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THE EPIGENETIC REGULATION OF CYTOKINE INDUCIBLE MAMMALIAN 

TRANSCRIPTION BY THE 26S PROTEASOME 

 

by 

 

OLIVIA I KOUES 

 

 

Under the Direction of Susanna F Greer, PhD 

 

ABSTRACT 

It is evident that components of the 26S proteasome function beyond protein degradation 

in the regulation of transcription.  Studies in yeast implicate the 26S proteasome, specifically the 

19S cap, in the epigenetic regulation of transcription.  Saccharomyces cerevisiae 19S ATPases 

remodel chromatin by facilitating histone acetylation and methylation.  However, it is unclear if 

the 19S ATPases play similar roles in mammalian cells. We previously found that the 19S 

ATPase Sug1 positively regulates transcription of the critical inflammatory gene MHC-II and 

that the MHC-II promoter fails to efficiently bind transcription factors upon Sug1 knockdown.  

MHC-II transcription is regulated by the critical coactivator CIITA.  We now find that Sug1 is 

crucial for regulating histone H3 acetylation at the cytokine inducible MHC-II and CIITA 

promoters.  Histone H3 acetylation is dramatically decreased upon Sug1 knockdown with a  



preferential loss occurring at lysine 18.  Research in yeast indicates that the ortholog of Sug1, 

Rpt6, acts as a mediator between the activating modifications of histone H2B ubiquitination and 

H3 methylation.  Therefore, we characterized the role the 19S proteasome plays in regulating 

additional activating modifications.  As with acetylation, Sug1 is necessary for proper histone 

H3K4 and H3R17 methylation at cytokine inducible promoters.  In the absence of Sug1, histone 

H3K4me3 and H3R17me2 are substantially inhibited.  Our observation that the loss of Sug1 has 

no significant effect on H3K36me3 implies that Sug1’s regulation of histone modifications is 

localized to promoter regions as H3K4me3 but not H3K36me3 is clustered around gene 

promoters. 

            Here we show that multiple H3K4 histone methyltransferase subunits bind constitutively 

to the inducible MHC-II and CIITA promoters and that over-expressing one subunit significantly 

enhances promoter activity.  Furthermore, we identified a critical subunit of the H3K4 

methyltransferase complex that binds multiple histone modifying enzymes, but fails to bind the 

CIITA promoter in the absence of Sug1, implicating Sug1 in recruiting multi-enzyme complexes 

responsible for initiating transcription.    Finally, Sug1 knockdown maintains gene silencing as 

elevated levels of H3K27 trimethylation are observed upon Sug1 knockdown.  Together these 

studies strongly implicate the 19S proteasome in mediating the initial reorganization events to 

relax the repressive chromatin structure surrounding inducible genes.   

INDEX WORDS: Transcriptional regulation, Epigenetics, Histone modifications, Histone 

remodeling enzymes, Major histocompatibility complex class II, Class II 

transactivator, 26S proteasome, 19S proteasome, Sug1  
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MY EUREKA MOMENT 

Modern media often romanatizes the life of a scienitist with images of a person making a 

great discovery with seemingly little effort.  In reality, science is a profession filled with many 

more failures then successes.  Yes there are times when a series of experiments turn out perfectly, 

providing a little more insight into some inticate process.  However, most of the time science is 

just lots of reading, followed by some well-educated guesses, and painstakingly excuted 

experiments that return either no results or those that are completely opposite of what you 

predicted.  In short, science involves much time, effort and sacrifice and would not be possible if 

not for the support of the “Snuggles”, those non-scientific folk around you.  Therefore, I would 

like to dedicate this document to all of my Snuggles; my family and friends as well as my dogs.  

Hopefully the effort we all put into the last four and a half years will allow me to someday obtain 

My Eureka Moment.  
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CHAPTER 1 

 

INTRODUCTION 

Translation, the ability of cells to make proteins, is fundamental to life.  For translation to 

occur, tightly packed DNA must be available for transcription so that a RNA copy can be 

exported into the cytoplasm where it can be translated into protein (Carey and Smale 2000).   For 

nuclei to accommodate the estimated 20,000-25,000 genes in the human genome (Human 

Genome Project 2008), DNA is packaged into a highly organized chromatin structure.  The 

fundamental unit of chromatin is the nucleosome, which consists of the DNA double helix and 

histone proteins.  Histones are small (~15-17kDa) proteins which provide a scaffold for DNA to 

wrap (Carey and Smale 2000; Lewin 2004).  There are four histone proteins, H2A, H2B, H3 and 

H4, which form an octomer structure, consisting of a central H3/H4 tetramer flanked on either 

side by a H2A/H2B dimer (Figure 1-1a) (Luger, Mader et al. 1997; Richmond and Davey 2003).   

Approximately 146 base pairs of DNA wrap 1.67 turns around the histome octomer to form  the 

intact nucleosome (Luger, Mader et al. 1997).  A fifth protein, histone H1, is a linker histone 

(Widom 1998), which aides in the coiling of dinuclesomes to further compact the chromatin 

structure into 30 nm chromatin fibers that are themselves condensed, albeit in a poorly 

understood process (Widom 1998; Dorigo, Schalch et al. 2004).  Chromatin  is dynamic and can 

be found in  multiple forms: the highly condensed, silent chromatin (heterchromatin), the inactive 

but poised for transcription chromatin and the transcriptionally accessible chromatin 

(euchromatin) (Figure 1-1b) (Lewin 2004).  
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A 

 

 

 

 

 

 

 

 

 

 

 

B 

Figure 1-1.  Chromatin structure & dynamics.  (A)  Histone octomer.   The nucleosome histone core consists of a 

central H3/H4 tetramer flanked on either side by a H2A/H2B dimer (Luger, Mader et al. 1997; Richmond and Davey 

