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ABSTRACT 

Glycoscience is an emerging field of science that focuses on the study of the structure, 

biosynthesis, biology, and evolution of saccharides (sugars). It covers a broad range of subjects 

including microwave-assisted synthesis as well as sphingolipid synthesis. In this field, 

knowledge is limited due to the complexity of carbohydrates and their derivatives. Therefore, it 

is all the more important that synthesis of these complex molecules occurs in order to fully 

understand their biological significance. The following report summarizes two aspects of 

glycoscience and discusses their biological applications.  
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1 Comparison of Conventional and Microwave-assisted Synthesis of Glycosylated 

Amino Acids 

1.1 Introduction 

Microwave irradiation has been a known form of energy for years, but it was not until 

1986 that microwaves were introduced into the scientific laboratory.1 Microwave chemistry is 

essentially the science of applying microwave radiation to chemical reactions.2 In comparison 

with other frequencies such as earth radiation, UV, and even infrared, microwave radiation is 

much lower.    With the influence of microwave irradiation, reactions that would normally take 

many hours or days to complete can be run in a considerable shorter time of several minutes or 

even seconds.  Microwave heating results in the superheating of substances—particularly those 

that respond to dipole rotation or ionic conductivity.3 Microwaves will only cause bonds to 

rotate, not break.  With microwaves, energy is transferred to the reaction components within the 

solution.1 More specifically, thermally driven organic transformations can take place by 

conventional heating or microwave-accelerated heating, but in the microwave system, 

microwave energy is directed into a defined area leading to a rapid rise in temperature thus 

decreasing reaction time and increasing product yield and purity.4 Reaction components at the 

center of the reaction are heated at the same rate the as reactants near the walls of the vessel.1 In 

other words, with microwave heating, only the reaction vessels contents are heated rather than 

the vessel itself. 

There are numerous advantages to microwave heating. These advantages include: rapid 

reactions, high purity of products, few by-products, improved yields, simplified and improved, 

synthetic procedure, wider temperature range, higher energy efficiency, sophisticated 

measurement and safety technology.2-5 There are few disadvantages to microwave heating. One 



8 

disadvantage in particular to microwave heating lies in the potential for a microwave vial to burst 

during the superheating synthesis process. To elaborate, because microwave heating heats the 

contents of the vessel rather than the vessel itself, any solid that is stuck on the sides of the vessel 

and not flushed into the solution before microwave heating is applied has the potential to become 

too hot and crack the glass of the vessel; consequently the vessel will rupture under the pressure 

applied during the microwave heating. 

Before the introduction of microwave assisted reactions, conventional heating was the 

only method used to heat a reaction. Conventional heating normally involves using a furnace or 

an oil bath to heat the walls of the reactor.2 In this process, the core of the sample takes much 

longer to achieve the target temperature. With microwave heating, the target compounds are able 

to be heated without having to heat the entire furnace or oil bath, saving time and energy.2  

Compared to conventional heating, microwave heating causes more extensive heating 

inside materials rather than the outer layers of materials while also utilizing the ability of some 

compounds to transform electromagnetic energy into heat.6 With microwave heating, energy 

transmission is produced by dielectric losses while conventional heating uses conduction and 

convection processes. Furthermore, microwave irradiation is rapid and volumetric and quite 

dependent on the properties of the material whereas conventional heating is slow and superficial 

and less dependent on the properties of the material.6 

Carbohydrates are large biological molecules consisting of carbon hydrogen and oxygen 

atoms and have a basic composition of (CH2O)n. Carbohydrates come in many forms but all 

types of carbohydrates are essentially chains of very simple sugar molecules: glucose (Glc), 

galactose (Gal), mannose (Man), fucose (Fuc), xylose (Xly), N-Acetyl-D-glucosamine (glcNAc), 

N-Acetylgalactosamine (GalNAc), glucuronic acid (GlcA), and N-Acetylneuraminic acid 
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(NeuAc) (Figure 1).  There are four distinctive types of carbohydrates: monosaccharides, 

disaccharides, oligosaccharides, and polysaccharides. Monosaccharides are sugars with multiple 

hydroxyl (OH) groups and are named based on the number of carbons they possess.7 For 

example, a monosaccharide with three carbons is called a triose whereas a monosaccharide 

containing six carbons is called a hexose. Disaccharides are simply two monosaccharides that are 

covalently linked. Oligosaccharides consist of more than two but less than 10 monosaccharides 

that are covalently linked. Finally, polysaccharides (glycans) are polymers that consist of chains 

of monosaccharides (more than 10) and sometimes form glycocongugates with proteins or 

lipids.7 

Glycosylation is a post-translational modification (PTM) that is primarily associated with 

the attachment of a sugar molecule to a protein. However, it is not subject to proteins alone. 

Glycosylation, in a more accurate sense, can be defined as the attachment of a sugar molecule to 

almost any organic compound/structure (i.e., peptides, lipids, amino acids, etc.). Glycosylated 

bonds are categorized into specific groups based on the nature of the bond and the sugar 

attached. There are five known types of glycosylation, N-linked, O-linked, glypiation, c-linked, 

and phosphoglycosylation.8 

All nitrogen-linked carbohydrates are linked though N-acetylglucosamine (GlcNAc) and 

the amino acid asparagine.9 N-linked glycoproteins are the most common type of glycosylation 

and often have large, extensively branched glycans. O-glycosylation occurs post-translationally 

on serine and threonine side chains in the Golgi apparatus. O-glycosylation differs from N-

glycosylation in not only linkage but in mechanism. While a precursor glycan is transferred all 

together or at the same time (en bloc) to asparagine for N-glycosylation, sugars are added one at 

a time to serine or threonine residues for O-glycosylation.8 Glypiation is a common post-
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translational modification that involves the covalent attachment of glycosylphosphatidylinositol 

(GPI) that localizes proteins to cell membranes. C-glycosylation is commonly associated with 

PTMs of mannose and involves reactions that form carbon-carbon bonds rather than carbon-

nitrogen or carbon-oxygen bonds. Phosphoglycosylatoin is a PTM limited to parasites and slime 

molds. It is characterized by the linking of glycans to serine or threonine via phosphodiester 

bonds.8 

1.1.1 9 common sugars   

Figure 1 Nine Common Sugars 

 

 

1.2 Purpose of the Study 

Glycosylation is a crucial step in the modification of proteins or sphingolipids to form 

glycoproteins or glycosphingolipids. Approximately half of all proteins that are expressed in a 
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cell undergo glycosylation and involves the covalent addition of sugar moieties to specific amino 

acids.8 Carbohydrates are important components of glycoproteins, having key roles in many 

biological processes such as cell adhesion, inflammation, the immune system, and tumor 

metastasis.10-11 Therefore, there is great interest in synthesizing glycopeptides. 

There are two approaches to synthesize glycopeptides: the convergent approach12 and the 

building block approach.13 The convergent approach is based on the glycosylation of a peptide in 

solution or on solid-phase. This direct O-glycosylation of a peptide approach often results in low 

yields and therefore, the building block approach is most commonly used where a glycosylated 

amino acid building block is easily introduced into a solid-phase peptide synthesizer.14 

Previous approaches to glycosylated amino acids involve the use of glycosyl donors and 

amino acids that are protected on the α-carboxyl and α-amino groups. The Kihlberg group 

previously reported that Fmoc amino acids with unprotected carboxyl groups could be directly 

glycosylated with commercial peracetylated carbohydrates.15 Unfortunately, these conventional 

methods suffered from low yields or long reaction times. 

