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ABSTRACT
Context: The FKBP5 gene product regulates glucocorticoid receptor (GR) sensitivity and hypothalamic-
pituitary-adrenal axis functioning, and has been associated with a number of stress-related psychiatric
disorders. The study of intermediate phenotypes, such as emotion-processing biases and their neural
substrates, provides a way to clarify the mechanisms by which FKBP5 dysregulation mediates

psychopathology risk.

Objective: To examine whether allelic variations for a putatively functional SNP associated with FKBP5
gene regulation (rs1360780) would relate differentially to attentional bias for threat; this was measured
through behavioral response on a dot probe task and hippocampal activation during task performance.

Morphological substrates of differential hippocampal response were also measured.

Design: Cross-sectional study examining associations between genotype, behavioral response and
neural response (using fMRI) on the dot probe; Voxel-based morphometry (VBM), global and local shape

analyses were used to measure structural differences in hippocampi between genotype groups.

Setting: Participants were recruited from primary care clinics of a publicly-funded hospital in Atlanta,

Georgia.

Participants: An African-American cohort (N=103), separated into two groups by genotype: one
genotype group included carriers of the rs1360780 ‘T’ allele, which has been previously associated with
increased risk for PTSD and affective disorders; the other group did not carry this allele. Behavioral data

included both genders (N=103); the MRI cohort (n=36) included only females.

Main Outcome Measures: Behavioral and fMRI (BOLD) response, VBM and shape analyses

Results: Carriers of the rs1360780 ‘T’ allele showed an attention bias towards threat, compared to

individuals without this allele. Carriers of this allele demonstrated corresponding increases in



hippocampal activation and differences in morphology; global and local shape analyses revealed

alterations in hippocampal shape, for TT/TC, versus CC genotype groups.

Conclusions: Genetic variants of FKBP5 may be associated with risk for stress-related psychopathology
via differential effects on hippocampal structure and function, resulting in altered attentional response

to perceived threat.



1. Introduction

In the past decade, FKBP5 has emerged as a promising genetic candidate for investigations of
vulnerability to mood and anxiety disorders®. The FKBP5 gene encodes for the protein FK506 binding
protein 5-51, which regulates sensitivity of the glucocorticoid receptor (GR). The GR is a critical
component of the body’s stress response system and a primary binding site for cortisol, a steroid
released during acute and chronic stress. FKBP5 interacts with heat shock protein 90 to reduce GR
affinity, modulating cortisol activity and preventing translocation of the GR complex to the nucleus®.
Through this process, FKBP5 appears to decrease GR sensitivity (or increase GR resistance) to cortisol
following stress. Dysregulated GR signaling is common in affective disorders™* and may be mediated by
FKBP5 gene expression. Polymorphisms in FKBP5 have been associated with post-traumatic stress
disorder (PTSD)**°, depression'?, depressive episode recurrence, and bipolar disorder®. Notably,
associations between FKBP5 polymorphisms and psychiatric disorders have been somewhat variable

among Caucasian and African-American populations**®.

Although these studies have outlined clear associations between FKBP5 and various affective
disorders, mechanisms by which FKBP5 dysregulation may mediate symptom risk are still unknown. This
relationship may be clarified through the study of intermediate phenotypes: discrete, heritable traits
associated with genetic variance and disease phenotype®. Given the role of FKBPS in endocrine
response to stress, this gene is likely to influence maladaptive behaviors which comprise intermediate
phenotypes that underlie stress-related psychopathology®. One candidate intermediate phenotype is
biased attention to emotionally-valenced cues, which has been widely observed in anxiety’ and
depression™® and linked to allelic variations in the serotonin transporter gene'® %°. There is some
evidence to suggest the involvement of FKBP5 in this phenomenon. Multiple studies indicate that
attention biases are closely associated with circulating levels of cortisol* ™, and that these biases may

be influenced by cortisol administration®®. Given the role of the GR in modulating the body’s response



to cortisol, attentional biases for emotional stimuli could be regulated through GR signaling, and thus

moderated by polymorphisms in genes that influence the GR receptor complex, such as FKBP5.

Further, emerging evidence suggests that attention biases may be associated with alterations in
brain function among individuals who hold increased genetic risk for psychopathology. For example,
Thomason and colleagues found that children who carried specific allelic variants of the serotonin
transporter gene (related to depressive vulnerability) demonstrated an attention bias toward fearful
facial expressions and increased BOLD signal in parietal and paralimbic regions, relative to participants
without this allele®.

