
Georgia State University
ScholarWorks @ Georgia State University

Neuroscience Institute Faculty Publications Neuroscience Institute

2011

Spontaneous Voltage Oscillations and Response
Dynamics of a Hodgkin-Huxley Type Model of
Sensory Hair Cells
Alexander B. Neiman
Ohio University - Main Campus, neimana@ohio.edu

Kai Dierkes

Benjamin Lindner
Humboldt-University, Berlin, benjamin.lindner@physik.hu-berlin.de

Lijuan Han

Andrey Shilnikov
Georgia State University, ashilnikov@gsu.edu

Follow this and additional works at: https://scholarworks.gsu.edu/neurosci_facpub

Part of the Mathematics Commons, and the Neuroscience and Neurobiology Commons

This Article is brought to you for free and open access by the Neuroscience Institute at ScholarWorks @ Georgia State University. It has been accepted
for inclusion in Neuroscience Institute Faculty Publications by an authorized administrator of ScholarWorks @ Georgia State University. For more
information, please contact scholarworks@gsu.edu.

Recommended Citation
Neiman et al.: Spontaneous voltage oscillations and response dynamics of a Hodgkin-Huxley type model of sensory hair cells. Journal
of Mathematical Neuroscience (2011) 1:11. doi: 10.1186/2190-8567-1-11

https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fneurosci_facpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/neurosci_facpub?utm_source=scholarworks.gsu.edu%2Fneurosci_facpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/neurosci?utm_source=scholarworks.gsu.edu%2Fneurosci_facpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/neurosci_facpub?utm_source=scholarworks.gsu.edu%2Fneurosci_facpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.gsu.edu%2Fneurosci_facpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/55?utm_source=scholarworks.gsu.edu%2Fneurosci_facpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu


Journal of Mathematical Neuroscience (2011) 1:11
DOI 10.1186/2190-8567-1-11

R E S E A R C H Open Access

Spontaneous voltage oscillations and response dynamics
of a Hodgkin-Huxley type model of sensory hair cells

Alexander B Neiman · Kai Dierkes ·
Benjamin Lindner · Lijuan Han ·
Andrey L Shilnikov

Received: 26 May 2011 / Accepted: 31 October 2011 / Published online: 31 October 2011
© 2011 Neiman et al.; licensee Springer. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License

Abstract We employ a Hodgkin-Huxley-type model of basolateral ionic currents in
bullfrog saccular hair cells for studying the genesis of spontaneous voltage oscilla-
tions and their role in shaping the response of the hair cell to external mechanical
stimuli. Consistent with recent experimental reports, we find that the spontaneous
dynamics of the model can be categorized using conductance parameters of calcium-
activated potassium, inward rectifier potassium, and mechano-electrical transduction
(MET) ionic currents. The model is demonstrated for exhibiting a broad spectrum
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of autonomous rhythmic activity, including periodic and quasi-periodic oscillations
with two independent frequencies as well as various regular and chaotic bursting pat-
terns. Complex patterns of spontaneous oscillations in the model emerge at small
values of the conductance of Ca2+-activated potassium currents. These patterns are
significantly affected by thermal fluctuations of the MET current. We show that self-
sustained regular voltage oscillations lead to enhanced and sharply tuned sensitivity
of the hair cell to weak mechanical periodic stimuli. While regimes of chaotic oscil-
lations are argued to result in poor tuning to sinusoidal driving, chaotically oscillating
cells do provide a high sensitivity to low-frequency variations of external stimuli.

1 Introduction

Perception of sensory stimuli in auditory and vestibular organs relies on active mech-
anisms at work in the living organism. Manifestations of this active process are high
sensitivity and frequency selectivity with respect to weak stimuli, nonlinear com-
pression of stimuli with larger amplitudes, and spontaneous otoacoustic emissions
[1]. From a nonlinear dynamics point of view, all these features are consistent with
the operation of nonlinear oscillators within the inner ear [2, 3]. The biophysical im-
plementations of these oscillators remain an important topic of hearing research [1,
4–6].

Several kinds of oscillatory behavior have experimentally been observed in hair
cells, which constitute the essential element of the mechano-electrical transduction
(MET) process. In hair cells, external mechanical stimuli acting on the mechano-
sensory organelle, the hair bundle, are transformed into depolarizing potassium cur-
rents through mechanically gated ion channels (MET channels). This current influ-
ences the dynamics of the basolateral membrane potential of the hair cell and may
thus trigger the release of neurotransmitter. In this way, information about the sensory
input is conveyed to afferent neurons connected to the hair cell.

Self-sustained oscillations in hair cells occur on two very different levels. First,
the mechano-sensory hair bundle itself can undergo spontaneous oscillations and ex-
hibit precursors of the above-mentioned hallmarks of the active process in response
to mechanical stimuli [5, 7–9]. Second, self-sustained electric voltage oscillations
across the membrane of the hair cell have been found. This study is concerned with
the second phenomenon, the electrical oscillations.

It has been known for a long time that the electrical compartment of hair cells
from various lower vertebrate species, e.g., birds, lizards, and frogs, exhibits damped
oscillations in response to step current injections. This electrical resonance has been
suggested as a contributing factor to frequency tuning in some inner ear organs [10–
13]. Besides these passive oscillations, recent experimental studies in isolated [14,
15] and non-isolated [16] saccular hair cells have documented spontaneous self-
sustained voltage oscillations associated with Ca2+ and K+ currents. In particular,
various regimes of spontaneous rhythmical activity were observed, including small-
amplitude oscillations, large-amplitude spikes as well as bursting behavior [16]. Cat-
acuzzeno et al. [14] and Jorgensen and Kroese [15] developed a computational model
within the Hodgkin-Huxley formalism that in numerical simulations was shown to re-
produce principle features derived from experimental data.
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We note that the spontaneous voltage oscillations reported in [14, 16] arose solely
because of the interplay of basolateral ionic currents and were not caused by an os-
cillatory MET current associated with hair bundle oscillations. However, in vivo,
fluctuations of the MET current are expected to severely affect spontaneous volt-
age oscillations in hair cells, a situation that has not been examined so far. Further-
more, variations of the membrane potential may affect hair bundle dynamics through
the phenomenon of reverse electro-mechanical transduction [17, 18]. Recent theo-
retical studies in which voltage oscillations were modeled by a normal form of the
Andronov-Hopf (AH) bifurcation [19] or by a linear damped oscillator [20] have
shown that the coupled mechanical and electrical oscillators may result in enhanced
sensitivity and sharper frequency responses. However, the dynamics of the membrane
potential appeared to be far more complicated than mere damped or limit cycle oscil-
lations even in the absence of oscillatory hair bundles [16].

In this article, we study the dynamical properties of the hair cell model proposed
in [14] including quiescence, tonic, and bursting oscillations, a quasi-periodic behav-
ior, as well as onset of chaos, and identify the bifurcations underlying the transition
between these activity types. To examine the influence of inevitable fluctuations on
these dynamical regimes, we extend the model by including a stochastic transduc-
tion current originating in the Brownian motion of the hair bundle and channel noise
because of the finite number of MET channels [21].