Microwave irradiation has been proven to dramatically improve the yields, purity, and 

conversion in synthetic chemistry.16 The Seibel group recently reported on the glycosylation of 

Fmoc amino acids with protected carboxyl groups using microwave methodology.17 

Unfortunately these building blocks cannot be directly used for the solid-phase synthesis of 

glycopeptides. Therefore, this study employs the combined methodologies of the Kihlberg 

group’s method of using Fmoc amino acids with unprotected carboxyl groups with the Seibel 

group’s method of using microwave irradiation to efficiently synthesize amino acid building 

blocks.  



12 

A report by the Lam group demonstrates the validity that using microwave methodology 

is an efficient synthetic route for glycosylating Fmoc amino acid building blocks.16 In their 

report, Fmoc-Ser, Thr, and Tyr-OH were glycosylated using a variety of sugar donors under the 

influence of a Lewis acid. The sugar donors included galactose, glucose, xylose, maltose, and 

lactose pentaacetates and had yields ranging from ~40-70% yields. Although there are several 

different types of sugar molecules one can use as a glycosylated amino acid building block, this 

study primarily focuses on the use of a mannose sugar donor for the preparation of glycosylated 

Fmoc amino acid building blocks.  

In recent years, O-linked mannose (O-Man) glycans have been demonstrated to play 

critical roles in cellular interaction-based pathologies, including congenital muscular dystrophies 

(CMDs) 18-21 and cancers.22-24 In particular, defects in the biosynthesis of O-Man glycans often 

result in the hypoglycosylation of α-dystroglycan (α-DG), the most well characterized O-

mannosylated mammalian protein. O-Man glycans account for up to 30% of all glycans O-linked 

to proteins in mammalian brain tissue.25,26 It is therefore understandable that O-Man glycans 

have been shown to be essential for normal nervous system development that is dependent on 

neuron migration,27,28 and axon path finding,29 and to play a role in remyelination following 

myelin sheath damage.30 O-Man glycans are initiated by covalent linkage of mannose to the 

hydroxyl oxygen of a serine or threonine amino acid residue. O-Man may then be extended by 

the addition of other monosaccharides and functional groups to form a variety of glycan 

structures. 

Based on the aforementioned information, it is clear as to the importance of the 

applications of O-mannose glycosylated Fmoc amino acids. Herein, its synthetic approach using 

microwave methodology and conventional methods are reported.  
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1.3 Expected Results  

One of the keys to successful preparation of glycopeptides is the acquirement of well-

defined and suitable quantities of glycosylated Fmoc amino acid building blocks. Given the 

advantages microwave methodology has over conventional methods—rapid reactions, high 

purity of products, few by-products, improved yields, etc.—it is expected that the microwave-

assisted glycosylation of serine and threonine will provide greater results (higher purity and 

greater yields) than the conventional method. The microwave methodology was to be tested first 

followed by the conventional method. A synthetic plan was drawn for the microwave-assisted 

glycosylation of serine (Figure 2) and threonine (Figure 3) and for the conventional 

glycosylation of serine (Figure 4) and theronine (Figure 5). 

1.3.1 Scheme of O-Mannose attached Fmoc-serine (microwave) 

Figure 2 Fmoc-Serine (Microwave) 

 

1.3.3 Scheme O-Mannose attached Fmoc-Threonine (microwave) 

Figure 3 Fmoc-Threonine (Microwave) 
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1.3.4 Scheme of O-Mannose attached Fmoc-serine (conventional) 

Figure 4  Fmoc-serine (conventional) 

 

1.3.5 Scheme of O-Mannose attached Fmoc-Threonine (conventional) 

Figure 5 Fmoc-Threonine (conventional) 
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1.4     EXPERIMENT 

1.4.1 Microwave-assisted synthesis of Glycosylated Serine and Theronine. 

After the plan was drawn for the microwave-assisted synthesis of serine, the protected 

mannose sugar needed to be synthesized. Mannose’s unique individuality compared to the other 

sugars lies in its structure. As illustrated in Figure 1, the second position hydroxyl group is in an 

axial conformation. All other sugars have the second position hydroxyl group in an equatorial 

conformation. Mannose is therefore unique in that all reactions predominately produce alpha-

configuration products. However due to its neighboring participation effect, mannose needs to be 

protected in order to prevent side products from forming. One of the most commonly used 

techniques involves the acetylation of the entire molecule (peracetylation). According to the 

mechanism illustrated in Figure 6, commercially available mannose 1 is protected using acetic 

anhydride in pyridine in the presence of a catalyst. The overnight reaction in room temperature 

affords the protected mannose 2 in approximately 95% yield. Dichloromethane is introduced to 

2, dissolving the sugar. Portions of the previous solution are introduced into microwave vials and 

added Fmoc-serine and Boron trifluoride diethyl etherate (BF3 Et2O). The sealed vial was heated 

to a variety of degrees over a variety of minutes—to find the optimal reaction conditions—in a 

microwave reactor to give the desired product in a low yield of less than 30%. 

The synthetic steps for the microwave-assisted synthesis of glycosylated threonine are the 

same for serine except that the amino acid Fmoc-theronine was substituted for Fmoc- serine 

during the addition to the microwave vial. The results were similar however with low yields of 

less than 30%.  

1.4.2 Mechanism of Fmoc-serine synthesis 

Figure 6 Mechanism of Fmoc-serine Synthesis 
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1.4.3 Conventional synthesis of Glycosylated Serine and Threonine 

Conventional synthesis of glycosylated serine and threonine, much like the microwave-

assisted synthesis, begins with the peracetylation of mannose. The peracetylated mannose was 

dissolved in DCM and added Fmoc-serine and BF3 Et2O. This mixture was allowed to stir at 

room temperature for 21 hours yielding the desired product at an improved 60% yield.   
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1.5 RESULTS 

Utilizing identical methods the Lam group previously reported, the glycosylated Fmoc 

amino acid serine was successfully synthesized. Unfortunately, however, the yields reported 

were far from satisfactory. During the microwave-assisted glycosylation, a variety of 

temperatures and reaction times were used (Table 1). Thin Layer Chromatography (TLC) was 

performed after each reaction. TLC analysis showed similar results with each trial yielding an 

average of 28% of the desired product. The first trial had the highest yield of 30%. The resulting 

glycosylated amino acids (conventional and microwave) were analyzed and characterized using 

NMR and mass spectrometry for their purity and confirmation of structure (Figures 7-11). 

Furthermore, the conventional synthesis NMR spectrums appear more defined and pure 

compared to the microwave-assisted synthesis NMR spectrums.    

