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ELEEN ZAREBIDAKI  

 

 

Under the Direction of Timothy Bartness, PhD 

 

ABSTRACT 

 There are two distinct types of adipose tissue which have different functions within the 

body, white (WAT) and brown (BAT). Browning of WAT occurs with increases in the WAT 

sympathetic nervous system (SNS) drive. In this regard we previously reported that melatonin 

(MEL) stimulation of MEL receptor 1A (MEL1a) within the SNS outflow to the WAT might be 

implicated in a naturally-occurring reversal of obesity (by ~30% of total body fat). Therefore, in 

this study we tested the hypothesis that MEL causes browning of WAT through the stimulation 

of SNS drive to WAT. This was done by comparing specific browning and lipolytic markers in 

WAT following 10 weeks of MEL treatment, short day housing (SD), and long day housing with 

saline injections (LD+VEH). Browning effects of a 5 day treatment of a β3-adrenergeric (β3-

AR), CL 316, 243, were also measured. We found that CL 316, 243, MEL treatment, and SD 

housing had increased expressions of browning markers within WAT and lipolytic activity in 

MEL treated animals was increased in specific WAT.  

INDEX WORDS: Brown adipose tissue, Lipolysis, obesity, UCP1, PGC-1α 
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1 INTRODUCTION 

1.1 Seasonal changes within Siberian hamsters and MEL 

Obesity has shown to be one of the leading causes of death in the United States, being a 

primary risk factor for diseases such as diabetes, cardiovascular disease, and hypertension1,2. 

These health complications account for at least 85% of the obesity-related economic burden3, 

therefore, a lot of research has been going into finding a methods for its reversal. An ideal animal 

model for obesity reversal research is the Siberian hamster (Phodopus sungorus) due to its innate 

ability to express an obese phenotype with only a change in photoperiod. No genetic or dietary 

changes are needed for this phenomenon to occur. When exposed to short-day (SD) “winter-like” 

photoperiods (8hr light:16hr dark) Siberian hamsters express lean body mass (~20 % body fat) 

however, if the light cycle is altered to a long day (LD) photoperiod (16hr light:8hr dark) 

resembling “summer-like” conditions, their physiology is transformed to express an obese 

phenotype (~50 % body fat)4-7. 

 The mechanism behind this seasonal change is controlled by melatonin (MEL); a 

neuropeptide hormone released from the pineal gland whose principal function is to maintain a 

natural circadian rhythm within the body. Studies have shown that MEL causes a decrease in 

obesity, without affecting food intake and is hypothesized to be a thermogenic regulator8-10. 

When retinal ganglionic cells of the eyes detect darkness, a signal is sent to the suprachiasmatic 

nucleus (SCN) of the brain, which in turn, through a series of pathways, triggers the pinealocytes 

to release MEL into the bloodstream. The amount of MEL released over time is directly 

proportional to the duration of darkness11,12. Obstruction of the signal from the retinal ganglion 

or pineal gland disrupts this seasonal change13. When the pineal gland is removed, it has been 

seen that photoperiodic changes are blocked in Syrian hamster, including body and lipid mass 
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changes within Siberian hamsters4,11,12. This intrinsic system is vital for the determination of 

seasonal changes, which triggers physiological transformations necessary for survival and 

reproduction.  

It was previously thought that seasonal changes in circulating hormones such as gonadal 

steroids, prolactin, thyroid hormones, glucocorticoids, and epinephrine cause the seasonal 

lipolytic changes however, that was proven to not be the case and the changes are possibly 

neuronal rather than hormonal14. The lipolytic activity of MEL can easily be measured by 

analyzing the ratio of hormone-sensitive lipase (HSL) and phosphorylated hormone-sensitive 

lipase (pHSL). HSL is the rate limiting step in the breakdown of triglycerides to free fatty acids 

(FFA) within adipose tissue which in turn allow for the thermogenic effects to occur. When HSL 

hydrolyzes triglycerides, it becomes phosphorylated, therefore, by taking the ratio of 

unphosphorylated to phosphorylated HSL we can determine the degree to which lipolysis is 

occurring within the given fat pad15,16. 

