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PROBLEM FORMATTING, DOMAIN SPECIFICITY, AND ARITHMETIC PROCESSING: 

THE PROMISE OF A FACTOR ANALYTIC FRAMEWORK 

  

 by 

 

KATHERINE T. RHODES  

 

Under the direction of Julie A. Washington, Ph.D. and Lee Branum-Martin, Ph.D. 

 

ABSTRACT 

 Leading theories of arithmetic cognition take a variety of positions regarding item 

formatting and its possible effects on encoding, retrieval, and calculation. The extent to which 

formats might require processing from domains other than mathematics (e.g., a language domain 

and/or an executive functioning domain) is unclear and an area in need of additional research. 

The purpose of the current study is to evaluate several leading theories of arithmetic cognition 

with attention to possible systematic measurement error associated with instrument formatting 

(method effects) and possible contributions of cognitive domains other than a quantitative 

domain that is specialized for numeric processing (trait effects). In order to simultaneously 

examine measurement methods and cognitive abilities, this research is approached from a multi-

trait, multi-method factor analytic framework. 

 A sample of 1959 3rd grade students (age M=103.24 months, SD=5.41 months) were 

selected for the current study from the baseline time points of a larger, longitudinal study 

conducted in southeastern metropolitan school districts. Abstract Code Theory, Encoding 



Complex Theory, Triple Code Theory, and the Exact versus Approximate Calculations 

Hypothesis (a specification of Triple Code Theory) were evaluated with confirmatory factor 

analysis, using 11 measures of arithmetic with symbolic problem formats (e.g., Arabic numeral 

and language-based formats) and various problem demands (e.g., requiring both exact and 

approximate calculations). In general, results from this study provided support for both Triple 

Code Theory and Encoding Complex Theory, and to some extent, Exact Versus Approximate 

Calculations Theory is also supported. As predicted by Triple Code Theory, arithmetic outcomes 

with language formatting, Arabic numeral formatting, and estimation demands across formats 

were related but distinct from one another. The relationship between problems that required 

exact calculations (across formats) also provided support for Exact Versus Approximate 

Calculations Theory’s stipulation that exact calculation problems may draw from the same 

cognitive processes. As predicted by Encoding Complex Theory, executive function was a direct 

predictor of all arithmetic outcomes. Language was not a direct predictor of arithmetic outcomes; 

however, the relationship between language and executive function suggested that language may 

play a facilitative role in reasoning during numeric processing, particularly for language-

formatted problems. 

 

INDEX WORDS: Arithmetic cognition, Numeric processing, Format effects, Common method 

variance, Language, Executive functioning, Abstract Code Theory, Encoding Complex Theory, 

Triple Code Theory, Exact versus approximate calculations 

 



PROBLEM FORMATTING, DOMAIN SPECIFICITY, AND ARITHMETIC PROCESSING: 

THE PROMISE OF A FACTOR ANALYTIC FRAMEWORK 

 

 

 

by 

 

 

 

KATHERINE T. RHODES 

 

 

 

 

 

 

 

 

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

in the College of Arts and Sciences 

Georgia State University 

2015 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Katherine T. Rhodes 

2015 



 

PROBLEM FORMATTING, DOMAIN SPECIFICITY, AND ARITHMETIC PROCESSING: 

THE PROMISE OF A FACTOR ANALYTIC FRAMEWORK 

 

by 

 

KATHERINE T. RHODES 

 

Committee Chairs:  Julie A. Washington 

Lee Branum-Martin 

 

Committee:  Lynn Fuchs 

 Rebecca Williamson 

 

 

Electronic Version Approved: 

 

 

Office of Graduate Studies 

College of Arts and Sciences 

Georgia State University 

August 2015  

 



vi 

 

ACKNOWLEDGMENTS 

I would like to thank all of the children, families, teachers, and schools who participated in this 

study. Without their willingness to participate, this research would not be possible. I would also 

like to thank my dissertation chairs and committee members for their willingness to guide me 

and answer questions as I completed this research. Finally, I would like to thank my family, 

colleagues, and mentors for their unwavering support throughout my years of graduate school.  

 



vii 

 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS .......................................................................................................... VI 

LIST OF TABLES ....................................................................................................................... X 

LIST OF FIGURES .................................................................................................................. XII 

1 CHAPTER 1: ARITHMETIC MASTERY, COGNITIVE DOMAINS, AND 

MEASUREMENT FORMATTING............................................................................................ 1 

1.1 Introduction ................................................................................................................ 1 

1.2 Arithmetic Mastery and Mathematics Achievement Difficulties ........................... 3 

1.3 Interpreting Test Results: Math Content Versus Test Formatting ....................... 5 

1.4 The Quantitative Domain and the Development of Arithmetic Cognition ........... 7 

1.4.1 Neural bases of arithmetic cognition. .................................................................. 7 

1.4.2 Other neural circuits in arithmetic cognition. .................................................... 9 

1.5 Problem Formatting and Common Method Variance .......................................... 11 

1.6 Cognitive Theories of Arithmetic ............................................................................ 13 

1.6.1 Abstract code theory. .......................................................................................... 13 

1.6.2 Encoding complex theory. .................................................................................. 16 

1.6.3 Triple code theory. .............................................................................................. 19 

1.6.4 Exact versus approximate calculations: An extension of triple code theory. .. 22 

2 CHAPTER 2: MODELING ARITHMETIC PERFORMANCE AND THE ROLE OF 

PROBLEM FORMATTING ..................................................................................................... 25 

2.1 Modeling Leading Theories of Arithmetic Cognition ........................................... 26 

2.1.1 Abstract code theory. .......................................................................................... 27 

2.1.2 Encoding complex theory. .................................................................................. 32 



viii 

 

2.1.3 Triple code theory. .............................................................................................. 39 

2.1.4 Exact versus approximate calculations specification of triple code theory. .... 45 

2.2 Hypotheses ................................................................................................................. 49 

3 CHAPTER 3: METHODS ................................................................................................... 50 

3.1 Participants ............................................................................................................... 50 

3.2 Procedures ................................................................................................................. 54 

3.3 Measures .................................................................................................................... 54 

3.3.1 Mathematics achievement measures with language formatting. ..................... 54 

3.3.2 Mathematics achievement measures with Arabic numeral formatting. .......... 56 

3.3.3 Mathematics achievement measures involving estimation or analog 

magnitude. ...................................................................................................................... 59 

3.3.4 Language measures. ........................................................................................... 60 

3.3.5 Executive functioning measures. ....................................................................... 61 

3.4 Design ......................................................................................................................... 64 

4 CHAPTER 4: RESULTS ..................................................................................................... 70 

4.1 Proposed Analyses Overview ................................................................................... 70 

4.2 Phase 1: Measurement Models for Arithmetic, Language, and Executive 

Functioning ............................................................................................................................ 70 

4.2.1 Abstract code model............................................................................................ 70 

4.2.2 Encoding complex model. .................................................................................. 72 

4.2.3 Triple code model. .............................................................................................. 75 

4.2.4 Exact versus approximate model. ...................................................................... 77 

4.2.5 Language model. ................................................................................................ 80 



ix 

 

4.2.6 Executive functioning model. ............................................................................ 82 

4.3 Phase 2: Full Measurement Models for Each Theory ........................................... 85 

4.3.1 Abstract code model............................................................................................ 85 

4.3.2 Encoding complex model. .................................................................................. 88 

4.3.3 Triple code model. .............................................................................................. 94 

4.3.4 Exact versus approximate  model. ..................................................................... 98 

4.3.5 Post-hoc testing: Hybrid full measurement model. ......................................... 102 

4.3.6 Summary of Model Testing Results. ................................................................ 109 

5 CHAPTER 5: DISCUSSION ............................................................................................. 114 

5.1 Summary of Major Findings ................................................................................. 114 

5.1.1 The structure of arithmetic cognition. ............................................................. 114 

5.1.2 Symbolic formatting and calculation demands. .............................................. 114 

5.1.3 Contributions from executive function and language. ................................... 115 

5.2 Implications for Measuring Arithmetic ................................................................ 118 

5.3 Limitations and Future Directions ........................................................................ 119 

5.3.1 Adapting theories toward specific measurement hypotheses. ......................... 119 

5.3.2 Adapting theories toward developmental hypotheses...................................... 120 

5.3.3 Generalizability of symbolic formatting. ......................................................... 122 

5.3.4 Overlap in features of item modality. .............................................................. 123 

5.3.5 Measuring and modeling executive function. ................................................. 125 

5.4 Summary and Conclusions .................................................................................... 126 

REFERENCES .......................................................................................................................... 128 



x 

 

LIST OF TABLES 

Table 1. Patterns of unavailable data on demographic variables of interest ................................. 53 

Table 2. Cohort Measurement Information .................................................................................. 65 

Table 3. Most prevalent patterns of unavailable (planned missing) data on outcome measures of 

interest ........................................................................................................................................... 66 

Table 4. Math Measures Means and Correlations ........................................................................ 67 

Table 5. Language Measures Means and Correlations ................................................................. 68 

Table 6. Executive Functioning Measures Means and Correlations ............................................. 68 

Table 7. Full Correlation Matrix for All Measures ....................................................................... 69 

Table 8. Abstract Code Theory Arithmetic Measurement Model CFA Results ........................... 71 

Table 9. Encoding Complex Theory Arithmetic Measurement Model CFA Results ................... 74 

Table 10. Triple Code Theory Arithmetic Measurement Model CFA Results ............................. 76 

Table 11. Triple Code Theory Arithmetic Latent Factor Correlations ......................................... 77 

Table 12. Exact Versus Approximate Calculations Arithmetic Measurement Model CFA Results

....................................................................................................................................................... 79 

Table 13.  Language Measurement Model CFA Results .............................................................. 81 

Table 14. Executive Function Measurement Model CFA Results ............................................... 84 

Table 15. Abstract Code Theory Full Measurement Model CFA Results .................................... 86 

Table 16. Abstract Code Theory Full Model Latent Factor Correlations ..................................... 86 

Table 17. Encoding Complex Theory Full Measurement Model Unstandardized CFA Results .. 90 

Table 18. Encoding Complex Theory Full Measurement Model Completely Standardized CFA 

Results ........................................................................................................................................... 91 

Table 19. Encoding Complex Theory Full Model Latent Factor Correlations ............................. 92 



xi 

 

Table 20. Triple Code Theory Full Measurement Model CFA Result ......................................... 96 

Table 21. Triple Code Theory Full Model Latent Factor Correlations ......................................... 96 

Table 22. Exact V. Approximate Calculations Full Measurement Model CFA Results ............ 100 

Table 23. Exact V. Approximate Calculations Full Model Latent Factor Correlations ............. 100 

Table 24. Post Hoc Hybrid Full Measurement Model Completely Standardized CFA Results . 106 

Table 25. Post Hoc Hybrid Full Model Latent Factor Correlations ........................................... 107 

Table 26. Summary of Model Testing Results ........................................................................... 113 

 



xii 

 

LIST OF FIGURES 

Figure 1. Abstract Code Theory: 3 Modules for Numeric Processing. ........................................ 28 

Figure 2. Abstract Code Theory: 1 Mental Representation Regardless of Stimulus Format. ...... 29 

Figure 3. Abstract Code Theory: Other Domains Do Not Predict Arithmetic Behavioral 

Outcomes. ..................................................................................................................................... 30 

Figure 4. Abstract Code Theory: General Factor Model. ............................................................. 32 

Figure 5. Encoding Complex Theory: No Specialized Module for Numeric Processing  →   

Becomes A Seemingly-Modular Encoding Complex with Practice. ............................................ 34 

Figure 6. Encoding Complex Theory: Language Formatting Effects As Language-based 

Common Method Variance. .......................................................................................................... 35 

Figure 7. Encoding Complex Theory: Other Domains Predict Arithmetic Behavioral Outcomes.

....................................................................................................................................................... 36 

Figure 8. Encoding Complex Theory: General Factor Model. ..................................................... 39 

Figure 9. Triple Code Theory: 3 Modules for Numeric Processing. ............................................ 40 

Figure 10. Triple Code Theory: Formatting Can Effect Mental Representation & Processing 

(inherent in the theory).................................................................................................................. 41 

Figure 11. Triple Code Theory: Other Domains May Be Associated With 3 Modules in 

Predicting Arithmetic Behavioral Outcomes. ............................................................................... 43 

Figure 12. Triple Code Theory: General Factor Models. ............................................................. 45 

Figure 13. Exact V. Approximate Theory: 2 Modules for Exact and Approximate Calculations.46 

Figure 14. Exact V. Approximate Theory: Problem Formatting Differences Not Specified. ...... 47 

Figure 15. Exact V. Approximate Theory: Other Cognitive Domains’ Contributions Are Unclear.

....................................................................................................................................................... 49 



xiii 

 

Figure 16. Abstract Code Theory: Arithmetic Measurement Model. ........................................... 72 

Figure 17. Encoding Complex Theory: Arithmetic Measurement Model. ................................... 74 

Figure 18. Triple Code Theory: Arithmetic Measurement Model. ............................................... 77 

Figure 19. Exact versus Approximate Theory: Arithmetic Measurement Model. ....................... 80 

Figure 20. Language Measurement Model. .................................................................................. 82 

Figure 21. Executive Function Measurement Model. ................................................................... 84 

Figure 22. Abstract Code Theory: Full Measurement Model. ...................................................... 87 

Figure 23. Encoding Complex Theory: Full Measurement Model. .............................................. 93 

Figure 24. Triple Code Theory: Full Measurement Model........................................................... 97 

Figure 25. Exact versus Approximate Theory: Full Measurement Model. ................................ 101 

Figure 26. Hybrid Model of Triple Code Theory Arithmetic and Encoding Complex Theory 

Structure as a Full Measurement Model ..................................................................................... 108 

 



1 

 

1  CHAPTER 1: ARITHMETIC MASTERY, COGNITIVE DOMAINS, AND 

MEASUREMENT FORMATTING  

1.1 Introduction 

 Arithmetic is a process requiring both knowledge of what numbers are (numerosity) and 

knowledge of how to perform the most basic operations of addition, subtraction, multiplication, 

and division on numbers (operational or algorithmic knowledge; Brodinsky, 1977; Woodward, 

2004). Arithmetic mastery is essential for successful daily living as well as for advanced-level 

participation in Science, Technology, Engineering, and Mathematics (STEM) disciplines 

(AAIDD, 2010; STEM Coalition, 2000).  Despite decades of efforts toward mathematics 

education reform, children in the U.S. continue to struggle with math achievement, and this is 

true of both basic arithmetic skills and more advanced problem solving (National Center for 

Education Statistics, 2013; Woodward, 2004). Attempts to impact these difficulties have focused 

largely on a national shift in mathematics curriculum, changing the emphasis and delivery of 

mathematics content in efforts to impact children’s mathematics achievement (Woodward, 

2004). This project will explore the possibility that it is more than mathematical content that is 

influencing these difficulties in mathematics achievement. In particular, it has been suggested 

that problem formatting, the modality used to convey operands and operators in a mathematics 

problem during testing, may also be important to consider. 

 Unpacking the extent to which arithmetic achievement is a function of math content (e.g., 

accurate calculation) as opposed to test formatting (e.g., linguistic understanding for a word 

problem) is a crucial issue of valid test design and interpretation. Differentiating between content 

and test formatting effects requires mathematics researchers to separate individual traits that 

allow students to demonstrate math understanding from the possible effects of test formatting. 
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Unfortunately, extant theories of arithmetic cognition do not provide clear specifications of the 

traits of cognition that operate across various types of math problems.  

 The purpose of this research is to evaluate several leading theories of arithmetic cognition 

with special attention to possible systematic measurement error associated with item formatting 

and to possible contributions of cognitive abilities other than a quantitative domain that is 

specialized for numeric processing. Specifically, the following research questions and 

hypotheses guide the research described in this document: 

RQ1: What is the cognitive structure of mathematics ability(s) 

involved in arithmetic cognition? 

RQ2:  Do problem formats (language versus Arabic numeral 

symbolic formats) affect the access of the mathematics domain 

being tested? 

RQ3: Do problem demands (exact versus approximate calculation 

demands) affect the access of the mathematics domain being 

tested? 

RQ4: Do language and executive functioning abilities contribute to 

arithmetic cognition, or does numeric processing appear to be a 

mathematics domain specific task? 

 Four potential hypotheses arise from each theory of arithmetic cognition (i.e., Abstract 

Code Theory, Encoding Complex Theory, Triple Code Theory, and Exact versus Approximate 

Specification of the Triple Code Theory) being examined in this project.  
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1.2 Arithmetic Mastery and Mathematics Achievement Difficulties 

 Findings from national studies of mathematics achievement suggest that a significant 

portion of children (and likely adults) in the U.S. do not master basic arithmetic skills and among 

those who do master arithmetic, many cannot extend this basic knowledge to the more complex 

types of mathematical problem-solving they will encounter in everyday life. For example, results 

from the most recent National Assessment of Educational Progress (NAEP) found that 58% of 

4
th

 grade students were performing below grade level proficiency in mathematics, meaning that 

they were unable to consistently apply procedures and concepts in a variety of math content 

areas (e.g., number properties, operations with numbers) in everyday, applied mathematics 

problems (National Center for Education Statistics, 2013). Among those 4
th

 grade students who 

were below grade level proficiency in math, 17% were unable to demonstrate even basic 

understanding of these math procedures and concepts (National Center for Education Statistics, 

2013). 

 By 8
th

 grade, 64% of NAEP students were performing below grade level proficiency in 

mathematics, meaning that they were unable to apply math procedures and concepts to more 

complex problems (National Center for Education Statistics, 2013). Among those 8
th

 grade 

students who were below grade level proficiency in mathematics, 26% were unable to 

demonstrate understanding of basic arithmetic operation (including addition, subtraction, 

multiplication, division, and estimation) with problems involving whole numbers, fractions, 

decimals, and percentages (National Center for Education Statistics, 2013). 

 The mathematics achievement trends for high school students in the U.S. are similar. The 

most recent Program for International Student Assessment (PISA) study, which examines 

achievement profiles for 15 year old high school students in the U.S., found that 8% of 
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adolescents in the U.S. have not fully mastered basic arithmetic and are below the lowest level of 

mathematics proficiency, and of the 92% who had sufficient arithmetic knowledge for many 

tasks in everyday life (e.g., addition with whole numbers), 44% were not able to use this 

knowledge to solve more complex, multistep problems (i.e., students at levels 1 or 2 of 

mathematics proficiency; Kelly et al., 2013). These findings suggest that over 50% of American 

high school students struggle with everyday mathematics problems involving sequential 

decision-making, fractions, decimals, proportional relationships, and providing basic 

interpretations of their arithmetic reasoning (i.e., the arithmetic reasoning skills that are required 

for everyday tasks like deciding the order in which to pay bills and then projecting how much 

money will be left to pay remaining bills, deciding how much money is appropriate for a tip at a 

restaurant, or adjusting the ingredients in a recipe for a larger number of people). 

 Each of these studies present a cross-sectional picture of mathematics achievement in the 

U.S., but they do not provide researchers with an understanding of how arithmetic competencies 

(or difficulties) develop. Understanding the developmental trajectory of arithmetic cognition is 

crucial for understanding the difficulties some children have with arithmetic cognition and 

identifying areas for intervention. It appears that many of the children who struggle with basic 

arithmetic in early elementary school are the same children (and possibly adolescents and adults) 

who later struggle with arithmetic and more advanced mathematical problem-solving (Geary, 

Hoard, Nugent, & Bailey, 2013); however, finding valid mathematics achievement instruments 

that can reliably identify young children with learning difficulties is challenging. 

 In the U.S., 3rd and 4th grade is a time at which many children are first identified as 

having significant learning difficulties, (particularly using an IQ-achievement discrepancy model 

for identifying learning difficulties; see for example Lyon et al., 2001). This identification of 
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learning difficulties in later elementary school years may be partially because it is difficult to use 

mathematics achievement patterns with very young children to identify and/or predict math 

learning difficulty (Gersten, Jordan, & Flojo, 2005). Poor mathematics achievement at one time 

point may not predict future learning difficulty, and identifying mathematics achievement 

instruments that capture skills essential for continued learning constitutes a major issue of 

measurement validity (Gersten et al., 2005). Indeed, research focused on explaining achievement 

discrepancies for students who would otherwise be predicted to achieve within typical ranges 

(e.g., students with learning difficulties, students from lower socio-economic backgrounds, or 

students who are English language learners) has been instrumental in raising questions about 

validity and reliability of mathematics achievement instruments. 

1.3 Interpreting Test Results: Math Content Versus Test Formatting 

 Understanding what assessment instruments are actually measuring is a necessary first 

step in understanding how their results should be interpreted, and some researchers (see for 

example Abedi & Lord, 2001) have argued that language-formatted mathematics assessment 

instruments like those used during NAEP testing may have inherent testing bias. The NAEP and 

PISA assessments attempted to measure children's understandings of real-world mathematics 

problems and often used "word problems" or language-formatted items to prompt students' 

responses. Although these patterns of arithmetic mastery and mathematics achievement are 

usually interpreted as indicating children's difficulties with math content, researchers have 

questioned the extent to which testing trends are the result of children's difficulties with the 

language of the mathematics achievement tests themselves  (Abedi, Hofstetter, Baker, & Lord, 

2001; Abedi, Lord, & Hofstetter, 1998; Abedi & Lord, 2001; Abedi, Lord, & Plummer, 1997; 

Martiniello, 2009; Rhodes, Branum-Martin, Morris, Romski, & Sevcik, in press; Shaftel, Belton-
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Kocher, Glasnapp, & Poggio, 2006; Terry, Hendrick, Evangelou, & Smith, 2010), particularly 

for students who are language minorities (e.g., English Language Learners,  African American 

English dialect speakers, students with language disorders). 

 This issue of problem formatting and its effects on test validity (Messick, 1989, 1996) 

must be examined in order to determine the extent to which students are struggling with 

arithmetic as opposed to other, unintentionally accessed cognitive abilities (e.g., language, 

working memory). Mathematics test validity is perhaps best approached using psychometric 

analyses of mathematics achievement instruments in combination with theoretical models of 

arithmetic cognition. This approach allows direct testing of theoretical specifications of what 

cognitive abilities predict behavior (traits) as well as direct testing of problem formatting effects 

on behavioral outcomes (methods). 

 Theories of arithmetic cognition attempt to address the issue of arithmetic measurement 

by specifying aspects of the process of arithmetic: how we do arithmetic, what mental processes 

are involved in arithmetic, and why are we able (or unable) to successfully do arithmetic. 

Cognitive theories of arithmetic attempt to explain (1) how we encode numerical information 

and represent numerical information mentally, (2) how we retrieve math facts from memory, 

process the information, or operate upon numerical representations to achieve solutions to 

problems, (3) how we recode our mental, numerical representations of solutions into output and 

report our answers, and (4) which cognitive domains are involved in these activities. In general, 

these four facets compose the definition of the process of arithmetic for cognitive theories of 

arithmetic, and each of these facets of arithmetic are areas in which theories of arithmetic 

cognition may diverge from each other, sometimes irreconcilably. The consequence of this 

divergence has been that there is no consensus assessment of numeric processing. 
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1.4 The Quantitative Domain and the Development of Arithmetic Cognition 

 One area where dominant theories of arithmetic cognition largely agree is that there 

appears to be a quantitative domain of learning which is responsible for numeric processing 

tasks; it is believed that this is the domain which we are attempting to measure when we design 

and apply mathematics measurement instruments. However, the extent to which this domain 

changes over the course of human development, the extent to which its mental representations of 

number are influenced by measurement formatting, and the extent to which it relies upon other 

cognitive domains in order to accomplish numeric processing are unclear. Theorists disagree in 

their descriptions of these facets of arithmetic cognition, and their differing accounts present a 

challenge for psychometric evaluation of mathematics measurement. The following sections will 

review research on these issues and present four leading theories of arithmetic cognition.  

