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Abstract 

Objective: Adult survivors of childhood brain tumors are at risk for cognitive performance 

deficits that require the core cognitive skill of working memory. Our goal was to examine the 

neural mechanisms underlying working memory performance in survivors. Method: We studied 

the working memory of adult survivors of pediatric posterior fossa brain tumors using a letter n-

back paradigm with varying cognitive workload (0-, 1-, 2-, and 3-back) and functional magnetic 

resonance imaging as well as neuropsychological measures. Results: Survivors of childhood 

brain tumors evidenced lower working memory performance than demographically-matched 

healthy controls. Whole-brain analyses revealed significantly greater blood-oxygen level 

dependent (BOLD) activation in the left superior / middle frontal gyri and left parietal lobe 

during working memory (2-back versus 0-back contrast) in survivors. Left frontal BOLD 

response negatively correlated with 2- and 3-back working memory performance, Auditory 

Consonant Trigrams (ACT), and Digit Span Backwards. In contrast, parietal lobe BOLD 

response negatively correlated with 0-back (vigilance task) and ACT. Conclusions: The results 

revealed that adult survivors of childhood posterior fossa brain tumors recruited additional 

cognitive control resources in the prefrontal lobe during increased working memory demands. 

This increased prefrontal activation is associated with lower working memory performance and 

is consistent with the allocation of latent resources theory. 

 

Key Words: neuroimaging, executive function, posterior fossa, neoplasm, n-back, pediatric 
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Neural Underpinnings of Working Memory in Adult Survivors of Childhood Brain Tumors 

Advances in diagnosis and treatment have led to improved clinical outcomes of pediatric 

brain tumor patients. The 5-year survival rate of these patients has increased from 55% in the 

1970s to over 70% in more recent cohorts (Armstrong et al., 2009; Gurney et al., 2003; Ostrom 

et al., 2015). With improved treatment outcomes, research on long-term survivorship of 

childhood brain tumors has reported adverse health, disrupted quality of life, and impaired 

cognitive and social outcomes (Gurney et al., 2009; Kirchhoff et al., 2011; Robinson, Fraley, 

Pearson, Kuttesch, & Compas, 2013). These findings highlight the importance of investigating 

neural underpinnings associated with childhood brain tumor and its treatment. 

Working memory impairment is considered among the primary neurocognitive deficits 

that contribute to poor long-term outcomes of brain tumor survivors (Palmer, 2008; Wolfe, 

Madan-Swain, & Kana, 2012). The core deficits in attention, processing speed, and working 

memory are associated with treatment-related global cognitive deficits (Dennis et al., 1992; 

Reeves et al., 2006; Waber et al., 2006). Working memory deficits appear to mediate general 

cognitive abilities in cancer survivors (Schatz, Kramer, Ablin, & Matthay, 2000).  

Therefore, it is not surprising that working memory is a common deficit among many 

neurological conditions, such as schizophrenia (Perlstein, Dixit, Carter, Noll, & Cohen, 2003), 

multiple sclerosis (Sweet, Rao, Primeau, Durgerian, & Cohen, 2006), and traumatic brain injury 

(Medaglia et al., 2012) because working memory is a core executive function and is an essential 

component for higher-order cognitive processes in humans (Baddeley, 2012; Smith & Jonides, 

1997, 1998). The distributed neural network of the frontal-parietal system has been reported 

consistently in the functional magnetic resonance imaging (fMRI) literature. Greater prefrontal 
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and parietal blood-oxygen level dependent (BOLD) activations observed in fMRI are associated 

with increased working memory load (Owen, McMillan, Laird, & Bullmore, 2005).  

However, current understanding of the neural mechanisms underlying working memory 

impairments in adult survivors of childhood brain tumors is limited, and little fMRI research 

with childhood brain tumor survivors has been reported. To date, two research groups have 

reported on the feasibility of the letter n-back paradigm in pediatric survivors of childhood brain 

tumors (Robinson, Pearson, Cannistraci, Anderson, Kuttesch, Wymer, Smith, Park, et al., 2014; 

Robinson, Pearson, Cannistraci, Anderson, Kuttesch, Wymer, Smith, & Compas, 2014; Wolfe et 

al., 2013). In 9 adolescent survivors of pediatric posterior fossa tumors, Wolfe and colleagues 

(2013) identified a frontal-parietal activation pattern using a contrast of 0-, 1-, and 2-back 

combined versus fixation. This study demonstrated a broadly typical activation pattern for 

survivors during the combined vigilance and working memory load n-back task. A control group, 

however, was not utilized in this study so it is unclear how this activation may differ from 

neurotypical adolescents.  

In a separate study, Robinson and colleagues (2014) examined 17 child and adolescent 

brain tumor survivors on average 5.64 years post diagnosis of heterogeneous brain tumors and 

locations. They compared the survivors to 15 similar-age children. Whole-brain examination of 

the group by n-back load (0-, 1-, 2-, and 3-back) interaction revealed a significant cluster in the 

left dorsal anterior cingulate cortex (DACC) (Robinson, Pearson, Cannistraci, Anderson, 

Kuttesch, Wymer, Smith, & Compas, 2014). More specifically, the survivors showed significant 

activation in left DACC on the 1- and 2-back relative to baseline, whereas the comparison group 

showed significant deactivation on these contrasts. Across groups, n-back total accuracy was 

negatively correlated with BOLD response during the 1-back (-.40) but not correlated with 
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BOLD response during 0-, 2- or 3-back. Furthermore, the left DACC BOLD response during the 

1-back positively correlated with parent report of executive dysfunction (i.e., .36; BRIEF Global 

Executive Composite) and was negatively associated with the WISC-IV Working Memory Index 