For FKBP5 in particular, the hippocampus is an attractive target for brain-behavior phenotype
investigations, given that this region has been associated with high GR density?’ and FKBP5 expression;

further, psychiatric disorders linked to FKBP5 genetic status, particularly PTSD, have been associated

28-30 31,32

with abnormal hippocampal volume and function . The hippocampus has also been implicated in
the processing of context during acquisition of conditioned fear responses and, in concert with
prefrontal regions®, participates in the appraisal of potential threat in new situations®***®. These
hippocampal functions may be partly mediated by FKBP5, given the potential role of this gene in the
stress response.

Thus, the goal of the present study was to investigate the relationship between an FKBP5
polymorphism and a candidate cognitive phenotype, attention bias for threat cues, in highly-
traumatized individuals, some of whom met criteria for Axis | psychopathology. We selected a
putatively functional®’ FKBP5 SNP that has been associated with anxious and depressive
psychopathology: rs1360780. Recent experiments have shown that the rs1360780 “risk” allele is

associated with increased transcription of FKBP5 following stimulation by glucocorticoids, possibly by

increasing binding of the risk-allele containing DNA sequence to TATA-box binding protein, a



transcriptional enhancer®.. Increased FKBP5 mRNA transcription in peripheral blood cells immediately

after trauma exposure has been associated with a higher risk for subsequent PTSD%.

Attention biases were characterized through behavioral and neural responses during functional
MRI in a subset of these individuals. We tested the hypothesis that “risk” allele carriers would
demonstrate significantly greater attention bias for threat and increased neural response in the
hippocampus, relative to individuals without this allele. In addition, we conducted structural analyses
within this region of interest to characterize the neural substrates of differential task response between

individuals with and without the risk allele.

2. Methods

2.1 Participants

A total of 110 adult African-American men and women (gender and race self-identified) were
enrolled as part of a larger study investigating genetic risk for stress-related disorders; study procedures
were approved by the institutional review boards of Emory University School of Medicine and Georgia
State University. Participants were recruited from the general medical clinics of a publicly-funded

hospital, as detailed previously **°

. Individuals were deemed eligible for participation if they could give
informed consent and understand English, as determined by a study researcher. Participants were
administered the Traumatic Events Inventory (TEI) to detail frequency and type of traumatic
experiences, the PTSD Symptom Scale (PS$*), to measure presence and frequency of current PTSD
symptoms, and the Structured Clinical Interview for DSM disorders (SCID*!) to detect comorbid

psychopathology such as Major Depressive Disorder or Bipolar Disorder. Demographic and clinical

characteristics of this sample are detailed in eTable 1.

A subset of these participants (47 women) completed MRI; data from these (all traumatized)

individuals were included in a prior study of PTSD*, and were selected from the larger sample based on



inclusion/exclusion criteria for this study. Exclusion criteria for this study included current psychotropic
medication use, medical or physical conditions that preclude MRI scanning; a diagnosis of bipolar
disorder, schizophrenia or other psychotic disorder; medical conditions that contribute significantly to
psychiatric symptoms; history of head injury or loss of consciousness for >5 minutes; history of

neurological illness.

2.2 DNA Extraction, Genotyping, Quality Control

DNA was extracted from saliva collected in Oragene vials (DNA Genotek Inc., Ontario Canada) or
from whole blood collected in EDTA tubes. DNA from saliva was extracted using the DNAdvance
extraction kit (Beckman Coulter Genomics, Danvers MA) and DNA from blood was extracted using the
E.Z.N.A. Blood DNA Midi Kit (Omega Bio-tek, Norcross, GA). All DNA for genotyping was quantified using
PicoGreen (Invitrogen Corp., Carlsbad, CA) or NanoDrop (Thermo Fisher Scientific Inc., Waltham, MA)
and normalized to a concentration of 5 ng/ul. DNA was plated into 384 plates at 10ng and dried down

prior to performing the genotyping reactions.

For genotyping, 1ml of whole blood or 500ul of Oragene saliva were used for extraction.
Genotyping of FKBP5 SNP rs1360780 was conducted using a Tagman SNP Genotyping Assay along with
Tagman Genotyping Master Mix (Applied Biosystems Inc., Foster City, CA). Alleles were discerned using
the 7900HT Fast Real-Time PCR system. Negative controls and within- and across- plate duplicates were
used for quality control. All negative controls passed QC. 40% of samples were genotyped in duplicate
with no genotype discordants. The Tagman genotype call rate was 97%. Alleles were in Hardy-Weinberg

Equilibrium (African-Americans only, p=0.19).