1.4.1  Neural bases of arithmetic cognition.  

Research indicates that there is a neural basis for numeric processing, supporting the 

notion that there is a cognitive domain largely responsible for recognizing quantity and 

processing arithmetic problems. The neural basis for this quantitative domain or “number sense” 

is well established in neuropsychological research with adults (S Dehaene, 2011); however, the 

neuropsychological changes in number sense across early childhood development are less well-

understood. The few neuropsychological studies of quantity cognition with infants and young 

children indicate that this early, non-symbolic number sense has a neural basis in the intraparietal 

sulcus (IPS) which exists before children have formal educational experiences and is similar to 

the neural network utilized by adults. Research to date suggests that infants, young children, and 

adolescents display a pattern of IPS right hemisphere lateralization during numeric processing 

tasks that is different from the bilateral activations typically seen in adults (Ansari & Dhital, 
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2006; Cantlon, Brannon, Carter, & Pelphrey, 2006; Izard, Dehaene-Lambertz, & Dehaene, 2008; 

Rivera, Reiss, Eckert, & Menon, 2005). Left lateralization of the IPS may increase with age, 

suggesting that the IPS becomes more specialized for numerical processing and more integrated 

with other neural circuits over the course of development and formal education (Ansari & Dhital, 

2006; Cantlon, Brannon, Carter, & Pelphrey, 2006; Izard, Dehaene-Lambertz, & Dehaene, 2008; 

Rivera, Reiss, Eckert, & Menon, 2005). 

 Behavioral studies of infant quantity cognition have found that human infants as young as 

4 to 5 months of age display the ability to detect small quantities and perform comparisons of 

more or less (subitization or object file representation; e.g., Feigenson, Carey, & Hauser, 2002; 

Starkey & Cooper, 1980). At five months of age, infants also can apply this early number sense 

to perform more complex number operations (addition and subtraction) on small quantities 

(Wynn, 1992). When sets of quantities differ by large enough ratios and physical characteristics 

such as surface area and volume are controlled, six-month old infants are also able to 

discriminate between larger sets of quantities (analog magnitude representation; Xu & Spelke, 

2000). However, the stimulus formats for these behavioral experiments all involve non-symbolic 

items (e.g., arrays of dots, tones, line drawings), and the extent to which this naïve number sense 

represents the sophisticated, symbolic numerical processing utilized by adults and older children 

(e.g., rapid numerical calculations with language-formatted or Arabic numeral symbols) is still 

being explored. 

 Research with neurotypical adults has consistently found that the horizontal (bilateral) 

segment of the intraparietal sulcus (HIPS) is activated during activities involving quantity 

recognition, number comparisons, approximate calculations, and exact calculations, suggesting 

that the HIPS region of the brain is essential for the mental representation of quantity (Dehaene, 
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Spelke, Pinel, Stanescu, & Tsivkin, 1999; Dehaene, Molko, Cohen, & Wilson, 2004; Dehaene, 

Piazza, Pinel, & Cohen, 2003). The HIPS activation during numeric processing tasks appears to 

be consistent across a variety of problem formats (e.g., language-based, Arabic numeral, 

visuospatial), suggesting that it is amodal and can be accessed regardless of stimulus format, 

unlike other brain regions supporting numeric processing ( Dehaene et al., 1999; Dehaene et al., 

2004).  

 Unfortunately, functional magnetic resonance imaging (fMRI; often considered to be a 

gold standard in neuro-imaging methodologies) requires participants to be very still, a 

methodological necessity that works for or adults, but which can be very difficult for young 

children. Consequently, most extant theories of arithmetic cognition pertain to the complex, 

integrated, and specialized arithmetic performed by skilled adults. However, research from  a 

variety of methodological traditions supports the ideas that (1) some aspects of children's 

arithmetic abilities seem to be innate or at least present before exposure to formal education, and 

(2) there appears to be some developmental continuity between the naive arithmetic cognition of 

infants and young children, the developing arithmetic cognition of older children and 

adolescents, and the formalized arithmetic cognition of adults. 

1.4.2  Other neural circuits in arithmetic cognition.  

Although there appears to be a unique neural circuit responsible for numeric processing 

across the course of human development, other regions of the brain (and other cognitive 

dimensions) may also be activated during arithmetic tasks. The extent to which other regions of 

the prefrontal cortex and the parietal lobe (most often the precentral sulcus, inferior frontal gyrus, 

and angular gyrus) are activated during numeric processing tasks depends on the problem 

formatting (e.g., language, Arabic numerals) and processing demands (e.g., quantity 
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comparisons, multi-step calculations) of the task. The precentral sulcus and inferior frontal gyrus 

have been consistently implicated in calculation activities, suggesting that they may contribute to 

arithmetic activities involving demands on the cognitive domains of working memory, 

sequencing, and planning (Stanescu-Cosson et al., 2000). During tasks involving complex 

language (e.g., spatial metaphors, phonemic awareness, word associations) as well as those 

involving quantity (e.g., digit naming, exact quantity calculations), the angular gyrus is also 

activated, suggesting that it may play a role in language-based fact retrieval (Dehaene et al., 

1999; Dehaene et al., 2004). 

 Problem formatting also has an effect on behavioral indicators such as reaction time, 

error propagation, and accuracy, all of which play an important role in arithmetic performance, 

especially during achievement testing.  Language formats in which number words, rather than 

Arabic numerals, are presented as operands increase both reaction time and error propagation by 

as much as 30% (J I Campbell, 1994). These formatting effects raise questions about the 

cognitive domain(s) responsible for conducting arithmetic. Difficulty with language-formatted 

problems may reflect problems with encoding (difficulty getting the input into the quantitative 

domain and mentally representing it there; McCloskey, Macaruso, & Whetstone, 1992). 

Alternately, difficulty with language-formatted problems may reflect problems with production 

(difficulty getting the output out of the quantitative domain due to problems of phonological 

interference with the output of the spoken answer; Noël, Fias, & Brysbaert, 1997). However, 

from a more comprehensive perspective, difficulty with language-formatted problems may be 

due to problems with interfering abilities during numeric processing in general (difficulty 

performing quantitative tasks due to interference from a language domain;  Campbell & Clark, 

1988). 
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1.5 Problem Formatting and Common Method Variance 

 The process of encoding and mentally representing arithmetic problems presented in 

various formats is not trivial because correct encoding is crucial for successful performance; 

however the extent to which problem formatting may affect subsequent processing and response 

generation is unclear. Previous studies provide some evidence that item features like language-

formatting and problem size may make arithmetic problems more difficult, increasing reaction 

time and lowering the probability of correct solutions (Campbell, 1994) and that circuits of the 

brain involved in language processing may also aid in arithmetic processing (Dehaene et al., 

1999; Dehaene et al., 2004). Research also indicates that language-formatting may be of 

particular consequence for linguistic minorities, who may struggle with language formatted math 

problems because of difficulty encoding in less familiar language formats (e.g., Abedi et al., 

2001, 1998; Abedi & Lord, 2001; Abedi, Lord, & Plummer, 1997; Martiniello, 2009; Rhodes, 

Branum-Martin, Morris, Romski, & Sevcik, in press; Shaftel et al., 2006; Terry et al., 2010). 

 From a psychometric perspective, the idea that problem formatting may affect the 

likelihood of generating a correct response is also an issue of common method variance. For 

example, children taking a vocabulary test may be more likely to correctly answer items about 

travel abroad and expensive leisure activities if they are of higher socioeconomic status. Items 

prompting these content areas may share common method variance for socioeconomic status 

above and beyond the variance they share with the rest of the vocabulary items. Common 

method variance, or variance that is due to measurement methods instead of the constructs under 

investigation, constitutes a serious threat to validity (Cote & Buckley, 1987, 1988; Podsakoff, 

MacKenzie, Lee, & Podsakoff, 2003). The idea that children may be more likely to correctly 

answer arithmetic problems which are formatted with Arabic numerals than problems which are 
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language-formatted would indicate that these language-formatted items share some common 

method variance above and beyond the variance they share with other items measuring the 

quantitative domain. Evaluating common method variance is a necessity for the theoretical 

evaluation of the extent to which problem formatting may affect arithmetic cognition. 

 The existence of common method variance is always evidence that some dimension other 

than the intended construct is being tested (Messick, 1989, 1996). Examining various arithmetic 

problem formats for mean differences in raw total scores, observing reaction time differences, 

describing differential patterns of error propagation, and identifying differences in neural 

network activation patterns are all methodologies that can support the idea that problem 

formatting may influence arithmetic cognition. However, these methodologies do not provide 

sufficient evidence for evaluating common method variance related to problem formatting 

because they cannot directly evaluate the fundamental question of whether a dimension other 

than quantity has been accessed by certain formats.  

 In order to examine the extent to which cognitive dimensions other than quantitative 

ability may be involved in generating responses to arithmetic problems, these other dimensions 

must be measured along with quantity, in a variety of formats, and included in statistical models 

of responses which evaluate not only mean structures, but also variance structures. This can be 

accomplished with a multitrait, multimethod methodology as well as statistical models capable 

of allowing for the modeling the possibility that multiple abilities may predict behaviors (see for 

example Cote & Buckley, 1987; Eid, Lischetzke, & Nussbeck, 2006; V. Marsh, Beard, & Bailey, 

2002; Maul, 2013). These statistical models fall under the broad umbrella of factor analysis. 

Thus, evaluating theories of math cognition using a multitrait, multimethod, factor analytic 
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framework has substantive implications for scientific understanding of math cognition and math 

measurement (stimulus formatting). 

1.6 Cognitive Theories of Arithmetic 

There appears to be a neural basis for quantity cognition, but it has nuance that remains 

unexplained by research to date. Questions remain about the extent to which cognitive domains 

responsible for language and executive functioning (including planning, sequencing, attention 

regulation, and working memory) may also play a role in certain types of numeric processing and 

the extent to which problem modality influences mental representation and subsequent 

operations upon quantity. Although a factor analytic examination of these issues could help to 

resolve some of these remaining questions about arithmetic cognition, hypotheses about the 

cognitive domains responsible for various arithmetic behaviors must be developed in order to 

guide modeling. Cognitive theories of arithmetic can help to specify model construction and 

hypothesis development. The following sections will present four of the leading theories of 

arithmetic cognition, considering their specifications for the process of arithmetic with special 

attention as to how they attempt to explain language-formatting effects and the roles that 

language and executive functioning domains may play in arithmetic performance. 

1.6.1  Abstract code theory.  

Abstract code theory stipulates that a single, abstract code is used to mentally represent 

all numeric information, regardless of input format (Arabic numeral, number words, operation 

procedures, arithmetic math facts; McCloskey, Caramazza, & Basili, 1985; McCloskey, 1992). 

Three domains are responsible for numeric processing in abstract code theory, the 

comprehension, processing, and production domains. The comprehension domain is responsible 

for recognizing numeric stimuli, encoding stimuli into abstract code for subsequent processing, 
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and activating procedural routines in the processing domain. The processing or calculation 

domain is responsible for calling on comprehension and production domains for various stages 

of needed input and output, retrieving arithmetic facts from memory, and executing calculations. 

Finally, the production domain is responsible for translating abstract codes into appropriate 

output formats. For McCloskey (1985; 1992), the processes of mentally representing stimulus 

input as abstract code or translating abstract codes to produce output is referred to as transcoding. 

All input stimuli are encoded into an amodal, abstract code, which contains semantic 

information about quantity and is the basis for subsequent calculations and response productions 

(McCloskey et al., 1985; McCloskey, 1992). These abstract codes have both lexical and syntactic 

properties. The lexical properties of abstract codes are individual elements in the numeral, and 

the syntactic properties are relationships among elements in the numeral that facilitate 

comprehension of the numeral as a whole. For example, the input “13” has lexical properties {1} 

and {3} as well as syntactic properties 10
1
 (tens) and 10

0 
(ones) presented in a specific order, 

composing the abstract code {1}10
1
, {3}10

0
. 

 McCloskey (1992) illustrates abstract code theory’s numeric processing with the example 

of “64 x 59”. First, the system is presented with the stimulus input “64 x 59.” Next, the 

comprehension domain (also referred to as a "module" or dimension) recognizes the “x” symbol 

and activates a multiplication procedure in the processing domain. Next, the processing domain 

calls for input of the digits in the right (ones) column of the input, which the comprehension 

domain recognizes as Arabic numerals “4” and “9” and translates into abstract codes {4}10
0
 and 

{9}10
0
. Then the processing domain retrieves the relevant arithmetic fact in abstract code, 

{3}10
1
, {6}10

0
. The processing domain then calls for the ones portion of the product to be 

written in Arabic numeral output, and the production domain translates this {6}10
0
 into the 
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Arabic numeral “6” to produce output in the ones column of the partial solution. The domains 

continue to use the multiplication procedure in this way, computing all partial products before 

calling for the addition procedure and finally producing solution output. This multistep, 

mechanistic account of numeric processing is argued to be a parsimonious cognitive model for 

solving arithmetic problems (McCloskey et al., 1985; McCloskey, 1992). These steps for 

calculation do not happen simultaneously, but are sequentially ordered and additive (not 

simultaneous or interactive;  Campbell & Epp, 2005). 

 Empirical support for abstract code theory comes largely from case studies of adults with 

traumatic brain injuries in various regions of the brain, affecting language and arithmetic 

functioning. For example, McCloskey (1992) cites Benson and Denckla's (1969) case study of a 

man with left hemisphere trauma, who was able to comprehend numerals across various formats 

but could only produce correct arithmetic solutions given multiple choices, as evidence that 

numerical production and comprehension are distinct. Furthermore, McCloskey (1992) uses 

Singer and Low's (1933) case study of a man with brain trauma, who struggled with writing 

numeral greater than 2-digits using correct place value (place value being a syntactic property of 

number, why the numerals and their magnitudes are lexical properties), as evidence that the 

lexical and syntactic processes of production are distinct. In another example, Whalen, 

McCloskey, Lindemann, and Bouton (2002) reported on two patients with brain damage, who 

struggled with phonologically representing arithmetic information but were able to produce 

answers to arithmetic problems in Arabic numeral format, as evidence that the arithmetic facts 

used for numeric processing is language independent. 

 According to McCloskey (1992), because abstract, semantic codes are the object of 

numeric processing, formatting exerts no effect on numeric processing, save the time needed for 
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transcoding (encoding stimuli into abstract codes and recoding abstract code into output). All 

differences in reaction time seen with language-formatted arithmetic stimuli can be attributed to 

increased encoding time necessary for the comprehension domain to mentally represent the input 

(McCloskey et al., 1992). The extent to which a language domain may be involved in aiding the 

comprehension domain is unclear and not specified by the theory, but rather addressed as an area 

for future investigation (McCloskey, 1992). Similarly, the extent to which some executive system 

of control (regulation, attention, inhibition, working memory) is responsible for coordinating 

comprehension, processing, and production is not specified by the theory. Rather, as seen in 

McCloskey’s (1992) example of arithmetic processing, abstract code theory tends to allow for 

the processing domain to facilitate the direction of other domains and the execution of arithmetic 

operations. McCloskey (1992) notes that the roles of general processing abilities (e.g., working 

memory) are issues for future investigation.  

1.6.2  Encoding complex theory.  

Encoding complex theory stipulates that the presentation of numerical stimuli activates 

an associative network of format-specific numerical “codes” or mental representations 

(Campbell, 1994; Campbell & Clark, 1988; Clark & Campbell, 1991). These format-specific 

mental representations are diverse. Mental representations of number can be verbal (e.g., 

articulatory, orthographic, motor-speech, and auditory mental representations of spoken or 

written number words, which are somewhat language specific and may be unique across 

populations of bilinguals and multilinguals) or nonverbal (e.g., visual, motor, analog magnitude, 

and combined visual-motor mental representations of digits, activities such as counting on 

fingers, and number lines; Campbell, 1994; Campbell & Clark, 1988; Clark & Campbell, 1991). 

The mental representations or “codes” are associatively connected within a complex network, 
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called the encoding complex, and as such, they are assumed to stimulate each other in complex 

patterns of activation without the use of a common, abstract code (Campbell & Clark, 1988; 

Clark & Campbell, 1991). 

The notion of “transcoding,” or manipulation of one type of mental representation into 

another, is not applicable to encoding complex theory because multiple, format-specific codes 

are assumed to interact with each other in the encoding complex network. Similarly, the notion 

of “recoding,” or manipulation of mental representations into format-specific output, also is not 

applicable or necessary for encoding complex theory because format-specificity is inherent to 

these mental representations. Neither transcoding nor recoding is addressed in encoding complex 

theory (Campbell & Clark, 1988; Clark & Campbell, 1991). 

Successful numeric processing (number comprehension, calculation, comparison, parity 

judgment) requires enhancing relevant association patterns and inhibiting interfering association 

patterns within the encoding complex network, and this is particularly true for calculation 

activities (Campbell & Clark, 1988; Clark & Campbell, 1991). The failure to inhibit associations 

that are irrelevant to the problem at hand ultimately results in difficulty achieving a correct 

response to the stimulus.  

 Campbell and Clark (1988; 1991) have drawn empirical support for encoding complex 

theory from a variety of methodologies; however, much of their own work has focused on 

behavioral studies of formatting effects on reaction time, accuracy, and quality of error 

propagation. In general, their findings support the ideas that (1) language formatting may 

increase reaction time and decrease accuracy, (2) problem size may increase reaction time and 

decrease accuracy, and (3) regardless of these main effects for certain characteristics of 

problems, format by operation by problem size interactions may occur (see for example, 
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Campbell, 1994). These problem-formatting effects are explained by interference from 

competing verbal codes and word stimuli, and ultimately, the system’s failure to inhibit these 

competing responses (Clark & Campbell, 1991). The reason why these language-specific codes 

should be more susceptible to interferences and the role of the language domain in resolving 

interferences is unclear. Clark and Campbell (1991) have proposed that greater exposure to digit-

formatted problems may increase system efficiency in resolving interferences for these types of 

mental representations. 

 Encoding complex theory is “integrative” (not modular) in that numerical processing is 

characterized by distinct domains that are specialized for numerical processing alone (Campbell 

& Clark, 1988; Clark & Campbell, 1991). Rather, the domains involved in numeric processing 

are assumed to contribute to a number of other cognitive activities. It is only when the system 

has enough practice to build “cognitive routines” for certain processes that inhibitory procedures 

might become automated enough to mimic modular cognitive architecture for quantity (Clark & 

Campbell, 1991). Thus, encoding complex theory does not specify a specific quantitative domain 

as being responsible for numeric processing. Instead, Campbell and Clark (1988; Clark & 

Campbell, 1991) have implicated a number of domain general cognitive capacities in resolving 

the complex network of associations of activated during numeric processing. These domains 

include executive systems of control (inhibition, problem-solving, attention, working memory, 

specifically, Baddeley and Hitch's 1974 model of working memory), the motor domain, the 

language domain, and the visuo-spatial domain. 

 It is also worth noting that culture, education, and individual differences can all impact 

the nature in which arithmetic is conducted in the encoding complex view of numeric processing. 

Encoding complex theory does not theorize a universal, human module for numeric processing. 
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Encoding complex allows for cultural variation in verbal and visuo-spatial procedures for 

calculation, and in fact anticipates that skilled calculators should be able to attempt problems 

using a variety of approaches (Clark & Campbell, 1991). There is no single mechanistic account 

for the process of calculation, estimation, comparison, or any other type of numeric processing 

task under encoding complex theory. Each of these processes is allowed to vary within 

individuals, across individuals, and across cultures. 

1.6.3  Triple code theory.  

Triple code theory stipulates that there are three, distinct, but interrelated domains 

responsible for encoding and mentally representing number and that these three domains are also 

responsible for numerical processing (mental arithmetic; (Dehaene & Cohen, 1995; Dehaene et 

al., 2003; Dehaene, 1992). According to triple code theory, (1) the visual Arabic number form 

domain is responsible for representing Arabic numeral input as visuo-spatial strings of digits, (2) 

the verbal word frame domain is responsible for representing spoken or written number words as 

sequences of words which are organized syntactically by place value, and correspond to the 

phonological and/or graphemic forms of words, and (3) the analogical magnitude representation 

domain is responsible for representing sets of visual or auditory objects as semantic mental 

representations of quantity, including the number’s cardinality, its relationship to other 

quantities, its approximate or estimated value, and its position on an internal number line (which, 

following Weber’s Law, becomes less precise as numbers increase in magnitude; Dehaene, 1992; 

Dehaene & Cohen, 1995). Importantly, triple code theory assumes that the semantic information 

for quantity is contained only in the analog magnitude domain of number representation 

(Dehaene & Cohen, 1995). 
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Each domain of triple code theory has anatomical correlates in the brain that support 

functioning, and these brain regions have been elaborated upon as triple code theory evolved. 

This research, although initially based in the case study reports of functional impairments in 

patients with brain trauma to various regions of the brain thought to be essential for number 

processing, has begun to consistently focus on the study of functional brain imaging of 

neurotypical adults exposed to various types of arithmetic stimuli (e.g., Dehaene & Cohen, 1995;  

Dehaene, Bossini, & Giraux, 1993). Currently, it appears that the visual Arabic number form is 

supported by the spatial attention network of superior, posterior parietal lobe, the verbal word 

frame is supported by the left angular gyrus and other left perisylvian areas, and the analogical 

magnitude representation is supported by the horizontal segment of the intraparietal sulcus 

(HIPS;  Dehaene et al., 2003).  

 Triple code theory assumes that both transcoding and recoding occur for its domains. 

Transcoding is the process by which the three domains may share mental representations and 

quantity information. The semantic, quantity information for verbal or visual mental 

representation can be accessed from the analogical magnitude representation domain, and 

language-based or Arabic numeral representations for quantities can be accessed from the verbal 

word frame or visual Arabic number form domains (Dehaene, 1992; Dehaene & Cohen, 1995). 

Finally, the direct relationship between the verbal word frame and the visual Arabic number 

form allows for transcoding of word forms to visual forms and vice versa without processing 

semantic quantity representations (Dehaene, 1992; Dehaene & Cohen, 1995). Transcoding is 

necessary for numerical operations because it allows for processing of various input formats, 

accessing relevant verbal number facts, and accessing relevant semantic information about 

quantity. Recoding is the process by which “output routines” operate on mental representations 
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to produce stimulus output (e.g., written digits in the case of the visual Arabic number form and 

spoken or written words in the case of the verbal word frame; Dehaene & Cohen, 1995). 

According to triple code theory, stimulus format does affect encoding and mental 

representation of number. The format in which number stimuli are presented will determine the 

type of mental representation encoded for them. Arabic numeral input is represented by the 

visual Arabic number form; language-based numeral input is represented by the verbal word 

frame; sets of objects are represented by the analogical magnitude representation. Although 

each of these domains is allowed to communicate directly with one another, problem demands 

influence the way in which numerical processing is conducted. Problems requiring comparisons, 

for example, require that semantic mental representations are accessed for both numerical inputs 

and answers are recoded into visual or linguistic output (Dehaene & Cohen, 1995). Problems 

requiring exact calculations, on the other hand, must be transcoded into verbal word frame in 

order for relevant number facts to be retrieved from verbal memory (Dehaene & Cohen, 1995). 