(i.e., -.37). Combined, these findings suggest the importance of separating the role of vigilance 

(i.e., 1-back, identifying a letter that immediately repeats itself) from working memory in the 

contribution to clinical measures of executive dysfunction.  With this same sample and fMRI 

data, the authors (Robinson, Pearson, Cannistraci, Anderson, Kuttesch, Wymer, Smith, Park, et 

al., 2014) took a non-traditional approach of identifying regions of activation in each group 

separately on specific contrasts (i.e.,  2- versus 0-back, and 3- versus 0-back) and then “force-

prescribed” these cluster regions onto the other group. Although not a direct comparison between 

groups at the whole-brain level, activity levels in these prescribed regions were extracted from 

both groups and correlated with multiple coping and emotional functioning measures. In 

survivors, the left prefrontal cortex (during 2-back versus 0-back) correlated with ratings of 

Anxiety/Depression (-.49), Attention Problems (-.61) and Disengagement Coping (-.61). The 

authors report that the survivors who tended to use disengagement coping were less likely to 

recruit the frontal regions. In summary, these three studies have shown the feasibility of using 

the letter n-back paradigm in fMRI studies of survivors of pediatric brain tumors. Each 

demonstrated traditional areas of activation with this paradigm and highlighted the importance of 

sample characteristics, level of task difficulty, and diverse analytic approaches. The authors 

suggest the possibility of frontal dysfunction in survivors but more work is needed directly 

comparing survivors to healthy controls and deconstructing the meaning of BOLD activation 

changes with performance correlations. Furthermore, little is known about the neural correlates 

of working memory BOLD response in long-term adult survivors of pediatric brain tumors.  
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The current fMRI study aimed to identify the neural mechanisms underlying working 

memory difficulty in adult survivors of childhood posterior fossa brain tumors relative to a 

healthy and demographically-matched control sample. Whole-brain fMRI analyses relative to 

healthy controls were employed. We found shared or common regions of brain activation in the 

frontal-parietal working memory network across groups (i.e., conjunction analyses) and therefore 

confirmed the underlying network was employed similarly across both groups and similar to the 

n-back literature. In addition, standardized clinical measures of working memory (Auditory 

Consonant Trigrams and Digit Span Backwards) were examined for group differences and in 

relationship to the change in BOLD signal in activated regions during the n-back.  

 

Methods 

Participants 

 The study was reviewed and approved by the local institutional review boards. Adults 

who had been treated for a pediatric posterior fossa brain tumor were identified from a large 

southeastern hospital system database, a previous longitudinal childhood brain tumor study, and 

an advertisement published in an annual newsletter circulated by the state Brain Tumor 

Foundation in which survivors were encouraged to call to learn more about the study. Before 

being enrolled in the study, written consent was provided by all adult participants. Parental 

consent and participant assent was obtained from two individuals who were 17 years old. 

Participants were excluded if English was not their first language, if they met criteria for 

pervasive developmental disorders, if they indicated a diagnosis of neurofibromatosis, or if they 

had experienced any other significant neurological insult (e.g., traumatic brain injury). All 

participants were over the age of 18 (with the exception of two 17-year-old survivors) and were 
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at least 5 years past their most recent diagnosis (with the exception of one survivor who was 4.5 

years post diagnosis). Information about the brain tumor and treatments were obtained from a 

thorough retrospective medical records review. None of the survivors had history of progressions 

or recurrences of their brain tumor. Twenty-seven posterior fossa brain tumor survivors 

completed both neuroimaging and neuropsychological testing. Ten participants’ data were 

excluded due to either unacceptable motion artifacts in images (>3mm, 8 survivors) or artifact in 

the cortical regions (2 survivors). In total, 17 adult survivors of posterior fossa tumors were 

included in the current study. To address potential selection bias, we evaluated whether there 

were significant differences in behavioral performance when comparing survivors with 

acceptable imaging and survivors with artifact; t-test analyses indicated that there were no 

significant differences between the two groups.  

Control participants were recruited through the institutional psychological research 

participant pool at a large urban public university and community fliers. Control participants 

were screened for a history of as well as current psychopathology with the Structured Clinical 

Interview for DSM-IV-TR Axis 1 (First, Spitzer, Gibbon, & Williams, 1997). In addition, 

individuals with a history of neurological or developmental conditions were excluded to ensure 

that these individuals represented a healthy comparison group. Therefore, no participants in the 

comparison group had a history of or were diagnosed with Attention Deficit Hyperactivity 

Disorder (ADHD). Three survivors were diagnosed with acquired ADHD during childhood but 

none were taking stimulant medications. Cognitive performance and BOLD response data for 

these three survivors were not outliers, nor appreciably different from the other survivors.  

 

Procedure 
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Behavioral Measures 

 Auditory Consonant Trigrams (ACT).  The ACT (Brown, 1958; Peterson & Peterson, 

1959) was administered to all participants as part of a larger cognitive battery as an out-of-

scanner behavioral measure of working memory. Participants were asked to remember three 

consonants (e.g., B-D-T) that were read by the examiner. They were then asked to count 

backwards from a given number to prevent rehearsal of the consonants. After 9, 18, or 36 

seconds, the participants were asked to recall the three consonants. Performance was computed 

into z-scores based on normative data (Stuss, 1987).  

Wechsler Memory Scale Digit Span. The Digit Span subtest from the Wechsler 

Memory Scale (Wechsler, 1997) also was used as a measure of working memory. In addition to 

the summary normative scaled score, the maximum number of digits recalled on the forward and 

backward conditions were recorded and analyzed separately, with age co-varied, to differentiate 

the constructs of attention span (forward condition) and mental manipulation/working memory 

span (backward condition) within the task. 