2003).   (B)  Three states of chromatin.  Chromatin is found in  three forms:  highly condensed, methylated (M) silent 

chromatin (heterchromatin), the methylated (M), phosyphorylated (P) and acetylated (A) posied for transcription 

(euchromatin) and highly acetylated (A) actively transcribed chromatin (Lewin 2004).     
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THE EPIGENETIC CODE 

The chromatin state is largely determined by an epigenetic code.  Traditionally the 

element of this code was considered to be DNA methylation, occuring on cytosines of CpG 

dinucleotides.  Indeed, this heritable modification is considered to be the prodiminant means of 

gene silencing and is associated with processess such as imprinting and X-chromosome 

inactivation (Constancia, Pickard et al. 1998; Schubeler, Lorincz et al. 2000; Bird 2002; Chow, 

Yen et al. 2005).  However there now exists a second layer to the epigenetic code involing the 

ends of histone proteins that extend out of the core octomer structure of the nucleosome and are 

regions for post-translational modifications (Figure 1-2) (Carey and Smale 2000; Felsenfeld and 

Groudine 2003; Kouzarides 2007).  Potential covalent modifications of histone tail regions 

include acetylation, phosphorylation, methylation and ubiquitination, (Carey and Smale 2000; 

Shilatifard 2006).  The addition of various modifications loosens or tightens the chromatin 

structure, dictating gene expression patterns (Jenuwein and Allis 2001; Zhang and Reinberg 

2001; Felsenfeld and Groudine 2003; Zhang 2003; Kouzarides 2007; Shahbazian and Grunstein 

2007).  The histone code hypothesis proposes that it is a combination of multiple histone 

modifications which determines the openness of the chromatin structure and thus the expressivity 

of the gene.  Indeed, the various states of chromatin can be characterized by specific 

combinations of histone modifications.   

 

Histone Acetylation 

The most studied histone modification is acetylation, which relaxes the interactions 

between histone proteins and DNA.  Most histone acetylation events occur at lysine residues 

located on histone H3 and H4 (table 1-1).   Histone acetyltransferases (HATs) attach an acetyl  
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Figure 1-2.  Histone post-translational modifications.  The tail regions of histones proteins extend out of the 

nuclesome structure and are regions for post-translational modifications.  Potential modifications include acetylation 

(A), phosphorylation (P), methylation (M) and ubiquitination (U) (Carey and Smale 2000; Shilatifard 2006). 
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Note:  Identified histone modifications with their potential forward and reverse enzymes (Roth, Denu et al. 2001; 

Santos-Rosa, Schneider et al. 2002; Schubeler, MacAlpine et al. 2004; Kim, Hake et al. 2005; Fodor, Kubicek et al. 

2006; Shilatifard 2006; Tsukada, Fang et al. 2006; Kouzarides 2007; Lee, Tate et al. 2007; Lee, Norman et al. 2007; 

Lee, Villa et al. 2007). 

 

 

 

 

 

 

 

 

 

 

 

Table 1-1.  Common histone modifications   
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group to the  amino group of a histone lysine residue (Figure 1-3) (Carrozza, Utley et al. 2003).  

This modification is reversed by histone deacetylases (HDACs) which remove the acetyl group 

from the target residue (de Ruijter, van Gennip et al. 2003).  Although promiscuous, there are a 

variety of known HATs, including general control of amino-acid synthesis 5 (GCN5), CREB 

binding protein (CBP), p300, p300/CBP-associated factor (pCAF) as well as a number of 

additional proteins found to have HAT activity, that are capable of acetylating various lysine 

residues in histone proteins (Bannister and Kouzarides 1996; Ogryzko, Schiltz et al. 1996; Chan 

and La Thangue 2001; Roth, Denu et al. 2001).  Acetylation neutralizes the positive charge 

associated with lysine, providing one potential mechanism by which the histone-DNA interaction 

is relaxed to allow transcriptional machinery access to bind the DNA (Agalioti, Chen et al. 2002; 

Shukla, Vaissiere et al. 2008).  Since the modification is reversible, removal of the acetyl group 

by HDACs returns the chromatin to a more compact state Figure 1-3 (de Ruijter, van Gennip et 

al. 2003). 

 

Histone Methylation 

The role of histone methylation is less understood and more complex because these 

modifications are associated with either gene expression or gene repression depending on the 

position of the modification.  Furthermore, the mechanisms as to how certain methylation events 

contribute to a more open or closed DNA/histone structure are poorly understoon.  Methylation 

also offers an additional level of control as multiple methyl groups can be added to target 

residues.  Methylation occurs at both arginine (R) residues and lysine (K) residues.  Methylation 

of arginine residues has been linked to gene activation (Bauer, Daujat et al. 2002), but 

methylation of lysine residues has been historically associated with gene inactivation 
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A 

 

 

 

 

 

 

 

 

B 

 

 

 

 

 

 

 

 

Figure 1-3.  Histone acetylation.   (A)  Acetylation of lysine residues.  Histone acetyltransferases attach an acetyl 

group to the  amino group of a histone lysine residue, which can be removed by histone deacetylases.  (B)  Histone 

acetylation is associated with a open chromatin structure.  Acetylation of lysine residues loosens the DNA/protein 

interaction to allow for active transcription.  (Bannister and Kouzarides 1996; Ogryzko, Schiltz et al. 1996; Chan and 

La Thangue 2001; Roth, Denu et al. 2001) 
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(Jenuwein and Allis 2001; Nakayama, Rice et al. 2001; Berger 2002; Lehnertz, Ueda et al. 2003; 

Shilatifard 2006).  Indeed, heterochromatin protein 1(HP1) specifically interacts with histone H3 

dimethylated at lysine 9 (H3K9me2) during chromatin silencing and heterochromatin formation 

(Lachner, O'Carroll et al. 2001; Nakayama, Rice et al. 2001; Jacobs and Khorasanizadeh 2002).   

