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ABSTRACT 

 

Assessing hormone receptors (the estrogen and progesterone receptors) and the human 

epidermal growth factor receptor 2 (HER2) to guide clinical decision making revolutionized 

treatment for breast cancer patients. However, in the years since these biomarkers were first 

incorporated into routine clinical care, only a few others have been validated as clinically useful 

in guiding adjuvant chemotherapy decisions and are recommended by the American Society of 

Clinical Oncology (ASCO) for patients with hormone-positive breast cancer. For patients with 

triple-negative breast cancer (TNBC), which lacks hormone and HER2 receptors, not any of 

these biomarkers are recommended by ASCO due to insufficient evidence that they meaningfully 

improve clinical outcomes. Breast cancer is the second-leading cause of cancer-related death 



 

 

among women in the US, indicating an unmet need to improve treatments, which can be 

accomplished in part by identifying and validating novel predictive and prognostic biomarkers 

that yield actionable information about the clinical course of breast cancers, especially TNBCs. 

A major obstacle to improving outcomes for breast cancer patients is intratumor heterogeneity 

(ITH), which can be extensive in breast cancer and drives treatment resistance and relapse. I 

envision that assaying drivers of ITH can inform clinicians about which breast tumors may be 

intrinsically more aggressive and carry a greater risk of breast cancer-related morbidity and 

mortality. My research, presented here, primarily focuses on testing the impact of drivers of ITH 

(namely, centrosome amplification [CA], the clustering protein KIFC1, and mitotic propensity 

and its drivers) on clinical outcomes in breast cancer in multivariable models as well as the 

correlates of in vitro efficacy of centrosome declustering drugs (which can selectively eliminate 

cancer cells with CA). Collectively, these studies reveal gene signatures and 

immunohistochemical biomarkers that are independent predictors of aggressive breast cancer 

course and rational strategies to optimize targeted therapy to combat cancer cells exhibiting CA, 

thereby contributing to the literature on the development of precision medicine for breast cancer 

patients, including TNBC patients. 
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1 

1Parts of this chapter have been published verbatim in Cell Death and Differentiation 2012 Aug;19(8):1255-67 as 

“Let's huddle to prevent a muddle: centrosome declustering as an attractive anticancer strategy” and Endocrine 

Related Cancer 2017 (in press) as “Centrosome Amplification: Suspect in Breast Cancer and Racial Disparities.” 

1 INTRODUCTION1 

1.1 Biomarkers in breast cancer: an overview 

Very few clinically useful breast cancer biomarkers – that is, those that offer actionable 

information that may change a breast cancer patient’s disease course – are currently 

recommended by ASCO. The society recommends routine testing for the estrogen and 

progesterone hormone receptors (ER and PR, respectively) along with the ErbB family member 

human epidermal growth factor receptor 2 (HER2), which provide both prognostic and 

predictive information that revolutionized breast cancer treatment. Patients with hormone 

receptor-positive breast cancers (ER/PR+, HER2-) generally have a favorable prognosis and 

respond to treatment with endocrine therapy, such as hormone receptor antagonists and 

aromatase inhibitors. HER2+ tumors confer a less favorable prognosis, yet patients may respond 

to treatment with HER2 antagonists as well as cytotoxic chemotherapy. Patients whose tumors 

are negative for all three of these biomarkers (TNBCs) also have a less favorable prognosis than 

hormone receptor-positive breast cancers; however, unlike HER2+ tumors, there are no approved 

targeted therapies for TNBCs, so the only available systemic treatment is cytotoxic 

chemotherapy with its often devastating side effects. For patients with hormone receptor-positive 

early-stage invasive breast cancer, several biomarkers and genomic tests are available that may 

predict the risk of recurrence and guide the selection of adjuvant therapy. These biomarkers 

include urokinase-type plasminogen activator, plasminogen activator inhibitor type 1, Oncotype 

DX, PAM50, EndoPredict, and Breast Cancer Index [1]. For HER2+ and TNBC patients, these 

tests are contraindicated because there is insufficient evidence to suggest that they are clinically 
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useful. Thus, there is an unmet need for biomarkers of clinical utility for these high-risk patients, 

preferably those that can offer both prognostic and predictive information for TNBC patients, 

whose tumors remain defined by what biomarkers and drug targets they lack.  

 

1.2 Triple-negative breast cancer 

TNBC is a significant public health concern owing to the high prevalence and grave 

nature of the illness. It afflicts nearly a half million women in the US – that is, about one fifth of 

the ~2.8 million women in the country with breast cancer [2, 3]. A disproportionate fraction of 

pre-menopausal African American women develop the disease, causing TNBC to be an 

important component of racial health disparity in this country as well [4]. At the time of 

diagnosis, which often occurs between mammograms, TNBCs tend to be of a more advanced 

histologic grade and larger size than non-TNBCs [5]. TNBC is also characterized by a rapid 

proliferation rate and high propensity to metastasize, typically to visceral organs [6]. In addition, 

the tripe-negative phenotype carries the greatest risk of brain metastasis, and brain metastases 

that are triple-negative carry the worst prognosis [7]. Women with TNBC exhibit significantly 

worse 5-year survival rates than those with non-TNBC regardless of the tumor stage at diagnosis 

[8]. This worse prognosis stems not only from the strikingly aggressive behavior of TNBCs but 

also from the poor efficacy of currently approved TNBC treatment regimens as compared with 

treatment regimens for other breast cancer subtypes. The mainstay of TNBC treatment is 

chemotherapy with non-specific cytotoxins, which do not eliminate the tumor in almost 80% of 

patients [6]. These treatment-resistant patients have a dismal prognosis: almost half of them die 

within 5 years. Furthermore, TNBC patients whose tumors metastasize only survive about 1 

year. As a result, a diagnosis of metastatic TNBC is essentially a death sentence. Given the 
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unreliability of non-specific cytotoxins in suppressing TNBC metastasis, there is a dire need to 

identify specific molecules that drive TNBC metastasis so that targeted metastasis-suppressing 

drugs can be rationally designed. This strategy was immensely effective for other breast cancer 

subtypes, which are treated with targeted drugs like Tamoxifen, Arimidex, or Herceptin alone or 

in combination with cytotoxins. 

 

Approximately half a million women in the US have TNBC, or ~15-20% of the nearly 3 

million women living with breast cancer [9-11]. AA women are overrepresented among TNBC 

patients, as they are ~3 times as likely to develop TNBC as white women [4]. Among TNBC 

patients, AAs have ~2 times the risk of mortality compared with whites after adjustment for age, 

grade, stage, and poverty index [12]. These data suggest that AAs have inherently more 

aggressive TNBCs, which contributes to racial health disparity in breast cancer [12]. Because 

TNBC is a disease defined by the targets it lacks, prognostication and treatment are particularly 

challenging. Assays that are indicated for other types of breast cancer perform poorly in risk-

stratifying TNBCs. For instance, MammaPrint® tends to uniformly classify TNBCs as high risk 

[13]. While this characterization may be accurate relative to other breast cancer subtypes, it fails 

to capture the variability in outcomes among TNBC patients, a substantial proportion of whom 

experience favorable outcomes. Specifically, ~10-30% of patients achieve a pathologic complete 

response to chemotherapy depending on the regimen, nearly all of whom survive at least five 

years [6]. By contrast, the five-year survival probability for TNBC patients with residual disease 

is ~55% [6]. Because TNBC is defined by the biomarkers it lacks, it is difficult for clinicians to 

provide a clear prognosis to patients and to predict which patients require more aggressive 

chemotherapeutic regimens. The survival gap between AAs and whites with TNBC implies that 



3 

 

AAs may not receive sufficiently aggressive treatment. Therefore, a critical barrier to eliminating 

racial health disparity in breast cancer is a lack of knowledge about biomarkers in AA TNBCs 

that can meaningfully guide therapeutic interventions. Biomarkers that could risk-stratify AA 

TNBCs would constitute revolutionary progress in TNBC and might mitigate racial health 

disparity in breast cancer. Breast tumors, especially TNBCs, are often genetically unstable and 

thus exhibit genotypic and phenotypic ITH, which underlies treatment resistance and relapse and 

which is more severe in AA TNBCs [14]. Chromosomal instability (CIN) is a driver of ITH that 

describes a dynamic state wherein the cell experiences an increased rate of gain or loss of whole 

or parts of chromosomes, defined as numerical and structural CIN, respectively [15]. A major 

cause of CIN is the presence of supernumerary centrosomes during cell division. Therefore, it 

stands to reason that biomarkers of increased centrosome number (called numerical CA) and 

enhanced cell cycle kinetics could reveal which tumors are chromosomally instable and carry a 

poor prognosis, in part due to increased risk of treatment relapse, which can inform clinical 

decision making. 

 

1.3 Centrosome amplification 

At least 75% of malignant breast tumors exhibit CA, although the proportion of 

intratumoral cells with CA varies widely, from 1-100% [16]. CA is the presence of excessively 

voluminous or numerous centrosomes, referred to as structural and numerical CA, respectively 

(pictured in Figure 1). Structural CA arises from excessive recruitment of PCM, a highly 

ordered yet dynamic matrix of hundreds of proteins and nucleic acids. PCM size is regulated by 

centrioles, free cytoplasmic αβ-tubulin, centrobin, kinases like PLK1 and CHK1, and several 

coiled-coil proteins like pericentrin and CPAP [17-19]. The mechanisms undergirding structural 
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CA in cancer are still poorly defined, although several stimulators of PCM assembly are 

overexpressed in cancer (e.g., PLK1 [20] and CHK1 [21]), cancer cells often harbor 

supernumerary centrioles (which could then recruit excessive PCM), and the PCM expands 

following DNA damage [22]. Centrosomes may also appear to have an increased size but 

actually consist of multiple centrosomes clustered together, called “megacentrosomes” [23] or 

“speckling” (>5 centrosomes clustered together) [24], with individual centrosomes only readily 

discerned by imaging of centrioles. Nearly half of breast tumors exhibit centrosomes with 

abnormal morphology, which may be associated with worse recurrence-free survival (p=0.062 in 

Kaplan-Meier analysis) [24].  

 

Centrosomes in breast tumor cells frequently exhibit augmented volume compared with 

cells from normal breast tissue [24-27]. Furthermore, centrosomes from unstable aneuploid 

breast tumors have ~75% increased volume compared with stable aneuploid breast tumors [26], 

and centrosomal volume correlates with CIN in invasive breast tumors [28]. Centrosomes from 

breast tumor cells of the highly aggressive triple-negative subtype have ~60% greater volume 

than centrosomes from grade-matched non-triple-negative tumor cells [29]. These data suggest 

that larger centrosomes are associated with more aggressive phenotypes in breast cancer. 

Structural CA is found in ductal carcinomas in situ, suggesting it may be an early event in breast 

tumorigenesis [28]. Numerical CA (>1 centrosome before S-phase and >2 centrosomes after S-

phase) can arise from various abnormal processes, such as cytokinesis failure, templated 

overduplication, de novo formation, or cell-cell fusion, such as can be induced by all known 

human oncogenic viruses [30, 31]. Because centrosome number correlates with ploidy in breast 

cancer, cell doubling events are a likely cause of numerical CA in breast cancer, which has been 

estimated as explaining at least 15% of CA (i.e., 15% of cells with ploidy >3 have CA, although 
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because chromosomes may subsequently be lost, this statistic may underrepresent the true 

prevalence of CA caused by doubling events) [24]. The molecules and pathways responsible for 

numerical CA have been comprehensively reviewed elsewhere [30, 32-38]. Average centrosome 

number/cell correlates with tumor grade, Ki67 index, and CIN in breast cancer and is highest in 

the aggressive TNBC subtype (nearly two-thirds of which exhibit >2 centrosomes/cell on 

average), suggesting that numerical CA is associated with aggressive breast cancer features [24]. 

Induction of CA by PLK4 overexpression in MCF10A breast epithelial cells results in decreased 

CD24 and increased CD44 expression, suggesting that CA drives cellular dedifferentiation rather 

than merely co-occurring with it [24]. In a study of n=362 predominantly white breast cancer 

patients with at least 5 years follow up, it was found that numerical CA confers worse overall, 

breast cancer-specific, and recurrence-free survival, although not independent of stage and 

hormone receptor status [24]. Clustering of centrosomes, which circumvents spindle 

multipolarity that jeopardizes cell survival, occurs in more than half of breast tumors and is 

associated with significantly worse overall and recurrence-free survival; however, the impact of 

clustering on these survival outcomes after adjusting for potential confounders is unclear [24]. In 

sum, CA is associated with more aggressive breast cancer features and may adversely impact 

survival, although further study to substantiate this paradigm in multivariable models is required. 

Testing the prognostic value of a gene expression-based CA score in multivariable models is the 

primary goal of the study in the first manuscript in this dissertation (Chapter 2). 

 

1.4 Centrosome clustering and chromosomal instability 

Much in vitro evidence suggests that CA actively drives tumorigenesis rather than merely 

being a consequence of it by promoting phenotypes such CIN which can promote aggressive 

disease features [39], through centrosome clustering. Whether CIN promotes or inhibits 
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tumorigenesis depends on the type of cell (some being inherently more tolerant of DNA damage 

and aneuploidy than others), its genetic background (e.g., pre-existing p53 mutations), the 

specific karyotype that is acquired (e.g., gain vs. loss of an oncogene), and the rate of CIN (with 

moderate levels tolerated better than extreme levels). Overexpression of Aurora Kinase A 

(AURKA), which causes CA, results in CIN that precedes tumor formation in mouse mammary 

epithelium, the incidence of which is increased by a p53+/- background [40]. Single-cell genome 

sequencing has revealed that major aneuploid rearrangements (which can be caused by CA) 

occur early in breast tumor evolution, followed by incremental clonal diversification over time 

[41, 42]. Furthermore, TNBC cells, which exhibit more extensive CA than non-TNBC cells [25], 

have a ~9-13-fold higher mutation rate than ER+ tumor cells and normal breast cells [41]. CA 

fuels tumor evolution by constructing a multipolar spindle in prophase, since supernumerary 

centrosomes are not initially clustered together [43]. This abnormal spindle geometry 

predisposes kinetochores to attach to microtubules emanating from two spindle poles, which is 

termed merotely. Merotelic attachments can arise from syntelic attachments (where sister 

kinetochores attach to microtubules from the same spindle pole), which are converted to 

merotelic attachments to satisfy the spindle assembly checkpoint, or they can be formed from the 

outset. The quantity of microtubules involved in merotelic attachments dictates the behavior of 

the merotelically attached chromosome [44]. If few microtubules are oriented to the “wrong” 

spindle pole (pauci-merotely), chromosome segregation proceeds without apparent impairment. 

If a roughly equal number of microtubules are attached to the right and wrong spindle poles 

(equi-merotely), the chromosome lags during anaphase due to strong, opposite poleward forces, 

but ultimately it tends to segregate to the right cell as a micronucleus. Nevertheless, lagging 

chromosomes can become trapped in and damaged by the cleavage furrow, resulting in breaks 
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and unbalanced translocations [45]. Trapped chromosomes are either removed from the cleavage 

site or the cleavage furrow regresses, resulting in polyploidization, which may itself be 

tumorigenic [46]. Furthermore, even if the lagging chromosome segregates to the right cell as a 

micronucleus, micronuclear DNA replicates aberrantly and asynchronously with primary nuclear 

DNA, resulting in rapid accrual of complex, clustered chromosome rearrangements [47-50]. 

Chromoanasynthesis can occur because micronuclear replication forks are prone to stalling and 

collapse, resulting in template switching and microhomology-mediated break-induced 

replication, respectively, which promote intricate, local chromosome rearrangement. 

Chromothripsis can occur when the cell enters mitosis despite the fact that micronuclear 

chromosomes are still slowly replicating, causing the micronuclear chromosomes to prematurely 

condense and shatter. Rearrangement then occurs when the fragments are stitched back together. 

In addition, under-replication of micronuclear DNA results in copy-number asymmetry. Thus, 

equi-merotely can result in “all-at-once,” catastrophic mutagenesis, which permits rapid 

karyotype evolution and might be an important cause of rapidly-progressing, interval breast 

cancers  such as TNBCs [51]. If many microtubules are attached to the wrong pole (multi-

merotely) [44], the force pulling the chromosome to the wrong pole is strong, causing it to 

missegregate without lagging, which results in aneuploidy. 

  

Although the cell can correct merotelic attachments by converting them to amphitelic 

ones via Aurora B and MPS1 kinases [52], supernumerary centrosomes seem to induce so many 

merotelic attachments that cellular correction mechanisms are overwhelmed, and persistence of 

these errors into anaphase results in missegregation [43]. When centrosomes are clustered into 

two polar groups, the cell is able to complete bipolar mitosis, but chromosomes missegregate 
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more frequently than in cells with only two centrosomes. Accordingly, centrosome number and 

size correlate with CIN and aneuploidy in breast tumors [26]. Massive genomic alterations occur 

in punctuated bursts early in breast tumorigenesis (e.g., due to chromothripsis or chromosome 

missegregation), followed by the gradual accumulation of point mutations over time (e.g., due to 

defective DNA repair and replication) [41]. Thus, it stands to reason that CA is an early event in 

tumorigenesis and may subsequently be suppressed to inhibit further large-scale karyotypic 

changes that may be tumor-inhibiting. Indeed, CA is found in pre-invasive breast carcinomas 

[53, 54], and cells spontaneously lose supernumerary centrosomes over time in culture and 

become chromosomally more stable [43, 55, 56]. However, other studies have found that CA 

increases from breast hyperplasia to tumor [57, 58], so perhaps, at least in some cases, CA is not 

eliminated as the tumor evolves but rather its potentially deleterious effects (e.g., severe CIN, 

slowed proliferation) are suppressed. It has been demonstrated that centrosomes can be excluded 

from the mitotic spindle [59], so they can potentially be borne as passengers without driving 

CIN. A specific tumor’s evolutionary trajectory may allow it to evolve to tolerate CA without 

sacrificing its malignant karyotype, whereas due to the mostly stochastic nature of mutations, 

other tumors may not acquire such mechanisms and thus must suppress CA to avoid prolonged, 

severe CIN. Thus, CA can drive tumor evolution and thus promote intratumor heterogeneity, 

which drives chemoresistance and disease relapse. 

 

1.4.1 KIFC1 

In order to promote intratumor heterogeneity, cancer cells must cluster supernumerary 

centrosomes. The top centrosome clustering protein in a fly screen was the Kinesin-14 family 

member, KIFC1 (also known as HSET), a minus end-directed microtubule motor [60]. It has a 
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critical role in centrosome clustering in some cell lines. Human KIFC1 localizes between 

microtubules within the mitotic spindle [61, 62], as depicted in Figure 2, which exhibits various 

of the molecular players in centrosome clustering. KIFC1 inhibition has no significant impact on 

bipolar anaphase or cell viability in human BJ fibroblasts, which exhibit virtually no CA (∼1%) 

[62], as well as mouse NIH-3T3 fibroblast and human MCF-7 breast cancer cells, which exhibit 

only “low-level” CA [60]. However, in cells with a higher incidence of CA, such as isogenic 

tetraploids of the aforementioned cell lines or MDA-MB-231 cells, bipolar anaphase is inhibited 

and viability compromised by KIFC1 knockdown [63]. These data suggest that the presence of a 

“normonumerary” centrosome complement partly masks the requirement for KIFC1 in spindle 

organization. Although KIFC1 appears to serve no vital function when centrosome number is 

normal, the minus-end-directed motor was originally identified in embryonic mouse brain; 

consequently, the possibility that the protein may serve a non-redundant function during 

embryogenesis cannot be excluded [64]. In certain transformed cell lines, KIFC1 and NuMA 

play overlapping and therefore redundant cellular functions, in which case KIFC1 may be non-

essential for centrosome coalescence [60, 65]. Differential dependence on KIFC1 may indicate 

that various cell types have evolved distinct clustering mechanisms. Owing to the seemingly 

nonessential role of KIFC1 in nontransformed adult human cells, KIFC1 offers immense promise 

as a novel chemotherapeutic target for “centrosome-rich” cancers, including those of the breast, 

prostate, bladder, colon, and brain. It was recently found that KIFC1, in particular, nuclear 

KIFC1 expression, confers worse prognosis in breast cancer. High nuclear KIFC1 expression 

(defined as H-scores above the median) was associated with significantly worse overall and 

progression-free survival after adjusting for age at diagnosis, Nottingham grade, and hormone 

receptor and HER2 statuses [66]. Average nuclear KIFC1 expression was also higher in TNBCs 
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than non-TNBCs. Thus, nuclear KIFC1 is associated with aggressive disease features in breast 

cancer.  

 

1.4.2 Racial disparities in breast cancer 

Given the connection between KIFC1 and aggressive breast cancer, KIFC1 may serve as 

a useful prognostic biomarker in AA breast cancer patients, who suffer a more aggressive disease 

course than white patients. Unfortunately, the AA-white breast cancer outcome gap appears to be 

widening despite the multifarious advancements in breast cancer medicine in recent years. 

According to SEER data from 2012, the age- and delay-adjusted incidences of invasive breast 

cancer among white and AA women were 135.0 and 135.2 (per 100,000), respectively, and the 

age-adjusted mortality rates were 20.7% and 29.4%, respectively [67]. From 1975-2011, AA 

women never had a greater age- and delay-adjusted incidence of invasive breast cancer than 

white women, so the year 2012 represents a regrettable inflection point for the health of AA 

women. Perhaps more disturbingly, between 1975-2012, the age- and delay-adjusted increase in 

the incidence of breast cancer was greater among AA women than white women (44.5% vs. 

25.8%, respectively) and the decrease in age-adjusted mortality was less among AA women than 

white women (0.002% and 34.8%, respectively). These data suggest that improvements in breast 

cancer screening, diagnosis, and treatment disproportionately benefit white women, a trend that 

has been attributed to the “perfect storm” of aggressive tumor biology among AA women 

colliding with healthcare inequality [68]. Rates of hormone receptor-positive HER2-negative 

breast cancer, the least aggressive subtype, are highest among white women, whereas rates of 

TNBC, distant-stage disease, and poorly/undifferentiated grade, which are all associated with 

worse survival, are highest among AA women [69]. Although national efforts have been made to 
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try to mitigate differences in access to healthcare, clinical strategies addressing inherently more 

aggressive AA tumor biology are presently inadequate. Prognostic tools and treatments tailored 

to AA women are urgently needed to attenuate racial breast cancer disparity. We believe that 

assessment of centrosomal profiles and targeting cells with CA represent promising prognostic 

and therapeutic strategies with exceptional potential for AA women with breast cancer. 

 

Intriguingly, the AA/white survival gap did not manifest until the mid-1980’s, when use 

of the estrogen receptor antagonist Tamoxifen became widespread [70]. White women are more 

likely than AA women tend to have hormone receptor-positive breast cancers, affording them 

disproportionate opportunity to take advantage of this revolutionary and generally life-saving 

chemotherapeutic. AA women are ~2-3 times more likely than white women to develop TNBC 

[71], which constitutes ~20-46% of AA cases and for which their lifetime risk is ~2% [71, 72]. 

This breast cancer subtype is characterized by mutations in TP53, which are present in more than 

half of all TNBCs [73]. No targeted therapy is FDA-approved to treat this aggressive breast 

cancer subtype. Instead, cytotoxic chemotherapy is the standard of care, although it achieves a 

pathologic complete response in only ~20% of patients [6]. This aggressive breast cancer 

subtype is usually diagnosed at a more advanced grade and stage, is more likely to distantly 

metastasize, and carries a higher five-year risk of mortality relative to non-TNBCs [5]. Although 

the molecular mechanisms underpinning the greater risk of developing TNBC among AA 

women, sub-Saharan African women have an even greater risk of developing TNBC than AA 

women, strongly implicating ancestry [70].  
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The association of CA with TNBC and TNBC with AA race suggest that, transitively, 

CA may be associated with AA race. Hence, differences in centrosome homeostasis may account 

for some proportion of racial disparity in breast cancer, a novel and potentially impactful idea 

that merits investigation. A study of breast tumor gene expression data from The Cancer Genome 

Atlas provides circumstantial evidence that CA may differ based on race. Specifically, it was 

discovered that PLK1 and Aurora C signaling pathways are upregulated in age- and stage-

matched breast tumors from AAs compared with EAs [74]. Since PLK1 and Aurora C drive CA 

[75-77], AA breast tumors may exhibit increased CA relative to white breast tumors. Whether 

AA breast tumors are enriched in cells with CA is a question of immense clinical importance 

because centrosome clustering inhibitors are available, some of which are FDA-approved drugs 

(e.g., griseofulvin, an antifungal). If AA tumors do exhibit disproportionate CA relative to white 

breast tumors, then therapeutically targeting this organelle-level difference could help to 

attenuate the race-based survival gap. Undoubtedly, a range of other molecular and cellular 

aberrations are involved in racial health disparity; therefore, targeting cells with supernumerary 

centrosomes alone is unlikely to entirely close the gap. That being said, targeting centrosome 

clustering mechanisms is nonetheless a highly appealing therapeutic strategy because these 

mechanisms generally are expendable to normal cells, as they lack CA [38]. Another vital and 

interesting question is whether CA compels breast tumors to evolve into TNBCs, or conversely 

whether the TNBC phenotype engenders CA. Finally, TNBC is a highly heterogeneous disease 

that comprises different molecular subtypes [78, 79]. It is unknown whether differences in CA 

exist between subtypes and, consequently, whether centrosome clustering inhibitors could prove 

superiorly efficacious in certain TNBC subtypes. AA TNBCs tend to belong to the basal-like 1 

subtype, unlike white TNBCs, which tend to belong to the luminal androgen receptor subtype 
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[80]. Thus, it is reasonable to conjecture that the basal-like 1 subtype evinces greater CA than the 

luminal androgen receptor subtype. If CA is more extensive in AA TNBCs, it stands to reason 

that their cells may rely more staunchly on clustering molecules, such as KIFC1, for survival; 

thus, clustering molecules may be particularly valuable prognostic biomarkers and predictors of 

response to declustering drugs in AA TNBC patients. Evaluation of KIFC1 as a prognostic 

biomarker in racially distinct TNBC patients is the goal of the study described in the second 

manuscript in this dissertation (Chapter 3). 

 

1.5 Centrosome declustering 

Too many centrosomes may prove bane or boon to cancer cells depending on whether the 

cell is able to cluster them neatly at opposite poles. Clustering may confer survival advantages 

and promote malignancy by predisposing the cell to CIN via merotelic microtubule–kinetochore 

attachment and genome missegregation [43, 81]. When “low-grade” (i.e., survivable) 

missegregation results in the loss of a gene that promotes faithful chromosome segregation and 

maintenance (or gain of another copy of a gene that disturbs these processes), then the cell 

acquires CIN – essentially, the ability to shuffle its genome until a stable, malignant phenotype is 

procured [82]. By contrast, in the absence of clustering, supernumerary centrosomes result in 

spindle multipolarity, which may cause aneuploidy of a mortally high grade. Alternatively, 

multipolar cells may arrest in mitosis and succumb to death via other mechanisms [43, 83]. 

Given the lethality of the multipolar state, induction of high-grade spindle multipolarity 

constitutes a novel chemotherapeutic strategy whose efficacy holds much promise. Moreover, 

declustering of supernumerary centrosomes to achieve multipolarity should specifically target 

cancer cells and pose no apparent threat to most healthy tissues, unlike the majority of current 
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anticancer remedies, drugs and radiation alike. Understanding the mechanisms by which the few 

known declustering agents operate can pave the way for rational design and synthesis of cancer 

cell-specific and thus “kinder and gentler” chemotherapy. 

 

1.5.1 Griseofulvin 

The nontoxic antifungal, griseofulvin, induces declustering in various human cancer cell 

lines in a concentration-dependent manner [84]. Griseofulvin has garnered much attention for its 

anticancer potential, as it suppresses proliferation of tumor cells at doses that are nontoxic to 

nontransformed cells (viz., normal human fibroblasts and keratinocytes). The antiproliferative 

effect of griseofulvin is correlated with both its antimitotic action and its ability to induce 

declustering. Among several 2′-substituted derivatives of griseofulvin, the one with the highest 

potency also has the greatest ability to induce declustering, suggesting that declustering 

contributes to inhibition of both mitosis and cell proliferation, although non-correlative studies 

are needed to validate this possibility. The precise mechanism by which griseofulvin 

accomplishes declustering remains largely unexamined; however, a novel idea is that attenuation 

of microtubule dynamicity may vitiate clustering ability and thereby execute declustering. 

Griseofulvin suppresses dynamic instability independently of MAPs and does so at doses below 

those necessary to cause microtubule depolymerization [85]. Griseofulvin may therefore realize 

declustering by hampering dynamic instability, a mechanism we suspect is integral to 

centrosome clustering. 
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1.5.2 Noscapinoids 

In line with this notion, bromonoscapine (also known as EM011), a derivative of the 

nontoxic, poppy-derived antitussive, noscapine, suppresses dynamic instability and centrosome 

clustering [83]. This drug simply dampens microtubule dynamic instability without causing 

depolymerization, overpolymerization, or otherwise noticeably impacting microtubule 

ultrastructure. Like griseofulvin, bromonoscapine causes G2/M arrest followed by apoptosis; 

however, bromonoscapine-treated cells also succumb to death by another pathway: multipolar 

mitosis [83]. Synchronized HeLa cells treated with bromonoscapine experience CA followed by 

declustering and then, if able to overcome mitotic block, proceed to divide in an aberrant fashion 

to produce multiple, highly aneuploid, inviable daughter cells. Although bromonoscapine 

induces CA in cancer cells, there is no evidence to date that the drug has any untoward effects on 

centrosome copy number, spindle bipolarity, or the viability of noncancerous cells [86]. As a 

result, it seems that bromonoscapine selectively targets cancer cells for CA and declustering. The 

mechanism by which bromonoscapine attenuates microtubule dynamicity is currently under 

investigation. Some clues to its modus operandi come from the finding that bromonoscapine 

impairs plus-end association of the plus-end-tracking proteins, EB1 and CLIP-170 [83]. Whether 

the failure of these proteins to plus-end track is a cause or consequence of microtubule 

stabilization warrants further investigation. 

 

1.5.3 Phenanthrene-derived PARP inhibitors 

Some phenanthrene-derived poly-ADP-ribose polymerase (PARP) inhibitors also exhibit 

cancer cell-specific declustering [87]. PARP-1 expression is upregulated in various human 
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cancers [88] but downregulated in others [89], suggesting a complex role for this protein in 

tumorigenesis. Treatment of tumors exhibiting CA with the phenanthrene-derived PARP-1 

inhibitor, PJ-34, results in clustering inhibition, spindle multipolarity, and death by mitotic 

catastrophe [90]. By contrast, treatment of normal proliferating cells with high drug 

concentration (i.e., 2–3 times greater than necessary for complete PARP-1 inhibition) for several 

days has no discernible effect on spindle morphology, centrosome integrity, mitosis, or cell 

viability. PARP-1 is involved in detection and base-excision repair of DNA strand breaks, 

initiation of the DNA damage checkpoint, and apoptosis [91], activities not plainly related to 

clustering. However, PARP 1 has been implicated in CA [89]. Furthermore, in their screen for 

clustering proteins in S2 cells, Kwon et al. identified a PARP, tankyrase-1, and a putative PARP-

16 homolog as molecules critical for clustering [60]. Considering that PARP-1 inhibitors induce 

declustering, these drugs evince great potential for cancer cell-specific chemotherapy. 