1.2 Fat depots and their innervations  

 Fat cells are not distributed equally throughout the body; they are accumulated in clumps 

known as fat depots. Siberian hamsters have many fat pads situated subcutaneously [inguinal 

white adipose tissue (IWAT) and interscapular brown adipose tissue (IBAT)], as well as more 

internally located [retroperitoneal white adipose tissue (RWAT), epididymal white adipose tissue 

(EWAT), and mesenteric white adipose tissue (MWAT)]. There are two different types of 

adipose tissue, brown and white, which play significantly different roles within the body.  

  Brown adipose tissue (BAT) is unique in that it is responsible for quick access to energy 

in the form of heat through non-shivering thermogenesis, signaled by uncoupling protein-1 

(UCP1), a protein specific to BAT. In contrast, WAT is responsible for the long-term storage of 
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energy in the form of triglycerides which when activated by the SNS, undergoes lipolysis. BAT, 

which contains a higher concentration of mitochondria compared with WAT, is activated in 

times of physiological thermogenic challenge such as exposure to cold, food deprivation, and 

exercise. 

 It has previously been shown that the SNS release of norepinephrine (NE) triggers 

lipolysis in vitro17. Neuroanatomical evidence for the link between MEL the SNS increase in 

lipolysis was shown through the injection of a retrograde transneuronal tract tracer, Pseudorabies 

virus (PRV), into WAT which labels the SNS pathway from the brain to fat pad. Regions of the 

brain that were connected to the fat pad showed infection of the PRV virus in areas hypothesized 

to contain MEL receptors, such as the SCN, optic chiasm, dorsomedial hypothalamic nucleus, 

periventricular hypothalamic nucleus (PVH), as well as several other nuclei. These areas infected 

with PRV were later tested for co-localization of MEL1a. Major areas such as the SCN, pars 

tuberalis, PVH, and nucleus reuniens, showed double labeling of SNS innervation and MEL1a 

receptor. These findings imply the importance of MEL in SNS innervation of fat pads and in the 

effects of seasonal changes within them, such as browning of white adipose tissue7.  

1.3 Browning of white adipose tissue 

Approximately three decades ago the idea of browning of white adipose tissue (WAT) 

was introduced, but it was not until recently that it has become an area of increasing interest. It 

has been shown that WAT can contain traces of brown adipocytes under conditions of 

thermogenic hardships, among many others, not only in rodents, but also in humans18. Brown 

adipocytes within WAT, referred to as brite cells19, exhibit the same thermogenic characteristics 

found in BAT adipocytes.  
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In order to differentiate at a molecular level WAT from BAT, markers specific to BAT 

must be identified. UCP1 is a protein found in the mitochondria of brown adipocytes that allows 

for the heat generating property of BAT by altering the permeability of the inner mitochondrial 

membrane. In the unstimulated state UCP1, also found in WAT, does not generate heat, as UCP1 

containing mitochondria do not exhibit a natural leaky membrane to protons necessary for heat 

production20. However, we believe that when sympathetically challenged, conversion of white 

adipocytes into ‘brite,’ as assessed by increases in UCP1 mRNA and protein synthesis, occurs. 

Thus, UCP1 serves as an excellent browning marker.  

In addition to UCP1, Peroxisome proliferator-activated receptor gamma (PPARγ) 

coactivator-1-α (PGC-1α) regulates the production of mitochondria within a fat pad. PGC-1α is a 

major transcriptional cofactor in charge of regulating many of the PPAR proteins responsible for 

metabolic changes; most importantly, PPARγ, which plays a key role in adipocyte formation, 

differentiation, and mitochondrial biogenesis21,22. Due to its regulation of UCP1, BAT 

thermogenesis, and involvement in the production of mitochondria, PGC-1α is found more 

abundantly in BAT as compared with WAT and can be used as an accurate marker for brown 

adipocyte presence23. These above receptor proteins are factors whose change in expression can 

shed light onto the mystery that is the browning of white adipose tissue and therefore are being 

measured for this experiment. 

Increases in the SNS drive to WAT leads to release of NE from WAT-associated SNS 

postganglionic nerve terminals thereby stimulating brown adipocyte conversion via β3-AR17 that 

ultimately activate UCP1. This NE effect is mimicked by CL316, 243, a highly selective β3-AR 

agonist both in vivo24,25 and in vitro26. CL 316,243 has proven to induce browning in mice and 

rats24,27. We hypothesized that MEL-induced browning of WAT depots underlying seasonal 
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changes in adiposity may be mediated via increases in the SNS drive to WAT and with the 

measurement of these markers, we can test the extent to which browning is occurring. 