1.5.1 Proton NMR Glycosylated Serine-microwave 

Figure 7 Proton NMR Glycosylated Serine-microwave 
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1.5.2 Carbon NMR Glycosylated Serine-microwave 

Figure 8 Carbon NMR Glycosylated Serine-microwave 

 

1.5.3 Mass Spectrometry (ESI) Glycosylated Serine-microwave 

Figure 9 Mass Spectrometry (ESI) Glycosylated Serine-microwave 
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1.5.4 Proton NMR Glycosylated Serine-conventional 

Figure 10 Proton NMR Gyycosylated Serine-conventional 

 

1.5.5 Carbon NMR Glycosylated Serine-conventional 

Figure 11 Carbon NMR Glycosylated Serine-conventional 
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Table 1Microwave Reaction Conditions 

1.5.6 Table.  Microwave Reaction conditions 

Reaction Time Temperature Yield 

1 5 mins 100
o
C 30% 

2 10 mins 100
 o

C 29% 

3 5 mins 90
 o

C No reaction 

4 10 mins 90
 o

C No reaction 
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5 5 mins 120
 o

C 28% 

6 10 mins 120
 o

C 28%                            

 

1.6 DISCUSSION 

With microwaves, superheating is performed in closed vessels under high pressure and 

reactions that may have taken several hours under conventional conditions can be completed 

within minutes with microwaves.  High-pressure chemistry should only be conducted in special 

reactors with a microwave oven that is specifically designed for this purpose.  Without 

microwave irradiation, many chemists could only obtain by-products.  The Shimizu group could 

not have obtained trisaccharide at any temperature without microwave irradiation; however, at 

low temperatures with microwave irradiation, their hydroxyl groups reacted and gave the Lewis 

X derivative (Figure 10) they desired.31 In a study by the Bornaghi group, remarkable 

acceleration of the glyocosylation reactions (minutes compared to hours) over conventional 

reflux heating was observed with good yields and production of the α-glycoside as the dominant 

product.4   

Although the Lam group’s previous report claimed to have improved yields when using 

microwave methodology to glycosylate Fmoc amino acids using several sugar donors, this study 

does not support the notion that microwave methodology is a more efficient means of 

synthesizing glycosylated Fmoc amino acids using mannose as the sugar donor. Looking back at 

Figure 6, it is possible to hypothesize why using mannose, as a sugar donor was unsuccessful. 

The introduction of the Lewis acid allows for a neighboring group participation effect that forms 

a “barrier” that prevents any attack from above from the Fmoc amino acid to form beta-products. 
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However, it is hypothesized that the use of the microwave reactor—due to the high temperatures 

and fast reaction time—somehow skips the protective “barrier” step and ultimately allows for 

more attacks from above, provides a greater mix of alpha- and beta-products.    

1.7 CONCLUSION 

In this study, glycosylated Fmoc amino acid serine was successfully synthesized using 

microwave methodology and conventional methods. Microwave methodology is a new technique 

that utilizes superheating of substances within a sealed vial.  Although it has been proven to 

increase purer and greater yields than conventional methods in many other studies, in this study, 

microwave methodology was proven not to be a universal technique for improving yield. The 

microwave-assisted synthesis of glycosylated amino acids resulted in a poor yield less than 30% 

while conventional methods yielded a moderate yield of approximately 60%. 
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2 Efficient synthesis of glycosphingolipids using N-phenyltrifluoroacetimidates as a 

leaving group  

2.1 INTRODUCTION 

Sphingolipids are a class of lipids that contain a backbone of sphingoid bases. There are 

many different types and derivatives of sphingolipids but they all share a common sphingoid 

base. The sphingosine backbone was named by J. L. W. Thudichum in 1884 for its enigmatic, 

“Sphinx-like” properties.32 The term “sphingolipid” was later introduced by Herbert Carter—an 

American biochemist and educator—and colleagues in 1947.33 Sphingoid bases are long-chain 

aliphatic compounds typically possessing a 2-amino-1,3-diol functionality.34  The long-chain 

sphingoid bases are defined by their foundation of 18 carbon atoms. 

The biosynthesis of sphingolipids occurs in the endoplasmic reticulum (ER) (Figure 12). 

Ceramides are considered to be the core of sphingolipid metabolism. Generally, the de novo 

pathway of its synthesis begins with the condensation of the amino acid serine and palmitoyl-

CoA catalyzed by the enzyme palmitoyl transferase to generate 3-keto-dihydrosphingosine 

(KDS).35 KDS is then reduced to form dihydrosphingosine (DHS) which is N-acylated to form 

dihydroceramide. A double bond is introduced to the DHS base that converts dihydroceramide 

into ceramide. The newly synthesized ceramide is then transported to the Golgi apparatus where 

it is converted to sphingomyelin (SM) and glucosylceramide (GluCer).35 Sphingomyelin is an 

ever-present component of animal cell membranes, comprising about 50% of the lipids in certain 

tissues and makes up about 10% of the lipids of the brain.36 Sphingomyelin is therefore the most 

abundant sphingolipid. Glucosylceramide belongs to a class of sphingolipids called 

glycosphingolipids that display variations in their carbohydrate head groups and are organized in 
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signaling domains on the cell surface.37 Ceramides can also be synthesized and deacylated to 

give sphingosine through the recycling of higher-order sphingolipids in the plasma membrane.35 

2.1.1 Figure 12: Biosynthesis of a sphingolipid 

Figure 12 Biosynthesis of a sphingolipid 

 

 

Sphingolipids are important structural and functional components of essentially all 

eukaryotic cells. They have critical roles in many physiological processes including cell 

recognition, adhesion, and signaling.33 Ceramides—a class of sphingoid bases containing an N-
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acetyl group—along with the sphingolipid derivative sphingosine-1-phosphate (S1P), have also 

been implicated as modulators of autophagy, angiogenesis, intracellular trafficking, stress, and 

inflammatory responses.38 Additionally, ceramide and S1P often exert opposing functions in the 

cell. For example, ceramide has been shown to mediate cell cycle arrest and apoptosis and S1P 

has been shown to advance cell survival and proliferation.33,38 Current researchers’  

understanding of the sphingoid base signaling pathways(s) of exactly which molecules affect 

which targets is in the early stage.  A more thorough understanding of these pathways will 

provide important insight into how sphingolipids are involved in cell regulation, and 

improvements in targeting effective pathways for therapeutics and chemoprevention.39 

Glycosphingolipids (GSLs) are a subclass of glycolipids composed of a long chain amino 

alcohol, known as a sphingoid base, a fatty acid residue linked to its amino group; together, the 

resulting amide is called a ceramide.40 A carbohydrate chain is attached to the primary hydroxy 

group of the ceramide Figure 13.  

Figure 13: structure of glycosphingolipid 

Figure 13 Structure of Glycosphingolipid 
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Glycosphingolipids are found in the plasma membrane of all cells in “higher” animals 

and comprise from less than 5% to more than 20% of the membrane lipids.41 GSLs have been 

known for many years to function in animal cells as antigens, receptors for microbial toxins, and 

many other biological functions including mediators of cell adhesion and modulators of signal 

transduction.42 Additionally, specific events are associated with specific glycosphingolipids. For 

example, β-galactosyl ceramide (β-GalCer) is known to act as a ligand for the HIV-1 viral 

glycoprotein gp120,43 mediating viral entry into epithelial cells. Glycosphingoipid storage 

diseases are rare diseases that lead to the accumulation of glycosphingolipids in lysosomes. They 

are generally a result from mutations in glycosidases and from mutations in activator proteins. 