To minimize the number of control parameters and to make results more tractable,
we restrict ourselves to a passive model of MET [13] neglecting mechanical adap-
tation and possible electro-mechanical feedback, leaving consideration of a compre-
hensive two-compartmental model for a future study.

We show that a small parameter window of chaotic behaviors in the deterministic
model can considerably be widened by noise. Furthermore, we discuss the response
of the voltage compartment to two kinds of sensory mechanical stimulation of the
hair bundle, namely, static and periodic. We find that high sensitivity to static stimuli
is positively correlated with the occurrence of chaos in the noisy system (large posi-
tive Lyapunov exponent, LE), whereas the maximal sensitivity at finite frequency is
achieved for regular oscillations (LE is close to 0 but negative). We discuss possible
implications of our findings for the signal detection by hair cells.

2 Materials and methods

Figure 1 shows a sketch of basolateral ionic currents used in the model analyzed here.
The outward potassium currents are as follows: the delayed rectifier (DRK) current,
IDRK; the calcium-activated steady (BKS) and transient (BKT) currents, IBKS and
IBKT; the inwardly rectifier potassium (K1) current, IK1. The inward currents are the
cation h-type current, Ih; a voltage-gated calcium current, ICa; and a leak current, IL.
Two ionic currents, IK1 and Ih, are activated by hyperpolarization. A fast inactivating
outward potassium current (A-type) was not included, as it had negligible effect on
the dynamics of the membrane potential [16].

The equation for the membrane potential V reads as follows:

Cm
dV

dt
= −IK1 − Ih − IDRK − ICa − IBKS − IBKT − IL − IMET, (1)
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Fig. 1 MET and ionic currents in the hair cell. Each hair cell is equipped with a mechano-sensory hair
bundle, i.e., a tuft of stereocilia that emanates from the apical surface of the cell. Stereocilia are arranged in
rows of increasing height, with neighboring stereocilia being interlinked by fine filaments, the so-called tip
links. The hair bundle is immersed in K+-rich endolymph. In contrast, the basolateral membrane of the hair
cell is in contact with perilymph, which is characterized by a low K+ and a high Na2+ ion concentration.
Upon deflection of the hair bundle toward the largest row of stereocilia, tension in the tip links increases.
This elicits the opening of mechanically gated ion channels (MET channels) that are located near the tips of
stereocilia. As a result, K+ ions rush into the hair cell, giving rise to an inward MET current (IMET, green
arrow). The basolateral membrane of the hair cell comprises several types of ion channels, associated with
specific ionic currents. Shown are DRK K+ (IDRK), inwardly rectifier (IK1), K+/Na2+ h-type current
(Ih), Ca2+ (ICa), and Ca2+-activated K+ BK currents (consisting of the steady IBKS and transient IBKT
currents). Red arrows indicate the directions of ionic currents.

where Cm = 10 pF is the cell capacitance.
Note that in Equation 1, we also included the inward MET potassium current,

IMET, given by

IMET = gMETPo(X)(V − EMET), (2)

where gMET is the maximum conductance of the MET channels and Po(X) is the
open probability of MET channel with a 0 reversal potential, EMET = 0 mV. For
a hair bundle with N = 50 transduction channels, we use gMET = 0.65 nS, which
is consistent with measurements according to Holton and Hudspeth [22]. The open
probability of the MET channels depends on the displacement of the hair bundle from
its equilibrium position. Here, we use a two-state model for the MET channel [22],
with the Boltzmann dependence for Po(X) given by

Po(X) = 1

1 + exp
[−Z(X−X0)

kBT

] , (3)

where Z is the gating force, and X0 is the position of the bundle corresponding to
Po = 0.5. For the sacculus of the bullfrog, the typical values are Z = 0.7 pN and
X0 = 12 nm [23]. Thermal fluctuations of the MET current are the main source of
randomness in hair cells [18] and stem from the Brownian motion of the hair bundle
and random clattering of MET channels (the so-called channel noise). We model the
hair bundle as a passive elastic structure with an effective stiffness K , immersed in
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a fluid. Fluid and MET channels result in an effective friction λ [21], so that the
overdamped stochastic dynamics of the hair bundle is described by the following
Langevin equation,

λ
dX

dt
= −Kx + Fext(t) + ε

√
2λkBT ξ(t), (4)

where Fext(t) is an external stimulating force and ξ(t) is white Gaussian noise with
autocorrelation function 〈ξ(t)ξ(t + τ)〉 = δ(τ ). Purely deterministic dynamics corre-
spond to ε = 0. The numerical values for the other parameters are λ = 2.8 μN·s/m
[21] and K = 1350 μN/m. In the absence of a stimulus, the stochastic dynamics of
the hair bundle results in fluctuations of the open probability (3) and consequently
of the MET current (2) and serves as the only source of randomness in the model.
Indeed, such a model is a severe simplification of hair bundle dynamics as it neglects
the adaptation because of myosin molecular motors and the forces which the MET
channels may exert on the bundle, i.e., the so-called gating compliance [5].

The equations for the ionic currents, their activation kinetics, and the parameter
values used are presented in the Appendix. The model is a system of 12 nonlinear
coupled differential equations: one describing the membrane potential V (1), two
equations for the IK1, one per Ih, IDRK, and per ICa; 6 equations for the BK cur-
rents IBKS and IBKT; 1 equation for the calcium dynamics. In addition, Equation 4
describes the stochastic dynamics of a passive hair bundle.

Integration of the model equations was done using the explicit Euler method with
the constant time step of 10−2 ms. A further decrease in the time step did not lead to
significant quantitative changes in the dynamics of the system. The bifurcation analy-
sis of the deterministic model was conducted using the software packages CONTENT
and MATCONT [24, 25] which allow for parameter continuation of equilibrium
states and periodic orbits of autonomous systems of ODEs.

The largest LE was computed by averaging a divergence rate of two solutions of
the model over a long trajectory as follows [26]. We started two trajectories y1(t)

and y2(t) in the 12-dimensional phase space of the model subjected to the same real-
ization of noise, but with the initial conditions separated by an initial vector with
the norm d0 = a|y1(0)|, a � 1. We continued these trajectories for a time inter-
val τ = 0.5 − 1 s and calculated the new separation distance between trajectories,
dm = |y2(mτ) − y1(mτ)|. The initial conditions of both trajectories were updated to
their new values and the norm of the initial vector was normalized back to d0. This
procedure was repeated for m = 1, . . . ,M iterations until an estimate of the largest
LE,

� = 1

Mτ

M∑
m=1

log

(
dm

d0

)
, (5)

converged.
The power spectral density (PSD) of the membrane potential defined as GV V (f ) =

〈Ṽ (f )Ṽ ∗(f )〉, where Ṽ (f ) is the Fourier transform of V (t), was calculated from
long (600 s) time series using the Welch periodogram method with Hamming win-
dow [27].
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We used an external harmonic force, Fext(t) = F0 cos(2πfst), with the amplitude
F0 and the frequency fs to compute the sensitivity of the hair cell and its dependence
on the amplitude and frequency of the external force. The time-dependent average of
the membrane potential, 〈V (t)〉, was estimated by averaging over 200 realizations of
V (t) (length corresponded to 1000 cycles of the driving signal) and the sensitivity
was calculated as

χ(fs) = |Ṽmean(fs)|
F0

, (6)

where Ṽmean(fs) is the first Fourier harmonic of 〈V (t)〉 at the frequency of the exter-
nal force.