The SCN, however, is not the only area mainly responsible for these seasonal changes. 

The Dorsal medial Hypothalamus (DMH) has been shown to also be highly involved in seasonal 

physiological changes that occur within Syrian and Siberian hamsters28,29. The DMH was found 

to cause browning in an experiment where the NPY neurons within the DMH were knocked 

down. Animals with this knockdown had an increase in browning of their WAT which also 

increased the rate of thermogenesis30.  

MEL has been directly linked to the browning of WAT in laboratory rats and Siberian 

hamsters, perhaps by increasing the SNS drive through MEL in the brain and, specifically, the 

SCN and DMH31,32. This suggests that MEL could be playing a major role in the regulation of 

brown adipocytes. Unlocking the process in which browning occurs can be a key to obesity 

reversal research; however, the question still stands; how are these traditionally white adipocytes 

redirected into becoming brown adipocytes with very different functions? 

1.4 Experimental Aim  

Experiment 1: In order to mimic SNS activation, CL316, 243 will be exploited for its potential 

browning effect in Siberian hamsters. We hypothesize that CL316, 243 administration will 

increase the SNS drive to WAT, causing an increases in brown adipocyte markers. Based on our 

previous study browning will most likely occur within the retroperitoneal WAT (RWAT), 

inguinal WAT (IWAT), and, perhaps, epididymal WAT (EWAT) as well as causing an increase 

in mitochondriogenesis within IBAT14.  

Experiment 2: In this experiment we aim to test the effects of prolonged (10-week) MEL 

administration to mimic the effect of photoperiodic SD on WAT browning in Siberian hamsters. 
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The presence of ‘brite” adipocytes in WAT will be revealed by identifying BAT-specific 

markers such as UCP1 and PGC-1α. We hypothesize that daily MEL injections to animals stored 

in LD photoperiod will trigger the occurrence of physiological changes normally seen in animals 

stored in SD photoperiods, specifically the production of multilocular brite adipocytes within 

WAT in relation with increases in the SNS efferent drive to WAT. 

2 MATERIALS & METHODS 

2.1 Animal Model 

 Adult male Siberian hamsters used for this study were obtained from the lab breeding 

colony and were single housed at room temperature (22 + 2 °C) with exposure to a LD 

photoperiod with free access to water and regular chow. They were allowed to acclimate for one 

week and then transferred to their appropriate light cycle room depending on the experimental 

grouping. Animal care was in accordance with humane standards and all animal procedures were 

conducted under the regulation of Georgia State University. 

2.2 Experiment 1 -CL316, 243 injections 

 Three month old Siberians hamsters were divided into two separate groups (n = 5/group) 

and housed in LD light cycle. One group received daily intraperitoneal (i.p.) injections of CL316, 

243 at a dose of 1 mg/kg for five days while the control group received saline (SAL) injections. 

Animals were then terminated with sodium pentobarbital (Sleep Away: 300 mg/kg), fat pads 

(BAT, IWAT, RWAT) excised, weighed, and snapped frozen in liquid nitrogen. 

2.3 Experiment 2 -MEL injections 

 After a one week acclimation period in a LD photoperiod light cycle, two month old 

Siberian hamsters were housed in two separate rooms with different light cycles, SD photoperiod 
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with 16 hours dark and 8 hours light (n = 15) and LD photoperiod with 16 hours light and 8 

hours dark (n = 22) with free access to water and regular chow. In the LD room, half of the 

animals (n = 11) received subcutaneous (s.c.) MEL injections (0.4 mg/kg) daily 3 hours prior to 

lights off for a total period of 10 weeks while the other half received s.c. (SAL) and served as a 

control group. Therefore, overall, there were a total of 3 experimental groups: LD + SAL, LD + 

MEL and SD (Fig.1). Weekly food intake and body mass were monitored. After 10 weeks, the 

animals were sacrificed as mentioned above and fat pads (BAT, RWAT, IWAT, EWAT) 

excised, weighed, and snap frozen in liquid nitrogen and later stored in -80 °C freezer for later 

Western Blot analysis. Testes were also excised and weighed for confirmation of regression. All 

SD animals that did not respond to the SD photoperiod, as seen by the absence of testicular 

regression, were considered no-responders and therefore excluded from the study. 