Wechsler Abbreviated Scale of Intelligence (WASI). The four subtest version (WASI) 

was used to estimate IQ (Wechsler, 2011): Vocabulary, Similarities, Block Design and Matrix 

Reasoning. WASI standard scores were used for descriptive purposes only. This measure was 

not used as a covariate due to previously described limitations of this approach in developmental 

populations (Dennis et al., 2009).  

 

fMRI Exam with Letter N-Back Working Memory Task Paradigm 

Functional MRI data were acquired using a 3T Siemens Trio MRI scanner using a 12-

channel head coil. Cushions and forehead straps were placed around each participant’s head to 
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minimize head movement.   

 During the n-back task, the participant was asked to monitor a series of letters and to 

respond yes or no with either his/her index or middle finger on a button box if an item was 

presented n-items before (ranging from 1 to 3 letters back). A higher ‘n’ value (i.e., 2-back and 

3-back) represented a higher load due to higher monitoring, updating and manipulating demands. 

In contrast, an ‘n’ value of 0 (i.e., the 0-back task) was conceptualized as a measure of vigilance 

as each participant responded yes or no if a specific letter appeared. In the current study, the 2-

back versus 0-back and 3-back versus 0-back contrasts were used to examine working memory 

more precisely as the common monitoring and vigilance requirements of the tasks were removed.  

The task consisted of a block design paradigm with a total of five runs. Eprime (2.0.8) 

was used for stimuli presentation and accuracy and response time data acquisition. Each run 

consisted of five different blocks (crosshair, 0-, 1-, 2- and 3-back blocks) and a fixation period 

(where a cross was presented on the screen). The blocks were counterbalanced between separate 

runs to minimize order effects. Each block consisted of fifteen letters, where five pre-specified 

stimuli were the correct targets and the remaining ten letters were non-targets. Each block was 

preceded by a screen with written instructions for the task lasting 3000 ms, and each letter 

stimulus was presented for 500 ms with an inter-stimulus interval of 2500 ms between each letter 

presentation. The baseline crosshair-fixation block consisted of a cross on the screen which 

appeared for 500 ms at a time, separated by 2500 ms of blank screen between each cross 

presentation. Each run lasted approximately four minutes, yielding a total task time of twenty 

minutes for all five runs. Working memory was defined as the average percent correct of the 2-

back and 3-back conditions across all five runs, while the vigilance condition was defined as the 

average percent correct on the 0-back task across all five runs.  
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Participants were trained on the n-back task before they entered the scanner. Participants 

received a standardized set of instructions on paper. They were given the opportunity to learn the 

task in an untimed setting and were corrected when they made a mistake. Participants were then 

administered abbreviated versions of 0- through 3-back conditions on a laptop connected to a 

button box identical to the one that was used in the scanner. The stimuli on the screen of the 

laptop were also identical to the screen projected in the scanner in order to increase familiarity 

with the format of the task. These steps were taken to ensure that the participants understood the 

instructions of the task and were familiar with the format and response procedure. This five-

minute procedure did not provide the participants with extensive practice or training prior to the 

scanner paradigm. 

Task-dependent image series were collected using a gradient-recalled T2*-weighted 

echo-planar-imaging (EPI) sequence based on BOLD contrast. The primary imaging parameters 

for the BOLD contrast included: 40 slices, 3 mm slice thickness and 0 mm slice gap, repetition 

time (TR) = 2130 ms, echo time (TE) = 30 ms, flip angle = 90 degrees, nominal resolution = 3 x 

3 x 3 mm
3
.  For anatomical registration, high-resolution T1-weighted structural images were 

acquired with a 3D magnetization prepared rapid gradient echo (3D MPRAGE) sequence using 

the following parameters: 176 sagittal slices, field of view = 256 mm x 256 mm, 1 mm
3
 voxel 

size, TR = 2250 ms, TE = 3.98 ms, inversion time TI = 850 ms, flip angle = 9 degrees. 

  

fMRI Data Analyses 

fMRI data analysis was conducted using FEAT (fMRI Expert Analysis Tool) Version 

6.01, which is part of FSL (fMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). Data from all 

five runs were concatenated and preprocessed in the following sequence: motion correction with 
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the MCFLIRT tool of FSL; brain extraction using the BET tool of FSL; slice timing correction; 

spatial smoothing with Gaussian kernel (FWHM = 5 mm); high pass temporal filtering. The 

preprocessed data was then registered to its corresponding high resolution T1 MPRAGE images 

and subsequently to the standard brain template (MNI152 T1 2 mm) using linear boundary based 

registration (BBR) (Greve & Fischl, 2009). 

General linear modeling was performed using FILM on individual data. A total of 26 

regressors were entered into the GLM setup: 13 base regressors (canonical HRF convoluted 0, 1, 

2, 3 back timing blocks, crosshair block, instruction block, ISI block, 6 estimated translation and 

rotation parameters) and their first derivatives. Higher level statistical analyses for contrasts were 

carried out using FLAME (fMRIB’s Local Analysis of Mixed Effects) stage 1. Z statistic images 

were thresholded using clusters determined by Z > 1.96 and a corrected cluster significance 

threshold of p = 0.05. Cluster-extent based thresholding was utilized for multiple comparisons 

correction. Group membership (i.e. survivor vs. control) was entered as a regressor in the group 

level GLM.  