In the regime of linear responses, i.e., for weak stimulation, we used an alternative
method of sensitivity estimation [28]: the external force was zero mean broadband
Gaussian noise with the standard deviation σs , band-limited to the cutoff frequency
of fc = 200 Hz, Fext(t) = s(t). The PSD of the stimulus was Gss(f ) = σ 2

s /(2fc)

for f in [0 fc] and 0 otherwise. The frequency dependence of the sensitivity was
computed as

χ(f ) = |GsV (f )|
Gss(f )

, (7)

where GsV is the cross-spectral density between the stimulus, s(t), and the response
V (t) [29]. This procedure allowed to obtain a frequency tuning curve at once for a
given parameter setting, avoiding variation of the frequency of a sinusoidal force.
Both sinusoidal and broadband stimuli gave almost identical tuning curves for small
stimulus magnitudes F0, σs ≤ 1 pN.

2.1 Deterministic dynamics

In the autonomous deterministic case, ε = 0 and Fext = 0 in Equation 4. The hair
bundle displacement is X = 0 and the open probability of the MET channel is Po =
0.114, so that the MET current can be replaced by a leak current with the effective
leak conductance gL + gMETPo = 0.174 nS.

2.1.1 Choice of control parameters

Saccular hair cells in bullfrog are known to be heterogeneous in their membrane po-
tential dynamics, i.e., while some cells exhibit spontaneous tonic and spiking oscilla-
tions, others are quiescent [14, 16]. Although all bullfrog saccular hair cells possess
similar components of the ion current (Figure 1), oscillatory and non-oscillatory cells
are characterized by different ratios of specific ion channels involved (see Figure five
in [16]). For example, quiescent cells are less prone to depolarization because of a
smaller fraction of inward rectifier current (K1) and a larger fraction of outward cur-
rents (BK and DRK). Spiking cells, on the contrary, exhibit a larger fraction of K1
and a smaller fraction of BK currents. The importance of BK currents in setting the
dynamic regime of a hair cell is further highlighted by the fact that cells can be turned
from quiescent to spiking by blocking BK channels [14–16]. In contrast, other cur-
rents have similar fractions in oscillatory and non-oscillatory cells, e.g., the cation
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Fig. 2 Dynamical regimes of the deterministic model (ε = 0). Left: Bifurcation diagram of the model in
the (b, gK1)-parameter plane. Black solid and dashed curves correspond (resp.) to supercritical and subcrit-
ical AH bifurcations of the depolarized (left branch) and hyperpolarized (right branch) equilibrium state.
Open circle indicates the Bautin bifurcation (BA). Green line corresponds to a saddle-node bifurcation of
limit cycles. Blue curve indicates a torus birth bifurcation of a stable small-amplitude limit cycle. Red line
indicates a period doubling bifurcation of a stable large-amplitude spiking limit cycle. Points labeled A-H
correspond to the voltage traces on the right panel: b = 0.2, gK1 = 15 nS (A); b = 0.2, gK1 = 40 nS (B);
b = 0.01, gK1 = 28 nS (C); b = 0.01, gK1 = 29.192 nS (D); b = 0.01, gK1 = 29.213 nS (E); b = 0.01,
gK1 = 29.25 nS (F); b = 0.01, gK1 = 35 nS (G); b = 0.01, gK1 = 40 nS (H). Other parameters are
gL = 0.174 nS, gMET = 0, gh = 2.2 nS, ε = 0.

h-current and the Ca current [16]. Based on these experimental findings, we mini-
mized the number of parameters choosing b and gK1, which determine the strengths
of the BK and K1 currents, respectively, as the main control parameters of the model.

2.1.2 Bifurcations of equilibria and periodic solutions

A bifurcation diagram of the model is shown in the left panel of Figure 2. An interior
region of oscillatory behavior is separated from a region corresponding to a stable
equilibrium (or quiescent) state of the hair cell model by AH bifurcation lines (shown
as solid and dashed black lines). The type of the AH bifurcation is determined by the
sign of the so-called first Lyapunov coefficient. The supercritical (solid black line)
and subcritical (dashed black line) branches of the AH bifurcation are divided by a
codimension-two Bautin bifurcation (yellow circle labeled BA in Figure 2, left), at
which the first Lyapunov coefficient vanishes. A bifurcation curve of saddle-node
periodic orbits (green line, Figure 2, left) originating from the Bautin bifurcation
together with the subcritical AH bifurcation curve (dashed black line) singles out a
bistability window in the bifurcation diagram of the model. In this narrow region
bounded by the saddle-node and the subcritical AH bifurcation curves, the model can
produce periodic oscillations or be at equilibrium, depending on the initial conditions.

For relatively large values of b (>0.02), the model robustly exhibits periodic os-
cillations or quiescence. For example, if one fixes a value of b at 0.2 (dashed grey
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Fig. 3 Bursting voltage trace
with varying interspike intervals,
�tn (a) and a sequence of
consecutive minima of the
membrane potential, Vn (b).

vertical line 1, Figure 2, left) then the increase of gK1 leads to the birth of a limit cy-
cle from the equilibrium state, when crossing the AH curve at gK1 = 11.4 nS. Further
increase of gK1 does not lead to bifurcations of the limit cycle until gK1 crosses the
AH curve at gK1 = 42 nS, when the limit cycle bifurcates to a stable hyperpolarized
equilibrium state. Smaller values of b may result in a sequence of local and non-local
bifurcations of periodic orbits. For example, if one fixes b at 0.01 and increases gK1

(grey dashed vertical line 2, Figure 2, left) then a limit cycle born through the su-
percritical AH bifurcation at gK1 = 27.7 nS bifurcates to a torus when gK1 crosses
the torus birth bifurcation curve (blue line, Figure 2, left) at gK1 ≈ 29.2 nS. Further
increase of gK1 results in the destruction of the torus and a cascade of transitions to
bursting oscillations (discussed below), until gK1 reaches a period doubling bifurca-
tion curve (red line, Figure 2, left) at gK1 ≈ 35.6 nS. Crossing the period doubling
curve results in a single-period limit cycle oscillation which bifurcates to the hyper-
polarized equilibrium state at gK1 = 42.2 nS.