FKBP5 SNP rs1360780 was selected based on our prior studies with FKBP5 polymorphisms
within this population. We tested for associations under a risk=T-allele carrier model. Participants were

categorized into two groups based on genotype; individuals with one or two copies of the T allele,



previously associated with psychopathology risk, were categorized in the “risk” group (TC/TT), whereas

individuals without this allele (CC) were categorized in the “resilient” group.

2.3 Attention bias (dot probe) task description

A dot probe task was employed to measure attention biases for threat; this measure has reliably
detected biases in prior studies of individuals with emotional disorders'’. Task procedures have been
previously described® (also detailed in Supplemental Materials), and trial structure is illustrated in
Figure 1a; briefly, in each of 80 trials a central fixation cross appears for 500 ms, followed by a pair of
face photographs (both of the same model) presented for 500 ms. Each pair comprises either one
emotionally expressive (threatening/happy) and one neutral face or two neutral faces. After the offset
of the faces, an asterisk replaces one of the faces for 1100 ms. Participants quickly indicate, with a
forced-choice button press, whether the asterisk appeared on the left or right side of the screen. A

modified version of this task, detailed elsewhere®?, was presented during neuroimaging.

Emotion bias scores were first calculated by subtracting response time to emotion-congruent
stimuli (probes that replace happy or angry/threatening pictures) from response time to emotion-
incongruent stimuli (probes that replace neutral pictures); these scores were decomposed into threat
bias and happy bias scores, for all stimuli combined and separately for AA and C faces. Positive scores
indicate attentional capture by the threat or happy cue and negative scores reflect attentional

avoidance of this cue.

2.4 Statistical analyses of behavioral data

Univariate analyses of covariance were conducted to examine whether genotype status was
related to attention bias for threatening faces in general (Threat bias), or for threatening Caucasian
(Threat bias C) or African-American faces (Threat bias AA), after covarying for the presence of Bipolar

Disorder, Major Depressive Disorder, total trauma exposure (TEl total score), and PTSD symptoms (PSS



total score). A similar analysis was conducted to examine potential associations with happy bias score.
In addition, three separate factorial ANCOVAs were conducted to examine potential interactions of
genotype, PTSD diagnosis, and trauma exposure (in childhood or adulthood) on threat bias score after
covarying for depressive psychopathology. A final analysis was conducted to compare bias scores for CC,
TC, and TT groups, after covarying for psychopathology. A threshold of p<.05 was used to determine

statistical significance.

2.5 MRI acquisition and pre-processing, fMRI data analysis

Scanning took place in a Siemens 3-Tesla research-dedicated scanner. A high-resolution T1-
weighted structural scan was acquired using a MPRAGE sequence (176 slices, FOV=256 mm cubic voxels;
1x1x1 mm slice; TR= 2600ms; TE= 3.02 ms; Tl= 900ms; flip angle= 8°). During task administration, a total
of 26 contiguous echo-planar, T2-weighted images parallel to the anterior-posterior commissure line
were acquired (TR=2530 msec; TE=30 msec; FOV=240 mm; 64x64 matrix; 3.75x3.75x4.0 mm voxel).
Statistical Parametric Mapping, version 5 (SPM5, Wellcome Department of Neurology, London, UK:

http://www.fil.ion.ucl.ac.uk/spm/) was used for file conversion, image pre-processing and fMRI

statistical analyses. Functional images were slice-time corrected (with a high-pass filter applied) and
realigned to the first image to correct for motion. The mean of the realigned undistorted images was
then co-registered with the structural T1 volume, spatially normalized to standardized Montreal
Neurological Institute (MNI) space* based on the position of the anterior and posterior commissure and

smoothed with an 8mm FWHM Gaussian kernel.

For each participant’s data, a first-level, fixed-effects model was created with vectors for onset
time of each condition, including threat/neutral, happy/ neutral, and neutral/neutral trials; each trial
included face-pair presentation and probe. Box-car functions using 1, -1 contrast conventions were used

to indicate voxels that had a higher activation level for the primary contrast condition, which was



activation to threat probe incongruent (i.e., trials in which the probe replaced the neutral face of a
threat-neutral pair) minus threat probe congruent trials (trials in which the probe replaced the threat
face of a threat-neutral pair), the same events that were used to calculate threat bias score. T-tests were
then conducted to examine between-group differences in FKBP5 genotype and BOLD signal change to
threat within ROlIs. Although primary analyses were conducted with ROls, brain-wide analyses were also
conducted for completeness. First, a statistical threshold of p<.005,corrected aNd an extent threshold of 25
voxels per cluster was applied to brain-wide analyses. Region of interest analyses were conducted with
masks of the parahippocampal gyrus, created with the WFU Pickatlas Toolbox®; a p<.05 threshold,
extent threshold of > 5 voxels per cluster was used to determine statistical significance. A non-linear
transformation (http://www.bioimagesuite.org/Mni2Tal/index.html) was used to convert coordinates
from MNI to Talairach space®® and a Talairach daemon®’ was used to localize anatomical coordinates of

voxels associated with statistically significant patterns of BOLD activation.