Similarly, histone H3 trimethylated at lysine 27 (H3K27me3) is associated with X chromosome 

inactivation, imprinting, stem cell maintenance and cancer (Plath, Fang et al. 2003; Sparmann 

and van Lohuizen 2006).  However, H3K36 hypermethylation is thought to have a role in 

transcriptional memory by marking already transcribed regions of DNA and hypermethylation at 

H3K4 is associated with actively transcribed genes and is found primarily at actively transcribed 

promoters (Bernstein, Humphrey et al. 2002; Santos-Rosa, Schneider et al. 2002; Bannister, 

Schneider et al. 2005; Shilatifard 2006).    

The mechanism by which histone methylation contributes to opening and maintaining a 

loose chromatin structure is poorly understood, although histone H3K4 hypermethylation has 

been found to inhibit H3K9 methylation and is associated with the demethylation of H3K27 to 

release chromatin from a silencing conformation (Wang, Cao et al. 2001; Agger, Cloos et al. 

2007; Lee, Villa et al. 2007).  Histone H3K36 methylation is thought to reestablish native 

chromatin conformation by recruiting histone deacetylases (HDACs) in the wake of elongating 

RNA polymerase II and thus prevents the inappropriate initiation of transcription (Carrozza, Li et 

al. 2005; Joshi and Struhl 2005; Lee and Shilatifard 2007).    

Methyl groups are added to target residues by histone methyltransferases (HMTases). 

There are two major groups of HMTases:  protein arginine methyltransferases (PRMTs) and 

SET-domain or non-SET-domain containing lysine methyltransferases.   PRMT enzymes attach 

methyl groups to arginine residues.  There are three forms of arginine methylation:  N
G
-mono-
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methylarginine, N
G
N

G
 – symmetric di-methylarginine and N

G
N

G
 – symmetric di-methylarginine 

(Figure 1-4a).   Methylation of lysine residues can occur in mono-, di-, and trimethylated forms 

and SET-domain or non-SET domain enzymes attach methyl groups on the nitrogen of lysine 

residues (Figure 1-4b) (Shilatifard 2006).  Until recently histone methylation was considered an 

irreversible modification.  However, evidence has now identified a variety of histone 

demethylases, the first of which was LSD1that demethylates mono- and dimethyl H3K4 in a 

lavin adenine dinucleotide (FAD)-dependent oxidative reaction (Metzger, Wissmann et al. 2005; 

Wysocka, Milne et al. 2005).  The inability of LSD1 to demethylate trimethyl H3K4 led to the 

discovery and characterization of the highly conserved Jumonji C (JmjC)-domain-containing 

proteins also capable of removing methyl groups from lysine residues (Fodor, Kubicek et al. 

2006; Klose, Yamane et al. 2006; Tsukada, Fang et al. 2006; Whetstine, Nottke et al. 2006; 

Yamane, Toumazou et al. 2006; Lee, Norman et al. 2007).  This recent discovery of histone 

demethylases provides yet another means of regulating the chromatin dynamics.  

 

Histone Ubiquitination 

Similar to methylation, histone ubiquitination can be either activating or silencing 

depending on the histone residue being modified.  Initial reports indicated a role for histone H2A 

ubiquitination (ubH2A) in gene activation, but more recently ubH2A has been shown to interact 

with H3K27me3 and indicate gene silencing (de Napoles, Mermoud et al. 2004; Cao, Tsukada et 

al. 2005; Wei, Zhai et al. 2006; Lee, Norman et al. 2007) where as monoubiquitination of histone 

H2B at lysine 123 precedes activating histone methylation events (Sun and Allis 2002; Wood, 

Krogan et al. 2003; Wood, Schneider et al. 2003; Shilatifard 2006).   
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A  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B 

 

Figure 1-4.  Histone methylation.  (A) Arginine Methylation.  PRMT enzymes attach methyl groups to arginine 

residues to obtain one of three forms of arginine methylation:  N
G
-mono-methylarginine, N

G
N

G
 – symmetric di-

methylarginine and N
G
N

G
 – symmetric di-methylarginine.  (B) Lysine Methylation.   SET-domain or non-SET 

domain enzymes attach one, two, or three methyl groups on the nitrogen of lysine residues (Shilatifard 2006).  
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  Ubiquitin is attached to target lysine residues in a three step enzyme cascade (Figure 1-5) 

which begins when the C-terminus of ubiquitin is activated in an ATP-dependent step and 

covalently linked by a thioester bond to a cysteine site on an E1 ubiquitin-activating enzyme.  

The activated ubiquitin is then transferred to an E2 ubquitin conjugating enzyme and finally an 

E3 ubiquitin ligase attaches the activated ubquitin to the targeted lysine residue (Ciechanover 

1994; Hochstrasser 1996; Finley, Ciechanover et al. 2004; Kinyamu, Chen et al. 2005).   

Ubiquitin is removed by deubiquitinases, providing a the ability for ubiquitin to cycle on and off 

their target lysines to aid in gene regulation (Shilatifard 2006).  Moreover, the removal of 

ubiquitin from H2B by Ubp8, a component of the HAT containing Spt-Ada-Gcn5-

acetyltransferase (SAGA) complex suggested a role for deubiquitination in promoting a more 

transcriptionally accessible chromatin structure (Henry, Wyce et al. 2003).  Recently, studies in 

mammalian cells have suggested that  histone ubiquitination is highly dynamic with elevated 

levels ubH2B being localized not to promoter regions of genes but rather to coding sequence, 

suggesting a role of H2B ubiquitination in transcriptional elongation rather than initiation 

(Minsky, Shema et al. 2008). 