The right panel of Figure 2 depicts a few typical patterns of spontaneous oscilla-
tions of the membrane potential. For b > 0.02 the model is either equilibrium (qui-
escence) or exhibits tonic periodic oscillations. Increasing the value of gK1 leads to
hyperpolarization of the cell accompanied with larger amplitude, lower frequency os-
cillations (Figure 2, points A and B be in the left panel, traces A and B in the right
panel). For smaller values of the BK conductance (b < 0.02), the dynamics of the
model is characterized by diverse patterns of various tonic and bursting oscillations
as exemplified by points and traces C-E in Figure 2 for the fixed b = 0.01. With
the increase of gK1 small-amplitude periodic oscillations (Fig. 2C) evolve into quasi-
periodic oscillations with two independent frequencies (Figure 2D) via a torus birth
bifurcation. In the phase space of the model, the quasi-periodic oscillations corre-
spond to the emergence of a two-dimensional (2D) invariant torus. The quasi-periodic
oscillations, occurring within a narrow parameter window, transform abruptly into
chaotic large-amplitude bursting shown in Figure 2E. A further increase of gK1 leads
to the regularization of the bursting oscillations with a progressively decreasing num-
ber of spikes per burst (Figure 2F,G). Ultimately, a regime of large amplitude periodic
spiking is reached (Figure 2H).

Next we extend the analysis of oscillatory behaviors of the hair cell model by
employing the effective technique of Poincaré maps developed for describing nonlo-
cal bifurcations of oscillatory dynamics [30–33]. We construct 1D recurrence maps
for the instantaneous interspike intervals �tn (see Figure 3a) and consecutive min-
ima, Vn, of the membrane potential (Figure 3b).
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Fig. 4 Bifurcations of
oscillatory dynamics in the
deterministic model.
(a) Bifurcation diagram of the
model at b = 0.01 for the
interspike intervals plotted
versus gK1. (b) Zoom into the
bifurcation diagram shown in
panel (a). Vertical grey dashed
lines labeled C-H in (a) and (b)
refer to corresponding points
and voltage traces in Figure 2.
Other parameters are the same
as in Figure 2.

A one-parameter bifurcation diagram1 in Figure 4a demonstrates how the inter-
spike intervals evolve as gK1 varies at a fixed value of the BK conductance, b = 0.01.
Depending on whether the voltage shows simple or more complex spiking, one ob-
serves that the interspike interval attains only one value or several different values,
respectively. More specifically, starting at large values gK1 = 42 nS, one observes
that as gK1 decreases, large-amplitude tonic spiking oscillations (see the correspond-
ing voltage trace in Figure 2H) transform into bursting oscillations by adding initially
an extra spike into each burst (Figure 2G). This is reflected in the bifurcation diagram,
Figure 4a, as the appearance of short intervals between spikes inside a burst and long
intervals between bursts. A further decrease of gK1 reveals a spike-adding sequence
within bursting with variable numbers of spikes. The sequence accumulates to a criti-
cal value of gK1 beyond which the model exhibits small-amplitude tonic oscillations.
A zoom of the bifurcation diagram in Figure 4b reveals that each subsequent spike-
adding sequence is accompanied by chaotic bursting within a narrow parameter win-
dow, in a manner similar to neuronal models [30, 31, 34–36]. Near the terminal point
of the spike-adding cascade, the model generates unpredictably long bursting trains
with chaotically alternating numbers of spikes (Figure 2E). So, for small values of
the BK conductance, the dynamical source of instability in the model is rooted in
homoclinic bifurcations of a saddle equilibrium state, which suggests explicitly that
the given model falls into a category of the so-called square-wave bursters introduced
for 3D neuronal models [37, 38].

1While the two-parameter bifurcation diagram in Figure 2 was obtained using parameter continuation
software CONTENT and MATCONT [24, 25], the one-parameter bifurcation diagram for the interspike
intervals was obtained by direct numerical simulation of the deterministic model: for each gK1 value the
model equations were numerically solved for a total time interval of 20 s; the sequence of interspike
intervals was collected and plotted against gK1.
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Fig. 5 Recurrence maps for the consecutive minima of the membrane potential for the indicated values
of the parameter gK1. (b) Recurrence map for gK1 = 29.213 nS (corresponding to chaotic bursting oscil-
lations shown in Figure 2E) emerging via the breakdown of the torus shown in (a). Note the distinct scales
used in (a) and (b) (the original torus would be situated in the middle section of the map shown in (b)).
Other parameters are the same as in Figure 2.

2.1.3 Torus breakdown for bursting

There is a novel dynamic feature that makes the hair cell model stand out in the
list of conventional models of bursting. Namely, at the very end of the spike-adding
sequence there is a parameter window where the model generates quasi-periodic os-
cillations with two independent frequencies (Figure 2D). Such oscillations are associ-
ated with the onset (and further breakdown) of a 2D invariant torus in the phase space.
A comprehensive study of the torus bifurcations is beyond the scope of this article.
Here, we briefly demonstrate some evolutionary stages of the “toroidal” dynamics in
the model as gK1 is varied using 1D recurrence maps. The 1D recurrence map defined
as a plot of identified pairs, Vn+1 versus Vn, is shown in Figure 5a for the indicated
values of gK1 for which a 2D-torus exists. In this map, an ergodic (or non-resonant)
2D-torus corresponds to an invariant circle. As long as the invariant circle remains
smooth, the model exhibits quasi-periodic oscillations (Figure 2D). As the size of the
torus becomes larger with increasing gK1, the invariant curve starts loosing smooth-
ness that results in quick distortions of the torus shape. Further increase of gK1 leads
to a resonance on the torus, corresponding to a stable periodic orbit comprised of a
finite number of points, e.g., eight green dots in Figure 5a. This observation agrees
well with a known scenario of torus breakdown [39, 40]. In this scenario, the invariant
circle becomes resonant with several periodic points emerging through a saddle-node
bifurcation. The invariant circle becomes non-smooth when the unstable and stable
manifolds of the saddle orbits start forming homoclinic tangles. Homoclinic tangles
are well known to cause chaotic explosions in any system. In short, the breakdown of
the non-smooth torus in the phase space is accompanied with the orchestrated onset
of large-amplitude chaotic bursting. In terms of the map discussed here, the distorted
invariant curve explodes into a chaotic attractor shown in Figure 5b. The middle part
around −65 mV shows torus breaking, abruptly interrupted by the hyperpolarized
passages in bursting corresponding to the left flat section of the map [41].



Journal of Mathematical Neuroscience (2011) 1:11 Page 11 of 24

Fig. 6 Effect of the cation
h-current conductance and the
leak conductance on the
dynamical regimes of the model.
Shown are bifurcation diagrams
for the interspike intervals
plotted versus gh (a) and gL (b).
On both panels red dots
correspond to gK1 = 32 nS and
b = 0.01; black dots correspond
to gK1 = 32 nS and b = 0.1.
Other parameters are the same
as in Figure 2.

