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ABSTRACT

Premature infants are routinely exposed to invasive medical procedures during neonatal 

intensive care treatment that are largely performed in the absence of anesthetics or 

analgesics. Data collected to date suggest that exposure to early insult during this time 

of increased plasticity alters the development of the CNS and influences future pain 

responses. As previous studies examining the impact of neonatal injury on nociception 

have been conducted primarily in males, the potential adverse effects on females is not 

known. Therefore, the present studies were conducted to determine whether neonatal 

injury differentially impacts male and female sensory thresholds in adulthood. A short 

lasting inflammatory response was evoked in male and female rats on the day of birth 

with an injection of carrageenan (CGN; 1% or 2%) into the right hind paw. Nociceptive 

thresholds were assessed using a noxious thermal stimulus at both adolescence (P40) 

and adulthood (P60). A more persistent inflammation was subsequently evoked in adult 

rats with an intraplantar injection of Complete Freund’s adjuvant (CFA). Neonatally 

injured females exhibited significantly greater hypoalgesia at P60, and displayed 

enhanced inflammatory hyperalgesia following re-injury in adulthood compared to

neonatally injured males and controls. These results demonstrate that the long-term 

adverse effects of neonatal injury are exacerbated in females, and may contribute to the 

higher prevalence, severity and duration of pain syndromes noted in women compared

to men. 
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The neonatal period is a time of increased neurodevelopmental plasticity. Unlike 

other sensory systems, which require proper stimulation for appropriate development, 

maturation of nociceptive circuitry typically occurs in the absence of adequate stimuli 

(Lidow 2002; Fitzgerald 2004). Premature infants, however, are routinely exposed to 

invasive medical procedures during neonatal intensive care treatment (Anand 1998; 

Grunau et al. 2005; Peters et al. 2005). Hundreds of thousands of infants are born 

premature each year, and as a result of major medical and technological advances in 

neonatal care, infants born after 23 weeks’ gestation are routinely kept alive (Qiu 2006). 

In order to increase their chances of survival these newborns experience an average of 

14 noxious procedures per day in the Neonatal Intensive Care Unit (NICU), including 

heel lances, endotracheal intubation, respiratory and gastric suctioning, and catheter 

insertion (Simons et al. 2003). 

Recent evidence indicates that nociceptive circuitry is both intact and functional 

during late gestation, and that premature infants are indeed responsive to noxious 

stimulation (Bartocci et al. 2006; Slater et al. 2006). Furthermore, growing clinical data 

suggests that exposure to noxious stimulation in premature neonates can lead to long-

term alterations in subsequent physiological and behavioral responses to innocuous 

and noxious somatosensory stimulation (Anand 2000; Whitfield and Grunau 2000; 

Grunau et al. 2005). Several studies report that former preterm infants exposed to 

multiple invasive procedures during NICU care display dampened behavioral responses 

and enhanced physiological responses to subsequent pain (Anand 2000; Oberlander et 

al. 2000; Whitfield and Grunau 2000; Grunau et al. 2005).

Parallel evidence in non-human animal models also suggests that neonatal 

noxious stimulation is associated with long-term changes in somatosensory structure 

and function (Bhutta et al. 2001; Lidow 2002; Walker et al. 2003; Ren et al. 2004; Wang 
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et al. 2004). Previous studies examining the impact of neonatal inflammation on adult 

somatosensory processing and dorsal horn physiology were conducted exclusively in 

males (Ruda et al. 2000; Lidow 2002; Ren et al. 2004). The neuroendocrine profile of 

the newborn laboratory rat is sexually dimorphic such that in males, there is a significant 

surge of testicular testosterone that is centrally aromatized to estrogen and ultimately 

results in the masculinization of the male brain (Balthazart and Ball 2006; Cornil et al. 

2006). In females, the ovaries are quiescent and intracerebral estradiol remains low 

(Weisz and Ward 1980; Amateau et al. 2004; Balthazart and Ball 2006; Cornil et al. 

2006). Estrogens have been shown to exert neuromodulatory and neuroprotective 

effects following acute and chronic central injuries (Garcia-Segura et al. 2001; Maggi et 

al. 2004; Amantea et al. 2005). Therefore, increased central levels of estrogen in males 

may attenuate the long-term adverse effects of neonatal injury, whereas in females the 

consequences of neonatal injury may be exacerbated. The aim of the current study was 

(1) determine whether neonatal inflammation differentially affects male and female 

sensory thresholds in adulthood and (2) to test whether the impact of neonatal injury on 

inflammation-induced hyperalgesia in adulthood is sexually dimorphic.

METHODS

Animals

Time-pregnant Sprague-Dawley rats were obtained on the 14th day of gestation (E14) 

(Zivic Miller) and housed individually. Animals were maintained on a 12:12h light:dark 

cycle, with food and water available ad libitum. On the day of birth (P0), sexing of the 

pups was determined by examination of the anogenital distance. All litters were reared 

identically, weaned at P21, and housed with same-sex littermates in groups of 2-3. All 

experiments adhered to the guidelines of the Committee for Research and Ethical 
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Issues of IASP, and were approved by the Georgia State University Animal Care and 

Use Committee.  