Under triple code theory, format-based differences in arithmetic performance are thus attributed 

to issues of efficiency in the transcoding process, and so transcoding may be considered at least 

somewhat additive (not simultaneous or interactive;  Campbell & Epp, 2005). 

 The cognitive domains responsible for encoding and mentally representing numeric 

information are not the only domains involved in triple code theory’s arithmetic. The language 

domain supports the recognition of spoken and written number input, the production of spoken 

and written number output, and the retrieval of number facts (e.g., two plus two equals four) 

from memory (Dehaene, 1992; Dehaene & Cohen, 1995). The role of executive systems in 

coordinating the functions of arithmetic is unclear in triple code theory. Although the three 

domains for the mental representation of number are assumed to cooperate with one another and 
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with the language domain in carrying out numeric processing, the extent to which their 

cooperation is self-directed as opposed to organized by a super ordinate system of attention, 

inhibition, working memory, and regulation is not specified by the theory. However, a visuo-

spatial attentional circuit that appears to contribute to visuo-spatial attentional tasks (e.g., eye 

tracking, attention orienting, grasping, reaching, spatial working memory) and numerical 

processing tasks (e.g., comparison, estimation, subtraction, counting, multi-operation tasks) has 

been identified empirically (Dehaene, Piazza, Pinel, & Cohen, 2003). Dehaene has hypothesized 

that this region of the brain may aid in both the visual recognition of numbers and in the 

coordination of attention to quantities on the mental number line (Dehaene, Piazza, Pinel, & 

Cohen, 2003). 

1.6.4  Exact versus approximate calculations: An extension of triple code theory.  

Unlike the other theories of arithmetic cognition reviewed thus far, exact versus 

approximate calculations theory is empirically generated and pertains specifically to the numeric 

processing task of calculations. It is an extension of triple code theory, supporting the idea that 

distinct neural networks contribute to (1) approximate calculation tasks involving semantic 

representations of quantity, comparison, and estimation versus (2) exact calculation tasks 

involving the retrieval of rote, verbal, numerical facts about quantity to compute exact arithmetic 

solutions (Dehaene et al., 1999; Stanescu-Cosson et al., 2000). 

The analogical magnitude representation domain is hypothesized to be supported by the 

neural network for approximate calculations, and the verbal word frame domain is hypothesized 

to be supported by the neural network for exact calculations. These domains appear to be 

integrated, and they may both be recruited for difficult, exact calculation problems involving 

large quantities (Stanescu-Cosson et al., 2000). The visuo-spatial system implicated in the visual 
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Arabic number form domain of triple code theory is not a main focus of this extension of triple 

code theory; however, empirical evidence suggests that visuo-spatial networks involved in both 

numerical and non-numerical processing tasks may contribute to internal, mental representations 

of numbers during both approximate and exact calculation (Stanescu-Cosson et al., 2000).  

 Empirical support for the exact versus approximate extension of triple code theory are 

based mostly in research with adults who have verbal or quantity impairments as a result of 

traumatic brain injuries and brain imaging research with healthy adults performing various types 

of calculations. For example, Dehaene & Cohen (1991) reported a case study of man who had 

suffered severe head trauma to the right temporo-parieto-occipital region of his brain and 

associated acalculia and aphasia. Because this participant was able to correctly judge the 

correctness of approximate quantity calculations (e.g., 2 + 2 = 9) but struggled with very simple 

exact calculations (e.g., 2 + 2 = 3), Dehaene and Cohen (1991) hypothesized that there were two, 

distinct networks involved in calculation activities. Although the language-dependent exact 

calculation network was impaired, the specialized network for quantity approximation tasks 

remained intact. Lemer, Dehaene, Spelke, and Cohen (2003) reported similar results for two 

adults with traumatic brain injuries and associated aphasia and acalculia. The participant with left 

fronto-temporal atrophy and associated aphasia struggled with oral language comprehension and 

production, narration, word-finding, coherent speech, and exact calculations. The participant left 

intraparietal lesion and associated acalculia and appraxia struggled with visuo-spatial processing 

and approximate calculations. 

 Brain imaging studies, frequently relying on both fMRI and ERP methods have identified 

distinct neural networks and patterns of activation during exact versus approximate calculation 

tasks. Specifically, it appears that bilateral parietal and frontal regions of the brain, particularly 
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the intraparietal sulci, are consistently activated during both exact and approximate calculation 

tasks, but display higher levels of activation during approximate calculation tasks (Dehaene et 

al., 1999; Stanescu-Cosson et al., 2000). During exact calculation tasks, the left anterior inferior 

frontal regions of the brain, particularly the bilateral angular gyri, are consistently activated, 

suggesting that regions of the brain which are implicated in language processing tasks (e.g., word 

associations) also contribute to exact calculation tasks (Dehaene et al., 1999; Stanescu-Cosson et 

al., 2000). 

 Behavioral studies of reaction time and accuracy support the distinction between exact 

and approximate calculation activities and triple code theory’s hypotheses about format effects 

on subsequent mental representation. For example, Dehaene and colleagues (1999) reported that 

Russian-English bilinguals who were taught 2-digit exact and approximate number facts in one 

of their languages (1) performed faster in the teaching language than in the untrained language 

for exact calculation facts, (2) performed equivalently in both languages for approximate 

calculation facts, and (3) performed similarly on trained facts and novel problems with operands 

of similar magnitudes when doing approximate calculations. These results were interpreted to 

support the ideas that (1) exact calculation facts were stored in language-specific codes and 

switching between languages resulted in a reaction time cost, (2) approximate calculation facts 

were stored in codes that were not language-specific and code switching between languages did 

not result in reaction time cost, and (3) approximate facts were stored in magnitude formats such 

their information could generalize to novel problems involving similar magnitudes without 

reaction time costs. 

 Other assumptions of triple code theory, including the possible cognitive domains 

involved in numeric processing are generally not addressed in the empirical literature supporting 
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exact versus approximate calculations. The focus of this empirically generated theory is 

specifying the roles of the analogical magnitude representation domain and the verbal word 

frame domain on approximate and exact calculation activities. 

2 CHAPTER 2: MODELING ARITHMETIC PERFORMANCE AND THE ROLE OF 

PROBLEM FORMATTING  

 Although Abstract Code Theory, Encoding Complex Theory, Triple Code Theory, and 

the Exact versus Approximate Calculations specification of Triple Code Theory overlap in many 

areas, they also diverge in their explanations of mental representation of quantity and cognitive 

domains responsible for numeric processing. Encoding Complex Theory and Triple Code Theory 

both agree that stimulus formatting can largely influence both mental representation of quantity 

and subsequent numeric processing; however, Abstract Code Theory stipulates that regardless of 

stimulus format, mental representations are amodal abstract codes and subsequent numeric 

processing relies on these abstract codes. Triple Code Theory and Abstract Code Theory both 

agree that numeric processing relies on cognitive domains specialized for processing quantity; 

however, Encoding Complex Theory stipulates that numeric processing relies on cognitive 

domains which are not modular and not unique to processing quantity. In terms of specifying 

domains which may help to facilitate numeric processing, Abstract Code Theory is largely silent, 

but both Encoding Complex Theory and Triple Code Theory agree that executive domains 

(involving coordinating attention and inhibition) and the language domain (retrieving verbal 

information about number facts) may contribute. Clearly, encoding (forming mental 

representations) and cognitive dimensionality of numeric processing are major areas of departure 

for these theories. From a psychometric perspective, the issue of encoding is closely related to 

the issue of dimensionality because depending upon the theoretical perspective one takes, 
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encoding and mental representation may influence the cognitive domains involved in subsequent 

numeric processing. In the current chapter, each of these theories will be presented as 

confirmatory factor models in order to clarify the roles of format, problem demands, and 

cognitive abilities other than those in the quantitative domain. 

2.1 Modeling Leading Theories of Arithmetic Cognition 

 The next sections will present factor analytic specifications of four leading theories of 

arithmetic cognition, (1) Abstract Code Theory, (2) Encoding Complex Theory, (3) Triple Code 

Theory, and (4) the Exact versus Approximate Calculations specification of Triple Code Theory. 

Each theory will be examined for its specifications of the role of problem formats in encoding 

and calculation, and possible factor structures to represent each theory's specifications will be 

provided.  

 The strength of the factor analytic framework lies in its specificity. Confirmatory factor 

analysis forces explicit statements about model parameters and the hypotheses they entail 

(Bollen, 1989; Brown, 2006; Kline, 2011; McDonald, 1999). It is a method that can reveal 

theoretical misspecifications by forcing explicit tests of relations (e.g., exact and approximate 

calculations are not predicted by the same cognitive architectures). It can also reveal areas in 

which theories have not provided hypotheses about possible relationships by forcing users to 

specify falsifiable relations (e.g., language does not relate to arithmetic behavioral outcomes). In 

sum, the specific, explicit nature of confirmatory factor analysis forces researchers to consider 

the testable dimensions of a theory. For example, if theoretical constructs do not have observable 

outcomes, they are not testable with factor analysis (and perhaps not with any other method).  
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2.1.1  Abstract code theory.  

Within the framework of Abstract Code Theory, three cognitive systems are responsible 

for processing numerical information (McCloskey, 1992). A comprehension system encodes 

stimuli into abstract semantic representations. A calculation system accesses arithmetic facts, 

rules, and complex procedures using those abstract semantic representations. Finally, a 

production system recodes abstract semantic representations back into verbal or written output. 

These three domains communicate and work together collaboratively to execute numeric 

processing. In a factor model, each of these domains could be represented by latent variables, 

and correlations between the three latent variables could represent their communication as shared 

variance  in predicting  arithmetic behavioral outcomes. As a schematic factor diagram, the latent 

variables are represented by circles; the latent variable shared variance or communication, by 

curved arrows; the observed outcomes, by rectangles (in this case one rectangle is used to 

represent all possible behavioral outcomes); and the assumption that latent variables predict 

observed outcomes, by straight arrows. 
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Figure 1. Abstract Code Theory: 3 Modules for Numeric Processing. 

 

 Furthermore, Abstract Code Theory postulates that each of these three dimensions for 

numeric processing rely on a single, amodal, mental representation of number. Regardless of 

stimuli formatting and problem demands (e.g., exact versus approximate calculations), the fact, 

rule, and procedure mechanisms at work during the calculation stage of cognitive processing are 

reliant upon abstract semantic representations independent of encoding and recoding processes. 

Stimuli format should not affect calculation. The specification that one, latent form of mental 

representations predicts arithmetic behavioral outcomes across a variety of stimulus formats and 

problem demands can be represented as a factor model in which various stimulus formats have 

no distinct common method variance and instead are predicted by one, latent dimension.  
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Figure 2. Abstract Code Theory: 1 Mental Representation Regardless of Stimulus Format. 

 

 Abstract Code Theory specifies that the quantitative domain outlined above is specialized 

for numeric processing. The roles of other domains in helping with language processing, 

language-based fact retrieval, or coordinating the activities of numeric processing are not 

specified. From a factor analytic framework, the roles of a language and executive functioning 

domain in Abstract Code Theory could be modeled as separate latent variables which are 

allowed to correlate with the numeric processing domain but are not involved in predicting 

arithmetic behavioral outcomes. The extent to which other cognitive domains may or may not 

correlate with various facets of the numeric processing domain is not addressed by Abstract 

Code Theory; however, because abstract semantic representations are the common form of 

mental representation upon which all three modules of numeric processing operate, one would 

expect that this latent variable, at a minimum, should be allowed to correlate with other cognitive 

domains. 
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Figure 3. Abstract Code Theory: Other Domains Do Not Predict Arithmetic Behavioral 

Outcomes. 

 

 It is important to note that Abstract Code Theory specifies arithmetic problem processing 

as occurring mechanistically in many, unobservable stages of mathematical cognition. The 

production of oral, written, perhaps even gestured responses from abstract semantic codes may 

be the only stage of this theory to produce observable behaviors in practice. The theory's 

additional internal stages are not directly testable using a methodology which relies upon 

behavioral observations (or perhaps any currently available methodology). However, the 

hypothesis that all stimuli are encoded, operated upon, and responded to as abstract semantic 

codes, regardless of original stimulus format, can be modeled and tested from a factor analytic 

measurement standpoint. One would expect that across all stimulus formats, no common method 

variance effects for formatting should be observed.  
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 Also worth noting is the fact that Abstract Code Theory, like all of the theories of 

arithmetic cognition considered thus far, pertains to the skilled arithmetic cognition of adults. 

The extent to which children or other novice numeric processors may differ in the structure(s) of 

their quantitative domain is not specified by Abstract Code Theory. Without those 

developmental specifications, one must assume that individuals  who are developing numeric 

processing (i.e., children, persons without access to formal education, unskilled adults) have the 

same cognitive architecture as skilled adults, an assumption which is perhaps untenable. 

 Thus, with these caveats in mind, Abstract Code Theory may be best represented with a 

one factor model of abstract semantic representation, which at a minimum, is allowed to 

correlate with other cognitive domains (e.g., language, executive functioning). Here, language 

and executive functioning are not allowed to predict arithmetic behavioral outcomes, and so, their 

predictions are fixed at zero (and not drawn) across formats and problem demands. The 

comprehension, calculation, and production modules may operate on and with abstract semantic 

codes; however, they are not formulated to predict unique variance in specified behavioral 

outcomes, and therefore, their dimensionality separate from abstract semantic codes is not 

testable.   
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Figure 4. Abstract Code Theory: General Factor Model. 

 

2.1.2  Encoding complex theory.  

Encoding Complex Theory stipulates that when mathematics problems are presented, a 

diverse network of mental representations called an encoding complex, is activated by numerical 

stimuli (Campbell, 1994). The encoding complex associations can involve number reading, fact 

retrieval, procedural operations, comparison, estimation, and the elimination of similar but 

irrelevant semantic representations of math facts. The mental representations of the encoding 

complex can be verbal or nonverbal, and they can stimulate and interact with each other. This 

encoding complex is not modular, and it is not specialized for numeric processing; however, 

practice with a given format can reinforce associations in the encoding complex, increasing 
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skilled problem-solving and allowing the encoding complex to mimic a specialized numeric 

processing module. 

 Encoding Complex Theory, like all of the theories of arithmetic cognition reviewed thus 

far, is specified to model highly-skilled, adult arithmetic cognition. Although Encoding Complex 

Theory is one of the few arithmetic cognition theories to address changes in the system as a 

function of practice, the extent to which the encoding complex begins to appear modular over the 

course of development (and various types of formal or informal practice with numeric stimuli) is 

not specified by the theory, and this issue is crucial for applications of the theory to developing 

children. 

 One might imagine two extremes for the question of modularity in Encoding Complex 

Theory, (1) in individuals who have relatively little practice with numeric stimuli such as infants, 

the encoding complex may be different for every problem stimulus they encounter, as opposed to 

(2) in individuals who have some unspecified amount of practice with numeric stimuli such as 

children and adults with formal schooling experience, the encoding complex may have become 

seemingly-modular for every problem they encounter. The gradients of the seemingly-modular 

encoding complex as a function of "practice" are unclear. 

 From a factor analytic framework, the first extreme could be represented by a model in 

which several, distinct latent variables (the encoding complexes) predict arithmetic behavioral 

outcomes for every numeric stimulus and no, one latent variable shares predictive value across 

arithmetic problems. These encoding complexes are allowed to covary (or not covary), and to the 

extent that covariances increase over time (and with practice) these separate encoding complexes 

may begin to converge. The second extreme could be represented by a model in which one latent 

variable (the "practiced" and seemingly-modular encoding complex) predicts arithmetic 
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behavioral outcomes across various arithmetic problems. One would expect the second extreme 

to apply to individuals who have at least some amount of practice with arithmetic problem-

solving. 

 

Figure 5. Encoding Complex Theory: No Specialized Module for Numeric Processing  →   

Becomes A Seemingly-Modular Encoding Complex with Practice. 

 

 Furthermore, Encoding Complex Theory specifies that format interactions (e.g., 

language-based format by number size interactions) exist and can result in longer reaction times 

for correct responses and differential patterns of error production (Campbell, 1994). Format is 

not independent of calculation efficiency. Format can affect both mental representation of 

numbers and subsequent numeric processing, and this is especially true for language-formatted 

problems. The specification that language-formatted problems may display some common 

method variance can be represented as a factor model in which language-formatted items are 

predicted by a separate, format-specific, latent dimension (in this case, the language domain). 
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Figure 6. Encoding Complex Theory: Language Formatting Effects As Language-based 

Common Method Variance. 

 

 Encoding Complex Theory specifies that the quantitative domain outlined above is not 

specialized for numeric processing and is not modular (meaning that it is not a self-contained, 

separate cognitive domain or dimension of ability) although it may appear to be modular with 

practice. The competing and sometimes interfering responses to the stimuli must be sorted for 

relevance, and any interference must be overcome in order for successful performance to occur. 

The task of arithmetic is largely to inhibit competing and irrelevant signals activated in the 

encoding complex and to enhance signals that are relevant to the problem. Failure to successfully 

perform arithmetic constitutes a failure of the system to inhibit. Cognitive domains involved in 

this process are assumed to contribute to other cognitive activities, and Campbell and Clark 

(1988; Clark & Campbell, 1991) have suggested that domains such as executive systems of 

control (working memory, inhibition, attention) and the language domain (among others) may 

help to resolve the conflicting signals activated in the encoding complex. Although Encoding 

Complex Theory has also suggested that the motor and visuo-spatial domains may also predict 
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arithmetic behavioral outcomes, the extent to which these domains predict outcomes across 

various formats and the extent to which they relate to other cognitive domains involved in 

arithmetic processes is unclear and not specified by the theory. However, from a factor analytic 

framework, the roles of language and executive functioning could be modeled as separate latent 

variables which are allowed to predict arithmetic outcomes along with the seemingly modular 

encoding complex for arithmetic. As previously outlined, the language domain is expected to 

contribute to language-formatted problems. The executive functioning domain is expected to 

contribute to arithmetic behavioral outcomes regardless of problem formatting. Allowing these 

domains to correlate with the seemingly modular encoding complex for arithmetic in addition to 

predicting arithmetic outcomes would constitute an over-specification of the model; however, to 

the extent that these cognitive domains do not predict arithmetic outcomes, they could also be 

allowed to correlate with the encoding complex. 

 

 

  

Figure 7. Encoding Complex Theory: Other Domains Predict Arithmetic Behavioral 

Outcomes. 
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 Importantly, the stipulation that the diverse network of mental representations (which 

constitute the encoding complex) are allowed to stimulate and interact with each other is not 

modeled. The entire network of possible numerical associations cannot be measured behaviorally 

without additional specifications about exactly which kinds of mental representations would be 

expected for various arithmetic problems and how these mental representations relate to 

arithmetic behavioral outcomes (i.e., what exactly is activated for various types of numeric 

stimuli). 

 Also not modeled is the stipulation that item by person interactions may occur in the 

encoding complex such that encoding complexes are unique across items, within individuals, 

across individuals, and across cultures. Although factor analysis allows for latent variables to 

vary within and across individuals and for measurement models to be compared across groups of 

individuals (e.g., cultural groups), it would be exceedingly difficult to model a cognitive system 

which is structurally different for all individuals in a population using factor analysis. 

 Similarly, the extent to which this encoding complex becomes seemingly modular at 

various points of development is not specified by the theory, and modeling latent dimensions 

which are unique for every arithmetic behavioral outcomes is untenable. At most, we might 

assume that for all individuals who have some unspecified amount of practice with arithmetic 

problems, the seemingly modular encoding complex architecture is in place and is a single latent 

factor along which each person might have a unique value. 

 Thus, with these caveats in mind, the hypotheses that (1) numerical stimuli are 

represented in a single, seemingly modular encoding complex, (2) formatting may affect 

performance on arithmetic items, particularly for language-formatted items, and (3) additional 

cognitive domains of language and executive functioning may predict performance, can be tested 
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with behavioral responses to arithmetic problems. From a factor analytic measurement 

standpoint, Encoding Complex Theory may be best represented by a single mathematics 

encoding factor which indicates the semantic memory associations involved in numerical 

processing. Additional factors representing language ability and executive functioning may also 

impact the performance on mathematics problems, and these factors are allowed to predict 

arithmetic behavioral outcomes across various formats and problem demands. Mathematics 

problems may also demonstrate difficulty in predictable patterns such that items with language-

based formatting are more difficult than items formatted with Arabic numerals and items with 

larger numbers are more difficult than items with smaller. 

 Importantly, in this model (presented below as a schematic) the seemingly modular 

encoding complex predicts no unique behavioral outcomes. Given that Clark and Campbell 

(1991) have specified that the quantitative domain is not a modular domain and that the task of 

successful arithmetic performance is successful inhibition of signals and responses irrelevant to 

solving the problem, the inclusion of executive functioning in the model may leave no unique 

variance for a seemingly modular encoding complex. In other words, to the extent that arithmetic 

performance simply constitutes successful executive control (inhibition, attention, working 

memory), including a quantitative domain which is responsible for explaining the majority of 

shared variance across arithmetic behavioral outcomes may be of little utility. 

 Because each of the predictive relationships between latent factors and behavioral 

outcomes is falsifiable, the role of executive functioning as opposed to a seemingly modular 

encoding complex (quantitative semantic representations activated by arithmetic problems) can 

be examined by first allowing for the possibility of a seemingly modular encoding complex to 

have predictive value above and beyond executive functioning. However, to the extent that 
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executive functioning (and possibly language) is the major predictor of these behavioral 

outcomes, the seemingly modular encoding complex (and possibly language) may disappear 

from the model. 

 

 

Figure 8. Encoding Complex Theory: General Factor Model. 

 

2.1.3  Triple code theory.  

Within the framework of Triple Code Theory, three cognitive modules are responsible for 

encoding, retrieving and processing mathematical tasks (Dehaene, 1992; Dehaene & Cohen, 

1995). The visual Arabic module processes digital input and output and multi-digit operations. 

The auditory verbal module processes simple arithmetic facts, written and spoken input and 

output, and language-based memory of numbers. The analog magnitude representation module 

processes semantic numeric content, comparison, estimation, approximate calculation, and 

subitizing tasks. Measurement stimuli are encoded in the appropriate numeric module, where 

processing and calculation largely occur; however, problem demands may necessitate that a 

module calls upon another module of Triple Code Theory in order to complete numeric 

Language

Executive 

Functioning

Seemingly 

Modular 

Encoding 

Complex Arithmetic Behavioral Outcomes: Exact Language Formatted 

Problems 

Arithmetic Behavioral Outcomes: Exact Arabic Numeral Formatted 

Problems

Arithmetic Behavioral Outcomes: Approximate Calculation Problems 

(Across Problem Formats)

Here, language may predict 

approximate problems that are 

language-formatted.



40 

 

processing. This communication or collaboration between modules is accomplished by 

transcoding, and each of the three domains of Triple Code Theory are allowed to communicate 

with each other directly and without the need for common abstract codes.  

 From a factor analytic framework, Triple Code Theory can be represented with  a three 

factor model of arithmetic cognition in which (1) a visual Arabic factor is largely responsible for 

Arabic numeral formatted problems, (2) an auditory verbal factor is largely responsible for 

language-formatted problems, and (3) an analog magnitude factor is largely responsible for 

approximate calculations across formats. The communication between these factors, transcoding, 

can be represented with factor correlations. 