The most common glycosphingolipid storage disease, the Gaucher’s disease, is caused by 

mutations in the enzyme β-glucocerebrosidase that results in the accumulation of GlcCer—a 

glycosphingolipid—in the liver, spleen, and other tissues.41  

Several factors contribute to the dilemma sourrounding glycosphingolipids and their 

importance to research. Firstly, they are complex in structure. Their structural variety and 

complex patterns present challenges for their elucidation and quantification by mass 

spectrometric techniques.44 Second, because they are complex in structure, they are rather 

difficult and expensive to extract from natural sources. Furthermore, GSLs extracted from 

natural sources are limited in quantity and quality; glycosphingolipids extracted from natural 

sources are impure. As a solution, scientists have turned to chemical synthesis for the 

acquirement of well-defined and pure compounds. 

2.2 Purpose of Study 

The retrosynthetic analysis of glycosphingolipids requires three parts: a sphingoid base, a 

fatty acid, and a carbohydrate donor (Figure 14).  
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Figure 14 Retrosynthetic Analysis 

 

Figure 14: Retrosynthetic analysis 

The key component of the glycosphingolipid is the sugar donor. There are numerous 

glycosylation methods that involve different glycosyl donors. Figure 15 contains a list of sugar 

donors commonly used in carbohydrate synthesis. Unfortunately, these donors are not ideal, as 

they have been reported to produce by-products, to be easily decomposed, to produce poor 

yields, or to have slow reaction times. 



28 

Figure 15  Common Sugar Donors 

 

Figure 15: Common sugar donors 

In order to efficiently synthesize a glycosphingolipid, an alternate glycosyl donor is 

needed. A previous study by the Liu group has reported on a donor that is able to effectively 

synthesize a glycosphingolipid.45 The proposed glycosyl donor used in this study is a 

benzoylated lactopyranosyl trichloroacetimidate (Figure 16) that utilizes an N-

phenyltrifluoroacetimidate as a leaving group. Glycosyl trifluoroacetimidates’ accessibility, 

stability, and activity have been proven to be comparable with those of the corresponding 

glycosyl trichloroacetimidate donors.46 In this study, the glycosyl trifluoroacetimidate is readily 

prepared and is used as a glycosyl donor. Herein, the sugar donor synthesis, the sphingolipid 

synthesis, and its glycosylation are reported. 
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Figure 16  Benzoylated lactospyranosyl trichloroacetimidate 

 

Figure 16: Benzoylated lactospyranosyl trichloroacetimidate 

 

2.3 Expected Results 

It is expected that through the addition of a diazotransfer reagent, the target sphingolipid 

(azidosphingolipid) will be synthesized followed by its glycosylation to the benzoylated 

lactopyranosyl trichloroacetimidate (N-phenyltrifluoroacetimidate) sugar donor, to effectively 

synthesize the desired glycosphingolipid. 

2.4 Experiment 

2.4.1 Synthesis of azidosphingosine 

One of the keys to successful preparation of sphingolipids is the acquirement of 

appropriate sphingoid bases (Figure 17). The strategy to achieve the desired product is based on 

the use of a cyclic sulfate for the regio- and stereoselective transformation of the 4-position 

hydroxyl group of phytosphingosine into the characteristic 4,5-trans double bond of sphingosine. 

The advantage of this strategy is the elimination of a need for selective activation of only one 

vicinal hydroxyl group. Synthesis begins with the conversion of an amine from inexpensive and 

commercially available phytosphingosine to an azide through the addition of 

trifluoromethanesulfonyl azide (TfN3) with potassium carbonate (K2CO3). This step is also 

considered to be a protection reaction of the amino function and primary hydroxyl group of 

phytosphingosine. The next step is to selectively protect its silyl ether. This is carried out through 
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the addition of tert-butyl(chloro)diphenylsilane (TBDPSCl) in the presence of a catalyst and 

triethylamine (Et3N). Then the 3,4-vicinal diol is converted though its cyclic sulfite with thionyl 

chloride (SOCl2) in the presence of Et3N. The reaction is then followed by oxidation with 

ruthenium chloride (RuCl3) and sodium periodate (NaIO4) to provide the cyclic sulfate. The 

cyclic sulfate is then treated with tetra-n-butylammonium iodide (Bu4NI) in tetrahydrofuran 

(THF) which opens the ring. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) is added and the 

reaction temperature is raised to reflux. This treatment is followed by acidic hydrolysis which 

successfully yields the desired product. The final step involves the removal of the silyl group by 

treatment with tetra-n-butylammonium fluoride (TBAF) in THF. 

2.4.2 Figure 17: Synthesis of azidosphingosine 

Figure 17 Synthesis of azidosphingosine 

 

 

2.4.3 Synthesis of Diazotransfer reagent 1—Trifluoromethanesulfonyl azide (TfN3) 

Perhaps the most essential step in the sphingolipid synthesis lies in the addition 

diazotransfer reagent. This reagent allows for the conversion of an amine to an azide. TfN3 is not 

commercial available and thus needs to be synthesized. Fortunately the preparation is fairly 

simple. Sodium azide (NaN3) in water is cooled to 0 oC and treated with dichloromethane (DCM) 



31 

and the resulting biphasic solution is treated with Trifluoromethanesulfonic anhydride (Tf2O). 

The solution is then extracted with DCM. Tf2O is a dangerous reagent in that it is highly 

explosive and needs to be kept in solution.  

2.4.4 Synthesis of Diazotrasnfer reagent 2—Imidazole-1-sulfonyl Azide 

Because of the explosive potential of TfN3,a new diazotransfer reagent was sought out 

and synthesized—one that is significantly less dangerous but still as effective to use.  Imidazole-

1-sulfonyl Azide is such a reagent. Synthesis begins with the addition of sulfuryl chloride to 

imidazole in DCM. After the reaction is completed it is filtered, concentrated, and purified 

through recrystallization. The resulting solid in DCM is added methyl triflate. After the reaction 

completes it is filered and dried to give a triflate salt. The salt is then dissolved and added NaN3. 

When the reaction completes, the organic phase is extracted and can be used directly in the azide 

conversion reaction. 

2.4.5 Synthesis of a Glycosphingolipid 

The glycosylation of azidosphingosine is illustrated in Figure 18-(3). The secondary 

hydroxyl group of azidosphingosine is protected using benzoyl chloride (BzCl); after which, the 

primary hydroxyl group is deprotected. This is because the glycosylation with occur on the 

primary hydroxyl group. Lactose is then perbenzoylated followed by the selective deprotection 

of the primary benzoyl group. The newly synthesized sugar 10 reacts with 2,2,2-Trifluoro-N-

phenylacetimidate to yield compound 11, which is then combined with the sphingoid base 7 to 

afford the protected glycosphingosine 12. The sugar is then to be deprotected yielding the 

desired product 13. 
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2.4.6 Figure 18: Final synthesis of azidosphingosine (1), preparation of the glycosyl 

donor (2). Glycosylation of azidosphingosine (3) 

Figure 18 Final synthesis and Glycosylation of azidosphingosine 

 

 

2.5 Results 

The synthesis of azidosphingosine proved to be somewhat of a challenging experience. 