 

1.5.4 High-grade spindle multipolarity: its power and payoff 

Given the clinical promise presented by declustering agents such as griseofulvin, 

noscapinoids, and PARP-1 inhibitors, the next logical step would be to enhance declustering 

efficacy by designing and quantitatively evaluating analogs of these lead small molecules for 

their ability to trigger death-inducing spindle multipolarity. Small molecules that trigger the most 

robust multipolarity would be desirable to minimize the chances of unwittingly producing any 

progeny that may escape death because they harbor “low-grade” tumor-promoting aneuploidy. A 

fairly common obligate intracellular bacterium, C. trachomatis, which causes the sexually 

transmitted disease chlamydia, may also have the potential to shed some light on mechanisms 

involved in declustering. In host cells, C. trachomatis forms an inclusion that associates closely 
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with the host centrosome, induces CA, and somehow inhibits the cell's clustering machinery 

[92]. Given the bacterium's controversial relationship with cervical cancer [93], much may be 

gained by analyzing its impact on centrosome declustering. 

 

Contrary to present-day cancer treatments, which are notoriously toxic, declustering agents 

offer the prospect of mitigating chemotherapy-related side effects in a groundbreaking way. 

Declustering itself should not have any impact on cells that do not rely on clustering (such as 

normal adult cells), thus providing cancer cell-specific action. As cancer cells rely on centrosome 

clustering for survival, they represent an Achilles' heel in cancer cells, and this vulnerability can 

be exploited for chemotherapeutic ends. Given how frequently centrosomes are amplified in 

cancer cells – and not in adult human cells – agents that induce spindle multipolarity hold 

tremendous promise as the next generation of cancer cell-selective, non-toxic chemotherapeutics. 

An interesting avenue for investigation would be to examine whether cancer cells' increased need 

for centrosome clustering proteins translates into an upregulation of clustering protein expression 

and/or activity, which might make them invaluable cancer biomarkers. Thus, centrosome 

clustering mechanisms are attractive theranostic targets that could hold the key to unraveling, as 

well as subduing, the surreptitious enemy named cancer.  Better understanding of the phenotypes 

imparted by centrosome declustering drugs, such as the grade of multipolarity and its correlation 

with cell death, can reveal mechanistic insights into how their efficacy can be improved, the goal 

of the study described in the third manuscript in this dissertation (Chapter 4). 
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1.6 Mitotic Propensity 

CA and clustering only induce CIN if the cell is actively dividing, when the mitotic spindle 

apparatus is formed and microtubule-kinetochore attachments are made. Thus, the prognostic 

and potentially predictive power of CA and clustering rely, at least in part, on mitotic propensity, 

which may consequently also provide information about ITH. The utility of assaying 

proliferation markers, such as Ki67, in breast cancer is unclear, with studies yielding conflicting 

findings. Indeed, ASCO recommends against assessing Ki67 in early-stage breast cancer patients 

to guide treatment decisions [1]. On the other hand, histological grade, which includes 

quantitation of mitotic figures, is a well-established prognostic and predictive biomarker. 

Determinations of Ki67 index and mitotic count are normally made on separate slides on 

different scales (absolute percentage vs. ranking), which neglects the fact that mitosis is a subset 

of the proliferative cell cycle. This disintegration discards potentially useful information of cell 

cycle kinetics, specifically, what fraction of the proliferative cell pool is actually undergoing 

mitosis. Tumors with a large fraction of actively mitotic cells amongst all proliferating cells (that 

is, a high mitosis:proliferation or M:P ratio) likely pose a more serious threat to survival than 

tumors with a smaller fraction of actively mitotic cells. Testing the clinical utility of a M:P score, 

an indicator of mitotic propensity, in breast cancer prognostication is the subject of the study 

detailed in the fourth manuscript in this dissertation (Chapter 5). 

 

1.7 Drivers of Proliferation: EGFR and HER3 

Proteins that drive proliferation, and thus which impact mitotic propensity, can also offer 

insights into the potential clinical course of breast cancers. Two such potential prognostic 

biomarkers are the ErbB family members epidermal growth factor receptor (EGFR) and human 
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epidermal growth factor receptor 3 (HER3), which promote proliferation and have recently been 

identified as potential drivers of aggressive disease course in TNBC [94, 95]. A majority of 

TNBCs stain positive for EGFR expression [96, 97]. However, the literature is mixed regarding 

the utility of EGFR as a prognostic biomarker in TNBC [96, 98-102], and ASCO currently 

recommends against its assessment to guide adjuvant treatment decisions in early-stage breast 

cancer patients, including TNBC patients [1]. Despite compelling pre-clinical findings, early-

phase clinical trials of EGFR antagonists in unselected TNBC patients failed to show substantial 

activity, and any significant increases in survival time were modest [103]. One possible 

explanation for the disappointing results of EGFR inhibitors in TNBC patients is that EGFR 

antagonism induces compensatory upregulation of HER3 signaling, which causes EGFR 

resistance in pre-clinical models of TNBC [104]. HER3 expression can stratify TNBCs into 

groups with significantly different outcomes [105], but it is not established whether HER3 

expression is an independent prognostic biomarker in TNBC after adjusting for confounding 

variables in multivariable analysis. HER3 exhibits impaired kinase activity compared with other 

ErbB family and must heterodimerize with EGFR or HER2 to effect signaling [106]. Therefore, 

it stands to reason that assessment of HER3 levels in the context of EGFR or HER2 could 

improve its prognostic value. As TNBCs do not overexpress HER2 by definition, insights into 

TNBC prognosis may be greater by considering HER3 and EGFR in combination. Previously, it 

was shown that coexpression of two or more ErbB family members (EGFR, HER2, and/or 

HER3) offers synergistic information about breast cancer prognosis after adjusting for tumor size 

and lymph node status [107]. However, analysis in the TNBC subgroup was not made, nor was 

adjustment for receptor status, so the independent prognostic value of a combined HER3-EGFR 
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score in the setting of TNBC unknown. This research question was addressed by the study 

described in the fifth manuscript in this dissertation (Chapter 5). 

 

1.8 Inhibitors of Proliferation: RARA 

Just as proteins that drive proliferation can provide insights into the course of breast 

cancers, so can proteins that inhibit proliferation, the expression of which should portend a 

favorable prognosis. Recently, the importance of retinoic acid receptor α (RARA) in TNBC due 

to its involvement in suppressing proliferation has come into light. When this nuclear hormone 

receptor heterodimerizes with retinoic X receptors (RXRs), a transcriptional program that 

suppresses cell growth and induces differentiation is launched, although the opposite effect 

occurs when RARA binds to ERα [108]. Thus, in ER-negative cancers, such as TNBCs, RARA 

can put the brakes on proliferation and inhibit tumorigenesis, so RARA express could be a 

biomarker of good prognosis in TNBC and treatment with RARA agonists (such as all-trans 

retinoic acid) could exhibit anti-cancer efficacy. However, RARA is often expressed at lower 

levels in TNBCs than breast cancers of other subtypes [109], in part due to hypermethylation not 

found in hormone receptor-positive breast cancers [110]. As a result, TNBCs tend to resist the 

effects of RARA stimulation [109]. Whether RARA can serve as a predictor of good prognosis 

in TNBCs, a subgroup of which may express RARA (and thus potentially be susceptible to 

RARA agonists and perhaps tamoxifen when coadministered with retinoic acid, as suggested by 

a recent abstract [111]), was the goal of the study in the sixth and final manuscript in this 

dissertation (Chapter 6). 
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Figure 1.1 Numerical and structural centrosome amplification in breast cancer. 
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Figure 1.2 Global centrosome clustering mechanisms 

(a) During interphase, cell adhesion geometry results in establishment of a pattern of cortical 

cues, which are preferentially distributed at the termini of the cell's long axis (black line). (b) 

When the cell rounds up for mitosis, actin-rich retraction fibers retain a memory of the cell's 

interphase adhesion pattern and maintain contacts with the substratum. Microtubule dynamic 

instability increases. (c) During prophase, astral microtubules probe the cytosol, making contacts 

with other microtubules, chromosomes, and the actin-rich cortex. (i) HSET may localize between 

antiparallel astral microtubules. Minus-end directed movement of HSET would thus promote 

centrosome coalescence. (ii) Astral microtubules are captured at kinetochores by the Ndc80 

complex, thus forming kinetochore microtubules. Low-tension attachments activate the SAC, 

which provides time to correct the errors. By contrast, merotelic attachments are poorly sensed 

by the SAC and may persist. (iii) Dynein is delivered to the actin-enriched cortex preferentially 

in the vicinity of cortical cues, which are concentrated at opposite cellular poles. Cortical dynein 

then captures astral microtubules, and minus-end directed movement of dynein exerts tension 
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that pulls centrosomes to the poles. (d) Tug-of-war between kinetochore microtubules and 

chromosomes results in alignment of chromosomes along the metaphase plate, although some 

chromosome lagging occurs, signifying that the cellular milieu is in some way abnormal for 

attachment. Tug-of-war between dynein, HSET, and other microtubule motors results in a net 

force that tends to pull some of the centrosomes to one pole and some to the other. Owing to 

their common final destination, each group of centrosomes forms a cluster. (e) Attainment of the 

requisite tension or stretch across kinetochores satisfies the SAC and initiates anaphase onset. 

Sister chromatids separate, although some missegregation occurs. (f) Daughter cells experience 

low-grade aneuploidy, permitting survival and possibly promoting tumorigenic phenotype 
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2Parts of this chapter have been published verbatim in Scientific Reports 2017 Mar 21;7(1):262. doi: 

10.1038/s41598-017-00363-w as “Prognostic value of CA20, a score based on centrosome amplification-associated 

genes, in breast tumors.” 

2 PROGNOSTIC VALUE OF CA20, A SCORE BASED ON CENTROSOME 

AMPLIFICATION-ASSOCIATED GENES, IN BREAST TUMORS2 

 

2.1 Abstract 

Centrosome amplification (CA) is a hallmark of cancer, observable in 75% of breast 

tumors. CA drives aggressive cellular phenotypes such as chromosomal instability (CIN) and 

invasiveness. Thus, assessment of CA may offer insights into the prognosis of breast cancer and 

identify patients who might benefit from centrosome declustering agents. However, it remains 

unclear whether CA is correlated with clinical outcomes after adjusting for confounding factors. 

To gain insights, we developed a signature, “CA20,” comprising centrosome structural genes and 

genes whose dysregulation is implicated in inducing CA. We found that CA20 was a significant 

independent predictor of worse survival in two large independent datasets after adjusting for 

potentially confounding factors. In multivariable analyses including both CA20 and CIN25 (a 

gene expression-based score that correlates with aneuploidy and has prognostic potential in many 

types of cancer), only CA20 was significant, suggesting CA20 captures the risk-predictive 

information of CIN25 and offers information beyond it. CA20 correlated strongly with CIN25, 

so a high CA20 score may reflect tumors with high CIN and potentially other aggressive features 

that may require more aggressive treatment. Finally, we identified processes and pathways 

differing between CA20-low and high groups that may be valuable therapeutic targets.



 

 

2.2 Introduction 

CA is a hallmark of cancer observable in 75% of breast tumors [1] that promotes invasive 

behavior [2] and enhanced migratory ability [3] in cancer cells. In addition, the presence of 

supernumerary centrosomes results in a transient multipolar intermediate in mitosis that 

promotes merotelic microtubule-kinetochore attachments [4]. To resolve spindle multipolarity 

and thereby avoid mitotic catastrophe or multipolar mitosis, which could lead to cell death, the 

cell clusters centrosomes into two polar groups, allowing bipolar division to occur; however, 

attachment errors persist in the spindle and chromosome missegregation occurs. CIN allows the 

cell to sample the fitness landscape and acquire a more aggressive karyotype and also promotes 

intratumor heterogeneity, which fosters chemoresistance [5]. It was recently demonstrated that 

transient induction of CA in p53-deficient epidermis causes aneuploidy and spontaneous skin 

cancer development in mice [6]. Given that CA promotes tumorigenesis and aggressive 

phenotypes and is common among breast tumors, it may have value as a prognostic biomarker in 

breast cancer and could guide treatment decisions.  

 

Although several groups have performed semi-quantitative assessments of CA in patient 

tumors using microscopy, few have correlated CA with clinical outcomes, and none of these data 

are in the public domain. It would thus be valuable to be able to assess CA in publicly available 

datasets, such as microarray datasets, many of which have clinicopathologic and outcome 

annotation for breast cancer patients. Our lab previously developed a four-gene signature, which 

includes two genes for centrosome structural proteins and two genes whose overexpression 

induces CA, called the Centrosome Amplification Index (CAI), which we found stratifies breast 

cancer patients into two groups with significantly different overall survival (OS) in Kaplan-



 

 

Meier analysis [3]. Another group developed a Centrosome Index (CI), comprising four 

centrosome structural genes, that correlates with CA and is an independent predictor of poor OS 

in multiple myeloma patients in multivariable analysis [7, 8]. Given that CA can be caused by 

dysregulation of the expression of many different genes, there is a need to define a more 

comprehensive gene signature that may be able to identify a greater proportion of tumors with 

CA, which may arise through a variety of molecular pathways. Thus, in the present study, we 

define a gene expression signature, “CA20,” that includes 19 genes that have been 

experimentally demonstrated to induce CA when dysregulated, many of which also have known 

structural roles in the centrosome (such as SASS6, the primary component of the centriolar 

cartwheel structure [9] and CEP152, a key pericentriolar material component [10], both of which 

are among the most abundant proteins in the centrosome in several cell lines [11]), along with 

TUBG1, which encodes the most abundant centrosomal protein and is primarily responsible for 

microtubule nucleation, key to centrosomal function [11] (see Table 2.1 for details regarding 

CA20 component genes). Our objective was to test the prognostic value of CA20 after adjusting 

for potentially confounding factors in multiple breast cancer cohorts and to explore processes, 

pathways, and oncogenic signatures that are associated with a high CA20 score. Because CA 

causes CIN, we were also interested in comparing the prognostic value of CA20 with that of the 

CIN score “CIN25,” which correlates with total functional aneuploidy and predicts worse 

outcomes in a variety of cancers [12], determining which of these two scores has the most 

significant impact on outcomes when included together in multivariable models of survival, and 

comparing processes, pathways, and oncogenic signatures that are enriched in tumors with high 

CA20 and CIN25 scores.  

    



 

 

2.3 Results 

We tested the ability of CA20 and CIN25 to risk-stratify breast cancer patients in two 

datasets, the METABRIC and TCGA datasets, comprising n=1,969 primary breast cancers with 

breast cancer-specific survival (BCSS) annotation and n=524 primary invasive breast cancers 

with OS annotation, respectively. The METABRIC dataset was split into discovery and 

validation sets. The TCGA dataset was not split because power analysis suggested the subsets 

would potentially be too small, so bootstrapping was instead used to obtain more reliable 

estimates of population parameters. 

  

2.3.1 METABRIC dataset 

Stratification was conducted according to average CA20 and CIN25 scores found in the 

discovery set as well as optimal cutpoints in CA20 and CIN25 scores found in the discovery set 

based on the log-rank test. In Kaplan-Meier plots, stratification into high- and low-BCSS groups 

based on the average and optimal cutpoints in CA20 and CIN25 scores was significant in both 

the discovery and validation sets (p<10-6 for all, Figure 2.1; see Tables 2.2 and 2.3 for 

descriptive statistics of study datasets). When both CA20 and CIN25 (both stratified by the 

average score) were entered as covariates in full multivariable models using discovery set data, 

only CA20 (stratified by the average score) appeared in the final model, and it was a significant 

predictor of BCSS (Table 2.4). In the validation set too, CA20 (stratified by the average score) 

remained a significant predictor in the final model. Common significant covariates between 

discovery and validation set final models included tumor stage and chemotherapy. When both 

CA20 and CIN25 (both stratified by the optimal cutpoint) were entered as covariates in full 

multivariable models using discovery set data, both covariates appeared in final models but only 



 

 

CA20 (stratified by the optimal cutpoint) significantly affected BCSS (Table 2.5). In the 

validation set, CA20 (stratified by the optimal cutpoint) remained a significant predictor, 

whereas CIN25 (stratified by the optimal cutpoint) did not significantly impact BCSS. Common 

significant covariates between discovery and validation final multivariable models of BCSS 

included tumor stage and chemotherapy, as was found when stratifying by average signature 

scores. Thus, CA20 (whether stratified by the average score or optimal cutpoint) is a significant 

predictor of BCSS after adjusting for stage and chemotherapy, whereas CIN25 (whether 

stratified by the average score or optimal cutpoint) is not an independent predictor in these 

models.  

 

CA20 score was highly correlated with CIN25 score (ρ=0.93, p<10-6), which may reveal 

that breast tumors with high CA20 scores have high levels of CIN. Although breast cancer 

subtype was not a common independent predictor of outcomes, we were interested to test 

whether CA20 and CIN25 scores differed grade-wise between TNBCs and non-TNBCs, which 

differ in aggressiveness. No grade 1 TNBCs were present in the dataset for comparison, but we 

found that average CA20 and CIN25 scores were higher in TNBCs than non-TNBCs in both 

grade 2 and 3 tumors per two-tailed independent samples t-tests, equal variances assumed 

(p<0.001 for all) (Figure 2.2), consistent with the more aggressive behavior of TNBCs compared 

with non-TNBCs and mirroring what we previously found for CA as assessed by microscopy 

[13]. 

 



 

 

2.3.2 TCGA dataset 

To confirm the prognostic value of CA20 in a separate cohort, we analyzed the TCGA 

breast dataset. Stratification was conducted according to the average CA20 and CIN25 scores 

found in the entire dataset as well as optimal cutpoints in CA20 and CIN25 found in the entire 

dataset based on the log-rank test. In Kaplan-Meier plots, stratification into high- and low-OS 

groups based on CA20 (average and optimal cutpoints) was significant (p=0.025 and p=0.024, 

respectively), with high CA20 conferring a worse prognosis. For comparison, stratification by 

CIN25 (optimal cutpoint) was significant (p=0.029), whereas stratification by CIN25 (average 

cutpoint) was not (Figure 2.3). In stage-adjusted models, high CA20 scores (based on both 

average and optimal cutpoints) were associated with 2.72- and 2.79-fold worse OS (bootstrap-

p=0.016 and 0.008, respectively). For comparison, in stage-adjusted models, high CIN25 scores 

(based on both average and optimal cutpoints) were also associated with worse OS, HR=2.31 and 

4.65 (bootstrap-p=0.026 and 0.035, respectively). However, as in the METABRIC dataset, when 

both CA20 and CIN25 (stratified by average or optimal cutpoints) were entered along with stage 

in full models, following backward variable selection (based on an α=0.10 removal criterion), 

only CA20 and stage remained as predictors in full models (CA20 [stratified by average 

cutpoint]: HR=2.72, p=0.010; CA20 [stratified by optimal cutpoint]: HR=2.79, p=0.010), and 

they remained significant following bootstrapping (Table 2.6).  

 

Although age at diagnosis was not a significant predictor of BCSS in the METABRIC 

dataset in final models, we recognized the possibility that it could confound analyses of OS in 

this independent dataset. We thus refit multivariable models entering CA20 and CIN25 

(stratified by average or optimal cutpoints), AJCC stage, and age at diagnosis. In final models, 



 

 

CA20 remained a significant predictor, along with stage and age but not CIN25, and the hazard 

associated with high CA20 was even greater than in models not adjusted for age (CA20 

[stratified by average cutpoint]: HR=3.82, p=0.001; CA20 [stratified by optimal cutpoint]: 

HR=3.67, P=0.002); furthermore, significance was retained after bootstrapping (Table 2.7). 

Because all the cases in the multivariable models were annotated with age at diagnosis, our 

sample size and, thus, statistical power were not diminished. Therefore, the prognostic value of 

CA20 adjusting for stage was upheld in this separate dataset adjusted for confounding variables, 

suggesting broad clinical utility for this score to predict outcomes in female breast cancer 

patients. Similar to our findings in the METABRIC dataset, in the TCGA dataset CA20 was very 

strongly correlated with CIN25 (ρ=0.95, p<10-6), suggesting that breast tumors with high CA20 

scores also have high levels of CIN. 

 

Finally, we were interested in exploring differences in biological processes, molecular 

pathways, and oncogenic signatures between CA20-high and low groups (defined by the average 

CA20 value), which may reveal potentially actionable biology. To this end, we performed Gene 

Set Enrichment Analysis (GSEA) [14] using the TCGA dataset and explored differentially 

enriched biological processes, Reactome pathways, and oncogenic signatures. For the CA20-

high group, 262 biological process gene sets were enriched at false discovery rate (FDR) q<0.05. 

Among the most significant results, the CA20-high group was enriched in DNA repair processes, 

the DNA integrity checkpoint, many cell cycle processes (e.g., mitotic nuclear division, cell 

cycle phase transition, cell division, spindle assembly, regulation of sister chromatid segregation, 

mitotic spindle organization), and regulation of microtubule polymerization/depolymerization. 

Regarding Reactome pathways, the CA20-high group was enriched in 96 gene sets at FDR 



 

 

q<0.05. Top enriched Reactome pathways in the CA20-high group exhibited much overlap with 

biological processes, including DNA repair and cell cycle pathways. For the purposes of 

comparison, we also compared biological processes and Reactome pathways between CIN25-

high and low groups (stratified by the average CIN25 score), and it was found that results 

overlapped greatly with those from the CA20 analyses. Regarding enriched biological processes, 

only one gene set found in the CA20-high group (<1% of gene sets) was not found in the CIN25-

high group, and only 14 gene sets found in the CIN25-high group (~5% of gene sets) were not 

found in the CA20-high group. Similarly, only four Reactome pathways enriched in the CA20-

high group and four in the CIN25-high group differed (~4% of gene sets). We also explored 

differences in oncogenic signature gene sets. We found that the CA20-high group was enriched 

in 13 such gene sets, including genes upregulated upon overexpression of E2F1, stimulation with 

sonic hedgehog (SHH) protein, and loss of retinoblastoma protein (pRb). The CIN25-high group 

was enriched in 12 oncogenic signature gene sets, all of which were found in the CA20-high 

group. These data suggest the CA20- and CIN25-high groupings may capture rather similar 

molecular tumor profiles. Finally, we tested whether the CIN25-high group was enriched in the 

centrosome gene ontology cellular component, and we found that it was at FDR q<0.001 

(Normalized Enrichment Score = 2.29), suggesting this group is enriched in centrosomal genes, 

consistent with the strong correlation we found between CA20 and CIN25 scores.  

 

2.4 Discussion 

CA is a well-characterized hallmark of cancer [15] especially breast cancer. Indeed, 

≥75% of breast tumors (ductal carcinomas in situ, adenocarcinomas, invasive ductal carcinomas, 

or breast tumors not otherwise specified) exhibit CA [1]. Because CA promotes CIN and other 



 

 

aggressive phenotypes, it may be a driving force in tumorigenesis and tumor evolution that can 

offer insights into the clinical course of breast tumors, but only a few studies have investigated 

the potential prognostic value of CA. Our lab previously developed a four-gene signature, the 

CAI, which we demonstrated could stratify n=162 breast cancer patients into two groups with 

significantly different clinical outcomes in Kaplan-Meier analysis, with high CAI based on an 

optimal cutpoint correlating with worse OS [3]. In the same study, we also found a non-

significant trend among n=120 breast cancer patients towards worse progression-free survival 

(PFS) in Kaplan-Meier analysis for tumors with high levels of CA (defined as the sum of the 

percentage of cells with >2 centrosomes and the percentage of cells with abnormally voluminous 

centrosomes based on microscopy, using an optimal cutpoint). Another study of n=362 breast 

tumors found that large centrosomal size was not associated with OS or recurrence-free survival 

(RFS) after adjusting for tumor stage and subtype in multivariable Cox models; however, it is not 

known whether 2D (i.e., cross-sectional) measurements reliably estimate centrosome size, given 

that centrosomes are 3D structures, and numerical CA was not considered in multivariable 

analyses.[16] In the same study, however, Kaplan-Meier analyses revealed that high numerical 

CA (defined as >2 centrosomes per cell on average) was associated with worse BCSS, OS, and 

RFS. Thus, there is limited evidence that CA may be associated with worse outcomes in breast 

cancer, but it is unclear what impact CA has on survival after adjusting for potential confounders 

and what biological processes and pathways could be targeted therapeutically in tumors with 

high levels of CA. 

 

To shed light on these questions, we developed the CA20 score based on genes encoding 

centrosome structural proteins and genes that have been demonstrated to induce CA following 



 

 

experimental perturbations in their expression. As we found for CA previously [13], CA20 (and 

CIN25) were higher in the aggressive TNBC subtype than non-TNBCs in grade-matched 

comparisons. In analyses of two large and well-annotated breast cancer datasets (the 

METABRIC and TCGA breast datasets), we found that high CA20 score was associated with 

worse BCSS and OS after adjusting for potentially confounding factors, suggesting that CA20 

could be a useful clinical tool to identify breast cancer patients at greater risk of poor outcomes. 

When both CA20 and CIN25 were factored into multivariable models, only CA20 was 

significantly associated with outcomes. This finding suggests that when CA20 is accounted for 

CIN25 no longer holds prognostic value. Given that we found a very strong correlation between 

CA20 and CIN25 in breast tumors and it has been shown by others that CA and CIN are 

correlated in breast tumors [16], it is tempting to speculate that CA20 captures CIN, thus 

rendering CIN25 redundant, and perhaps also captures other aggressive phenotypes not 

encompassed by CIN25 that are consequences of CA. Given that CIN engenders karyotypic 

diversity within tumors, we assert that CA20 may perhaps even serve as an indirect measure of 

intratumor heterogeneity in breast tumors. The overlap in biological processes, Reactome 

pathways, and oncogenic signatures that are enriched in CA20- and CIN25-high groups is 

striking given that the two signatures only share one gene in common (CDK1) and suggests that 

they reflect relatively similar molecular tumor biology (namely, potential activation of DNA 

repair pathways, perhaps to cope with DNA damage occurring due to chromosome 

missegregation, enhanced cell cycle kinetics and microtubule dynamics, and activated E2F1 

signaling), although perhaps with subtle but prognostically important qualitative and quantitative 

distinctions. 

 



 

 

An exciting avenue for future research would be to test whether breast tumors with high 

CA20 are more susceptible to E2F1 or SHH inhibitors, drugs targeting DNA repair mechanisms 

(e.g., PARP inhibitors), chemotherapeutics that target the cell cycle (e.g., taxanes), or 

centrosome declustering drugs (such as griseofulvin, noscapinoids, PJ34, and KifC1/HSET 

inhibitors), which preferentially eliminate cells with CA by forcing them to construct a 

multipolar spindle during mitosis [17-21]. Because most normal cells do not have amplified 

centrosomes, declustering drugs exhibit low to no apparent toxicity to them. It will also be 

important to validate (through careful microscopy and rigorous quantitation) that CA20 scores 

indeed correlate with CA in breast tumors in future studies. 

 

2.5 Methods 

2.5.1 Dataset details and power analyses 

Microarray datasets were chosen based on their availability in Oncomine [22] and the 

presence of annotation regarding survival time (measured in days) and statuses and signature 

gene expression levels. Three microarray datasets met these criteria, including the METABRIC 

[23], TCGA [24], and Esserman [25] breast datasets; however, power analysis suggested the 

Esserman dataset was too small, so it was excluded from analyses (see “Esserman dataset” 

below). The clinical data and log2 median-centered signature gene expression levels of the 

METABRIC and TCGA datasets were thus downloaded from Oncomine. METABRIC dataset: 

Normal breast, benign breast neoplasms, and cases without BCSS annotation were excluded 

from analyses, resulting in a sample size of n=1,969 primary breast cancers. A majority of the 

cases were annotated for AJCC stage and whether adjuvant chemotherapy was given. The dataset 

was then split randomly (via random number assignment) and approximately equally into 



 

 

discovery and validation sets (n=985 and n=984, respectively; Table 2.2, descriptive statistics). 

Neither significant differences nor non-significant trends (i.e., 0.05<p<0.10) were found between 

these two sets for continuous variables (age, CA20 score, and CIN25 score; 2-tailed t-tests), 

ordinal variables (Nottingham grade, tumor stage, CA20 group [optimal], CA20 group [average], 

CIN25 group [optimal], and CIN25 group [average]; Mann-Whitney tests), or nominal variables 

(breast cancer subtype, chemotherapy, radiotherapy, and hormone therapy; Chi-square tests) 

(data not shown). TCGA dataset: Normal breast specimens, metastases, and male breast cancers 

were excluded from analyses, resulting in a sample size of n=524 primary invasive breast 

cancers (Table 2.3, descriptive statistics). OS annotation was incomplete, so we supplemented it 

with clinical data downloaded from the TCGA data portal, after which all cases had OS time and 

status. 395 cases had AJCC stage annotation, but information about adjuvant chemotherapy was 

not available. We analyzed the METABRIC data to estimate whether this sample size would 

potentially achieve statistical power≥0.80 in a study of the effect of CA20 on OS in stage-

adjusted models with an average follow-up time of approximately 3 years, as in the TCGA study. 

Among METABRIC patients with invasive breast cancers (n=1,030), the overall probability of 

an event (death) within 3 years was pE=0.12, the probability of belonging to the CA20 (optimal)-

high group was pH=0.70, and the relative risk of death was HR=2.34. Based on these data, it was 

estimated that a sample size of n=339 would be needed to detect a HR=2.34 with a Type I error 

rate of α=0.05 and Type II error rate of β=0.80, based on the formula to calculate the one-sided 

sample size in Cox proportional-hazards models [26]: 𝑛 =
1

𝑝𝐴𝑝𝐵𝑝𝐸
(
𝑧1−𝛼+𝑧1−𝛽

ln(𝜃)−ln(𝜃0)
)2. Thus, we 

elected not to split the data into discovery and validation sets to preserve statistical power0.80 

and rather implemented bootstrapping methods to more reliably estimate population parameters. 

Esserman dataset: This dataset includes n=120 primary breast carcinomas with OS annotation 



 

 

and expression values for all the signature gene probes selected. Average follow up time was ~4 

years, so we based power analysis on the METABRIC data 4-year OS probabilities for invasive 

breast cancer patients, where pD=0.18 and pH=0.70. Based on these criteria and using the formula 

as in the power analysis for the TCGA data, we estimated that n=227 patients would be needed 

to detect a HR=2.34 with a Type I error rate of α=0.05 and a Type II error rate of β=0.80, 

suggesting that the Esserman dataset would be too small for our purposes. Thus, it was excluded 

from analyses. 