 

Additional Histone Modifications 

 There are a variety of additional histone modifications that are not as well studied as 

those mentioned previously.  Histone sumoylation is thought to be associated with transcriptional 

repression (Nathan, Sterner et al. 2003; Shiio and Eisenman 2003).   Poly (ADP-ribosylated) 

histones are thought to function in the assembly and deposition of histone
 
complexes onto DNA 

during replication (Boulikas 1990).  Phosphorylation of histones is associated with active 

transcription, although the mechanism by which histone phosphorylation contributes to  
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Figure 1-5.  Enzyme cascade for ubiquitination.  The C-terminus of ubiquitin is activated in an ATP-dependent 

step and covalently linked to a cysteine site on an E1 ubiquitin-activating enzyme.  The activated ubiquitin is then 

transferred to an E2 ubquitin conjugating enzyme and either directly or via an E3 ubiquitin ligase to a lysine residue 

on the target protein (Ciechanover 1994; Hochstrasser 1996; Finley, Ciechanover et al. 2004; Kinyamu, Chen et al. 

2005).    
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transcription is not well understood (Nowak and Corces 2000).  However, it has been found that 

several histone acetyltransferases have enhanced HAT activity on phosphorylated substrates 

(Cheung, Tanner et al. 2000; Lo, Trievel et al. 2000).  Phosphorylation of histone H3 at serine 10 

is thought to be important for early elongation events as this modification occurs after 

transcription initiation but prior to recruitment of P-TEFb (Ivaldi, Karam et al. 2007). 

 

 Coordinating the Histone Code 

The state of chromatin is dictated by the presence of numerous histone posttranslational 

modifications.  Histone H3K27 and K9 methylation is associated with silenced chromatin, poised 

but inactive chromatin often is characterized by both activation associated modifications 

(H3K4me3) and inactivation associated modifications  (H3K27me3) whereas transcriptionally 

active chromatin is characterized by histone acetylation (H3K9, H3K14, H3K8 etc) as well as 

activating histone methylation events (H3K4me3) (Jenuwein and Allis 2001; Lachner, O'Carroll 

et al. 2001; Zhang and Reinberg 2001; Bernstein, Humphrey et al. 2002; Santos-Rosa, Schneider 

et al. 2002; Schubeler, MacAlpine et al. 2004; Shilatifard 2006).  However, how various histone 

modifying enzymes interact to dictate specific combinatorial patterns of histone modifications to 

open or close the chromatin structure is unclear.  One of the few links established between 

chromatin modifications involves two well known chromatin remodelers:  the coactivator-

associated arginine methyltransferase 1 (CARM1) which mediates H3R17me2 and the HAT 

CBP/p300 known to mediate H3K18 acetylation (Ma, Baumann et al. 2001; Daujat, Bauer et al. 

2002; Zika, Fauquier et al. 2005).  At estrogen-responsive genes, fifteen minutes post estrogen 

stimulation CBP has been shown to associate with chromatin and H3K18 and H3K23 acetylation 

occur, which is closely followed by CARM1 binding and H3R17 methylation   
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(Daujat, Bauer et al. 2002).  Similarly at interferon gamma (IFN-) inducible genes, unstable 

binding of CBP is quickly followed by CARM1 association.  CARM1 then methylates not only 

H3R17, but CBP itself (Zika, Fauquier et al. 2005).    

A second link has been established in Saccharomyces cerevisiae between histone H2B 

monoubiquitination and H3 methylation.   A yeast study has shown H2B monoubiquitination to 

be a prerequisite for activating lysine methylation modifications (H3K4 and H3K79) on histone 

H3, a link that may involve components of the 19S proteasome and a histone methyltransferase 

complex (COMPASS) as well as the CCR4/NOT complex (Wood, Schneider et al. 2003; 

Ezhkova and Tansey 2004; Laribee, Shibata et al. 2007; Lee, Shukla et al. 2007).  In addition 

subunits of COMPASS have been found to interact with UTX, a histone demethylase that 

removes methyl groups from histone H3K27, releasing chromatin from a repressive state (Lee, 

Villa et al. 2007).   However how these various histone modifying enzymes interact to coordinate 

histone modifications to open the chromatin structure for full assembly of transcriptional 

machinery and transcription initiation remains unknown. 

 

THE UBIQUITIN-PROTEASOME SYSTEM (UPS) 

 Proteasomes are large multi-subunit complexes that function to degrade both nuclear and 

cytoplasmic proteins (Coux, Tanaka et al. 1996; Ciechanover 1998; Brooks, Fuertes et al. 2000).  

A protein targeted for degradation is tagged with ubiquitin monomers via an enzyme cascade that 

terminates with an E3 ubiquitin ligase attaching ubiquitin onto a lysine residue of the target 

protein (Ciechanover 1994; Hochstrasser 1996; Finley, Ciechanover et al. 2004).  As previously 

described, this three step enzyme cascade (Figure 1-5) involves the ATP-dependent activated 

ubiquitin attached to an E1 ubiquitin-activating enzyme being transferred to an E2 ubquitin 
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conjugating enzyme.  An E3 ubiquitin ligase then transfers the activated ubquitin to a lysine 

residue on the target protein (Ciechanover 1994; Hochstrasser 1996; Finley, Ciechanover et al. 

2004; Kinyamu, Chen et al. 2005).   Polyubiquitination occurs when additional ubiquitin groups 

are sequentially added to the initial ubquitin on the target protein (Thrower, Hoffman et al. 

2000).  Although there are various forms of polyubiquitin chain formation, polyubquitination for 

protein degradation occurs via the covalent attachment between lysine 48 of Ubn to glycine 76 on 

Ubn+1(Chau, Tobias et al. 1989).  

