinity and higher 
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selectivity with cMyc19 DNA was observed for compounds with N-butyl substituents (ZK14, 

EAO88, EAO113, and EAO166).   

 

Significantly, EAO166 (bromo-substituted) displayed the strongest binding affinity to 

cMyc19 with the Ka1 of 1.1 x 10
8 

M
-1 

and Ka2 of 3.8 x 10
6 

M
-1

,  which is 20 times more binding 

affinity than  hTel22 G-4 DNA (2.6 x 10
6
 M

-1 
K).  EAO166 has a significantly higher binding 

affinity with cMyc19 G-4 DNA than the previously mentioned molecules. 

 

3.2.3 Absorbance titration 

UV-vis absorbance titrations were done for EAO166 with different G-4 DNA and the 

spectra obtained are shown in Figure 3.12.  The change in absorbance is more dramatic with the 

cMyc19 DNA than with hTel22 as shown in the bottom normalized absorbance vs DNA 

concentration plots.  The change in wavelength in the red-shift position indicates possible 

stacking modes.  The interaction of EAO166 with cMyc19 is significant because there is a slight 

increase in absorbance toward the end of the titration and the complex showed no isosbestic 

point as it has been observed during the titration with hTel22.  However, when the graph is being 

divided into two range of concentrations (0.0 - 6.0 μM and 7.5 - 30.0 μM, there is two isosbestic 

point observed indicating that there is two binding sites which is also being supported by SPR 

data.  
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Figure 3.12.  UV-vis absorbance spectra of 2 μM EAO166 titrated 

with cMyc19 (A) and hTel22 (B) in 50 mM K
+
 buffer.  Experiments were 

done with 2 µM DNA in Tris–HCl/ 50 mM K
+
  buffer at pH 7.4.  Titration 

was done until no changes occur.  The breakdown of EAO166_cMyc19 

titration A1) 0.0 – 6.0 μM and A2) 7.5 - 30.0 μM cMyc19 and (*) represent 

isosbestic point. 

 
 

3.2.4 Discussion 

Unsymmetrical trimethine cyanine dyes data have demonstrated that substituting of the 

N-butyl group instead of N-methyl to the benzo[cd]indole heterocycle showed high thermal 

stability with hTel22 G-4 over duplex DNA.  The addition of bulky butyl substituent on the 

benzo[cd]indole provides better hydrophobic or van der Waals interaction with G-4 DNA and 

inhibits duplex minor groove DNA interaction.  SPR experiment results showed that the 

compound EAO166 which has both N-butyl and bromo substitution is a favorable modification 

toward the higher order G-4 stabilization and structural selectivity.   
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3.3 Symmetrical pentamethine cyanine dyes 

This set of dyes have a general structure of a two dimethyl indolenine ring connected by a 

conjugated 5-carbon linker, trimethylammonium side chain, and a central substituent on the 

linker of either a ring structure or a halogen.  The general structure is shown in Figure 3.13.   

 

 

R1 = Cl, Br, , ,    R2 = Cl, Br, F 

Figure 3.13.  General structure of the symmetrical pentamethine cyanine dyes. 
 

3.3.1 Thermal melting 

The thermal melting of cyanine dyes and the DNAs were conducted to know relative 

binding affinity and selectivity between G-4 and duplex DNA.  The thermal melting curves for 

G-4 DNA and duplex DNA with these categorized molecules have been shown in Figure 3.14, 

and the overall results are listed in Table 3.4.  All thermal Tm values conduct at a 4:1 ratio and 

some are done at additional ratios. 
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Figure 3.14.  Thermal melting graph of EAO196 with hTel22 (left) and 

duplex DNA (right).  Experiments were done with 3 µM hTel22 in Tris–HCl/ 

50 mM K
+
 buffer at pH 7.4 with 1 nm slit width and an absorbance taken at 

295 and 260 nm for hTel22 and duplex DNA respectively.  The ratios are 

drug:DNA. 
 

As it has been observed from the thermal melting data, Table 3.4, dyes with phenyl-para-

bromide (EAO273 and EAO197), phenyl-para-iodide (ZK288) and bromo (T5) substituent in the 

central linker have higher binding affinity and higher order structural selectivity to G-4 over 

duplex DNA.  