 

2.5.2 Gene signatures and microarray probe selection 

A CA gene signature was derived by searching Pubmed (September, 2015) using the 

search term “centrosome amplification” and filtering for experimental studies wherein 

manipulation of a specific gene’s expression was found to induce CA, resulting in a set of 19 

genes: AURKA [27 28], CCNA2 [29], CCND1 [30], CCNE2[31, 32], CDK1[33], CEP63 [33], 

CEP152 [34], E2F1[35], E2F2[35], LMO4[36], MDM2[37, 38], MYCN[38], NDRG1[39], 

NEK2[40], PIN1[41], PLK1[42, 43], PLK4[34, 44], SASS6[45], and STIL [46]. In addition, the 

gene encoding the primary centrosome structural protein, TUBG1, was included, resulting in a 

set of 20 genes. The CIN25 gene signature is described in Carter et al. [12] For both datasets, 

many genes were represented by multiple probes. To select the probe most likely to represent the 

gene, probes were filtered by rational selection processes that differed by dataset since they are 

based on different platforms (the Illumina HumanHT-12 V3.0 R2 Array for the METABRIC 

dataset and the Agilent custom 244K for the TCGA dataset). The CA20 and CIN25 scores were 

calculated as the sum of the normalized (log2 median-centered) expression levels of the signature 

genes. METABRIC dataset: Probes were filtered by preferentially selecting those targeting all 



 

 

isoforms (A designation). For some genes, only probes targeting some isoforms (S designation) 

were available. In addition, probes mapping only to the gene of interest according to a BLAST-

like Alignment Tool (BLAT) search against the reference genome GRCh38 using Ensembl [47] 

were preferentially selected. When multiple probes mapped to the gene of interest, the average 

expression level was calculated to represent that gene. TCGA dataset: In the absence of A and S 

designations, probes were filtered by performing a BLAT search as for the METABRIC data, 

also with averaging of normalized expression levels when multiple probes mapped to the gene of 

interest. Scores exhibited negative values, so for ease of interpretation, scores were converted to 

non-negative values by adding the minimum score value to all scores, which did not alter the 

results of statistical analyses.  

 

2.5.3 Survival analyses 

Stratification of cases into high- and low-survival groups both by the average (as 

performed in the CIN25 analyses previously [12]) and by an optimal cutpoint (based on the most 

significant log-rank test statistic found using Cutoff Finder [48]) per the Kaplan-Meier method. 

Prior to fitting Cox proportional-hazards models, the proportional-hazards assumption was tested 

by defining each covariate as a function of time and entering this time-dependent term into a 

simple Cox model and determining whether there was a significant hazard in the discovery and 

validation sets. For no covariate was the assumption violated (data not shown). Pearson 

correlation (2-tailed) was performed to determine the correlation between CA20 and CIN25 

scores. IBM SPSS Statistics version 21 was used for all analyses, and p<0.05 was considered 

statistically significant. METABRIC dataset: Multivariable Cox models were fit using both 

discovery set data via backward-stepwise elimination of covariates (subject to an α=0.10 removal 



 

 

criterion) and validation set data by entering final discovery model covariates. Full multivariable 

discovery model covariates included age at diagnosis (years), Nottingham grade (1, 2, or 3), 

AJCC stage (0, I, II, or III/IV, the latter two categories combined due to the relatively small 

number of stage IV cases), breast cancer subtype (luminal: ER and/or PR+, HER2-; HER2-

enriched: ER/PR+/-, HER2+; triple-negative: ER/PR/HER2-), chemotherapy (yes/no), hormone 

therapy (yes/no), and radiotherapy (yes/no). Also, depending on the analysis, the full model 

either contained CA20 and CIN25 categorized based on the average score as found in the 

discovery set or CA20 and CIN25 categorized based on the optimal cutpoint as found in the 

discovery set. TCGA dataset: To confirm the prognostic ability of CA20 in an independent 

dataset, multivariable Cox models were fit using TCGA data by entering CA20 and CIN25 

(average or optimal, depending on the model) and AJCC stage (categorized as I/II vs. III/IV due 

to relatively low numbers of stage I and IV patients) into full models (chemotherapy information 

was not available). Covariates were then subjected to backward-stepwise elimination (α=0.10 

removal criterion). Multivariable models were also fit including age at diagnosis (years). To 

more robustly estimate population parameters, the final model covariates were entered into Cox 

models with simple bootstrapping (1,000 iterations).  

 

2.5.4 Grade-wise comparison of average CA20 and CIN25 between TNBCs and non-TNBCs 

 Using the METABRIC dataset, as grade information was not available for the TCGA 

dataset, we compared average CA20 and average CIN25 between TNBCs and non-TNBCs 

grade-wise using two-tailed independent samples t-tests, guided by F-test results, and p<0.05 

was considered statistically significant. 



 

 

2.5.5 Gene Set Enrichment Analyses 

Normalized (level 3) TCGA Hi-Seq data downloaded from the TCGA Data Portal were 

used for GSEA, although CA20 and CIN25 groups were specified based on average scores 

obtained from normalized Oncomine data. The Broad Institute GESA software version 2.2.3 was 

used. All 20,530 genes in the dataset were used. With the exception of not collapsing the dataset 

to gene symbols, all other default settings were used. Gene set databases included biological 

process gene ontologies (c5.bp.v5.2.symbols), Reactome pathways 

(c2.cp.reactome.v5.2.symbols), and oncogenic signatures (c6.all.v5.2.symbols). For the CIN25 

analysis, the centrosome gene set was also used (http://amigo.geneontology.org/amigo/term/ 

GO:0005813). FDR q<0.05 was considered statistically significant. 
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Table 2.1 CA20 genes 

 

Gene Experimental manipulation Centrosomal phenotype Possible mechanism References 

AURKA  

Overexpression of AURKA in 

mouse NIH 3T3 cells and human 

MCF10A breast cells; 

overexpression of AURKA in 

synchronized HeLa cells 

Increased proportion of 

cells with >2 centrosomes 
Tetraploidization 

Zhou et al., 1998; 

Meraldi et al., 2002 

CCNA2  

Knockdown of CCNA2 during 

DNA damage-induced G2 arrest 

in murine embryonic fibroblasts 

Abrogation of centrosome 

overduplication (cells with 

>2 centrosomes) 

Centrosome 

overduplication 
Hanashiro et al., 2008 

CCND1  
Overexpression of CCND1 in 

hepatocytes 

Increased proportion of 

cells with >2 centrosomes 

Centrosome 

overduplication 
Nelsen et al., 2005 

CCNE2  

Overexpression of CCNE2 and 

siRNA of TP53 in bladder cancer 

cells 

Increased proportion of 

cells with >2 centrosomes 

Centrosome 

overduplication 

Kawamura et al., 

2004; Nelsen et al., 

2005 

CDK1  
Overexpression of CDK1 in 

osteosarcoma cells 

Increased proportion of 

cells with >2 centrosomes 

Centrosome 

overduplication 
Loffler et al., 2011 

CEP63  
Overexpression of CEP63 in 

osteosarcoma cells 

Increased proportion of 

cells with >2 centrosomes 

Centrosome 

overduplication 
Loffler et al., 2011 

CEP152  
Overexpression of CEP152 in 

osteosarcoma cells 

Increased proportion of 

cells with >2 centrosomes 

Centrosome 

overduplication 

Dzhindzhev et al., 

2010 

E2F1  
Overexpression of E2F1 in 

mammary epithelial cells 

Increased proportion of 

cells with >2 centrosomes 
Binucleation Lee et al., 2014 

E2F2  
Overexpression of E2F2 in 

mammary epithelial cells 

Increased proportion of 

cells with >2 centrosomes 
Binucleation Lee et al., 2014 

LMO4  
Overexpression of LMO4 in 

breast cancer cells 

Increased proportion of 

cells with >2 centrosomes 

Centrosome 

overduplication 

Montañez-Wiscovich 

et al., 2010 

MDM2  

Overexpression of MDM2 in 

murine fibroblasts; 

pharmacologic inhibition of 

Increased proportion of 

cells with >2 centrosomes; 

Centrosome 

overduplication 

Carroll et al., 1999; 

Slack et al., 2007 



 

 

MDM2-p53 interaction in 

MYCN-overexpressing cells 

subjected to ionizing radiation 

decreased proportion of 

cells with >2 centrosomes 

MYCN  

Overexpression of MYCN in 

neuroblastoma and p53+/+ colon 

cancer cells and subjection to 

ionizing radiation 

Increased proportion of 

cells with >2 centrosomes 

Centrosome 

overduplication 
Slack et al., 2007 

NDRG1  

Knockdown of NDRG1 in breast 

epithelial and colorectal cancer 

cells 

Increased proportion of 

cells with >2 centrosomes 

Suppression of 

centrosome 

overduplication 

Croessmann et al., 

2015 

NEK2  
Overexpression in breast cancer 

cells 

Increased proportion of 

cells with >2 centrosomes 
Binucleation 

Harrison Pitner et al., 

2013 

PIN1  

Overexpression of PIN1 and 

induction of S-phase arrest in 

murine embryonic fibroblasts and 

overexpression of PIN1 in 

mammary epithelial cells 

(transgenic mice) 

Increased proportion of 

cells with >2 centrosomes 

Centrosome 

overduplication 
Suizu et al., 2006 

PLK1 

Knockdown of PLK1 in S phase-

arrested osteosarcoma cells; 

constitutive activation in S phase-

arrested osteosarcoma cells 

Increased proportion of 

cells with >2 centrosomes 

or >4 centrioles 

Centrosome/centriole 

overduplication 

Liu et al., 2002; 

Loncarek et al., 2010 

PLK4  
Overexpression of PLK4 in 

osteosarcoma cells 

Increased proportion of 

cells with >2 centrosomes 

or >4 centrioles 

Centriole/centrosome 

overduplication 

Habedanck et al., 

2005; Dzhindzhev et 

al., 2010 

SASS6 
Overexpression of SASS6 in 

colorectal cancer cells 

Increased proportion of 

cells with >2 centrosomes 

Centrosome 

overduplication 
Shinmura et al., 2015 

STIL  
Overexpression of STIL in 

osteosarcoma cells 

Increased proportion of 

cells with >4 centrioles 

Centriole 

overduplication 
Tang et al., 2011 

TUBG1 
Most abundant centrosome 

structural protein 

Marker for centrosome 

amplification 

Excessive accumulation 

or increased copy 

number of centrosomes 

Bauer et al., 2016 



 

 

Table 2.2 Descriptive statistics for the METABRIC breast discovery and validation sets 

 

Variable 

Level (categorical 

variables) or 

Statistic (continuous 

variables) 

Discovery Validation 

Nottingham 

grade 

1 80 86 

2 404 363 

3 464 486 

Missing 37 51 

Tumor stage 

0 230 262 

I 188 174 

II 299 274 

III 45 41 

IV 4 6 

Missing 219 229 

Chemotherapy 

No 764 790 

Yes 221 196 

Missing   

Hormone 

therapy 

No 378 375 

Yes 607 611 

Missing 0 0 

Radiotherapy 

No 406 399 

Yes 579 587 

Missing 0 0 

Subtype 

Luminal 647 623 

TNBC 126 124 

HER2 207 228 

Missing 5 11 

CA20 group 

(average) 

Low 234 243 

High 751 743 

Missing 0 0 

CIN25 group 

(average) 

Low 337 329 

High 648 657 

Missing 0 0 

CA20 group 

(optimal) 

Low 274 278 

High 711 708 

Missing 0 0 

CIN25 group 

(optimal) 

Low 405 402 

High 580 584 

Missing 0 0 

Mean 60.8 61.5 



 

 

Age at diagnosis 

(years) 

Median 61.28 62.56 

Standard Deviation 13.01 12.92 

Minimum 21.93 26.36 

Maximum 92.14 96.29 

Number Missing 0 0 

CA20 

Mean 30.46 30.33 

Median 30.08 29.86 

Standard Deviation 5.74 5.83 

Minimum 17.27 17.7 

Maximum 49.25 48.45 

Number Missing 0 0 

CIN25 

Mean 53.3 53.05 

Median 52.84 52.9 

Standard Deviation 13.08 13.45 

Minimum 22.16 20.9 

Maximum 90.67 88.46 

Number Missing 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2.3 Descriptive statistics for the TCGA breast dataset 

Variable 

Level (categorical 

variables) or Statistic 

(continuous variables) 

Value 

AJCC stage 

I 49 

II 241 

III 92 

IV 13 

Missing 129 

CA20 group 

(average) 

Low 240 

High 284 

Missing 0 

CA20 group 

(optimal) 

Low 238 

High 286 

Missing 0 

CIN25 group 

(average) 

Low 256 

High 268 

Missing 0 

CIN25 group 

(optimal) 

Low 514 

High 10 

Missing 0 

Age at diagnosis 

(years) 

Mean 58.11 

Median 59 

Standard Deviation 13.19 

Minimum 26 

Maximum 90 

Number missing 74 

CA20 score 

Mean 23.66 

Median 24.57 

Standard Deviation 8.91 

Minimum 0 

Maximum 45.7 

Number missing 0 

CIN25 score 

Mean 45.37 

Median 46.07 

Standard Deviation 16.71 

Minimum 0 

Maximum 88.52 

Number missing 0 



 

 

Table 2.4 Final multivariable Cox proportional-hazards models of breast cancer-specific 

survival including CA20 and CIN25 (based on average scores) in full models using METABRIC 

data 

 

  
Discovery set   Validation set 

Covariates p-value HR 

95% CI for HR  

p-value HR 

95% CI for HR 

Lower Upper   Lower Upper 

CA20 (high) 0.006 2.13 1.24 3.68  0.028 1.82 1.07 3.12 

CIN25 (high) 0.053 1.49 0.99 2.22  0.29 1.27 0.81 1.97 

Stage 0 <0.001     <0.001    

Stage I 0.001 0.48 0.31 0.75  0.005 0.53 0.34 0.82 

Stage II 0.003 0.58 0.41 0.83  0.78 0.95 0.68 1.34 

Stage III/IV 0.002 2.18 1.32 3.58  0.001 2.27 1.39 3.68 

Chemotherapy <0.001 2.24 1.57 3.19  0.002 1.73 1.22 2.44 

Hormone 

therapy 
0.04 1.38 1.01 1.88  0.71 0.94 0.7 1.27 

Radiotherapy 0.059 0.73 0.53 1.01   0.51 1.11 0.81 1.51 

 

 

 

 

 

 

 



 

 

Table 2.5 Final multivariable Cox proportional-hazards models of breast cancer-specific 

survival including CA20 and CIN25 (based on optimal thresholds) in full models using 

METABRIC data 

 

  
Discovery set   Validation set 

Covariates p-value HR 

95% CI for HR  

p-value HR 

95% CI for HR 

Lower Upper   Lower Upper 

CA20 (high) 0.006 2.13 1.24 3.68  0.028 1.82 1.07 3.12 

CIN25 (high) 0.053 1.49 0.99 2.22  0.29 1.27 0.81 1.97 

Stage 0 <0.001     <0.001    

Stage I 0.001 0.48 0.31 0.75  0.005 0.53 0.34 0.82 

Stage II 0.003 0.58 0.41 0.83  0.78 0.95 0.68 1.34 

Stage III/IV 0.002 2.18 1.32 3.58  0.001 2.27 1.39 3.68 

Chemotherapy <0.001 2.24 1.57 3.19  0.002 1.73 1.22 2.44 

Hormone 

therapy 
0.04 1.38 1.01 1.88  0.71 0.94 0.7 1.27 

Radiotherapy 0.059 0.73 0.53 1.01   0.51 1.11 0.81 1.51 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2.6 Cox models of overall survival including CA20 and CIN25 (based on average or 

optimal thresholds) and AJCC stage in full models using TCGA data 

 

Model Covariates HR p-value 
95% CI for HR Bootstrap 

p-value 

Bootstrap 95% 

CI for HR 

Lower Upper Lower Upper 

CA20 

and 

CIN25 

(average) 

CA20 

(high) 
2.8 0.008 1.31 5.99 0.01 1.31 7.43 

Stage 

III/IV 
2.68 0.006 1.33 5.41 0.011 1.13 6.5 

CA20 

and 

CIN25 

(optimal) 

CA20 

(high) 
2.55 0.009 1.27 5.15 0.01 1.34 7.29 

Stage 

III/IV 
2.87 0.008 1.32 6.25 0.012 1.14 6.16 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2.7 Final multivariable Cox proportional-hazards models of overall survival including 

CA20 and CIN25 (based on average or optimal thresholds), AJCC stage, and age at diagnosis in 

full models using TCGA data 

 

 

Model 
Covariates HR p-value 

95% CI for HR 
Bootstrap 

p-value 

Bootstrap 95% 

CI for HR 

Lower Upper Lower Upper 

CA20 and 

CIN25 

(average) 

CA20 

(high) 
3.82 0.001 1.69 8.67 0.007 1.7 13.11 

Age at 

diagnosis 
1.04 0.01 1.01 1.07 0.028 1 1.08 

Stage 

III/IV 
2.74 0.005 1.35 5.55 0.003 1.22 6.85 

CA20 and 

CIN25 

(optimal) 

CA20 

(high) 
3.67 0.002 1.63 8.26 0.003 1.6 12.83 

Age at 

diagnosis 
1.04 0.015 1.01 1.07 0.032 1 1.07 

Stage 

III/IV 
2.5 0.011 1.24 5.05 0.009 1.14 6.05 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 2.1 Plots of Kaplan-Meier product limit estimates of breast cancer-specific survival of 

patients in METABRIC discovery and validation sets  

Stratified by (A, E) CA20 (optimal threshold), (B, F) CA20 (average value), (C, G) CIN25 

(optimal threshold), and (D, H) CIN25 (average value), respectively. Optimal thresholds and 

average values were determined using the discovery set. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 2.2 Grade-wise comparisons of (A) average CA20 score and (B) average CIN25 score in 

non-TNBCs vs. TNBCs in the METABRIC dataset 

Scores between grades were significantly different at the p<0.001 level. Error bars represent 95% 

confidence intervals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 2.3 Plots of Kaplan-Meier product limit estimates of overall survival of patients in TCGA 

dataset 

Stratified by (A) CA20 (optimal threshold), (B) CA20 (average value), (C) CIN25 (optimal 

threshold), and (D) CIN25 (average value) determined using the entire dataset. 
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3Parts of this chapter have been published verbatim in Scientific Reports 2017 Feb 20;7:42289. doi: 

10.1038/srep42289 as “Multi-institutional study of nuclear KIFC1 as a biomarker of poor prognosis in African 

American women with triple-negative breast cancer.” 

 

3 MULTI-INSTITUTIONAL STUDY OF NUCLEAR KIFC1 AS A BIOMARKER OF 

POOR PROGNOSIS IN AFRICAN AMERICAN WOMEN WITH TRIPLE-

NEGATIVE BREAST CANCER3 

 

3.1 Abstract 

Nuclear KIFC1 (nKIFC1) predicts worse outcomes in breast cancer, but its prognostic 

value within racially distinct triple-negative breast cancer (TNBC) patients is unknown. Thus, 

nKIFC1 expression was assessed by immunohistochemistry in 163 African American (AA) and 

144 White TNBC tissue microarrays (TMAs) pooled from four hospitals. nKIFC1 correlated 

significantly with Ki67 in White TNBCs but not in AA TNBCs, suggesting that nKIFC1 is not 

merely a surrogate for proliferation in AA TNBCs.  High nKIFC1 weighted index (WI) was 

associated with significantly worse overall survival (OS), progression-free survival (PFS), and 

distant metastasis-free survival (DMFS) (Hazard Ratios [HRs] = 3.5, 3.1, and 3.8, respectively 

P=0.01, 0.009, and 0.007, respectively) in multivariable Cox models in AA TNBCs but not 

White TNBCs. Furthermore, KIFC1 knockdown more severely impaired migration in AA TNBC 

cells than White TNBC cells. Collectively, these data suggest that nKIFC1 WI an independent 

biomarker of poor prognosis in AA TNBC patients, potentially due to the necessity of KIFC1 for 

migration in AA TNBC cells 

 

3.2 Introduction 

KIFC1, a minus end-directed microtubule motor belonging to the C-terminal kinesin 

subfamily [1], crosslinks and slides microtubules in mammalian meiotic and mitotic spindles, 



 

 

facilitating tight pole focusing [2]. This kinesin can also bind to and traffic early endocytic 

vesicles [3] and DNA olignonucleotides [4] along microtubules. Recently, attention has focused 

on KIFC1 due to its association with malignancy. High KIFC1 transcript levels in lung tumors 

predict increased risk of metastatic dissemination to the brain [5] Primary breast tumors also 

overexpress KIFC1 as compared with matched normal breast tissue [6], and TNBCs express 

higher KIFC1 than non-TNBCs [7]. nKIFC1 expression correlates with advanced tumor grade 

and worse overall and progression-free survival in breast cancer [6]. KIFC1-overexpressing 

MDA-MB-231 and MDA-MB-468 TNBC cells exhibit enhanced survival compared with vector 

controls [8]. KIFC1 may contribute to apoptosis reluctance in TNBC because KIFC1 

overexpression stabilizes survivin by decreasing its polyubiquitination in MDA-MB-231 cells 

[6]. KIFC1 promotes the survival of TNBC cells with supernumerary centrosomes, which rely on 

KIFC1 for clustering of supernumerary centrosomes, which facilitates chromosomal instability 

[9, 10]. Indeed, KIFC1 was identified as the top hit in a genome-wide Drosophila screen of 

centrosome clustering genes, and it is essential for clustering of supernumerary centrosomes and 

thereby suppression of multipolar division of human cancer cell lines [9]. 

 

AA women with breast cancer experience a more aggressive clinical course than White 

women with breast cancer partly due to the ~2-3-fold increased risk AA women have of 

developing TNBC, a subtype with a high risk of distant relapse and mortality; nonetheless, racial 

disparity may exist even within this subtype [11, 12]. A critical need exists for validation of 

novel biomarkers to risk-stratify AA breast cancer patients because they experience higher breast 

cancer mortality than any other racial group, which might indicate that high-risk AA patients are 

not being identified as such using standard clinical prognostic tools and are thus not being 



 

 

prescribed sufficiently aggressive treatment. TNBC remains defined by what biomarkers it lacks, 

whereas non-TNBCs are defined by expression of hormone receptors and/or HER2, which can 

be targeted with specific inhibitors. Treatment guidelines in the US stratify TNBC patients for 

systemic adjuvant treatment based primarily on tumor staging. The association of nKIFC1 with 

triple-negative receptor status and worse clinical outcomes in breast cancer suggests that nKIFC1 

drives aggressive breast cancer disease course and may potentially serve as a prognostic 

biomarker in TNBC, although its utility in specific racial groups is unclear. Given that AA 

women with breast cancer suffer a more aggressive disease course than White women, we 

hypothesized that KIFC1 would hold greater value as a prognostic biomarker in AA women with 

TNBC. Given the association between KIFC1 and brain metastases in lung cancer, we also 

hypothesized that KIFC1 is critical for TNBC cell migration. Herein, we analyze nKIFC1 

expression by immunohistochemistry in race-annotated TNBC specimens to test its association 

with race, standard clinical prognostic factors, and clinical outcomes within racial groups and 

determine the effect of KIFC1 knockdown on migration and proliferation in White and AA 

TNBC cell lines.  

 

3.3 Results 

We found that nKIFC1 WI was significantly higher in AA than White TNBCs (154.66 

vs. 133.74, respectively, p=0.036) (Figure 3.1, representative staining). In Whites, nKIFC1 WI 

was significantly higher in grade 3 than grade 1 and 2 TNBCs (p=0.035 and p=0.001, 

respectively, per post-hoc comparison), whereas nKIFC1 WI did not significantly differ by grade 

in AA TNBCs (Table 3.1). nKIFC1 WI was significantly higher in high-stage AA TNBCs, 

whereas nKIFC1 WI did not significantly differ by stage in White TNBCs. In both races, 



 

 

nKIFC1 WI did not significantly differ by lymph node status, and nKIFC1 WI was not 

significantly correlated with tumor size or age at diagnosis. 

 

Among a panel of 21 potential biomarkers, Ki67 WI alone was significantly correlated 

with nKIFC1 WI in White TNBCs (ρ=0.65, p=0.00076), whereas no significant correlations 

were found in AA TNBCs, suggesting that nKIFC1 is not merely a surrogate of any of these 

biomarkers in AA TNBCs.   

 

nKIFC1 was not significantly associated with any survival outcome in simple Cox 

models (Table 3.2) or Kaplan-Meier analysis (Figures 3.3-3.5). However, in multivariable 

analysis adjusting for tumor stage, age at diagnosis, chemotherapy, and hospital, high nKIFC1 

WI was associated with >3 times worse OS, PFS, and DMFS in AA TNBCs (bootstrap p<0.05 

for all), whereas it did not significantly impact any survival outcome in White TNBCs.  

 

To gain insights into why KIFC1 is prognostic in AA TNBCs but seemingly not White 

TNBCs, we performed proliferation and wound-healing assays with 2 AA and 2 White TNBC 

cell lines in which KIFC1 was transiently knocked down with siRNA (Figure 3.2A). We found 

that KIFC1 knockdown did not significantly impact proliferation in any of the cell lines (Figure 

3.2B). By contrast, KIFC1 knockdown significantly impaired wound healing in one of the White 

TNBC cell lines and both AA TNBC cell lines; however, the percentage wound closure was 

more drastically reduced in AA TNBC cell lines (p<0.001) (Figure 3.2C,D). These results 

suggest that AA TNBC cells more heavily rely on KIFC1 for migration than white TNBC cells, 



 

 

which may partly underlie the differential prognostic importance of KIFC1 by race as we found 

in clinical TNBC specimens. 

 

3.4 Discussion 

AA breast cancer patients are known to suffer increased cancer-related morbidity and 

mortality compared to all other racial groups even after adjusting for socioeconomic and lifestyle 

factors [13-15]. In particular, AA TNBC patients have a particularly dire prognosis, especially 

those with high-stage tumors. Given that AA women afflicted with breast cancer typically suffer 

from a much more aggressive disease course, it is critical to identify and validate biomarkers that 

could indicate differences in tumor biology between racial groups and serve as risk predictors 

that would help to stratify AA patients better and mitigate health disparity in disease outcomes. 

  

In the clinic, establishment of triple-negative receptor status is a crucial factor 

determining treatment choice for patients because the absence of therapeutic targets in TNBC 

patients (a large fraction of whom are AA) leaves clinicians with no option but to resort to 

conventional chemotherapeutics that are non-discriminating and highly toxic. AA patients have 

also not benefited from the advances in breast cancer therapy as much as other patient groups, 

owing in large part to the high incidence of TNBC in this racial group. In our study, nKIFC1 was 

found to be a strong predictor of significantly worse survival outcomes in multivariable analysis 

in AA TNBCs. Our finding is valuable because it positions nKIFC1 not only as a critical racial 

disparity biomarker in TNBC but also as great potential therapeutic target. For the first time, AA 

patients whose tumors are triple-negative can be categorized based on what their tumors express, 

rather than what they lack (hormone receptors and Her2). Importantly, in AA TNBCs nKIFC1 



 

 

WI does not significantly correlate with WIs of members a large panel of potential cancer 

biomarkers, suggesting it is not merely a surrogate for them and can offer novel prognostic 

information. It is remarkable that nKIFC1 significantly predicts survival outcomes in AA but not 

White TNBCs considering the extensive overlap in nKIFC1 scores between the two groups, 

since nKIFC1 was only slightly (albeit significantly) higher in AA than White TNBCs. This 

finding suggests that the differential prognostic value of nKIFC1 between these groups may arise 

from inherently different biology, possibly rooted in genetic ancestry, rather than substantially 

higher nKIFC1 levels in AA than White TNBCs. Our finding that AA TNBC cell lines are more 

reliant on KIFC1 for migration suggests provides possible mechanistic insights into why nKIFC1 

levels are prognostic in AA but not White TNBCs. AA TNBC cells with high nKIFC1 levels 

may more efficiently migrate and thereby metastasize distantly, conferring worse prognosis. Our 

failure to reject the null hypothesis that there is no difference between nKIFC1-low and high 

groups among White TNBC patients aligns with our finding that KIFC1 is not entirely necessary 

for the migration of White TNBC cells; however, we may have failed to reject the null not 

because no true difference exists between nKIFC1-low and high White TNBC groups, but rather 

because the difference is very small or perhaps because of sampling or other errors, given that 

one White TNBC cell line relied to a significant extent on KIFC1 for migration. Larger future 

studies may be able to lend more confidence to our findings regarding a seeming lack of 

prognostic value of nKIFC1 among White TNBCs. 

 

Our study, which has unraveled nuclear accumulation of the kinesin motor protein KIFC1 

as a novel biomarker for cancer’s unequal burden within the AA TNBC population, and which 

also demonstrates that KIFC1 is more important for the migration of AA than White TNBC cells, 



 

 

opens up several important avenues of further investigation. An important next step is to 

determine whether nuclear KIFC1 accumulation is a cause or consequence of tumor 

aggressiveness. Several studies have implicated KIFC1 in disease aggressiveness and metastases, 

particularly to the brain.[5] Our data, which establish a tight correlation between KIFC1 nuclear 

expression and disease outcomes in AA TNBCs, affirms previous reports alluding to a 

connection between KIFC1 expression and disease aggressiveness [6]. Consequently, our 

findings make a strong case for examining whether a more direct causative link may exist 

between nKIFC1 and metastasis, especially given that we uncovered a critical role for KIFC1 in 

TNBC cell migration. Establishment of a causative role for nKIFC1 in metastasis would position 

nuclear KIFC1 as a biomarker that prognosticates distant metastasis risk in AA TNBC patients 

and anti-nKIFC1 targeted therapies as suppressors of further cancer cell dissemination. 

  

nKIFC1 may have distinct functions in different phases of the cell cycle and at different 

subcellular locations. In mitosis, KIFC1 plays an essential role in the clustering of 

supernumerary centrosomes in cancer cells [9]. In doing so, KIFC1 not only ensures the survival 

of cancer cells with amplified centrosomes but may also function as a driver of tumor evolution, 

as low-grade chromosome missegregation and consequent generation of karyotypic 

heterogeneity may occur during clustering of amplified centrosomes [16, 17]. Based on these 

lines of evidence, the notion that KIFC1 overexpression is responsible for driving evolution of 

more aggressive phenotypes (e.g., within the group of AA TNBC patients) is plausible. KIFC1 

also aids in the focusing of acentrosomal microtubule-organizing centers during the construction 

of a bipolar mitotic spindle in cancer cells [10, 18]. Since TNBCs display rampant centrosome 

amplification [19], targeting KIFC1 in TNBCs could provide tremendous therapeutic benefits by 



 

 

inducing lethal levels of spindle multipolarity [20]. Most importantly, since KIFC1 is essential 

for tumor cell viability but is dispensable for the survival of non-cancerous cells [9], targeting 

KIFC1 would be an invaluable cancer cell-selective and non-toxic chemotherapeutic approach.  