2.6 Voxel based morphometry analysis

Using the BET toolkit in FSL*, all structural images: were 1) skull-stripped (evaluated individually
for errors); 2) segmented with FAST4%’; 3) aligned to MNI152 standard space using affine registration;
and 4) underwent nonlinear registration using FNIRT. Following alignment, a study-specific template was
generated. The segmented images were then smoothed using an isotropic Gaussian kernel with a sigma
of 3mm, and voxelwise GLM was carried out using permutation-based, non-parametric testing>® to

control for type | error. Statistical thresholding was set at p<.001,,corrected, fOr ROIs.

2.7 Shape analyses

Global shape analysis (GSA) was performed using methods fully detailed in Supplemental
Materials. Following skull extraction, images were fed through a GSA workflow that automatically

extracted each brain into 56 distinct regions. Inhomogeneity correction of images was followed by



affine registration, non-linear registration to the LBP40 atlas’", and subsequent automatic volume
parcellation, during which each voxel in the brain was labeled®’. The regional boundaries of the
resulting labeled image were then converted into 56 distinct shapes®, which underwent subsequent
pre-processing, modeling, and analysis. A total of 5 shape metrics were used to perform group
comparisons between the TC/TT and CC genotypes: volume, surface area, mean curvature, shape index,
and curvedness. The resultant output of this analysis included sets of raw p-values and False-Discovery
Rate (FDR) corrected p-values®. Supplementary Table 1 shows the standard intrinsic shape measures

computed for each region.

Local shape analyses (LSA) of both hippocampi® were conducted in order to identify the specific
vertices/subregions that demonstrated significant radial distance and/or displacement vector field
variations from the study-defined mean hippocampal shape template®. In the LSA protocol, the
structural attributes and cortical measures are calculated per-vertex on specific shape regions which are
first co-registered across subjects to establish homologous anatomical features before statistically
analyzing them against various subject demographic, clinical or phenotypic data®®. To control for
multiple comparisons testing, FDR-correction was applied. An atlas (Figure 3b) was used to identify

anatomical locations of between-group differences™.

3. Results

3.1 Group characteristics

Genotype data were not available for 5 participants due to insufficient quality of the DNA
samples, leaving a total participant sample of 105. In this sample, participants reported experiencing a
range of 0-10 traumatic experiences, with 7.7% of participants endorsing no trauma exposure.
Approximately 6.7% of participants met criteria for a lifetime history of bipolar disorder, 13.3% met

criteria for current MDD, and based on PSS items (in keeping with DSM-IV PTSD criteria), 41.2% met



criteria for PTSD. Within this sample, no significant differences (p>.05) emerged in demographic or
clinical characteristics between CC and TC/TT genotype groups (eTable 1). Although significant
differences were observed between genotype groups for psychotropic medication usage (p<.05,
X°=7.51), no significant differences in threat or happy bias score were observed between participants
who were or were not taking psychotropic medication (p>.05). Within the imaging cohort, age and level
of current PTSD symptoms were similar for risk and resilient genotypes. However, since incidence of
trauma exposure differed significantly between groups (p<.05), this served as a covariate in subsequent
analyses, in addition to PTSD symptoms. A comparison of clinical and demographic characteristics
between the entire sample and the MRI cohort revealed no significant differences in age, PTSD

symptoms, trauma exposure, household monthly income and educational level (p>.05).

3.2 Behavioral differences in attention bias to threat between FKBP5 (rs1360780) genotypes

Two other participants were excluded from behavioral data analyses due to a high number of
skipped trials or inaccurate responses on trials (over 20%), leaving a total of 103 participants with valid
behavioral data. Univariate tests including trauma exposure and presence of PTSD, MDD and Bipolar
Disorder as covariates and three threat bias indices (1.threat bias score for both race types combined,
and threat bias score for either 2. African-American, or 3. Caucasian faces) as dependent variables, were
conducted. After covarying for trauma exposure and presence of PTSD, MDD and Bipolar Disorder, risk
allele (TC/TT) carriers demonstrated a statistically significant (F; 9o=5.19, p<.05) bias toward threat (both
AA and C races, combined; mean threat bias score=13.1, SD=37.2) compared to CC genotype (Mean
threat bias score=-6.8, SD=46.2; see Figure 1b). These findings were verified with permutation testing,
using PLINK software, version 1.07%’, to ensure that results did not depend on distributional