2.4 Western blot analysis 

Fat tissue were homogenized using ~120 g of sterile Zirconium beads and a 1:2 ratio of 

homogenization buffer, and 415 µl of protease and phosphatase inhibitor cocktail (Halt). Tissues 

were then added to their individual tubes and were mechanically homogenized using a bullet 

blender 2 times for one minutes. Tubes were then centrifuged for 10 minutes at 13,000 x g. 

Protein extracts (supernatant) were then aliquoted into 3 tubes and stored in -80 °C. Protein 

concentration for each sample was determined using known concentrations of bovine serum 

albumin standards. Desired concentrations for each sample was calculated and made with 4x 

Loading buffer and Millipore water. The appropriate concentration for each sample was loaded 

onto a 10% acrylamide gel along with 10 µL of broad range protein ladder (Thermo) in the first 

and last wells. Sample concentrations for experiment 1- CL were 10 µg/µl for IWAT and IBAT 

and 5 µg/µl for RWAT; all fat pads in experiment 2-MEL were at a concentration of 5 µg/µl. 
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Following the SDS-page gel run, gels were transferred to a PVDF membrane, washed 2x for 10 

mins in TBS, and blocked for 2 hours in blocking solution (4 % nonfat dry milk in TBS). 

Membranes were then incubated for ~48 hours in a [1:1000] of the appropriate primary antibody, 

UCP1, PGC-1α, HSL, and pHSL. Following the completion of the primary antibody incubation, 

the membranes were washed 3x for 5 minutes with TBS, then incubated in goat anti rabbit 

secondary antibody [1:1000] for 2 hours. Finally, they were washed 3x for 10mins with TTBS 

and incubated in chemiluminescent kit for 5 min followed by gel imaging.  

Data were analyzed by the Student’s t-test and one-way analysis of variance (ANOVA) 

followed by the post-hoc Bonferroni’s and Holm-Sidak’s tests using NCSS (version 2007, 

Kaysville, UT). Significance was set at P<0.05. For simplicity and clarity, values 

with P<0.05, P<0.01 and P<0.001 were all indicated with a single asterisk. All values are 

presented as mean ± standard error of the mean.  

 

 

Figure 1: Schematic representation of MEL experimental design. 

  



9 
 

3 RESULTS 

3.1 CL 316,243 injections 

 CL 316,243, tended to decrease BM over course of the 5 day injections, however without 

statistical significance (Fig. 2A). The fat pad mass individually as well as testes showed no 

significant difference between the groups (Fig. 2B). CL316, 243 treatment significantly 

increased protein levels for browning markers UCP1 and PGC-1α (Ps<0.05) both in RWAT and 

IWAT as compared with the saline control (Fig. 3,4,5). IBAT however, only had an increase in 

UCP1 expression for CL 316, 243 animals with IBAT PGC-1α protein unchanged between the 

groups.  

3.2 MEL injections 

 Although it was previously seen that MEL does not affect food intake for up to 5 

weeks28,33, in this study, SD and s.c injections of MEL daily for 10 weeks markedly decreased 

food intake starting from week 5 until the end of the experimental period compared with 

LD+VEH animals (Ps <0.05; Fig. 6A). Body mass was also lower for LD+MEL animals once 

again resembling the SD animals (Ps<0.05; Fig. 6B). One of the most obvious physiological 

changes that occurs during the photoperiod triggered seasonal changes is testes regression4,6. 

Indeed SD and MEL treatment resulted in a profound testicular regression. Occasionally, SD and 

chronic MEL caused a complete testicular regression. As hypothesized, the testes mass for 

LD+MEL animals was regressed to a size similar to the SD group confirming MEL’s effect on 

the reproduction. Focusing more closely, individual fat depot masses were measured which 

showed significant decreases in IWAT, RWAT, and EWAT masses (p<0.05), but not IBAT, for 

the LD+MEL group as compared with LD+VEH (Fig. 6C).  
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 As for the occurrence of browning UCP1 protein levels in RWAT, IWAT, and IBAT 

were lowest in the LD+VEH group while UCP1 protein expression in SD hamsters seemed to be 

higher than that of the LD+MEL hamsters, however, without statistical significance (Fig. 