 

 

Figure 9. Triple Code Theory: 3 Modules for Numeric Processing. 
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of encoding and recoding. From a factor analytic framework, common method variance may be 

the result of problem format, problem demands (exact versus approximate), or both, and the 

predicted patterns of common method variance are outlined in Triple Code Theory's 

specifications about which domains should be largely responsible for which tasks.  

 

 

Figure 10. Triple Code Theory: Formatting Can Effect Mental Representation & 

Processing (inherent in the theory). 

 

 Triple Code Theory allows for domains other than the quantitative domain to facilitate 

numeric processing. The language domain is allowed to inform the quantitative domain by 

providing linguistically stored math facts. Although the auditory verbal module is responsible 

for mentally representing written (graphemes) or spoken (phonemes) numbers syntactically, by 

place value, the extent to which the language domain may or may not overlap with the auditory 

verbal module of Triple Code Theory is unclear.  
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 Similarly, Triple Code Theory is a bit vague in its specification of which cognitive 

domains help to coordinate numeric processing and to control the complex sub-processes of 

numeric processing (like transcoding). The extent to which these subprocesses may be self-

directed is unclear; however, an attentional control domain is allowed to coordinate visuo-spatial 

attention to numbers on the internal number line. The extent to which this attentional control 

domain helps to coordinate the working memory, inhibition, and planning required to complete 

numeric processing is not specified. 

 From a factor analytic framework, a latent language factor and an executive control 

factor could be added to the previously specified model. Because these domains may 

communicate with the three modules of Triple Code Theory's quantitative domain, at a minimum 

these additional domains may correlate with the numeric processing domains of Triple Code 

Theory. To the extent that the auditory verbal module and the language domain correlate, they 

may not be separate domains (i.e., if they correlate highly or at unity). To the extent that the 

executive functioning domain correlates with the modules of Triple Code Theory, it may not be 

helping to facilitate numeric processing by coordinating control (i.e., if it does not correlate 

significantly). 
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Figure 11. Triple Code Theory: Other Domains May Be Associated With 3 Modules in 

Predicting Arithmetic Behavioral Outcomes. 

  

 It should be noted that the specification of transcoding in the suggested factor model for 

Triple Code Theory is tenuous. The extent to which the three modules of Triple Code Theory 

may contribute to numeric processing depending upon problem demands is unclear. From one 

extreme, we might expect that the three domains remain relatively separate in predicting their 

various arithmetic outcomes and communicate only via transcoding. This notion of transcoding 

is represented in the proposed factor models with factor correlations. However, from another 

extreme, we might expect that although one domain is primarily responsible for certain tasks, 

other domains of Triple Code Theory may also directly predict outcomes (i.e., transcoding may 
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be best represented with latent factor loadings and not latent factor correlations). For example, 

although the auditory verbal module may be largely responsible for processing language-

formatted problems, the analog magnitude module may also predict these outcomes. Because 

these specifications have not been made a priori by Triple Code Theory, they are not 

hypothesized here. Given that the latent correlation model of Triple Code Theory fails, this post 

hoc model of transcoding may need to be explored. 

 Also noteworthy is that Triple Code Theory does not specify developmental effects for 

numeric processing. Research suggests that hemispheric lateralization may become more 

uniform with age and that the process of arithmetic may be more integrated for adults, though 

largely relying on the same circuits involved in arithmetic during childhood; however, Triple 

Code Theory does not postulate these developmental effects. Like the other theories of arithmetic 

cognition considered here, Triple Code Theory pertains to adult arithmetic cognition, and the 

pathway(s) from childhood to this model are not considered. 

 With these caveats, Triple Code Theory can be represented as a factor model in which 

three, separate but related domains (visual Arabic number, auditory verbal, and analog 

magnitude modules) predict format-specific mental representation and calculation, and language 

and executive functioning domains may also facilitate arithmetic.  
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Figure 12. Triple Code Theory: General Factor Models. 
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estimation or approximate calculations, on the other hand, may call only on the analogical 

magnitude module. The visual Arabic number form module is largely absent from this 

specification of Triple Code Theory; however, spatial attention networks, possibly representing 

some of the predictive power of the visual Arabic number form module and possibly 

representing some form of executive control for attention, may contribute to coordinating both 

types of task. The core premise of Exact versus Approximate Calculations Theory can be 

represented with a factor model in which two latent factors (representing the analog magnitude 

module and the auditory verbal module) predict arithmetic behavioral outcomes for exact and 

approximate problem demands. At a minimum, these latent factors can be allowed to correlate 

and communicate with one another. 

 

Figure 13. Exact V. Approximate Theory: 2 Modules for Exact and Approximate 

Calculations. 
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various formats of items is unclear. Without further specification of the theory, it would appear 

that Exact Versus Approximate Calculations Theory would predict that across various problem 

formats, problems requiring exact calculations will be largely predicted by both the analog 

magnitude module (to the extent that they require number facts that are not linguistically stored) 

and the auditory verbal module, and problems requiring approximate calculations will be largely 

predicted by the analog magnitude module. 

 

 

Figure 14. Exact V. Approximate Theory: Problem Formatting Differences Not Specified. 

 

 The contributions of domains other than the analog magnitude module and the auditory 

verbal module are also unclear. Language networks which also contribute to purely linguistic 

tasks are implicated in exact calculations, but the extent to which the language domain 
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auditory verbal module is in fact the language domain and does not have unique predictive 
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power in numeric processing. From a factor analytic framework, this can be represented with a 

latent language factor, which is allowed to correlate with the auditory verbal module. An 

extremely high correlation would indicate that they are not distinct factors. Without a compelling 

reason to restrict associations with other aspects of the model, this language domain can also be 

allowed to correlate with the analog magnitude module. 

 Similarly, the role of executive control in coordinating processing and facilitating spatial 

attention is unclear. Without more information on the contributions of "spatial attention 

networks", this domain can be tentatively represented with a latent factor for executive control 

which is allowed to associate with the analog magnitude and auditory verbal modules as well as 

with the language domain. 

 Like Triple Code Theory, Exact Versus Approximate Calculations Theory does not make 

specifications for developmental effects. This theory pertains to skilled adult arithmetic 

cognition, and the extent to which the model may apply to young calculators and may change 

with development and experience is unclear and an area in need to additional research. 

 With these caveats in mind, the Exact versus Approximate Calculations hypothesis of 

Triple Code Theory may be best represented as a four factor model in which both the analogical 

magnitude representation domain and an executive domain coordinating attention contribute to 

all numeric processing tasks, but the language domain and possibly a unique auditory verbal 

module contribute only to tasks requiring exact calculations. 
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Figure 15. Exact V. Approximate Theory: Other Cognitive Domains’ Contributions Are 

Unclear. 

 

2.2 Hypotheses 
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associations. Performance on arithmetic problems is also predicted by the cognitive domains 

of executive functioning and language ability. 

H3: Mathematics performance is best represented by the Triple Code Theory of arithmetic 

cognition. Processing of mathematical tasks occurs in one of three domains, which are 

separate but related via transcoding. These domains may or may not correlate with additional 

cognitive abilities (i.e., language, executive functioning). 

H4: Arithmetic performance is best represented by the Exact versus Approximate 

specification of the Triple Code Theory of arithmetic cognition. Processing of mathematical 

tasks occurs largely in the analog magnitude domain, but executive domains may coordinate 

attention on all tasks. For tasks requiring exact calculations, the auditory verbal module 

and/or the language domain may also contribute to processing. For tasks requiring 

approximate calculations, the analog magnitude domain may show larger contributions than 

it does on exact calculations (represented by factor loadings). This pattern of dimensionality 

is a function of problem demands and is expected across various problem formats. 

3 CHAPTER 3: METHODS 

The participants of this study were drawn from the baseline data of a six year, 

prospective, longitudinal study designed to test the effectiveness of an experimental instructional 

program for mathematics problem solving and to examine the cognitive development and 

predictors of mathematics problem solving (see for example  Fuchs et al., 2008 ).  

3.1 Participants 

Participants were enrolled in public schools in Southeastern metropolitan school districts. 

Upon entering third grade during the fall of each school year, those students who assented to 

participation and whose parents consented to participate in the study were included in assessment 
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(and instructional intervention for the purposes of the parent study; see for example (Fuchs et al., 

2008). An initial 2,023 students across 120 classrooms had consent to participate in the parent 

study. A subset of N=1320 children were randomly selected for full participation in the parent 

study. These participants received the full testing battery (including screening measures, the full 

mathematics battery, cognitive measures, and demographic reports from teachers); however, for 

the purpose of the current study, all students with some data on mathematics, language, and/or 

executive function measures were included as participants. Because participants in the parent 

study were a randomly sampled subset of students, some data were unavailable on the full 

battery for students not included in the parent study. Thus, for all measures included in the 

current study, certain percentages of data were unavailable because the parent study, by design, 

collected data on a smaller sample than were included in the current study. Because these data 

were unavailable by design, they were considered to be "planned missing" and "missing at 

random". Implications for modeling data that are missing at random are considered in the 

analysis section. 

A final sample of 1959 children was selected for the current study from the baseline time 

points of the Grade 3 Mathematics Problem Solving Study (MPS3). Of this total sample, 

approximately 67% of participants (N=1312) had available demographic data on measures 

considered in the present study (age, gender, race/ethnicity, eligibility for free or reduced price 

lunch, and special education status/category), and according to the parent study's design, 

demographic data were not collected on the remaining students. Table 1 presents information for 

patterns of unavailable data on demographic measures of interest to the current study. 

Based on the students for whom demographic data were collected (See Table 1), the 

current sample had a mean age of 103.24 months (SD=5.41, range = 89 – 142), was 
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approximately 50% female (N=660 females, N=652 males), and was ethnically and racially 

diverse (43% African American, 40% White, 10% Hispanic, 1% Kurdish, 4% other not 

specified, and 1% missing). Approximately 56% of the children in the sample qualified for free 

or reduced lunch. Teachers reported that approximately 5% of the children in the parent study 

sample were receiving special education services. Of those 67 children whose teachers reported 

receiving special education services, most were receiving services for learning disabilities 

(N=22), speech/hearing/language (N=21), ADHD (N=7), or giftedness (N=4).
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Table 1. Patterns of unavailable data on demographic variables of interest 

General Pattern Specific Pattern N % of Data  

Full Data Coverage 44.77% All data present on demographic measures 877 44.77% 

1 Measure Unavailable 41.14% Special education category unavailable 325 16.59% 

 Free and reduced price lunch unavailable 97 4.95% 

2 Measures Unavailable 13.48% Both free and reduced price lunch AND special education category unavailable 13 .66% 

No Available Data .31% No available data on demographic measures (students not included in parent study) 647 33.03% 
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3.2 Procedures 

 During September and October of each year of the study, (1) a demographic 

questionnaire was completed by teachers, (2) students’ mathematical skills were assessed in 

three sessions lasting 30-60 minutes each, and (3) students’ cognitive abilities were assessed in 

two sessions lasting 45 minutes each. Total testing span from first assessment to last was 

approximately one month. 

 The mathematics battery was administered to students using a whole classroom 

assessment methodology. Students received individual stimulus papers and pencils. Trained 

assessment professionals read questions aloud while students followed along on their own paper 

copies. Students were given time to respond to each question, and the next question was not 

administered until all students or all but two students had put their pencils down. Students were 

not permitted to communicate answers or disrupt the testing of the whole class. 

 The cognitive battery (which includes the measures of language and executive 

functioning) was administered using an individual assessment methodology. Trained assessment 

professionals administered items to students in one-on-one interactions in quiet testing locations 

within their schools. 

3.3 Measures 

3.3.1  Mathematics achievement measures with language formatting. 

 The current research study used a variety of measures of mathematics achievement, each 

designed to capture various types of formatting for arithmetic problems. Next, three measures of 

mathematics which used language-formatting will be reviewed. 
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3.3.1.1 WJ III Applied Problems.  

This measure consisted of 60 orally presented word problems designed to represent every 

day, practical math problems (McGrew & Woodcock, 2001). Items required examinees to count, 

perform simple arithmetic operations, tell time, tell temperature, or problem-solve by eliminating 

extraneous information from the prompt. The test was not timed and was discontinued after 

examinees reached a ceiling of six, consecutive incorrect items. Correct items were scored "1," 

and incorrect items were scored "0." Total raw score was the number of correct items. Test 

developers report a one year test-retest reliability of .85 to .86 and a split half reliability of .88 to 

.95 for ages 2-18 years (McGrew & Woodcock, 2001). The WJ-III Broad Math Cluster, which 

includes the Applied Problems subtest, correlates well with other measures of mathematics 

achievement (Wechsler Individual Achievement Test, WIAT, at r=.70 and the Kaufman Test of 

Educational Achievement, KTEA, at r =.66; McGrew & Woodcock, 2001). Model-based 

reliability, in the form of R
2
, will be considered and reported for this study. 

3.3.1.2 Single Digit Story Problems.  

This experimental measure consisted of 14 items (developed from Jordan & Hanich, 

2000). Students were presented with the written word problems, which were read aloud by 

examiners. Each item could be solved in one step and involved combining, comparing, changing, 

and equalizing relationships with sums or minuends of 9 or less. Students were required to 

provide a correct response within 30 seconds of the oral prompt in order to receive credit for a 

correct answer; however, students were permitted to ask for re-readings of items as needed and 

without penalty to their timed responses. All students were administered all 14 items. Correct 

items were scored "1," and incorrect items were scored "0." Total raw score was the number of 
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correct items. Model-based reliability, in the form of R
2
, will be considered and reported for this 

study. 

3.3.1.3 Vanderbilt Story Problems.  

This experimental measure consisted of 18 items read aloud to students while they 

followed along on their own written copies (Fuchs, Hamlett, & Powell, 2003). Students were not 

timed and were permitted to ask for re-readings of items as needed. Each item involved one to 

four steps for solution and could be solved by using step-up functions, adding multiple quantities 

of items with different prices, calculating money remaining after a purchase, finding half of a 

quantity, or summing quantities derived from pictographs in which quantities were also 

presented verbally. Nine of these items were more complex and required students to eliminate 

extraneous information from the problem, solve problems involving novel contexts using real-

world information and their own problem-solving experiences, and apply information and 

solutions generated in previous complex problems on the assessment. Students could earn a total 

of 2 points per item, 1 point for correctly calculating intermediate steps in the problem, and 1 

point for correctly labeling the final answer. Raw scores were total number of points achieved 

per item. Model-based reliability, in the form of R
2
, will be considered and reported for this 

study. 

3.3.2 Mathematics achievement measures with Arabic numeral formatting. 

3.3.2.1 Basic Facts Addition. 

This experimentally designed measure consisted of 25 addition fact items, which were 

Arabic numeral formatted and delivered in written form to students (Fuchs et al., 2003). Each 

item involved addends of 9 or less and sums of 12 or less. Students were provided with the 

stimulus paper and a pencil and were permitted one minute to complete as many items as 
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possible. Correct items were scored "1," and incorrect items were scored "0." Total raw score 

was the number of correct items. Model-based reliability, in the form of R
2
, will be considered 

and reported for this study. 

3.3.2.2 Basic Facts Subtraction.  

 This experimentally designed measure consisted of 25 subtraction fact items, which were 

Arabic numeral formatted and delivered in written form to students (Fuchs et al., 2003). Each 

item involved minuends of 18 or less and answers of 12 or less. Students were provided with the 

stimulus paper and a pencil and were permitted one minute to complete as many items as 

possible. Correct items were scored "1," and incorrect items were scored "0." Total raw score 

was the number of correct items. Model-based reliability, in the form of R
2
, will be considered 

and reported for this study. 

3.3.2.3 WRAT Written Arithmetic.  

The WRAT-3 Written Arithmetic subtest (Blue form; Wilkinson, 1993) consisted of 40, 

Arabic numeral formatted computation problems. Items were presented in written format, and 

students were provided a pencil and asked to produced written responses to as many items as 

possible within 15 minutes. Items contained a variety of arithmetic content ranging from basic 

facts (basic addition, subtraction, multiplication, and division), to performing arithmetic 

operations involving multiple operands, to performing arithmetic operations with percentages 

and fractions, to reducing and evaluating algebraic expressions. Correct items were scored "1," 

and incorrect items were scored "0." Total raw score was the number of correct items. Test 

developers reported WRAT Arithmetic coefficient alpha reliabilities ranging from .80 to .89 for 

individuals ages 6 to 16 years and test-retest reliability of .94 for individuals ages 6 to 16 years 
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(Wilkinson, 1993). Model-based reliability, in the form of R
2
, will be considered and reported for 

this study. 

3.3.2.4 2nd grade Computational Fluency.  

This experimental measure consisted of 25, Arabic numeral formatted items and was 

designed for second grade addition, subtraction, number combinations, and procedural 

computation problems (Fuchs, Hamlett, & Fuchs, 1990). Examinees were given 3 minutes to 

complete as many problems as possible. Correct items were scored "1," and incorrect items were 

scored "0." Total raw score was the number of correct items. Model-based reliability, in the form 

of R
2
, will be considered and reported for this study.  

3.3.2.5 Double Digit Addition.  

This experimentally designed measure consisted of 20, Arabic numeral formatted, 2-digit 

by 2-digit addition items with and without regrouping (Fuchs et al., 2003). Students were 

provided with a written protocol and pencil, and given 5 minutes to complete as many problems 

as possible. Correct items were scored "1," and incorrect items were scored "0." Total raw score 

was the number of correct items. Model-based reliability, in the form of R
2
, will be considered 

and reported for this study.  

3.3.2.6 Double Digit Subtraction.  

This experimentally designed measure consisted of 20, Arabic numeral formatted, 2-digit 

by 2-digit subtraction items with and without regrouping (Fuchs et al., 2003). Students were 

provided with a written protocol and pencil, and given 5 minutes to complete as many problems 

as possible. Correct items were scored "1," and incorrect items were scored "0." Total raw score 

was the number of correct items. Model-based reliability, in the form of R
2
, will be considered 

and reported for this study. 
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3.3.3 Mathematics achievement measures involving estimation or analog magnitude. 

3.3.3.1 Double Digit Estimation Addition.  

This experimentally designed measure consisted of 20, Arabic numeral formatted, 2-digit 

by 2-digit addition items in which students were instructed to estimate answers to the nearest ten 

(Fuchs et al., 2003). Examiners completed a sample problem in order to demonstrate estimation 

and to remind students that they would not be computing exact answers to problems. Students 

were provided with a written protocol and pencil, and given 5 minutes to complete as many 

problems as possible. Correct items were scored "1," and incorrect items were scored "0." 

Because this was an estimation task, exact calculated answers were scored as incorrect. Total raw 

score was the number of correct items. Model-based reliability, in the form of R
2
, will be 

considered and reported for this study. 

3.3.3.2 Double Digit Estimation Subtraction.  

This experimentally designed measure consisted of 20, Arabic numeral formatted, 2-digit 

by 2-digit subtraction items in which students were instructed to estimate answers to the nearest 

ten (Fuchs et al., 2003). Examiners completed a sample problem in order to demonstrate 

estimation and to remind students that they would not be computing exact answers to problems. 

Students were provided with a written protocol and pencil, and given 5 minutes to complete as 

many problems as possible. Correct items were scored "1," and incorrect items were scored "0." 

Because this was an estimation task, exact calculated answers were scored as incorrect. Total raw 

score was the number of correct items. Model-based reliability, in the form of R
2
, will be 

considered and reported for this study. 
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3.3.4 Language measures. 

3.3.4.1 WASI Vocabulary.  

The Vocabulary subtest of the Wechsler Abbreviated Scale of Intelligence (WASI; 

Wechsler, 1999) consisted of 42 items, assessing expressive vocabulary. The initial four items 

required students to view a picture display and provide a verbal label for the object in each 

picture. Remaining items required students to provide definitions for vocabulary prompts given 

by examiners. Responses to all items were scored "0" if incorrect, "1" if partially correct, or "2" 

if the targeted response was present. The test was not timed and was discontinued after 

examinees reached a ceiling of five, consecutive incorrect items. Total raw score was the number 

of correct items. Test developers report a split half reliability of .86 and .88 for ages 8 to 9 years 

and test-retest reliability of .85 for ages 6-16 years (Wechsler, 1999). Model-based reliability, in 

the form of R
2
, will be considered and reported for this study. 

3.3.4.2 WDRB Listening Comprehension.  

The Listening Comprehension subtest of the Woodcock Diagnostic Reading Battery 

(WDRB; Woodcock, 1997) consisted of 38 sentences or passages, read aloud to examinees who 

were then prompted to supply the missing word at the end of each prompt. Initial items required 

students to complete simple verbal analogies and word associations, and as the test continued, 

items became more complex and required students to discern implications of the passages they 

had just heard. The test was not timed and was discontinued after examinees reached a ceiling of 

six, consecutive incorrect items. Correct items were scored "1," and incorrect items were scored 

"0." Total raw score was the number of correct items. Test developers report a reliability of .80 

for ages 5-18 years (Woodcock, 1997). Model-based reliability, in the form of R
2
, will be 

considered and reported for this study. 
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3.3.4.3 TOLD Grammatic Closure.  

The Grammatic Closure subtest of the Test of Language Development (TOLD-Revised 

edition; Newcomer & Hammill, 1988) consisted of 30 sentences, assessing ability to recognize, 

understand, and express English morphology. Students are prompted with a sentence that is 

missing a word and respond verbally to supply the missing word and complete the sentence. The 

test was not timed and was discontinued after examinees reached a ceiling of six, consecutive 

incorrect items. Correct items were scored "1," and incorrect items were scored "0." Total raw 

score was the number of correct items. Test developers report a reliability of .88 for age 8 years 

(Newcomer & Hammill, 1988). Model-based reliability, in the form of R
2
, will be considered 

and reported for this study. 

3.3.5 Executive functioning measures. 

3.3.5.1 SWAN.  

The SWAN (Swanson & Beebe-Frankenberger, 2004)  is a teacher survey with 18 items 

measuring attention, inhibition, and self-regulation. This instrument was originally designed to 

measure the inattentive behavior, distractibility, impulsivity, and hyperactivity characteristic of 

Attention-Deficit/Hyperactivity Disorder (ADHD) while also capturing the normal distribution 

of non-clinical behavior. The first nine items of the SWAN prompted teachers to rate students for 

various types of inattentive behavior and distractibility, and the next nine items prompted 

teachers to rate students for various types of impulsive and hyperactive behaviors. Each item 

asked teachers to rate a student's behaviors on a seven point Likert-type scale (ranging from 7 

"far above average," 6 "above average," 5 "slightly above average," 4 "average," 3 "slightly 

below average," 2 "below average," 1 "far below average." Model-based reliability, in the form 

of R
2
, will be considered and reported for this study. 
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3.3.5.2 WMTB Listening Recall.  

The Listening Recall subtest of the Working Memory Test Battery for Children (WMTB-

C; Pickering & Gathercole, 2001) consisted of sequences of sentences, assessing verbal working 

memory. Examiners read aloud a series of short sentences to students. After listening to each 

sentence, the student evaluates the sentence as true or false. Finally, after evaluating all of the 

sentences in a trial, the student is asked to recall, in order, the last word of each sentence in the 

trial. The test was not timed and was discontinued after examinees reached a ceiling of three or 

more errors in any block of items. Each sequence of final words recalled correctly and in the 

correct order was scored "1". A sequence in which either final words were not recalled correctly 

or were not recalled in the correct order was scored "0". Total raw score was the number of 

correct sequences recalled. Test developers report a test-retest reliability of .93 for ages 5 to 15 

years (Pickering & Gathercole, 2001). Model-based reliability, in the form of R
2
, will be 

considered and reported for this study. 