assumptions; a total of 100,000 permutations were performed.
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Separate univariate analyses revealed no significant genotype associations with happy bias
(composite bias score, or separated by face race; p>.05). Further univariate analyses (including the same
covariates) revealed no significant genotype effects for threat bias for Caucasian faces (p>.05), although
a trend was observed for African-American faces (F; 90=3.48, p=.065). Results from separate factorial
ANCOVA:s including psychopathology covariates and threat bias score as the dependent variable
indicated no significant interactions of genotype status and 1) childhood sexual or physical abuse or 2)
adult trauma exposure (presence or absence, as reported in the TEI). A univariate analysis including
genotype and PTSD status as factors did not reveal significant interactions of these variables on threat
bias score, p>.05. Genotype contributed significantly to this model (p<.05), whereas PTSD status did
not, although a trend was observed (p=.17) . A final factorial ANCOVA revealed that, when CC, TC, and
TT genotype groups were examined separately, no significant main effects were observed after
covarying for psychopathology (possibly due to limited sample size) although a trend was observed
(F1,90=2.47p=.09); individuals in the CC genotype group demonstrated a slight bias away from threat
(Mean bias score=-6.78, SD=46.21) whereas both TC (Mean bias score=13.25, SD =39.26) and TT (Mean

bias score=12.71, SD=41.40) groups demonstrated a bias toward threat.

3.3 fMRI reveals differences in hippocampal activation to threat between FKBP5 genotypes

Due to excessive motion (7), and/or brain parenchyma abnormalities (4), 11 participants were
excluded from MRI data analyses, leaving a total of 36 participants (10 CC, 26 TC/TT); another (TC/TT)
participant was excluded from fMRI (but not structural MRI) analyses, due to a high number of skipped
trials (over 20%) on the task. Behavioral data from the cohort of participants who completed the fMRI
version of the task (n=35) yielded no significant genotype effects on threat bias, regardless of face race
(p>.05).

In a whole-brain analysis for the threat incongruent versus threat congruent trials contrast

condition, subjects with the TC/TT genotype demonstrated significantly greater BOLD signal in the right
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hippocampus and left parahippocampal gyrus, as compared to the CC genotype (p<.005uncorrected; SE€
eTable 2, Figure 2); these findings did not change significantly when hippocampal volume was entered
as a covariate; see Supplementary Table 2. The CC genotype, relative to TC/TT genotype, did not
demonstrate greater BOLD signal in hippocampal regions (see eTable 2).

Subsequent ROI analyses confirmed these findings, with the TC/TT genotype group
demonstrating increased activation in the right and left hippocampus relative to the CC group (p<.05;
see eTable 2). BOLD signal values were extracted from 6mm spheres within these regions and entered
into two separate, 3-level hierarchical regressions, with trauma incidence (TEI total; level 1), PTSD
symptoms (PSS total; level 2) and genotype (level 3) serving as predictors of BOLD signal in these
regions. Trauma exposure did not predict a significant amount of variance in BOLD signal within the right
(Beta = -.15, R?=.02, p>.05) or left hippocampus (Beta=-11, R?=.01, p>.05); when added to this model,
PTSD symptoms likewise did not predict a significant proportion of variance in BOLD signal within the
right (Beta = .24, R*=.08, p>.05) or left hippocampus (Beta=.03, R’=.02, p>.05). However, when added
in the third step of these models, FKBP5 genotype accounted for a significant amount of variance in
BOLD signal for the right (Beta=-.44, R? = .28, p<.05) and left hippocampus (Beta=-.46, R? = .21, p<.05).

There was no direct association between threat bias score and neural response within ROls.

3.4 Voxel-based morphometry reveals no differences in hippocampal density between FKBP5 genotypes

At the p< .001,,corrected Statistical threshold, there were no between-group differences in gray

matter density of the hippocampus.

3.5 Morphological analysis reveals differences in hippocampal shape between FKBP5 genotypes

The global shape analysis revealed some between-group differences in shape index of the left
hippocampus (p<0.05,,corrected). Additionally, local shape analysis (LSA) results (Figure 3b) revealed

significant between-group differences in displacement vector field measure in the left and right
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hippocampus (p<0.001rpr-corrected)- R€lative to the right hippocampus, a larger area of the left
hippocampus displayed between-group spatial displacement vector metric differences, predominantly
in the CA1 region. The genotypic effect on hippocampal surface area was reduced (p>.05) when TEI

score and/or hippocampal volume were included as covariates.