Several small-scale reactions were attempted in its synthesis. The majority of the reactions 

stemmed from the TfN3 route. The Imidazole-1-sulfonyl Azide route proved to be a safer 

alternative, however, it was more time consuming and was much more depended on the 
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homogeneous mixture of ethyl acetate and water to successfully convert the amine to an azide. 

Therefore the TfN3 route was the preferred route to synthesize the azidosphingosine.  

Once appropriate amounts of azidosphingosine were synthesized, preparation of the sugar 

donor was successfully achieved at 99% yield. The glycosylation of the azidosphingolipid that 

followed resulted in 80% of the desired product proving that the proposed donor is an effective 

donor for glycosylation. Characterization of the glycosphingolipid was carried out through NMR 

analysis.  

 

2.6 DISCUSSION 

Each step was analyzed through NMR to confirm the existence of the desired product. 

In order to achieve the final compound 11 shown in Figure 18-(3), sufficient amounts of 

the starting material 7 needed to be acquired.  However, this was a difficult task to accomplish 

due to the first and last reactions. The first reaction is the conversion of an amine from 

phytosphingosine to an azide through the addition of a diazotransfer reagent. This is quite 

possibly the most important step in the entire reaction. Without the appropriate amount or the 

appropriate concentration of the diazotrasnfer reagent, the resulting azide will not form. As 

stated in the experimental section, there were two individual diazotransfer reagents I have 

attempted to use for this step. The first is TfN3 (trifluoromethanesulfonyl azide) and the other is 

an imidazole azide. Both are effective as diazotransfer reagents but they each differ significantly 

in the amount of danger they each pose. 

Azides are not the safest reagents to use. TfN3 is especially dangerous because it is 

explosive when condensed or gets too dry, however, I was still able to successfully synthesize it 

on a small-scale. Figure 19 illustrates the comparison of the two diazotransfer reagents used. As 
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you can see, TfN3’s synthesis is extremely simple. Triflouromethanesulfonyl anhydride reacts 

with sodium azide in DCM to yield the desired product. However, keep in mind that the 

drawback is that it is pretty explosive when condensed.  

2.6.1 Figure 19: Comparison of TfN3 and Imidazole-1-sulfonyl Azide 

Figure 19 Comparison of TfN3 and Imidazole-1-sulfonyl Azide 

 

 

The small-scale synthesis continued without issue but afforded little product in the end to 

continue to the next phase of the experiment. For the second attempt at synthesizing more 

starting material, I was primarily concerned with a safer alternative to using a diazotransfer 

reagent and that’s when I was led to the imidazole-1-sulfonyl azide. Figure 4 is an old diagram 

and has long since been updated and improved to the effect that there is no highly explosive and 
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toxic by-products; however, it is the general scheme for the synthesis of the diazotransfer 

reagent. 

Figure 20 illustrates the updated and improved synthetic route developed by Dr. Peng 

George Wang.42 In this scheme imidazole reacts with sulfuryl chloride in DCM to yield this 

product 2 (sulfuryldiimidazole) which then reacts with methyl triflate to form this triflate salt 

intermediate 3. The triflate salt is dissolved in water and added ethyl acetate and sodium azide to 

yield the desired product. The reaction was just as successful as TfN3 but took longer to achieve. 

Another small-scale reaction was successful but too little of the desired product was produced 

and the process had to be repeated once more. 

2.6.2 Figure 20: Synthetic Scheme of Imidazole-1-sulfonyl Azide 

Figure 20 Synthesis Scheme of Imidazole-1-sulfonyl Azide 

 

 

Further attempts were conducted on a large-scale reaction using TfN3 as the diazotransfer 

reagent.  Similarly in my experiment, the large-scale reactions proved to be just as successful as 

the small-scale reactions until the final step—removing the cyclic sulfate ring.  TfN3, known to 

be unstable is also potentially explosive and difficult to isolate, which hinders its use in high 

purity.43  

After purifying the last step of the first attempted large-scale reaction, what had in 

previous small-scale reactions been an 85% yield for the desired product, became a 30% yield. 

The sudden degeneration of product was perplexing and another large-scale reaction was 

attempted to achieve a greater yield. Unfortunately, the same result was yielded. The proper 
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procedure for conducting reactions, especially those that are done for the first time or have a 

degree of uncertainty about, is to use a portion of what was synthesized before and to use TLC to 

check and determine the appropriate eluting system. Because the small-scale reactions had been 

successful, additional experiments were attempted using larger amounts of reagents without 

checking TLC for choosing an eluting system for purification. Up until the final step, this 

method had served well and so the problem was sure to be associated with the purification 

method. 

After another failed attempt at producing high yields of the desired product, the reaction 

was attempted once more but included checked the TLC before purifying the last reaction. It was 

determined that the problem did not lie in the purification but in the reaction itself. TLC analysis 

showed that the product existed; however, there was a major product other than the desired 

product that was identified, confirming that the previous reaction had failed.  

At the time of this discovery, time did not allow for a recreation of the experiment. 

Therefore, the acceptor sphingolipid previously synthesized by a fellow lab member was used in 

the glycosylation procedure.  

2.7 CONCLUSION 

Azidosphingosine was successfully synthesized and NMR analysis was conducted to 

prove the existence and purity of the final product. Diazotransfer reagents are important 

components in the azidosphingosine synthesis and if synthesized and handled with care, will 

provide the desired products. The glycosylated sphingosine (glycosphingolipid) was successfully 

achieved with good yields of 80%, proving that the proposed donor is an effective donor in the 

glycosylation of sphingolipids. 
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APPENDICES  

Appendix A 

General Procedures 

All reagents and solvents used were purchased from commercial sources and used 

without further purification. Analytical TLC was carried out on silica gel 60 F254 aluminum-

backed plates (E. Merck). The 200–400 mesh size of the same absorbent was utilized for all 

chromatographic purifications. Unless noted, all compounds isolated by chromatography were 

sufficiently pure by 1H NMR analysis for use in subsequent reactions. Proton nuclear magnetic 

resonance (1H NMR) spectra and carbon-13 (13C NMR) spectra were recorded on a Bruker DPX 

400 spectrometer at 400 MHz and 100 MHz respectively. Chemical shifts and coupling constants 

were reported in ppm and Hz respectively.  

Peracetylation of Mannose (2) 

To a solution of mannose 1 (1.00 g) and pyridine (10 mL) was added Ac2O (5 mL). As a 

catalyst, DMAP (0.067 g) was added and the reaction mixture was stirred, under nitrogen, 

overnight.After TLC confirmed the starting material was consumed, the mixture was neutralized 

with HCl (10 ml HCl in 50 ml DI water) and extracted with DCM. The DCM layer was dried 

over Na2SO4, concentrated and purified to afford the desired product 2 (2.1 g, 95%) as a slight-

yellow oil: 1H NMR (CDCl3, 400 MHz) δ 2.02 (s, 3H), 2.07 (s, 3H), 2.12 (d, J=3.6 Hz, 3H), 2.19 

(d, J=3.2 Hz, 3H), 2.23 (s, 1H), 3.82 (m, 1H), 4.04-4.13 (m, 1H), 4.17 (dd, J=2.6 Hz, 1H), 4.28-

4.34 (m, 1H), 5.14 (dd, J=3.4 Hz, 1H), 5.28 (d, J=2.0 Hz, 1H), 5.33-5.37 (m, 1H), 5.50 (d, J=2.4 

Hz, 1H), 5.87 (s, 1H) 6.10 (d, J=2.0 Hz, 1H), 7.28 (s, 1H). 