The 2-back versus 0-back and 3-back versus 0-back contrasts were chosen to represent 

working memory relative to vigilance to elicit brain activation related to working memory 

neurophysiology. The 2-back versus 0-back and 3-back versus 0-back contrasts were further 

masked by the 2-back versus crosshair and 3-back versus crosshair contrasts, respectively, to 

identify regions of positive signal change (i.e. activation rather than deactivation). Given that 

differences on the 2-back versus 0-back contrast may be due to changes in activation levels on 

the 0-back condition (rather than the working memory 2-back condition), we deemed it 

necessary to examine the 0-back versus crosshair contrast to determine whether BOLD 

activations in this contrast existed between the two groups. Specifically, we reasoned that 
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differences on the 2-back versus 0-back contrast may be interpreted in three possible ways: 1) 

higher activations on the 2-back task in the survivor group compared to the control group, with 

identical activations on the 0-back vigilance task, 2) lower activations on the 0-back task in the 

survivor group compared to the control group, with identical activations on the 2-back working 

memory task and 3) a combination of higher 2-back activation and lower 0-back activation in the 

survivor group compared to the control group. Given these three possible interpretations, the 0-

back versus crosshair contrast was probed to determine whether group differences existed on the 

vigilance task.  

Spherical regions of interest (ROIs) were created with a radius of 3 mm and centered at 

the coordinates of the peak value of the Z-score. The percentage of the BOLD signal change was 

obtained with Featquery in these ROIs and correlated with behavioral performance using 

bivariate Pearson correlations. 

 Finally, conjunction analyses were performed to determine group similarities in BOLD 

response to the 2-back versus 0-back contrast, which is most commonly reported in the literature. 

Conjunction analyses are used to find common activation patterns across groups by examining 

voxels that are statistically significant on the contrast in both groups. Conjunction is based on the 

minimum statistic and tests the null hypothesis that one or more of the effects are null (the 

“conjunction null”). The conjunction was conducted with FSL easythresh script 

(http://www2.warwick.ac.uk/fac/sci/statistics/staff/academicresearch/Nichols/scripts/fsl/easythre

sh_conj.sh) and tested at a level of p = 0.05. For more details on the model used and the 

concepts, procedures and assumptions underlying the model, refer to Price and Friston (1997). 

 

Statistical Analyses for Behavioral Data 
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Independent t-tests were used to evaluate whether survivors and controls differed with 

respect to their performance on all behavioral measures at a significance level of p < 0.05. Effect 

sizes were also calculated (Cohen’s d) to illustrate the magnitude of the standardized difference 

between survivor’s and control’s performance means.  

  

 

Results 

Overall, 17 adult survivors and 17 demographically-matched healthy controls were 

included in the analyses. Groups were matched for gender, age, handedness, and socioeconomic 

status (see Table 1 for demographic details). Both groups had 11 females and 6 males. Survivors 

were between 17 and 35 years old, with an average age of 23.2 years (SD = 5.9). Survivors were 

an average of 15.5 years post diagnosis (SD = 7.6 years). Nine survivors were diagnosed with a 

high-grade embryonal tumor, while eight survivors were diagnosed with a low-grade astrocytic 

tumor. Table 1 provides a complete list of the characteristics of the sample. 

  

(Insert Table 1 here) 

 

Behavioral Performance 

We predicted that adult survivors of childhood brain tumor would exhibit lower 

performance on the n-back fMRI paradigm and standardized clinical measures. Results of one-

tailed independent t-tests showed that there were significant differences between the survivor and 

control groups on measures of 2-back performance, 3-back performance, WASI, the longest 

delay of the ACT (36 second condition), Digit Span performance, and the number of digits 
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recalled in the forward condition of Digit Span. On all of these measures, survivors performed 

significantly lower than controls. The group means, standard deviations, differences in 

performance on each measure, and the effect sizes of group difference are listed in Table 2.  

 (Insert Table 2 here) 

As a secondary analysis, t-tests were conducted to identify the group differences that 

existed on the percent change of BOLD signal during the activation and behavioral performance 

when bifurcating the survivors into the low grade astrocytoma group (n = 8) versus the high-

grade embryonal tumors (n = 9). The two groups were matched for age, age at diagnosis and 

time since diagnosis.   

Results showed that there were significant differences between the groups of high-grade 

embryonal tumor survivors and low-grade astrocytoma survivors on the behavioral performance 

of the 3-back task, t(15) = 2.22, p = 0.04, d = 1.15. Significant differences were present in the 

ACT 9s (t(15) = 5.02, p < 0.05, d = 2.59), 18s (t(15) = 2.42, p = 0.03, d = 1.25) and 36s (t(15) = 

2.42, p = 0.03, d = 1.25) measures. There also were significant differences in the Digit Span 

scaled score (t(15) = 2.86, p = 0.01, d = 1.48), as well as the raw scores of the Digit Span 

Forward (t(15) = 2.86, p = 0.01, d = 1.48) and Backward (t(15) = 2.20, p = 0.04, d = 1.14). In all 

of these analyses, the high-grade embryonal tumor group performed worse than the low-grade 

astrocytoma group. Analyses of the treatment-related and health-related factors of the two 

survivor groups indicated that the high-grade embryonal tumor group evidenced higher rates of 

radiation treatment (χ²(1, n= 17) = 9.92, p < .001, φ = 0.76), chemotherapy treatment (χ²(1, n= 

17) = 13.43, p < 0.001, φ = 0.89), and endocrine dysfunction (χ²(1, n= 17) = 7.24, p < .001, φ = 

0.65) when compared to the low-grade astrocytoma group. As such, the treatment-related and 

health-related factors related to survivorship of a high-grade embryonal tumor group (i.e. 
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radiation, chemotherapy and endocrine dysfunction) were associated with lower cognitive 

performance on behavioral working memory tasks.  