7A,8A,9A). When looking at EWAT UCP1 expression, the trend was reversed, with LD+MEL 

animals having the highest expression and SD animals having an expression similar to LD+VEH 

animals (Fig. 10).  

PGC1-α was also expressed at higher levels in IWAT and RWAT of LD+MEL and SD 

animals (Fig.8B, 9B). RWAT and IWAT showed a stepwise increase for PGC1-α (P < 0.05) 

while EWAT PGC1-α was the opposite of this with LD+VEH showing the highest amount of 

expression (Fig, 8B, 9B, 10B). Lastly, IBAT had no significant difference in PGC1-α within all 

groups (Fig 7B). 

Lipolytic activity, measured by the ratio of pHSL/HSL, was increased stepwise within 

IWAT (p < 0.05), while showing no significant amounts in RWAT and BAT. EWAT, contrary to 

our hypothesis, showed a decrease in lipolysis in the SD group as compared with the LD+ MEL. 

The LD+MEL and SD group however did show higer lipolytic activity then the control 

LD+VEH animals (p < 0.05; Fig.11).  

 

 

 

 

 



11 
 

 

 

 

Figure 2:  A) Body mass of animals during 5 day CL316, 243 and saline injections. B) Paired fat pad 
masses and testes mass. 
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Figure 3: Western blot analysis of IBAT UCP1 (A) and PGC-1α (B) in CL and saline Injected for duration of 
5 days. *p<0.05 vs. saline. 
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Figure 4: Western blot analysis of IWAT UCP1 (A) and PGC-1α (B) in CL and saline Injected for duration of 
5 days. *p<0.05 vs. saline. 
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Figure 5: Western blot analysis of RWAT UCP1 (A) and PGC-1α (B) in CL and saline Injected for duration 
of 5 days. *p<0.05 vs. saline. 
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Figure 6: A) Food Intake over 10 week period in animals given MEL or VEH injections.
 
B) Body mass 

change.
 
C) Paired fat pad masses and testes mass. *p<0.05 vs. SD; #p<0.05 vs. LD+MEL. 

 

 

 

 

 

 

 

 

 

 

 



17 
 

 

 

 

Figure 7: Western Blot Analysis of UCP1 and PGC-1α in IBAT. A) Expression on UCP1 B) Expression of 
PGC-1α. *p<0.05 vs. LD+VEH 
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Figure 8 : Western Blot analysis of UCP1 and PGC-1α in IWAT A) Percent UCP1 expression. B) Percent 
PGC-1α expression. Percent calculated as ratio of protein tested to β-actin control. *p<0.05 vs. LD+VEH. 
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Figure 9: Western Blot analysis of UCP1 and PGC-1α in RWAT A) Percent UCP1 expression.
 
B) Percent 

PGC-1α expression. Percent calculated as ratio of protein tested to β-actin control. *p<0.05 vs. LD+VEH 
#p<0.05 vs. LD+MEL*p<0.05 vs. LD+VEH 
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Figure 10: Western Blot analysis of UCP1 and PGC-1α in EWAT. A) Expression on UCP1 B) Expression of 
PGC-1α.

 
*p<0.05 vs. LD+VEH #p<0.05 vs. SD 
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Figure 11: Western blot analysis of HSL and pHSL. IWAT (A), RWAT (B), EWAT (C), and BAT (D) western 
blot with ratio of HSL/pHSL taken as percent of LD+VEH. *P < 0.05 vs. LD+VEH. 
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4 DISCUSSION 

 In this study we effectively presented the browning and lipolytic effects of CL316, 243 

and MEL within WAT of Siberian hamsters. In accordance with our hypothesis, overall 

expression of browning markers were elevated in CL316, 243 and MEL treated animals as 

compared with controls. MEL animals showed browning expression similar to SD animals, 

confirming that chronic MEL injections in animals housed in LD light cycles is capable of 

replicating SD physiology within Siberian hamsters. CL316, 243 confirmed its role in SNS 

stimulation leading to browning of WAT.  