 

Regarding interphase activities, KIFC1 participates in vesicle transport from the Golgi to 

the ER in NIH3T3 murine embryonic fibroblasts [21] along with early endocytic vesicle 

transport and fission in murine hepatocytes [3]. Our immunohistochemistry data clearly show 

nuclear accumulation of KIFC1 as a negative prognostic marker in AA TNBCs, suggesting a 

possible interphase-specific nuclear role for this protein, although perhaps only within this 

specific patient population. In previous studies, KIFC1 has been implicated in the transport of 

DNA along microtubules [4], has been shown to bind nuclear transport factors such as β-

importin [22] and to harbor a specific affinity for nucleoporins NUP50 and NUP153 [4] and a 

complex containing NUP62 [23]. However, the primary sequence of this fascinating protein does 

not reveal the presence of any recognizable DNA-binding domains. Thus, it is currently unclear 

what function, if any, KIFC1 serves in the interphase nucleus that might contribute to its ability 

to promote metastases.  

 

Given the recent progress made in the development of KIFC1 inhibitors [18], it is also 

important to identify the patient population that might most benefit from KIFC1-targeted 

therapy. Pre-clinical development of KIFC1 inhibitors may now benefit from consideration of 

race and triple-negative status when choosing a disease model. For instance, initial mechanistic 

study of the first KIFC1 inhibitor implemented a TNBC cell line (BT-549), but it was derived 



 

 

from a White patient. Future analyses of drug efficacy may find other models more favorable 

(e.g., MDA-MB-468 cells, which are both triple-negative and derived from an AA patient). 

 

3.5 Materials and Methods 

3.5.1 Specimen procurement and datasets 

We pooled 163 AA and 144 White TNBC TMAs from multiple institutions, which has 

been shown to synergistically augment the ability of biomarkers to classify patients into risk 

groups [24]. Patients were treated between the years 2003-2008 at Grady Memorial and Emory 

University Hospitals and 2005-2013 at Northside Hospital (all in Atlanta, GA) and 2001-2012 at 

Baylor Scott & White Medical Center (Taylor, TX), whose respective Institutional Review 

Boards approved all aspects of the study. Patient consent was not required due to the archival 

nature of the de-identified samples. ER, PR, and HER2 staining and scoring were performed as 

to the prevalent ASCO/CAP guidelines at the time of sample collection. Specimen procurement 

was also commensurate with the guidelines in effect at the time of collection. Pathologic 

characteristics were reviewed by the pathologists of the respective hospitals. Descriptive 

statistics for continuous and categorical variables, including patient and pathologic 

characteristics, are available in Tables 3.3 and 3.4, respectively. The median follow up-time was 

4.1 years.  

  

3.5.2 Immunohistochemistry and specimen scoring 

TMAs were deparaffinized, rehydrated in serial ethanol baths (100%, 90%, 75%, 50%) 

and then placed in citrate buffer (pH 6.0) in a pressure cooker at 15 psi for 30 min for antigen 

retrieval. nKIFC1 was immunostained at 1:1000 dilution in the corresponding author’s lab using 



 

 

rabbit polyclonal antibody, which was graciously provided by Dr. Claire Walczak (Indiana 

University) [25]. Enzymatic detection of the antibody was performed using the Universal 

LSAB2 Kit/HRP, Rabbit/Mouse (Dako, CA, US). A panel of potential breast cancer biomarkers 

(Androgen Receptor; Cytokeratins 5, 7, 8, 14, 18, and 19; CD44, c-Kit; Epidermal Growth 

Factor Receptor; Insulin-like Growth Factor Receptor; Ki67; Melatonin Receptor; p53; p63; P-

cadherin; Survivin [nuclear]; Topoisomerase; Urokinase Receptor [nuclear]; Vimentin; and Zeb) 

had been previously immunostained [26]. Biomarkers were centrally reviewed and scored by the 

same two independent pathologists who were blind to clinical annotation. Scoring was 

performed for both the intensity of staining (0=none, 1=low, 2=moderate, 3=high) and the 

percentage of cells with any positivity (i.e., staining of 1+), and the average of the two 

pathologists’ scores were taken. Weighted indices were calculated as the product of the staining 

intensity and percentage of positive cells. Representative images of nKIFC1 staining are 

provided in Figure 3.1. 

 

3.5.3 Statistical analysis of clinical data 

Because the distribution of nKIFC1 was strongly right-skewed for both races, non-

parametric tests were employed: the Wilcoxon-Mann-Whitney or Kruskal-Wallis test for 

categorical covariates (with post-hoc pairwise comparisons made using the Dunn-Bonferroni 

approach) and Spearman correlation for numerical covariates. Monte-Carlo simulations (10,000 

samples, 99% confidence interval [CI]) were performed to more robustly estimate all population 

parameters. Simple and multivariable Cox models of OS, PFS, and DMFS were also fit with 

bootstrapping (1,000 samples, 95% CI). Plots of partial residuals against rank time were 

approximately horizontal and centered near zero, indicating satisfaction of the proportional 



 

 

hazards assumption. OS, PFS, and DMFS were defined, respectively, as the number of days from 

diagnosis to death, death or progression, and death or distant metastasis, whichever occurred 

first, or last follow-up if no event was recorded. The mean and +/- 1 standard deviation (SD) 

from the mean were tested as cutpoints to stratify patients based on OS. 1 SD above the mean 

demonstrated a non-significant trend among AA TNBCs, so that cutpoint was used. No trends 

were noted among White TNBCs, so the AA cutpoint was used for the purpose of comparison. 

For multivariable Cox models, covariates included AJCC stage, age at diagnosis, adjuvant 

chemotherapy, and hospital. Nottingham grade, which was not significant in full models, was not 

included due to multicollinearity with other covariates. The Bonferroni method was used to 

correct P-values following multiple hypothesis testing. Kaplan-Meier curves were also fit. 

Statistical analyses were performed using SPSS Version 21 (IBM). All relevant tests were 2-

tailed and p<0.05 was considered significant.  

 

3.5.4 Statistical analysis of experimental data 

Statistical bar graphs with the mean and error bars were plotted using Prism (GraphPad 

Software Inc., La Jolla, CA, USA). Experimental groups were compared with controls using 

unpaired two-tailed Student’s t-test, and p-values were calculated using Prism. p<0.05 was 

considered statistically significant.  

 

3.5.5 Cell culture 

White (HCC1143 and MDA-MB-231) and African American (HCC1906 and MDA-MB-

468) cell lines were purchased from ATCC. MDA-MB-231 and MDA-MB-468 cells were 

cultured in Leibovitz’s L-15 medium with 10% fetal bovine serum (ATCC) at 37 °C in 100% air. 



 

 

HCC1806 and HCC1143 cell lines were cultured in Roswell Park Memorial Institute medium 

with 10% fetal bovine serum (ATCC) at 37 °C and 5% CO2. 

 

3.5.6 siRNA 

RNAi knockdown of KIFC1 was performed using ON-TARGET plus KIFC1 siRNA. 

Non-targeting control siRNAs were used as controls. siRNA pools were transfected using 5 µg 

siRNA and 5 µl Dharmafect were used per well of a 6-well plate (resulting in a final siRNA 

concentration of 25 nM/well) according to the manufacturer’s protocol. All reagents were 

purchased from Dharmacon (Lafayette, CO, USA). Efficiency of RNAi knockdown was 

analyzed after 36 h of transfection by Western blot analysis using antibodies specific to KIFC1. 

The knockdown efficiency was >90%.  

 

3.5.7 Western blotting and antibodies 

36 h after transfection, cells were scraped from culture plates and sonicated in lysate 

buffer with 1X protease inhibitor cocktail (Invitrogen). Polyacrylamide gel electrophoresis was 

performed for protein resolution, and then transfer was made to a polyvinylidene difluoride 

membrane. The membrane was incubated in 1:1,000 mouse monoclonal antibody specific for 

KIFC1 (M-63: sc-100947) from Santa Cruz Biotechnology (Dallas, TX, USA) with 1:10,000 

goat anti-mouse secondary antibody (Abcam; Cambridge, MA, USA). Β-actin was used as an 

internal loading control and was detected using rabbit monoclonal anti-Β-actin antibody with 

goat anti-rabbit secondary antibody (both from Abcam). The Pierce ECL detection kit (Thermo 

Scientific; Waltham, MA, USA) was used to visualize bands.  

 



 

 

3.5.8 Cell proliferation assay 

Cell proliferation assay was performed using the BrdU Cell Proliferation Kit (#2750, 

EMD Millipore). Equal quantities of cells were seeded into 96 well plates. Following attachment, 

cells were incubated in BrdU for 4 hrs, and BrdU incorporation was measured 

spectrophotometrically as per kit instructions using TMB as a substrate. Absorbance was 

recorded at 450 nm. Each experiment was performed at least in triplicate. 

 

3.5.9 Wound healing assay 

Cells were seeded in 6-well plates and cultured until confluent, then they were serum 

starved for 2 h prior to the assay. Using a 100 ul pipette tip, a scratch was made keeping the 

pipette tip under an angle of around 30 degrees to keep the scratch width limited, simulating a 

wound. After scratching, the cells were washed in 1X Dulbecco's phosphate-buffered saline, 

serum-containing medium was added, and cells were incubated for 24 h in 5% CO2 at 37 °C. 

Wound edges were imaged using a 10X objective. All the experiments were performed in 

triplicate and two values were measured from each scratched region.  
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Table 3.1 Relationships between nuclear KIFC1 weighted index and patient and 

clinicopathological factors 

 

Categorical 

Variable 
Level N 

nKIFC1 WI 

Mean Rank 
p-value 

Grade     

White 1 3 17.17 <0.001 
 2 25 41.36  

 3 99 71.14  

AA 1 2 78.5 0.21 
 2 24 65.46  

 3 135 83.8  

AJCC Stage     

White I/II 115 62.5 1 
 III/IV 9 62.44  

AA I/II 109 75.3 0.02 
 III/IV 52 92.94  

Nodes     

White Negative 95 61.86 0.82 
 Positive 27 60.22  

AA Negative 96 75.31 0.11 
 Positive 63 87.14  

Continuous 

Variable 
N 

Correlation with 

nKIFC1 WI (ρ) 
p-value 

Tumor size     

White 127 0.15 0.09 

AA 161 0.13 0.09 

Age at 

diagnosis  
    

White 144 -0.1 0.25 

AA 161 -0.08 0.33 

 

 

 

 

 



 

 

Table 3.2 Impact of Nuclear KIFC1 weighted index on survival outcomes 

The impact of nuclear KIFC1 weighted index (~1 standard deviation above the mean in both 

racial groups) on overall survival (OS), progression-free survival (PFS), and distant metastasis-

free survival (DMFS) in simple and multivariable Cox models adjusted for AJCC stage, age at 

diagnosis, adjuvant chemotherapy, and hospital at which treatment was received. Bonferroni-

corrected p-values are displayed for simple Cox models of OS, for which multiple hypotheses 

were tested.  

 

Outcome 
Race HR p-value 

95% CI 

Lower Upper 

Simple Cox 

model 
     

OS 
White 0.56 1 0.04 1.97 

AA 1.82 0.3 0.77 3.73 

PFS 
White 0.85 0.75 0.18 2.16 

AA 1.46 0.29 0.67 2.9 

DMFS 
White 1.17 0.81 0.04 3.63 

AA 1.55 0.22 0.73 3.02 

Multivariable 

Cox model 
     

OS 
White 0.28 0.15 8.97 1.31 

AA 3.45 0.01 1.4 20.8 

PFS 
White 0.65 0.5 0 2.08 

AA 3.14 0.009 1.07 9.18 

DMFS 
White 0.73 0.55 0 2.76 

AA 3.83 0.007 1.45 16.32 

 

 

 

 

 

 

 

 



 

 

Table 3.3 Descriptive statistics for continuous variables by race.  

 

  
Nuclear 

HSET Group 

Positive 

Lymph Nodes 

Nottingham 

Grade 
TNM Stage 

Adjuvant 

Chemotherapy 

Race Low High No Yes 1 2 3 I II III IV No Yes 

White 122 22 95 27 5 27 110 81 47 9 4 41 102 

AA 139 24 96 63 2 24 135 30 79 15 37 16 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 3.4 Descriptive statistics for categorical variables by race. 

 

  Nuclear HSET WI Age at Diagnosis (years) 

Race Median Range Missing 
Mean 

(SD) 
Median Range Missing 

White 60 0-300 0 59 (13) 59 26-93 0 

AA 60 0-210 0 54 (13) 54 25-90 2 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 3.1 Representative images of nKIFC1 staining 

(A) White and (B) African American (AA) triple-negative breast tumors. 20X objective. 

 

 

 

 

 

 



 

 

 

Figure 3.2 Impact of KIFC1 knockdown on proliferation and migration of White (W) (HCC1143 

and MDA-MB-231) and African American (AA) (HCC1906 and MDA-MB-468) triple-negative 

breast cancer (TNBC) cell lines.  

(A) Western blots of KIFC1 from White and AA TNBC cell lines treated with control or KIFC1 

siRNA. (B) Proliferation of White and AA TNBC cell lines following treatment with control or 

KIFC1 siRNA. (C) Micrographs from wound healing assays of White and AA TNBC cell lines 

treated with control or KIFC1 siRNA. (D) Percentage wound closure in White and AA TNBC 

cell lines following treatment with control or KIFC1 siRNA. *p<0.01; ***p<0.0001; ns=not 

significant. 

 

 

 

 

 



 

 

 

Figure 3.3 Kaplan-Meier curves of overall survival based on nKIFC1 weighted index (stratified 

by 1 standard deviation above the mean) 

A. African American (AA) and B. White triple-negative breast cancer patients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

Figure 3.4 Kaplan-Meier curves of progression-free survival based on nKIFC1 weighted index 

(stratified by 1 standard deviation above the mean) 

A. African American (AA) and B. White triple-negative breast cancer patients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
Figure 3.5 Kaplan-Meier curves of distant metastasis-free survival based on nKIFC1 weighted 

index (stratified by 1 standard deviation above the mean) 

A. African American (AA) and B. White triple-negative breast cancer patients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
4Parts of this chapter have been published verbatim in Cell Death and Disease, 2014, 5:e1204. doi: 

10.1038/cddis.2014.16 as “Quantitative multi-parametric evaluation of centrosome declustering drugs: centrosome 

amplification, mitotic phenotype, cell cycle and death.” 

4 QUANTITATIVE MULTI-PARAMETRIC EVALUATION OF CENTROSOME 

DECLUSTERING DRUGS: CENTROSOME AMPLIFICATION, MITOTIC 

PHENOTYPE, CELL CYCLE AND DEATH4 

 

4.1 Abstract 

Solid and hematological cancers often exhibit numerical centrosome amplification (CA), 

the presence of more than one centrosome before S phase or two thereafter, a rarity in normal 

human tissues. CA correlates positively with malignancy, suggesting that CA benefits cancer 

cells [1]. Indeed, CA induced tumor formation and metastasis in a Drosophila larval brain 

transplantation assay [2]. Moreover, CA may promote metastasis by enhancing directional 

migration and invasion [3]. Nonetheless, CA also poses a liability to cancer cells. CA may result 

in potentially lethal mitotic spindle MP. MP can induce death following prolonged mitotic arrest 

(MA) or cause multipolar mitosis, resulting in daughter cells sustaining an intolerable degree of 

aneuploidy [4, 5]. In order to escape these calamitous fates, cancer cells employ centrosome 

clustering mechanisms to assemble a pseudo-bipolar mitotic spindle [6-8]. Centrosome 

clustering not only circumvents death but also promotes low-grade chromosome missegregation, 

which may drive tumor evolution [9, 10]. 

 

Various factors are critical for centrosome clustering, such as cortical actin, the spindle 

assembly checkpoint (SAC), cell adhesion and polarity regulators, the Ndc80 microtubule-

kinetochore attachment complex, augmin complex members, and microtubule motors (e.g., 

dynein and HSET) [11-14]. Inhibition of the kinesin-14 HSET has attracted attention lately 

because it causes death selectively in cancer cells with supernumerary centrosomes [11]. Based 



 

 

on these promising findings, two HSET inhibitors have been developed recently [15, 

16]. Inhibitors of centrosome clustering are selective for cancer cells because most healthy adult 

human cells do not exhibit CA, precluding their dependence on clustering mechanisms [6, 

17]. Consequently, putative centrosome declustering agents have emerged as promising 

anticancer drugs. These agents include griseofulvin (GF), noscapine (Nos), and Nos derivatives 

(e.g., brominated noscapine (BN) and reduced BN (RBN)), all of which modulate microtubule 

dynamicity, as well as the phenanthrene-derived poly(ADP-ribose) polymerase inhibitor, PJ-34 

(PJ). 

 

Like traditional spindle poisons, declustering drugs are known to cause G2/M phase arrest 

(Nos [18], BN [18], RBN [19], GF [20], PJ [21]). Spindle poisons induce MA by perturbing 

microtubule attachment to kinetochores, thereby activating the SAC [22]. The SAC prevents 

cyclin B1 degradation, resulting in sustained MA [23]. The fates of spindle poison-treated, 

mitotically arrested cells are thought to be governed by two competing pathways: one that 

induces apoptosis in mitosis (via caspase-dependent mechanisms) and another that induces 

mitotic exit (via progressive degradation of cyclin B1) [22, 23]. Mitotic exit may culminate in 

apoptosis in the subsequent interphase or may permit cell survival [24]. Nevertheless, 

controversy surrounds the role of MA in inducing apoptosis. Specifically, it remains unclear 

which factors – the extent, onset, and/or duration of MA – are critical for inducing apoptosis [22, 

24].  

 



 

 

Despite their common ability to induce MA, declustering agents differ in their clinical 

indications and molecular targets. GF is an antifungal and Nos is an antitussive, both with 

different binding sites on microtubules, whereas PJ is a phenanthrene-derived poly(ADP-ribose) 

polymerase inhibitor with no known microtubule-binding capacity. To date, no study has 

quantitatively compared the declustering abilities of these diverse agents, which may contrast 

given their pharmacologic differences. Furthermore, these agents paradoxically are effective in 

cancer lines, such as HeLa, PC3, and DLD-1 cells, which lack significant CA26 (e.g., Nos and 

BN [18], GF [20, 25], PJ [26], and RBN [27]). Unless these drugs also induce CA (such as 

occurs with BN [27] and RBN [19]), MP is perhaps being induced in such cell lines in a 

centrosome declustering-independent manner. It was recently demonstrated that inhibition of 

HSET can induce MP via acentrosomal pole formation in cancer cells irrespective of centrosome 

number [28]. Thus, ‘acentrosomal pole amplification' represents a potential mechanism by which 

declustering drugs might induce spindle MP in cancer cells without CA. 

 

Herein, we seek to quantitatively determine which of these phenotypes – MA, CA, 

declustering, acentrosomal pole amplification, and/or spindle MP – promote cancer cell death. 

This information can provide a conceptual framework to aid rational design of novel centrosome 

declustering drugs. 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4047924/#bib26


 

 

4.2 Results 

4.2.1 Characterization of MA induced by centrosome declustering drugs 

To evaluate the impact of putative declustering drugs on cell cycle progression and 

hypodiploidy (<2N DNA content, which may indicate apoptotic cells), MDA-MB-231 (231), 

PC3, and HeLa cells were treated with different concentrations of declustering drugs, stained 

with propidium iodide, labeled with anti-MPM2 antibody, and then assessed by flow cytometry 

at multiple time points over 48 h. The chosen cell lines displayed different levels of endogenous 

CA. 231 cells (mutant p53) exhibit high levels of CA (∼20–45%) [11, 28] compared with PC3 

(p53 null) and HeLa (wild-type but E6-inactivated p53), which have low basal levels of CA. 

Consistent with previous reports, our data showed that all drugs induced sustained MA (at least 

2X mitotic cells compared with untreated control cultures) at the concentrations indicated. The 

duration, highest degree, and rapidity of onset of MA varied between drugs, drug concentrations, 

and cell lines (Figures 4.1A and B). In general, the maximum MA achieved was less 

pronounced in Nos- and PJ-treated cells (Figures 4.1A and B). Drug-induced onset of MA was 

corroborated by substantial increases in cyclin B1 levels in all cell lines (Figure 4.1C). For most 

cases, prolonged MA (∼24 h in duration) was followed by a substantial increase in the subG1 

population fraction (Figures 4.1A and B). In all cases, we observed significant increases in 

cleaved caspase-3 over controls (Figure 4.1C), suggesting apoptosis. Instances wherein the 

subG1 fraction was elevated without cleaved caspase-3 may either represent caspase-

independent cell death or the presence of hypodiploid cells whose fate is unclear. In general, we 

found no consistent associations between the extent, duration, or timing of MA within drugs or 

across cell lines. Altogether, although centrosome declustering drugs induced MA, significant 

differences existed in the (i) extents and durations of MA, (ii) the size of the subG1 population, 



 

 

(iii) the rapidity of the onset of MA and hypodiploidy, and (iv) the extent to which hypodiploidy 

was accompanied by caspase-dependent apoptosis (Figure 4.1A-C) even within a given cell line. 

 

4.2.2 Declustering drugs induce CA in cancer cell lines 

As RBN increases the expression of Plk4 [19], a mediator of CA, we investigated 

whether other declustering drugs affect the expression of PLK4 along with two other mediators 

of CA, Cyclin E and Aurora A. Interestingly, all the drugs we studied increased PLK4, Cyclin E, 

and Aurora A compared with untreated cultures (Figure 4.2A). Consequently, we assessed CA 

in cultures treated with different concentrations of declustering drugs for 6, 12, 18, or 24 h and 

untreated controls via microscopy. Centrosomes were identified by γ-tubulin and centrin-2 

colocalization at discrete foci. Interestingly, all drugs tested induced CA in a statistically 

significant manner in at least one cell type and drug concentration (10 or 25 μM for all drugs 

except GF, which was used at 25 and 50 μM). The average percentages of CA over 24 h and the 

associated fold increases over controls is shown in Figure 4.3, respectively. Representative 

confocal micrographs of CA in interphase and mitotic cells, both control and drug treated, are 

depicted in Figure 4.4. We did not find significant correlations between the degree of CA 

(Figure 4.3A) and the expression levels of PLK4, Cyclin E, and Aurora A (Figure 4.2). 

Although declustering drugs might induce CA through pathways independent of these proteins, 

we conjecture that the levels of these proteins required to induce CA may simply vary between 

cell lines. Furthermore, many of the cells in which CA was induced may have died, precluding 

their quantitation. To determine whether the CA-inducing activity of declustering drugs is 

restricted to cancer cells, we treated two non-malignant cell lines, mammary fibrocystic 

(MCF10A) cells and adult human dermal fibroblasts with these drugs. We found that RBN, GF, 



 

 

and PJ did induce CA and cell death in these cell lines to varying extents. In summary, all the 

centrosome declustering drugs in our study were also centrosome-amplifying drugs, depending 

on the cell line and drug concentration. 

 

4.2.3 Effect of putative declustering agents on centrosome declustering and spindle MP 

Having identified that all the declustering drugs in our study induce CA, we were 

interested to quantitatively evaluate the extent to which they induce MP and declustering. MP 

was considered low grade if there were only 3 or 4 spindle poles and high grade if there were ≥5 

poles. We found that all declustering drugs, at one or both concentrations, induced spindle MP in 

at least one cell type above control levels (Figure 4.5A). Several of the drugs induced 

acentrosomal or ‘acentriolar' poles (wherein at least one spindle pole stained positively for γ-

tubulin but not centrin-2; Figure 4.5A), a phenotype not previously reported for these particular 

drugs. This phenotype has been reported following knockdown of HSET [28]. We found that 

acentriolar poles were more readily induced in HeLa than in PC3 or 231 cells (Figure 4.5A). The 

mechanism undergirding this phenotype is presently unknown. Some of the forces that tether 

together supernumerary centrosomes may also preserve spindle pole integrity [29], and our 

observations support that hypothesis. 

 

Next, we evaluated the extents to which these drugs induced declustering. We found that 

the extent of total declustering (the percentage of cells with amplified centrosomes in which no 

centrosomes were clustered) induced by all the drug regimens was the lowest in 231 cells, which 

have higher endogenous CA (Figure 4.5B). By contrast, in HeLa and PC3 cells, which have 

comparatively low levels of CA, a majority of the amplified centrosomes were found to be 



 

 

totally declustered (Figure 4.5B). For comparison, we assessed drug-induced MP, declustering, 

and acentrosomal pole formation in non-malignant cell lines. We found that RBN, GF, and PJ 

significantly induced MP over control levels, and the supernumerary centrosomes induced 

tended be declustered. 

 

Ultimately, it appears that the drugs tested largely induce spindle MP in a declustering-

independent manner, at least in the cancer cell lines tested here. Declustering drugs may 

therefore prove effective in cancers regardless of the extent of CA present. 

 

4.2.4  Cross talk between drug-induced spindle MP, declustering, and drug efficacy 

Next, we probed the associations between drug-induced spindle MP, centrosome 

declustering, and drug efficacy (subG1 extent) in order to identify the phenotypes that 

contributed most to cell death. We used beta regression (a statistical methodology more 

appropriate for proportions data than linear regression when very low or high percentages are 

observed) to analyze correlates of peak subG1. For this technique, pseudoR2 (the squared 

correlation of linear predictor and link-transformed response) is reported rather than R2 as in 

linear regression, and it indicates the goodness-of-fit of the model. 

 

We discovered that across all drugs and cell lines, peak MP significantly correlated with 

peak subG1 (P=0.00840, pseudoR2=0.321), suggesting that generation of spindle MP is a shared 

mechanism whereby declustering drugs trigger cell death. Importantly, we found no significant 



 

 

associations between CA and spindle MP, which corroborates our finding that declustering drugs 

appear to induce spindle MP by disrupting spindle pole and/or centrosome integrity, which in 

some cases may also decluster centrosomes if an excess is present. Within 231 cells, we found an 

even stronger, positive correlation with a very good fit between peak high-grade MP and peak 

subG1 (Figure 4.6Ai; P=0.006; pseudoR2=0.833), underscoring that a desirable attribute for 

declustering drugs is the ability to induce high-grade rather than low-grade MP. We also found 

that a model including both peak high-grade and low-grade MP together was better in predicting 

peak subG1 (P=0.001; pseudoR2=0.860) (Figure 4.6Aii). Specifically, within this model, the 

prediction of peak subG1 using peak high-grade MP was very highly statistically significant 

(P<0.00001) and the beta coefficient was positive, indicating a positive correlation between peak 

high-grade MP and subG1 generation. The prediction of peak subG1 using peak low-grade MP 

was very highly statistically significant (P=0.00001), and the beta coefficient was negative, 

indicating a negative correlation between peak low-grade MP and peak subG1. This finding is 

consistent with the notion that high-grade MP engenders intolerably severe aneuploidy that is 

likely to culminate in cell death, whereas low-grade MP is more likely to be survivable and 

perhaps advantageous to cancer cells. Clear trends were not uncovered for centrosome 

declustering and subG1 across drugs, although we cannot rule out its importance within 

individual drugs, as the number of data points for peak subG1 was limiting. 

 

In HeLa cells, peak MP (any grade) positively correlated with peak subG1 (P=0.0055; 

pseudoR2=0.575; Figure 4.6Ci). Also, peak high-grade MP positively correlated somewhat with 

peak subG1 (P=0.028; pseudoR2=0.271; Figure 4.6Cii). Notably, the peak acentriolar pole 

percentage positively correlated with peak subG1 (P=0.0023; pseudoR2=0.600; Figure 4.6Ciii), 



 

 

so daughter HeLa cells without centrosomes may be inviable. Indeed, based on the 

pseudoR2 value, peak acentriolar pole formation was superior to all other variables in predicting 

peak subG1. Peak total declustering also positively correlated with peak subG1 (P=0.020; 

pseudoR2=0.424; Figure 4.6Civ), strengthening the idea that more extensive declustering kills 

more cancer cells. 

 

In PC3 cells, we did not find an association between peak MP and peak subG1 across 

drugs. However, when we analyzed the correlation between the average fold increase in CA 

induction with peak subG1 percent, we found an interesting trend. In PC3 cells, the proportion 

variable (peak subG1) always lay within the 30–70% range and the other variable (fold increase 

in CA) was continuous, so we implemented linear regression for analysis. We found that the 

average fold increase in CA in interphase positively correlated with peak subG1 

(P=0.057; R2=0.619; Figure 4.6b), suggesting that an increase in CA may promote cell death. 

 

We also analyzed the impact of treatment with declustering drugs on spindle MP and 

subG1 induction in non-transformed cells. In both MCF10A cells and human dermal fibroblasts, 

peak MP positively correlated with peak subG1 (R2=0.82 with P=0.003 and R2=0.89 

with P<0.001, respectively), suggesting that MP is also toxic to normal cells. 

 



 

 

4.3 Discussion 

Declustering of supernumerary centrosomes is a promising chemotherapeutic approach 

that has recently come to light. Centrosome declustering kills cancer cells with supernumerary 

centrosomes while sparing normal cells, which rarely have supernumerary centrosomes. To date, 

drugs that decluster centrosomes have been grouped together given that they share this ability; 

however, the precise mechanisms by which they decluster centrosomes may differ and are 

unknown. It is also unclear whether centrosome declustering is their sole, or even primary, 

cellular activity. Ours is the first study to assess the differential abilities of various declustering 

drugs to induce MA, CA, MP, declustering, acentrosomal pole amplification, and cell death in 

different malignant and non-malignant cell lines. It would be valuable to have a framework to 

quantitatively evaluate novel declustering drugs to improve their efficacy via rational design. 

Our study lays the foundation for defining such a framework, which could guide development of 

a next generation of declustering drugs that are even more effective in killing cancer cells and 

even less toxic to normal cells. 

 

Centrosome declustering drugs induce MA followed by death [19, 25, 30-32], and the 

duration of MA induced by some microtubule-targeting drugs determines cell death after mitotic 

exit [33]. In concordance, we found that declustering drugs induce MA, which is followed by a 

peak in the subG1 fraction. However, we also found great variability in the extent of MA, how 

rapidly its onset occurs, its duration, and the extent of hypodiploidy generated between drugs and 

cell lines. Differences were also apparent in the extent to which MA was accompanied by the 

appearance of cleaved caspase-3, an early marker of apoptosis. There were no clear associations 

between peak MA, the duration of MA, and the timing of the onset of MA with hypodiploidy or 



 

 

the various centrosome- and spindle-related phenotypes we observed. These findings convey the 

complexity of the cellular responses to these drugs and suggest that the mechanisms of actions of 

these drugs probably differ significantly. 