To ensure that these genotypic effects were not present in similar cortical and subcortical
regions, these LSAs were conducted on the left and right insula and caudate. None of these regions

showed statistically significant genotypic effects (p>.05).

4, Discussion

The present study investigated associations among genotypic variants of a putatively functional
FKBP5 SNP, rs1360780, and response to threat cues in an attention bias paradigm. In addition to
investigating behavioral response, we examined corresponding differences in function and structure
within a brain region that appears to be affected by FKBP5 gene expression, the hippocampus. Our
findings from these parallel behavioral, functional and structural neuroimaging datasets revealed that,
relative to individuals without this allele, carriers of the ‘T" allele (which has been previously linked to
incidence of psychopathology) demonstrated: 1) an attentional bias toward threat; 2) increased

hippocampal activation to threat; and 3) differences in hippocampal shape.

Preferential attentional processing of threat cues has purported relevance to the development
and maintenance of pathological anxiety®®. The findings from the present study document, for the first
time, an association between FKBP5 polymorphism and threat bias. An increasing number of studies
indicate that FKBP5 genetic variability is linked to behaviors that reflect atypical or dysregulated
emotion processing, including aggression® and suicidality®®. Furthermore, earlier findings reflected
interactive effects of genetics and environmental stress (i.e., childhood abuse), that is, the genetic

effects were most pronounced in the presence of high levels of prior stress or trauma®. Notably, we
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found that the relationship between FKBP5 allelic variance and attention bias for threat remained
significant after controlling for variance associated with psychopathology, as well as trauma exposure,
and no interactive effects were observed among FKBP5 genotype, trauma exposure and post-traumatic
psychopathology. Thus, the associations observed between FKBP5 genotypic variance and attention bias
were not better accounted for by variance linked to environmental stress or psychopathology. It is also
possible that, when considering the relationship between FKBP5 genotype and attention bias for threat,
the effects of maltreatment, exposure to traumatic events in adulthood and a relatively high amount of
life stressors (e.g., occupational stress, racial discrimination, bereavement, divorce) may be additive, and
not interactive, in nature. Although the cross-sectional design of this study precludes definitive
statements regarding risk, our findings suggest that FKBP5 risk allele carriers, compared to individuals
without this allele, are more likely to demonstrate a heightened vigilance for ostensibly mild threat cues.
An attentional preference for these mild threat cues, particularly among individuals with trait anxious

characteristics, indicates increased susceptibility to psychopathology under stressful conditions.

In this study, risk allele carriers (who are likely to demonstrate increased transcription of FKBP5
following stress exposure), also demonstrated heightened hippocampal activation in response to threat,
specifically, to a condition that approximates threat bias. To our knowledge, no previous studies have
examined associations between FKBP5 polymorphisms and hippocampal function, particularly, response
to threat. However, prior data identify FKBP5 as a putative modulator of physiological stress response
systems, suggesting that these associations merit attention. Our findings indicate that increased
hippocampal responsiveness to threat cues was selectively associated with risk allele carrier status,
implicating this gene in neural mechanisms of threat evaluation. Given the density of GRs in the
hippocampus, and the role of FKBP5 in regulating GR function, the increased hippocampal activation
may represent, in part, FKBP5-mediated sensitization of neural systems to external threat signals. Risk

allele carriers may have a lower threshold for perceiving threat in the environment compared to
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individuals without this allele, and thus may demonstrate heightened responsiveness in neural circuits
mediating threat evaluation. Notably, earlier studies of pathologically-anxious individuals have revealed
enhanced activation in hippocampal regions®, as well as frontal regions with limbic connections, during
expression of attention biases>> ®2. Thus, the heightened hippocampal response to mild threat cues
observed in risk allele carriers could represent higher baseline responsiveness in neural networks

engaged during threat evaluation in these individuals.

These functional differences may also be understood in the context of structural differences.
Although no differences in hippocampal density were noted, risk allele carriers demonstrated
differences in hippocampal shape compared to individuals without this allele, specifically, in the CA1
region. Abnormalities in hippocampal structure, particularly, the CA1 region®>®, have been frequently
noted in individuals with stress-related disorders®®®. This region may be particularly susceptible to the
effects of stress®’, and changes in CA1 plasticity could be partially mediated by FKBP5 mechanisms, given
previous observations of FKBP5 mRNA up-regulation following stress exposure®. Individuals within our
study population have experienced relatively high incidence of trauma exposure and psychosocial stress,
which has been linked to suppressed neuronal proliferation in the hippocampus®. These conditions are
likely to interact with genetic vulnerability, and structural differences in the hippocampus may be
particularly apparent among individuals who carry a “risk” genotype, one that has been previously

associated with adverse behaviors and diagnostic outcomes.