 

Subunits of the 26S Proteasome 

Once a protein is tagged with a chain of four or more ubiquitin groups, it can then be 

recruited to the 26S proteasome for degradation (Figure 1-6a) (Ciechanover 1998; Thrower, 

Hoffman et al. 2000; Finley, Ciechanover et al. 2004).  The evolutionally conserved 26S 

proteasome consists of two large complexes: the 20S catalytic core and the 19S regulatory 

particle (Figure 1-6b).  The 20S catalytic core is a 700 kDa cylindrical structure, comprised of 

four seven member rings of repeating α and ß subunits that functions to proteolytically cleave 

and degrade proteins into peptides (Baumeister, Walz et al. 1998).  The  subunits lack catalytic 

activity but are important for the 20S core to interact with the 19S regulatory particle (Coux, 

Tanaka et al. 1996).  The  subunits are proteolytic sites that degrade proteins via a variety of 

mechanisms (Kinyamu, Chen et al. 2005).  The 20S core is activated by the binding of the 19S 

regulatory particle at both ends of the cylindrical structure (DeMartino and Slaughter 1999).  The 

19S regulatory particle consists of a lid, comprised of twelve non-ATPase proteins and a base 

comprised of six ATPase proteins (Glickman, Rubin et al. 1999).  Each of the six ATPases 

belong to the family of ATPases associated with a variety of cellular activities (AAA
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Figure 1-6.  Proteasome mediated protein degradation.  (A) The Ubiquitin Proteasome System (UPS).  The UPS 

functions to recruit and degrade polyubiquitinated proteins.  (B) Structure of the 26S Proteasome.  The 26S 

proteasome is comprised of a 19S regulatory particle and and 20S core.  The 19S regulatory particle (Cap) recruits 

polyubiquitinated proteins, cleaves off ubiquitin groups and unfolds/shuttles proteins to the 20S core (Coux, Tanaka 

et al. 1996; Strickland, Hakala et al. 2000).  The 20S core is catalytic and proteolytically cleaves proteins into 

peptides (Baumeister, Walz et al. 1998).    
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proteins) (Glickman, Rubin et al. 1999).  The 19S regulatory particle recruits targeted 

polyubiquitinated proteins and functions to cleave off the ubiquitin groups, unfold and shuttle the 

target protein to the 20S core for degradation (Coux, Tanaka et al. 1996; Strickland, Hakala et al. 

2000).    

 

The UPS and Transcription 

The ubiquitin-proteasome system (UPS) has previously been linked to transcriptional 

activity (Conaway, Brower et al. 2002; Ferdous, Kodadek et al. 2002; Greer, Zika et al. 2003).  

The traditional role for the UPS in transcription involves the degradation of polyubiquitinated 

transcription factors and chromatin remodelers to terminate transcription (Ciechanover 1994; 

Hochstrasser 1996).  However a novel role for the UPS in regulating transcription now exists, 

whereby ubiquitin has been found to be essential for transcription, independent of its role in 

tagging target proteins for degradation (Salghetti, Caudy et al. 2001; Conaway, Brower et al. 

2002; Dennis and O'Malley 2005).   The first evidence for this stemmed from the observation 

that the addition of a single ubiquitin molecule to the transcriptional activation domain (TAD) of 

VP16 is required for activation of VP16 target genes, a requirement that is overcome by the 

fusion of a single ubiquitin molecule to VP16 (Salghetti, Caudy et al. 2001; Kurosu and Peterlin 

2004).    Monoubiquitination has since been identified as a critical post-translational 

modification of a variety of transcription factors (Lonard, Nawaz et al. 2000; Greer, Zika et al. 

2003).   

More recently, research in yeast has indicated that the proteasome disassociates in vivo 

and both 20S core complexes and 19S regulatory particles Figure 1-6b are found in the nucleus 

as well as the cytoplasm of cells (Brooks, Fuertes et al. 2000).  Reports of a non-proteolytic 
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function for the 19S proteasome soon followed (Ferdous, Gonzalez et al. 2001; Ferdous, 

Kodadek et al. 2002).  Saccharomyces cerevisiae 19 proteasomes were found to be required for 

efficient transcription elongation by RNA polymerase II, with inactivation of a single 19S AAA 

ATPase, Sug1, but not inhibition of the 20S core, being sufficient to observe defects in 

elongation (Ferdous, Gonzalez et al. 2001; Ferdous, Kodadek et al. 2002).   The 19S proteasome 

was found to disassociate further (Figure 1-7) into the six ATPases of the 19S base independent 

of the 20S (APIS) complex, forming an independent 19S subcomplex that associates with 

inducible yeast promoters (Gonzalez, Delahodde et al. 2002; Sun, Johnston et al. 2002).  This 

discovery supported previous observations that 19S ATPases associate with activation domains 

aiding recruitment of transcription factors to TBP (Swaffield, Melcher et al. 1995) and specific 

alleles of Rpt6 (Sug1) were capable of rescuing a class of Gal4 activation domain mutants 

(Rubin, Coux et al. 1996).     

However, it remained unclear how the APIS complex was promoting transcription.  In 

2002, Sun and Allis identified a lysine residue on yeast histone H2B (K123) that is post-

translationally modified by a single ubiquitin, which is necessary for histone H3 methylation 

(Sun and Allis 2002).  Two years later, Ezhkova and Tansey reported that this regulation is 

mediated by proteasomal ATPases, providing the first report implicating the 19S proteasome in 

regulating transcription at the level of epigenetics (Ezhkova and Tansey 2004).    The cycling of 

ubquitination/deubiquitination of histone H2B was found to be important for transcriptional 

activity in yeast, a process mediated by the Ubp8 deubiquitinase of the yeast SAGA (Spt-Ada- 

Gcn5-acetyltransferase) complex (Henry, Wyce et al. 2003) and the 19S proteasome was found 

to target the SAGA complex, which also contains HAT activity, to active promoters to promote a 

more open chromatin conformation (Lee, Ezhkova et al. 2005).   Combined these studies   
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Figure 1-7.  The 19S subcomplex.  The 19S proteasome disassociates into the six ATPases of the 19S base 

independent of the 20S (APIS) complex, which is independently recruited to inducible yeast promoters (Gonzalez, 

Delahodde et al. 2002; Sun, Johnston et al. 2002). 
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suggested that the 19S ATPases function to reconfigure chromatin to allow for transcription to 

take place.  The significance of these interactions is yet to be investigated in other organisms. 