 

The thermal melting results of thiazole heterocycle system (EAO196) as compared to 

dimethyl indolenine heterocycle (SP2-36) indicate that overall binding interaction for both G-4 

and duplex DNA has been increased although, the binding selectivity for G-4 DNA of these type 

of molecules are higher.  
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Table 3.4:  Tm analysis for symmetrical pentamethine cyanine dyes with 

hTel22 and duplex DNA. 

 

ΔTm (°C) 

hTel22 (3 µM) 

(Tm = 60 °C) 

ΔTm (°C) 

duplex DNA (3 µM) 

(Tm = 74 °C) 

Ratios 

Structures 
[1:1] [2:1] [4:1] [6:1] [4:1] 

 

  6.2  --- 

 

1.0 1.4 2.8 4.3 < 0.1 

 

0.6 2.1 4.9 4.0  

 

1.2 3.3 6.1 6.1  

 

1.4 2.9 6.4 8.3 < 0.1 

 

  11.3  0.4 

 

  12.1   
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4.9 10.9 19.0 22.5 8.9 

 

1.1 2.9 13.9 25.3 0.4 

 

0.5 2.0 4.0 6.5 0.6 

 

2.9 6.4 13.4 17.5 0.6 

Blue box: parent compound 

Ratios are [drug:DNA] 

The errors occur within +/- 0.5 °C, based on experimental reproducibility. 

* Aggregation/ Tm cannot be determined 
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3.3.2 Fluorescence titration 

The fluorescence titration was done for dyes with higher Tm values.  A higher increment 

in fluorescence intensities was observed during the titration for the selected dyes with cMyc19 

than with hTel2.  This indicates that these dyes have a higher order binding affinity for cMyc19 

over hTel22. 

 

 
 

Figure 3.15.  T5 fluorescence titration with cMyc19 (left) and hTel22 (right) 

in Tris-HCl/ 50 mM K
+
 buffer.  Slit widths were 5 nm (λex) and 5 nm (λem).  

λex was 650.0 nm and λem was taken from 650 nm to 800 nm.  1.0 µM T5 was 

titrated with 0.05 – 0.1 µM increments of DNA.  Fluorescence enhancement 

was 2.9 for cMyc19 and 1.4 for hTel22. 
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Figure 3.16.  ZK288 fluorescence titration with cMyc19 (left) and hTel22 

(right) in Tris-HCl/ 50 mM K
+
 buffer.  Slit widths were 5 nm (λex) and 5 nm 

(λem).  λex was 650.0 nm and λem was taken from 650 nm to 800 nm.  1.0 µM 

ZK288 was titrated with 0.05 – 0.1 µM increments of DNA.  Fluorescence 

enhancement was 2.5 for cMyc19 and 1.6 for hTel22. 
 

3.3.3 Surface plasmon resonance 

Compounds of interest (screened from Tm results) have been tested by SPR to 

quantitatively determine the binding affinity and kinetic with G-4 DNAs. SPR sensorgrams and 

affinity curves are shown in Figure 3.17 and binding affinity data have been listed in Table 3.5.  

The SPR data showed that the binding affinity of the selected dyes were about 10-fold selective 

to the cMyc19 than with the hTel22 G-4 DNA. Such as ZK288 that has a KA1 of 2.5 x 10
7 

M
-1

 

with cMyc19 and a KA1 of 1.2 x 10
6
 M

-1
 for hTel22.  
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Figure 3.17.  SPR sensorgram and steady state response fits for ZK288, 

EAO196, and EAO197 with cMyc and hTel.  Biotin labeled DNAs and drug 

were prepared in 10 mM HEPES buffer containing 50 mM K
+
, 0.05% (v/v) 
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surfactant P20 at pH 7.4 and 25 ˚C. The experiment were performed on 

BIAcore X100 optical biosensor systems.   
 

Table 3.5:  Symmetrical pentamethine cyanine equilibrium constant with 

different G-4 DNA. 

 
KA1 ; KA2 (M

-1
) 

 
cMyc19 hTel22 

ZK288 2.5 x 10
7
 ; 5.8 x 10

5
 1.2 x 10

6
 ; < 10

5
 

EAO196 4.2 x 10
7
 ; 3.5 x 10

6
 1.3 x 10

6
 ; 1.5 x 10

5
 

EAO197 4.8 x 10
7
 ; 3.1 x 10

6
 1.2 x 10

6
 ; < 10

5
 

Experiments have the reproducibility within 10%. 