 

A central finding of our study is that all the declustering drugs upregulate PLK4, Cyclin E, 

and Aurora A and induce CA (Figure 4.2). This finding helps to clarify the seeming 

contradiction that centrosome declustering drugs are effective in cell lines without much CA. 

Although it has been previously shown that BN[27]  and RBN [19] induce CA, no other studies 

to our knowledge have demonstrated induction of CA by Nos, GF, or PJ. It currently does not 

appear that the CA induced by these drugs is coupled in any way to their declustering activity, 

although further studies are needed to establish conclusively whether these two activities are 

truly independent. Another key finding from our study is that declustering drugs can trigger 

‘spindle pole amplification' via two means, acting separately or in concert: (i) genesis of 

acentriolar poles and (ii) amplification and declustering of centrosomes, both of which 

precipitate spindle MP. 

 

SubG1 fraction (i.e., cell death) typically exceeded the extent of CA, often by a wide 

margin (Figures 4.1 and 4.2). Thus, CA and declustering alone cannot explain the efficacy of 

these agents in the cell lines examined. Many reports have demonstrated that MP can be induced 

without centrosome declustering, such as through spindle pole fragmentation, loss of 

microtubule anchoring at the centrosome, PCM fragmentation, or centriole separation in mitosis 

[34-37]. Consequently, it is conceivable that ‘declustering drugs' are inducing MP in a 



 

 

centrosome declustering-independent manner, such as by ‘declustering' (defocusing) spindle 

poles. For instance, treatment of HeLa cells with 50 μM GF (IC50=35 μM [25]) for 24 h induced 

MP in 72% of cells, even though we found that ≤4% of untreated controls had CA, as others 

have found [38]. We also discovered that 50 μM GF induced only a small increase in the extent 

of CA in HeLa cells. Although the minority of multipolar cells with CA did exhibit centrosome 

declustering in the presence of GF, the majority of multipolar cells exhibited acentrosomal poles 

declustered. Nos, likewise, is effective in cells without much endogenous CA, such as HeLa 

(IC50=25 μM [31]), and Nos frequently induced MP by generating acentrosomal poles (Figure 

4.5A). Nos also induced further CA in HeLa and PC3 cells and achieved nearly complete 

declustering of these amplified centrosomes. Intriguingly, although we confirmed that BN 

induced CA that closely paralleled MP across cell lines (i.e., cells with CA were generally the 

ones that were also MP; Figure 4.5A), we discovered that the subG1 population exceeded the 

percentage of cells with CA and/or MP. This finding suggests that additional mechanisms may 

contribute to this drug's anticancer activity, even though CA and declustering appear to operate 

as well. We also verified that RBN substantially increases CA across cell lines but it often 

produces MP spindles with one or more acentrosomal poles. Consequently, like all the other 

putative centrosome declustering agents that we studied, it does not seem that RBN is a ‘pure' 

declustering drug but may additionally disrupt spindle pole integrity or otherwise cause spindle 

pole amplification, a downstream consequence of which is centrosome declustering. Altogether, 

it seems that MP itself, however it is generated (whether via bona fide centrosome declustering 

or acentrosomal spindle pole amplification), is a key driver of cell death in 231 and HeLa cells, 

although CA may instead be mechanistically involved in cell death in PC3 cells. 

 



 

 

Ultimately, the diversity of previously unrecognized or under-appreciated phenotypes 

uncovered by our study, illustrated in Figure 4.7, raises a host of questions that represent ample 

opportunities for future investigations. We have discerned certain phenotypes that contribute to 

cell death, which may guide rational development of these drugs or formulation of synergistic 

drug combinations to enhance chemotherapeutic efficacy. Altogether, our data highlight the 

potential utility of centrosome declustering drugs in combatting malignancy given that we found 

cancer cells are often more susceptible to these agents than normal cells. Interestingly, we 

uncovered that centrosome declustering drugs may act partially or primarily through spindle pole 

amplification. Declustering may either operate in addition to spindle pole amplification or may 

simply be a corollary of that process. Future studies are awaited to further unravel the precise 

mechanisms by which currently available declustering drugs operate to guide rational design of 

novel members of this promising class. 

 

4.4 Materials and Methods 

4.4.1 Cell lines, cell culture, and drugs 

HeLa, MDA-MB-231 (231), and PC3 cells were grown in medium (Dulbecco's modified 

Eagle's medium for HeLa and 231 cells, Roswell Park Memorial Institute medium for PC-3 cells; 

Invitrogen, Carlsbad, CA, USA) supplemented with 10% HyClone fetal bovine serum (Thermo 

Scientific, Waltham, MA, USA) and maintained in a 95% CO2 atmosphere at 37 °C. BN and 

RBN were prepared as described previously [19, 39]. Nos, GF, and PJ were purchased from 

Sigma (St. Louis, MO, USA). Cells were grown to ∼70% confluence and treated with drug or 



 

 

vehicle (0.1% dimethyl sulfoxide) followed by processing for flow cytometry, 

immunofluorescence confocal microscopy, or immunoblotting as previously described [40]. 

 

4.4.2 Immunofluorescence microscopy and western blotting 

Primary antibodies against γ-tubulin, α-tubulin, and centrin-2 (Abcam, Cambridge, MA, 

USA), Alexa 488-, 555-, and 647-conjugated secondary antibodies (Invitrogen), and DAPI 

(Invitrogen) were diluted in 2% BSA/1 × PBS 1:2000. Confocal microscopy was performed 

using the Zeiss LSC 700 microscope (Oberkochen, Germany) with a 1.4 NA oil-immersion lens, 

and image processing was performed with Zen software (Oberkochen, Germany). For each drug 

at a particular concentration (10, 25, or 50 μM) in a specific cell line (HeLa, 231, or PC3 cells), 

200 cells in randomly selected fields were assessed for each time point (0, 12, 18, and 24 h). If 

the number of mitotic cells out of 200 did not reach n=50, additional randomly selected mitotic 

cells were assessed until n=50. The number of interphase cells was never less than n=133. 

Mitotic index was calculated for each time point, and for both interphase and mitotic cells, the 

number of γ-tubulin/centrin-positive foci (i.e., centrosomes) in each cell was recorded. For 

mitotic cells, the number of spindle poles was also recorded, along with the number of 

centrosomes present, if any, at each pole. Western blotting was performed as previously 

described [40] using lysates from cells treated with 25 μM drug for 0, 4, 8, 12, 16, 18, 20, 24, 28, 

36, or 48 h. 



 

 

4.4.3 Cell cycle analysis 

The flow cytometric evaluation of cell cycle status was done using FlowJo software 

(Ashland, OR, USA). After the treatment, cells were harvested at different time intervals, washed 

twice with ice-cold PBS, and fixed in 70% ethanol for at least 24 h. Cell pellets were then 

washed with PBS and added with 0.5 ml of RNase A (2 mg/ml) and stained with MPM-2 

primary mouse antibody followed by Alexa-488 secondary antibody. In addition, 0.5 ml of 

propidium iodide (0.1% with 0.6% Triton X-100 in PBS) was added for 45 min in the dark 

followed by analysis on a FACS Cantor flow cytometer (BD Canto, Franklin Lakes, NJ, USA). 

Experiments were repeated in triplicate. 

 

4.4.4 Statistical analysis 

To compare proportions between samples, Fisher's exact test was performed using SPSS. 

Sample size was always n≥50. The only exception occurred with calculation of the proportion of 

cells exhibiting centrosome declustering (the percent of cells with declustered centrosomes out of 

all cells with CA at each time point), as the number of cells with CA was typically <50. In all 

cases, results were considered significant if P<0.05. To perform regression using proportions, 

beta regression was used as described by Ferrari and Cribari-Neto [41] using MATLAB. 
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Figure 4.1 Mitotic arrest (MA) phenotypes observed upon treatment with putative centrosome 

declustering drugs. 

 



 

 

(a) SubG1 and mitotically arrested cell population fractions with respect to time post-treatment 

with various putative declustering drugs. Declustering drugs included Nos, BN, RBN, PJ, and 

GF, all at 10 and 25 μM except GF, which was used at 25 and 50 μM, and cell lines included 231, 

PC3, and HeLa. These cell lines demonstrated differential susceptibility to various agents 

depending on drug concentration over the 48 h time period. In general, MA increased from 0 h to 

a peak near 24 h, followed by a decline in MA that coincided with increases in subG1 fractions. 

Results are representative of three independent experiments. (b) Duration of MA and peak MA 

by maximum subG1 fraction. Drugs are ranked in order of increasing peak subG1 from bottom 

to top along the y axis. The duration of MA (defined as the duration for which the mitotic 

population in drug-treated cells was greater than two times that in control cells) is plotted along 

the x axis. The time at which peak MA occurred is illustrated as a red bar and the value of peak 

MA is listed to the right of the graph. In 231 cells, 10 BN did not cause any MA; therefore, no 

bar is plotted. For 10 Nos in 231 cells and 25 PJ in PC3 cells, MA was observed at only one time 

point and is depicted using a single red bar. Some drugs produced a MA that then subsided and 

ultimately recurred, resulting in two bars being plotted, namely 50 GF in HeLa and PC3 cells. (c) 

Western blotting of cell cycle-related proteins and caspase-3, a marker for apoptosis. To assess 

cell cycle progression following treatment with different declustering drugs (all at 25 μM), cell 

lysates were obtained at multiple time points over 48 h and immunoblotted for Cyclins E and B1. 

Increased levels of both cyclins compared with controls (0 h) were detected across cell lines with 

variable expression patterns depending on the drug and cell line. To evaluate apoptosis, cleaved 

caspase-3 (C. Caspase-3) was immunoblotted and eventual increases over controls were 

universally detected, typically by 24 h 



 

 

 



 

 

Figure 4.2 Centrosome declustering drug-induced changes in expression levels of markers of 

centrosome amplification.  

Centrosome declustering drug-induced changes in expression levels of markers of centrosome 

amplification. To evaluate the levels of some of the well-established markers of CA upon 

treatment with declustering drugs at a concentration of 25 μM, the levels of PLK4, Cyclin E, and 

Aurora A were assessed by western blotting, revealing eventual increases over untreated controls 

across cell lines. Increase in expression levels of PLK4 and Aurora A was generally rapid, often 

appearing by 4 h. Levels tended to vary thereafter depending on the drug and cell line. 

Densitometry was performed to quantitate the changes in levels of CA markers relative to β-actin 

over time, and the changes in actin-normalized expression levels over the time-course of the 

experiment are depicted graphically beneath each sets of blots. As the Cyclin E blots revealed 

two closely placed bands (49 and 43 kDa) corresponding to the two spliced forms, the Cyclin E 

band intensity was generated as a sum of the two band intensities 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 4.3 Average CA observed over 24 h and its relationship with peak subG1 for each drug 

treatment regimen 

(a) Displayed are only statistically significant (P<0.05) increases in average CA over controls. 

To calculate average CA, the sum of percentage of (interphase or mitotic) cells showing CA at 

the 6, 12, 18, and 24 h time points was divided by 4. (b) Depiction of the sum of average CA 

(interphase plus mitotic) observed when 231 cells were treated with RBN, BN, and PJ, compared 

with the treatment of HeLa and PC3 cells with the same three drugs. 

 

 

 

 



 

 

 

Figure 4.4 Representative confocal micrographs depicting centrosome amplification in controls 

and drug-treated cancer cells 

(a) Interphase and (b) mitotic cells. Only displayed are drug/cell line combinations in which 

statistically significant (P<0.05) fold increases in CA were found in mitotic cells, although all 

controls are shown regardless of the extent of endogenous CA. Blue=DNA, green=microtubules, 

red=γ-tubulin, and orange=centrin-2 

 

 

 

 

 



 

 

 

Figure 4.5 Phenotypes induced by declustering drugs at different concentrations.  

(a) Peak MP and peak acentriolar pole formation induced by different declustering drugs in 231, 

HeLa, and PC3 cells. The maximum extents of MP induction of high grades (5+ poles) and low 

grades (3–4 poles) and acentriolar pole formation (at least one pole without centrioles) across a 

24-h period are given for all drugs. (b) Peak CA and declustering of amplified centrosomes 

induced in 231, HeLa, and PC3 cells. The maximum extent of CA in mitosis over 24 h is 

depicted by the height of the bar. The extent of total clustering (all centrosomes clustered at two 

poles), total declustering (all centrosomes separated to different poles), and partial declustering 

(one or more poles with 2+ centrosomes) are given for that same time point 



 

 

 

Figure 4.6 Correlates of peak subG1 percent within cell lines 

(a) 231 cells, beta regression. (ai) In 231 cells, a clear trend was found for increasing peak MP of 

any grade and peak subG1, which was highly statistically significant (P=0.006; 

pseudoR2=0.833). (aii) Furthermore, multiple regression using peak MP (high grade) and peak 

MP (low grade) produced an even better, statistically significant fit (red line) compared with 

simulated values (P=0.001; pseudoR2=0.860). Within this model, both variables were very 

highly statistically significant (P<0.0001), with peak high-grade MP showing a positive 

correlation and peak low-grade MP showing a negative correlation with peak subG1 (based on 

the sign of the beta coefficients). (b) PC3 cells, linear regression. In these cells, the average fold 

increase in interphase CA shows some association with peak subG1, which almost reached 

statistical significance and which produced a good fit (P=0.057; R2=0.619). (c) HeLa cells, beta 

regression. (ci) Increasing peak MP of any grade was associated with peak subG1 (P=0.0055; 

pseudoR2=0.575), as was (cii). Increasing peak MP of high grade (P=0.028; pseudoR2=0.271). 

(ciii) Increasing peak acentriolar pole formation (P=0.0023; pseudoR2=0.600), and (civ) peak 

total declustering (P=0.020; pseudoR2=0.424) 

 

 

 

 



 

 

 

Figure 4.7 Diversity of phenotypes produced by putative centrosome declustering drugs 

One of the two central cells with bipolar spindles show normal centrosome number (left cell) and 

the other one shows amplified centrosomes (right cell). Both types of cells are susceptible to the 

declustering agents. For the cell without CA, acentriolar pole formation (i.e., pole amplification 

or pole declustering) and MP (low- or high-grade) may be induced. Alternatively, these agents 

may induce CA and permit bona fide centrosome declustering to occur, partially or in total, with 

or without acentriolar pole formation. For the cell with CA, genuine centrosome declustering 

may occur, partially or in total, with or without acentriolar pole formation, and with or without 

further CA. AC, acentriolar; DC, declustering; HGCA, high-grade CA; HGMP, high-grade MP; 

LGCA, low-grade CA; LGMP, low-grade MP 

 

 

 

 

 

 

 



 

 

 

5 MULTI-INSTITUTIONAL STUDY OF TRIPLE NEGATIVE BREAST CANCER 

STRATIFICATION BY A NOVEL BIOMARKER OF CELL CYCLING KINETICS 

 

5.1 Abstract 

Breast cancer prognostication includes assessment of tumor grade, which in the 

Nottingham Grading System involves assessment of tubule formation, nuclear pleomorphism, 

and mitotic index (MI). It may also include assessment of proliferation, most commonly via 

immunohistochemical analysis of Ki67 antigen, which yields the Ki67 index (KI). MI and KI are 

inextricably interrelated, as mitosis is a sub-phase of proliferation, so a more rational approach 

would be to integrate these two measures to gain insights into the cycling kinetics of the tumor, 

which could inform risk prediction. We hypothesized that a larger fraction of mitotic cells among 

proliferating cells (i.e., higher MI/KI, which we term the Ki67-Adjusted MI Score, or KAMS) 

would predict a greater risk of poor outcomes among chemotherapy-treated breast cancer 

patients. We evaluated KAMS in three unique cohorts and found that it was a superior biomarker 

to both KI and MI, with higher KAMS predicting worse survival specifically in triple-negative 

breast cancer (TNBC) patients (n=244 across all three cohorts). KAMS-stratified TNBCs 

exhibited differential expression of immunohistochemical biomarkers and RNA-sequenced 

molecular pathways, suggesting fundamentally different underlying tumor biology that could be 

targeted therapeutically. Specifically, the poor-prognosis high-KAMS group could potentially 

benefit by targeting DNA damage response, EGFR, or circadian rhythm pathways (which are 

upregulated) or boosting immune regulatory pathways (which are suppressed). 

  



 

 

5.2 Introduction 

In current diagnostic practice, breast tumor grading via the Nottingham Grading System 

involves microscopic evaluation of three histological parameters: tubule formation, nuclear 

pleomorphism, and mitotic index (i.e., mitoses/10 high-power fields [HPFs]) [1, 2]. In addition 

to tumor grading, pathologists often quantify the proliferating cell population within tumors 

using Ki67 staining. Extensive research suggests that, generally speaking, the percentage of 

Ki67-positive nuclei (or KI) is a prognostic biomarker in breast cancer that also predicts response 

to neoadjuvant chemotherapy [3]. However, breast cancer is a remarkably heterogeneous disease, 

and the value of KI in distinct breast cancer subtypes is not firmly established. In TNBC, an 

aggressive, highly proliferative subtype, KI has been less well studied, and the evidence 

regarding its prognostic and predictive value is mixed [4-7]. 

 

While MI and KI are considered independent biomarkers, in reality, mitosis is a sub-

phase of the proliferative cell cycle, so a more rational approach would be to consider these 

related measures in an integrated manner rather than treating them as separate entities. In so 

doing, it may be possible to capture information about the cycling kinetics of the tumor, which 

could enhance risk prediction. We hypothesize that the higher the proportion of mitotic cells in 

the proliferative tumor cell population, the greater is the risk to the patient. This elevated risk 

conceivably arises from more frequent error-prone mitoses that generate diverse and aggressive 

karyotypes. Unlike the independent determination of KI and MI, a quantitation of the proportion 

of mitotic cells among the proliferating cells may harness kinetic information regarding how fast 

the proliferative cells are actually cycling and thereby generating intratumor heterogeneity. 

Because rapid tumor growth is a sign of aggressive disease, cycling kinetics can serve as a 



 

 

powerful beacon of risk that quantifies a fundamental aspect of a tumor’s biology – its mitotic 

propensity – and may be a stratifying risk factor for cancer types such as breast that exhibit 

heterogeneity in cycling kinetics. The primary objective of this study was to develop a novel 

risk-predictive metric that rationally integrates KI and MI using retrospective clinical data from 

breast cancer patients treated with chemotherapy at three different hospitals and to evaluate the 

ability of this biomarker to risk-stratify different breast cancer subtypes.  

 

5.3 Materials and Methods 

5.3.1 Description of datasets 

We compiled clinical data for 4,587 breast carcinoma patients from Northside Hospital, 

Atlanta, GA, US diagnosed between years 2000-2013 and 142 TNBCs from Emory University 

Hospital, Atlanta, GA, US (Table 1, descriptive statistics), both of which were racially diverse, 

along with 124 chemotherapy-treated TNBC patients in Nottingham University Hospital, 

Nottingham, UK diagnosed between 1987-1998 (Table 2, descriptive statistics), a predominantly 

white cohort. Descriptive statistics for a subset of 99 breast tumors of different Nottingham 

grades from the Northside cohort used to determine the average number of mitoses for MI 

categories as used in the Nottingham Grading System are given in Table 3.  In addition, 72 

chemotherapy-treated TNBC patients from Stavanger University Hospital (all white women) and 

48 chemotherapy-treated TNBC patients from Olabisi Onabanjo University, Nigeria (all black 

women), were compiled (Table 1). TNBC was defined as ER/PR/HER2-; Luminal A as ER 

and/or PR+, HER2-, KI<15%; Luminal B as ER and/or PR+ and either HER2- with KI≥15% or 

HER2+; and HER2-enriched as ER and/or PR-, HER2+. Patients missing information pertaining 

to KI, MI, or Nottingham grade were excluded from analyses. Patients additionally missing 



 

 

information pertaining to chemotherapy or outcomes (either breast cancer-specific survival or 

overall survival, BCSS and OS, respectively) were excluded from survival analyses.   

 

5.3.2 Formulation of KAMS 

MI data for all hospitals except for Stavanger were categorical in nature, with 

Nottingham Grading System mitotic scores of 1, 2 and 3 representing 0-7, 8-14 and >15 

mitoses/10 HPFs, respectively; however, continuous MI scores were desired to rationally 

integrate them with continuous KI scores (which are recorded as percentages). Towards this end, 

we sought to estimate the average number of mitoses for each mitotic score category. We 

obtained 99 hematoxylin and eosin-stained slides of breast carcinomas from Northside Hospital 

and 3 tissue microarrays of 142 TNBCs from Emory University Hospital, and the number of 

mitoses/10 consecutive HPFs at the most poorly differentiated area at the periphery of the tumor 

(40× objective, magnification ×400, field area 0.196 mm2) were manually and independently 

scored by two pathologists who were blind to clinical annotation. We obtained mean counts of 

2.94, 11.12, and 32.62 mitotic cells/10 HPFs for Nottingham Grading System mitotic scores of 1, 

2, and 3, respectively. These counts were then converted into percent MI after taking into 

account the cellularity of the samples. We were thus able to derive a rationally integrated 

measure of cycling kinetics, KAMS, for each patient as the percent mitotic cells:percent Ki67-

positive cells. For the Stavanger cohort, mitotic index was recorded as a continuous variable 

(calculated according to the stringent Multicenter Morphometric Mammary Carcinoma Project 

protocol[8, 9]) and was thus used to calculate KAMS. 

 



 

 

5.3.3 Statistical analyses 

Average MI and KI values were calculated and compared between Nottingham grades 

using Analysis of Variance (ANOVA). Comparison of the slopes of the plots of mitotic cells 

versus Ki67-positive cells across grades was performed using Analysis of Covariance 

(ANCOVA). Survival curves were plotted using the Kaplan-Meier method, with equality of 

survival distributions tested using the log-rank test. Survival time was measured from the initial 

diagnosis to either an event (breast cancer-specific death for the Nottingham and Stavanger 

cohorts or death from any cause for the Nigeria cohort, for which cause of death was not 

available) or to the final follow-up (censor) and was thus an indicator of BCSS or OS in the 

respective cohorts. Average BCSS time was 201.3 months with n=35 events (Nottingham 

cohort) and 201.1 months with n=23 events (Stavanger cohort) (median BCSS could not be 

calculated due to >50% cumulative survival), and average and median survival times of 56.1 

days and 35.0 days, respectively, with 43 events (Nigeria cohort). Simple and multivariable Cox 

proportional hazard models were also fit. Satisfaction of the proportional hazards assumption 

was verified by plotting partial residuals against rank-time and assuring that the slope was 

approximately horizontal. Multivariable models were fit using backward stepwise elimination of 

covariates with p>0.10. Covariates included age at diagnosis (years), tumor size (cm), 

Nottingham grade, and either lymph node stage per AJCC guidelines (Nottingham and Stavanger 

cohorts) or lymph node status (positive or negative, Nigeria cohort). For categorical variables, 

the lowest risk group was used as the reference for calculation of hazard ratios (HRs). 

CutoffFinder [10] was used to discern optimal cutpoints in KAMS and KI based on BCSS or OS 

since there are no established cutpoints for these biomarkers. Because of differences between 

datasets in terms of patient characteristics and tissue processing/imaging protocols, optimal 



 

 

cutpoints were determined for each individual dataset. Standard cutpoints in MI as per the 

Nottingham grading system (i.e., scores of 1, 2, and 3) were used. For survival analyses, results 

with p<0.05 were considered statistically significant. 

 

To compare immunohistochemical biomarkers between KAMS-low and high groups in 

the Nottingham cohort, multiple two-tailed t-tests were performed, guided by Levene’s test for 

equality of variances. To set the false-discovery rate at 0.25, a p-value of 0.25*R/m=0.026 

(where R=number of rejected null hypotheses, in our case 30, and m=the number of tested null 

hypotheses, in our case 292) was considered statistically significant. The comprehensive 

biomarker panel included 105 unique biomarkers recorded as either percentages and/or H-scores, 

as appropriate for the particular biomarker, with nuclear, cytoplasmic, total (nuclear + 

cytoplasmic), and/or membranous levels (for cellular biomarkers) or intratumoral, stromal levels, 

and/or total levels (tissue biomarkers), resulting in 292 comparisons. SAS version 9.4 was used 

for ANOVA and ANCOVA, and IBM SPSS Statistics 21 was used for all other statistical tests. 

  

5.3.4 RNA sequencing and analysis 

FFPE TNBC primary tumor and lymph node sections with for which KAMS had been 

calculated (n=84 and n=51 in the discovery and validation cohorts, respectively, from 75 and 30 

patients, respectively, due to some patients having multiple samples), from a mix of 

chemotherapy treated and untreated patients, were deparaffinized with xylene, and RNA was 

extracted using the Omega Mag-Bind XP FFPE RNA isolation kit (Omega, M2595-01) and 

KingFisher Flex magnetic particle separator (ThermoFisher). RNA concentration was measured 

with Nanodrop 2000c spectrophotometer (Thermo Scientific Inc., Waltham, MA, USA). 



 

 

Integrity was assessed using Agilent 2200 TapeStation instrument (Agilent Technologies, Santa 

Clara, CA), and the percentages of fragments larger than 200 nucleotides (DV200) were 

calculated. First strand cDNA syntheses were performed on ~100 ng RNA at 25°C for 10 min, 

42°C for 15 min, and 70°C for 15 min using random hexamers and ProtoScript II Reverse 

Transcriptase (New England BioLabs, Ipswich, MA). Second strand synthesis and RNA 

sequencing libraries were prepared using TruSeq RNA Access library kit according to the 

manufacturer’s protocol (Illumina, Inc., San Diego, CA, USA). Briefly, the RNA templates were 

removed and a second replacement strand was generated by incorporation dUTP to generate 

double-stranded cDNA. The blunt-ended cDNA was cleaned up from the second strand reaction 

mix with Mag-Bind RxnPure Plus magnetic beads (Omega Bio-tek, Norcross, GA). The 3’ ends 

of the cDNA were then adenylated and followed by the ligation of indexing adaptors. PCR (15 

cycles of 98°C for 10 sec, 60°C for 30 sec, and 72°C for 30 sec) to selectively enrich DNA 

fragments with adapter molecules on both ends. The library was qualified using an Agilent 2200 

TapeStation and quantified using QuantiFluor dsDNA System (Promega, Madiosn, WI). A 4-

plex pool of libraries was made by combining 200 ng of each DNA library. The pooled DNA 

libraries were then mixed with capture probes to targeted regions of interest. The hybridization 

was performed by 18 cycles of 1 min incubation, starting at 94°C, and then decreasing 2°C per 

cycle. Then streptavidin-coated magnetic beads were used to capture probes hybridized to the 

target regions. The enriched libraries were then eluted from the beads and subjected to a second 

round of hybridization. The enriched libraries were amplified by 10 cycles of PCR amplification 

(98°C for 10 sec, 60°C for 30 sec, and 72°C for 30 sec) followed by RxnPure magnetic bead 

clean up. The final libraries were validated using Agilent High Sensitivity D1000 ScreenTape on 



 

 

an Agilent 2200 Tapestation instrument. The size distribution of the library ranged from 

approximately 200 bp–1 kbp.  

 

Libraries were normalized, pooled, and subjected to clustering, and pair-read sequencing 

was performed for 75 cycles on a HiSeq2500 instrument (Illumina, Inc. San Diego, CA, USA), 

according to the manufacturer's instructions. The fastq files were mapped to hg38 (GRCh38.P5) 

using STAR mapper. Transcript assembly and abundance quantification were performed using 

Cufflinks. In the discovery cohort 4 patients had multiple samples, and in the validation cohort 8 

patients had multiple samples; for each of these patients, only the sample with maximum number 

of reads was retained in the analyses. Stratification of patients into high- and low-KAMS groups 

was based on the average KAMS score in the Nottingham TNBC cohort, with low KAMS 

defined as <1.0960236 (84% of patients). The DESeq2 approach [11], implemented in a 

Bioconductor package, was used for differential expression analyses. Association between binary 

KAMS and 220 signaling and metabolic KEGG pathways was assessed by the GAGE method 

[12]. Benjamini-Hochberg adjustment for multiplicity [13] was applied to p-values for 

differential expression but not KEGG pathway analysis results.  

 

5.4 Results 

5.4.1 KI and MI bear a highly variable relationship in breast tumors 

We first evaluated how MI (the number of mitotic cells/10 HPFs) changes with KI in 241 

H&E-stained breast tumors of differing Nottingham grades from the Northside and Emory 

cohorts. We observed that (a) all the slopes are <1 and (b) the slopes increase significantly grade-



 

 

wise (Figure 1A). Thus, with increasing tumor grade, KI increases at a faster rate than MI. A 

grade-wise comparison of mean MI and KI (Figure 1B,C) in the Nottingham and Northside 

cohorts also revealed a steeper increase in KI than MI (see y-axes in Figure 1B,C). Because KI 

and MI do not increase proportionately with each other, little information about cycling kinetics 

can be derived based upon independent consideration of these indices, suggesting a need for their 

rational integration, such as in metric KAMS (Figure 1D), which bears a more complex 

relationship with grade than MI or KI. 

 

5.4.2 KAMS is a superior predictor of treatment response than both Ki67 and mitotic indices 

in three unique cohorts 

Next, we analyzed the ability of KAMS to risk-stratify patients with different breast 

cancer subtypes based on BCSS (Nottingham and Stavanger cohorts) and OS (Nigeria cohort). 

We found that KAMS was unable to significantly stratify Luminal A, Luminal B, or HER2-

overexpressing cases (data not shown). However, KAMS stratified TNBCs into subgroups with 

different survival prospects in three separate chemotherapy-treated cohorts (p=0.015, 

Nottingham; p=0.073, Stavanger; p=0.006, Nigeria) (Figure 2), with high-KAMS TNBCs 

having a worse prognosis than low-KAMS TNBCs. KAMS outperformed KI in all three cohorts 

in terms of the significance of the stratification (Figure 2). In all cohorts, KAMS also 

outperformed MI, which was far from significant in the Nottingham and Stavanger cohorts, 

whereas a non-significant trend was noted in the Nigeria cohort. Similar results were obtained in 

simple Cox models, wherein it was evident that model fit was better with KAMS than with KI 

per Akaike's Information Criterion (Table 4). 