Microwave Assisted Synthesis of Glycosylated Serine 
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To make the microwave synthesis more convenient, 2 was dissolved in DCM (64 ml). 

Every 3 ml extraction represented 100 mg of compound. To a 3 ml extraction of solution in a 5 

ml microwave vial was added Fmoc-serine (65 mg) and 3 ml of DMC and BF3 Et2O (0.285 ml). 

The vial was sealed and heated to 100 oC for 5 mins in a microwave reactor. TLC confirmed the 

existence of the desired product, however, there were other major products present as well. The 

mixture was filtered and concentrated under reduced pressure and purified to yield the desired 

product 3 (39 mg, 30%) as a slightly-yellow oil: 1H NMR (MeOH-d4, 400 MHz) δ 0.87 (t, J=4.0 

Hz, 1H), 1.27 (s, 3H), 1.97 (s, 11H), 4.06-4.15 (m, 8H), 4.87 (s, 1H), 5.15 (s, 3H), 7.60 (dd, 

J=12.6, 7H). 13C NMR (MeOH-d4, 100 MHz) δ 14.1, 20.6, 29.7, 47.0, 48.2, 60.4, 119.9, 127.1, 

127.6, 141.2, 171.2, 173.7; ESI FTMS: m/z calcd for C32H35NO14 [M +NH4]
+ 657.2058, found 

656.1974. 

 

Conventional Synthesis of Glycosylated Serine 

To a mixture of Fmoc-serine (130 mg) and 2 (0.200 g) in DMC (8 ml) was added 

BF3(OEt2) (0.57 mL) and the mixture was stirred for 21 h under nitrogen at room temperature. 

The reaction was quenched with sodium bicarbonate (NaHCO3). The resulting solution was 

extracted with DCM, dried with sodium sulfate (Na2SO4), and concentrated under reduced 

pressure. The resulting residue was purified by chromatography (gradient elution DCM/methanol 

5%). NMR and mass-spec analysis were done to confirm the desired product 3 (156 mg, 60%) as 

a slightly-yellow oil: 1H NMR (MeOH-d4, 400 MHz) δ 1.86-2.06 (m, 12H), 3.96-4.46 (m, 9H), 

4.85 (s, 4H), 5.27 (d, J=4.0 Hz, 3H), 7.28 (dd, J=7.0 Hz, 4H), 7.70 (d, J=6.8 Hz, 4H); 13C NMR 

(MeOH-d4, 100 MHz), δ 19.3, 19.4, 19.5, 62.1, 65.8, 66.7, 68.6, 69.3, 98.0, 119.6, 124.9, 125.1, 

126.9, 127.4, 141.1, 143.8, 143.9, 144.1, 156.9, 170.1, 170.2, 171.0.  
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Appendix B 

General Procedures 

All reagents and solvents used were purchased from commercial sources and used 

without further purification. Analytical TLC was carried out on silica gel 60 F254 aluminum-

backed plates (E. Merck). The 200–400 mesh size of the same absorbent was utilized for all 

chromatographic purifications. Unless noted, all compounds isolated by chromatography were 

sufficiently pure by 1H NMR analysis for use in subsequent reactions. Proton nuclear magnetic 

resonance (1H NMR) spectra and carbon-13 (13C NMR) spectra were recorded on a Bruker DPX 

400 spectrometer at 400 MHz and 100 MHz respectively. Chemical shifts and coupling constants 

were reported in ppm and Hz respectively.  

Preparation of Trifluoromethanesulfonyl azide (TfN3)—solution 

A solution of NaN3 (2.011 g, 3.38 mmol) in 5 mL H2O was cooled in an ice bath and 

treated with 8.5 mL DCM. The resulting biphasic solution was stirred vigorously in the ice bath 

and treated with Tf2O (1 mL, 3.38 mmol) over a period of 5 min. The reaction continued to stir 

for 2 hours and was separated. The aqueous phase was extracted twice with DCM. The collected 

organic layers were washed with Na2Co3 and dried with sodium sulfate yielding approximately 

20 mL of solution. The solution was used directly without further purification. 

Preparation of Imidazole-1-sulfonyl Azide  

To the solution of imidazole 1 (20 g, 0.294 mol) in DCM (160 mL) was added sulfuryl 

choride (5.00 mL) in DCM (30 mL) at 0 oC dropwise. The mixture was stirred at room 

temperature overnight. TLC confirmed the reaction was complete and the mixture was filtered. 

The filtrate was evaporated under reduced pressure. The crude product (N,N’-

Sulfuryldiimidazole 2) was then recrystallized in 40 mL isopropanol to yield the desired product 
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2 (7 g 58%),  as a white solid: 1H NMR (d6-DMSO, 400 MHz), δ 7.23 (s, 2H), 7.91 (s, 2H), 8.50 

(s, 2H); 13C NMR (d6-DMSO, 100 MHz), δ 121.1, 134.5, 140.3. 

 To a solution of 2 (1 g) in DCM (10 mL) at 0 oC was added methyl triflate (0.67 mL) 

dropwise for about 15 min. After 2h at 0 oC, the solid was filtered and dried under high vacuum 

to give triflate salt 3 (1.63 g, quantitatively) as a white solid: 1H NMR (D2O, 400 MHz), δ 3.93 

(s, 3H), 7.19 (s, 1H), 7.63 (s, 1H), 7.71 (s, 1H), 8.42 (s, 1H). 

3 (1.63 g) was dissolved in H2O (5.4 mL) at 0 oC. An equal volume of ethyl acetate 

(EtOAc) (5.4 mL) was added and stirred for 30 min. NaN3 (0.46 g) was added slowly and the 

mixture was stirred at 0 oC for 1h. The EtOAc phase was extracted and dried and used for the 

diazotransfer reaction directly. 

Amine to Azide (using TfN3 diazotransfer reagent)—SL 2 

Phytosphingosine 1 (500 mg, 3.38 mmol) was dissolved in 10 mL H2O and treated with 

potassium carbonate (650 mg, 3.38) and CuSO4 hydrate (4.7 mg). To the solution was added 

MeOH (20 mL) and the TfN3 solution (20 mL). More MeOH was added to homogeneity and the 

reaction was stirred for 18 hrs. TLC confirmed starting material had been consumed (eluting 

system: Hexane/EA 1:1). The solution was then concentrated under reduced pressure, diluted 

with ethyl acetate and washed twice with H2O. Solution was dried and concentrated again 

NOTE: When TfN3 was used as the diazotransfer reagent, after being washed twice with 

H2O and concentrating again, the resulting blue-white solid would only dissolve in a mixture of 

DCM and MeOH. It was determined that purification was to be voided and the reaction 

proceeded to the next step. 