2.1.4 Influence of other ionic currents

Variations of conductances of other ionic currents do not qualitatively reshape the
oscillatory region bounded by the AH bifurcation curves in (b,gK1)-parameter plane,
but lead to some quantitative shifts of the entire region (data not shown). Figure 6 ex-
emplifies the influence of the cation h-current conductance and the leak conductance
on the oscillatory regimes of the model. Both, the h-current and the leak current are
inward, i.e., tend to depolarize the cell. We note that for the deterministic model the
leak current is equivalent to the MET current. Thus, Figure 6b also shows the effect
of the MET conductance on oscillatory regimes. When the parameters b and gK1 are
set in the middle of the tonic oscillations region of Figure 2 (b = 0.1, gK1 = 32 nS),
variations of gh and gL do not lead to any bifurcations of periodic tonic oscillations,
but result in a gradual change of the oscillation period (black dots in Figure 6a,b).
Small values of gh and gL result in slower- and larger-amplitude oscillations because
of hyperpolarization of the cell and activation of the inward rectifier (K1) current. The
increase of gh and gL results in faster oscillations terminated eventually at the depo-
larized equilibrium through the supercritical AH bifurcation. When the parameters
of the model are poised in the center of the bursting region (b = 0.01, gK1 = 32 nS),
variations of gh and gL result in a sequence of spike-adding bifurcations of bursting
regimes (red dots in Figure 6a,b) similar to that shown in Figure 4c. Qualitatively,
similar behavior was observed when the conductances of other ionic currents (DRK,
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Fig. 7 Effect of thermal MET current fluctuations on spontaneous oscillations of the membrane potential.
Left column: Voltage traces for the deterministic model with ε = 0 (black line, upper traces) and for
the stochastic model with ε = 1 (red line, lower traces). (a1): b = 0.1, gK1 = 10 nS. (b1): b = 0.01,
gK1 = 29 nS. (c1): b = 0.01, gK1 = 32 nS. Right column: PSDs corresponding to the voltage traces shown
in (a1), (b1), and (c1). Other parameters: gMET = 0.65 nS, gL = 0.1 nS, gCa = 1.2 nS, gh = 2.2 nS.

Ca) were varied: i.e., gradual change of the period and amplitude of tonic oscillations
or sequences of bifurcations of various tonic and bursting regimes when the model
was poised, respectively, in the tonic oscillation or bursting region on the b-gK1 pa-
rameter plane.

To conclude, our results show that depending on the strength of outward BK cur-
rents, the model exhibits two distinct patterns of parameter dependence. For a rela-
tively large strength of BK currents (b > 0.02), the system is structurally stable within
the oscillatory region, i.e., variations of the model parameters do not lead to qualita-
tive transitions of oscillations. On the contrary, for small BK currents, b < 0.02, the
model passes through sequences of qualitative transitions generating a rich variety of
periodic, quasi-periodic and chaotic oscillation patterns.

2.2 Effect of the MET current fluctuations: stochastic dynamics

Thermal fluctuations of the MET current lead to two distinct effects on spontaneous
oscillations of the membrane potential, depending on the strength of BK currents.
For large values of the BK current strength, b > 0.02, the MET noise leads to the
well-known effect of amplitude and phase fluctuations of voltage oscillations [42],
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without changing the qualitative shape of oscillatory patterns (Figure 7a1). On the
contrary, for smaller values of the BK conductance, b < 0.02, noise leads to drastic
qualitative changes in the membrane potential dynamics inducing complex burst-like
activity (Figure 7b1,c1). These effects can also be characterized by the power spec-
tral density (PSD). For large values of the BK conductance, fluctuations of the MET
current merely lead to quantitative changes in the PSD: the delta peaks at the funda-
mental frequency of the oscillation and its higher harmonics get broadened by noise
(Figure 7a2). In contrast, for smaller values of b, noise leads to qualitative changes
in the PSD. Figure 7b provides an example for b = 0.01 and gK1 = 29 nS. In the
absence of thermal noise, ε = 0, the model possesses a stable tonic periodic orbit.
Thermal noise effectively shifts the model parameters toward the region of complex
bursting oscillations, where fast, small-amplitude oscillations are interrupted sporad-
ically by slow hyperpolarization excursions. The drastic effect of the thermal noise
is best seen in the power spectrum, Figure 7b2: the narrow peak corresponding to
the natural frequency of the deterministic oscillations is almost completely washed
out. Furthermore, the coherence of fast oscillations is lost, presumably because of
noise-induced hyperpolarization excursions, leading to a broadband PSD. The effect
of noise on bursting is demonstrated in Figure 7c. The deterministic bursting orbit
with four fast spikes per burst is characterized by a series of equidistant peaks in the
PSD (Figure 7c2, black line), corresponding to the bursting frequency (2.18 Hz in
this case) and its higher harmonics. Thermal fluctuations significantly alter the os-
cillation pattern and induce bursts, each with a random number of spikes (red line
in Figure 7c1). This is similar to neuronal bursting models perturbed by noise [36].
The variability of the number of spikes in a burst is reflected in a broad peak at low
frequency, corresponding to the bursting period and its higher harmonics. However,
compared to noise-induced bursting in Figure 7b, the bursting intervals remain more
regular. Consequently, the main peak at the frequency of bursting survives (Fig. 7c2,
red line).

2.2.1 Noise-induced chaos

To better understand the origin of noise-induced variability of the membrane poten-
tial, we evaluated the largest Lyapunov exponent (LE) to measure the rate of separa-
tion of two solutions starting from close initial conditions in the phase space of the
model. A stable equilibrium is characterized by a negative value of LE. Deterministic
limit-cycle oscillations are characterized by a zero LE, indicating neutral stability of
perturbations along the limit cycle. Positive values of the LE indicate irregular, i.e.,
chaotic oscillations [43]. In the case of a stochastic system, like the hair cell model
with thermal noise, the LE can be interpreted in terms of convergence or divergence
of responses of the system to repeated presentations of the same realization of noise
[44]. A positive value of the LE indicates a chaotic irregular behavior whereby two
trajectories of the model, which are subjected to identical noise and initially close to
each other, diverge as time goes [45]. Oppositely, a negative value of the LE (two
nearby trajectories converge on average) indicates insensitivity of the model to per-
turbations.