 



 

 

To determine whether KAMS is an independent predictor of poor outcomes, 

multivariable Cox models were fit. For all cohorts, age at diagnosis, tumor size, and Nottingham 

grade were available in clinical annotation and were included as covariates initially in full 

models. Lymph node stage was available for the Nottingham and Stavanger cohorts, but only 

lymph node status (positive or negative) was available for the Nigeria cohort, so these covariates 

(lymph node stage or status) were included in respective full models. Due to the presence of only 

a single Grade 1 tumor in the Nigerian cohort, Grades 1 and 2 were merged to obtain more 

precise estimates of the effect of grade on OS. KAMS outperformed KI and MI in all three 

cohorts and was a significant independent predictor of worse BCSS and OS in the Nottingham 

and Nigeria cohorts, respectively (p=0.021, HR=2.20 and p=0.009, HR=2.46); a non-significant 

trend was noted in the Stavanger cohort (p=0.058, HR=4.19) (Table 5). Thus, KAMS appears to 

be an independent predictor of poor survival, with high-KAMS groups exhibiting worse BCSS 

and OS. Remarkably, in the Nigeria cohort, KAMS was the only predictor in final models. By 

contrast, KI was only an independent predictor in the Nottingham cohort (p=0.029, HR=0.47), 

not appearing in final models of either the Stavanger or Nigeria cohorts, and MI was not a 

significant independent predictor in any cohort (data not shown). 

 

5.4.3 KAMS groups are characterized by different levels of immunohistochemistry-based 

biomarkers 

To derive insights into how KAMS high- and low-TNBCs differ biologically, we 

compared levels of 292 immunohistochemistry-based biomarkers between the two groups. 

Compared with the low-KAMS group, the high-KAMS group was enriched in nuclear UBC9 and 

SMC6L1 (H-scores) and nuclear wildtype ERβ, γ-H2AX, and DNA-PK and membranous EGFR 



 

 

(percentages). The high-KAMS group was deficient in cytoplasmic androgen receptor, nuclear 

VGLL1, total CD68, and intratumoral CD3, CD8, CD20, CD68, and FOXP3 (H-scores) and 

nuclear Ki67 and VGLL1 (percentages) (Figure 3). These data suggest that the KAMS groups 

exhibit significant differences in clinically meaningful immunohistochemical biomarker 

expression, such as the expression of DNA damage response proteins (e.g., nuclear SMC6L1, γ-

H2AX, and DNA-PK) and immune cell markers (e.g., intratumoral CD3, CD8, CD20 CD68, 

FOXP3), which may underlie distinct and potentially actionable tumor biology. 

 

5.4.4 KAMS groups are characterized by different molecular pathways 

In the high KAMS group, 84 genes were overexpressed and 50 genes were 

underexpressed compared with the low KAMS group (Tables 6 and 7, respectively). Using the 

GAGE method, it was found that 31 KEGG pathways were differentially regulated according to 

KAMS status at the nominal p0.05 level, with 7 overexpressed and 24 underexpressed in the 

high KAMS group (Table 8). Many differentially regulated KEGG pathways belong under the 

umbrella of the immune system, with the high KAMS group exhibiting suppression of these 

pathways, which is consistent with the IHC biomarker analysis and may offer insights into the 

poor prognosis of this group. In addition, circadian rhythm and entrainment pathways, the 

disruption of which have been implicated in carcinogenesis [14], were upregulated in the high-

KAMS group. 

 

5.5 Discussion 

We found that our cycling kinetics biomarker, KAMS, stratified patients with TNBC into 

groups with significantly different survival outcomes, but not patients with Luminal A, Luminal 



 

 

B, or HER2-overexpressing breast cancers. In all three unique cohorts, KAMS outperformed KI 

as a predictor of clinical outcomes. KAMS groups were characterized by different 

immunohistochemistry-based biomarkers and RNA-sequenced molecular pathways, suggesting 

they constitute biologically distinct subgroups in TNBC that may be differentially susceptible to 

targeted therapies. Specifically, analysis of proteins implicated in cancer using 

immunohistochemistry revealed that the poor-prognosis, high-KAMS group exhibits 

upregulation of DNA damage response markers (e.g., SMC6L1, DNA-PK) and EGFR and 

downregulated immune cell markers (e.g., CD3, CD8, CD68) and immune-related molecular 

pathways (e.g., cytokine-cytokine receptor interaction and antigen processing and presentation), 

which could potentially be targeted with DNA damage response and EGFR antagonists and 

immunostimulatory molecules, respectively. The finding that the high-KAMS group exhibits 

immunosuppression was confirmed using RNAseq data, which revealed downregulation of 

immune-regulated KEGG pathways. An additional fascinating finding was that the high-KAMS 

group exhibits upregulation of pathways involved in circadian rhythm and entrainment. It has 

recently come to light that disruption of circadian rhythms at the cellular level is involved in 

multi-step breast tumorigenesis [14]. A broken “molecular clock” can lead to dysregulation of 

the cell cycle, suppress apoptosis, alter metabolism, promote epithelial-mesenchymal transition, 

thereby promoting tumorigenesis. Our findings here suggest that upregulation of circadian 

pathways in TNBC may be associated with aggressive disease features, such as a faster-running 

clock (high KAMS).  TNBC is a highly heterogeneous disease in terms of gene expression 

profiles [15, 16], and KAMS may help to discriminate between clinically relevant TNBC 

subtypes in a relatively inexpensive and technically facile manner. Our study further reveals that 

the poor-prognosis high-KAMS group may benefit especially from certain targeted therapies, 



 

 

like cetuximab (EGFR inhibitor) or immunostimulatory molecules, and is the first to lend 

evidence to the superior prognostic power of integrating KI and MI for chemotherapy-treated 

TNBC patients and novel TNBC subgroups that may be differentially susceptible to targeted 

therapies. 

 

Our new integrated cell cycling kinetics metric KAMS revealed that, despite increases in 

KI and MI across tumor-grades, MI increases more slowly than KI, and the KI-MI relationship 

varies dynamically depending on Nottingham grade. This broken KI-MI relationship hints that 

mitosis may not always contribute the same proportion to the proliferative cell cycle. Despite the 

decades-long debate regarding the relative merits of KI and MI, it is indisputable that faster 

tumor growth is a sign of more aggressive disease. Faster tumor growth can result from two 

possible scenarios: (i) KI increases and MI increases proportionally with KI or (ii) both KI and 

MI increase but MI does not increase proportionally to the increase in KI. Our data show the 

latter possibility to be true. Moreover, recent studies have clearly divulged that the majority of 

cells within the proliferative cell population of a tumor are not actually dividing (i.e., are not in 

M-phase of the cell cycle) but are instead populating interphase [17-19]. The more rapidly cells 

transit through cell cycle, the higher is the proportion of mitotic cells observed in the 

proliferating population. Thus, KAMS should provide a measure of the mitotic propensity of the 

proliferative population. 

 

It is well known that breast cancer molecular subtypes possess very different 

characteristics, and they may even be considered distinct diseases [20]. For example, they exhibit 

different proliferation rates (i.e., KIs), the highest of which is found among TNBCs [21]. The 



 

 

literature is conflicting on the prognostic and predictive value of KI in TNBC [4-7]. We found 

that it was not an independent prognostic biomarker in chemotherapy-treated TNBC patients 

across three unique cohorts (British, Norwegian, and Nigerian women), nor was MI. However, 

rationally integrating these two indices in the cell cycling kinetics measure, KAMS, resulted in 

improved risk stratification in all cohorts. High KAMS was a significant independent predictor 

of poor survival in the Nottingham and Nigeria cohorts, and it nearly reached statistical 

significance in the Stavanger cohort, where it was a more significant biomarker than tumor size 

in final multivariable Cox models. A high KAMS value conceivably represents a tumor 

characterized by fast cell cycling, with proliferating cells rapidly progressing through interphase 

to enter M phase, resulting in aggressive tumor growth and, based on the higher frequency of 

mitoses (which are more error prone in cancer), higher intratumor heterogeneity, both of which 

contribute to increased risk of death.  

 

TNBCs constitute an aggressive breast cancer subtype defined by the lack of ER and PR 

receptors and HER2 overexpression and characterized by high rates of recurrence and death, 

especially in the first 5 years of follow-up. TNBCs tend be of a higher histological grade and 

clinical stage at diagnosis, and almost all currently available genomic prognostic signatures tend 

to assign poor prognostic risk status to TNBCs. Since TNBCs lack the most common breast 

cancer drug targets, the only therapeutic options currently available to treat them are cytotoxic 

chemotherapy, surgery, and radiation. TNBCs display marked heterogeneity in clinical behavior, 

spurring a search for stratifying biomarkers that allow discernment of inherent and potentially 

actionable differences in tumor biology among TNBCs that can inform clinical management. 

Although gene expression profiles have revealed the presence of distinct molecular subtypes 



 

 

among TNBCs, the cost of TNBC subtyping by gene expression profiling is very steep, provides 

little predictive information, and is currently impractical for routine use. Thus, there is a paucity 

of relatively inexpensive and technically facile risk-predictive biomarkers that can risk-stratify 

TNBCs, reveal differences in their biology, and indicate to what drugs they may be sensitive, 

thereby enabling individualization of treatment.  

 

It should be emphasized that the present study investigated KI and MI as assessed in 

separate microscopic fields, not always as continuous variables (e.g., in the Nottingham and 

Nigeria cohorts). In current clinical practice, KI and MI are normally determined by pathologists 

in different tissue sections and evaluated on disparate scales, which (i) overlooks the fact that 

mitotic cells comprise a subset of cycling cells, (ii) makes a direct cell-matched comparison of 

KI and MI impossible, and (iii) precludes evaluation of mitotic propensity and cell-cycling 

kinetics of the proliferative population in a tumor. Through our novel metric, KAMS, we 

attempted to “recapture” information about cell cycling kinetics, although it required us to make 

assumptions about MI based on empirical evidence to convert it from a categorical score to a 

percentage. Our promising results herein pave the way for future studies to investigate the value 

of extracting KI and MI from the same microscopic field, both as continuous variables, which we 

expect to yield superior risk-predictive information.  
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Table 5.1 Patient and clinicopathologic characteristics of breast carcinoma patients in the 

Northside and Emory cohorts.  

*Level: only applicable for categorical variables. **Missing: percentage calculated as the missing 

count out of the total number of cases (10,504 and 142 for the Northside and Emory cohorts, 

respectively), unlike other variables, which are calculated out of the valid (non-missing) cases in 

the column. 

 

      Cohort 

Variable Level* Statistic Northside Emory 

Age at diagnosis (years) 
 

Mean 57 56 

 
Median 57 56 

 
Minimum 21 23 

 
Maximum 97 86 

 
Missing 0 0 

Nottingham grade 1 Count 1638 2 

Percent 35.7% 1.4% 

2 Count 1804 26 

Percent 39.3% 18.3% 

3 Count 1145 114 

Percent 25.0% 80.3% 

Missing** Count 0 0 

  Percent 0.0% 0.0% 

Stage 0 Count 49 0 

  Percent 1.1% 0.0% 

I Count 2495 56 

  Percent 54.6% 39.7% 

II Count 1537 67 

  Percent 33.6% 47.5% 

III Count 409 18 

  Percent 8.9% 12.8% 

IV Count 81 0 

Percent 1.8% 0.0% 

Missing** Count 16 1 

  Percent 0.3% 0.7% 

Subtype Luminal A Count 1609 0 

Percent 35.1% 0.0% 

Luminal B Count 1545 0 

Percent 33.7% 0.0% 

HER2+ Count 215 0 

Percent 4.7% 0.0% 

TNBC Count 390 142 

Percent 8.5% 100.0% 

Missing** Count 828 0 



 

 

  Percent 18.1% 0.0% 

Race African American Count 679 93 

  Percent 14.8% 67.4% 

  European American Count 3630 40 

  Percent 79.1% 29.0% 

  Other Count 160 5 

  Percent 3.5% 3.6% 

  Missing** Count 118 4 

    Percent 2.6% 2.8% 

Mitotic index (categorical) 1 Count 2541 23 

Percent 55.4% 16.2% 

2 Count 1206 23 

Percent 26.3% 16.2% 

3 Count 840 96 

Percent 18.3% 67.6% 

Missing** Count 0 0 

  Percent 0.0% 0.0% 

Ki67 index (Northside) or 

mitotic index (Emory) 
  Mean 23 25 

  Median 14 20 

  Minimum 0 0 

  Maximum 100 105 

  Missing 0 0 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 5.2 Patient and clinicopathologic characteristics of triple-negative breast cancer patients 

in the Nottingham, Stavanger, and Nigeria cohorts 

*Level: only applicable for categorical variables. **Missing: percentage calculated as the 

missing count out of the total number of cases (10,504), unlike other variables, which are 

calculated out of the valid (non-missing) cases in the column. ***In the Stavanger cohort, 

mitotic index was calculated as number of mitoses/10 high-power fields; in the Nottingham and 

Nigeria cohorts, it was calculated based on the average number of mitotic cells/10-high-power 

fields for each Nottingham Grading System mitotic score (1, 2, or 3), as determined from the 241 

total cases in the Northside subset and Emory cohort (n=99 and n=142, respectively). – Nodal 

stage was not available for the Nigeria cohort. 

 

  
    Cohort 

Variable Level* Statistic Nigeria Nottingham Stavanger 

Age at diagnosis (years) 

 Mean 49 44 51 

 Median 47 44 51 

 Minimum 26 25 22 

 Maximum 77 60 84 

 

Number 

missing 
0 0 0 

Tumor size (cm) 

 Mean 3.4 2.6 2.4 

 Median 3 2.2 2.3 

 Minimum 1 0.6 0.2 

 Maximum 8 8 10 

 Number 

missing 
0 0 2 

Lymph node status 

Negative 
Count 4 56 48 

Percent 8.30% 45.20% 66.70% 

Positive 
Count 44 68 24 

Percent 91.70% 54.80% 33.30% 

Missing** 
Count 0 0 0 

Percent 0.00% 0.00% 0.00% 

Nodal stage 

0 
Count  -  56 48 

Percent  - 45.20% 66.70% 

1 
Count  - 54 19 

Percent  - 43.50% 26.40% 

2 
Count  - 14 5 

Percent  - 11.30% 6.90% 

Missing** 
Count 48 0 0 

Percent 100.00% 0.00% 0.00% 

Nottingham grade 
1 

Count 1 0 1 

Percent 2.10% 0.00% 1.40% 

2 Count 22 2 11 



 

 

Percent 45.80% 1.60% 15.30% 

3 
Count 25 122 60 

Percent 52.10% 98.40% 83.30% 

Missing** 
Count 0 0 0 

Percent 0.00% 0.00% 0.00% 

Mitotic index 

(continuous)*** 

 Mean 11.5 31.6 24 

 Median 2.9 32.6 23 

 Minimum 0 2.9 0 

 Maximum 32.6 32.6 105 

 Number 

missing 
0 0 0 

Mitotic index (categorical) 

1 
Count 22 2 8 

Percent 45.80% 1.60% 11.10% 

2 
Count 12 3 7 

Percent 25.00% 2.40% 9.70% 

3 
Count 14 119 57 

Percent 29.20% 96.00% 79.20% 

Missing** 
Count 0 0 0 

Percent 0.00% 0.00% 0.00% 

Ki67 index 

 Mean 28 70 47 

 Median 20 80 50 

 Minimum 0 3 1 

 Maximum 80 100 99 

 Number 

missing 
0 0 0 

Ki67 group 

Low 
Count 35 35 14 

Percent 72.90% 28.20% 19.40% 

High 
Count 13 89 58 

Percent 27.10% 71.80% 80.60% 

Missing** 
Count 0 0 0 

Percent 0.00% 0.00% 0.00% 

KAMS 

 Mean 1.5 0.8 1.3 

 Median 0.4 0.4 0.5 

 Minimum 0 0 0 

 Maximum 9.8 10.9 14.5 

 Number 

missing 
0 0 0 

KAMS group 

Low 
Count 16 90 17 

Percent 33.30% 72.60% 23.60% 

High 
Count 32 34 55 

Percent 66.70% 27.40% 76.40% 

Missing** 
Count 0 0 0 

Percent 0.00% 0.00% 0.00% 

 



 

 

Table 5.3 Patient and clinicopathologic characteristics of the 99 breast carcinoma samples from 

the Northside cohort used to determine the average number of mitoses for mitotic index 

categories as used in the Nottingham Grading System 

 

Variable Level* Statistic Value 

Age at 

diagnosis 

(years) 

 
Mean 55  

Median 54  
Minimum 27  
Maximum 97  
Missing 0 

Nottingham 

grade 

1 
Count 26 

Percent 26.30% 

2 
Count 28 

Percent 28.30% 

3 
Count 45 

Percent 45.50% 

Missing** Count 0  
Percent 0.00% 

AJCC stage 

0 
Count 0 

Percent 0.00% 

I 
Count 36 

Percent 36.40% 

II 
Count 39 

Percent 39.40% 

III 
Count 18 

Percent 18.20% 

IV 
Count 6 

Percent 6.10% 

Missing** Count 0  
Percent 0.00% 

Subtype 

Luminal 

A 

Count 17 

Percent 17.50% 

Luminal 

B 

Count 41 

Percent 42.30% 

HER2+ 
Count 9 

Percent 9.30% 

TNBC 
Count 30 

Percent 30.90% 

Missing** 
Count 2 

Percent 2.00% 

Race 
African 

American 
Count 40 



 

 

 
Percent 40.80% 

European 

American 
Count 57 

 
Percent 58.20% 

Others 
Count 1 

Percent 1.00% 

Missing** 
Count 1 

Percent 1.00% 

Chemotherapy 

No 
Count 30 

Percent 33.30% 

Yes 
Count 60 

Percent 66.70% 

Missing** 
Count 9 

Percent 9.10% 

Mitotic index 

(categorical) 

1 
Count 31 

Percent 31.30% 

2 
Count 40 

Percent 40.40% 

3 
Count 28 

Percent 28.30% 

Missing** 
Count 0 

Percent 0.00% 

Mitotic index 

(continuous) 

 
Mean 17  

Median 10  
Minimum 0  
Maximum 129  
Missing 0 

Ki67 index 

 
Mean 33 

 
Median 28 

 
Minimum 0 

 
Maximum 96 

  Missing 0 

 

 

 

 

 

 



 

 

Table 5.4 Predictive value of KAMS and Ki67 index in simple Cox models of breast cancer-

specific survival (Nottingham and Stavanger cohorts) and overall survival (Nigeria cohort) 

 

Cohort Variable 

Omnibus Test of Model 

Coefficients 
  Variable in the equation 

AIC 

Overall (score)  
HR 

95% CI for HR 

p-value 
X2 p-value   Lower Upper 

Nottingham 
KAMS 320.2 5.93 0.015  2.25 1.15 4.4 0.018 

KI 320.8 5.24 0.022  0.47 0.24 0.91 0.025 

Stavanger 
KAMS 181.2 3.22 0.07  3.48 0.82 14.88 0.09 

KI 184.3 1.03 0.34  0.62 0.24 1.58 0.32 

Nigeria 
KAMS 268.1 7.08 0.008  2.46 1.25 4.86 0.009 

KI 274.9 0.49 0.49   1.01 0.99 1.02 0.49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 5.5 Multivariable Cox models of breast cancer-specific survival (Nottingham and 

Stavanger cohorts) and overall survival (Nigeria cohort) that include KAMS or KI in full models. 

Final model covariates, selected via backward stepwise elimination if p>0.10, are shown. Model 

fit statistics for the final models are given. KI was excluded from final models in the Stavanger 

and Nigeria cohorts due to p>0.10. 

 

 

Cohort Variable 

Omnibus Test of 

Model Coefficients 
  Variable in the equation 

AIC 

Overall (score) 
 HR 

95% CI for 

HR 
p-value 

X2 p-value   Lower Upper 

Nottingham 
KAMS 320.2 5.93 0.015  2.25 1.15 4.4 0.018 

KI 320.8 5.24 0.022  0.47 0.24 0.91 0.025 

Stavanger 
KAMS 181.2 3.22 0.07  3.48 0.82 14.88 0.09 

KI 184.3 1.03 0.34  0.62 0.24 1.58 0.32 

Nigeria 
KAMS 268.1 7.08 0.008  2.46 1.25 4.86 0.009 

KI 274.9 0.49 0.49   1.01 0.99 1.02 0.49 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 



 

 

Table 5.6 Genes overexpressed in the high KAMS group at q<0.05 

 

Ensembl ID Symbol Log2FC p-value q-value 

ENSG00000183091 NEB 1.69 4.00E-07 0.0015 

ENSG00000154310 TNIK 1.62 2.50E-07 0.0015 

ENSG00000152969 JAKMIP1 1.89 1.90E-07 0.0015 

ENSG00000049540 ELN 1.96 4.00E-07 0.0015 

ENSG00000141232 TOB1 1.21 1.40E-07 0.0015 

ENSG00000259581 TYRO3P 1.29 7.00E-07 0.0021 

ENSG00000073605 GSDMB 1.21 1.10E-06 0.0028 

ENSG00000241112 RPL29P14 1.76 2.60E-06 0.0043 

ENSG00000100784 RPS6KA5 1.13 1.90E-06 0.0043 

ENSG00000123562 MORF4L2 0.72 2.50E-06 0.0043 

ENSG00000068976 PYGM 1.95 3.40E-06 0.0048 

ENSG00000127129 EDN2 2.14 5.00E-06 0.0054 

ENSG00000128655 PDE11A 1.97 4.40E-06 0.0054 

ENSG00000128039 SRD5A3 1.46 4.80E-06 0.0054 

ENSG00000109586 GALNT7 1.39 4.70E-06 0.0054 

ENSG00000155657 TTN 1.51 6.80E-06 0.0068 

ENSG00000102804 TSC22D1 1 7.80E-06 0.0071 

ENSG00000185347 C14orf80 1.51 7.50E-06 0.0071 

ENSG00000175264 CHST1 1.89 9.80E-06 0.0077 

ENSG00000156689 GLYATL2 1.99 9.60E-06 0.0077 

ENSG00000008952 SEC62 0.74 1.70E-05 0.011 

ENSG00000134909 ARHGAP32 0.77 1.50E-05 0.011 

ENSG00000108515 ENO3 1.38 1.50E-05 0.011 

ENSG00000239305 RNF103 0.83 1.80E-05 0.012 

ENSG00000167081 PBX3 1.16 2.10E-05 0.012 

ENSG00000151090 THRB 1.38 2.70E-05 0.014 

ENSG00000145014 TMEM44 1.4 2.70E-05 0.014 

ENSG00000254786 RP11-142C4.5 1.86 2.60E-05 0.014 

ENSG00000239474 KLHL41 1.98 3.60E-05 0.016 

ENSG00000196782 MAML3 1.16 3.40E-05 0.016 

ENSG00000139219 COL2A1 2.07 3.40E-05 0.016 

ENSG00000121769 FABP3 1.74 3.80E-05 0.017 

ENSG00000212493 SNORD19 1.21 4.10E-05 0.017 

ENSG00000122367 LDB3 1.76 4.90E-05 0.019 

ENSG00000261324 RP11-174G6.5 1.5 5.20E-05 0.019 

ENSG00000169330 KIAA1024 1.2 5.00E-05 0.019 

ENSG00000183077 AFMID 1.22 4.70E-05 0.019 

ENSG00000229992 HMGB3P9 1.53 6.80E-05 0.024 

ENSG00000144802 NFKBIZ 1.18 7.10E-05 0.025 



 

 

ENSG00000176428 VPS37D 1.96 7.70E-05 0.026 

ENSG00000104221 BRF2 1.06 7.70E-05 0.026 

ENSG00000204624 PTCHD2 1.84 9.10E-05 0.028 

ENSG00000227295 ELL2P1 1.8 8.80E-05 0.028 

ENSG00000077235 GTF3C1 0.56 0.00012 0.033 

ENSG00000142599 RERE 0.53 0.00019 0.039 

ENSG00000164049 FBXW12 1.9 0.00014 0.039 

ENSG00000177694 NAALADL2 1.27 0.00019 0.039 

ENSG00000245958 RP11-33B1.1 0.98 0.00017 0.039 

ENSG00000164040 PGRMC2 0.84 0.00014 0.039 

ENSG00000235109 ZSCAN31 1.23 0.00019 0.039 

ENSG00000164951 PDP1 1.12 0.00015 0.039 

ENSG00000198682 PAPSS2 1.42 0.00016 0.039 

ENSG00000100596 SPTLC2 0.93 0.00016 0.039 

ENSG00000140474 ULK3 0.65 0.00016 0.039 

ENSG00000064270 ATP2C2 1.43 0.00016 0.039 

ENSG00000260105 AOC4P 1.8 0.00016 0.039 

ENSG00000184828 ZBTB7C 1.38 0.00018 0.039 

ENSG00000128709 HOXD9 1.47 0.00021 0.04 

ENSG00000173175 ADCY5 1.58 0.00021 0.04 

ENSG00000196935 SRGAP1 0.8 0.00022 0.04 

ENSG00000140993 TIGD7 1.01 2.00E-04 0.04 

ENSG00000126351 THRA 0.88 0.00022 0.04 

ENSG00000139722 VPS37B 0.73 0.00024 0.042 

ENSG00000136436 CALCOCO2 0.78 0.00024 0.042 

ENSG00000198740 ZNF652 0.87 0.00024 0.042 

ENSG00000109089 CDR2L 1.24 0.00025 0.042 

ENSG00000213139 CRYGS 1.37 0.00025 0.043 

ENSG00000110484 SCGB2A2 1.78 0.00027 0.044 

ENSG00000140987 ZSCAN32 0.82 0.00027 0.044 

ENSG00000115561 CHMP3 1.17 0.00029 0.046 

ENSG00000164776 PHKG1 1.45 0.00029 0.046 

ENSG00000186104 CYP2R1 1.1 0.00028 0.046 

ENSG00000170100 ZNF778 0.81 3.00E-04 0.046 

ENSG00000256683 ZNF350 1.08 0.00031 0.046 

ENSG00000054118 THRAP3 0.39 0.00034 0.048 

ENSG00000127249 ATP13A4 1.65 0.00035 0.048 

ENSG00000168916 ZNF608 0.97 0.00033 0.048 

ENSG00000149016 TUT1 0.86 0.00035 0.048 

ENSG00000139990 DCAF5 0.6 0.00034 0.048 

ENSG00000166821 PEX11A 1.25 0.00033 0.048 

ENSG00000244165 P2RY11 1.14 0.00034 0.048 

ENSG00000142197 DOPEY2 0.76 0.00033 0.048 



 

 

ENSG00000133138 TBC1D8B 0.86 0.00035 0.048 

ENSG00000138030 KHK 1.27 0.00035 0.049 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 5.7 Genes underexpressed in the high KAMS group at q<0.05 

 

Ensembl ID Symbol Log2FC p-value q-value 

ENSG00000196116 TDRD7 -0.87 2.80E-06 0.0043 

ENSG00000152778 IFIT5 -1.23 2.30E-06 0.0043 

ENSG00000185885 IFITM1 -1.59 8.60E-06 0.0074 

ENSG00000157601 MX1 -1.44 1.00E-05 0.0077 

ENSG00000134321 RSAD2 -1.48 2.00E-05 0.012 

ENSG00000181143 MUC16 -1.82 1.90E-05 0.012 

ENSG00000138646 HERC5 -1.39 3.10E-05 0.015 

ENSG00000165905 GYLTL1B -1.33 2.80E-05 0.015 

ENSG00000168394 TAP1 -1.24 3.60E-05 0.016 

ENSG00000133256 PDE6B -1.61 3.90E-05 0.017 

ENSG00000125730 C3 -1.09 4.50E-05 0.018 

ENSG00000073792 IGF2BP2 -1.58 6.40E-05 0.023 

ENSG00000051523 CYBA -1.08 6.20E-05 0.023 

ENSG00000113273 ARSB -0.77 7.90E-05 0.026 

ENSG00000236496 GPS2P1 -1.87 8.90E-05 0.028 

ENSG00000101311 FERMT1 -1.58 9.70E-05 0.03 

ENSG00000187554 TLR5 -1.04 1.00E-04 0.032 

ENSG00000107165 TYRP1 -1.92 0.00011 0.032 

ENSG00000130303 BST2 -1.36 0.00012 0.033 

ENSG00000155629 PIK3AP1 -0.96 0.00013 0.036 

ENSG00000162552 WNT4 -1.67 0.00019 0.039 

ENSG00000055732 MCOLN3 -1.51 0.00015 0.039 

ENSG00000115271 GCA -0.73 0.00019 0.039 

ENSG00000196653 ZNF502 -1.32 0.00015 0.039 

ENSG00000124780 KCNK17 -1.79 0.00018 0.039 

ENSG00000215045 GRID2IP -1.68 0.00017 0.039 

ENSG00000179869 ABCA13 -1.76 0.00017 0.039 

ENSG00000160584 SIK3 -0.41 0.00015 0.039 

ENSG00000136048 DRAM1 -0.98 0.00015 0.039 

ENSG00000135114 OASL -1.53 0.00019 0.039 

ENSG00000121281 ADCY7 -0.82 0.00019 0.039 

ENSG00000160183 TMPRSS3 -1.43 0.00018 0.039 

ENSG00000198715 GLMP -0.78 0.00021 0.04 

ENSG00000164362 TERT -1.65 0.00021 0.04 

ENSG00000120539 MASTL -0.7 0.00021 0.04 

ENSG00000139278 GLIPR1 -0.94 0.00021 0.04 

ENSG00000187775 DNAH17 -1.65 2.00E-04 0.04 

ENSG00000050344 NFE2L3 -1.11 0.00024 0.042 

ENSG00000102445 KIAA0226L -1.11 0.00024 0.042 



 

 

ENSG00000115828 QPCT -1.46 0.00025 0.043 

ENSG00000106392 C1GALT1 -0.97 0.00026 0.043 

ENSG00000165996 HACD1 -1.43 0.00025 0.043 

ENSG00000137959 IFI44L -1.26 0.00029 0.046 

ENSG00000213064 SFT2D2 -0.89 3.00E-04 0.046 

ENSG00000070214 SLC44A1 -0.62 3.00E-04 0.046 

ENSG00000156587 UBE2L6 -1.09 3.00E-04 0.046 

ENSG00000111331 OAS3 -1.11 0.00029 0.046 

ENSG00000197536 C5orf56 -1.03 0.00035 0.048 

ENSG00000135966 TGFBRAP1 -0.64 0.00036 0.049 

ENSG00000233122 CTAGE7P -1.74 0.00036 0.049 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 5.8 Differentially regulated pathways according to KAMS 

Pink and green shading indicate overexpression and underexpression, respectively, in the high 

KAMS group at the nominal p0.05 level. 