CL316, 243 and MEL treatment caused a decrease in overall BM as predicted. Although 

MEL injected rodents were reported as reducing BM independent of food intake34, our data in 

Siberian hamsters show that food intake of MEL injected animals was lower compared to the 

control. Although it is plausible that decreases in BM of our hamsters were the result of a 

decreased food consumption, we do not exclude the possibility that this change in food intake 

could be secondary to the decrease in BM after 5 weeks. Paired fat pad masses as well as testes 

mass show significant differences between the MEL animals and saline treated ones (p < 0.05), 

however not for the CL316, 243 injected group. This could have been due to the relatively short 

duration of CL 316,243 injections. If the number of days were to be increased, it is possible that 

a more dramatic change will be observed, specifically within individual fat pads. Testicular 

regression of the LD+MEL animals decreased to a mass extremely close to SD animals. The 

results of this study are in concordance with our previous findings where chronic MEL induced 

similar testicular regression despite the different dose of MEL used in the study35. All fat pads 

with the exception of BAT in LD+MEL animals show significant decreases in mass. This set of 

data confirms MEL’s ability to induce SD seasonal changes within Siberian hamsters.  
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Since browning has been confirmed of occur in mice and rats following CL 316, 243 

injections24, we measured expression of UCP1 and PGC-1α in Siberian hamsters receiving the 

same treatment. As expected, all pads tested showed an increase in UCP1 expression, and all 

except for IBAT showed elevated PGC-1α expression. Since PGC-1α is a marker of 

mitochondria biogenesis, it could be that IBAT has an abundance of mitochondria, and with an 

increase in SNS signaling to IBAT, only UCP1 is further stimulated within the already present 

mitochondria. MEL browning marker expression had a similar trend as CL316, 243 treated 

animals for UCP1 and PGC-1α in IWAT, IBAT, and RWAT (Fig. 7-10), thus, further supporting 

the idea that β3-AR stimulation of SNS to WAT plays a role in the browning phenomenon.  

 Although LD+MEL animals show a significant increase in browning, similar to that of 

SD animals (p<0.05), it is possible that with longer exposure to s.c. MEL, the LD+MEL could 

obtain a higher degree of browning that would match that of SD housed animals more closely. 

UCP1 expression in BAT for CL316, 243, LD+MEL, and SD animals shows a significant 

elevation in expression (p<0.05), however differences in PGC-1α expression between the groups 

is not significant. An explanation for this could be that UCP1 and PGC-1α, although both 

markers of browning, represent different parts of the pathways leading to browning. UCP1 is 

responsible for altering the permeability of mitochondria while PGC-1α expression represents 

mitochondrial biogenesis.  

EWAT had the least predictable data out of all the pads, with UCP1 expression being 

highest in LD+MEL and SD having an expression more closely resembling LD+VEH (Fig. 10). 

This difference between browning marker trends in IBAT PGC-1α and EWAT UCP1 and PGC-

1α could be due to the presence of more SNS innervation within RWAT and IWAT pads, 

specifically RWAT due to its small size. When comparing this data to lipolysis markers, as 
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measured by the ratio of pHSL to HSL, we observed differential correlation between browning 

marker expression and lipolysis for RWAT, IWAT, BAT, and EWAT. The reason for this could 

be that there is an lipolysis does not occur at the same time period of all fat pads and at the 10 

week time point, when fat depots were extracted for this study, IWAT and EWAT were at their 

peak lipolytic activity, as compared with BAT and RWAT, therefore more epinephrine was 

being released resulting in the elevation of lipolytic markers. In support of this notion, Demas 

and colleagues previously demonstrated that mRNA for β3-adrenoceptor was significantly 

increased after 5 weeks of daily MEL treatment indicating MEL-induced SNS outflow to adipose 

tissues to trigger lipolytic responses.36. It could be possible that RWAT and BAT will show peak 

lipolytic activity at a time point earlier than 10 weeks. Given this, our test animals most likely 

had already depleted their stores and the markers could not be detected at 10 weeks.  

In conclusion, we have validated the browning effects of chronic exogenous MEL on 

WAT and from CL316, 243 data determined that this browning effect could possibly be through 

increased SNS signaling to WAT. Markers of ‘brite’ adipocytes, UCP1 and PGC-1α, were 

significantly increased in IBAT, RWAT, IWAT, and partially in EWAT following CL316, 243, 

MEL, and SD treatments inferring MEL ability to trigger browning. Overall, we conclude that 

MEL has shown to be a major contributor to the pathway causing the seasonal changes within 

Siberian hamsters by altering SNS drive and through this, induce browning of WAT. With 

further research, MEL role could potentially shed light on a method for reversing obesity. 
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