Early Life Manipulations

Acute neonatal injury was induced by unilateral hindpaw injection of carrageenan (CGN; 

1% or 2% soln dissolved in sterile in saline; 5ul volume; Sigma, St. Louis MO) into the 

plantar surface of the right hindpaw within 12 hours of birth on P0, except for critical 

period experiments where neonatal injury was induced on P8 or P14. This inflammatory 

agent provides a well-established model of acute local inflammation that lasts for 12-72 

hours (Lidow 2002; Ren et al. 2004). Control animals received either an equivolume of 

sterile saline into the right hindpaw or were “handled” in a similar manner and returned 

to their home cage. All pups within a litter received the same neonatal treatment. 

Maternal Behavior

Mother-pup interactions were observed for 1 hour following the neonatal injury, and 

daily at 18:00 hours (1 hour prior to lights off) for 60 minutes from P0-P21. Maternal 

observations were conducted by both direct observations (in a manner so as not to 

disrupt the dam) and by videotape for later offline analysis.  Specific maternal behaviors 

were recorded including pup licking/grooming, nursing posture (crouching), hovering 

over pups, pup retrieval, nest construction, eating/drinking, exploring, inactive/napping 

and self-grooming. Observations were conducted by an individual blind to the neonatal 

group assignment.       

Baseline Nociceptive Behavior 

On P40 and P60, baseline paw withdrawal latencies (PWL) in response to a noxious 

thermal stimulus were determined. Thermal testing was conducted using the Paw 

Thermal Stimulator (UCSD, San Diego, California). In this test, animals were placed in a 

clear plastic testing chamber on a glass surface and allowed to acclimate for a minimum 



6

of 30 minutes prior to testing. A radiant beam of light beneath the glass base was 

directed at the plantar surface of the each hindpaw and the withdrawal reflex latency 

was electronically measured (in seconds). Intact male and cycling female rats were 

tested separately. The average withdrawal latency of 3 trials was taken; all trials were 

separated by a 5-minute inter-trial interval. Application of the thermal stimulus to either 

paw was randomly determined. To avoid potential tissue damage, a 20-second 

automatic termination of the heat stimulus was imposed if a paw withdrawal did not 

occur. The testing apparatus was thoroughly cleaned between sessions. Body weight 

and paw diameter for right and left hindpaws were measured prior to baseline testing on 

P40 and P60. To characterize the estrous status of female rats, vaginal smears (using 

the saline lavage technique) were taken daily beginning two weeks prior to testing and 

continuing to the end of the experimental session. Proestrus was defined by the 

presence of nucleated epithelial cells in >90% of the total cell population; estrus was 

defined by the presence of cornified epithelial cells; diestrus-1 was defined as the 

presence of both leukocytes and cornified epithelial cells; diestrus-2 was defined as the 

relative absence of all cell types (Wang et al. 2006). All animals were smeared in the 

morning, approximately 3-4 hours after lights on. Vaginal smears were conducted a 

minimum of three hours prior to testing to minimize the potential effects of vaginal 

stimulation-produced analgesia (Komisaruk 1977).  

Nociceptive Behavior Following Re-Inflammation

Following baseline PWL determination at P60, animals received an injection of 

Complete Freund’s adjuvant (CFA; 1:1 CFA:saline soln; 200ul; Sigma) into the plantar 

surface of the right (neonatally injured) hindpaw. A separate group of animals received 

intraplantar CFA into the left hindpaw. CFA was used for re-injury as neonatally-injured 

animals may potentially develop antibodies against carrageenan (CGN), thereby limiting 
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its potency for use as an inflammatory agent. Twenty-four hours following CFA-induced 

inflammation, paw diameter and PWLs were tested using the Paw Thermal Stimulator 

as described above. 

Drugs

The opioid antagonist naloxone hydrochloride (1 mg/kg; Sigma; St. Louis, MO) was 

injected subcutaneously fifteen minutes prior to P60 testing. This dose of naloxone was 

chosen based on our previous observations demonstrating that 1 mg/kg of naloxone 

was effective in reversing the effects of systemic morphine but had no effect on 

nociceptive thresholds alone (Ji et al. 2006). Control animals received an equivolume of 

saline. 

Statistical Analysis

Data were expressed as raw withdrawal latencies or difference scores. A maximal PWL 

of 20 seconds was used to prevent excessive tissue damage due to repeated 

application of a noxious thermal stimulus. All values are reported as Mean + S.E.M. 

Data were analyzed for significant main effects of neonatal treatment and sex using 

ANOVA; p< 0.05 was considered statistically significant. Post-hoc tests using the 

method of Sheffe were conducted as warranted to determine significant mean 

differences. Where multiple comparisons were made, p values were adjusted 

accordingly using the Bonferroni adjustment.

RESULTS

Neonatal Injury Differentially Affects Male and Female Sensory Thresholds in 

Adulthood.

Previous studies have reported that neonatally injured animals have significantly higher 

sensory thresholds in adulthood (Lidow 2002; Ren et al. 2004). These studies, however, 

were conducted primarily in males. As central estradiol levels are significantly elevated 
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in males at this time point (Amateau et al. 2004), and estrogens have been shown to 

confer neuroprotection (Garcia-Segura et al. 2001; Maggi et al. 2004; Amantea et al. 