The dependence of the LE on the two bifurcation parameters is shown as a color
plot in Figure 8a. Regions of irregular and regular oscillations can be discerned. In
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Fig. 8 The largest Lyapunov exponent (LE) and bifurcations of the noisy hair cell. (a) The LE is shown
as a function of the BK and K1 conductances b and gK1. White lines indicate the AH bifurcations of
the deterministic system. The blue line demarcates the period doubling bifurcation of a large-amplitude
limit-cycle (cf. Figure 2H,G). White dots indicate positive values of the LE for the deterministic system.
Other parameters are the same as in Figure 7. (b) Interspike intervals vs the control parameter gK1 for
b = 0.1. Black dots indicate instantaneous periods of the stochastic dynamics, i.e., taking into account
a fluctuating MET current (ε = 1). (c) Interspike intervals versus gK1 for b = 0.01. Other parameters:
gMET = 0.65 nS, gL = 0.1 nS, gCa = 1.2 nS, gh = 2.2 nS.

the absence of noise, the LE is positive in an extremely narrow parameter region
which is indicated by white dots in Figure 8a. One of these dots would correspond
to the chaotic windows seen in Figure 4d. For relatively large values of the BK con-
ductance, b > 0.02, only regular oscillations are observed which are characterized by
negative values of the LE. The LE becomes strongly negative beyond the region of
deterministic oscillations bounded by the lines of the AH bifurcation. In the middle
of this oscillation region, the LE is negative, but close to zero, indicating that limit-
cycle oscillations are weakly affected by thermal noise. This is further demonstrated
in a stochastic version of the bifurcation diagram (cf. Figure 4) of the interspike inter-
vals in Figure 8b for b = 0.1. Although noise induces some variability of interspike
intervals, no transition to bursting is observed throughout a range of gK1.

For small BK current strengths (b < 0.02), a vigorous variability of the membrane
potential is observed, characterized by large positive values of the LE. The region
of noise-induced chaos with positive LE is singled out from that corresponding to
large-amplitude tonic spiking by the boundary on which the first spike-adding bi-
furcation occurs (green line in Figure 8a). In this region, the deterministic model
exhibits a plethora of distinct bursting patterns as the control parameters vary (see,
e.g., Figure 4c). For example, for fixed values of b and gK1 within the bursting region,
small variations of other parameter, e.g., leak conductance, gL, lead to a similar bifur-
cation transitions shown in Figure 6b. Noise enters the model equations through the
MET conductance (2), and effectively modulates the leak conductance, gL +gMETPo,
where Po, the open probability of MET channels, fluctuates according to (3) and (4).
For the parameter values used in Equation 3 and 4, the MET conductance gMETPo

fluctuates within a range of 0.03-0.16 nS with the mean of 0.076 nS and with the
standard deviation of 0.020 nS, sampling an interval of numerous bursting transitions



Journal of Mathematical Neuroscience (2011) 1:11 Page 15 of 24

Fig. 9 Sensitivity of the hair cell membrane potential to an external mechanical force applied to the
hair bundle. (a) Sensitivity plotted as a function of stimulus frequency, i.e., frequency tuning curves, for
values of b and gK1 as indicated. Symbols correspond to sensitivity values as computed using a sinusoidal
stimulus with amplitude F0 = 0.1 pN. Solid lines correspond to a computation of the sensitivity on the
basis of Equation 7 for a random Gaussian force that was band-limited to 200 Hz and had a standard
deviation of σs = 1 pN. (b) Sensitivity as a function of the amplitude of the sinusoidal external force.
Values of b and gK1 as indicated. As stimulus frequency we used that of the respective maximal sensitivity
in (a) (frequency of maximal linear response). Other parameters are the same as in Figure 8.

shown in Figure 6b. Thus, the crucial effect of noise is that it induces sporadic transi-
tions between structurally unstable bursting patterns. This is demonstrated by means
of a plot of the interspike intervals for the stochastic system at b = 0.01 in Figure 8c:
thermal noise wipes out all spike-adding bifurcations leading to a global variability
of the instantaneous period of the membrane potential.

2.3 Response to mechanical stimuli

The results of the preceding section showed three distinct regions of stochastic dy-
namics in the parameter space of the hair cell model: fluctuations around a stable
equilibrium for parameters outside the oscillatory region; noisy limit-cycle oscilla-
tions for relatively large values of the BK conductance (b > 0.02); and the region of
irregular large-amplitude bursting oscillations for small values of b. In this section,
we study how these distinct regimes of spontaneous stochastic dynamics affect tuning
and amplification properties of the hair cell model in response to external mechanical
stimuli.

2.3.1 Sensitivity and frequency tuning

Note that an external force Fext(t) is included in the model through the mechanical
compartment, see Equation 4. Figure 9 shows the sensitivity of the hair cell model
to a sinusoidal external force, Equation 6. For parameter values outside the region
of self-sustained oscillations, the sensitivity shows a broad small-amplitude peak at
the frequency of noise-induced oscillations (Figure 9a, green line). In the parame-
ter region of regular periodic oscillations, the hair cell model demonstrates a high
sensitivity and selectivity to weak periodic force, characterized by a sharp peak at
the natural frequency of self-sustained oscillations (Figure 9a, red line). Such a high
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selectivity is abolished by irregular complex oscillations for small values of the BK
conductance. The typical frequency tuning curve in the region of the irregular oscil-
lations (Figure 9a, black line) shows a broad peak at a low frequency and a sequence
of smaller wide peaks at higher frequencies, corresponding to the fast voltage oscil-
lations during bursts.

A conventional estimation of the frequency response is computationally expen-
sive, as it requires variation of the frequency of an external sinusoidal force for a
given set of parameters. In the regime of linear response, we used an alternative ap-
proach for estimation of sensitivity by stimulating the hair cell model with broadband
Gaussian noise with small variance, so that the model operated in the linear response
regime. This approach is widely used in neuroscience [28] and allows for accurate es-
timation of the sensitivity (Equation 7) at once for all frequencies within the band of
the stimulating force. The cutoff frequency of the random stimulus was set to 200 Hz,
i.e., much higher than natural frequencies of the model, so that random stimulus can
be considered as white noise. Figure 9a shows that estimation of the sensitivity with
sinusoidal and random stimuli gives very close results. Making use of such random
stimuli, for a given parameter set of conductances b and gK1, we could therefore
determine the best frequency eliciting a maximal response. For a driving at this best
frequency, in Figure 9b we show the dependence of the sensitivity on the stimulus
amplitude F0. The curve demonstrates a linear-response region for small F0 < 1 pN,
which is followed by a compressive nonlinearity. In the latter range, the sensitivity
decays with the amplitude of the periodic force.

Turning back to the linear response of the model, we now inspect the sensitivity as
a function of b and gK1. For each pair of parameters we recorded the maximal sen-
sitivity over the entire frequency band of the stimulus and color coded this maximal
sensitivity value and the value of the frequency corresponding to the maximal sensi-
tivity. The result of these computations is shown in Figure 10a,b. First, we note that
the region of noticeable sensitivity is bounded by the lines of the AH bifurcation, that
is, the sensitivity of a spontaneously active hair cell is significantly higher than the
sensitivity of a quiescent cell. Second, the region of maximal sensitivity is located in
the center of the sensitivity map corresponding well to a region of the LE map where
the LE is negative and close to zero. This is further illustrated in Figure 10c with a
scatter plot of sensitivity versus the LE: sensitivity increases toward zero value of the
LE. Small negative values of the LE refer to a longer transient time for perturbations
to decay, which can be interpreted as higher values of an effective quality factor of
oscillations. Consequently, in this region, the cell exhibits both high sensitivity and
selectivity (narrow resonance peak) at frequencies of 5-15 Hz.