In addition, there were no significant genotypic effects in other regions examined, providing
evidence to support specificity of FKBP5 genetic effects on the hippocampus. Thus, the structural
differences observed here indicate a putative morphological substrate for the differential response to
threat observed between genotype groups. However, given that genotypic effects were no longer
apparent after including trauma exposure to the statistical model, replication in a larger sample is

needed to ascertain the robustness of these findings.
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Other study limitations must be noted. First, given that only female face stimuli were used in
this version of the dot probe, it was impossible to investigate potential interactive effects of gender and
attentional biases. Similarly, a lack of Caucasian participants in this study prohibited examination of
stimulus- by participant-race interactions and their effects on attentional biases. Also, our imaging
cohort included only female participants, thus precluding investigation of gender-specific differences in
hippocampal response or structure. In addition, some research suggests that FKBP5 may be a target of
progesterone’®; unfortunately, endocrine and menstrual cycle data were unavailable in the presence
study to examine potential relationships with behavioral and neural response. These factors merit
consideration in future investigations. Although hypothesis testing was limited to a particular ROI, the
relatively small size of our imaging cohort (and particularly, the size of one genotype group) increases
the likelihood of type Il error. Further, meditational analyses would provide an ideal statistical approach
for determining indirect effects of hippocampal function and size on attentional bias for threat;
however, our limited sample size did not confer sufficient statistical power to detect these effects. Thus,
these neuroimaging findings should be viewed as preliminary and warrant confirmation in genetic-
neuroimaging studies conducted with larger samples.

In sum, we observed that genotype status for a putatively functional FKBP5 SNP was associated
with differential behavioral and hippocampal response during performance of an attention bias task.
Structural differences in hippocampal formation served to further distinguish these genotype groups.
Taken together, these data may represent behavioral and neural markers of FKBP5 function, and merit

further investigation in future studies of genetic risk for affective psychopathology.
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Figure Legends

Figure 1. Attention bias (dot probe) task. a) Trial structure. Rows illustrate trials that were used to
calculate threat bias and as fMRI contrast conditions. The top row displays trials in which the probe
appears on the opposite side of the threatening expression (threat probe-incongruent); the bottom row
displays trials in which the probe appears on the same side of the threatening expression (threat probe-
congruent). b) Attention bias to threat as a function of FKBP5 genotype: TC/TT genotypes demonstrate
attentional bias toward threat, compared to CC genotype. Chart illustrates mean attention bias score
(error bars indicate standard error of the mean), for threat faces (both races, combined) and separated
by African-American (AA) and Caucasian (C) race type, as a function of genotype group. Asterisk
indicates p<.05.

Figure 2. FKBP5 polymorphism is associated with differential hippocampal activation during attention
to threat. a) Statistical parametric maps of left and right hippocampus activation during the processing
of threat probe-incongruent versus threat probe-congruent faces in TC/TT > CC genotype. Activations
are shown overlaid onto a canonical T1 magnetic resonance image. The colored bar represents t scores
for activations. Maximally activated voxels from the left parahippocampal gyrus (x, y, z: -36,-35,-8) and
right hippocampus (x, y, z: 36, -24, -12), p < 0.05syc_rwe. Data are reported using the coordinate system of
Talairach and Tournoux. b) Genotype differences in averaged BOLD signal (contrast time series extracted
from 6mm spherical ROIs) to this contrast condition.

Figure 3. FKBP5 polymorphism is associated with differences in hippocampal shape. a) Local shape
analyses of left and right hippocampus. Smaller p-values (FDR-corrected) reflect greater spatial
displacement for TC/TT versus CC genotypes. b) Cross-sectional views of the 3D hippocampal atlas
(Yushkevich et al., 2009) used for reference. Abbreviations: CA = cornu ammonis; DG = dentate gyrus; H
= hilum; SM= stratum moleculare; VHS = vestigial hippocampal sulcus.
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Table 1. Demographic and Clinical Characteristics