2005), the present studies were conducted to determine if the long-term consequences 

of neonatal injury are exacerbated in females compared to males. Intraplantar 

administration of carrageenan (CGN; 1% or 2%) on the day of birth resulted in 

significantly longer paw withdrawal latencies (PWL) in comparison to control animals at 

postnatal day 60 (P60). Thermal hypoalgesia was present in both the previously injured 

(Figure 1A) and uninjured (Figure 1B) hindpaws. As shown in Figure 1, paw withdrawal 

latency for the injured paw increased over 50% in injured animals (1% and 2% CGN) 

compared with saline and handled controls (p<.0001). Furthermore, neonatally injured 

females displayed up to a 3 second longer latency in the injured paw compared to 

neonatally injured males (p=.0078) (Figure 1A).  This increased hypoalgesia was also 

present in the uninjured paw (p<.0001) (Figure 1B). There were no sex differences 

noted for saline and handled controls (p<.05). 

Neonatal Injury Alters Sensory Thresholds at P40.

The above studies demonstrate that neonatal injury produces decreased responses to 

noxious thermal stimuli in adulthood and that this effect is exacerbated in females. We 

next tested whether these sexually dimorphic effects were also evident during the peri-

adolescent period (P40). At P40, neonatally injured male and female rats (1% and 2% 

CGN) displayed significantly longer paw withdrawal latencies in response to a thermal 

stimulus for the injured paw compared to saline and handled controls (p<.0001) (Figure 

1C). Neonatal injury-induced hypoalgesia was also observed in the contralateral paw 

(p<.0001) (Figure 1D). No significant main effect of sex was noted on any of the 

withdrawal latencies, although there was a trend for the female contralateral paw 

(p=.0737). 
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Neonatal Injury Does Not Affect Body Weight, Paw Diameter, or Estrous Cycle.

No significant differences in body weight or paw diameter (right and left hindpaws) were 

noted in animals exposed to neonatal inflammation (1% and 2% CGN) compared to 

control animals (saline and handled) at either P40 or P60 (Table 1). No significant 

differences in estrous cycle were noted in neonatally injured females (1% and 2% CGN) 

compared to control females (saline and handled) (i.e. all animals displayed normal four 

day estrous cycles).  As we have previously shown that estrous has no effect on 

baseline pain sensitivity or CFA-induced hyperalgesia (Wang et al. 2006), females were 

grouped together regardless of estrous stage.

Neonatal Injury Has No Impact On Maternal Care.

Previous studies have shown that naturally-occurring variations in maternal behavior 

can have a profound impact on a variety of developmental endpoints, including stress 

responsiveness, reproductive behavior, pain, and learning and memory (Sternberg 

1999; Liu et al. 2000; Johnston and Walker 2003; Sternberg and Ridgway 2003; 

Weaver et al. 2004).  Given the profound and permanent changes induced by 

alterations in maternal care, daily maternal observations were conducted to determine 

whether neonatal inflammatory injury alters the display of maternal behavior. There 

were no significant differences in maternal behavior between injured and non-injured 

litters in the amount of time the dam spent on/with pups including crouching (nursing 

posture), lying with pups, and pup retrieval (p=.2231) (Figure 3A). Similarly, no 

differences were noted in the amount of time the dam spent off/without pups including 

nesting, eating/drinking, exploring, napping, self-grooming (p=.2087) (Figure 3B); or in 

the amount of time spent licking/grooming pups (p=.6939) (Figure 3C). This indicates 

that changes in adult sensory thresholds produced by neonatal injury are not due to 

differences in maternal behavior directed at injured versus non-injured pups.
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The Long-Term Consequences of Neonatal Injury are Critical Period Dependent

The next experiment was conducted to test whether the long-term consequences of 

neonatal injury were dependent upon a critical period.  Male and female rat pups 

received a unilateral intraplantar injection of 1% CGN on P0, P8, or P14. Only 1% CGN 

was used as no significant differences were noted in the previous studies following 

administration of 1% versus 2% CGN. On P60, paw withdrawal latencies in response to

noxious thermal stimulation were determined. Animals that were neonatally injured on 

P0 and P8 displayed significantly increased PWLs in both the injured (p=.0002) (Figure 

4A) and uninjured (p=.0003) (Figure 4B) paws compared to animals that were injured on 

P14. Furthermore, a significant effect of sex was noted for both paws in animals injured 

on P0 and P8, with females displaying greater hypoalgesia compared to males 

(p=.0068, p=.0014).  No significant effect of intraplantar carrageenan or sex was noted 

for animals injured on P14. These results suggest that the impact of neonatal injury is 

dependent upon a sensitive period, and that noxious insult occurring outside of this 

critical window does not permanently alter thermal sensory thresholds.   

Neonatal Injury Enhances Hyperalgesia Following Re-Inflammation with CFA.

The next series of experiments were conducted to test whether neonatally injured 

animals respond differentially to a subsequent injury in adulthood. Following baseline 

PWL determination at P60, animals received an injection of Complete Freund’s adjuvant 

(CFA; 1:1 CFA:saline soln; 200ul; Sigma) into the plantar surface of either the right (P0 

injured) or left (P0 uninjured) hindpaw. Twenty-four hours following CFA-induced 

inflammation, PWLs were tested in response to a noxious thermal stimulus.     

The effect of neonatal injury on CFA induced hyperalgesia was quite profound. In 

response to noxious thermal stimulation, the paw withdrawal latencies of CFA treated 

adult control animals (handled and saline) decreased from approximately 8-9 seconds 
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at baseline to 4-5 seconds following intraplantar CFA (mean difference score of 5.5 

sec), a typical hyperalgesic response (Wang et al. 2006). By contrast, latencies for 

injured animals (1% CGN) decreased significantly from baseline PWLs of 10-12 

seconds to 1-3 seconds (Figure 4A). This increased hyperalgesic response following 

CFA re-injury was significantly greater in neonatally injured females compared to 

neonatally injured males (mean difference scores of 12 for females versus 9 sec for 

males). There was no significant effect of neonatal treatment on the degree of edema 

produced by intraplantar CFA [F(3,118)=1.32, p=.2705]. 