3.3.5.3 WJ III Numbers Reversed.  

The Numbers Reversed subtest of the WJ-III (Test of Cognitive Abilities; Woodcock, 

McGrew, & Mather, 2001) consisted of 30 items, assessing working memory. On each item, 

students listened to orally presented, random spans of digits, and upon completion of the span, 

students were prompted to orally list the digits they had just heard in reversed order. As students 

progressed through the test, digit spans increased, ranging from two to eight digits. The test was 

not timed and was discontinued after examinees reached a ceiling of three errors in a block of 

items (note that blocks vary in the number of items they contain; each block ends with a possible 

stopping point that is pre-determined by the test developer). Correct items were scored "1," and 

incorrect items were scored "0." Total raw score was the number of correct items. Test 
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developers report a split half reliability of .84 to .93 for ages 2 to 18 years (McGrew & 

Woodcock, 2001). Model-based reliability, in the form of R
2
, will be considered and reported for 

this study. 

3.3.5.4 WASI Matrix Reasoning.  

The Matrix Reasoning subtest of the WASI is designed to measure nonverbal problem-

solving or induction (Wechsler, 1999). This assessment requires examinees to view visual 

displays of matrices from which a section is missing and to use pattern completion, 

classification, analogy, and serial reasoning to induct the rule in the matrix and predict the next 

item in the sequence. Examinees complete the matrix using one of five possible response choices 

from a multiple choice array beneath the matrix prompt. Responses could be identified verbally 

or with pointing. Testing is discontinued after examinees make four errors within a set of five 

consecutive items. Correct responses are recorded as "1" and incorrect responses are recorded as 

"0". Test developers report a split half reliability of .94 and .93 for ages 8 and 9 years and test-

retest reliability of .77 for ages 6-16 years (Wechsler, 1999). Model-based reliability, in the form 

of R
2
, will be considered and reported for this study. 

3.3.5.5 WJ III Concept Formation.  

The Concept Formation subtest of the WJ-III (Test of Cognitive Abilities; Woodcock et 

al., 2001) consisted of 40 items, assessing fluid intelligence and induction. On each item, 

students were shown illustrations which demonstrated instances and non-instances of a concept 

and were asked to identify the rules for concepts by inducting or inferring the rules. The test was 

not timed and was discontinued after examinees reached one of four cut-off points that were pre-

determined by the test developer (e.g., 2 or fewer correct among items 1 - 5, or 5 or fewer correct 

among items 1 - 11). Correctly identified rules were scored "1," and incorrectly identified rules 
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were scored "0." Total raw score was the number of correct items. Test developers report a split 

half reliability of .75 to .96 for ages 2 to 18 years (McGrew & Woodcock, 2001). Model-based 

reliability, in the form of R
2
, will be considered and reported for this study. 

3.4 Design 

 The parent study was designed to sample four cohorts of 3
rd

 grade students, following 

each cohort for three academic years spanning from the fall of 3
rd

 grade until the spring of 5
th

 

grade. The current study, however, is focused on the baseline time points of testing for each of 

these four cohorts of students. Table 2 displays the cohort sampling information. 

 Only a randomly selected subset of children in the parent study received the full 

measurement battery (including mathematics, language, executive function, and demographic 

measures). Those children who were not selected to receive the full measurement battery 

(approximately 33% of the total sample) have consistently unavailable data (planned missing) on 

several outcomes of interest. 

 Furthermore, the full mathematics assessment battery involved11 measures total, and 

therefore, the mathematics assessments also were delivered using a planned missing design such 

that not all measures were administered to the random subset of children selected to receive the 

full battery every year of the study (for more information on planned missing designs, see for 

example Graham, Hofer, & MacKinnon, 1996). Because of the planned missingness inherent in 

this design, cohorts which have unavailable data on certain measures are assumed to have data 

that are missing completely at random, or MCAR. Table 3 lists patterns of unavailable data in the 

outcome measures of the testing battery received by each cohort. Tables 4, 5, and 6 list 

descriptive information for mathematics, language, and executive function measures 

respectively. Table 7 presents a full correlation matrix for all measures in the study.
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Table 2. Cohort Measurement Information 

Measures Cohort 1 

Received 

Cohort 2 

Received 

Cohort 3 

Received 

Cohort 4 

Received 

Mathematics Measures:     

WJ-III Applied Problems X X X X 

Single Digit Story Problems X X X X 

Vanderbilt Complex Story Problems    X 

Basic Facts Addition X X X X 

Basic Facts Subtraction X X X X 

Test of Computational Fluency X X X X 

WRAT Written Arithmetic  X X X 

Double Digit Addition X    

Double Digit Subtraction X    

Double Digit Addition Estimation X    

Double Digit Subtraction Estimation X    

Language Measures:     

WASI Vocabulary X X X X 

WDRB Listening Comprehension X X X X 

TOLD Grammatic Closure X X X X 

Executive Function Measures:     

SWAN teacher survey X X X X 

WMTB Listening Recall X X X X 

WJ-III Numbers Reversed X X X X 

WASI Matrix Reasoning X X X X 

WJ-III Concept Formation X X X X 

Cohort Sampling Information N=491 stud. 

N=30 class. 

N=7 school. 

N=485 stud. 

N=30 class. 

N=8 school. 

N=452 stud. 

N=29 class. 

N=8 school. 

N=531 stud. 

N=31 class. 

N=9 school. 

Total Sample for the Current Study N=1959 students 

N=120 classrooms (classrooms do not overlap) 

N=16 schools (schools do overlap across cohorts) 
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Table 3. Most prevalent patterns of unavailable (planned missing) data on outcome measures of interest 

General 

Pattern 

Sample Subset of Parent Study Specific Pattern of Unavailable Data (Assumed MCAR) N % Of 

Data  

Cohort 1 

 

 

Selected for Full Battery Planned Missing VSP and WRAT only 312 15.93% 

Not Selected for Full Battery Planned Missing All Except Screen: SDS, BFA, BFS, CBM, DD 120 6.13% 

Various Other patterns of coverage 59 3.01% 

Cohort 2 

 

 

Selected for Full Battery Planned Missing VSP and DD 309 15.77% 

Not Selected for Full Battery Planned Missing All Except Screen: SDS, BFA, BFS, CBM, WRAT 146 7.45% 

Various Other patterns of coverage 30 1.53% 

Cohort 3 Selected for Full Battery Planned Missing VSP and DD 302 15.42% 

Not Selected for Full Battery Planned Missing All Except Screen: SDS, BFA, BFS, CBM, WRAT 130 6.64% 

Various Other patterns of coverage 20 1.02% 

Cohort 4 

 

Selected for Full Battery Planned Missing DD 300 15.31% 

Not Selected for Full Battery Planned Missing All Except Screen: SDS, BFA, BFS, CBM, WRAT, VSP 200 10.21% 

Various Other patterns of coverage 31 1.58% 

 

Note: Taken together, Tables 2-7 help to explain the patterns of unavailable data in outcome measures. Table 2 gives information 

about the measures administered to each cohort. Table 3 gives information about the patterns of unavailable data amongst outcome 

measures. Tables 4-7 give information about the sample size, correlations, means, standard deviations, and ranges for all outcome 

measures of interest in the current study. Patterns of planned missing data represent (1) children who were selected for participation in 

the parent study and had complete data on all planned study measures during their years of participation, approximately 62% of the 

current sample, (2) children who were not selected for participation in the parent study and had complete data on all planned screening 

measures during their years of participation, approximately 30% of the current sample, and (3) children who were missing data as a 

result of unplanned issues during data collection (e.g., 6 children in cohort 1 for whom a teacher did not complete the SWAN survey), 

an additional approximate 7% of participants.
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Table 4. Math Measures Means and Correlations 

 1 2 3 4 5 6 7 8 9 10 11 

1. WJ App. Prb. 1.00           

2. Story Prb. .58 1.00          

3. VU Story Prb. .53 .50 1.00         

4. Basic Add. .40 .36 .37 1.00        

5. Basic Sub. .42 .39 .37 .58 1.00       

6. WRAT Arth. .56 .51 .48 .48 .49 1.00      

7. Comp Fluency .49 .45 .43 .68 .65 .57 1.00     

8. DD Add .34 .38 .30 .41 .26 .31 .43 1.00    

9. DD Sub .40 .42 .34 .33 .39 .34 .42 .47 1.00   

10. DD Add. Est. .49 .49 .39 .41 .43 .39 .46 .38 .45 1.00  

11. DD Sub. Est. .44 .44 .35 .36 .45 .35 .41 .36 .50 .73 1.00 

            

N 1303 1949 530 1950 1950 1464 1940 467 467 468 466 

Mean 

(SD) 

29.15 

(4.32) 

9.89 

(3.48) 

8.22 

(5.95) 

11.80 

(4.89) 

6.85 

(4.80) 

23.63 

(2.55) 

11.97 

(5.75) 

17.38 

(3.99) 

11.64 

(5.51) 

9.16 

(6.93) 

7.01 

(5.83) 

Range: 

Min-Max 

2-48 0-14 0-34 0-25 0-25 15-38 0-25 0-20 0-20 0-20 0-20 

 

*Note: All correlations were significant at the p < .001 level 
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Table 5. Language Measures Means and Correlations 

 1 2 3 

1. WASI Vocab. 1.00   

2. WDRB List. Comp. .53 1.00  

3. TOLD Gram. Clos. .52 .52 1.00 

    

N 1314 1302 1303 

Mean 

(SD) 

27.35 

(6.45) 

21.12 

(4.29) 

18.78 

(6.60) 

Range: Min-Max 5-51 0-33 0-30 

 

*Note: All correlations were significant at the p < .001 level 

 

Table 6. Executive Functioning Measures Means and Correlations 

 1 2 3 4 5 

1. SWAN Teach Suv. 1.00     

2. WMTB List. Rec. .25 1.00    

3. WJ Num Rev. .28 .31 1.00   

4. WASI Mat. Rea. .29 .23 .32 1.00  

5. WJ Con. Form. .37 .37 .30 .40 1.00 

      

N 1276 1302 1302 1314 1302 

Mean 

(SD) 

75.48 

(23.52) 

9.97 

(3.58) 

9.37 

(2.85) 

15.51 

(6.45) 

15.64 

(7.07) 

Range: 

Min-Max 

18-126 0-63 1-26 0-30 1-39 

 

*Note: All correlations were significant at the p < .001 level 
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Table 7. Full Correlation Matrix for All Measures 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1. App. Prb. 1.00                  

2. Story Prb. .58 1.00                 

3. VU Story Prb. .53 .50 1.00                

4. Basic Add. .40 .36 .37 1.00               

5. Basic Sub. .42 .39 .37 .58 1.00              

6. WRAT Arth. .56 .51 .48 .48 .49 1.00             

7. Comp Fluency .49 .45 .43 .68 .65 .57 1.00            

8. DD Add. .34 .38 .30 .41 .26 .31 .43 1.00           

9. DD Sub. .40 .42 .34 .33 .39 .34 .42 .47 1.00          

10. DD Add. Est. .49 .49 .39 .41 .43 .39 .46 .38 .45 1.00         

11. DD Sub. Est. .44 .44 .35 .36 .45 .35 .41 .36 .50 .73 1.00        

12. Vocab. .45 .45 .38 .18 .22 .35 .29 .19 .32 .36 .30 1.00       

13. List. Comp. .40 .44 .38 .14 .17 .28 .20 .22 .24 .37 .25 .53 1.00      

14. Gram. Clos. .41 .44 .33 .16 .18 .26 .22 .22 .25 .26 .18 .52 .52 1.00     

15. SWAN  .38 .44 .45 .27 .29 .43 .37 .37 .45 .40 .41 .38 .31 .32 1.00    

16. List. Rec. .31 .32 .25 .17 .18 .22 .20 .25 .27 .30 .30 .33 .32 .39 .25 1.00   

17. Num Rev. .35 .35 .37 .22 .24 .30 .23 .25 .31 .32 .31 .26 .21 .27 .28 .31 1.00  

18. Mat. Rea. .45 .42 .35 .21 .24 .37 .27 .28 .35 .42 .37 .31 .28 .30 .29 .23 .32 1.00 

19. Con. Form. .46 .49 .41 .25 .26 .37 .32 .28 .39 .43 .38 .44 .40 .41 .37 .37 .30 .40 
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4 CHAPTER 4: RESULTS 

4.1 Proposed Analyses Overview 

Planned analyses were executed in two phases of testing. Phase one began by examining 

measurement models for mathematics measures using confirmatory factor analysis with 

maximum likelihood estimation in MPlus 7 (Muthén & Muthén, 2012). Next measurement 

models for language and executive functioning were examined using confirmatory factor 

analysis with maximum likelihood estimation in MPlus 7 (Muthén & Muthén, 2012). Phase two 

examined full measurement models, incorporating all constructs of interest to the current study 

(mathematics, language, and executive functioning as outlined in the hypotheses). Missing data 

were estimated using full information maximum likelihood estimation (see for example Enders 

& Bandalos, 2001) in MPlus 7 (Muthén & Muthén, 2012). 

4.2 Phase 1: Measurement Models for Arithmetic, Language, and Executive Functioning 

4.2.1 Abstract code model.  

Under Abstract Code Theory, abstract semantic representations are the common form of 

mental representation upon which all modules of numeric processing operate. Arithmetic 

behavioral outcomes are predicted by one, latent form of mental representation across a variety 

of stimulus formats and problem demands. Thus, the arithmetic portion of the Abstract Code 

Theory measurement model is represented as a factor model in which various stimulus formats 

have no distinct common method variance and instead are predicted by one, latent dimension. 

The abstract semantic representations measurement model tests the extent to which the 

11 mathematics indicators measure a unitary, underlying, abstract semantic representation in 

predicting mathematics outcomes. Global fit statistics indicated that this factor model was not a 

good fit for the data, (2
 (36) = 705.68, p < .001, RMSEA = .10, CFI = .88; for a discussion of fit, 
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see  Marsh, Hau, & Grayson, 2005; Marsh, Hau, & Wen, 2004). Local fit statistics indicated that 

although most factor loadings were adequate (both significant and salient), several indicator 

residuals were undesirably high. Completely standardized factor loadings ranged from .54 to .83, 

indicator residual variances ranged from .31 to .71, and model R
2
 ranged from .29 to .69. Taken 

together, these results indicate that although the 11 mathematics measures share some underlying 

commonality, they are also predicted by complexities not modeled in the Abstract Code Theory 

measurement model, which predicts that despite format differences, abstract semantic 

representations should underlie arithmetic cognition. Table 8 presents standardized and 

unstandardized results for the Abstract Code Theory Arithmetic measurement model. Figure 16 

displays a model schematic.  

 

Table 8. Abstract Code Theory Arithmetic Measurement Model CFA Results 

Indicator Intercept  Factor Loadings 

Residual 

Variance R
2
 

 STD (SE) UnSTD (SE) STD (SE) UnSTD (SE)   

App. Prb. 6.84 (.13) 29.08 (.11) .64 (.02) 2.73 (.11) .59 .41 

Story Prb. 2.85 (.05) 9.90 (.08) .60 (.02) 2.07 (.08) .65 .35 

VU Story Prb. 1.40 (.06) 8.41 (.23) .59 (.03) 3.55 (.25) .65 .35 

Basic Add. 2.41 (.05) 11.79 (.11) .74 (.01) 3.60 (.10) .46 .54 

Basic Sub. 1.43 (.03) 6.85 (.11) .73 (.01) 3.51 (.10) .47 .54 

WRAT Arth. 9.31 (.17) 23.73 (.06) .70 (.02) 1.80 (.06) .50 .50 

Comp Fluency 2.08 (.04) 11.97 (.13) .83 (.01) 4.76 (.11) .31 .69 

DD Add. 4.23 (.15) 17.00 (.17) .54 (.04) 2.16 (.18) .71 .29 

DD Sub. 1.99 (.08) 11.04 (.23) .61 (.03) 3.37 (.24) .63 .37 

DD Add. Est. 1.18 (.06) 8.31 (.27) .70 (.03) 4.93 (.29) .51 .49 

DD Sub. Est. 1.07 (.06) 6.32 (.24) .67 (.03) 3.94 (.25) .55 .45 
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Figure 16. Abstract Code Theory: Arithmetic Measurement Model. 

 

4.2.2 Encoding complex model.  

Under Encoding Complex Theory, the quantitative domain is not specialized for numeric 

processing and is not modular (meaning that it is not a self-contained, separate cognitive domain 

or dimension of ability), although it may appear to be modular with practice. The gradients of the 

seemingly-modular encoding complex as a function of "practice" are unclear; however, for 

individuals who have at least some amount of practice with arithmetic problem-solving, the 

arithmetic measurement portion of an Encoding Complex Theory model can be represented with 

a model in which one latent variable (the "practiced" and seemingly-modular encoding complex) 

predicts arithmetic behavioral outcomes across various arithmetic problems. To the extent that an 

encoding complex becomes seemingly-modular with practice, one would expect to see 
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commonality and overlap among arithmetic outcomes, indicating that they are predicted by the 

same cognitive trait.  

The seemingly-modular encoding complex model tests the extent to which 11 arithmetic 

indicators measure a unitary, underlying, encoding complex factor, which appears to be modular 

with practice. It should be noted that this factor is being called "seemingly-modular encoding 

complex" here, but in actuality is the same measurement model as the abstract semantic 

representations measurement model. Thus, the seemingly-modular encoding complex model 

evidenced the same model fit problems as the abstract semantic representations model. Again, 

global fit statistics indicated that this factor model was not a good fit for the data, (2
 (36) = 

705.68, p < .001, RMSEA = .10, CFI = .88), and local fit statistics indicated that although most 

factor loadings were adequate, indicator residuals were undesirably high. Completely 

standardized factor loadings ranged from .54 to .83, indicator residual variances ranged from .31 

to .71, and model R
2
 ranged from .29 to .69. Although the 11 mathematics measures share some 

underlying commonality, they are also predicted by complexities not modeled in the Encoding 

Complex Theory measurement model, which would seem to indicate that their overlap may not 

be best explained by a seemingly-modular encoding complex. Table 9 presents standardized and 

unstandardized results for the Encoding Complex Theory Arithmetic measurement model. Figure 

17 displays a model schematic. 
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Table 9. Encoding Complex Theory Arithmetic Measurement Model CFA Results 

Indicator Intercept  Factor Loadings 

Residual 

Variance R
2
 

 STD (SE) UnSTD (SE) STD (SE) UnSTD (SE)   

App. Prb. 6.84 (.13) 29.08 (.11) .64 (.02) 2.73 (.11) .59 .41 

Story Prb. 2.85 (.05) 9.90 (.08) .60 (.02) 2.07 (.08) .65 .35 

VU Story Prb. 1.40 (.06) 8.41 (.23) .59 (.03) 3.55 (.25) .65 .35 

Basic Add. 2.41 (.05) 11.79 (.11) .74 (.01) 3.60 (.10) .46 .54 

Basic Sub. 1.43 (.03) 6.85 (.11) .73 (.01) 3.51 (.10) .47 .54 

WRAT Arth. 9.31 (.17) 23.73 (.06) .70 (.02) 1.80 (.06) .50 .50 

Comp Fluency 2.08 (.04) 11.97 (.13) .83 (.01) 4.76 (.11) .31 .69 

DD Add. 4.23 (.15) 17.00 (.17) .54 (.04) 2.16 (.18) .71 .29 

DD Sub. 1.99 (.08) 11.04 (.23) .61 (.03) 3.37 (.24) .63 .37 

DD Add. Est. 1.18 (.06) 8.31 (.27) .70 (.03) 4.93 (.29) .51 .49 

DD Sub. Est. 1.07 (.06) 6.32 (.24) .67 (.03) 3.94 (.25) .55 .45 

 

 

 

Figure 17. Encoding Complex Theory: Arithmetic Measurement Model. 
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4.2.3 Triple code model.  

Under Triple Code Theory, arithmetic behavioral outcomes are predicted by three 

modules of a latent quantitative domain. The visual Arabic module processes digital input and 

output and multi-digit operations. The auditory verbal module processes simple arithmetic facts, 

written and spoken input and output, and language-based memory of numbers. The analog 

magnitude representation module processes semantic numeric content, comparison, estimation, 

approximate calculation, and subitizing tasks. The process of transcoding allows each of the 

three domains of Triple Code Theory are allowed to communicate with each other directly and 

without the need for common abstract codes. From a factor analytic framework, Triple Code 

Theory can be represented with  a three factor model of arithmetic cognition in which (1) a 

visual Arabic factor is largely responsible for Arabic numeral formatted problems, (2) an 

auditory verbal factor is largely responsible for language-formatted problems, and (3) an analog 

magnitude factor is largely responsible for approximate calculations across formats. The 

communication between these factors, transcoding, can be represented with factor correlations. 

The Triple Code Theory measurement model tests the extent to which various arithmetic 

outcomes can be represented by three latent factors which are separate but hypothesized to 

communicate and mutually inform arithmetic cognition. A visual Arabic factor is hypothesized 

to be indicated by six measures that are formatted with Arabic numerals (Basic Facts Addition, 

Basic Facts Subtraction, WRAT Written Arithmetic, Computational Fluency, Double Digit 

Addition, and Double Digit Subtraction). An auditory verbal factor is hypothesized to be 

indicated by three measures that have language-based formats (WJ Applied Problems, Single 

Digit Story Problems, and Vanderbilt Story Problems). An analog magnitude factor is 

hypothesized to be indicated by two measures that involve estimation (Double Digit Estimation 
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Addition and Double Digit Estimation Subtraction). These three factors were hypothesized to 

correlate, and thus, correlations between them were freely estimated. 

Global fit statistics indicated that this factor model was an approximate good fit for the 

data, (2
 (33) = 302.59, p < .001, RMSEA = .07, CFI = .95). Completely standardized factor 

loadings ranged from .52 to .89; indicator residual variances ranged from .20 to .73; and model 

R
2
 ranged from .27 to .80. Factor correlations ranged from r=.68 to r=.75. These results support 

Triple Code Theory's specification that three, separate but mutually informed, format-specific 

modules predict arithmetic cognition outcomes. Table 10 presents standardized and 

unstandardized results for the Triple Code Theory Arithmetic measurement model. Table 11 

presents the latent factor correlations for this model, and Figure 18 displays a model schematic.  