Protection of Primary Alcohol—SL 3 
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To a solution of 2 (500 mg, 1.51 mmol) in DCM was added 4-DMAP (9 mg) and 

TBDPS-Cl (0.457 mL) at 0oC. The reaction was allowed to stir for 24 hours. TLC confirmed the 

reaction works however the starting material had not been fully consumed. The reaction was 

allowed to stir under nitrogen for another 24 hours. TLC confirmed with starting material was 

fully consumed and the reaction was diluted with EtOAc (about 20 mL) and in a separatory 

funnel, was washed with brine, then dried over sodium sulfate, concentrated and purified to yield 

the desired product 3 (719 mg, 85%) as a colorless oil: 1H NMR (CDCl3, 400 MHz) δ 0.89 (t, J = 

6.9 Hz, 3H), 1.09 (s, 9H), 1.27 (s, 22H), 1.41-1.60 (m, 2H), 2.17 (br s, 2H), 3.57 (m, 1H), 3.65-

3.71 (m, 2H), 3.92 (dd, J = 5.7, 10.8 Hz, 1H), 4.04 (dd, J = 3.9, 10.8 Hz, 1H), 7.39-7.50 (m, 6H), 

7.69-7.72 (m, 4H); 13C NMR (CDCl3, 100 MHz) δ 14.1, 19.0, 22.6, 25.6, 26.7, 29.3, 29.5, 29.6, 

29.7, 31.6, 31.9, 63.4, 64.2, 72.3, 74.0, 127.8, 129.9, 132.45, 132.53, 135.5, 135.6. 

Generation of a cyclic sulfate—SL 4 

To a solution of 3 (150 mg) in DCM (6 mL) were added triethylamine (107.95 uL) and 

thionyl chloride (22.45 uL) at 0oC. After 30 min, the solution was diluted in EtOAc and washed 

with brine. The organic layer was dried over sodium sulfate and concentrated. The product was 

then dried in vacuo for 3 h and dissolved in DCM;CH3CN;H2O (6 mL, 1:1:1). To the resulting 

solution was added RuCl3 (2.5 mg) and NaIO4 (165.6 mg) and was stirred at RT for 2 h. The 

solution was diluted with EtOAc and washed with sodium thiosulfate. The organic layer was 

dried, concentrated and purified by column chromatography to yield the desired product 4 (148 

mg, 90%) as a colorless oil: 1H NMR (CDCl3, 400 MHz) δ 0.90 (t, J= 6.6 Hz, 3H), 1.11 (s, 9H), 

1.29 (s, 22H), 1.47-1.63 (m, 2H), 1.71-1.80 (m, 1H), 1.88-2.00 (m 1H), 3.70 (ddd, J ) 2.4, 5.1, 

9.9 Hz, 1H), 3.91 (dd, J ) 5.1, 11.4 Hz, 1H), 4.05 (dd, J ) 2.4, 11.4 Hz, 1H), 4.91- 5.03 (m, 2H), 

7.41-7.51 (m, 6H), 7.68-7.72 (m, 4H); 13C NMR (CDCl3, 100 MHz) δ 14.1, 19.1, 22.6, 25.1, 
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26.6, 28.0, 28.9, 29.2, 29.3, 29.4, 29.5, 29.59, 29.61, 29.63, 31.9, 59.1, 63.5, 79.8, 86.4, 127.90, 

127.92, 130.1, 131.9, 132.1, 135.47, 135.50. 

Final Synthesis of Azidosphingosine—SL 5 

To a solution of 4 (148 mg) in toluene (5 mL) were added Bu4NI (86.5 mg) and DBU (50 

uL). The mixture was heated to reflux for 2h. It was cooled to room temperature and to it were 

added H2SO4 (10 uL), H2O (10 uL) and THF (150 uL). The mixture was stirred overnight at 

room temperature and diluted with EtOAc. The mixture was washed with sodium bicarbonate 

and brine. The collected organic layers were dried, concentrated and purified to yield the desired 

product (8 mg, 6%) as a colorless oil. 1H NMR (CDCl3, 400 MHz) δ 0.90 (t, J = 6.9 Hz, 3H), 

1.09 (s, 11H), 1.28 (s, 17H), 1.31-1.33 (m, 2H), 2.02-2.07 (m, 2H), 3.52 (td, J = 1.2, 5.1 Hz, 1H), 

3.8 (dd, J = 4.5, 11.1 Hz, 1H), 4.1 (dd, J = 6.6, 11.1 Hz, 1H), 4.24 (t, J = 6.0 Hz, 1H), 5.43 (tdd, J 

= 1.2, 6.9, 15.3 Hz, 1H), 5.75 (dtd, J = 0.9, 7.8, 15.3 Hz, 1H), 7.40-7.47 (m, 6H), 7.68-7.75 (m, 

4H). 

Protection of 3-position hydroxyl group—SL 6 

To a solution of 5 (84 mg) in pyridine (10 mL) were added Benzoyl Chloride (45 uL) and 

DMAP (3mg). The mixture was allowed to stir overnight at rt and was diluted with ethyl acetate, 

washed with HCl, sodium bicarbonate, and brine and dried over Na2SO4. The resulting liquid 

was concentrated under reduced pressure and purified to yield the desired product 6 (72 mg, 

72%) as a colorless oil: 1H NMR (CDCl3, 400 MHz),  δ 0.91 (t, J=8.0 Hz, 3H), 1.11 (s, 8H), 1.28 

(s, 22H), 2.03-2.08 (m, 2H), 3.78 (d, J=4.8 Hz, 1H), 3.82-3.88 (m, 1H), 5.50-5.56 (m, 1H), 5.70 

(t, J=8.0 Hz, 1H), 5.89-5.96 (m, 1H), 7.33-7.48 (m, 6H), 7.58-7.72 (m, 4H), 8.04 (d, J=7.6 Hz, 

1H). 

Deprotection of TBDPSO—SL7 
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To a solution of 6 (72 mg) in THF (3 mL) was added TBAF (1.5 eq, 162 uL) and was allowed 

to stir overnight. After TLC confirmed the starting material had been consumed, the solution was 

diluted with ethyl acetate, washed with HCl, sodium bicarbonate, and brine and dried over 

Na2SO4. The resulting liquid was concentrated under reduced pressure and purified to yield the 

desired product 7 (13 mg, 28%) as a colorless oil: 1H NMR (CDCl3, 400 MHz), δ 0.90 (t, J=6.4 

Hz, 3H), 1.27 (s, 20H), 1.40 (t, J=6.8 Hz, 2H), 2.07-2.12 (m, 2H), 3.81-3.85 (m, 1H), 2.45-4.29 

(m, 1H), 4.41-4.46 (m, 1H), 4.55 (dd, J=3.8 Hz, 1H), 5.55-5.61 (m, 1H), 5.82-5.89 (m, 1H), 7.42 

(td, J= 1.6, 8.0 Hz, 3H), 7.61 (t, J=7.6 Hz, 1H), 7.74 (dd, J=1.6 Hz, 1H), 8.08 (d, J=8.8 Hz, 2H); 

13C NMR (CDCl3, 100 MHz), δ 26.5, 29.1, 29.3, 31.9, 32.3, 64.2,64.8, 72.6, 127.2, 128.5, 129.8, 

133.3, 132.8, 136.4, 166.3. 