The scatter plot in Figure 10c indicates also a second region where relatively high
values of the sensitivity occur for positive values of the LE. In this region of irreg-
ular oscillations, the sensitivity is characterized by broad peaks at low frequencies
(0-2 Hz) as exemplified in Figure 9a (black line) and shown in the sensitivity fre-
quency map, Figure 10a. In this region of irregular oscillations, the hair cell model
is not frequency selective, but possesses a high sensitivity to low-frequency or static
stimuli.
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Fig. 10 Maximal sensitivity of the noisy hair cell. Throughout the b-gK1-parameter plane, we determined
the sensitivity of the stochastic model as a function of frequency. This was done using Equation 7 and a
Gaussian external force that was band-limited to 200 Hz and had a standard deviation of 1 pN. For each
choice of the parameters, we determined at which frequency the sensitivity was maximal. (a) Frequency
map of the maximal sensitivity. As a color plot, we show the frequencies at which the sensitivity of the cell
is maximal within the frequency band of the stimulus. (b) Maximum sensitivity map. Color coded, we plot
the maximal sensitivity as a function of the bifurcation parameters b and gK1. In (a, b), bifurcation lines
of the AH bifurcation of the deterministic system are shown as white lines. (c) Scatter plot of the maximal
sensitivity versus the LE of the model, both taken at the same values of the control parameters b and gK1.
Note that the LE was determined in the absence of any external stimulus force but in the presence of noise.
The vertical red line indicates where the LE is zero.

2.3.2 Response to static stimuli

The application of a step force stimulus illustrates the high sensitivity of the hair cell
model to static stimuli in the regime of irregular oscillations (Figure 11a). Static vari-
ations of the MET current may shift the system to a different dynamical regime, e.g.,
with different burst patterns, leading to drastic changes in the averaged response. In
the regular oscillations regime, a small variation of the MET current does not lead to
a qualitative change in the oscillation pattern. Consequently, the response of the cell
is weak (Figure 11a, black line), implying a weak sensitivity of the system to low-
frequency stimuli. In the quiescent regime (Figure 11a, green line) the cell responds
with damped oscillations typical for electrical resonance, again with small sensitivity.
We determined the response to static stimuli from the frequency-dependent sensitiv-
ity by averaging over a frequency band from 0.02 to 0.1 Hz and show the result in
Figure 11b as a map on the control parameter plane. Comparison with the map of
the LE, Figure 8, indicates that the region of large values of static sensitivity and
the region of large positive values of the LE correspond to each other. This is further
demonstrated using the scatter plot in Figure 11c where the static sensitivity is plotted
against the LE.
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Fig. 11 Sensitivity of the hair cell model to static stimuli. (a) Response of the membrane potential (upper
panel) to a 0.5-pN step stimulus (lower panel) for values of the BK and K1 conductances as indicated. Other
parameters as in Figure 7. (b) As a color plot, we show the static sensitivity as a function of the control
parameters b and gK1. Static sensitivity was determined from frequency tuning curves (see Figure 10a) by
averaging sensitivities in the frequency band 0.02-0.10 Hz. (c) Scatter plot of the static sensitivity versus
the LE, both taken at the same values of the control parameters b and gK1. Note that the LE was determined
in the absence of any external stimulus force but in the presence of noise. The vertical red line indicates
where the LE is zero. AH bifurcation curves of the deterministic model are shown by white color in (b).

3 Summary and conclusion

In this article, we investigated a Hodgkin-Huxley-type model that was developed to
account for the spontaneous voltage oscillations observed in bullfrog saccular hair
cells.

We determined its bifurcation structure in terms of two important conductances,
associated with the inwardly rectifier (K1) and Ca2+-activated (BK) potassium cur-
rents. In the parameter space of the model, we isolated a region of self-sustained
oscillations bounded by Andronov-Hopf bifurcation lines.

We found that for small values of BK and large values of K1 conductances the dy-
namics of the model is far more complicated than mere limit cycle oscillations, show-
ing quasi-periodic oscillations, large-amplitude periodic spikes, and bursts of spikes.
The model demonstrated a sequence of spike-adding transition similar to neuronal
models belonging to a class of the so-called square-wave bursters [37, 46]. However,
the hair cell model also demonstrated a peculiar transition to bursting through quasi-
periodic oscillations with two independent frequencies corresponding to a 2D torus in
the phase space of the system. Specific mechanisms of the torus formation in detailed
conductance-based models are not well studied, compared to mechanisms of torus
dynamics in simplified models [33, 47, 48]. So far a canard-torus was reported re-
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cently in a model of cerebella Purkinje cells at a transition between tonic spiking and
bursting regimes [49] with a mechanism related to a fold bifurcation of periodic or-
bits predicted in [50] and demonstrated in an elliptic burster model [33]. We showed
that within small patches of parameter space at the transition from spiking to bursting
and at the spike adding transition, voltage dynamics are chaotic, as evidenced by a
positive LE.

Furthermore, we studied the effects of a noisy MET current on the statistics of
the system. As a first step, we assessed the effects of such a stochastic input in the
absence of any additional periodic stimulus. We showed that fluctuations can lead
to drastic qualitative changes in the receptor potential dynamics. In particular, the
voltage dynamics became chaotic in a wide area of parameter space. For a cell deep
within the region of tonic oscillations, noise essentially resulted in a finite phase
coherence of the oscillation.

To probe the possible role of voltage oscillations for signal processing by hair
cells, we determined the response of the model to periodic mechanical stimulation
of the noisy hair bundle. We found a high sensitivity and frequency selectivity for
the regime of regular spontaneous oscillations. This result can readily be under-
stood within the framework of periodically driven noisy nonlinear oscillators [51,
52]. Hence, an oscillatory voltage compartment might constitute a biophysical im-
plementation of a high-gain amplifier based on the physics of nonlinear oscillators.

Cells poised in the chaotic regime of low b and high gK1 respond well to low-
frequency stimuli (f < 3 Hz). In contrast, cells operating within the region of limit-
cycle oscillations (high b and moderate gK1) possess a pronounced frequency selec-
tivity with a high best frequency (f > 5 Hz). We found that the transition between
these two response regimes roughly occurs at the boundary separating the chaotic
regime with positive Lyapunov exponent from the regime of perturbed tonic oscilla-
tions associated with purely negative Lyapunov exponents. Note that the latter bound-
ary was defined for the noisy system in the absence of periodic stimulation. More-
over, in both regimes we uncovered strong correlations between the sensitivity and
the Lyapunov exponent, whereas in the regime of tonic oscillations the sensitivity is
strongest for negative but small exponents, in the chaotic regime there was an approx-
imately linear correlation between sensitivity and positive Lyapunov exponent. These
remarkable findings should be further explored. In particular, it would be desirable to
clarify whether simpler models that are capable to show chaos as well as limit-cycle
oscillations display similar correlations between sensitivity and Lyapunov exponents
in these different regimes.