Studies have now shown that the APIS subcomplex associates with mammalian 

promoters suggesting that the APIS may have a conserved, non-proteolytic function in regulating 

transcription (Conaway, Brower et al. 2002; Ferdous, Kodadek et al. 2002; Greer, Zika et al. 

2003; Yu and Kodadek 2007; Bhat, Turner et al. 2008).  Sug1 is recruited to p21
waf1

 promoters in 

response to ultraviolet-induced DNA damage (Zhu, Wani et al. 2007), to the HIV-1 promoter to 

enhance Tat-dependent transcription (Lassot, Latreille et al. 2007), to major histocompatibility 

complex class II(MHC-II) promoters genes in response to cytokine stimulation (Bhat, Turner et 

al. 2008) and to retinoic acid (RA) induced genes via an interaction with Steroid receptor co-

activator  (SRC)-3 (Ferry, Gianni et al. 2009).  Sug1 also associates with p53, E1A, class II 

transactivator (CIITA) and with several nuclear receptors (vom Baur, Zechel et al. 1996; Lee, 

Ezhkova et al. 2005; Bhat, Turner et al. 2008; Ferry, Gianni et al. 2009).  However evidence of 

roles for the 19S in regulating mammalian chromatin structure has been lacking.  Do the 

components of the 19 proteasome have a similar role in regulating transcription in mammalian 

cells, specifically cytokine inducible genes critical to eliciting an adaptive immune response?   

 

MHC MOLECULES AND THE ADAPTIVE IMMUNE SYSTEM 

 

The Immune System 

The immune system is critical for survival in a less than sterile world as it functions to 

remove invading pathogens.  The immune system is divided into two branches:  innate immunity 

and adaptive immunity.  Innate immunity is the first line of defense against invading pathogens.  
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Most components of the innate immune system are present prior to infection and serve to rapidly 

mount a localized non-specific response to any invading pathogen (Parham 2005; Kindt, Goldsby 

et al. 2007).  The initial step of invasion involves a pathogen breaching the physical barriers 

(skin, mucosal membranes) as well as secondary barriers (the acidic nature of the stomach and 

perspiration) (Parham 2005; Kindt, Goldsby et al. 2007).  Once a pathogen enters the host, a 

variety of mechanisms are present that recognize common molecular surface markers of 

pathogens (foreign to the host) and work to eliminate them.  

The innate immune system also forms a bridge to the more specific, albeit delayed, 

adaptive immune system.  Adaptive immunity differs from innate immunity in that the adaptive 

immune system is highly diverse and antigen specific with the ability to develop immunological 

memory which enables a more rapid, specific response when the host is re-challenged by the 

pathogen (Kindt, Goldsby et al. 2007).  Cells of the adaptive immune system are called 

lymphocytes (B cells and T cells).  B cells give rise to antibody producing plasma cells that work 

to clear free pathogen whereas T cells work to clear both intracellular and extracellular 

infections.  There are three major types of T cells:  T cytotoxic (Tc) cells, T helper (Th) cells and 

T regulatory (Treg) cells.  Each cell type is distinguished by the membrane bound glycoproteins 

on their cell surface.  Cytotoxic T cells are CD8 positive (CD8
+
) cells that kill infected cells 

(Parham 2005; Kindt, Goldsby et al. 2007).  Helper T cells are CD4 positive (CD4
+
) cells that 

coordinate the immune response by activating additional lymphocytes and  Treg cells, a subset of 

T helper cells, are characterized by having both CD4 and CD25 glycoproteins on their cell 

surface and are negative regulators of an immune response as they suppress the immune system 

once an infection is eliminated (Parham 2005; Kindt, Goldsby et al. 2007).  Unlike cells of the 

innate immune system, T cells must first be activated by the binding of appropriate antigen to 
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their T cell receptor.  However, T cell receptors can only recognize antigen when presented in the 

context of major histocompatibility complex molecules (MHC) (Figure 1-8).  

 

MHC Molecules 

MHC molecules are cell surface glycoproteins that bind and present antigens to cells.  There are 

two types of MHC molecules, MHC-I and MHC-II.  MHC-I molecules are present on the 

surfaces of all cells and bind intracellularly derived peptides that activate CD8
+
 T lymphocytes.  

In contrast, MHC-II molecules bind extracellularly derived peptides to activate CD4
+
T 

lymphocytes (Glimcher and Kara 1992).  MHC-II molecules are  heterodimeric glycoproteins 

whose expression is much more limited than MHC-I (Glimcher and Kara 1992).  A subset of 

cells called antigen presenting cells (APCs), including activated macrophages, dendritic cells and 

B cells, constitutively express MHC-II.  However, all nucleated cells can be induced to express 

MHC-II by inflammatory cytokine stimulation, such as interferon gamma (IFN-).   

Once activated, CD4
+
T cells are then able to participate in both cell-mediated and 

antibody-mediated adaptive immune responses, allowing the body to focus an attack against the 

invading pathogens  (Parham 2005).  Repression of MHC-II expression results in deficiencies in 

identifying and removing pathogens and increases incidences of illness.   Furthermore, highly 

elevated expression of MHC-II genes often leads to the binding of self peptides and results in the 

development of autoimmune diseases such as multiple sclerosis, diabetes, and arthritis.  