Intraplantar CFA was administered in a separate group of animals into the left 

paw to determine whether the increased hyperalgesia following re-injury would be 

observed following adult re-inflammation of the neonatally uninjured paw. Similar to the 

previous results, neonatally injured animals (1% CGN) displayed enhanced 

hyperalgesia following intraplantar CFA compared to saline and handled controls 

(p=.0176) (Figure 5B). This effect was, again, exacerbated in females compared to 

males (p=.0108).

Neonatal Injury Induced Hypoalgesia is Attenuated By Systemic Naloxone.

Neonatal injury results in significant long-term hypoalgesia that is present in both 

the previously injured and uninjured paw. This bilateral response suggests a global, 

injury-induced change in basal nociceptive sensitivity. The next series of experiments 

were conducted to determine whether the observed hypoalgesia was a result of altered 

endogenous opioid tone. At P60, animals received either systemic administration of the 

opioid antagonist naloxone hydrochloride (NAL; 1 mg/kg) or equivolume saline (SAL) 

fifteen minutes prior to testing.  As shown in Figure 5, administration of NAL significantly 

attenuated carrageenan-induced increases in paw withdrawal latencies, with no 

significant differences noted between neonatally-injured/naloxone treated animals and 
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handled (p=.1576) or saline treated controls (p=.3665).  Administration of naloxone 

alone had no effect on paw withdrawal latencies for P0 saline or handled animals. 

DISCUSSION

Our principal findings are as follows: (1) neonatal inflammatory injury produces bilateral 

basal hypoalgesia that is present in both adolescence and adulthood; (2) neonatally 

injured animals display enhanced hyperalgesia in response to a subsequent injury in 

adulthood; (Kamp et al.) the effects of neonatal inflammatory injury on both baseline 

and re-injury induced changes in nociception are sexually dimorphic, with significantly 

greater effects present in females compared to males; (4) the long-term consequences 

of neonatal injury are critical period dependent; (5) injury-induced hypoalgesia is 

reversed by administration of the opioid antagonist naloxone.

Neonatal Inflammatory Injury Produces Thermal Hypoalgesia in Adulthood

Neonatal injury in rodents produces persistent and dramatic alterations in thermal 

baseline sensory thresholds (Anand et al. 1999; Bhutta et al. 2001; Lidow 2002; Ren et 

al. 2004). Previous studies have reported intraplantar carrageenan administered on 

postnatal day 3 results in thermal and mechanical hypoalgesia in adult male rats (Lidow 

2002; Ren et al. 2004). Additionally, long-term visceral hypoalgesia has been reported 

in animals exposed to carrageenan-induced inflammation as neonates (Wang et al. 

2004). Somatic hypoalgesia has also been reported following repeated intraplantar 10% 

formalin injections in males (Bhutta et al. 2001). Here we demonstrate for the first time 

that female rats also display thermal hypoalgesia in adulthood following neonatal hind 

paw inflammation with carrageenan, and this hypoalgesia is significantly greater than 

that observed in males. Thermal hypoalgesia was manifest at both P40 and P60 and 

was present in both the injured and uninjured paw. 



13

The global nature of the observed hypoalgesia following neonatal inflammatory 

injury suggests that the underlying mechanisms are not manifested peripherally at the 

site of injury, but rather may involve alterations in higher central regulatory systems. Our 

finding that administration of the opioid antagonist naloxone reverses the injury-induced 

hypoalgesia supports this theory.  However, as there are currently no reliable and 

reproducible methods for assessing nociception in P0 rat pups, we cannot conclusively 

state that the observed hypoalgesia was due to the pain associated with inflammation. 

Indeed, it is also likely that our P0 manipulations induced changes in the developing 

hypothalamic-pituitary-adrenal axis. Nociception is one component in a broader context 

of stress reactivity (Anand et al. 1999; Sternberg and Ridgway 2003; Grunau et al. 

2005), and experimental studies have shown that exposure to early life stressors such 

as repetitive neonatal handling can permanently increase nociceptive thresholds in adult 

rats and decrease the behavioral and physiological responses to stress in adulthood 

(Pieretti et al. 1991; Coutinho et al. 2002; Sternberg and Ridgway 2003). Interestingly, a 

recent study demonstrating long-term thermal hypoalgesia in both sham operated and 

surgically-manipulated mice suggests that the stress of the neonatal procedure, and not 

necessarily the pain, contributes to the observed hypoalgesia (Sternberg et al. 2005).

Data from human preterm infants also suggests that neonatal exposure to 

noxious stimuli may alter the responses to subsequent painful or stressful experiences. 

Ex-preterm infants exposed to four weeks of NICU care display reduced behavioral pain 

behavior and enhanced cardiovascular responses following heel stick (Johnston and 

Stevens 1996). In addition, stressful conditions at birth are associated with increased 

salivary cortisol in response to vaccination at 4 and 6 months of age (Peters et al. 

2005). Furthermore, premature infants at 8 and 18 months of age display increased 
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basal levels of stress hormones compared to their full-term counterparts (Grunau et al. 

2007).