Data with two Ka were fitted using two sites fitting curves whereas the one with 

single Ka value are plotted with one site fitting curves. 
 

 

3.3.4 Discussion 

The set of symmetrical pentamethine dyes have thermal melting selectivity to hTel22 G-4 

DNA over duplex DNA. However, some showed strong selectivity to hTel22 G-4 DNA, that is 

ZK273, EAO196, EAO197, ZK288, and T5.  The thermal melting data also indicated that the 

thiazole heterocycle system (EAO196 as compared to SP2-36) has a stronger G-4 binding, but 

also has increased interaction with duplex DNA compared to the dimethyl indolenine heterocycle 

ring.  From fluorescence titration expeiment indicate that pentamethine cyanine dyes have a 

stronger binding interaction with the cMyc19 than hTel22.  According to SPR experiment, there 

is about 10 times higher binding affinity with cMyc19 than hTel22 which is also agreeing with 

the fluorescence titration results. 
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3.4 Benzothiazole pentamethine cyanine dyes 

The benzothiazole cyanine dyes below have the general structure shown in Figure 3.18.  

The thermal melting and dye structures are listed in Table 3.6.  The dyes listed in the table have a 

pentamethine linker and in some special cases have a central ring in the linker.  There is a large 

variation in the structural modification.  In some cases, the thiazole ring is replaced by an 

indolenine ring for comparison. 

 

Figure 3.18.  General structure of benzothiazole pentamethine dyes 
 

3.4.1 Thermal melting 

The thermal melting of cyanine dyes and the DNAs were conducted to know relative 

binding affinity and selectivity between G-4 and duplex DNA.  The thermal melting curves for 

G-4 DNA and duplex DNA with these categorized molecules have been shown in Figure 3.19, 

and the overall results are listed in Table 3.6.  All thermal Tm values conduct at a 4:1 ratio and 

some are done at additional ratios. 
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Figure 3.19.  Thermal melting graphs of ZK306 (left) and ZK26 (right) with 

hTel22.  Experiments were done with 3 µM hTel22 in Tris–HCl/ 50 mM K
+
 

buffer at pH 7.4 with 1 nm slit width and an absorbance taken at 295 and 260 

nm for hTel22 and duplex DNA respectively.  The ratios are drug:DNA. 
 

This set of dyes, in general, have minimal binding interaction with both duplex and G-4 

DNA.  However, there is an exception to ZK26 and ZK306.  These two compounds have a 

strong binding with G-4 DNA with minimal binding with duplex DNA.  This could be due to the 

bulky aliphatic center ring that is involved in inhibiting the duplex DNA groove interaction.  The 

difference between the two dyes is that ZK306 contains trimethylammonium substituent making 

it more soluble in water than ZK26.  The extra charge in ZK306 is also shown to have more G-4 

DNA binding, possibly because it has loop interaction making the complex more stable than with 

ZK26.  The results are shown in Figure 3.19 and Table 3.6. 

 

Table 3.6:  Tm analysis for benzothiazole pentamethine cyanine dyes with 

hTel22 and duplex DNA. 

 

ΔTm (°C) 

hTel22 (3 µM) 

(Tm = 60 °C) 

ΔTm (°C) 

duplex DNA (3 µM) 

(Tm = 74 °C) 

Ratios 

Structures 
[1:1] [2:1] [4:1] [6:1] [4:1] 
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---- ---- 13.4 ---- 9.1 

 

---- ---- 6.9 ---- 9.1 

 

Poor solubility. 

 

1.9 4.6 6.8 8.3 2.4 

 

1.4 3.4 5.3 7.8 1.6 

 

---- ---- 3.1 ---- 1.5 

 

---- ---- 0.3 ---- 0.2 

 

---- ---- 4.6 ---- 2.5 
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Poor solubility. 

 

* 1.4 1.4 2.9  

 

---- ---- 16.2 ---- 12.7 

 

---- ---- 0.7 ---- 0.1 

 

5.5 14.7 21.2 17.1 3.2 

 

10.6 21.4 28.3 >28  

Blue box: parent compound 

Ratios are [drug:DNA] 

The errors occur within +/- 0.5 °C, based on experimental reproducibility. 