 

fMRI Results 

We predicted that the neural network recruited in working memory would be disrupted in 

survivors. Furthermore, we predicted that the correlations between the activation-induced percent 

change in BOLD signal in prefrontal regions and working memory performance (in and outside 

of the scanner) would be negatively related.  

Whole-brain analyses revealed significant group differences for the 2-back versus 0-back 

contrast in the left superior frontal/middle frontal gyri and left parietal cortex, with survivors 

exhibiting higher activations than controls in the cortical structures shown in Figure 1A. The 

locations and z-values of the peaks and subpeaks that emerged as significantly different between 

the two groups for the 2-back versus 0-back contrast are summarized in Table 3. No group 

differences were present when evaluating the 0-back versus crosshair vigilance contrast 

condition or the 3-back versus 0-back working memory contrast.   

(Insert Table 3 here) 

 

(Insert Figure 1 here) 

 

 

Correlations of Brain Activation and Cognitive Performance 

Mean percent signal changes in the two peak regions, identified by whole-brain analyses 

(i.e., left superior/middle frontal gyri and left parietal cortex), were examined for their 
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relationships with behavioral performance. We predicted that the correlations between the 

activation induced percent signal change would be negatively related with working memory 

(convergent support) and less associated with forward attention span or vigilance measures 

(discriminant support). Pearson bivariate correlations between the signal change and behavioral 

measures were evaluated to determine whether activation levels in these ROIs in the working 

memory condition relative to the vigilance condition were correlated with behavioral 

performances on various working memory measures. Analyses revealed that higher levels of 

activations in prefrontal regions were associated with lower behavioral performance on higher-

load working memory tasks. In addition, higher activity in the left parietal cortex was negatively 

correlated with 0-back overall accuracy and the longest delay of the ACT task (36s). Bivariate 

correlations between mean percent signal change in the ROIs and behavioral performance are 

shown in Table 4. Scatterplots of the relationships between working memory tasks and mean 

percent signal change in the left superior frontal gyrus and the left parietal cortex are represented 

in Figure 1B and 2.  

(Insert Table 4 here) 

(Insert Figure 2 here) 

Secondary analyses were conducted to determine if certain demographic or treatment 

variables related to behavioral performance and activations in the peak voxels (i.e., left superior 

frontal gyrus and left parietal cortex). Bivariate correlations indicated that age at testing of the 

survivor group was significantly correlated to the level of activation in the left superior frontal 

gyrus, r(16) = .487, p = .047. No other demographic or treatment variables were related to the 

level of activation in either ROI. In addition, age at diagnosis of the survivor group was 

significantly correlated with behavioral performance on the ACT (36s), r(16) = .772, p < 0.01, 
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but not the other behavioral measures. In short, no demographic variable correlated with n-back 

performance. However, survivors who were older at the time of their diagnosis performed better 

on a behavioral measure of working memory. Similarly, time since diagnosis had a statistically 

significant negative correlation with behavioral performance on the ACT (36s), r(16) = -.519, p 

= 0.03. A longer time since diagnosis was related to worse behavioral performance on the 

working memory measure.  

Finally, we conducted t-tests to determine whether the tumor grade (i.e., low grade 

astrocytomas vs. high grade embryonal tumors) affects activation in the aforementioned left 

prefrontal and parietal regions. There was no significant difference between the two groups with 

respect to the percent signal change in the superior frontal gyrus or parietal cortex.  

 

Conjunction Analysis 

 Whole-brain analyses revealed regions commonly activated in both the survivor and 

control groups were in the right superior parietal lobe, right paracingulate gyrus, right insular 

cortex, left middle frontal gyrus, right and left thalamus and right lateral cerebellum (see Table 

5). The pattern of activation for the 2-back versus 0-back contrast showed significant overlap 

among the survivor group and the control group across the frontal-parietal working memory 

network. Common areas of activation among the two groups are presented in Figure 2C. 

 

(Insert Table 5 here) 

 

Discussion 
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The current study identified significantly greater levels of percent signal change in the 

BOLD activations of the left prefrontal lobe and left parietal lobe in adult survivors of childhood 

posterior fossa brain tumors relative to a healthy demographically-similar control group during a 

verbal working memory task (i.e., working memory 2-back versus a vigilance 0-back task). 

These increased BOLD signals in survivors during working memory reflect that the survivor 

group recruited greater frontal and parietal activations compared to controls. The increased 

prefrontal activations are consistent with our predictions based on previous neurological samples 

with the n-back working memory task; increased prefrontal cortex activation has been reported 

reliably to be related to the working memory demands of the 2-back task. Furthermore, 

differences during the 2-back working memory task are due to higher activations in survivors 

relative to controls, as there were no BOLD differences between the two groups on the 0-back 

versus crosshair contrast.  

The frontal activation is specifically associated with working memory as operationalized 

by 2-back and 3-back scanner task performance as well as the clinical measures of working 

memory. In addition, greater left superior frontal region activation was associated with lower 

performance on the 2-back working memory task, as well as lower performance on the clinical 

measures of working memory (ACT-36 second delay and Digit Span Backwards). Further 

supporting the specificity of the working memory association with this frontal activation, the 

percent change in BOLD activation was not associated with forward digit span or shorter delays 

of the ACT. In contrast, the percent change in BOLD activation in the parietal region was 

negatively associated with ACT-36 second delay and 0-back accuracy. Together, these findings 

suggest that the cognitive demands of the more challenging working memory tasks are 
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specifically associated with these increased regions of hemodynamic response and not overall 

differences in cognitive ability.  