Next to tonic voltage oscillations, also irregular bursting of hair cells has exper-
imentally been observed [16]. Within the framework of the employed model, these
qualitatively different dynamics can faithfully be reproduced, suggesting a parameter
variability among saccular hair cells. Our results show that these different dynamical
regimes are associated with quite distinct response properties with respect to me-
chanical stimulation. Important stimuli for the sacculus of the bullfrog are seismic
waves with spectral power mainly at higher frequencies and quasi-static head move-
ments predominantly at low frequencies [53]. Our results suggest that the observed
variability in hair cell voltage dynamics could have functional significance, reflect-
ing a differentiation of hair cells into distinct groups specialized to sensory input of
disparate frequency content.
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Another possible role of spontaneous voltage oscillations could be in the regular-
ization of stochastic hair bundle oscillations via the phenomenon of reverse electro-
mechanical transduction [17]. Recently, it has been argued on theoretical grounds
that oscillations of the membrane potential may synchronize stochastic hair bundle
oscillations, thus improving frequency selectivity and sensitivity of the mechanical
compartment of the hair cell [19, 20]. Moreover, an experimental study has docu-
mented that basolateral ionic currents indeed have a significant effect on the statistics
of stochastic hair bundle oscillations [54]. For example, it has been observed that the
pharmacological blockage of BK currents leads to more regular hair bundle oscil-
lations of lower frequency. Our results suggest that this may be due to a shift of the
working point of the voltage compartment into the region of self-sustained voltage os-
cillations. When operating in this regime, high-quality voltage oscillations entraining
the hair bundle could effectively reduce its stochasticity. Besides coupling-induced
noise reduction in groups of hair bundles [55, 56], this mechanism could thus con-
stitute an alternative way to diminish the detrimental effect of fluctuations in hair
cells.

In summary, this study established the electrical oscillator found in saccular hair
as an oscillatory module capable of nonlinear amplification. This further supports the
idea of nonlinear oscillators playing a crucial role in the operation of the inner ear.
The interplay between different oscillatory modules (active hair bundle motility and
electric oscillations) remains to be explored in more detail in future investigations.

Appendix: Description of ionic currents

The inwardly rectifier current (IK1) [14] is modeled by a combination of one fast
and one slow activation gates,

IK1 = gK1(V − EK)
[
0.7mK1f(V ) + 0.3mK1s(V )

]
,

τK1f,s
dmK1f,s

dt
= mK1∞ − mK1f,s,

mK1∞ = [
1 + exp ((V + 110)/11)

]−1
, (8)

τK1f = 0.7 exp
[−(V + 120)/43.8

] + 0.04,

τK1s = 14.1 exp
[−(V + 120)/28

] + 0.04,

with EK = −95 mV and the maximum conductance gK1 used as the control parame-
ter in the model.

Cation h-current (Ih) [14, 57] is modeled with three independent activation gates,

Ih = gh(V − Eh)
[
3m2

h(1 − mh) + m3
h

]
,

τh
dmh

dt
= mh∞ − mh, mh∞ = [

1 + exp ((V + 87)/16.7)
]−1

, (9)

τh = 63.7 + 135.7 exp

[
−

(
V + 91.4

21.2

)2
]

,
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with the maximum conductance gh = 2.2 nS and Eh = −45 mV.
The DRK current (IDRK) [14] is modeled with two independent activation gates

and is given by the Goldman-Hodgkin-Katz (GHK) current equation,

IDRK = PDRK
V F 2

RT

[K]in − [K]exe
−FV/RT

1 − e−FV/RT
m2

DRK,

τDRK
dmDRK

dt
= mDRK∞ − mDRK,

mDRK∞ = [
1 + exp ((V + 48.3)/4.19)

]−1/2
, (10)

τDRK = (αDRK + βDRK)−1 ,

αDRK = (
3.2e−V/20.9 + 3

)−1
, βDRK = (

1467eV/5.96 + 9
)−1

,

where PDRK = 2.4 × 10−14 L/s is the maximum permeability of IDRK; [K]in =
112 mM and [K]ex = 2 mM are intracellular and extracellular K+ concentration;
F and R are Faraday and universal gas constants; T = 295.15 K is the temperature.

Voltage-gated Ca2+ current (ICa) is modeled with three independent gates [58,
59],

ICa = gCam
3
Ca(V − ECa),

τCa
dmCa

dt
= mCa∞ − mCa,

(11)
mCa∞ = [

1 + exp (−(V + 55)/12.2)
]−1

,

τCa = 0.046 + 0.325 exp

[
−

(
V + 77

51.67

)2
]

,

where gCa = 1.2 nS is the maximum Ca2+ conductance and ECa = 42.5 mV.
Ca2+-activated potassium currents (BKS and BKT) [14] were modeled with the

GHK current equation. The kinetic scheme of both BK currents was the same as in
the Hudspeth-Lewis model [58] with three closed (C0, C1, C2) and two open (O2,
O3) states. The open probability of BK channel is O2 +O3. The transient BK channel
(BKT) has an additional inactivation gate, characterized by the gating variable hBKT

so that the BK currents are given by

IBKS = bPBKS
V F 2

RT

[K]in − [K]exe
−FV/RT

1 − e−FV/RT
(O2 + O3), (12)

IBKT = bPBKT
V F 2

RT

[K]in − [K]exe
−FV/RT

1 − e−FV/RT
(O2 + O3)hBKT, (13)

where PBKS = 2×10−13 L/s and PBKS = 14×10−13 L/s are maximal permeabilities
while the dimensionless quantity b parameterizes the strength of these currents and
was used as the control parameter of the model. The kinetics of Ca-activated BK
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currents is given by

dC1

dt
= k1[Ca]C0 + k−2C1 − (k−1 + k2[Ca])C1,

dC2

dt
= k2[Ca]C1 + αcO2 − (k−2 + βc)C2,

(14)
dO2

dt
= βcC2 + k−3O3 − (αc + k3[Ca])O2,

dO3

dt
= k3[Ca]O2 − k−3O3, C0 = 1 − (C1 + C2 + O2 + O3),

and complemented by the dynamics of the Ca2+ concentration, [Ca] [14],

d[Ca]
dt

= −0.00061ICa − 2800[Ca]. (15)

The parameters in Equation 14 were the same as in the Hudspeth-Lewis model (see
Table two in [58]) except for βc which in our simulation was βc = 2500 s−1 similar
to the model used in [16]. Finally, the voltage-gated inactivation for transient BK
channels is [14]

τBKT
dhBKT

dt
= hBKT∞ − hBKT, hBKT∞ = [

1 + exp ((V + 61.6)/3.65)
]−1

,

(16)
τBKT = 2.1 + 9.4 exp

[− ((V + 66.9)/17.7)2].
The leak current (IL) is given by

IL = gL(V − EL), (17)

where gL is the leak conductance and EL = 0 mV.
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