* Aggregation/ Tm cannot be determined. 
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3.4.2 Surface plasmon resonance 

 

Figure 3.20.  SPR sensorgram (left) and steady state response fits (right) for 

EAO306 with cMyc19.  Biotin labeled DNAs and drug were prepared in 10 

mM HEPES buffer containing 50 mM K
+
, 0.05% (v/v) surfactant P20 at pH 

7.4 and 25 ˚C. The experiment were performed on BIAcore X100 optical 

biosensor systems.  Ka1= 1.4 x 10
7
 M

-1
, Ka2= 1.1 x 10

6
 M

-1
 using two site fitting 

equation.  
 

ZK26 requires a larger amount of DMSO to dissolve which is not suitable for SPR 

experiments.  However, ZK306 is soluble which is sufficient to conduct the SPR experiments 

with the cMyc19 DNA.  The equilibrium constants of Ka1= 1.4 x 10
7
 M

-1
 and Ka2= 1.1 x 10

6
 M

-1
 

were achieved using the two site binding curve listed in equations in the techniques section.  The 

SPR data showed that the binding with the cMyc19 has a strong first site binding followed by a 

weaker binding interaction of about 10-fold difference. The SPR sensorgram and steady state 

response fit of ZK306 and cMyc19 G-4 DNA complex are shown in Figure 3.20.   

 

3.4.3 Discussion 

Thiazole cyanine dyes usually are a very strong duplex DNA binder and this is also being 

proved in the thermal melting data.  However, when an aliphatic ring is added in the linker chain 
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then the duplex DNA interaction is minimized (ZK26 and ZK306). Addition of the 

trimethylammonium charge to the dye therefore increases the solubility as well as the binding 

affinity with the G-4 DNA.  
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3.5 Other trimethine cyanine dyes 

These set of dyes contain numerous changes in structure and there is minimal structural 

similarity between them.  However, the main similarity between all is the 3-carbon resonance 

chain. 

 

3.5.1 Thermal melting 

Thermal melting was conducted for selectivity studies between hybrid G-4 DNAs against 

duplex DNA.  The Tm graphs of the EAO199, in Figure 3.21, showed strong stability interaction 

with G-4 DNA over duplex DNA.  All Tm values are listed at 4:1 ratio and some are listed at 

additional ratios.  Tm summary data are shown in Table 3.7.   

 

 

Figure 3.21.  Thermal melting graphs of EAO199 with hTel22 (left) and 

duplex (right) DNA.  Experiments were done with 3 µM hTel22 in Tris–HCl/ 

50 mM K
+
 buffer at pH 7.4 with 1 nm slit width and an absorbance taken at 

295 and 260 nm for hTel22 and duplex DNA respectively.  The ratios are 

drug:DNA. 
 

The data showed that dyes with a benzothiazole connected to an isoquinoline heterocycle 

ring have high thermal stability with G-4 DNA but also showed moderate interaction with duplex 
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DNA (JGT43 JGT35, JGT36 and EAO199). Significantly, compound with hydroxyl-

trimethylpropan-aminium substituents (EAO146) and symmetric benzothiazole showed binding 

to duplex but with a much higher thermal stability and selectivity with hTel22 G-4 DNA.  

 

Table 3.7:  Tm analysis for trimethine dyes with hTel22 and duplex DNA. 

 

ΔTm (°C) 

hTel22 (3 µM) 

(Tm = 60 °C) 

ΔTm (°C) 

duplex DNA (3 µM) 

(Tm = 74 °C) 

Ratios 

Structures 

[1:1] [2:1] [4:1] [6:1] [4:1] 

 

7.6 14.5 23.1 27.5 6.3 

 

  15.1  < 0.1 

 

  14.2  < 0.1 

 

  11.2   

 

2.3 7.5 16.1 20.5 5.5 

 

  4.9   
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  10.4  0.6 

 

10.5 *** *** ***  

 

5.1 11.0 17.0 23.0 7.5 

 

4.6 8.8 15.0 22.4 8.2 

 

3.0 5.6 12.6 *  

 

  2.6   

 

1.8 3.8 6.5  12.9 

 

4.6 8.3 ***   

 
hTel22 (2uM) 

2.6 5.1 9.2 *  

Blue box: parent compound 

Ratios are [drug:DNA] 

The errors occur within +/- 0.5 °C, based on experimental reproducibility. 