Furthermore, the increased parietal lobe activations may be due to increased effort and 

cognitive demands of verbal working memory, vigilance demands, or even toward basic visual 

processing of the letters. For instance, it is possible that the upper and lower case changes in the 

stimuli (e.g., M, t, R, m) elicited greater basic visual processing and phonological working 

memory demands in the survivors. We developed the stimuli in this manner to ensure that it was 

a letter/verbal n-back task and to remove the potential confound of shape that sometimes exists 

when the case of the letter is the same. However, this stimuli specification may have created 

greater basic visual processing demands that interacted with the working memory demands of 

the task. It is also possible that increased parietal lobe activations reflect greater vigilance 

demands. In line with this possibility, behavioral performance on the 0-back (i.e., vigilance task) 

was significantly correlated with activity in the parietal region, with worse performance 

associated with higher BOLD signal level. In addition, the upper and lower case stimuli may 

have also contributed to the greater left-lateralized frontal and parietal working memory network, 

given the increased phonological verbal working memory. The left hemisphere findings are 

consistent with prior letter n-back tasks (Owen et al., 2005; Robinson, Pearson, Cannistraci, 

Anderson, Kuttesch, Wymer, Smith, & Compas, 2014). However, some researchers have 

suggested the importance of the right prefrontal lobe due to the novelty of the task demands 

(Hillary et al., 2011). 

Increased prefrontal cortex activation during working memory tasks, as working memory 

performance declines, has been reported previously in the literature with various neurological 

populations. Hillary and colleagues suggest that in the context of brain injury, increased BOLD 
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in the prefrontal cortex is not due to a compensatory mechanism or brain reorganization but 

rather attempts of the neurological group to increase cognitive control in the context of poorer 

performance (Hillary et al., 2011). Our findings are in line with this allocation of latent 

resources theory of the prefrontal lobe which is observed when prefrontal BOLD response 

increases with greater task demands. The authors explain that these common findings are not due 

to compensatory recruitment to maintain task performance or brain reorganization but instead 

due to the fleeting and typical recruitment of existing resources that is also sometimes observed 

in healthy non-neurological samples. In our study, the percent change in the prefrontal region 

related to 2-back performance as well as the longest delay of the Auditory Consonant Trigram 

task and Digit Span Backwards. Furthermore, this transient allocation of prefrontal cognitive 

control resources was greater in the adult survivors of childhood posterior fossa tumors. It also 

appeared that the increased parietal activation was associated with poor performance on the 

ACT; however, this region was not associated with 3- nor 2-back performance but instead was 

significantly associated 0-back performance. Consequently, it is important for future studies with 

survivors of childhood brain tumor and other neurological samples to explore the relationship of 

BOLD activation differences in these regions with other cognitive performance measures.  

 Although the primary purpose of the study was to determine cerebral regions that are 

specific to adult survivors of pediatric brain tumors with respect to BOLD response, it was also 

deemed important to examine the regions that were being similarly activated in both groups. This 

analysis was performed to ensure that the regions of the brain recruited by survivors to support 

their performance on a working memory task are consistent with the working memory networks 

espoused in studies of neurologically healthy controls (Owen et al., 2005). Indeed, the current 

study found that the survivors and controls activated the similar, distributed frontal-parietal 
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working memory network during the 2-back versus 0-back tasks. Comparable activations in the 

right superior parietal lobe, right paracingulate gyrus, right insular cortex, left middle frontal 

gyrus, right and left thalamus and right lateral cerebellum were identified in the conjunction 

analysis. These findings support previous findings and expand to a novel and important group of 

adult survivors of childhood posterior fossa brain tumors who were on average 15.5 years from 

diagnosis. 

The current results must be considered within the context of the limitations. Although this 

study was more homogenous in brain tumor location than previous studies (e.g., posterior fossa), 

approximately half of the sample was high-grade posterior fossa tumor survivors. Therefore, it is 

possible that there may be differences in neural underpinnings of working memory in survivors 

with high-grade and more complex treatment histories (e.g., radiation, endocrine treatment) 

versus those with low-grade cerebellar tumors with surgery only treatment histories. Preliminary 

analyses comparing these subsamples showed that the high-grade posterior fossa tumor survivors 

performed worse than low-grade posterior fossa tumor survivors on a variety of behavioral 

working memory tasks. However, the level to which they activated the frontal and parietal 

clusters on the 2-back - 0-back contrast was not significantly different, and both groups had large 

standard deviations. Therefore, small samples such as those in the current study limit the power 

to detect differences that may exist with a larger sample size. Future studies may focus on a 

select group such as medulloblastoma or cerebellar juvenile pilocytic astrocytomas and compare 

functional BOLD activation of each group during working memory tasks to each other as well as 

to healthy demographically-matched peers.  

In addition, this unique sample of long-term survivors was recruited by mailings, 

newsletters, and word of mouth and may have biased the representativeness of the sample. It is 
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possible that survivors with more severe impairments are more eager to participate in clinical 

research studies. Conversely, it is equally possible that those who are higher functioning are 

more able to participate and volunteer for studies. Thus, with this design, it is difficult to know 

how representative this modest sample of long-term survivors is of other posterior fossa 

survivors. A larger sample would provide greater power to detect important relationships that we 

may not have found. Likewise, one may also be concerned about differences in the survivors 

who participated in the study with good versus poor quality imaging data. We explored this 

possibility, however, and did not find performance differences between these two groups. 

Therefore, it is important to consider that the results of this study may reflect the best case 

scenario of working memory performance and underlying neural correlates in pediatric posterior 

fossa tumor survivors.  