Dramatically reduced MHC-II expression leads to bare lymphocyte syndrome, which results in 

death in early childhood (Reith and Mach 2001; Parham 2005; Sospedra and Martin 2005).  In 

addition, there is now evidence that MHC-II molecules also function in tumor suppression 

(Gerloni and Zanetti 2005).  Therefore, studying the regulation of MHC-II transcription provides 
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Figure 1-8.  Activation of the adaptive immune response.  Activation of lymphocytes requires that foreign 

pathogens be processed into small peptides (antigens) and complexed with additional major histocompatibility 

complex (MHC) molecules on the cell surface of cells.   
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novel information that will aid in enhancing our understanding of the immune response and 

provide new targets for developing therapies in combating these diseases. 

 

Regulation of MHC-II Transcription 

It is crucial that MHC-II expression be tightly regulated because aberrant expression is 

associated with a wide range of illnesses.  Expression of class II transactivator (CIITA), the 

master regulator of MHC-II, mirrors that of MHC-II with constitutive expression found in APCs 

or inducible expression in most other cells types (Mach, Steimle et al. 1996; Ting and Trowsdale 

2002; Boss and Jensen 2003).  Prior to IFN- stimulation, HLA-DRA promoter histones are 

moderately acetylated, which correlates with the assembly of a basal enhanceosome complex 

(Beresford and Boss 2001; Adamski, Ma et al. 2004) which consists of regulatory factor X 

(RFX), nuclear factor Y (NF-Y) and cAMP response element binding protein (CREB) that 

constitutively associate with the X and Y elements of the MHC-II proximal promoter (Figure 1-

9) (Steimle, Durand et al. 1995; Nagarajan, Louis-Plence et al. 1999).    Following IFN- 

stimulation, CBP/p300 rapidly binds the MHC-II proximal promoter and results in increased 

histone acetylation to relax the chromatin structure surrounding the MHC-II promoter (Eberharter 

and Becker 2002; Freiman and Tjian 2003; Gorisch, Wachsmuth et al. 2005).  Simultaneously, 

IFN- stimulation induces transcription of CIITA at the cytokine inducible promoter IV (pIV).  

CIITA is subsequently expressed and recruited via direct interaction with basal enhanceosome 

components to the MHC-II proximal promoter (Beresford and Boss 2001; Spilianakis, Kretsovali 

et al. 2003; Zika, Fauquier et al. 2005).  CIITA recruitment correlates with recruitment of basal 

transcriptional machinery including TBP, pTEFb and TAFII32 as well as enhanced binding of 

various coactivators and histone modifying enzymes to fully open the chromatin structure and 
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Figure 1-9.  The MHC-II proximal promoter.  The proximal promoter of MHC-II HLA-DRA genes contain 

conserved cis acting elements including an X and Y box.  CIITA is recruited to the MHC-II promoter via direct 

interaction with basal enhanceosome components, regulatory factor X (RFX), nuclear factor Y (NF-Y) and cAMP 

response element binding protein (CREB), which bind the X and Y boxes, respectively (Steimle, Durand et al. 1995; 

Nagarajan, Louis-Plence et al. 1999).  In addition, various HATS (CBP/p300, pCAF, and SRC-1) as well as an 

HMTase (CARM1) interact with the MHC-II promoter and CIITA (Kretsovali, Agalioti et al. 1998; Fontes, 

Kanazawa et al. 1999; Zika, Fauquier et al. 2005; Zika and Ting 2005).    
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initiate transcription (Fontes, Jiang et al. 1997; Mahanta, Scholl et al. 1997; Muhlethaler-Mottet, 

Otten et al. 1997; Kretsovali, Agalioti et al. 1998; Fontes, Kanazawa et al. 1999; Kanazawa, 

Okamoto et al. 2000; Spilianakis, Papamatheakis et al. 2000; Wright and Ting 2006). 

 

Chromatin Structure of MHC-II Promoters 

Extensive studies have now established an epigenetic map (table 1-2) for the proximal 

promoter of the MHC-II gene HLA-DRA that corresponds to the initial transcriptional events 

described above (Beresford and Boss 2001; Gomez, Majumder et al. 2005; Zika, Fauquier et al. 

2005; Gialitakis, Kretsovali et al. 2006).    Initial epigenetic studies showed that histone H3 and 

histone H4 are acetylated at the active MHC-II promoter and that this acetylation is enhanced 

upon CIITA recruitment (Beresford and Boss 2001; Zika, Fauquier et al. 2005).  Furthermore it 

appears that multiple histone acetyltransferases (HATs) are required to open the chromatin 

structure because cells with mutated CIITA that are unable to recruit the HAT CBP/p300, still 

show various levels of acetylated histones in the MHC-II region of the chromatin (Beresford and 

Boss 2001).  Indeed, a variety of HATs are now known to interact with the MHC-II promoter and 

CIITA, including CBP/p300, pCAF and SRC-1 (Zika and Ting 2005).   It is now clear that active 

expression of MHC-II is associated with histone H3 acetylation at K9, K14, K18, K27 and 

histone H4 acetylation at K8 (Gomez, Majumder et al. 2005).  In addition, several histone 

methylation events are associated with active transcription of MHC-II, including the CARM1 

mediated dimethylation of histone H3R17 and the trimethylation of histone H3 at K4 and K36 

(Zika, Fauquier et al. 2005; Chou and Tomasi 2008).  However, it is not understood how these 

modifications coordinate to allow for MHC-II expression.   One of the few enzymes associated 

with a particular modification is the histone arginine methyltransferase CARM 1, which has been  
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  Table 1-2.  Identified histone modifications at the MHC-II HLA-DRA proximal promoter   

Note:  Active expression of MHC-II is associated with histone H3 acetylation at K9, K14, K18, K27 and histone H4 

acetylation at K8 (Gomez, Majumder et al. 2005) as well as several histone H3 methylation events, including the 

dimethylation of histone H3R17 and the trimethylation of histone H3 at K4 and K36 (Zika, Fauquier et al. 2005; 

Chou and Tomasi 2008). 
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shown to rapidly bind the MHC-II promoter upon IFN- stimulation and mediate H3R17 

methylation (Zika, Fauquier et al. 2005).  The histone modifying enzymes that mediate the other 

MHC-II histone modifications and how they coordinate to open the chromatin structure for full 

enhanceosome formation and transcription initiation remains unknown. 