 
Category Subcategory KEGG pathway p 

Metabolism Energy metabolism Oxidative phosphorylation 0.02 

Amino acid metabolism Valine, leucine and isoleucine degradation 0.02 

Genetic information 

processing 

Translation Ribosome 0.04 

Folding, sorting and 

degradation 

Proteasome 0.04 

 

 

 

Environmental 

information processing 

 

 

Signal transduction 

Wnt signaling pathway 0.05 

Jak-STAT signaling pathway 0.005 

NF-kappa B signaling pathway 0.0005 

TNF signaling pathway 0.01 

AMPK signaling pathway 0.03 

 

Signaling molecules and 

interaction 

Neuroactive ligand-receptor interaction 0.05 

Cytokine-cytokine receptor interaction 3e-7 

Cell adhesion molecules 0.003 

 

Cellular processes 

 

Transport and catabolism 

Phagosome 2e-6 

Lysosome 0.04 

Peroxisome 0.03 

 

 

 

 

 

 

 

Organismal systems 

 

 

 

 

 

Immune system 

Hematopoietic cell lineage 8e-6 

Complement and coagulation cascades 0.003 

NOD-like receptor signaling pathway 0.004 

Cytosolic DNA-sensing pathway 0.02 

Natural killer cell mediated cytotoxicity 0.0005 

Antigen processing and presentation 1e-6 

T cell receptor signaling pathway 0.04 

B cell receptor signaling pathway 0.005 

Intestinal immune network for IgA 

production 

0.001 

Chemokine signaling pathway 0.009 

Endocrine system Prolactin signaling pathway 0.04 

Circulatory system Cardiac muscle contraction 0.04 

Digestive system Mineral absorption 0.05 

Development Osteoclast differentiation 0.01 

Environmental adaptation Circadian rhythm 0.01 

Circadian entrainment 0.03 

 

 



 

 

 

Figure 5.1 Analysis of grade-wise relationship between KI and MI 

Comparison of mitotic counts for 241 total breast carcinoma samples from the Northside mixed-

subtype and Emory TNBC cohorts (n=99 and 142, respectively), with the respective lines for 

each Nottingham grade (NG) representing significantly different fitted linear regressions per 

ANCOVA. Mean B. MI, C. KI, and D. KAMS of breast carcinoma samples from the Northside 

and Nottingham cohorts.  

 



 

 

 

Figure 5.2 Stratification by KAMS, Ki67 index, and mitotic index according to breast cancer-

specific survival (Nottingham and Stavanger cohorts) and overall survival (Nigeria cohort)  

 



 

 

 

Figure 5.3 Comparison of significantly different immunohistochemistry-based biomarkers 

between high- and low-KAMS TNBCs. 

A. H-scores. B. Percentages 

 



 

 

6 HIGH HER3-EGFR SCORE PREDICTS AGGRESSIVE DISEASE COURSE IN 

TRIPLE-NEGATIVE BREAST CANCER 

 

 

6.1 Abstract 

Several proteins of the ErbB receptor tyrosine kinase family may have prognostic value 

in breast cancer. While the clinical utility of assaying levels of human epidermal growth factor 

receptor 2 (HER2) is well established, it is less apparent whether human epidermal growth factor 

receptor 3 (HER3) or epidermal growth factor receptor (EGFR) could guide clinical management 

of breast cancer. Biomarkers are urgently needed for triple-negative breast cancer (TNBC), 

which is defined by the biomarkers it lacks and for which no targeted therapies are available. 

There is limited evidence that HER3 and EGFR could serve as biomarkers in TNBC. However, 

HER3 is kinase impaired and must bind to other ErbB family members, like EGFR, to effect 

signaling, so it may be necessary to consider HER3 in this context. Thus, we developed a 

combined HER3-EGFR score (the sum of the individual HER3 and EGFR H-scores), which we 

found outperformed assessment of HER3 and EGFR H-scores in isolation in multivariable 

survival models. Specifically, in a multi-institutional study of n=510 TNBC patients, we found 

that an above-median HER3-EGFR score was associated with 2.30-times worse breast cancer-

specific survival (BCSS) and 1.78-times worse distant metastasis-free survival (DMFS) (p=0.006 

and p=0.041, respectively) in age- and stage-adjusted Cox models among adjuvant 

chemotherapy-treated (but not untreated) TNBC patients. Moreover, based on an analysis of 105 

immunohistochemical biomarkers, we found that adjuvant chemotherapy-treated TNBCs with 

above-median HER3-EGFR scores exhibited upregulated expression of luminal cytokeratins, 

DNA damage-response proteins, and P-cadherin. Ingenuity Pathway Analysis (IPA) of 



 

 

RNAsequenced TNBCs revealed that tumors with above-median HER3-EGFR scores were 

enriched in genes involved in hepatic fibrosis, which has been linked to distant metastasis. 

Altogether, the HER3-EGFR score may identify which chemotherapy-treated TNBC patients 

require more aggressive treatment and potential targets for therapy. 

 

6.2 Introduction 

Accruing evidence suggests that HER3 may be a valuable target in breast cancer, 

including TNBC, for which there are no approved targeted drugs to date. HER3 is kinase 

impaired, demonstrating only relatively weak autophosphorylation and no ability to 

phosphorylate other peptides [1]. It can, however, heterodimerize with other ErbB family 

members to effect downstream signaling. Targeted dual anti-HER3/EGFR therapy may be a 

useful adjunct to PI3K-AKT antagonism when treating TNBCs that exhibit PI3K-AKT pathway 

overdrive, a common phenotype in the disease, because PI3K-AKT inhibitors induce 

compensatory upregulation of receptor tyrosine kinases like HER3 and EGFR [2-4]. Indeed, 

antagonizing HER3 along with EGFR enhances the sensitivity of TNBC cells to PI3K-AKT 

pathway inhibitors [4]. In addition, HER3 may have value as a prognostic biomarker in TNBC, 

as HER3-positivity (defined as no HER3 immunostaining or <10% of cells with membranous 

immunostaining) is associated with shorter overall and disease-free survival in TNBC [5]. 

However, it is unknown whether HER3 is an independent predictor of poor outcomes in TNBC 

or whether it is merely a surrogate for advanced stage or other negative prognostic indicators, as 

multivariable analyses have not been explored. Furthermore, given that HER3 primarily relies on 

heterodimerization to signal [6], assessing HER3 scores in isolation as a prognostic measure may 

be inferior to assessing HER3 levels in combination with the scores of other ErbB family 



 

 

members. For TNBC, which does not overexpress HER2, determining HER3 levels in the 

context of EGFR levels may prove superior to assessing HER3 levels alone. (HER3 may bind to 

HER4, but this interaction appears to be mitogenically unproductive [7, 8]). Thus, our goal 

herein was to evaluate whether a combined HER3-EGFR score (the sum of the individual HER3 

and EGFR H-scores) could predict survival in TNBC patients and to compare its prognostic 

potential to individual HER3 and EGFR H-scores. Furthermore, we characterized differences in 

molecular pathways between HER3-EGFR groups using RNA-seq data and IPA to identify 

potential targets for therapy in TNBC. 

 

6.3 Materials and methods 

6.3.1 Datasets 

TNBCs were identified as completely lacking ER and PR expression and having <10% 

membrane cells with any staining for HER2. Three TNBC datasets were included in the study: 

Nottingham (n=302), Norway (n=104), and Emory (n=104), consisting of adjuvant 

chemotherapy-treated and untreated breast cancer patients with stage I-III disease. Cases 

included patients from the well-characterized Nottingham Tenovus Primary Breast Carcioma 

Series [9, 10] diagnosed with primary operable invasive TNBC presenting between 1986 and 

1998 for which staining of HER3 and EGFR has been previously described [11]. Descriptive 

patient and clinicopathologic statistics can be found in Table 6.1. The Nottingham Research 

Ethics Committee 2 approved all aspects of the study under the title “Development of a 

molecular genetic classification of breast cancer.” Samples were deidentified and collected 

before 2006, so informed consent was not required pursuant to the Human Tissue Act. Data 



 

 

regarding mortality, disease progression, and distant metastases were maintained prospectively 

for patients presenting after 1989.  

 

6.3.2 Sample scoring 

For TNBC samples in the Norway and Emory cohorts, an experienced pathologist blind 

to clinical annotation scored membrane staining intensity (0-3+) and the percentage of cells with 

any evidence of membranous staining (0-100%), the product of which was the individual 

Histochemical (H)-score for the biomarker. Only cores with at least 15% of tumor cells were 

scored, and only invasive breast cancer cells were scored. The two cores were scored 

independently at 20X magnification and the average score was taken. 

 

6.3.3 Survival analyses 

Survival outcomes were defined as the time from the date of diagnosis to the time of 

breast cancer-specific death (BCSS) or distant metastasis (DMFS). Average BCSS and DMFS 

times were 224 months and 200 months, respectively, for the entire study and were 213 and 167 

months, respectively, for the Nottingham cohort; 216 and 197 months, respectively, for the 

Norway cohort; and 123 and 117 months, respectively, for the Emory cohort. Continuous HER3, 

EGFR, and HER3-EGFR H-scores were converted to categorical variables based on the median. 

The impact of categorical HER3, EGFR, and HER3-EGFR H-scores on BCSS and DMFS in 

adjuvant chemotherapy-treated vs. untreated patients were tested using simple and multivariable 

Cox models, stratified by hospital. It was found that the proportional hazards assumption was 

satisfied by plotting partial residuals against rank-time and determining that the slope did not 

significantly differ from zero per ANOVA (data not shown). AJCC stage and age at diagnosis 



 

 

were entered as covariates into multivariable models. Nottingham grade was not included 

because the paucity of grade 1 and 2 patients resulted in a great deal of uncertainty in hazard 

ratios (i.e., confidence intervals were excessively wide). Results of survival analyses were 

considered significant if p<0.05. Analyses were conducted using IBM SPSS Statistics v. 21. 

 

6.3.4 Biomarker comparisons 

Differences in 105 cellular and tissue biomarkers between HER3-EGFR-high and low 

TNBCs among chemotherapy-treated patients from the Nottingham cohort were compared using 

2-tailed Mann-Whitney U tests. Cellular biomarkers were recorded as intensities, percentages, 

and/or H-scores with nuclear, cytoplasmic, total (nuclear + cytoplasmic), and/or membranous 

levels. Tissue biomarkers were recorded as intratumoral, stromal, and/or total (intratumoral + 

stromal) levels. There were 314 comparisons, so to set the false-discovery rate at q=0.25, we 

calculated p=0.25*R/m (where R=number of rejected null hypotheses at α=0.05 and m=the 

number of tested null hypotheses) to determine statistical significance. As R=30 and m=314, 

p=0.018 was considered statistically significant for this analysis. Analyses were conducted using 

IBM SPSS Statistics v. 21. 

 

6.3.5 RNA sequencing 

We performed RNA-seq on 78 TNBCs (pre-treatment formalin-fixed paraffin-embedded 

[FFPE] resection specimens) from the Nottingham cohort for which HER3 and EGFR scores 

were available. Following depariffinization with xylene, samples were processed for RNA 

extraction using the Omega Mag-Bind XP FFPE RNA isolation kit (Omega, M2595-01) and 

KingFisher Flex magnetic particle separator (ThermoFisher). The Nanodrop 2000c 



 

 

spectrophotometer (Thermo Scientific Inc., Waltham, MA, USA) was used to measure RNA 

concentration, and RNA integrity was analyzed with the Agilent 2200 TapeStation instrument 

(Agilent Technologies, Santa Clara, CA) by calculating the percentages of fragments larger than 

200 nucleotides (DV200). First-strand cDNA syntheses were accomplished using ~100 ng RNA 

at 25°C for 10 min, 42°C for 15 min, and 70°C for 15 min by adding random hexamers and 

ProtoScript II Reverse Transcriptase (New England BioLabs, Ipswich, MA). The TruSeq RNA 

Access library kit (Illumina, Inc., San Diego, CA, USA) was used according to the 

manufacturer’s instructions for second-strand synthesis and to prepare RNA sequencing libraries. 

RNA templates were eliminated and a second replacement strand was created using dUTP to 

synthesize double-stranded cDNA. Blunt-end cDNA was removed using Mag-Bind RxnPure 

Plus magnetic beads (Omega Bio-tek, Norcross, GA). The 3’ ends were adenylated and then 

ligated with indexing adaptors. PCR (15 cycles of 98°C for 10 sec, 60°C for 30 sec, and 72°C for 

30 sec) was performed to enrich dual-end adaptor-ligated DNA fragments. Agilent 2200 

TapeStation was used to qualify the library and the QuantiFluor dsDNA System (Promega, 

Madiosn, WI) to quantify it. A 4-plex pool of libraries was created by adding 200 ng of each 

DNA library to the pool, which was then mixed with capture probes. Hybridization was 

accomplished through 18 cycles of 1 min incubation, beginning at 94 °C, and then lowering the 

temperature by 2 °C per cycle. Probes hybridized to target regions were captured using 

streptavidin-coated magnetic beads. Enriched libraries were eluted and again subjected to 

hybridization followed by 10 cycles of PCR amplification (98°C for 10 sec, 60°C for 30 sec, and 

72°C for 30 sec). RxnPure magnetic beads were used for clean-up. Agilent High Sensitivity 

D1000 ScreenTape on an Agilent 2200 Tapestation instrument was used for final library 

validation. The final library size distribution was ~200 bp–1 kbp. Normalization, pooling, and 



 

 

clustering was performed on the libraries, which were pair-red sequenced for 75 cycles on the 

HiSeq2500 (Illumina, Inc. San Diego, CA, USA), per the manufacturer's instructions. 

 

6.3.6 RNA-seq data analyses 

78 malignant samples from the Nottingham dataset were RNAsequenced. Differentially 

expressed transcripts between HER3-EGFR-high and low groups (stratified by the median) were 

determined using DESeq2 in GenePattern with default settings. 206 genes were differentially 

expressed at FDR<0.25, 178 genes of which were differentially expressed at least log2-fold and 

which were entered into IPA for canonical pathway analysis with stratification based on the 

median HER3-EGFR score as determined in the multi-institutional n=510 TNBC sample. 

Default settings were used except the species was limited to Homo sapiens.  

 

6.3.7 Oncomine analyses 

Oncomine [12] breast cancer databases were interrogated by entering the terms, 

“HNF4A,” “breast cancer,” and “Stage Analysis” “Clinical Specimen,” and “mRNA.” All 

returned datasets had 95 patients. Early vs. advanced-stage breast cancers were compared. In 

addition, the database was interrogated by entering “Triple-Negative Breast Cancer” instead of 

“Stage Analysis,” and filtering for datasets with n50 patients. This returned 14 datasets, for 

which we compared HNF4A expression between TNBCs and non-TNBCs. We also compared 

copy-number variation between ductal carcinomas in situ and invasive ductal breast carcinomas 

in the Curtis Breast Dataset. We also conducted Cancer Outlier Profile Analysis (COPA) using 

Curtis Breast data, which identifies genes with striking overexpression in a subset of cases in a 

dataset [13], at the 90th percentile. 



 

 

6.4 Results 

We were interested to determine whether a combined HER3-EGFR score could predict 

survival in chemotherapy-treated or untreated patients. Although the treatment-predictive value 

of a biomarker can only be established in randomized controlled clinical trials, retrospective 

analysis of the impact of a biomarker on survival outcomes in chemotherapy-treated vs. 

untreated patients can provide insights into whether a biomarker may have predictive value. 

Furthermore, analyzing treatment subgroups is important because of the potentially confounding 

effect of chemotherapy on survival. Thus, we compared the impact of high vs. low HER3, 

EGFR, and HER3-EGFR H-scores categorized based on the median in chemotherapy-treated and 

untreated TNBC patients, stratified by hospital. In simple Cox models, high HER3-EGFR was 

associated with 2.50-fold increased risk of dying from breast cancer in chemotherapy-treated 

patients (p=0.003) but not untreated patients (Table 6.2). By contrast, HER3 and EGFR assessed 

as individual biomarkers did not have a significant effect on BCSS regardless of chemotherapy 

status. Similar results were obtained in analyses of DMFS. High HER3-EGFR was associated 

with 1.95-fold increased risk of distant metastasis in chemotherapy-treated patients (p=0.022) but 

not untreated patients (Table 6.2). Neither HER3 nor EGFR assessed as individual biomarkers 

significantly impacted DMFS in chemotherapy-treated or untreated patients. 

 

In stage- and age-adjusted models, stratified by hospital, high HER3-EGFR remained a 

significant predictor of worse BCSS in chemotherapy-treated patients (HR=2.30, p=0.006) but 

not untreated patients (Table 6.3). Neither HER3 nor EGFR assessed as individual biomarkers 

significantly impacted BCSS in either treated or untreated patients in multivariable models. 

Similarly, in stage- and age-adjusted models, stratified by hospital, high HER3-EGFR predicted 



 

 

worse DMFS in chemotherapy-treated patients (HR=1.78, p=0.041) but not untreated patients 

(Table 6.3). By contrast, neither HER3 nor EGFR assessed as individual biomarkers 

significantly impacted DMFS in multivariable models. Thus, consideration of HER3 and EGFR 

jointly independently predicts poor outcomes in adjuvant chemotherapy-treated patients, unlike 

assessment of HER3 or EGFR in isolation. 

 

We were also interested in characterizing differences in 105 cellular and tissue 

immunohistochemical biomarkers implicated in cancer (recorded variously as intensities, 

percentages, and H-scores, as appropriate, for nuclear, cytoplasmic, total cell, and/or 

membranous levels for cellular biomarkers and as intratumoral, stromal, and/or total tissue levels 

for tissue biomarkers) between HER3-EGFR-stratified TNBC samples from adjuvant 

chemotherapy-treated patients. Among the 314 comparisons, only 8 had q<0.25. These included 

luminal cytokeratins 7/8 and 18 (percentages and H-scores), DNA repair molecules SMC6L1 

(percentage) and dicer (percentage and H-score), and placental cell-cell adhesion molecule P-

cadherin (H-score), all of which were higher in the HER3-EGFR-high group of tumors from 

adjuvant chemotherapy-treated TNBC patients (Table 6.4). 

 

Finally, we determined differentially expressed genes and differentially regulated 

pathways between HER3-EGFR-high and low TNBCs. 78 pre-treatment TNBC resections for 

which HER3-EGFR scores were available were subjected to RNA-seq. Differentially expressed 

genes were determined using DESeq2, and genes with log2-fold differential expression and 

FDR<0.25 were subjected to canonical pathway analysis using IPA. The top differentially 

regulated canonical pathway was Hepatic Fibrosis/Hepatic Stellate Cell Activation (p=0.008). 



 

 

Consistent with this finding, the top toxicity function was early-stage liver cirrhosis (p=9.4x10-4). 

The top upstream regulator was Hepatocyte nuclear factor 4 alpha (HNF4A) (p=0.012), and the 

top disease/disorder was gastrointestinal cancer (p=3.0x10-9). A literature search revealed that 

HNF4A binds to ERBB3 (the gene encoding HER3), but not EGFR, in HepG2 cells [14]. Genes 

identified in the Hepatic Fibrosis pathway were distinct from those identified as being regulated 

by HNF4A, all of which were upregulated in the HER3-EGFR-high group. 

  

Little is known about HNF4A in breast cancer, but because it is a key upstream regulator 

in the HER3-EGFR-high group, which is more likely to experience distant metastasis, we 

wondered whether HNF4A was associated with advanced nodal stage in breast cancer. To this 

end, we queried Oncomine by entering the terms, “HNF4A,” “breast cancer,” and “Stage 

Analysis” “Clinical Specimen,” and “mRNA,” which produced 7 microarray datasets for 

comparison, all of which had 95 patients. It was found that HNF4A was overexpressed in 

advanced-stage disease (p=0.04, median rank=1122.0). We also tested whether it was 

upregulated in TNBCs vs. non-TNBCs, so we repeated the query by entering “Triple-Negative 

Breast Cancer” instead of “Stage Analysis,” filtering for datasets with n50 patients, resulting in 

14 datasets. It was found that HNF4A was not upregulated in TNBCs across datasets (p=0.40, 

median rank=5025.5). Thus, HNF4A is associated with advanced-stage breast cancer but it is not 

upregulated in TNBCs vs. non-TNBCs. We also assessed copy-number variation between ductal 

carcinomas in situ (DCIS; n=10) and invasive ductal breast carcinomas (n=1,556) in the Curtis 

Breast Dataset in Oncomine. We found that HNF4A copy number was significantly higher in 

malignant samples than DCIS samples (p=0.019, fold-change=1.039; top 6% of genes). In the 

entire n=1,992-sample dataset, the Cancer Outlier Profile Analysis (COPA) score (which 



 

 

identifies genes with striking overexpression in a subset of cases in a dataset[13]) at the 90th 

percentile is 2.437 (median rank=3,189); it was overexpressed in many datasets, and it was not 

underexpressed in any dataset. Thus, there appears to be a subset of breast tumors that 

overexpress HNF4A.  

 

6.5 Discussion 

The finding that a combined HER3-EGFR score, but not individual HER3 or EGFR H-

scores, independently predicts worse BCSS and DMFS in adjuvant chemotherapy-treated TNBC 

patients suggests that membranous HER3 and EGFR levels do not have prognostic value in 

TNBC in isolation but, rather, must be considered jointly. Because HER3 is kinase impaired, it 

must heterodimerize with other ErbB family members such as EGFR. The tumors of 

chemotherapy-treated TNBC patients with high HER3-EGFR scores exhibited higher expression 

levels of luminal cytokeratins, DNA repair molecules, and P-cadherin than patients with low 

HER3-EGFR scores based on immunohistochemical analyses. It has been shown that TNBCs 

can be divided into four subtypes by immunohistochemistry, and the luminal subtype, which 

exhibits luminal cytokeratin expression, is associated with poor outcomes among TNBC patients 

treated with adjuvant cytotoxic chemotherapy [15]. Our results are in alignment with this 

finding, and so it is possible that the chemoresistant luminal-type TNBCs could be treated with a 

targeted dual HER3-EGFR inhibitor such as MEHD7945A. High levels of DNA repair 

molecules suggest that drugs targeting DNA repair pathways, such as PARP inhibitors, may also 

be useful in treating HER3-EGFR-high TNBCs, which appear to be less responsive to adjuvant 

cytotoxic chemotherapy than HER3-EGFR-low TNBCs. Because HER3-EGFR-high TNBCs 

exhibit relatively high P-cadherin immunostaining, they could also potentially be susceptible to 



 

 

P-cadherin inhibitors, such as PCA062. A phase 1 multicenter Open-label Dose Escalation and 

Expansion Study of PCA062 is currently underway testing the efficacy of this drug in p-CAD-

positive TNBCs. 

 

The top differentially expressed canonical pathway – hepatic fibrosis – was upregulated 

in the HER3-EGFR-high group of TNBCs. Fibrosis has recently been connected to solid tumor 

metastasis [16]. During fibrosis of a primary tumor, tumor cells recruit and activate stromal cells, 

such as myofibroblasts, to produce desmoplasia, which has a composition similar to fibrotic non-

malignant extraceullar matrix and facilitates metastasis. Invasive breast cancers that metastasize 

exhibit higher expression of the myofibroblast marker α-smooth muscle actin than those that do 

not metastasize, and α-smooth muscle actin is an independent predictor of metastasis [17]. Thus, 

a high HER3-EGFR score may identify a subset of breast cancer patients whose tumors exhibit a 

transcriptional profile associated with fibrotic disease, which can drive distant metastasis, 

consistent with our finding that high HER3-EGFR score independently predicted worse DMFS 

in adjuvant chemotherapy-treated TNBC patients.  

 

Seemingly in contrast, we identified the top differentially expressed upstream 

transcriptional regulator of differential gene expression in the HER3-EGFR high group of RNA-

sequenced TNBCs as HNF4A. This transcription factor antagonizes hepatic fibrosis and 

promotes hepatocyte differentiation [18]. However, it is amplified in certain cancers, such as 

colon (in particular, a subtype associated with features of chromosomal instability), promotes gut 

tumorigenesis in mice, and it is a susceptibility gene for ulcerative colitis and other inflammatory 

bowel disorders [19-21]. It has been found that hepatocytes express only the “P1” isoforms of 



 

 

HNF4A, whereas intestinal epithelial cells express both the “P1” and “P2” isoforms and 

hepatocellular carcinomas and murine embryonic liver preferentially express “P2” isoforms [22, 

23]. P2 isoforms are a collection of three isoforms, α7-9, that result from the use of a more 

distant promoter, are shorter, and lack the cofactor-interacting domain present in group of six P1 

isoforms, α1-6 [21]. P2 isoforms appear to promote proliferation of colon cancer cells, whereas 

P1 isoforms exhibit mixed effects [24]. A study of n=45 mucinous ovarian carcinomas found that 

about a third exhibit P1 staining and nearly all exhibit P1/P2 staining [25]. The involvement of 

P1 and P2 isoforms in breast carcinogenesis represents entirely unexplored territory. Although 

our Oncomine analysis did not differentiate between isoforms, we report here that HNF4A is 

associated with advanced-stage breast cancer and invasive breast cancer, may be overexpressed 

in a subset of breast tumors, and genes targeted by HNF4A are enriched in the poor-prognosis 

HER3-EGFR-high group. It appears as though a canonical pathway associated with hepatic 

fibrosis coexists with enrichment in HNF4A targets in the HER3-EGFR-high group; we 

speculate that P2 isoforms may be upregulated in the poor-prognosis HER3-EGFR-high group, 

resulting in inflammation that may promote desmoplasia, an exciting avenue for future research. 

This is consistent with the finding that a network involved in gastrointestinal inflammation was 

upregulated in the HER3-EGFR-high group and represents an exciting avenue for future studies. 
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Table 6.1 Clinicopathologic data for Nottingham, Norway, and Emory datasets 

 

Variable Statistic (continuous variables) or 

level (categorical variables) 

Hospital 

Nottingham Norway Emory 

HER3 H-score Median 146 50 5 

Mean 146 53 20 

Standard Deviation 75 46 38 

Minimum 0 0 0 

Maximum 300 180 185 

Missing 0 0 0 

EGFR H-score Median 0 0 9 

Mean 36 12 61 

Standard Deviation 62 38 86 

Minimum 0 0 0 

Maximum 300 300 300 

Missing 0 0 0 

HER3-EGFR 

H-score 

Median 170 60 33 

Mean 182 64 80 

Standard Deviation 106 65 93 

Minimum 0 0 0 

Maximum 600 430 330 

Missing 0 0 0 

Age at 

diagnosis 

(years) 

Median 50 52 56 

Mean 50 54 57 

Standard Deviation 11 14 12 

Minimum 27 22 23 

Maximum 71 85 85 

Missing 3 0 0 

AJCC stage I 95 30 40 

II 171 61 50 

III 35 11 14 

Missing 1 2 0 

Chemotherapy No 147 0 13 

Yes 131 80 77 

Missing 24 24 14 

 

 

 

 

 

 

 
 



 

 

Table 6.2 Risk of worse breast cancer-specific or distant metastasis-free survival conferred by 

high levels of membranous HER3, EGFR, or HER3-EGFR H-scores in simple Cox models 

stratified by hospital 

 

  Breast cancer-specific survival  Distant metastasis-free survival 

    95% CI for HR    95% CI for HR 

Biomarker Chemo p-value HR Lower Upper   p-value HR Lower Upper 

HER3 No 1 1 0.52 1.92  0.81 0.93 0.51 1.69 

 Yes 0.41 1.31 0.69 2.47  0.58 1.19 0.63 2.25 

EGFR No 0.91 1.03 0.58 1.84  0.8 1.08 0.62 1.86 

 Yes 0.63 1.13 0.69 1.84  0.1 1.48 0.92 2.38 

HER3-EGFR No 0.97 1.01 0.55 1.84  0.89 0.96 0.55 1.68 

 Yes 0.003 2.5 1.38 4.53  0.022 1.95 1.1 3.43 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 6.3 Risk of worse breast cancer-specific or distant metastasis-free survival conferred by 

high levels of membranous HER3, EGFR, or HER3-EGFR H-scores, as defined by respective 

medians, in multivariable Cox models including each respective biomarker, adjusted for AJCC 

stage and age at diagnosis, and stratified by hospital 
 

 
  

    Breast cancer-specific survival 
Distant metastasis-free 

survival 

Model Covariate Chemo 
p-

value 
HR 

95% CI for 

HR p-

value 
HR 

95% CI for 

HR 

Lower Upper Lower Upper 

HER3 

HER3 

No 

0.58 1.21 0.62 2.36 0.77 1.1 0.59 2.06 

Age 0.96 1 0.97 1.03 0.99 1 0.97 1.03 

Stage <0.001    <0.001    

II vs. I 0.51 1.24 0.65 2.38 0.27 1.42 0.76 2.63 

III vs. I <0.001 6.63 2.96 14.85 <0.001 6.09 2.67 13.92 

HER3 

Yes 

0.57 1.21 0.63 2.34 0.72 1.12 0.59 2.11 

Age 0.1 1.02 1 1.05 1 1 0.98 1.02 

Stage 0.01    0.02    

II vs. I 0.79 1.1 0.57 2.12 0.97 1.01 0.56 1.85 

III vs. I 0.014 2.58 1.21 5.49 0.022 2.36 1.13 4.93 

EGFR 

EGFR 

No 

0.75 0.91 0.51 1.63 0.86 0.95 0.54 1.68 

Age 0.98 1 0.97 1.03 0.98 1 0.97 1.03 

Stage <0.001    <0.001    

II vs. I 0.56 1.21 0.64 2.3 0.28 1.4 0.76 2.59 

III vs. I 
 

<0.001 6.42 2.89 14.27 <0.001 6.02 2.64 13.75 

EGFR 

Yes 

0.67 1.11 0.68 1.81 0.18 1.39 0.86 2.23 

Age 0.09 1.02 1 1.05 0.89 1 0.98 1.03 

Stage 0.008    0.024    

II vs. I 0.81 1.09 0.56 2.1 0.98 1.01 0.55 1.84 

III vs. I 
 

0.013 2.59 1.22 5.51 0.027 2.3 1.1 4.81 

HER3-

EGFR 

HER3-

EGFR 

No 

0.85 0.94 0.51 1.74 0.78 0.92 0.51 1.65 

Age 0.98 1 0.97 1.03 0.98 1 0.97 1.03 

Stage <0.001    <0.001    

II vs. I 0.58 1.2 0.63 2.29 0.3 1.39 0.75 2.56 

III vs. I 
 

<0.001 6.33 2.88 13.96 <0.001 5.99 2.66 13.48 

HER3-

EGFR 

Yes 

0.006 2.3 1.26 4.2 0.041 1.78 1.02 3.11 

Age 0.13 1.02 0.99 1.05 0.83 1 0.98 1.03 

Stage 0.016    0.007    

II vs. I 0.73 1.12 0.58 2.17 0.83 1.07 0.58 1.95 

III vs. I   0.018 2.49 1.17 5.31 0.009 2.61 1.28 5.32 

 
 



 

 

Table 6.4 Immunohistochemical biomarkers differentially expressed between HER3-EGFR-low 

and high groups at q<0.25.  

Unadjusted p-values are displayed. 