It is important to note that the mean IQ of the control group was in the high average range 

which could reflect the differences between groups that were found. However, on average the n-

back and other neuropsychological performance was comparable to the performance reported in 

other fMRI studies (Hillary et al., 2011; Medaglia et al., 2012; Robinson, Pearson, Cannistraci, 

Anderson, Kuttesch, Wymer, Smith, & Compas, 2014). The current control group was carefully 

selected from a larger control sample that was consistent with the state of Georgia census for 

ethnicity and also included first-generation college students which makes it more consistent with 

community samples. Larger standard deviations are notable in the survivor group highlighting 

the increased within group variability across cognitive constructs. 

In summary, the current study found that in the context of similar and well-established 

frontal-parietal working memory network activations, adult survivors of childhood posterior 

fossa brain tumor also required additional and significantly greater left frontal and left parietal 
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cortex activation in response to increased demands of working memory paradigm compared to 

controls. There was no evidence of compensatory recruitment or brain reorganization; instead the 

findings are aligned with the allocation of latent resources theory of the prefrontal lobe. Future 

studies may consider examining how the neural mechanisms identified may relate to 

cardiorespiratory fitness (i.e., VO2/FFM)  (Wolfe et al., 2013) or attention and internalizing 

symptoms (Robinson, Pearson, Cannistraci, Anderson, Kuttesch, Wymer, Smith, Park, et al., 

2014; Robinson, Pearson, Cannistraci, Anderson, Kuttesch, Wymer, Smith, & Compas, 2014), as 

these constructs have been suggested as promising lines of research in pediatric short-term 

survivors of childhood brain tumors. Furthermore, functional and structural connectivity studies 

may provide complementary information about how the neural regions identified during working 

memory work together following treatment for pediatric brain tumor. 
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Table 1  

Demographic, Diagnostic and Treatment Variables of the Sample 

   

Demographic Variables Survivors (n=17) Controls (n=17) 

   

Female (n, %) 11 (65%) 11 (65%) 

Hollingshead socio-economic status^ (mean ± SD) 2.27 ± 1.33 2.56 ± 1.09 

Age at testing (mean ± SD) 23.39 ± 4.46 23.24 ± 5.89 

   Range 17-35 18-35 

   Median (interquartile range)  21 (18.5 – 28.5) 22 (20 – 25) 

Ethnicity (n, %)   

   Caucasian 16 (94%) 13 (77%) 

   African-American 1 (6%) 3 (18%) 

   Other 0 (0%)        1 (6%) 

Employment status (n, %)   

   Student 9 (53%) 16 (94%) 

   Employed 6 (35%) 1 (6%) 

   Unemployed 1 (6%) 0 (0%) 

   Disability 1 (6%) 0 (0%) 

Diagnostic Variables   

Years post diagnosis (mean ± SD) 

   Range 

   Median (interquartile range) 

15.5 (7.6) 

4.5 – 30 

14.94 (8.08 – 21.78) 

 

Age at diagnosis (mean ± SD) 7.65 (4.90)  
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   Range 

   Median (interquartile range) 

1 – 17 

7 (3.5 – 10.5) 

Tumor type (n, %)   

   High-grade embryonal tumors
†
 9 (53%)  

   Low-grade astrocytic tumor
∆
 8 (47%)  

Treatment Variables   

Radiation type (n, %)   

   No radiation 8 (47%)  

   Focal 1 (6%)  

   Whole-brain 0 (0%)  

   Craniospinal with boost 8 (47%)   

Chemotherapy (n, %) 8 (47%)  

Neurosurgery 17 (100%)  

Hydrocephalus (n, %) 11 (65%)  

Seizure Medication (n, %) 0 (0%)  

Endocrine Dysfunction (n, %) 8 (47%)  

Note. ^SES = Current socioeconomic status, calculated using the Hollingshead Four Factor Index 

of Social Status (Hollingshead, 1975). Family SES was used in instances where the individual 

reported being financially dependent on their family.  

†
8 Medulloblastoma, 1 PNET, NOS; 

∆
7 Juvenile pilocytic astrocytoma, 1 Fibrillary astrocytoma 
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Table 2 

Performance Measures of the Survivor and Control Groups  

 Survivor group  

n = 17 

 Control group 

      n = 17 

 

 

 

 

Mean (SD) 

 

Mean (SD) 

 

        t 

 

Cohen’s d 

 

0-back Accuracy (%) 

 

96.40 (3.52) 

 

97.73 (2.14) 

  

            1.33 

 

-0.46 

1-back Accuracy (%) 93.80 (7.13) 96.55 (3.83)             1.40 -0.48 

2-back Accuracy (%) 86.59 (7.05) 92.39 (5.12) 2.75** -0.94 

3-back Accuracy (%) 83.45 (6.62) 91.53 (6.04) 3.72** -1.28 

 

WASI standard score 100.12 (11.75) 112.00 (7.33) 3.54** -1.21 

 

AC T 9s (z-score) 

 

0.09 (0.95) 

 

0.38 (1.12) 

 

        0.82 

 

-0.33 

ACT 18s (z-score) -0.25 (1.13) 0.23 (0.81)             1.46 -0.49 

ACT 36s (z-score) -0.07 (1.14) 0.96 (0.86) 2.99** -1.02 

 

Digit Span (scaled score) 8.47 (2.50) 11.29 (1.99) 3.64** -1.25 

      Forward Digits (raw) ^ 5.94 (1.34) 7.29 (1.10) 3.21** -1.10 

      Backward Digits (raw) 4.53 (1.23) 5.35 (1.17)              2.00 -0.68 

 

Superior frontal gyrus activation 0.39 (0.30) 0.04 (0.19)            -4.12** 1.39 