* Aggregation/ Tm cannot be determined. 

 

3.5.2 Fluorescence titration 

Fluorescence titration was conducted for selected dyes and with only EAO146 high 

fluorescence change.  Good binding was observed with EAO146 in both of the fluorescence 
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titration with both the hTel22 and the cMyc19 experiment.  However, there is no significance 

difference fluorescence enhancement were observed between the titration with cMyc19 and 

hTel22.  The fluorescence titration spectra are shown in Figure 3.22. 

 

Figure 3.22.  Fluorescence titration of hTel22 (left) cMyc19(right) to EAO146 

in 50 mM K
+
 buffer.  Slit widths were 5 nm (ex) and 5 nm (em).  λex was 

550.0 nm and λem was taken from 550 nm to 800 nm.  1.0 µM EAO146 was 

titrated with 0.05 – 0.1 µM increments of DNA.  Fluorescence enhancement 

was 10.0 for cMyc19 and 10.2 for hTel22. 
 

3.5.3 Surface plasmon resonance 

Binding affinities were conducted using surface plasmon resonance for a few dyes and 

only dyes that had a reasonable graph are shown in Figure 3.23 and the summary SPR data are 

shown in Table 3.8.  Based on the data, EAO146 and EAO199 showed good binding with 

cMyc19.  
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Figure 3.23.  SPR sensorgram (left) and steady state response fits (right) for 

EAO146, EAO199, and EAO76  with cMyc19.  Biotin labeled DNAs and drug 

were prepared in 10 mM HEPES buffer containing 50 mM K
+
, 0.05% (v/v) 

surfactant P20 at pH 7.4 and 25 ˚C. The experiment were performed on 

BIAcore X100 optical biosensor systems.   
 

Table 3.8:  Trimethine cyanine equilibrium constant with different G-4 DNA. 

 
cMyc19 KA1 ; KA2 (M

-1
) 

EAO146 3.1 x 10
7
 ; 1.7 x 10

6
 

EAO199 1.5 x 10
7
; < 10

5
 

Experiments have the reproducibility within 10%. 

Data were fitted using two sites fitting curves 
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3.5.4 Discussion 

Most trimethine dyes in this category have strong selectivity to G-4 DNA but also 

showed moderate binding to duplex DNA.  In addition, dyes with hydroxyl-trimethylpropan-

aminium substituents (EAO146) have strong binding to both G-4 DNA polymorphism used in 

the study but with little selectivity.   

 

The unsymmetrical benzothiazole-isoquinoline cyanine dyes have a unique binding in 

thermal melting to G-4 DNA and also for duplex DNA.  The curvature of isoquinoline is a 

favorable property to bind in the minor groove of the duple DNA. 
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4 CONCLUSIONS 

Based on the results above, cyanine dyes have been found that have favorable biophysical 

properties to develop for small molecules targeting G-4 DNA recognition.  For each set of dyes, 

several trends are observed.  Stronger binding affinity with G-4 DNA if for compounds that have 

more than one binding site of the quadruplex DNAs (ZK26-one versus ZK306-two binding mode 

properties).  That is, ZK26 can bind to G-4 through π-π end-stacking, while ZK306 can have π-π 

end-stacking at both quadruplex ends or loop binding interaction capability.   CD data suggest 

that these compounds bind via loop binding or end-stacking since little or no change in CD was 

observed in the DNA region (EAO166_cMyc19).   Representative CD titration graphs are shown 

in Figure 4.1.  In addition, the higher ratio of drug:DNA will cause nonspecific binding 

interaction (EAO88_cMyc19) while high dye concentration usually causes self-association or 

possible aggregation of the samples (T5_cMyc19). 

 

 

Figure 4.1.  CD titrations done with 2-5 µM DNA in Tris-HCl/ 50 mM K
+
 

buffer.  The solution is scanned from 220 nm to 700 nm at 25 ˚C with a scan 

rate of 50 nm/min, slit width of 1 nm, and a response time of 1 second.  Other 

experimental conditions are described in experimental procedure section.  