 

Table 10. Triple Code Theory Arithmetic Measurement Model CFA Results  

Latent Factor 

Indicators Intercept  Factor Loadings 

Residual 

Variance R
2
 

 STD (SE) UnSTD (SE) STD (SE) UnSTD (SE)   

Auditory Verbal       

App. Prb. 6.78 (.13) 29.06 (.11) .78 (.02) 3.34 (.11) .39 .61 

Story Prb. 2.85 (.05) 9.90 (.08) .73 (.02) 2.55 (.08) .46 .54 

VU Story Prb. 1.37 (.06) 8.23 (.22) .69 (.03) 4.15 (.25) .52 .48 

Visual Arabic       

Basic Add. 2.41 (.05) 11.79 (.11) .76 (.01) 3.71 (.10) .42 .58 

Basic Sub. 1.43 (.03) 6.85 (.11) .74 (.01) 3.57 (.10) .45 .55 

WRAT Arth. 9.29 (.17) 23.74 (.06) .68 (.02) 1.74 (.06) .54 .47 

Comp Fluency 2.08 (.04) 11.97 (.13) .86 (.01) 4.96 (.11) .26 .75 

DD Add. 4.24 (.15) 16.98 (.17) .52 (.04) 2.07 (.18) .73 .27 

DD Sub. 2.00 (.08) 11.04 (.23) .56 (.04) 3.07 (.25) .69 .31 

Analog Magnitude       

DD Add. Est. 1.22 (.06) 8.53 (.28) .89 (.02) 6.25 (.28) .20 .80 

DD Sub. Est. 1.11 (.06) 6.52 (.24) .82 (.02) 4.81 (.24) .33 .67 
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Table 11. Triple Code Theory Arithmetic Latent Factor Correlations 

 1 2 3 

1. Auditory Verbal Factor 1.00   

2. Visual Arabic Factor .75 1.00  

3. Analog Magnitude Factor .73 .68 1.00 

 

 

Figure 18. Triple Code Theory: Arithmetic Measurement Model. 
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as facts in the auditory verbal module (e.g., if the facts have not yet been learned or involve 

numbers and operations which are not commonly executed). Problems which require estimation 

or approximate calculations, on the other hand, mainly require contributions from the analogical 

magnitude module. Exact Versus Approximate Calculations Theory does not specify predictions 

for problem formatting. As an extension of Triple Code Theory, it is mainly concerned with 

specifying domains responsible for exact and approximate problem demands across various 

problem formats. 

The core premise of Exact versus Approximate Calculations Theory can be represented 

with a factor model in which two latent factors (representing the analog magnitude module and 

the auditory verbal module) predict arithmetic behavioral outcomes for exact and approximate 

problem demands. At a minimum, these latent factors can be allowed to correlate and 

communicate with one another. 

An analog magnitude modules is hypothesized to be indicated by two measures that 

involve estimation or approximate calculations (Double Digit Estimation Addition and Double 

Digit Estimation subtraction), and an auditory verbal module is hypothesized to be indicated by 

nine measures that involve exact calculations (WJ Applied Problems, Single Digit Story 

Problems, Vanderbilt Story Problems, Basic Facts Addition, Basic Facts Subtraction, WRAT 

Written Arithmetic, Computational Fluency, Double Digit Addition, and Double Digit 

Subtraction). These two factors were hypothesized to correlate, and thus, correlation between 

them was freely estimated. 

Global fit statistics indicated that this factor model was not an approximate good fit for 

the data, (2
 (35) = 547.10, p < .001, RMSEA = .09, CFI = .91). Completely standardized factor 

loadings ranged from .53 to .89; indicator residual variances ranged from .22 to .72; and model 
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R
2
 ranged from .28 to .78. The factor correlation between the analog magnitude module and the 

auditory verbal module was large, r=.72. These results suggest that although separating 

estimation problem demands from exact problem demands provides an improvement in model fit 

(as compared to a unidimensional model of arithmetic cognition suggested for Abstract Code 

Theory and Encoding Complex Theory), important dimensions of the cognitive architecture are 

not being modeled here. Table 12 presents standardized and unstandardized results for the Exact 

Versus Approximate Arithmetic measurement model. Figure 19 displays a model schematic. 

  

Table 12. Exact Versus Approximate Calculations Arithmetic Measurement Model CFA 

Results 

 

Latent Factor 

Indicators Intercept  Factor Loadings 

Residual 

Variance R
2
 

 STD (SE) UnSTD (SE) STD (SE) UnSTD (SE)   

Auditory Verbal       

App. Prb. 6.84 (.13) 29.08 (.11) .64 (.02) 2.70 (.11) .60 .40 

Story Prb. 2.85 (.05) 9.90 (.08) .59 (.02) 2.04 (.08) .66 .34 

VU Story Prb. 1.40 (.06) 8.41 (.23) .59 (.03) 3.53 (.25) .66 .34 

Basic Add. 2.41 (.05) 11.79 (.11) .74 (.01) 3.64 (.10) .45 .55 

Basic Sub. 1.43 (.03) 6.85 (.11) .74 (.01) 3.53 (.10) .46 .54 

WRAT Arth. 9.29 (.17) 23.73 (.06) .70 (.02) 1.79 (.06) .51 .49 

Comp Fluency 2.08 (.04) 11.97 (.13) .84 (.01) 4.84 (.11) .29 .71 

DD Add. 4.24 (.15) 17.00 (.17) .53 (.04) 2.13 (.18) .72 .28 

DD Sub. 2.00 (.08) 11.06 (.23) .58 (.03) 3.22 (.24) .66 .34 

Analog Magnitude       

DD Add. Est. 1.20 (.06) 8.38 (.28) .89 (.02) 6.17 (.29) .22 .78 

DD Sub. Est. 1.09 (.06) 6.39 (.24) .83 (.03) 4.83 (.25) .32 .68 
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Figure 19. Exact versus Approximate Theory: Arithmetic Measurement Model. 
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The language measurement model tests the extent to which three indicators (vocabulary, 

listening comprehension, and grammatical closures) measure a unitary, latent language ability. 

With three observed indicators, this latent language ability factor model is just-identified (i.e., 

has zero degrees of freedom), meaning that tests of global fit such as the Chi-square test of 

model fit, the root mean squared error of approximation (RMSEA), or the comparative fit index 

(CFI) are trivial. Model solutions for just-identified models are a perfect reproduction of the data 

input variance-covariance matrix, thus global tests of model fit will reflect a perfect fit between 

the model and the data (e.g., (2
 (0) = 0.00, RMSEA = 0.00, CFI = 1.00; Brown, 2006). However, 

the extent to which this model reflects a unitary, latent language ability can still be evaluated 

using local fit indices (i.e., the quality of indicators via factor loadings, indicator residual 

variances, or alternately, model-based reliability via R
2
 statistics). Confirmatory factor analysis 

(CFA) of the language measurement model, although just-identified, demonstrated good local fit 

indicative of a single, latent language dimension. Completely standardized factor loadings 

ranged from .71 to .72, indicator residual variances ranged from .47 to .50, and model R
2
 ranged 

from .51 to .53. Table 13 presents standardized and unstandardized results for the Language 

measurement model. Figure 20 displays a model schematic. 

 

Table 13.  Language Measurement Model CFA Results 

Indicator Intercept  Factor Loadings 

Residual 

Variance R
2
 

 STD (SE) UnSTD (SE) STD (SE) UnSTD (SE)   

Voc 4.24 (.09) 27.35 (.18) .73 (.02) 4.69 (.19) .47 .53 

List 4.89 (.10) 21.08 (.12) .72 (.02) 3.12 (.13) .48 .52 
Gram 2.83 (.06) 18.73 (.18) .71 (.02) 4.71 (.19) .50 .51 
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Figure 20. Language Measurement Model. 

 

4.2.6  Executive functioning model.  

Defining and measuring the construct of executive functioning is largely dependent upon the 

theory of executive functioning or executive control to which one subscribes. For example, 
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function in real time to monitor, process, and maintain information (Baddeley & Hitch, 1974; 

Baddeley & Logie, 1999; Baddeley, 1992, 2000, 2001). Conversely, Barkley's (1997) model of 

executive functioning is a theoretical model of self-regulation, attention, and behavioral 

inhibition which was formulated to add explanatory power for the constellation of poor sustained 

attentional capacity, impulsivity, and hyperactivity that characterize ADHD. In Zelazo's (2003) 

model of problem-solving, executive functioning is a temporally organized composition of sub-

functions that work in different stages to (1) represent a problem, (2) plan a solution with ordered 

strategies for implementation, (3) maintain chosen solutions in working memory, along with the 

rules for their corresponding strategies, and (4) evaluate the results of problem-solving attempts, 

detecting and correcting errors until the problem is successfully solved (Blair, Zelazo, & 
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Greenberg, 2005; Zelazo & Frye, 1998; Zelazo et al., 2003). The model of executive functioning 

used in the current study emphasizes key pieces of executive functioning across various theories 

of the construct, working memory, attention/inhibition, and non-verbal problem-solving or 

inductive reasoning. 

 The executive functioning measurement model tests the extent to which five indicators 

measure a unitary, underlying, executive functioning ability which was hypothesized to be 

indicated by a measure of attention and inhibition (the SWAN teacher survey), two measures of 

verbal working memory (the WJ-III Numbers Reversed and the WMTB-C Listening Recall 

subtests), and two measures of inductive reasoning and problem-solving (the WASI Matrix 

Reasoning and the WJ-III Concept Formation subtests). This confirmatory factor model was fit 

in Mplus 7 via maximum likelihood estimation (ML) for items scored correct or incorrect 

(Muthen & Muthen, 2012). The fit statistics indicated that this one factor model of executive 

functioning was an approximate good fit for the data, (2
 (5) = 31.57, p < .001, RMSEA = .06, 

CFI = .97). Completely standardized factor loadings ranged from .51 to .69, indicator residual 

variances ranged from .53 to .74, and model R
2
 ranged from .26 to .47. 

These results are consistent with a unidimensional executive functioning dimension, 

which is being measured with adequate precision; however, the relatively high indicator residual 

variances would suggest that some important complexity of this dimension is not being modeled 

here. For the purposes of the current study, capturing several key facets of the construct of 

executive functioning (self-regulation, attention, inhibition, working memory, and problem-

solving/reasoning skills) was the primary aim. This aim has been accomplished with a limited 

measurement model of executive functioning. Still, it is worth noting that other important 

theories and other key elements of this complex construct are not being modeled here. The 
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limited scope of this model of executive functioning is perhaps most apparent in the medium 

sized indicator factor loadings, the medium to high indicator residual variances, and accordingly, 

the medium to low model R
2
 range. Table 14 presents standardized and unstandardized results 

for the Executive Function measurement model. Figure 21 displays a model schematic. 

 

Table 14. Executive Function Measurement Model CFA Results   

 

Indicator Intercept  Factor Loadings 

Residual 

Variance R
2
 

 STD (SE) UnSTD (SE) STD (SE) UnSTD (SE)   

Att. 3.20 (.07) 75.27 (.66) .53 (.03) 12.43 (.75) .72 .28 

Recall 2.78 (.06) 9.95 (.10) .51 (.03) 1.82 (.11) .74 .26 

Num. Rev. 3.29 (.07) 9.35 (.08) .52 (.03) 1.47 (.09) .73 .27 

Matrix Reason. 2.40 (.05) 15.49 (.18) .55 (.03) 3.57 (.20) .69 .31 

Con. Form. 2.20 (.05) 15.58 (.20) .69 (.03) 4.85 (.22) .53 .47 

 

 

 

 

 

Figure 21. Executive Function Measurement Model. 
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4.3 Phase 2: Full Measurement Models for Each Theory 

4.3.1 Abstract code model.  

The full measurement model of Abstract Code Theory was represented with a one factor 

model of abstract semantic representation, which at a minimum, was allowed to correlate with 

other cognitive domains (e.g., language, executive functioning). Here, language and executive 

functioning are not allowed to predict arithmetic behavioral outcomes, and so, their predictions 

were fixed at zero (and not drawn) across formats and problem demands. Thus, the individual 

measurement models for Abstract Code abstract semantic representation, language, and 

executive functioning discussed in the previous section were combined in a larger measurement 

model in which they were allowed to correlate. 

Global fit statistics indicated that this factor model was not an approximate good fit for 

the data, (2
 (141) = 1386.75, p < .001, RMSEA = .07, CFI = .87). Completely standardized 

factor loadings ranged from .48 to .79; indicator residual variances ranged from .37 to .77; and 

model R
2
 ranged from .23 to .63. Although the correlation between language and abstract 

semantic representations was moderate, r=.53, the correlations between executive functioning 

and abstract semantic representations and executive functioning and language were quite high 

(r=.78 and r=.82 respectively). Although both the abstract semantic representations and 

executive functioning measurement model results suggest that both of these factors are 

contributing to the model misfit for the Abstract Code Theory full measurement model, the 

patterns of factor correlation would suggest that the relationships between executive functioning 

and other constructs in the model may also be important sources of model misspecification. 

Table 15 presents standardized and unstandardized results for the Abstract Code Theory full 
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measurement model. Table 16 presents latent factor correlations, and Figure 22 displays a model 

schematic. 

Table 15. Abstract Code Theory Full Measurement Model CFA Results 

Latent Factor 

Indicator Intercept  Factor Loadings 

Residual 

Variance R
2
 

 STD (SE) UnSTD (SE) STD (SE) UnSTD (SE)   

Ab. Sem Rep.       

App. Prb. 6.83 (.13) 29.07 (.11) .69 (.02) 2.95 (.10) .52 .48 

Story Prb. 2.85 (.05) 9.90 (.08) .64 (.02) 2.23 (.08) .59 .41 

VU Story Prb. 1.40 (.06) 8.40 (.23) .63 (.03) 3.78 (.24) .61 .40 

Basic Add. 2.41 (.05) 11.79 (.11) .70 (.01) 3.42 (.10) .51 .49 

Basic Sub. 1.43 (.03) 6.85 (.11) .70 (.01) 3.37 (.10) .51 .49 

WRAT Arth. 9.30 (.17) 23.71 (.06) .73 (.02) 1.85 (.06) .47 .53 

Comp Fluency 2.08 (.04) 11.97 (.13) .79 (.01) 4.55 (.12) .37 .63 

DD Add. 4.24 (.15) 17.04 (.17) .55 (.04) 2.19 (.18) .70 .30 

DD Sub. 2.00 (.08) 11.10 (.23) .63 (.03) 3.49 (.23) .61 .39 

DD Add. Est. 1.20 (.06) 8.39 (.27) .73 (.03) 5.12 (.28) .47 .54 

DD Sub. Est. 1.09 (.05) 6.38 (.23) .70 (.03) 4.09 (.24) .52 .48 

Language       

Voc 4.25 (.09) 27.29 (.17) .74 (.02) 4.77 (.17) .45 .55 

List 4.90 (.10) 21.04 (.12) .70 (.02) 2.99 (.12) .52 .49 

Gram 2.83 (.06) 18.66 (.18) .71 (.02) 4.69 (.18) .49 .51 

Executive Func.       

Att. 3.20 (.07) 74.96 (.63) .58 (.02) 13.61 (.64) .66 .34 

Recall 2.79 (.06) 9.92 (.10) .49 (.02) 1.76 (.10) .76 .24 

Num. Rev. 3.29 (.07) 9.33 (.08) .48 (.02) 1.35 (.08) .77 .23 

Matrix Reason. 2.41 (.05) 15.45 (.17) .54 (.02) 3.45 (.18) .71 .29 

Con. Form. 2.21 (.05) 15.50 (.19) .67 (.02) 4.68 (.19) .56 .44 

 

 

Table 16. Abstract Code Theory Full Model Latent Factor Correlations 

 1 2 3 

1. Ab. Sem. Rep. 1.00   

2. Language .53 1.00  

3. Executive Func. .78 .82 1.00 
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Figure 22. Abstract Code Theory: Full Measurement Model. 
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4.3.2  Encoding complex model.  

Encoding Complex Theory specifies that the competing and sometimes interfering responses to 

the stimuli must be sorted for relevance, and any interference must be overcome in order for 

successful performance to occur. Format can interfere with both mental representation of 

numbers and subsequent numeric processing, and this is especially true for language-formatted 

problems. 

 Across various formats and problem demands, the task of the arithmetic under Encoding 

Complex Theory is largely to inhibit competing and irrelevant signals activated in the encoding 

complex and to enhance signals that are relevant to the problem. Failure to successfully perform 

arithmetic constitutes a failure of the system to inhibit. Thus, domains such as executive systems 

of control (working memory, inhibition, attention) and the language domain may help to resolve 

the conflicting signals activated in the encoding complex. 

 From a factor analytic framework, the roles of language and executive functioning could 

be modeled as separate latent variables which are allowed to directly predict arithmetic outcomes 

along with the seemingly modular encoding complex for arithmetic. Executive functioning is 

allowed to predict arithmetic behavioral outcomes across various formats and problem demands; 

however, language is allowed to predict arithmetic behavioral outcomes for language-formatted 

problems. The extent to which the language domain helps to explain performance on non-

language-formatted items is not specified by Encoding Complex Theory, although we would 

expect that the language domain may make little or no contribution to non-language-formatted 

items.  

Global fit statistics indicated that this factor model was an approximate good fit for the 

data, (2
 (128) = 478.80, p < .001, RMSEA = .04, CFI = .96). Completely standardized factor 
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loadings ranged from .05 (non-significant) to .74; indicator residual variances ranged from .25 to 

.77; and model R
2
 ranged from .23 to .75. As mentioned in the executive function measurement 

model results, the residuals for this factor were undesirably high and among the highest in the 

model. However, executive function was a significant and salient predictor of all arithmetic 

outcomes, and language was a significant predictor of WJ Applied Problems and Single Digit 

Story Problems, though these loadings were quite low. Allowing for direct prediction of 

arithmetic outcomes by executive function and language left little unique predictive power for 

the seemingly modular encoding complex; however, each arithmetic outcome was still 

significantly predicted by something other than executive function and language (represented 

here by the seemingly modular encoding complex). Three outcomes in particular (Basic Facts 

Addition, Basic Facts Subtraction, and Computational Fluency, all of which were formatted with 

Arabic numerals and involved relatively small problem sizes) had high encoding complex factor 

loadings despite the addition of executive function as a predictor. 

Because executive function was a direct predictor of arithmetic outcomes in this model, 

the correlation between executive function and the seemingly modular encoding complex was 

restricted to zero for the purpose of model specification. The correlation between executive 

function and language was large and positive, r=.77; however, the correlation between language 

and the encoding complex was small and negative, r=-.11. These result would seem to indicate 

that although language is a small but significant predictor of outcomes in language-formatted 

problems, it is not a predictor of outcomes in Arabic numeral formatted problems or estimation 

problems. Tables 17 and 18 present unstandardized and standardized results (respectively) for 

the Encoding Complex Theory full measurement model. Table 19 presents latent factor 

correlations, and Figure 23 displays a model schematic. 
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Table 17. Encoding Complex Theory Full Measurement Model Unstandardized CFA Results 

Indicator Intercepts (SE) Factor Loadings (SE) by Factor 
Residual 

Variance 
R

2
 

 

 Seemingly Modular 

Encoding Complex Language Executive Function   

Arithmetic Measures       

App. Prb. 29.06 (.11) .93 (.12) .69 (.22) 2.49 (.22) 8.42 .54 

Story Prb. 9.90 (.08) .51 (.09) .69 (.18) 1.97 (.17) 5.49 .55 

VU Story Prb. 8.37 (.22) 1.03 (.30) .29 (.67)
NS

 3.75 (.63) 19.44 .46 

Basic Add. 11.79 (.11) 3.32 (.11)  1.90 (.13) 9.25 .61 

Basic Sub. 6.85 (.11) 2.92 (.11)  2.07 (.13) 10.18 .56 

WRAT Arth. 23.71 (.06) .92 (.07)  1.60 (.07) 3.10 .52 

Comp Fluency 11.96 (.13) 4.09 (.13)  2.87 (.15) 8.13 .75 

DD Add. 17.07 (.17) .99 (.20)  1.91 (.18) 11.43 .29 

DD Sub. 11.23 (.23) .95 (.26)  3.42 (.24) 18.05 .41 

DD Add. Est. 8.61 (.27) 1.24 (.32)  5.11 (.28) 20.94 .57 

DD Sub. Est. 6.58 (.23) .89 (.28)  4.10 (.25) 16.77 .51 

Language Measures       

Voc 27.30 (.17)  4.79 (.17)  18.81 .55 

List 21.05 (.12)  3.08 (.12)  9.16 .51 

Gram 18.68 (.18)  4.71 (.18)  21.86 .50 

Exec. Func. Measures       

Att. 75.03 (.63)   13.88 (.64) 361.25 .35 

Recall 9.93 (.10)   1.70 (.10) 9.89 .23 

Num. Rev. 9.34 (.08)   1.40 (.08) 6.15 .24 

Matrix Reason. 15.46 (.17)   3.68 (.17) 27.94 .33 

Con. Form. 15.53 (.19)   4.71 (.19) 27.85 .44 
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Table 18. Encoding Complex Theory Full Measurement Model Completely Standardized CFA Results 

 

 

 

Indicator Intercepts (SE) Factor Loadings (SE) by Factor 
Residual 

Variance 
R

2
 

 

 Seemingly Modular 

Encoding Complex Language Executive Function   

Arithmetic Measures       

App. Prb. 6.77 (.13) .22 (.03) .16 (.05) .58 (.05) .46 .54 

Story Prb. 2.85 (.05) .15 (.03) .20 (.05) .57 (.05) .45 .55 

VU Story Prb. 1.39 (.05) .17 (.05) .05 (.11)
NS

 .62 (.10) .54 .46 

Basic Add. 2.41 (.05) .68 (.02)  .39 (.03) .39 .61 

Basic Sub. 1.43 (.03) .61 (.02)  .43 (.02) .44 .56 

WRAT Arth. 9.29 (.17) .36 (.03)  .63 (.02) .48 .52 

Comp Fluency 2.08 (.04) .71 (.02)  .50 (.02) .25 .75 

DD Add. 4.26 (.15) .25 (.05)  .48 (.04) .71 .29 

DD Sub. 2.03 (.08) .17 (.05)  .62 (.03) .59 .41 

DD Add. Est. 1.24 (.06) .18 (.05)  .73 (.03) .43 .57 

DD Sub. Est. 1.12 (.05) .15 (.05)  .70 (.03) .49 .51 

Language Measures       

Voc 4.23 (.09)  .74 (.02)  .45 .55 

List 4.87 (.10)  .71 (.02)  .49 .51 

Gram 2.81 (.06)  .71 (.02)  .50 .50 

Exec. Func. Measures       

Att. 3.19 (.07)   .59 (.02) .65 .35 

Recall 2.78 (.06)   .48 (.02) .77 .23 

Num. Rev. 3.28 (.07)   .49 (.02) .76 .24 

Matrix Reason. 2.40 (.05)   .57 (.02) .67 .33 

Con. Form. 2.20 (.05)   .67 (.02) .56 .44 
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Table 19. Encoding Complex Theory Full Model Latent Factor Correlations 

 1 2 3 

1. Encode Comp. 1.00   

2. Language -.11 1.00  

3. Executive Func. @0 .77 1.00 
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Figure 23. Encoding Complex Theory: Full Measurement Model. 
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4.3.3  Triple code model.  

Triple Code Theory allows for the language domain to inform the quantitative domain by 

providing linguistically stored math facts. Although the auditory verbal module is responsible 

for mentally representing written (graphemes) or spoken (phonemes) numbers syntactically, by 

place value, the extent to which the language domain may or may not overlap with the auditory 

verbal module of Triple Code Theory is unclear. Similarly, an attentional control domain is 

allowed to coordinate visuo-spatial attention to numbers on the internal number line, but the 

extent to which this attentional control domain helps to coordinate the working memory, 

inhibition, and planning required to complete numeric processing is not specified. 

 From a factor analytic framework, a latent language factor and an executive control 

factor may communicate with the three modules of Triple Code Theory's quantitative domain, 

and at a minimum, these additional domains may correlate with the numeric processing domains 

of Triple Code Theory. Thus, executive function and language were allowed to correlate freely 

with Triple Code Theory's auditory verbal, visual, and analog magnitude modules in the full 

measurement model for Triple Code Theory.  