Left parietal lobe activation 0.68 (0.50) 0.13 (0.27)           -4.00** 1.37 
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Note. * indicates significance of t(one-tailed), p < .05, ** indicates significance of p < .01; with 

regard to directionality, we hypothesized that survivors would perform lower than controls on all 

measures; ^Forward digits performance remained significantly different between both groups 

after adding age as a covariate. Activation = percent change in BOLD signal on the 2-back 

condition as compared to the 0-back condition. ACT = Auditory Consonant Trigrams 
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Table 3 

Location of Significant Working Memory Activation Differences between Survivors and 

Controls: Peaks and Subpeaks for the 2-Back versus 0-Back Contrast 

     

  

Cluster 

Size 

(voxels) 

  MNI Coordinates 

Anatomical Region Cluster P 

(corrected) 

Peak  

Z-value 

 

x 

 

y 

 

z 

       

       

Left Superior Frontal Gyrus  1088 0.00702 3.59 -8 22 52 

        Left Middle Frontal Gyrus    3.48 -28 34 46 

        Left Superior Frontal Gyrus    3.46 -30 30 52 

        Left Superior Frontal Gyrus    3.43 -6 18 54 

        Left Middle Frontal Gyrus    2.97 -26 22 54 

       

Left Parietal Lobe/Precuneus 840 0.032 3.78 -30 -74 46 

        Left Parietal Lobe/Precuneus   3.78 -32 -70 44 

        Left Parietal Lobe/Precuneus   3.21 -38 -78 40 

        Left Parietal Lobe/Inferior Parietal Lobule    2.96 -46 -62 48 

        Left Parietal Lobe/Inferior Parietal Lobule   2.77 -42 -66 50 

Peak voxel coordinated (MNI space) and statistical values (Z>1.96) are listed for significant 

clusters (Pcluster size corrected <0.05).  
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Table 4  

Bivariate Correlations between Mean Percent Signal Change and Behavioral Performance  

 

 1. 2. 

1. Superior frontal gyrus activation   

2. Parietal lobe activation 0.13  

 

0-back percent correct 

 

-0.13 

 

-0.35* 

1-back percent correct -0.20 0.05 

2-back percent correct  -0.42* -0.18 

3-back percent correct   -0.48** -0.29 

 

ACT 9s Z-score 

       

       -0.10 

 

-0.16 

ACT 18s Z-score        -0.18 -0.27 

ACT 36s Z-score -0.34*  -0.42* 

 

Digit span Scaled Score 

 

-0.34* 

 

-0.32 

Digit Span Forward Digits^ -0.27 -0.34 

Digit Span Backward Digits^ 

 

 -0.36* -0.29 

Note. * indicates significance at the 0.05 level, ** indicates significance at the 0.01 level;  

^ r values are partial correlations after covarying for age 

 

Table 5 
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Location of Significant Working Memory Regions of Activation Conjunction among Survivors 

and Controls for the 2-Back versus 0-Back Contrast 

 

     

 Cluster   MNI Coordinates 

Anatomical Region Size 

(voxels) 

Cluster P Peak 

Z-value 

 

x 

 

y 

 

z 

       

       

Right Superior Parietal Lobe  6335 <0.001 5.31 44 -46 56 

Right Paracingulate Gyrus  5790 <0.001 5.31 4 24 48 

Left Middle Frontal Gyrus  3562 <0.001 4.73 -26 10 50 

Right Insular Cortex  508 0.02 4.83 32 22 0 

Right Thalamus 506 0.02 3.69 8 -6 6 

Right Cerebellum 471 0.03 4.59 34 -64 -26 

Left Thalamus 462 0.03 3.62 -8 -12 8 

 

 

Peak voxel coordinated (MNI space) and statistical values (Z>1.96) are listed for significant 

clusters (Pcluster size corrected <0.05). 
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Figure Legends 

 

Figure 1. (A) Areas of significant working memory BOLD activation differences between 

survivors and controls on the 2-back versus 0-back contrast. Survivors exhibited higher 

activations than healthy controls in left superior frontal gyrus and parietal cortex regions. See 

Table 3 for cluster size and peak MNI coordinates. B) Scatterplots are displayed to illustrate 

relationships between mean percent signal change in frontal and parietal ROIs and n-back 

performance for survivors and controls. Left parietal cortex activation was negatively correlated 

with 0-back performance only r(32) = -0.35, p < 0.05. Left superior frontal gyrus activation was 

negatively correlated with the 2-back (r(32) = -0.42, p < 0.05) and 3-back conditions (r(32) = -

0.48, p < 0.01) but not the lower load n-back conditions. C) Significant regions of similar 

working memory BOLD activation among survivors and controls on the 2-back versus 0-back 

contrast. Conjunction analyses indicated similar bilateral activations in frontal and parietal lobes, 

thalamus and cerebellum. See Table 5 for cluster size and peak MNI coordinates. All brain 

images are presented in radiological space. Activation maps were superimposed on a T1-

weighted standard MNI152 brain template. Color bar indicates Z-values (results thresholded at p 

= 0.05, cluster-based corrections).  

 

Figure 2. Scatterplots of mean percent signal change in the left superior frontal gyrus ROI and 

behavioral performance on working memory tasks for survivors and healthy controls. A) Left 

superior frontal gyrus activation was negatively correlated with the longest delay condition of the 

Auditory Consonant Trigram task r(32) = -0.34, p < 0.05. This ROI was not significantly 

correlated with the 9s (r(32) = -0.10, p > 0.05) and 18s (r(32) = -0.18, p > 0.05) shorter delay 
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conditions of the ACT task. B) Left superior frontal gyrus activation was negatively correlated 

with the Digit Span Backward Digits measure, r(32) = -0.36, p < 0.05, but not the Forward 

Digits measure, r(32) = -0.27, p < 0.05. These findings were consistent after covarying for age.  
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