Perbenzoylation of Lactose—SL 9 

To a solution of lactose 8 (2g, 1 eq) in pyridine (15 mL) were added BzCl (7.8 mL, 12 

eq) and DMAP (71 mg, 0.1 eq). The reaction was allowed to stir overnight and was diluted with 

ethyl acetate, washed with HCl, sodium bicarbonate, and brine and dried over Na2SO4. The 

solution was concentrated under reduced pressure and purified to yield the desired product 9 (5.2 

g, 73%) as a white solid. 1H NMR (CDCl3, 400 MHz), δ 3.76-3.78 (m, 1H), 3.80-3.91 (m, 1H), 

4.14, (q, J=7.2 Hz, 1H), 4.30-4.26 (m, 1H), 4.56 (s, 1H), 4.91 (dd, J=8.0 Hz, 1H), 5.37-5.40 (m, 

1H), 5.61-5.64 (m, 1H), 5.75-5.80 (m, 1H), 6.14-6.24 (m, 1H), 7.20-7.65 (m, 16H), 7.75 (d, 

J=7.6 Hz, 1H), 7.88-7.92 (m, 1H), 7.99-8.06 (m, 3H). 

Deprotection of Primary Alcohol—SL 10 

To a solution of 9 (5.2 g, 1 eq) in DMF (20 mL) was added hydrazine (618 mg, 1.5 eq). 

The reaction was allowed to stir overnight at rt and washed with water and brine. The organic 

layer was collected and dried over Na2SO4, concentrated, and purified to yield the desired 

product 10 (3.7 g, 78%) as a white solid: 1H NMR (CDCl3, 400 MHz), δ 3.81-3.94 (m, 3H), 
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4.11-4.17 (m, 1H), 4.24-4.29 (m, 1H), 4.39-4.42 (m, 1H), 4.51-4.63 (m, 2H), 4.93 (dd, J=8.0 Hz, 

1H), 5.26 (dd, J=3.6 Hz, 1H), 5.40-5.44 (m, 1H), 5.73-5.78 (m, 2H), 6.16 (t, J=9.6 Hz, 1H), 7.18-

7.25 (m, 2H), 7.28-7.50 (m, 8H), 7.57-7.64 (m, 3H), 7.75 (d, J=7.2 Hz, 1H); 13C NMR (CDCl3, 

100 MHz), δ 14.2, 21.1, 60.4, 61.1, 62.2, 67.5, 68.5, 69.9, 71.3, 71.8, 72.0, 76.0, 90.3, 101.0, 

128.2, 128.4, 129.6, 129.7, 130.0, 133.3, 133.4, 164.8, 165.3, 165.6. 

Synthesis of SL-11 

To a solution of 10 (500 mg, 1 eq) in acetone (10 mL) were added K2CO3 (193 mg, 3 eq) 

and 2,2,2-Trifluoro-N-phenylacetimidate ( 0.4 mL, 6 eq). The reaction was allowed to stir overnight 

at rt. The solution was filtered, concentrated, and purified to yield the desired product 11 (516 mg, 

99%) as a white solid: 1H NMR (CDCl3, 400 MHz) δ 3.85-3.88 (m, 3H), 4.02-4.05 (m, 3H), 4.32-

4.39 (m, 3H), 4.58 (s, 3H), 5.01-5.13 (m, 2H), 5.35 (dd, J=3.2 Hz, 1H), 5.49-5.53 (m, 2H), 5.68 

(d, J=3.2 Hz, 1H), 5.80-5.85 (m, 4H), 6.25 (t, J=9.6 Hz, 1H). 

NOTE: Because there is a mixture of alpha and beta products in the NMR spectrum, it is difficult to 

identify individual chemical shifts. 

Glycosylation of a sphingolipid 

To a solution of 11 (100 mg, 1.5 eq) and 7 (23 mg, 1 eq) in DCM (10 mL) was added 

molecular sieves. The mixture was allowed to stir for 5 mins and then cooled in an acetone/dry ice 

bath to -20 oC. TMSOTf (4 uL) was then added dropwise and the solution was allowed to stir 

overnight. The mixture was filtered, concentrated and purified to yield the desired product 12 (63 

mg, 80%) as a clear liquid; 1H NMR (CDCl3, 400 MHz): δ 7.15–8.01 (40 H), 5.82 (t, J=9.1 Hz, 

1H), 5.69–5.75 (m, 2 H), 5.69 (dt, J =15.2, 6.8 Hz, 1H), 5.49–5.53 (m, 3H), 5.39–5.44 (m, 2H), 

4.89 (d, J=7.8 Hz, 1H), 4.75 (d, J=7.8 Hz, 1H), 4.58 (dd, J=12.3, 1.8 Hz, 1H), 4.48 (dd, J=12.3, 

4.1 Hz, 1H), 4.29 (t, J=9.7 Hz, 1H), 3.90–3.92 (m, 2 H), 3.85–3.87 (m, 2 H), 3.70–3.75 (m, 2H), 

3.54–3.57 (m, 1H), 1.87–1.90 (m, 2H), 1.32 – 1.34 (m, 2H), 1.20 – 1.25 (m, 20H), 0.88 (t, J= 6.8 
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Hz, 3H); 13C NMR (CDCl3): δ 165.8, 165.5, 165.4, 165.3, 165.2, 165.0, 164.9, 164.8, 138.9, 

133.5, 133.4, 133.3, 133.2, 133.0, 128.2–129.9, 122.3, 100.9, 100.7, 75.8, 74.7, 73.0, 72.8, 71.7, 

71.5, 71.3, 69.8, 68.2, 67.5, 63.3, 62.2, 61.0, 46.3, 32.2, 31.9, 22.5–29.6, 22.6, 14.1. 

 

1H and 13C NMR 

1H NMR S2-1 

Figure 21 Proton NMR S2-1 

 

13C NMR S2-1 

 

Figure 22 Carbon NMR S2-1 
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1H NMR S2-2 

Figure 23 Proton NMR S2-2 
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13C NMR S2-2 

Figure 24 Carbon NMR S2-2 

 

1J NMR SL-3 

Figure 25 Proton NMR SL-3 
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1H NMR SL-4 

Figure 26 Proton NMR SL-4 

 

13C NMR SL-4 

Figure 27 Carbon NMR SL-4 
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1H NMR SL-5 

Figure 28 Proton NMR SL-5 

 

13C NMR SL-5 

Figure 29 Carbon NMR SL-5 
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1H NMR SL-6 

Figure 30 Proton NMR SL-6 

 

13C NMR SL-6 

Figure 31 Carbon NMR SL-6 
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1H NMR SL-7 

Figure 32 Proton NMR SL-7 

 

13C NMR SL-7 

Figure 33 Carbon NMR SL-7 
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1H NMR SL-9 

Figure 34 Proton NMR SL-9 

 

13C NMR SL-9 

Figure 35 Carbon NMR SL-9 

 



59 

1H NMR SL-10 

Figure 36  Proton NMR SL-10 

 

13C NMR SL-10 

Figure 37 Carbon NMR SL-10 
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1H NMR SL-11 

Figure 38  Proton NMR SL-11 

 

13C NMR SL-11 

Figure 39 Carbon NMR SL-11 
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1H NMR SL-12 

Figure 40 Proton NMR SL-12 

 

13C NMR SL-12 

Figure 41 Carbon NMR SL-12 
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