Global fit statistics indicated that this factor model was an approximate good fit for the 

data, (2
 (134) = 592.06, p < .001, RMSEA = .04, CFI = .95). Completely standardized factor 

loadings ranged from .48 to .89; indicator residual variances ranged from .21 to .77; and model 

R
2
 ranged from .23 to .79. As in the Triple Code Theory arithmetic measurement model, the 

arithmetic portion of this full model was very strong. Completely standardized factor loadings 

ranged from .52 to .89, and factor correlations for this portion of the model ranged from r=.67 to 

r=.74, indicating that each of Triple Code Theory's arithmetic cognition modules were separable 

but highly related. 
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Again the executive function measurement model results demonstrated undesirably high 

residuals. However, executive functioning factor loadings indicated that the selected outcomes 

were all significant and salient indicators of this factor. The executive functioning factor 

correlated highly with all other factors in the Triple Code Theory model (see Table 20). 

The addition of executive functioning, in particular, raised some structural questions for the 

arithmetic portion of the Triple Code Theory model. Specifically, the relationship between 

executive functioning and the auditory verbal module was nearly at singularity, r=.94, and the 

relationship between language and the auditory verbal module was also quite high, r=.78. Taken 

together, these results indicate that (1) problem formatting  should be explicitly accounted for in 

modeling arithmetic outcomes, (2) executive functioning and language may both play important 

roles in facilitating arithmetic cognition across various problem formats,  but (3) language-

formatted items in particular may be predicted by domains other than a specialized quantitative 

domain. Table 20 presents standardized and unstandardized results for the Triple Code Theory 

full measurement model. Table 21 presents latent factor correlations, and Figure 24 displays a 

model schematic. 
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Table 20. Triple Code Theory Full Measurement Model CFA Result 

Latent Factor 

Indicator Intercept  Factor Loadings 

Residual 

Variance R
2
 

 STD (SE) UnSTD (SE) STD (SE) UnSTD (SE)   

Auditory Verbal       

App. Prb. 6.76 (.13) 29.05 (.11) .76 (.02) 3.27 (.11) .42 .58 

Story Prb. 2.85 (.05) 9.90 (.08) .76 (.01) 2.63 (.08) .43 .57 

VU Story Prb. 1.37 (.06) 8.27 (.22) .69 (.03) 4.18 (.24) .52 .48 

Visual       

Basic Add. 2.41 (.05) 11.79 (.11) .76 (.01) 3.71 (.10) .42 .58 

Basic Sub. 1.43 (.03) 6.85 (.11) .74 (.01) 3.57 (.10) .45 .55 

WRAT Arth. 9.29 (.17) 23.74 (.06) .68 (.02) 1.75 (.06) .53 .47 

Comp Fluency 2.08 (.04) 11.97 (.13) .86 (.01) 4.95 (.11) .26 .74 

DD Add. 4.24 (.15) 16.98 (.17) .52 (.04) 2.08 (.18) .73 .27 

DD Sub. 2.00 (.08) 11.04 (.23) .56 (.04) 3.08 (.25) .69 .31 

Analog Mag.       

DD Add. Est. 1.23 (.06) 8.56 (.27) .89 (.02) 6.18 (.27) .21 .79 

DD Sub. Est. 1.12 (.06) 6.54 (.24) .82 (.02) 4.80 (.24) .33 .67 

Language       

Voc 4.23 (.09) 27.29 (.17) .74 (.02) 4.77 (.17) .45 .55 

List 4.88 (.10) 21.04 (.12) .71 (.02) 3.05 (.12) .50 .50 

Gram 2.84 (.06) 18.66 (.18) .72 (.02) 4.75 (.18) .49 .51 

Executive Func.       

Att. 3.19 (.07) 75.00 (.63) .58 (.02) 13.55 (.64) .67 .33 

Recall 2.78 (.06) 9.93 (.10) .49 (.02) 1.75 (.10) .76 .24 

Num. Rev. 3.28 (.07) 9.33 (.08) .48 (.02) 1.37 (.08) .77 .23 

Matrix Reason. 2.41 (.05) 15.45 (.17) .56 (.02) 3.59 (.17) .69 .31 

Con. Form. 2.20 (.05) 15.51 (.19) .67 (.02) 4.74 (.19) .55 .45 

 

 

Table 21. Triple Code Theory Full Model Latent Factor Correlations 

 1 2 3 4 5 

1. Aud. Verb. 1.00     

2. Visual .74 1.00    

3. Analog Mag. .73 .67 1.00   

4. Language .78 .39 .46 1.00  

5. Executive Func. .94 .61 .76 .82 1.00 
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Figure 24. Triple Code Theory: Full Measurement Model. 
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4.3.4  Exact versus approximate  model.  

The contributions of domains other than the analog magnitude module and the auditory 

verbal module are unclear in the Exact Versus Approximate specification of Triple Code Theory. 

Language networks which also contribute to purely linguistic tasks are implicated in exact 

calculations, but the extent to which the language domain represents a unique contribution 

beyond the auditory verbal module is unclear. They may overlap so much that they do not 

appear to be separate domains, which would indicate that the auditory verbal module is in fact 

the language domain and does not have unique predictive power in numeric processing. From a 

factor analytic framework, this can be represented with a latent language factor, which is 

allowed to correlate with the auditory verbal module. An extremely high correlation would 

indicate that they are not distinct factors. Without a compelling reason to restrict associations 

with other aspects of the model, this language domain can also be allowed to correlate with the 

analog magnitude module. 

 Similarly, the role of executive control in coordinating processing and facilitating spatial 

attention is unclear. The visual Arabic number form module is largely absent from this 

specification of Triple Code Theory; however, spatial attention networks, possibly representing 

some of the predictive power of the visual Arabic number form module and possibly representing 

some form of executive control for attention, may contribute to coordinating both types of task. 

Without more information on the contributions of "spatial attention networks", this domain can 

be tentatively represented with a latent factor for executive control which is allowed to associate 

with the analog magnitude and auditory verbal modules as well as with the language domain. 

 The Exact versus Approximate Calculations hypothesis of Triple Code Theory may be 

best represented as a four factor model in which both the analogical magnitude representation 
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domain and an executive domain coordinating attention contribute to all numeric processing 

tasks, but the language domain and possibly a unique auditory verbal module contribute only to 

tasks requiring exact calculations. For exact calculations problems that involve number facts that 

are either unknown or not commonly used (e.g., double digit addition and subtraction problems), 

the analog magnitude module may also contribute to arithmetic cognition; however, one would 

not necessarily expect that the analog magnitude module contributes to most exact calculation 

problems. 

Global fit statistics indicated that this factor model was not an approximate good fit for 

the data, (2
 (138) = 1230.11, p < .001, RMSEA = .06, CFI = .88). Completely standardized 

factor loadings ranged from .46 to .88; indicator residual variances ranged from .22 to .77; and 

model R
2
 ranged from .23 to .78. Although both the exact versus approximate calculations and 

executive functioning measurement model results suggest that all of these factors are contributing 

to the model misfit for the Exact Versus Approximate Calculations full measurement model, the 

patterns of factor correlation would suggest that the relationships between executive functioning 

and other constructs in the model may also be important sources of model misspecification. 

Executive function correlated significantly and strongly with all other factors in the model 

(see Table 22). In so far as this executive function factor overlaps with Exact Versus 

Approximate Calculation Theory's spatial networks of control, it would seem to indicate that 

executive systems of control may indeed play a role in facilitating both exact and approximate 

calculations. Language, however, correlated only moderately with the auditory verbal and 

analog magnitude modules, but it correlated highly with executive function. Taken together, this 

pattern of correlations would seem to suggest that language is separable from traits predicting 

arithmetic outcomes across exact and approximate problem demands, which are in turn both 
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highly related and separate from each other (auditory verbal and analog magnitude modules 

correlated at r=.73). Table 22 presents standardized and unstandardized results for the Triple 

Code Theory full measurement model. Table 23 presents latent factor correlations, and Figure 25 

displays a model schematic. 

Table 22. Exact V. Approximate Calculations Full Measurement Model CFA Results 

Latent Factor 

Indicator Intercept  Factor Loadings 

Residual 

Variance R
2
 

 STD (SE) UnSTD (SE) STD (SE) UnSTD (SE)   

Auditory Verbal       

App. Prb. 6.84 (.13) 29.07 (.11) .68 (.02) 2.91 (.10) .53 .47 

Story Prb. 2.85 (.05) 9.90 (.08) .63 (.02) 2.19 (.08) .60 .40 

VU Story Prb. 1.39 (.06) 8.40 (.23) .62 (.03) 3.75 (.25) .61 .39 

Basic Add. 2.41 (.05) 11.79 (.11) .72 (.01) 3.50 (.10) .49 .51 

Basic Sub. 1.43 (.03) 6.85 (.11) .71 (.01) 3.42 (.10) .49 .51 

WRAT Arth. 9.29 (.17) 23.72 (.06) .72 (.02) 1.85 (.06) .48 .52 

Comp Fluency 2.08 (.04) 11.97 (.13) .81 (.01) 4.65 (.12) .34 .66 

DD Add. 4.25 (.15) 17.03 (.17) .54 (.04) 2.17 (.18) .71 .29 

DD Sub. 2.01 (.08) 11.10 (.23) .60 (.03) 3.34 (.24) .64 .36 

Analog Mag.       

DD Add. Est. 1.23 (.06) 8.52 (.27) .88 (.02) 6.12 (.27) .22 .78 

DD Sub. Est. 1.11 (.06) 6.50 (.24) .82 (.02) 4.81 (.24) .32 .68 

Language       

Voc 4.26 (.09) 27.29 (.17) .74 (.02) 4.77 (.17) .45 .55 

List 4.91 (.10) 21.04 (.12) .70 (.02) 2.99 (.17) .52 .49 

Gram 2.83 (.06) 18.66 (.18) .71 (.02) 4.70 (.18) .49 .51 

Executive Func.       

Att. 3.21 (.07) 75.00 (.63) .58 (.02) 13.57 (.64) .66 .34 

Recall 2.79 (.06) 9.93 (.10) .49 (.02) 1.76 (.10) .76 .24 

Num. Rev. 3.29 (.07) 9.33 (.08) .48 (.02) 1.35 (.08) .77 .23 

Matrix Reason. 2.41 (.05) 15.45 (.17) .54 (.02) 3.45 (.18) .71 .29 

Con. Form. 2.21 (.05) 15.51 (.19) .67 (.02) 4.67 (.19) .56 .44 

 

Table 23. Exact V. Approximate Calculations Full Model Latent Factor Correlations 

 1 2 3 4 

1. Aud. Verb. 1.00    

2. Analog Mag. .73 1.00   

3. Language .52 .45 1.00  

4. Executive Func. .75 .76 .82 1.00 

 



101 

 

 

 

Figure 25. Exact versus Approximate Theory: Full Measurement Model. 
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4.3.5  Post-hoc testing: Hybrid full measurement model.  

Results from the arithmetic only measurement models indicated that the Triple Code Theory 

model of arithmetic was the best fitting model; however, the Triple Code Theory full 

measurement model displayed some structural problems, namely a correlation between executive 

function and the auditory verbal module that was near singularity and very high correlations 

between executive function and the other modules of arithmetic in the model. 

 Conversely, results from the Encoding Complex full measurement model indicated that 

this model of arithmetic (and its relationships with other cognitive domains) was the best fitting 

model; however, the architecture for arithmetic in the Encoding Complex Theory model was 

unidimensional ,and results from the arithmetic only measurement models indicated that a 

unidimensional arithmetic was not a good fit for the data. 

Given the findings that (1) a three-factor model of arithmetic presented by Triple Code 

Theory was an excellent fit for the data, and (2) a direct prediction of executive function and 

language on math outcomes presented by Encoding Complex Theory was an excellent fit for the 

data, a final post-hoc model that combined these specifications was tested. This model represents 

Triple Code Theory's specification that three, format-specific modules are responsible for 

processing various types of arithmetic problems and that these modules are allowed to 

communicate via the process of transcoding. A visual Arabic module processes digital input and 

output as well as multi-digit operations. An auditory verbal module processes simple 

mathematical facts, language-based input and output, and language-based memory for numbers. 

An analog magnitude module processes semantic information for number and is responsible for 

performing comparison, estimation, approximate calculation, and subitizing tasks across various 

formats of input and output. Transcoding allows for these modules to inform one another directly 



103 

 

during numeric processing tasks. The post-hoc hybrid model represents each of these modules as 

a latent factor and transcoding as the correlation between these factors. 

The post-hoc hybrid model also represents Encoding Complex Theory’s specification that 

successful processing requires the sorting of stimulus responses for relevance to the problem-

solving task and the inhibition of responses that are irrelevant to solving the problem. Format 

interferences are expected, particularly for language-formatted stimuli. Thus, executive function 

is a direct predictor of arithmetic outcomes across formats and problem demands, and language 

ability is expected to directly contribute to language-formatted problems. Triple Code Theory’s 

specification of format-sensitive arithmetic cognition modules would appear to be compatible 

with Encoding Complex Theory’s specification that format effects can interfere with mental 

representation of problems, subsequent numeric processing, and answer production.  

Global fit statistics indicated that this factor model was an approximate excellent fit for 

the data, (2
 (124) = 341.71, p < .001, RMSEA = .03, CFI = .98). Across outcomes, completely 

standardized factor loadings ranged from -.02 (non-significant) to .74; indicator residual 

variances ranged from .25 to .77; and model R
2
 ranged from .23 to .76. As mentioned in the 

executive function measurement model results, the residuals for this factor were undesirably high 

and among the highest in the model. 

More specifically, for the arithmetic outcomes across the three Triple Code modules, 

completely standardized factor loadings ranged from .18 to .71. All of these loadings were 

significant, but only the factor loadings for the following five arithmetic outcomes were salient: 

Basic Facts Addition, Basic Facts Subtraction, and Computational Fluency (all Arabic numeral 

formatted and all involving relatively small problem sizes), as well as Double Digit Estimation 

Addition and Double Digit Estimation Subtraction (both involving estimation). For the language 
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outcomes, completely standardized factor loadings were all significant and salient, ranging from 

.71 to .74; however, none of the language-formatted arithmetic outcomes were significant 

indicators of language, meaning that the auditory verbal module is distinct from language. For 

the executive function outcomes, completely standardized factor loadings were all significant 

and salient, ranging from .49 to .67. The arithmetic outcomes were all significantly and saliently 

indicated by the executive function factor. Completely standardized factor loadings ranged from 

.39 to .69, and they were lowest for the three aforementioned Arabic numeral formatted / small 

problem size outcomes (Basic Facts Addition, Basic Facts Subtraction, and Computational 

Fluency).  

Allowing for direct prediction of arithmetic outcomes by executive function and language 

left little unique predictive power for the three Triple Code Theory modules of arithmetic; 

however, all of the arithmetic outcomes were still significantly predicted by its corresponding 

Triple Code Theory module. This pattern of results indicates that something other than executive 

function and language (represented here by the visual Arabic number form module, auditory 

verbal module, and analog magnitude module) was predicting performance for each of these 

problem formats or analogical magnitude demands. The auditory verbal module factor loadings 

were all particularly low with executive function in the model, which would seem to indicate that 

language-formatted problems, in particular, are largely an executive function task. 

 Because executive function was a direct predictor of arithmetic outcomes in this model, 

the correlations between executive function and the visual Arabic number form module, the 

auditory verbal module, and the analog magnitude module were restricted to zero for the 

purpose of model specification. Similarly, the correlation between language and the auditory 

verbal module was also restricted to zero. The correlation between executive function and 
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language was large and positive, r=.80; however, the correlations between language and both 

the visual Arabic number form and analog magnitude modules were small and negative, r=-.13 

and r=-.28 respectively. Among the Triple Code Theory modules, auditory verbal arithmetic and 

visual Arabic number form arithmetic were moderately and positively related, r=.63, and analog 

magnitude arithmetic and visual Arabic number form arithmetic were slightly and positively 

related, r=.35. However, the auditory verbal and analog magnitude modules were not 

significantly related. 

These results would seem to indicate that (1) language may play some role in facilitating 

executive function’s prediction of arithmetic outcomes, (2) across formats of arithmetic 

problems, language ability is not related to performance when the contribution of executive 

function is explicitly modeled, (3) the auditory verbal module moderately related to Arabic 

numeral formatted, exact calculation problems, and (4) although Arabic numeral formatted 

problems may call on some of the same faculties used for estimation / analogical magnitude 

problems, language-formatted problems appear to have some common method variance that is 

distinct from analogical magnitude.  

 Table 24 presents completely standardized results for the Hybrid full measurement 

model. Table 25 presents latent factor correlations, and Figure 26 displays a model schematic.
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Table 24. Post Hoc Hybrid Full Measurement Model Completely Standardized CFA Results 

 

Indicator Intercepts (SE) Factor Loadings (SE) by Factor 
Residual 

Variance 
R

2
 

  Auditory Verbal Visual Analog Mag. Language Exec. Function   

Arithmetic Measures         

App. Prb. 6.76 (.13) .32 (.05)   .05 (.06)
NS

 .67 (.06) .40 .60 

Story Prb. 2.85 (.05) .21 (.04)   .10 (.06)
NS

 .65 (.05) .43 .57 

VU Story Prb. 1.38 (.05) .26 (.07)   -.02 (.12)
NS

 .66 (.11) .52 .48 

Basic Add. 2.41 (.05)  .68 (.02)   .39 (.03) .39 .61 

Basic Sub. 1.43 (.03)  .61 (.02)   .43 (.02) .44 .56 

WRAT Arth. 9.28 (.17)  .36 (.03)   .63 (.02) .48 .52 

Comp Fluency 2.08 (.04)  .71 (.02)   .50 (.02) .24 .76 

DD Add. 4.27 (.15)  .25 (.05)   .47 (.04) .72 .28 

DD Sub. 2.04 (.08)  .18 (.05)   .60 (.03) .60 .40 

DD Add. Est. 1.24 (.06)   .49 (.06)  .70 (.03) .28 .72 

DD Sub. Est. 1.12 (.06)   .57 (.06)  .65 (.04) .25 .75 

Language Measures         

Voc 4.23 (.09)    .74 (.02)  .45 .55 

List 4.87 (.10)    .71 (.02)  .50 .50 

Gram 2.81 (.06)    .72 (.02)  .49 .51 

Exec. Func. Measures         

Att. 3.19 (.07)     .59 (.02) .65 .35 

Recall 2.78 (.06)     .48 (.02) .77 .23 

Num. Rev. 3.28 (.07)     .49 (.02) .76 .24 

Matrix Reason. 2.40 (.05)     .57 (.02) .68 .32 

Con. Form. 2.19 (.05)     .67 (.02) .55 .45 
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Table 25. Post Hoc Hybrid Full Model Latent Factor Correlations 

 1 2 3   

1. Auditory Verbal 1.00     

2. Visual Ar. Num. .63 1.00    

3. Analog Magnitude .05
NS

 .35 1.00   

4. Language @0 -.13 -.28 1.00  

5. Executive Func. @0 @0 @0 .80 1.00 
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Figure 26. Hybrid Model of Triple Code Theory Arithmetic and Encoding Complex 

Theory Structure as a Full Measurement Model 
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4.3.6  Summary of Model Testing Results.  

Model testing began with the examination of distinct portions of what would later 

become full measurement models. This phase of model testing began with an examination of the 

arithmetic portions of measurement for each of the four theories considered in this study. The 

Abstract Code Theory model of arithmetic tested the extent to which arithmetic behavioral 

outcomes could be explained by one, latent form of mental representation (abstract semantic 

codes) across a variety of problem formats and demands. This model was not a good fit for the 

data. The Encoding Complex Theory model of arithmetic tested the extent to which arithmetic 

behavioral outcomes could be explained by a unitary, latent encoding complex across a variety of 

problem formats and demands which appears to be modular with practice. This model was 

structurally identical to the Abstract Code Theory model of arithmetic and was also not a good fit 

for the data. The Triple Code Theory model of arithmetic tested the extent to which arithmetic 

behavioral outcomes could be explained by three, latent modules with format and problem 

demand specific responsibilities in numeric processing. This model was an approximate good fit 

for the data. The Exact Versus Approximate Calculations model of arithmetic tested the extent to 

which arithmetic behavioral outcomes could be explained by two, latent modules with problem 

demand specific responsibilities in numeric processing. This model was not a good fit for the 

data. 

Measurement models for language and executive function also were examined during this 

phase of model testing. The language measurement model was just-identified with three 

indicators of language ability. Though global fit could not be examined for this model, local fit 

statistics indicated that these three indicators were measures of the same underlying dimension. 

The executive function measurement model was over-identified with five indicators of executive 
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function ability. Though the global and local fit statistics indicated that this model was an 

approximate good fit for the data, all indicators in this model demonstrated relatively high 

residuals. The executive function model, though adequate for the purposes of the current study, 

evidenced issues of fit that could be interpreted to mean that important complexity in this 

construct was not being modeled with a unitary conceptualization. Ultimately, the Triple Code 

Theory model of arithmetic was the best fitting model for arithmetic during this phase of model 

testing. Both the language and executive function models were also retained for the next phase of 

testing. 

 The next phase of model testing examined each of the four theories of arithmetic 

cognition with the inclusion of language and executive function abilities in full measurement 

models. Results from the first phase of model testing were crucial for identifying sources of 

model misfit during this phase of testing. 

The Abstract Code Theory full measurement model tested the extent to which both 

language and executive function contributed to but did not directly predict arithmetic outcomes 

across a variety of problem formats and demands, which were represented by one, format-

independent, abstract semantic code. This model was not a good fit for the data. Phase one 

results indicated that both the abstract semantic code and executive function measurement 

portions of this full model were important sources of model misfit. However, patterns of high 

correlations between factors indicated that the specifications of relationships between language, 

executive functions, and abstract semantic code may also have been important sources of model 

misspecification. This model was ultimately rejected. 

The Encoding Complex Theory full measurement model tested the extent to which 

executive function was a direct predictor of all arithmetic behavioral outcomes and language 
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ability was a direct predictor of outcomes on arithmetic problems with language formats. 

Arithmetic behavioral outcomes were modeled as a unitary, encoding complex, which appears to 

be modular with practice. This model was an approximate good fit for the data, despite the 

contributions of the seemingly modular encoding complex and executive function to model 

misfit. Executive function was a significant predictor of all arithmetic outcomes in the model, and 

language was a significant predictor of two language-formatted arithmetic outcomes. 

Furthermore, once executive function and language were directly modeled as predictors of 

arithmetic outcomes, language evidenced a negative correlation with the remaining (non-

language-formatted) indicators in the model. 