Administration of the broad-spectrum opioid antagonist naloxone completely 

reversed the hypoalgesia induced by neonatal injury, suggesting that the pain and 

stress associated with our neonatal manipulations resulted in a potentiation in 

descending endogenous opioid tone. Carrageenan-, formalin- and CFA-induced 

inflammation have all been shown to profoundly enhance pro-dynorphin and pro-

enkephalin biosynthesis in spinal neurons in the dorsal horn (Iadarola et al. 1988; 

Noguchi et al. 1989). Inflammation–induced changes in endogenous opioid peptide 

expression and release have also been reported at several supraspinal sites, including 

the periaqueductal gray (PAG); this increase in opioid peptide expression is associated 

with hypoalgesia (Williams et al. 1995). Pain-induced changes in opioid peptide 

expression are also paralleled by an increase in mRNA expression (Iadarola et al. 

1988). In the present study, naloxone was administered systemically; therefore, it is not 

known whether neonatal injury-induced changes in opioid tone are peripherally or 

centrally mediated. However, studies are currently underway using site-specific 

injections of naloxone to further identify the loci for injury-induced changes in 

endogenous opioid tone.

Long-Term Effects of Neonatal Injury are Sexually Dimorphic

The neuroendocrine profile of a newborn rat pup is sexually dimorphic, such that males 

have higher central levels of estradiol at birth compared to females, and similar 

differences in hormone levels may also be present in peripheral tissues (Weisz and 

Ward 1980; Amateau et al. 2004; Balthazart and Ball 2006; Cornil et al. 2006). 

Estrogens have been reported to exert neuroprotective effects following acute and 

chronic injuries in the adult CNS (Garcia-Segura et al. 2001; Maggi et al. 2004; 
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Amantea et al. 2005). In the present study, neonatal injury resulted in significantly 

greater basal hypoalgesia at P60 in females in comparison to males. Indeed, the paw 

withdrawal latency of females injured with 1% CGN was 3 seconds longer in both the 

injured and uninjured paws compared to injured males. These results suggest that in 

males, estrogens may be acting as a neuroprotectant in response to early life injury, 

thereby leaving female rats with low to non-detectable levels of central estradiol 

increasingly vulnerable to the effects of neonatal noxious insult. Female rats injured at 

P14, when estradiol concentrations are comparable in males and females, displayed 

equivalent levels of baseline hypoalgesia as injured males, further suggesting that sex 

differences in the neonatal neuroendocrine environment contributed to the observed 

sexually dimorphic impact of neonatal injury. A potential neuroprotective effect of 

androgens cannot be ruled out in the present study (Ramsden et al. 2003), and future 

studies directed at manipulating the neonatal neuroendocrine environment, including 

masculinizing females or castrating males, are necessary to more specifically implicate 

gonadal hormones as the primary factor contributing to the observed sex differences in 

the impact of neonatal inflammatory insult.

Estradiol has been shown to influence the expression of a number of pro-

inflammatory and pro-nociceptive agents. For example, prostaglandins (which are pro-

inflammatory) are released peripherally in response to injury, and estrogen has been 

shown to modulate both prostaglandin and COX-1 and COX-2 expression in peripheral 

tissues (Zhang et al. 1997). Furthermore, peripheral injury also results in increased 

BDNF that is thought to promote neuronal survival and healing (Price et al. 2005). As 

estradiol increases BDNF expression centrally, this may also attenuate the adverse 

effects of peripheral injury (Allen and McCarson 2005).
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Re-Injury with CFA Produces Hyperalgesia and the Effect is Sexually Dimorphic 

Following re-injury in adulthood with CFA, neonatally injured male and female rats 

displayed significantly greater hyperalgesia than control animals. Furthermore, 

neonatally injured females exhibited significantly greater hyperalgesia in the inflamed 

paw than neonatally injured males, and male and female controls. This effect was 

observed in both the neonatally injured and uninjured paws, and is consistent with 

previous studies reporting long-term sensitization of afferent neurons and hyperalgesia 

following neonatal insult (Reynolds and Fitzgerald 1995; Anand et al. 1999; Al-Chaer et 

al. 2000). 

This increased hyperalgesia following re-injury in adulthood appears disparate 

with the observed basal hypoalgesia. Our preliminary anatomical studies, however, 

suggest that neonatal inflammatory injury results in bilateral alterations in primary 

afferent innervation of the dorsal horn (LaPrairie and Murphy 2005), which may account 

for our observed hyperalgesia. In particular, neonatal injury increases primary afferent 

innervation in the L3-L5 spinal cord, as reflected by increased expression of both CGRP 

and substance P immunoreactivity. As both CGRP and substance P are pro-

nociceptive, this increase in primary afferent innervation would be associated with a 

facilitated response to a noxious stimulus. Our working hypothesis is that the pain 

associated with intraplantar CGN on P0 results in a compensatory increase in 

descending inhibitory modulation as a mechanism of pain management. An increase in 

descending opioid tone is supported by our naloxone data, and would provide a direct 

mechanism for our observed hypoalgesia at baseline testing. By contrast, reinjury in 

adulthood with the inflammatory agent CFA results in an enhanced dorsal horn release 

of CGRP and/or substance P due to increased primary afferent input. Increased release 

of these pro-nociceptive peptides would be predicted to result in an enhanced 
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hyperalgesic response. Increased primary afferent innervation of the spinal cord may 

also drive an enhanced descending facilitation in neonatally injured animals 

Conclusion

Our findings clearly demonstrate that exposure to a single neonatal inflammatory insult 

is associated with long-term decreases in nociceptive sensitivity that are significantly 

exacerbated in females. The presence of a sex difference in the response to early insult 

may contribute to the higher prevalence, severity, and duration of pain syndromes (i.e. 

migraine, temporomandibular joint disorder, fibromyalgia and irritable bowel syndrome) 

that are observed in women.