The ratios are drug:DNA. 
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The set of compounds investigated in this thesis showed extraordinary results in binding 

selectively to the G-4 DNA, particularly with the parallel G-4 DNA in the cMyc oncogene 

promoter sequence.  In general, these sets of dyes have a 2:1 binding stoichiometry with 

quadruplex DNA with a strong first site followed by a weaker binding interaction.  From here, 

more modifications of the dyes, as well as different DNA sequences is necessary to 

understanding the structural binding selectivity.  In addition, more biophysical methods can be 

conducted to further investigate the drug:DNA interaction.  Among the most important detecting 

methods include molecular modeling to calculate theoretical binding and NMR spectroscopy 

studies to provide structural insight of G-4 DNA-ligand complex.  In summary, using cyanine 

dyes to target G-4 DNA has enhanced our understanding of the interaction complex.  In addition, 

it could also be used to assist future studies to find the trend in therapeutics treatments to cancer 

and many other diseases. 
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APPENDICES  

Appendix A.  Thermal melting analysis of uncategorized/weak binder dyes 

Table 0.1:  Tm analysis for other symmetrical heptamethine dyes with hTel22 

and duplex DNA. 

 

ΔTm (°C) 

hTel22 [3 μM] 

ΔTm (°C) 

duplex DNA [3 

μM] 

Ratios 

Structures 

[1:1] [2:1] [4:1] [6:1] [4:1] 

 

Poor Solubility 

 
15% DMSO 

3.2 7.6 *** ***  

 
10% DMSO 

  2.0   

 
6.7% DMSO 

  6.8   

 

0.5 1.0 3.5 7.0 < 0.1 
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Poor Solubility 

 

0.3 0.6 1.8 3.3 --- 

 

1.4 2.1 *** *** --- 

 

1.2 2.0 2.8 4.6 --- 

 

Poor Solubility 

Ratios are [drug:DNA] 

The errors occur within +/- 0.5 °C, based on experimental reproducibility. 

* Aggregation/ Tm cannot be determined 
 

Thermal melting data for other variations of symmetrical heptamethine cyanine dyes is 

listed in Table 0.1.  These set of structures have slight variation with the original set, however, 

with less interaction with G-4 DNA.  Compounds in Table 0.1 showed poor solubility, 

aggregation, as well as low G-4 interaction.  Therefore no further studies were done.  
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Table 0.2:  Tm analysis for oxyxyclobuteneoate dyes with hTel22 and duplex 

DNA. 

 

ΔTm (°C) 

hTel22 [3 μM] 

ΔTm (°C) 

duplex DNA [3 

μM] 

Ratios 

Structures 

[1:1] [2:1] [4:1] [6:1] [4:1] 

 

  0.4   

 

  0.4   

 

  >0.1   

 

  >0.1   

 

1.4 4.3 8.7 18.2 >0.1 

 

  >0.1   
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  >0.1   

Ratios are [drug:DNA] 

The errors occur within +/- 0.5 °C, based on experimental reproducibility. 

* Aggregation/ Tm cannot be determined. 
 

Thermal melting data for other variations of oxyxyclobuteneoate (check spelling on this) 

dyes are listed in Table 0.2.  These dyes showed little interactions with G-4 DNA and duplex 

DNA. However, there is one compound which showed a strong stabilization to G-4 DNA with 

almost no interaction with duplex DNA.  

 

Table 0.3:  Tm analysis for other unsymmetrical trimethine dyes with hTel22 

and duplex DNA. 

 

ΔTm (°C) 

hTel22 [3 μM] 

ΔTm (°C) 

Duplex DNA [3 

μM] 

Ratios 

Structures 

[1:1] [2:1] [4:1] [6:1] [4:1] 

 

0.8 2.0 4 5.8 0.4 

 

0.2 0.6 1.1 1.1 > 0.1 

 

Poor solubility. 
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  4.9   

 

  5.6   

 

Poor solubility. 

 

Poor solubility. 

 

Poor solubility. 

 

Aggregation 

 

Aggregation 

 

  10.1   

Ratios are [drug:DNA] 

The errors occur within +/- 0.5 °C, based on experimental reproducibility. 

* Aggregation/ Tm cannot be determined. 

 

This set of dyes showed poor solubility and also low G-4 DNA binding. 
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