The Triple Code Theory full measurement model tested the extent to which executive 

function and language contributed to but did not directly predict arithmetic behavioral outcomes 

across three, format and problem demand specific modules with specific responsibilities for 

numeric processing. This model also was an approximate good fit for the data; however, patterns 

of high correlations between factors in this model raised questions about the extent to which 

direct prediction should be allowed. Specifically, executive function and the auditory verbal 

module (responsible for language-formatted problems) correlated near singularity, and the 

auditory verbal module correlated highly with language (possibly because executive function 

correlated highly with language). Results indicated that executive function played a role in 

facilitating arithmetic outcomes across problem formats and demands but that language-

formatted problems were particularly affected by contributions from domains other than a 

specialized arithmetic module. Despite these issues, the findings from the first phase of testing 

for the Triple Code model of arithmetic (only) held; the three modules of arithmetic evidenced 

correlations that indicated they were highly related but distinct. 
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The Exact Versus Approximate Calculations full measure model tested the extent to 

which executive function and language contributed to but did not directly predict arithmetic 

behavioral outcomes across two, problem demand specific modules with specific responsibilities 

for numeric processing. This model was not a good fit for the data. Results from phase one of 

testing indicated that the specifications for the arithmetic (only) and executive function portions 

of the full measurement model were important sources of misfit for the model. However, as in 

other full measurement models, patterns of factor correlations indicated that executive function’s 

relationships with other factors in the model may have been important sources of model 

misspecification. This model was ultimately rejected. 

Finally, because full measurement model results supported both Encoding Complex 

Theory and Triple Code Theory, an unplanned, post-hoc model, incorporating key measurement 

hypotheses of each theory, was examined. This model combined the three-module arithmetic 

(only) portion of Triple Code Theory with Encoding Complex Theory’s specification that 

executive function could be a direct predictor of all arithmetic outcomes and that language could 

be a direct predictor of outcomes on language-formatted arithmetic problems. This model was an 

approximate good fit for the data, and Chi-square difference testing indicated that this model 

significantly improved fit as compared to all other full measurement models tested (see Table 

25). This model represented a synthesis of hypotheses from two theories of arithmetic cognition 

that were supported by patterns of results from all model testing, and as such, this model was 

ultimately retained as the most parsimonious presentation of results. 
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Table 26. Summary of Model Testing Results 

Initial Measurement Models χ
2
 df p CFI RMSEA Note 

Abstract Code Arithmetic 705.68 36 <.001 .88 .10  

Encoding Complex Arithmetic 705.68 36 <.001 .88 .10 Structurally Identical to Abstract Code Arithmetic 

Triple Code Arithmetic 302.59 33 <.001 .95 .07  

Exact V. Approximate Arithmetic 547.10 35 <.001 .91 .09  

Language 0.00 0 N/A 1.00 .00 Model is just-identified 

Executive Functioning 31.57 5 <.001 .97 .06  

Full Measurement Models χ
2
 df p CFI RMSEA Note 

Abstract Code Theory 1386.75 141 <.001 .87 .07 Δ2
 (17) = 1045.05, p < .001 

Encoding Complex Theory 478.80 128 <.001 .96 .04 Δ2
 (4) = 137.10, p < .001 

Triple Code Theory 592.06 134 <.001 .95 .04 Δ2
 (10) = 250.36, p < .001 

Exact V. Approximate Theory 1230.11 138 <.001 .88 .06 Δ2
 (14) = 888.41, p < .001 

Post Hoc Hybrid 341.71 124 <.001 .98 .03 Baseline Model for χ
2 
Difference Testing 
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5 CHAPTER 5: DISCUSSION 

The purpose of this study was to evaluate several leading theories of arithmetic cognition 

with special attention to possible systematic measurement error associated with item formatting 

and to possible contributions of cognitive abilities other than a quantitative domain that is 

specialized for numeric processing. Four leading theories of arithmetic cognition were used to 

guide hypotheses about (1) the structure of mathematics abilities involved in arithmetic 

cognition, (2) the role of language versus Arabic numeral symbolic formats in predicting 

arithmetic outcomes, (3) the role of exact versus approximate calculation demands in predicting 

arithmetic outcomes, and (4) the possible contributions of language and executive function in 

predicting arithmetic outcomes. 

5.1 Summary of Major Findings  

5.1.1  The structure of arithmetic cognition.  

As predicted by Triple Code Theory, the structure of arithmetic cognition was best 

supported by several modules of quantitative ability with specialization for particular formats 

and problem demands. An auditory verbal module was largely responsible for problems that 

were language-formatted. A visual Arabic number form module was largely responsible for 

problems that were formatted with Arabic numerals. An analog magnitude module was largely 

responsible for problems that involved estimation across formats. This three-module architecture 

of arithmetic cognition was valuable for explaining arithmetic outcomes across the models tested 

in the current study. 

5.1.2  Symbolic formatting and calculation demands.  

Abstract Code Theory’s stipulation that abstract semantic codes predict arithmetic 

outcomes across various formats of problem was not supported, nor was a specification of 
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Encoding Complex Theory in which a unitary, seemingly modular encoding complex predicts 

arithmetic outcomes across formats. Exact Versus Approximate Calculations Theory’s 

specification that exact and approximate problem demands would be predicted by separable 

cognitive architectures was somewhat supported, but ultimately, among problems with exact 

calculation demands, different formats were predicted by different modules. Among 

symbolically formatted problems, language and Arabic numeral formats were distinct but 

related. Among calculation demands, exact and approximate calculations were distinct but 

related. However, within exact problems, those problems with language formatting were 

separable from problems with Arabic numeral formatting. 

5.1.3  Contributions from executive function and language.  

Although the unitary, practiced, seemingly modular encoding complex model of 

arithmetic-only was not supported, another important tenet of Encoding Complex Theory was 

instrumental in predicting arithmetic outcomes. As predicted by Encoding Complex Theory, 

across all problem formats and calculation demands, executive function was a major predictor of 

arithmetic outcomes. The inclusion of executive function as a direct predictor of arithmetic 

outcomes overwhelmed the arithmetic-only models of cognition. Little variance remained for 

modules of arithmetic cognition to explain; however, each retained some unique predictive 

value. 

5.1.3.1  The relationship between executive function and language.  

Interestingly, executive function left no predictive value for language ability on language-

formatted problems. Language-formatted problems were explained mostly by executive function 

and somewhat by the auditory verbal module of arithmetic in the current study, and language 

ability evidenced a negative relationship with Arabic numeral formatted problems and estimation 
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problems. This outcome suggests that language ability was not directly contributing to arithmetic 

cognition. However, the lingering, large correlation between language and executive function 

suggests that language has some role to play in arithmetic cognition. It raises questions about the 

possibility that language may play a facilitative role in reasoning, particularly for language-

formatted problems.  

 Explaining the relationship between language ability and executive function in a 

theoretical model of arithmetic cognition will be a challenge for future research. Given that (1) 

language is not positively associated with modules of arithmetic, (2) nor is language a direct 

predictor of language-formatted arithmetic, but (3) executive function is a direct predictor of 

arithmetic outcomes across modules of cognition, this research suggests that language may play 

an indirect role in helping executive systems of control to predict arithmetic outcomes. 

 Several theories of executive function have implicated language ability as a facilitator of 

systems of executive control. Most often, this relationship has been conceptualized in terms of 

the construct of internal speech, also called self-directed speech or private speech. As a construct 

it can be defined as language that is generated and directed internally, not directed socially 

toward communication partners other than the self, for the purpose of facilitating cognition and 

behavioral control (see for example, Berk, 1999). In Baddeley's (see for example Baddeley & 

Logie, 1999; Baddeley, 1992, 2000) model of working memory, internal speech may play a 

critical role in helping to maintain mental representations of stimuli in the phonological loop of 

working memory via an articulatory rehearsal system. In Barkley's (1997) model of self-

regulation, internal speech helps to regulate inhibitory control by guiding rule-governed 

behaviors and self-evaluation during problem-solving. Similarly, in Zelazo's (see for example 

Zelazo & Frye, 1998) model of problem-solving, self-directed, internal speech plays a crucial 
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role in problem-solving, particularly during planning and inhibition. In this model, self-directed 

speech helps to link mental representations of problems, rules for problem-solving, and 

consequences of problem-solving efforts. 

 Internal speech may have properties that are qualitatively different than socially-directed 

speech with communication partners, and measuring it may require methodologies that utilize 

careful behavioral observation and self-reporting during and after the performance of problem-

solving tasks (Berk, 1999). Though this was beyond the scope of the current study, future 

research should investigate the construct of internal speech as an indirect predictor of arithmetic 

problem-solving.  

5.1.3.2  The relationships between arithmetic modules after accounting for executive 

function.  

 The addition of executive function as a direct predictor of arithmetic outcomes also 

impacted the relationships between the three modules of arithmetic cognition. Although the three 

modules of Triple Code Theory evidenced a pattern of strong, positive relationships when 

modeled in isolation, this was no longer true when executive function was explicitly modeled. 

Problems involving exact calculations remained highly related across language formats (on the 

auditory verbal module) and Arabic numeral formats (on the visual Arabic number form 

module); however, the relationships of these modules with the analog magnitude module 

changed when executive function was included. With explicit modeling of executive function in 

arithmetic outcomes, the visual Arabic number form module was only slightly related to the 

analog magnitude module, and the auditory verbal module was no longer related to the analog 

magnitude module. 
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 These correlations represented Triple Code Theory's specification of transcoding, or 

direct communication between modules of arithmetic cognition during numeric processing, and 

it is this notion of transcoding that allows Triple Code Theory's arithmetic modules to avoid 

necessarily communicating via abstract semantic codes. Though direct communication between 

Triple Code Theory's modules is assumed during numeric processing, only the analog magnitude 

module is hypothesized to contain semantic information about number. These findings suggest 

that when the role of executive function in arithmetic cognition is directly modeled, transcoding 

with the analog magnitude module may be minimal or non-existent. Perhaps numeric processing 

for problems involving language-formats, Arabic numeral formats, multi-digit operations, and 

language-based memory for numbers relies more heavily on executive function (attention, 

inhibition, working memory, and reasoning) than it does on semantic information about number.  

5.2 Implications for Measuring Arithmetic 

 The findings from the current study raise important questions about the inferences that 

can confidently be made from testing instruments. The assumption that all assessments which 

involve arithmetic are inherently measures of arithmetic ability is not warranted. Features of 

problem formatting and problem demands may influence the extent to which arithmetic is being 

captured by measurement instruments, and even when measures appear to reliably and validly 

capture arithmetic skill, they may also be measures of executive systems of control. 

 When attempting to measure arithmetic cognition, measurement formatting and problem 

demands are important, but all of the arithmetic outcomes in the current study were largely 

predicted by domain general capacities in executive control. Despite the overwhelming effect of 

executive function, several measures of arithmetic did retain unique predictive value that was 

salient. These measures either involved Arabic numeral formatting and small problem sizes or 
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estimation problem demands. Such formats and problem demands may be promising methods of 

assessing arithmetic competence because these types of problems remained strong predictors of 

arithmetic cognition despite the contributions of executive function.  

Conversely, language-formatted arithmetic items may yield results with dubious 

inferential value for assessing arithmetic cognition. Language-formatted items retained little 

unique predictive value with an auditory verbal arithmetic module once executive function was 

added as a direct predictor of arithmetic outcomes, suggesting that language-formatted items 

may be mostly measures of executive function and, by extension, the role of language ability in 

facilitating linguistic problem-solving. Thus, language-formatted “arithmetic items,” may more 

accurately be labeled “linguistic problem-solving tasks that involve some arithmetic”. 

5.3 Limitations and Future Directions 

5.3.1  Adapting theories toward specific measurement hypotheses.  

The specificity required by the factor analytic framework is a limitation of the current 

project. Factor models represent abilities or commonalities between various measures, but they 

do not represent processes unless a process is specifically being modeled (Carroll, 1993). Such a 

model would necessitate structural hypotheses among traits, with the specific allowance for traits 

to influence one another in the time-scale specified by the process (e.g., over seconds, minutes, 

days, years). Arithmetic cognition is a process. Executive control is arguably a process. 

Linguistic facilitation of executive control is also a process. Inferences in the current study are 

limited to traits, but the relationships among traits at a single time point can give important clues 

about underlying processes, and factor analysis can help to answer important questions about the 

properties of measurements. 
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It is important to note that these theories of arithmetic cognition were not specified with 

factor analysis methodologies in mind, and so, translation into factor analytic frameworks 

becomes difficult when theories of arithmetic cognition are not explicit in specifying their 

parameters. For example, “contributions” could be conceptualized as direct predictions of latent 

factors, correlations between latent factors, or perhaps residual error terms. Some specific 

aspects of each theory lend themselves to formulations with factor models, while other aspects 

were not necessarily testable with this method. For example, modeling Abstract Code Theory's 

highly complex mechanism of numeric processing was beyond the scope of the current study. 

In general, theories vary in the extent to which they directly consider measurement of the 

constructs they specify and in the extent to which their recommendations to users are explicit 

about methods of capturing those constructs. Theories of arithmetic cognition tend to be 

somewhat terse in their measurement specifications and methodological recommendations. 

Ideally, this research may inform theories of arithmetic cognition with regard to both 

measurement method effects and the possibility of factor modeling as a methodological approach 

to evaluating theoretical postulations of latent, cognitive domains and problem formatting 

effects. Measurement hypotheses in the current study were carefully constructed with the aim of 

striking a balance between faithfully representing theoretical postulates and holding the research 

to the methodological rigor demanded by factor analysis. Still, the measurement hypotheses for 

theories of arithmetic cognition are open to other interpretations. Future research should explore 

alternate measurement hypotheses with these theories of arithmetic cognition. 

5.3.2  Adapting theories toward developmental hypotheses.  

The second limitation of the current project lies in the generalization of theory to a 

population at an earlier developmental stage. Although these theories of arithmetic cognition 
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largely pertain to the skilled performances of adults, this project aimed to understand the 

arithmetic cognition of school-aged children and the facets of numeric cognition that may predict 

their development into skilled adults. The extent to which these theories apply to school-aged 

children is unclear, but generally speaking, theories that specify one factor structure across all 

possible populations (regardless of experience and development) have little room for realistic 

evaluation. 

Although some theories of arithmetic cognition make specifications about growth and the 

ways in which one might become a skilled adult, others do not. Invariance testing (the idea that 

one can test the hypothesis that the same cognitive architecture that is specified for adults can be 

assumed for children) is implicit in the current project, because the theoretical specifications of 

arithmetic cognition pertained to adults but were used to inform hypotheses about children. 

However, future research should examine the development of arithmetic cognition in children, 

adolescents, and adults utilizing a longitudinal design and explicit testing of longitudinal 

measurement invariance. Extant neuroimaging research has indicated that quantitative cognition 

of children and adolescents may be qualitatively different from that of skilled adults (e.g., 

Cantlon et al., 2006). Future behavioral research that is explicitly designed to examine the 

arithmetic cognition of children and adolescents should be (1) guided by the possibility that their 

cognition may be qualitatively different from the arithmetic cognition of skilled adults as 

opposed to a deficient form of adult-like cognition, and (2) followed by theoretical extensions of 

existing theories of arithmetic cognition designed to address the developmental continuum of 

quantitative cognition.  
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5.3.3  Generalizability of symbolic formatting.  

A third, major limitation of the current project is that it is exclusively focused on numeric 

processing with symbolically formatted measures of arithmetic (e.g., language or Arabic numeral 

formats) and does not include non-symbolically formatted measures of arithmetic (e.g., dot 

arrays). Although the arithmetic that children will encounter in most formalized assessment 

settings is symbolically formatted, developmental research on the quantitative domain is focused 

largely on children's performance with non-symbolically formatted measures. Including non-

symbolically formatted measures of arithmetic in measurement batteries will be essential for 

establishing common scaling and examining developmental continuity in the quantitative 

domain. Future research should explore arithmetic cognition, formatting effects, and domain 

specificity (contributions of cognitive abilities other than a quantitative domain) with the 

inclusion of non-symbolically formatted arithmetic items in the measurement battery. 

 Similarly, many other aspects of item modality (e.g., timed/untimed, problem size, 

number of steps required to solve a problem) as well as item content (e.g., arithmetic, algebraic 

reasoning, geometry) are often controlled or varied in order to approximate item difficulty across 

various types of mathematics tasks. Implicit in these studies is the idea that items are (a) 

becoming more difficult as a result of varying certain aspects of their modality (e.g., speededness 

or number of steps to solution), and (b) items may be becoming more difficult because varying 

certain aspects of their modality taps cognitive abilities other than the quantitative domain (e.g., 

processing speed or working memory). The difficulty of items requires empirical examination, as 

does the assumption that these items may begin to measure cognitive domains other than the 

quantitative domain. The purpose of the current study was to examine symbolically formatted 

arithmetic items with regard to theoretical specifications of the cognitive abilities involved in 
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solving them; however, future research should examine other aspects of item modality and their 

effect(s) on the measurement of cognitive abilities across a variety of tasks involving differing 

mathematical content. 

5.3.4 Overlap in features of item modality. 

Although children were instructed to use estimation to solve the double digit estimation 

problems, and although these items were speeded in order to encourage the use of the most 

efficient strategy for solution, it should be noted that these problems could have been solved by 

using the strategy of calculating the exact answer and then rounding. In other words, depending 

upon the strategies employed by children during numeric processing, the double digit estimation 

problems may have been solved using a combination exact calculations and approximation. 

Unfortunately, the strategy usage employed by children during numeric processing was beyond 

the scope of the current study. It is indeed probable that certain formats may be better suited for 

eliciting certain problem-solving strategies (e.g., nonsymbolic formats may be better suited to 

eliciting approximate calculation strategies).  

Similarly, the WJ Applied Problems subtest items are language-formatted problems 

designed to measure children’s knowledge of and ability to solve everyday problems (e.g., telling 

time). These problems served different roles in different models in the current study. They were 

alternately loaded onto unitary factors (abstract semantic representations or a seemingly modular 

encoding complex), an exact calculations factor, and an auditory verbal factor. Their treatment as 

exact calculation items was perhaps the most questionable. Problems on the WJ Applied 

Problems subtest require children to produce exact answers, but they do not necessarily require 

children to perform exact calculations. Of the 39 problems designed for examinees who are not 

above average adults or who are below college-level in education, most require knowledge of 
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numbers and operations; however, 12 items (approximately 31%) involve the production of exact 

answers requiring specific, applied knowledge of telling time, recognizing American money, or 

reading a thermometer. Thus, unfortunately, the WJ Applied Problems subtest represented a 

mixture of traditional word problems and applied problems. Though this subtest was consistently 

significant and salient as an indicator in the models tested for the current study, generalizing of 

the WJ Applied Problems subtest as a test of traditional word problems requiring exact 

calculations is limited by the extent to which it includes applied problems. 

 In both the case of the double digit estimation problems and the WJ Applied Problems, 

issues of item-formatting overlapped with issues of item calculation demands in ways that may 

have led to model misfit. This caveat is particularly relevant to the exact versus approximate 

calculations model. This research found some support for a central tenet of exact versus 

approximate calculations theory; problems requiring the production of exact solutions appeared 

to be separable from problems requiring the production of approximate solutions. Other features 

of item modality, in this case symbolic formatting, were also important contributors to the 

dimensionality of arithmetic measures. However, examination of the possibility that item 

features may interact to predict examinee responses was beyond the scope of the current study. 

Future research should examine the relationship between item modality and the measurement of 

arithmetic cognition with explicit control in the design of item features (e.g., formatting, 

calculation demands), observation of children’s strategy usage during numeric problem-solving, 

and allowances for the possibility that features of item modality may interact to predict 

children’s responses. 
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5.3.5 Measuring and modeling executive function.  

For the purposes of the current study, executive function was indicated by a combination 

of two measures of working memory, one measure of inhibition and attention, and two measures 

of inductive reasoning or problem-solving. These five measures were combined in an a priori 

specified, latent factor model with the aims of (1) synthesizing important facets of executive 

function, while (2) explicitly accounting for measurement error. However, it should be noted that 

across all of the full measurement models and in the executive function-only measurement 

model, the executive function factor evidenced some problems. 

 Although this unitary executive function factor displayed good model fit in most ways, 

patterns of residual variance indicated that much of the complexity of these indicators was not 

accounted for by a single factor. Recent research has indicated that what is popularly referred to 

as executive function may in fact be three, distinct, but highly related constructs, (1) updating or 

working memory, (2) inhibition or controlled attention and response generation, and (3) shifting 

or cognitive flexibility during problem-solving (Friedman, Miyake, Corley, Young, & DeFries, 

2006; Miyake et al., 2000). Because executive function in the current study utilizes measures of 

each of these facets, the unitary executive function construct included in this study likely 

represents a hierarchical ‘EF,’ the correlation between each of these facets or ‘EFs’. For the 

purposes of the current study this ‘EF’ was interpreted as an overall relationship between 

executive systems of control and arithmetic performances; however, important nuances in the 

facets of ‘EF’ are not captured here. Future research should explore the extent to which updating, 

inhibition, and shifting may make unique contributions to arithmetic outcomes.  
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5.4 Summary and Conclusions 

Because this study aimed to examine the construct of arithmetic cognition by examining 

the formatting and dimensionality of arithmetic measures, a factor analytic framework in 

conjunction with a multi-trait, multi-method approach was appropriate. The factor analytic 

framework requires explicit statements of hypotheses about model parameters, which can reveal 

areas of theoretical misspecification, implications of measurement techniques for construct-level 

inferences, as well as areas of theoretical ambiguity. Though the specificity required by a factor 

analytic framework can be challenging, this approach is a promising method for evaluation of 

theories of arithmetic cognition. 

Each of the theories examined in the current study were designed to explain the 

arithmetic cognition of skilled adults. This study sought to understand the arithmetic cognition of 

developing children who have some formal education and exposure to arithmetic, but are still 

actively engaged in mathematics education. Describing a developmental continuum that links the 

arithmetic cognition of developing children to the cognition of skilled adults will be a crucial 

next step for researchers and theoreticians.  

 In general, results from this study provided support for both Triple Code Theory and 

Encoding Complex Theory, and to some extent, Exact Versus Approximate Calculations Theory 

is also supported. As predicted by Triple Code Theory, arithmetic outcomes with language 

formatting, Arabic numeral formatting, and estimation demands across formats were related but 

distinct from one another. This finding is also compatible with Encoding Complex Theory’s 

stipulation that formatting effects exist for arithmetic cognition. The large and enduring 

relationship between problems that required exact calculations (across formats) also provides 
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support for Exact Versus Approximate Calculations Theory’s stipulation that exact calculation 

problems may draw from the same cognitive processes.   

 Executive function was a direct predictor of all arithmetic outcomes. This finding is 

compatible with Triple Code Theory’s stipulation that other cognitive domains, in particular 

domains responsible for coordinating visuospatial attention, may contribute to arithmetic 

cognition. The construct of executive function is complex, and modeling that complexity was 

beyond the scope of the current study; however, the facets of working memory, inhibition and 

attention, and induction and reasoning ability shared a unitary predictive power in explaining 

arithmetic. 

Given the strong and enduring relationship between executive function and language 

ability, this synthesized executive control may have been facilitated by language ability in a 

collaborative relationship that was beyond the scope of the current study. Future research should 

investigate the extent to which internal or self-directed speech may facilitate executive function 

and indirectly predict performance on arithmetic problem-solving tasks. This pattern of results 

may be particularly pertinent for language-formatted arithmetic items.  Results from the current 

study support the growing body of literature indicating that caution should be used in interpreting 

the results from language-formatted arithmetic items (e.g., Abedi & Lord, 2001; Martiniello, 

2009; Rhodes, Branum-Martin, Morris, Romski, & Sevcik, in press). These items may have little 

construct validity as pure measures of mathematics ability. Inferences about arithmetic mastery 

should be made with caution when they are based on results from language-formatted testing 

instruments, and this caution is particularly relevant to national achievement assessments that 

utilize language-formatting in their assessment of mathematical competence.  
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