Acknowledgements

This work was supported by National Institute of Health grants DA16272 and AR49555 

awarded to Anne Z. Murphy, the Center for Behavioral Neuroscience (NSF: IBN 

9876754), and the Georgia State University Brains and Behavior Program. The authors 

are grateful for the constructive comments provided by Michael S. Gold on a previous 

version of this manuscript.

Competing Interest Statement
The authors declare that they have no competing financial interests.



18

References

Al-Chaer ED, Kawasaki M, Pasricha PJ. A new model of chronic visceral 
hypersensitivity in adult rats induced by colon irritation during postnatal 
development. Gastroenterology 2000;119(5):1276-1285.

Allen AL, McCarson KE. Estrogen increases nociception-evoked brain-derived 
neurotrophic factor gene expression in the female rat. Neuroendocrinology 
2005;81(3):193-199.

Amantea D, Russo R, Bagetta G, Corasaniti MT. From clinical evidence to molecular 
mechanisms underlying neuroprotection afforded by estrogens. Pharmacol Res 
2005;52(2):119-132.

Amateau SK, Alt JJ, Stamps CL, McCarthy MM. Brain estradiol content in newborn rats: 
sex differences, regional heterogeneity, and possible de novo synthesis by the 
female telencephalon. Endocrinology 2004;145(6):2906-2917.

Anand KJ. Clinical importance of pain and stress in preterm neonates. Biol Neonate 
1998;73(1):1-9.

Anand KJ. Pain, plasticity, and premature birth: a prescription for permanent suffering? 
Nat Med 2000;6(9):971-973.

Anand KJ, Coskun V, Thrivikraman KV, Nemeroff CB, Plotsky PM. Long-term 
behavioral effects of repetitive pain in neonatal rat pups. Physiol Behav 
1999;66(4):627-637.

Balthazart J, Ball GF. Is brain estradiol a hormone or a neurotransmitter? Trends 
Neurosci 2006;29(5):241-249.

Bartocci M, Bergqvist LL, Lagercrantz H, Anand KJ. Pain activates cortical areas in the 
preterm newborn brain. Pain 2006;122(1-2):109-117.

Bhutta AT, Rovnaghi C, Simpson PM, Gossett JM, Scalzo FM, Anand KJ. Interactions 
of inflammatory pain and morphine in infant rats: long-term behavioral effects. 
Physiol Behav 2001;73(1-2):51-58.

Cornil CA, Ball GF, Balthazart J. Functional significance of the rapid regulation of brain 
estrogen action: where do the estrogens come from? Brain Res 2006;1126(1):2-26.

Coutinho SV, Plotsky PM, Sablad M, Miller JC, Zhou H, Bayati AI, McRoberts JA, Mayer 
EA. Neonatal maternal separation alters stress-induced responses to viscerosomatic 
nociceptive stimuli in rat. Am J Physiol Gastrointest Liver Physiol 2002;282(2):G307-
316.

Fitzgerald M. Painful beginnings. Pain 2004;110(3):508-509.
Garcia-Segura LM, Azcoitia I, DonCarlos LL. Neuroprotection by estradiol. Prog 

Neurobiol 2001;63(1):29-60.
Grunau RE, Haley DW, Whitfield MF, Weinberg J, Yu W, Thiessen P. Altered basal 

cortisol levels at 3, 6, 8 and 18 months in infants born at extremely low gestational 
age. J Pediatr 2007;150(2):151-156.

Grunau RE, Holsti L, Haley DW, Oberlander T, Weinberg J, Solimano A, Whitfield MF, 
Fitzgerald C, Yu W. Neonatal procedural pain exposure predicts lower cortisol and 
behavioral reactivity in preterm infants in the NICU. Pain 2005;113(3):293-300.

Guan Y, Terayama R, Dubner R, Ren K. Plasticity in excitatory amino acid receptor-
mediated descending pain modulation after inflammation. J Pharmacol Exp Ther 
2002;300(2):513-520.



19

Iadarola MJ, Douglass J, Civelli O, Naranjo JR. Differential activation of spinal cord 
dynorphin and enkephalin neurons during hyperalgesia: evidence using cDNA 
hybridization. Brain Res 1988;455(2):205-212.

Ji Y, Murphy AZ, Traub RJ. Sex differences in morphine-induced analgesia of visceral 
pain are supraspinally and peripherally mediated. Am J Physiol Regul Integr Comp 
Physiol 2006;291(2):R307-314.

Johnston CC, Stevens BJ. Experience in a neonatal intensive care unit affects pain 
response. Pediatrics 1996;98(5):925-930.

Johnston CC, Walker CD. The effects of exposure to repeated minor pain during the 
neonatal period on formalin pain behaviour and thermal withdrawal latencies. Pain 
Res Manag 2003;8(4):213-217.

Kamp EH, Jones RC, 3rd, Tillman SR, Gebhart GF. Quantitative assessment and 
characterization of visceral nociception and hyperalgesia in mice. Am J Physiol 
Gastrointest Liver Physiol 2003;284(3):G434-444.