(N=105, all African-American)

cC TC/TT
(n=36) (n=69)
Mean (SD) p
Age 43 (12.2) 40.2 (12.5) 36
PSS total 17.2 (13.3) 14.7 (12.3) 43
TEI total 3.92.7) 3.6 (2.5) 57
Females (n) 31 55 74
Education % %
< 12" grade 15.8 25.4 71
12" grade/high school 42.1 45.1
graduate/GED
Some 28.9 19.7
college/technical
school
College/technical 13.1 9.8
school graduate
Monthly Income 48
$0 —249 26.3 37.7
$250 — 499 53 5.8



$500 — 999

$1000-1999

$2000+

Major Depressive
Disorder (current)

Bipolar Disorder
(lifetime history)

Primary Psychotic

Symptoms (past month)

Taking Psychotropic
Medications

MRI Cohort

(N=36, all female)

Age
PSS total
TEI total
Education
< 12" grade

12™ grade/high school
graduate/GED

Some
college/technical
school

College/technical
school graduate

Monthly Income

42.1 27.5
18.4 24.6
7.9 4.3
16.7 11.6
5.6 7.2
21.9 18.8
32.4 10.6
CC TC/TT
(n=10) (n=26)
Mean (SD)
40 (13.5) 35.2(13.4)
16.5 (14.2) 13.6 (10.9)
2.6 (1.7) 4.7 (2.7)

% within group

% within group

44.4

11.1

22.2

22.2

12.5

459

25

16.6

47

.10

13

.006*

.34

Sl

.03*

.87

.08



$0 - 249

$250 — 499

$500 — 999

$1000-1999

$2000+

*p<.05
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Table 2.

Anatomical locations of activation to threat probe-incongruent versus threat probe-congruent

trials between CC and TC/TT genotype groups (p<.005)

Brodmann
X y 4 k t Area Anatomical location
Brain-wide analysis
TC/TT > CC
36 -24 -12 5 3.81 Hippocampus
28 -55 -17 5 3.28 Cerebellum
-36 -35 -8 5 2.91 36 Parahippocampal gyrus
-32 -28 -12 2.89 Hippocampus
CC>TC/TT
4 6 33 46 4.42 24 Cingulate gyrus
8 -13 41 2.92 24
12 -56 54 13 4.06 7 Precuneus
-12 -76 37 9 3.60 7
55 -23 16 5 3.22 40 Postcentral gyrus
48 -22 34 15 3.19 2
55 -25 34 3.14 2
4 -52 43 5 3.17 7 Precuneus
20 =72 37 10 3.08 7
8 -76 37 2.92 19 Cuneus
ROI analysis
TC/TT > CC
32 -24 -12 12 3.45 Hippocampus
-32 -28 -12 17 2.89 Hippocampus
-32 -5 -17 5 2.83 Parahippocampal gyrus
36 -43 -5 5 2.45 19 Parahippocampal gyrus

X, y, z Talairach coordinates
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Figure 1. a) Attention bias (dot probe) task trial structure. Rows illustrate trials that were used to calculate threat bias
and as fMRI contrast conditions. The top row displays trials in which the probe appears on the opposite side of the
threatening expression (threat probe-incongruent); the bottom row displays trials in which the probe appears on the
same side of the threatening expression (threat probe-congruent). b) Attention bias to threat as a function of FKBP5
genotype: TC/TT genotypes demonstrate attentional bias toward threat, compared to CC genotype. Chart illustrates
mean attention bias score (error bars indicate standard error of the mean), for threat faces (both races, combined) and
separated by African-American (AA) and Caucasian (C) race type, as a function of genotype group. Asterisk indicates
p<.05.
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a) Statistical parametric maps of left and right hippocampus activation during the
processing of threat probe-incongruent versus threat probe-congruent faces in
TC/TT > CC genotype. Activations are shown overlaid onto a canonical T1 magnetic
resonance image. The colored bar represents t scores for activations. Maximally
activated voxels from the left parahippocampal gyrus (x, vy, z: -36,-35,-8) and right
hippocampus (x, y, z: 36, -24, -12), p < 0.05 (SVC). Data are reported using the
coordinate system of Talairach and Tournoux .

b) Genotype differences in averaged BOLD signal (contrast timeseries extracted

from 6mm spherical ROIs) to this contrast condition.
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Figure 3. FKBP5 polymorphism is associated with differences in hippocampal shape. a) Local
shape analyses of left and right hippocampus. Smaller p-values (FDR-corrected) reflect greater
spatial displacement for TC/TT versus CC genotypes. b) Cross-sectional views of the 3D
hippocampal atlas (Yushkevich et al., 2009) used for reference. Abbreviations: CA = cornu
ammonis; DG = dentate gyrus; H = hilum; SM= stratum moleculare; VHS = vestigial hippocampal

sulcus.
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