Biomarker 
HER3-

EGFR 
N 

Mean 

rank 

Sum of 

ranks 
p-value 

Cytokeratin 7/8 

(percentage) 

Low 38 54.43 2068.5 0.013 

High 93 70.73 6577.5  
Cytokeratin 7/8 

(H-score) 

Low 38 51.91 1972.5 0.006 

High 93 71.76 6673.5  
Cytokeratin 18 

(percentage) 

Low 38 52.49 1994.5 0.009 

High 91 70.23 6390.5  
Cytokeratin 18 

(H-score) 

Low 38 52.24 1985 0.007 

High 91 70.33 6400  
Cytoplasmic 

SMC6L1 

(percentage) 

Low 24 43.67 1048 0.017 

High 68 47.5 3230 
 

Dicer 

(percentage) 

Low 27 38.87 1049.5 0.01 

High 68 51.63 3510.5  
Dicer (H-

score) 

Low 27 34.48 931 0.002 

High 68 53.37 3629  

P-cadherin (H-

score) 

Low 34 48.26 1641 0.015 

High 86 65.34 5619   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

7 RETINOIC ACID RECEPTOR ALPHA PREDICTS GOOD PROGNOSIS IN 

TRIPLE-NEGATIVE BREAST CANCER 

 

7.1 Abstract 

Several studies have recently uncovered the potential therapeutic value of the retinoic 

acid receptor alpha (RARA) in breast cancer. Stimulation of RARA in hormone receptor-positive 

breast cancer cells induces growth arrest, differentiation, and apoptosis, and treatment with a 

specific RARA inhibitor suppresses mammary tumorigenesis and metastasis in an MMTV-Myc 

mouse model of breast cancer. However, RARA antagonists are not effective in suppressing 

suppressing the growth of triple-negative breast cancer (TNBC) cell lines because they tend to 

underexpress RARA. Whether a subset of tumors from TNBC patients exhibit upregulated 

RARA expression, and thus may be susceptible to RARA agonists, has not been established, nor 

has the potential prognostic value of RARA in TNBC been explored. We hypothesized that 

higher nuclear levels, representing the transcriptionally active form of RARA, would be 

associated with better outcomes in TNBC. We confirmed that TNBCs express lower levels of 

RARA mRNA than non-TNBCs in the METABRIC dataset (n=1975). We also tested the impact 

of nuclear RARA (nRARA) H-scores on breast cancer-specific survival (BCSS) and distant 

metastasis-free survival (DMFS) using 167 primary TNBC specimens immunolabeled for 

RARA. We found that high nRARA levels (based on an optimal cutpoint) were present in ~14% 

of tumors and independently predicted good prognosis in multivariable models (HR=0.26 for 

BCSS and HR=0.27 for DMFS, P<0.001 for both). Thus, determination of nRARA H-score by 

immunohistochemistry could provide prognostic information and guide clinical decision making, 

specifically revealing a subset of TNBC patients with a good prognosis. Future studies are 



 

 

needed to evaluate whether this high-nRARA group could benefit from RARA agonists and 

potentially be spared harsher chemotherapeutic regimens. 

 

7.2 Introduction 

RARA, a nuclear hormone receptor, has emerged as a potential molecular target in 

certain types of breast cancer. For instance, stimulation of RARA with AM580, a RARA-specific 

retinoic acid analog, inhibits tumor growth and metastasis to the lung in an MMTV-Myc mouse 

model of breast cancer [1]. This is likely due to the ability of RARA to antagonize mitogen 

signaling and activate signaling pathways involved in tissue differentiation and induction of 

apoptosis. A subset of HER2-positive breast tumors exhibit coamplification of the gene encoding 

RARA, and co-targeting of HER2 and RARA with lapatinib and all-trans retinoic acid (ATRA), 

an active metabolite of Vitamin A, results in synergistic antagonism of proliferation and 

induction of differentiation and apoptosis [2]. Similarly, stimulation of RARA with AM580 or 

ATRA inhibits the proliferation of hormone receptor-positive breast cancer cells, an effect that is 

diminished by silencing of RARA [3]. On the other hand, RARA agonists do not affect the 

growth of triple-negative breast cancer (TNBC) cells, which express much lower RARA levels 

than hormone receptor-positive breast cancer cells. This finding is consistent with studies that 

found RARA expression is lower in basal-like breast cancer cells than breast cancer cells of 

other subtypes [4] and the RARA gene is hypermethylated in hormone receptor negative and 

basal-like breast tumors, but not hormone receptor positive and luminal breast tumors [5]. Thus, 

RARA agonists could be effective for hormone receptor-positive breast cancer, whereas 

induction of RARA may be necessary for such agents to be effective in triple-negative breast 

cancers. 



 

 

Given its seeming role in suppressing breast tumorigenesis, RARA may serve as a 

positive prognostic biomarker, although this possibility has never been explored. While RARA 

levels are lower in TNBC than non-TNBC cells, it is possible that a subset of TNBC patients 

have higher levels and a more favorable prognosis, given how molecularly heterogeneous 

TNBCs are [6, 7]. Such biomarkers are urgently needed for TNBC to gain insight into a patient’s 

likely disease course and the potentially utility of systemic therapy, since to date no biomarkers 

have been approved to guide treatment decisions for TNBC per the latest ASCO guidelines due 

to a lack of evidence for their clinical utility [8, 9]. RARA could potentially fill this gap by 

serving as a positive prognostic biomarker in TNBC, although its potential in this regard has not 

been investigated. Towards this end, we explored the effect of nRARA levels on survival 

outcomes in TNBC patients. Nuclear levels were tested because they represent the 

transcriptionally active form of RARA [10]. Ultimately, we found that high RARA levels are 

associated with better breast cancer-specific and distant metastasis-free survival. Thus, a subset 

of TNBC patients with high intratumoral RARA could potentially be spared harsher 

chemotherapy regimens and may benefit from RARA agonism, whereas TNBC patients with low 

intratumoral RARA may require more aggressive treatment. 

 

7.3 Materials and Methods 

nRARA expression levels in breast carcinomas of different molecular subtypes were 

compared in the METABRIC dataset (n=1975; patient characteristics described in [11]). The 

impact of nRARA on the survival of 167 TNBC patients was also tested (continuous and 

categorical patient and clinicopathologic variables and nRARA scores are given in Table 7.1). 

Specifically, we immunolabeled primary TNBC specimens and calculated H-scores as the 



 

 

product of the nuclear staining intensity (0-3) and the percent of cells with any nuclear staining 

(1+). The optimal, most-significant cut point based on BCSS was found using X-tile [12]. 

Tumors with scores below or equal to this cutpoint were classified as having a low nRARA 

score, and tumors with scores above this cutpoint were classified as having a high nRARA score. 

The impact of categorical nRARA (low vs. high) on BCSS and DMFS were assessed using the 

Kaplan-Meier method and Cox proportional hazards regression. The proportional hazards 

assumption was found to be satisfied because plots of partial residuals against rank time had 

nearly zero slope or y-intercept. Multivariable Cox models were fit using backward stepwise 

elimination of covariates with a p-value >0.10.  

 

7.4 Results and Discussion 

Using the METABRIC dataset, we found that RARA expression levels were 

approximately one third lower in TNBCs than non-TNBCs (p=7.6E-92) (Figure 7.1). We 

determined that the optimal cutpoint in nRARA H-score was 110 (110=low, n=21; >110=high, 

n=146). Based on Kaplan-Meier and univariate Cox analyses, high nRARA was associated with 

better BCSS and DMFS (P<0.001 for both, Kaplan-Meier analysis, Figures 7.2 and 7.3; and 

HR=0.322, P<0.001 and HR=0.35, P=0.001, respectively; simple Cox models). nRARA was 

found to be an independent predictor of better outcomes in multivariable analysis of BCSS and 

DMFS, where the covariates entered into the full model included age at diagnosis, tumor size, 

Nottingham grade, lymph node stage, basal phenotype, Ki67-labeling index, and receipt of 

adjuvant chemotherapy (HR=0.26 for BCSS and HR=0.27 for DMFS, P<0.001 for both; Tables 

7.2 and 7.3, respectively). Only nRARA, Ki67, and tumor size (for BCSS) or tumor grade (for 

DMFS) remained in final models. Thus, our study corroborate previous reports that RARA is 



 

 

underexpressed in TNBCs and basal-like breast cancers, the majority of which are TNBCs. The 

data also support our hypothesis that higher nRARA levels confer better survival outcomes in 

TNBC, and a small subset of TNBC patients have relatively high nRARA levels. Thus, certain 

TNBC patients may be good candidates for therapy with RARA agonists, such as ATRA. 
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Table 7.1 Descriptive statistics for continuous and categorical patient and clinicopathologic 

variables and nRARα scores 

 

Continuous 

variable 
Mean (SD) Range Missing 

Age at 

diagnosis 

(years) 

49 (11) 27-70 0 

Tumor size 

(cm) 
2.5 (1.2) 0.2-8.0 1 

nRARα score 206 (71) 0-300 0 

Categorical 

Variable 
Level Count Column N % 

Grade 

2 9 5.40% 

3 157 94.60% 

Missing 1  

Valid N 166  

LN stage 

1 96 57.80% 

2 50 30.10% 

3 20 12.00% 

Missing 1  

Valid N 166  

Adjuvant 

chemotherapy 

None 70 45.50% 

Treatment 

Received 
84 54.50% 

Missing 13  

Valid N 154  

Basal 

phenotype 

0 53 32.10% 

1 112 67.90% 

Missing 2  

Valid N 165   

 

 

 

 

 

 



 

 

Table 7.2 Final multivariable Cox regression model of the impact of nRARα on breast cancer-

specific survival 

 

Final Model 

Variables 
p-value HR 

95.0% CI for HR 

Lower Upper 

nRARα <0.001 0.255 0.12 0.539 

Ki67 0.066 0.991 0.982 1.001 

Tumor size 

(cm) 
0.029 1.26 1.024 1.551 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 7.3 Final multivariable Cox regression model of the impact of nRARα on distant 

metastasis-free survival 

 

Final Model 

Variables 
p-value HR 

95.0% CI for HR 

Lower Upper 

nRARα <0.001 0.265 0.129 0.542 

Grade 0.179 0.25 0.033 1.89 

Ki67 0.013 0.988 0.979 0.998 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 7.1 Normalized expression levels of nRARα in TNBCs vs. non-TNBCs in the METABRIC 

dataset. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 7.2 Kaplan-Meier survival plots of breast cancer specific-survival stratified by nRARα 

score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 7.3 Kaplan-Meier survival plots of distant metastasis-free survival stratified by nRARα 

score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

8 CONCLUSIONS 

 

 

Why are these findings clinically important? 

The findings from the studies described in this dissertation serve an unmet need to 

identify novel and potentially actionable biomarkers that can predict the clinical course of breast 

tumors. Most of these biomarkers (nKIFC1, KAMS, HER3-EGFR, RARA) in particular risk-

stratify TNBCs, for which no prognostic biomarkers or genomic tests are currently approved. 

Because the biomarkers explored herein offer independent prognostic information and the 

literature also reports that they actively drive breast tumorigenesis (overexpression in the cases 

of CA20, KIFC1, KAMS, and HER3-EGFR and underexpression in the case of nRARA), these 

biomarkers may also offer predictive information about responsiveness to specific drugs, 

including molecularly targeted agents (MTAs). For example, high CA20 score predicts poor 

survival, and CA has been shown to impart aggressive phenotypes, such as invasive behavior, 

enhanced directional migration, and chromosomal instability [1-3]. Thus, CA contributes to poor 

outcomes in breast cancer patients, rather than merely being correlated with aggressive disease 

course; as a consequence, high CA20 score may predict responsiveness to centrosome 

declustering drugs, such as the ones tested herein in TNBC cells, including the noscapinoids 

noscapine, bromonoscapine, and reduced bromonoscapine; the antifungal griseofulvin; and the 

phenanthrene-derived PARP inhibitor PJ-34.  Similarly, AA TNBC patients with high nKIFC1 

levels experience high mortality and distant metastasis rates, and I demonstrated that suppression 

of KIFC1 expression inhibits AA TNBC cell migration. Thus, treatment of AA TNBC patients 

whose tumors exhibit high nKIFC1 levels with a KIFC1 inhibitor may suppress the development 

of metastases and improve survival. TNBC patients whose tumors exhibit high KAMS may 



 

 

respond well not only to cell cycle-active agents (such as taxanes) but perhaps also to 

immunostimulatory drugs because high KAMS was associated with suppression of immune 

pathways. KAMS may prove to be a biomarker with utility for racially diverse TNBC patients 

because it successfully stratified the predominantly white UK and Norwegian cohorts as well as 

the black Nigerian cohort. TNBC patients with high HER3-EGFR scores may exhibit 

responsiveness to targeted dual-HER3/EGFR or pan-HER family inhibitors, perhaps in 

conjunction with drugs that target the DNA damage response (e.g., PARP inhibitors) and P-

cadherin, which are upregulated in the HER3-EGFR-high group. Furthermore, adding a PI3K-

AKT inhibitor to a regimen including HER3 and EGFR inhibitors may be beneficial because 

antagonizing HER3 along with EGFR sensitizes TNBC cells to PI3K-AKT pathway antagonists 

[4]. Finally, I identified a good-prognosis subgroup of TNBC patients that overexpress nRARA; 

however, 5-year breast cancer-specific survival rates were still below 80%, indicating that these 

patients could benefit from some form of adjunctive therapy. Because RARA expression predicts 

responsiveness to RARA agonists, such as ATRA [5], TNBC patients with high nRARA levels 

may benefit from addition of a RARA agonists to their chemotherapeutic regimen. Furthermore, 

TNBC patients whose tumors underexpress nRARA may benefit from the addition of a drug that 

can upregulate nRARA expression (e.g., transcription factors for RARA), an interesting question 

for future studies. Another intriguing avenue for future research would be to test whether 

incorporating these biomarkers, which may reflect intratumor heterogeneity generated by 

chromosomal instability, along with others that encompass additional mechanisms that drive 

genome instability (e.g., abnormalities in pathways responsible for DNA repair pathways, 

maintenance of DNA methylation, and maintenance of chromosome structure) into a 



 

 

comprehensive prognostic signature can improve risk prediction and, thus, quality of life and 

survival for breast cancer patients. 

 

 In addition to demonstrating the impact of these biomarkers on survival outcomes, this 

work also identifies correlates of in vitro efficacy for centrosome declustering drugs in TNBC 

cells, information that can be used to optimize these agents through rational drug design, which 

as mentioned may prove especially useful in TNBC patients with high CA20 scores since they 

likely exhibit augmented CA. Specifically, induction of high-grade spindle multipolarity by 

centrosome declustering drugs was found to eliminate TNBC cells with comparatively minimal 

toxicity to non-malignant breast cells, a mechanistic insight that can guide rational drug design. 

AA TNBC patients exhibit a more aggressive disease course than white TNBC patients, perhaps 

in part because their tumors display elevated intratumor heterogeneity [6], which promotes 

chemoresistance and disease relapse. The factors underpinning this elevated intratumor 

heterogeneity are not established, but because CA is a driver of CIN, which causes intratumor 

heterogeneity, it is possible that AA TNBCs exhibit higher levels of CA than TNBCs from 

patients of other races. Answering this question is an important focus for future studies because, 

if true, it would indicate that AA TNBCs may be more sensitive to centrosome declustering 

drugs. Furthermore, rational design of centrosome declustering drugs would then benefit from 

considerations about race in experimental design (e.g., the use of AA TNBC cell lines, such as 

HCC1806 and MDA-MB-468 TNBC cells, in preclinical testing of novel declustering drugs and 

the inclusion of AA TNBC patients in clinical trials of declustering drugs). 

 



 

 

How do these findings align with the era of precision medicine? 

Two decades ago, the era of precision medicine dawned in oncology with the arrival of 

MTAs, which disrupt specific processes that underpin tumorigenesis, such as apoptosis 

reluctance, angiogenesis, or invasiveness [7]. The National Cancer Institute defines precision or 

personalized medicine as “A form of medicine that uses information about a person’s genes, 

proteins, and environment to prevent, diagnose, and treat disease.” It further elaborates that “In 

cancer, personalized medicine uses specific information about a person’s tumor to help diagnose, 

plan treatment, find out how well treatment is working, or make a prognosis.” Thus, the 

biomarkers described herein constitute precision medicine because they can assist oncologists in 

prognostication and planning treatment. Furthermore, these biomarkers could potentially also 

predict responsiveness to specific MTAs, which I am eager to test in the future using in vitro and 

in vivo models. Thus, I am confident that these findings are congruent with the era of precision 

medicine and meaningfully contribute to the literature on the topic. Nevertheless, in the popular 

imagination, precision medicine may seem to include only the rather expensive, technically 

challenging, and analytically demanding next-generation “omics” tests in its purview, rather than 

these more straightforward methods to assess actionable tumor biology. 

 

Next-generation tests are frequently touted as providing a comprehensive molecular 

portrait of the tumor landscape (whether genomic, transcriptomic, epigenomic, metabolomic, 

proteomic, or other “omic”), which can thereby yield potentially actionable information about 

molecular aberrations that can inform treatment decisions. Traditionally, breast cancer 

biomarkers (namely, ER, PR, and HER2) have been assayed primarily using 

immunohistochemistry (with HER2 also being assayed by in situ hybridization methods if 



 

 

immunohistochemistry gives an equivocal result). These immunohistochemical biomarkers 

revolutionized clinical care for breast cancer patients because they offer information about the 

clinical course of the disease and which tumors may respond to treatment with hormone therapy 

(such as tamoxifen) and/or HER2 antagonists (such as tastuzumab). Today, 

immunohistochemistry-based biomarkers still constitute the cornerstone of precision oncology 

for breast cancer patients in everyday practice. For example, ER, PR, and HER2 are the only 

biomarkers indicated to guide the choice of specific treatment regimens per current ASCO 

recommendations regarding the use of biomarkers to guide decisions on systemic therapy for 

early-stage disease [8]. Moreover, for patients with late-stage breast cancer, it is recommended 

that ER, PR, and HER2 testing of accessible metastases be offered to the patient, and if the 

results of testing for the primary tumor and metastases are discordant, then the ER/PR/HER2 

statuses of the metastases should direct therapy so long as this aligns with the clinical scenario 

and patient goals [9]. No other breast cancer biomarkers are currently recommended by ASCO to 

be used independently to guide treatment decisions in the metastatic setting. Therefore, 

immunohistochemical biomarkers form the foundation of precision oncology for breast cancer 

patients today.  

 

By comparison, next-generation tests are expensive, technically challenging, and difficult 

to interpret, requiring complicated bioinformatic analysis and necessitating that the oncologist 

remains current on molecular therapeutics and open clinical trials for these tests to potentially 

translate their clinical benefits [10]. Next-generation tests are likely to reveal a multiplicity of 

molecular aberrations in the tumor, which may or may not be actionable, or whose actionability 

may be ambiguous. Furthermore, the complexity of the interactions of these aberrancies with 



 

 

each other and in the context of the patient’s unique genomic landscape (which is distinct for 

every single breast tumor cell [11]) is so tremendous that it is perhaps not possible to completely 

fathom, certainly not at this stage of the evolution of precision oncology. The hope for these tests 

is that some of these aberrations seem clinically actionable, such as an activating mutation in or 

high expression of a gene whose product is the target of an FDA-approved drug or a drug in an 

open cancer clinical trial for which the patient is eligible. Presently, clinical oncologists may not 

have background in molecular diagnostics advanced enough to confer expertise in interpreting 

test results. In an effort to fill this gap, cancer centers may have multidisciplinary “molecular 

tumor boards” or “sequencing tumor boards” (which may include oncologists, pathologists, 

surgeons, radiologists, and other clinicians; medical geneticists; basic and translational scientists; 

bioinformaticians, pathway analysts, and biostatisticians; social/behavioral scientists; and 

biotheicists). These boards assist in interpreting the next-generation reports and advising treating 

physicians about treatment options; however, these boards may not be accessible to practitioners 

working outside these centers, and research into the efficacy of such boards in translating next-

generation reports into improved patient care is still inchoate, as very few studies have been 

published on the topic. A Pubmed search of “molecular tumor board” yields only 15 hits as of 

March 10, 2017, which filters to one result when “triple-negative breast cancer” is also included 

as a search term. This paper, published in 2017, describes a prospective trial at Johns Hopkins 

University School of Medicine that enrolled women with newly progressing metastatic TNBC, 

called the “Individualized Molecular Analyses Guide Efforts” or IMAGE trial. Next-generation 

sequencing of metastatic sites and plasma was conducted using a clinical cancer genomic 

profiling test that interrogates 287 cancer-related genes for base substitutions, indels, copy-

number alterations, and fusions using massively parallel DNA sequencing [12]. The Johns 



 

 

Hopkins Genomic Alterations In Tumors With Actionable Yields (GAITWAY) molecular 

profiling tumor board was tasked with interpreting genetic alterations found in the samples to 

discern potentially actionable biology and then making treatment recommendations to the 

patients’ oncologists. Major real-world challenges ultimately resulted in early study termination 

because it met protocol-specified criteria for interim futility. These challenges included obtaining 

new or recent patient tissue suitable for next-generation sequencing in a timely fashion, DNA 

requirements for the next-generation tests, the necessity for patients to begin treatment if results 

were not returned in a clinically relevant clinical timeframe. Moreover, the actionability of the 

next-generation test results was often unclear or lacking. For example, TP53 mutations were 

found in 95% of patients, but the GAITWAY board did not consider these to be actionable given 

the lack of FDA-approved drugs targeting mutant p53. In the end, only 20% of patients who 

received the next-generation test ultimately received a treatment based on GAITWAY 

recommendations even though 75% had potentially actionable aberrations, primarily due to 

technical and logistical challenges. Thus, for TNBC patients, significant hurdles may remain to 

translate the promise of next-generation tests in the clinic, not the least of which is the fact that 

there is no standard decision support framework to guide treatment decisions for TNBC patients 

based on the results of next-generation tests. Indeed, no next-generation test is indicated for 

TNBC, whether early stage or metastatic, as evidence for their clinical utility is deficient. Thus, 

for TNBC patients, the development of next-generation testing to guide treatment decisions is 

presently at a gestational stage. 

 

Although it may be perceived that next-generation tests provide comprehensive portraits 

of a tumor (or at least cancer-relevant biology, such as in the test employed in the GAITWAY 



 

 

trial), in reality these tests are usually based on a single biopsy and thus only capture a 

“snapshot” of the mutational landscape, which will inevitably change following drug treatment 

due to selective pressures, a sort of incarnation of Heisenberg’s uncertainty principle – by 

measuring the tumor, it is changed and no longer reflects its previous “position.” Indeed, the 

tumor and any circulating tumor cells and metastases will evolve even without treatment owing 

to internal selective pressures and the genomic instability of cancer cells. Serial tumor biopsies 

cannot usually be acquired due to their invasive nature, and less invasive liquid biopsies to detect 

circulating cell-free tumor DNA are not routinely collected, probably in large part due to the 

seriously limited sensitivity and specificity of current assays [13]. As a result, performing a test 

on a patient’s single biopsy to guide treatment selection is like trying to hit a moving target. 

Owing to the mostly random nature of mutation and the limits of current molecular modeling 

technologies, the direction in which a patient’s mutational landscape will drift simply cannot be 

predicted with reasonable accuracy. An additional spatial (vs. temporal) complication is the fact 

that the clones populating the biopsy (which are usually not multiregional in nature) may not 

represent the whole tumor owing to intratumor heterogeneity. Thus, the full range of driver 

mutations may be missed by a single biopsy. If all of these mutations are not targeted 

simultaneously, then the non-targeted subclones will be coaxed to evolve further and may 

become chemoresistant. Also, when multiple mutations are detected in the biopsy, it cannot be 

discerned which aberrations co-occur, and thus interact, in single cells (unless single-cell 

sequencing is performed). Co-occurrence in single cells can impact treatment sensitivity in ways 

that might not be known or predicted. Altogether, spatial and temporal intratumor heterogeneity 

obfuscate knowledge about the tumor landscape and thus the ability to successfully target driving 

aberrations.  



 

 

This is not to say that cancer biology is of such Byzantine complexity as to represent a 

hopeless scenario. Rather, our expectations of next-generation methods should merely be 

tempered, as it is unlikely that a cost-effective, technically facile, and easily interpreted next-

generation test that can reliably detect all the driver mutations (or other molecular aberrations) in 

a tumor and its metastases that must be targeted to cure the disease (as well as MTAs for all of 

these aberrations) will soon be clinically available. By assaying prognostic biomarkers, even 

from only a single biopsy, many patients with aggressive disease can be identified and 

administered an appropriately aggressive regimen of cytotoxic drugs, a sort of “shock and awe” 

approach that may be able to eliminate a substantial fraction of cancer cells regardless of their 

heterogeneity, as these less-specific drugs act on mechanisms that tend to be shared by cancer 

cells. To further personalize therapy while circumventing the manifold technical and logistical 

challenges intrinsic to next-generation methods, I believe that testing for potentially actionable 

breast cancer biomarkers, especially those responsible for chemoresistance, using 

immunohistochemistry holds great promise for improving clinical outcomes for TNBC patients 

in the very near future. Of course, the potential informativeness of immunohistochemical 

biomarkers is also circumscribed by the fact that they are based on a single biopsy in space and 

time, so potentially actionable information may be missed because a rare subclone goes 

undetected. However, if a biopsy detects drivers of ITH – such as CA, centrosome clustering, 

and mitotic propensity, the biomarkers studied in this work, which are relatively inexpensive and 

easy to interrogate – it brings to light that the tumor is likely to exhibit heterogeneity and 

chemoresistance, which may warrant more aggressive cytotoxic regimens while also suggesting 

potential MTAs that can inhibit further tumor evolution, which may need be given on a long-

term basis, in line with the novel paradigm of treating cancer like a chronic (but manageable) 



 

 

disease. For instance, I have great confidence in the ability of nKIFC1 to guide clinical decisions 

for AA TNBC patients. Because adjuvant-treated AA TNBC patients with high nKIFC1 levels 

experience worse outcomes, nKIFC1 may be an indicator of poor response to chemotherapy. In 

fact, KIFC1 overepxression causes resistance to docetaxel in TNBC cells [14], so TNBCs from 

AAs with high nKIFC1 levels may require a more aggressive cytotoxic chemotherapy regimen. 

Adjunctive treatment with a KIFC1 inhibitor may not only improve response to cytotoxic 

chemotherapy, it may also hinder further tumor evolution by selectively eliminating cancer cells 

with CA, a driver of CIN. An even greater degree of personalization may be possible to achieve 

for these patients if the proportion of African ancestry is also considered. AAs are a highly 

admixed population. On average, self-reported AAs have ~27% European ancestry with a range 

from 0-100% based on genome-wide estimates [10]. This contrasts strongly with whites, who are 

on average 99% European. Because African ancestry is an independent predictor of poor 

outcomes, percent African ancestry can confound survival analysis. Thus, in the nKIFC1 study, 

the AA cohort is likely to be substantially admixed, so it is necessary to determine whether there 

is a threshold in the percent African biogeographic ancestry above which nKIFC1 is maximally 

informative as a biomarker. Performing genetic ancestry testing to reveal proportion African 

ancestry and incorporating this information in statistical analyses as a covariate will shine a light 

on the potential utility of considering race at such fine-grained level in conjunction with assaying 

nKIFC1. For instance, it may reveal that AA TNBC patients whose percent African ancestry 

surpasses a certain threshold should be reflexively prescribed a test for nKIFC1, whereas AA 

patients below this threshold may not derive as great (or any) benefit. This exciting question is 

one I eagerly await testing in future work.  

 



 

 

Finally, it bears mentioning that immunohistochemical methods are “information packed” 

because, generally speaking, proteins are the ultimate cellular effectors that impart phenotypes 

and thereby “dictate” health or pathology. Assessment of proteins via immunohistochemistry is 

also able to provide information of compartmentalization, post-translational modifications, and 

subcellular localization, which can more strongly impact phenotype than a whole-cell average 

gene expression score. For example, for AA TNBC patients it is specifically nuclear levels of 

KIFC1 that hold immense prognostic value to serve as a companion diagnostic, and which may 

inspire future studies investigating assaying nKIFC1 for AA patients with a certain threshold of 

African biogeographic ancestry. Likewise, it is specifically nuclear RARA and membranous 

HER3 and EGFR that are biologically active. This information is not provided by next-

generation tests as routinely performed. 

 

How do these findings relate to the next-generation of cancer hallmarks? 

At the turn of the century, Hanahan and Weinberg defined six hallmarks of cancer that 

encompass molecular, biochemical, and cellular capabilities acquired in the course of their 

evolution (namely, sustaining proliferative signaling, evading growth suppressors, resisting cell 

death, enabling replicative immortality, inducing angiogenesis, and activating invasion and 

metastasis) [15]. More recently, they described their vision of the next-generation of cancer 

hallmarks, including delineation of two enabling characteristics of cancer that facilitate 

acquisition of the originally defined hallmark capabilities: tumor-promoting inflammation and 

genome instability [16]. Causes of the latter characteristic vary widely by tumor type; however, 

most solid tumors progress stochastically through non-clonal chromosomal abnormalities rather 

than through stepwise accrual of deleterious gene-level mutations [17]. Copy-number 



 

 

abnormalities can cause overexpression of oncogenes or underexpression of tumor suppressors 

through alteration of gene dosages and thereby fuel tumorigenesis. For breast tumors, CA is a 

likely culprit because the vast majority of breast tumors exhibit aneuploidy coupled with this 

predominantly cancer-specific trait, which intensive research has revealed is a leading cause of 

CIN, a type of genome instability responsible for aneuploidy. Clustering of supernumerary 

centrosomes during mitosis causes chromosome missegregation; thus, CA, centrosome 

clustering, and mitotic propensity collectively fuel karyotypic diversification and, thus, ITH. 

Based on this paradigm, I envision that these drivers of ITH may serve as biomarkers of 

aggressive disease course in breast cancer and can identify patients with increased need for 

aggressive treatment. Assaying drivers of ITH may bring to light that the tumor is likely to 

exhibit heterogeneity and associated aggressive disease features, which may warrant more 

aggressive treatment. 

 

Chromosomal instability drives tumor evolution, including the acquisition of metastatic 

potential, the most important clinical event to predict because it is the cause of cancer-related 

death in most cases and is generally incurable. Metastatic dissemination is an intricate cascade of 

events, each of which is a significant obstacle to metastasis. The cancer cell or cluster of cancer 

cells must at a minimum detach from adjacent cells, intravasate, circulate in the blood or lymph, 

adhere to a vessel wall, extravasate, and colonize the metastatic niche. Successful colonization 

may require that the cancer cell(s) have been reprogrammed to thrive in the specific niche, as for 

instance metabolic profiles of metastatic breast cancer cells differ substantially by organ site 

(viz., bone, liver, and lung) [18]. Determination of site-specific molecular profiles could inform 

rational development of biomarkers predicting metastasis, which is the next question I intend to 



 

 

address in my post-doctoral research. Furthermore, I am also interested in investigating the 

processes by which metastatic cancer cells reprogram organ function, which, along with physical 

compression, ultimately compromises organ function. Biomarkers that could predict how a 

primary tumor is likely to disrupt organ function could guide clinicians in selecting preventative 

treatments most likely to prolong survival and resolve organ dysfunction, an exciting avenue I 

wish to explore.  
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