Komisaruk BR. Antinociceptive effects of vaginal stimulation in rats: neurophysiological 
and behavioral studies. Brain Res 1977;137:85-107.

LaPrairie J, Murphy A. Neonatal injury diffrentially affects male and female sensory 
thresholds and response to re-injury in adulthood Soc Neuroscience Abst 2005.

Lidow MS. Long-term effects of neonatal pain on nociceptive systems. Pain 
2002;99(3):377-383.

Liu D, Diorio J, Day JC, Francis DD, Meaney MJ. Maternal care, hippocampal 
synaptogenesis and cognitive development in rats. Nat Neurosci 2000;3(8):799-806.

Maggi A, Ciana P, Belcredito S, Vegeto E. Estrogens in the nervous system: 
mechanisms and nonreproductive functions. Annu Rev Physiol 2004;66:291-313.

Noguchi K, Morita Y, Kiyama H, Sato M, Ono K, Tohyama M. Preproenkephalin gene 
expression in the rat spinal cord after noxious stimuli. Brain Res Mol Brain Res 
1989;5(3):227-234.

Oberlander TF, Grunau RE, Whitfield MF, Fitzgerald C, Pitfield S, Saul JP. 
Biobehavioral pain responses in former extremely low birth weight infants at four 
months' corrected age. Pediatrics 2000;105(1):e6.

Peters JW, Schouw R, Anand KJ, van Dijk M, Duivenvoorden HJ, Tibboel D. Does 
neonatal surgery lead to increased pain sensitivity in later childhood? Pain 
2005;114(3):444-454.

Pieretti S, d'Amore A, Loizzo A. Long-term changes induced by developmental handling 
on pain threshold: effects of morphine and naloxone. Behav Neurosci 
1991;105(1):215-218.

Price TJ, Louria MD, Candelario-Soto D, Dussor GO, Jeske NA, Patwardhan AM, 
Diogenes A, Trott AA, Hargreaves KM, Flores CM. Treatment of trigeminal ganglion 
neurons in vitro with NGF, GDNF or BDNF: effects on neuronal survival, 
neurochemical properties and TRPV1-mediated neuropeptide secretion. BMC 
Neurosci 2005;6(1):4.

Qiu J. Infant pain: does it hurt? Nature 2006;444(7116):143-145.
Ramsden M, Shin T, Pike C. Androgens modulate neuronal vulnerability to kainate 

lesion. Neurosci 2003;122:573-578.
Ren K, Anseloni V, Zou SP, Wade EB, Novikova SI, Ennis M, Traub RJ, Gold MS, 

Dubner R, Lidow MS. Characterization of basal and re-inflammation-associated 
long-term alteration in pain responsivity following short-lasting neonatal local 
inflammatory insult. Pain 2004;110(3):588-596.



20

Reynolds ML, Fitzgerald M. Long-term sensory hyperinnervation following neonatal skin 
wounds. J Comp Neurol 1995;358(4):487-498.

Ruda MA, Ling QD, Hohmann AG, Peng YB, Tachibana T. Altered nociceptive neuronal 
circuits after neonatal peripheral inflammation. Science 2000;289(5479):628-631.

Simons SH, van Dijk M, Anand KS, Roofthooft D, van Lingen RA, Tibboel D. Do we still 
hurt newborn babies? A prospective study of procedural pain and analgesia in 
neonates. Arch Pediatr Adolesc Med 2003;157(11):1058-1064.

Slater R, Boyd S, Meek J, Fitzgerald M. Cortical pain responses in the infant brain. Pain
2006;123(3):332; author reply 332-334.

Sternberg WF. Sex differences in the effects of prenatal stress on stress-induced 
analgesia. Physiol Behav 1999;68(1-2):63-72.

Sternberg WF, Ridgway CG. Effects of gestational stress and neonatal handling on 
pain, analgesia, and stress behavior of adult mice. Physiol Behav 2003;78(3):375-
383.

Sternberg WF, Scorr L, Smith LD, Ridgway CG, Stout M. Long-term effects of neonatal 
surgery on adulthood pain behavior. Pain 2005;113(3):347-353.

Walker SM, Meredith-Middleton J, Cooke-Yarborough C, Fitzgerald M. Neonatal 
inflammation and primary afferent terminal plasticity in the rat dorsal horn. Pain 
2003;105(1-2):185-195.

Wang G, Ji Y, Lidow MS, Traub RJ. Neonatal hind paw injury alters processing of 
visceral and somatic nociceptive stimuli in the adult rat. J Pain 2004;5(8):440-449.

Wang X, Traub RJ, Murphy AZ. Persistent pain model reveals sex difference in 
morphine potency. Am J Physiol Regul Integr Comp Physiol 2006;291(2):R300-306.

Weaver IC, Cervoni N, Champagne FA, D'Alessio AC, Sharma S, Seckl JR, Dymov S, 
Szyf M, Meaney MJ. Epigenetic programming by maternal behavior. Nat Neurosci 
2004;7(8):847-854.

Weisz J, Ward IL. Plasma testosterone and progesterone titers of pregnant rats, their 
male and female fetuses, and neonatal offspring. Endocrinology 1980;106(1):306-
316.

Whitfield MF, Grunau RE. Behavior, pain perception, and the extremely low-birth weight 
survivor. Clin Perinatol 2000;27(2):363-379.

Williams FG, Mullet MA, Beitz AJ. Basal release of Met-enkephalin and neurotensin in 
the ventrolateral periaqueductal gray matter of the rat: a microdialysis study of 
antinociceptive circuits. Brain Res 1995;690:207-216.

Zhang Y, Shaffer A, Portanova J, Seibert K, Isakson PC. Inhibition of cyclooxygenase-2 
rapidly reverses inflammatory hyperalgesia and prostaglandin E2 production. J 
Pharmacol Exp Ther 1997;283(3):1069-1075.



21

Figure Captions

Figure 1. Neonatal injury differentially affects male and female sensory thresholds 
in adulthood (P60) and during adolescence (P40). At P60, neonatally injured animals 
display significantly longer withdrawal latencies compared to saline and handled 
controls in response to a noxious thermal stimulus applied to the (A) right (injured) paw 
[F(3,114)=41.76, p<.0001] and (B) (uninjured) paw [F(3,114)=34.68, p<.0001]. There 
was also a significant main effect of sex with injured females displaying significantly 
longer latencies in comparison to males: injured paw, F(1,114)=7.34, p=.0078; uninjured 
paw, F(1,114)=11.31, p=.0011. Significant hypoalgesia was also present at P40 in 
neonatally injured animals in both the  (C) right (injured) paw [F(3,114)=8.17, p< .0001] 
and (D) contralateral (uninjured) paw [F(3,114)=10.92, p<.0001]. # denotes significant 
main effect compared to handled controls; * denotes a significant main effect of sex.

Figure 2. Neonatal Injury has no impact on maternal care. Neonatal injury had no 
effect on the (A) duration the dam spent on/with her litter [F(3,19)=.783, p=.5507], (B) 
amount of time the dam spent away from her litter [F(3,19)=.381, p=.7676], (C) duration 
of maternal licking and grooming behavior [F(3,19)=.128, p=.9425]. N=3-7
 litters per group.

Figure 3. The consequences of neonatal injury are critical period dependent. Paw 
withdrawal latencies for the injured paw are significantly increased on P60 in animals 
neonatally injured with 1% CGN on P0 and P8 compared to animals injured on P14 
[F(2,39)=10.97, p=.0002] . Neonatally injured females (P0 and P8) display significantly 
longer PWLs compared to neonatally injured males [F(1,39)=3.85, p=.0068]. (B) Similar 
results were noted for the uninjured paw [F(2,39)=9.94, p=.0003]. PWLs were 
significantly longer for neonatally injured females (P0 and P8) in comparison to injured 
males (P0) [F(1,39)=7.09, p=.0014]. N=6-12 rats per group/per sex. * denotes
significant main effect of treatment; # denotes significant main effect of sex.

Figure 4. Neonatal injury enhances hyperalgesia following re-inflammation with 
CFA. Neonatally injured males and females (1% CGN) had significantly greater 
difference scores (Bsln PWL – CFA PWL) compared to saline and handled control 
animals in response to intraplantar CFA in adulthood. This effect was observed in both 
the (A) right (P0 injured) paw [F(2,85)=43.54, p<.0001] and (B) left (P0 uninjured) paw 
[F(2,27)=19.08, p<.0001]. Both effects were significantly exacerbated in neonatally 
injured females compared to neonatally injured males [F(1,85)=3.96, p=.0499] and 
[F(1,27)=7.50, p=.0108]. N=6-15 rats per group/per sex. * denotes significant main 
effect of treatment; # denotes significant main effect of sex.

Figure 5. Hypoalgesia induced by neonatal injury is significantly attenuated by 
systemic naloxone. Neonatally injured males and females that received naloxone 
(CGN/NAL) prior to testing at P60 had significantly lower PWLs than injured animals 
that received saline control (CGN/SAL) [F(5,38)=52.07, p<.0001]. Administration of 
naloxone to saline (SAL/NAL) or handled (HAN/NAL) controls had no effect on PWLs.  
N=6-8 rats per group/per sex. * denotes significant main effect of treatment; # denotes 
significant main effect of sex.
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Table 1. Average Body Weight and Average Paw Diameter. There is no significant difference in the 
average body weight across neonatal treatment groups on P40 and P60 in males and females. There is 
also no significant difference in the average paw diameter of the right and left hind paws across neonatal 
groups on P40 and P60 in males and females.

MALE FEMALE

P40 P60 P40 P60
TREATMENT

WT RP LP WT RP LP WT RP LP WT RP LP

HANDLED
298.8
+36

4.88
+.32

4.74
+.27

456.9
+38

5.55
+.27

5.52
+.28

213.8
+10

4.39
+.20

4.46
+.21

272.9
+19

4.67
+.41

4.70
+.40

SALINE
297.6
+11

4.76
+.29

4.76
+.36

443.2
+44

5.48
+.21

5.49
+.21

209.7
+11

4.45
+.14

4.36
+.16

265.7
+16

4.71
+.38

4.68
+.36

1% CGN
295.1
+10

4.83
+.15

4.82
+.15

448.6
+24

5.57
+.14

5.57
+.14

206.1
+10

4.33
+.21

4.32
+.20

268.1
+12

4.61
+.12

4.61
+.14

2% CGN
297.5
+41

4.84
+.30

4.77
+.17

462.8
+30

5.60
+.28

5.60
+.28

214.2
+13

4.40
+.23

4.35
+.19

267.3
+30

4.59
+.15

4.56
+.17
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