 

Regulation of Class II Transactivator (CIITA) 

As stated previously, CIITA expression correlates with MHC-II expression with cells that 

lack MHC-II expression also lacking CIITA expression. Thus, CIITA transcription is regulated in 

a cell-type specific manner by four distinct promoters.  Promoter I drives CIITA expression in 

dendritic cells.  The function of promoter II remains unknown.  Promoter III primarily functions 

in the constitutive expression of CIITA in B cells and promoter IV is responsible for IFN- 

induced expression of CIITA in all nucleated cells (Muhlethaler-Mottet, Otten et al. 1997; 

Piskurich, Linhoff et al. 1999).  CIITA pIV is well characterized with three cis-acting elements:  

an IFN- activated sequence (GAS), an E-box and an IFN response element (IRE) site (Figure1-

10).    IFN- initiates the JAK\STAT pathway by triggering the phosphorylation and nuclear 

translocation of signal transducer and activator of transcription 1 (STAT1) homodimers, which 

drive expression of interferon regulatory factor 1 (IRF1).  STAT1 and subsequently IRF1 are then 

recruited to the c-myc associated, ubiquitous factor 1 (USF-1) occupied CIITA pIV, to bind the 

GAS element and IRE respectively (Muhlethaler-Mottet, Di Berardino et al. 1998; Morris, 

Beresford et al. 2002).  CIITA transcripts are then observed 2 hours post IFN- stimulation 

coinciding with IRF1 binding (Morris, Beresford et al. 2002; Wright and Ting 2006).   Although 

fewer studies have been done to epigenetically map CIITA pIV, it is clear that there are increases 

in acetylation of histone H3 and H4 upon IFN- stimulation (Morris, Beresford et al. 2002) with 



29 

 

 

 

 

  

 

 

Figure 1-10.  CIITA pIV.  CIITA pIV consists of three cis-acting elements:  an IFN- activated sequence (GAS) 

that binds STAT1 homodimers, an E-box that binds USF-1 and an IFN response element (IRE) site that binds IRF-1.  

(Muhlethaler-Mottet, Di Berardino et al. 1998; Morris, Beresford et al. 2002).     
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specific enhancement observed at H3K9, H3K18 and H4K8 (Table 1-3) (Ni, Karaskov et al. 

2005).  In addition, trimethylation of H3K4, which correlates with active transcription, is 

observed upon prolonged cytokine stimulation (Ni, Karaskov et al. 2005).   Only two histone 

modifying enzymes are known to be recruited to CIITA pIV:  the HAT CBP /p300 and the ATP 

dependent chromatin remodeler BRG1 which binds even prior to STAT1 recruitment (Pattenden, 

Klose et al. 2002; Ni, Karaskov et al. 2005).  Unfortunately, a more detailed characterization of 

CIITA pIV’s chromatin structure is lacking. 

 

SUMMARY 

For cell survival, information encoded in DNA must be transcribed and translated.  Thus, 

the highly organized, packaged chromatin structure must undergo conformational changes to 

loosen DNA-protein interactions to allow for gene expression (Carey and Smale 2000).  This 

conformational change utilizes various histone modifying enzymes that post-translationally  

phosphorylate, acetylate, ubiquitinate, and methylate specific histone tail residues, which is 

critical to allow transcription factors and other machinery access to the DNA.  In yeast the 19S 

proteasome has been implicated as functioning as a transcriptional co-activator with the ability to 

promote histone modifications by targeting histone modifying enzymes to induciblely activated 

genes.  Although the 19S proteasome is recruited to some mammalian promoters, a similar 

mechanism for the 19S in regulating the chromatin structure has not been isolated in higher 

eukaryotes.   

MHC-II molecules are crucial to the adaptive immune systems as they present antigenic 

peptides to activate CD4
+
T lymphocytes (Marsman, Jordens et al. 2005).  The fact that most cells  
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Note:  Active expression of CIITA pIV is associated with histone acetylation at H3K9, H3K18 and H4K8 as well as 

the trimethylation of H3K4 (Ni, Karaskov et al. 2005). 

   Table 1-3.  Identified histone modifications at CIITA pIV 
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can be induced to express MHC-II by inflammatory cytokine stimulation (Parham 2005; Kindt, 

Goldsby et al. 2007) and our lab has observed inducible recruitment of the 19S ATPase Sug1 to 

the MHC-II promoter (Bhat, Turner et al. 2008), make this system a good model for studying the 

19S proteasome’s potential contribution to the epigenetic regulation of mammalian genes.  

Studying the role of the proteasome in regulating chromatin remodeling to allow MHC-II 

expression will not only provide novel information about global epigenetic regulation of 

transcription, but will specifically provide vital information about the regulation of MHC-II 

expression which is of utmost importance in developing treatments for diseases associated with 

aberrant expression of MHC-II genes.   
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SUMMARY 

 Recent studies have made evident the fact that the 19S regulatory component of the 

proteasome has functions that extend beyond degradation, particularly in the regulation of 

transcription. Although 19S ATPases facilitate chromatin remodeling and acetylation events in 

yeast, it is unclear if they play similar roles in mammalian cells. We have recently shown that the 

19S ATPase Sug1 positively regulates transcription of the critical inflammatory gene MHC-II by 

stabilizing enhanceosome assembly at the proximal promoter. We now show that Sug1 is crucial 

for regulating histone H3 acetylation at the MHC-II proximal promoter. Sug1 binds to acetylated 

histone H3 and, in the absence of Sug1, histone H3 acetylation is dramatically decreased at the 

proximal promoter with a preferential loss of acetylation at H3 lysine 18. Sug1 also binds to the 

MHC-II histone acetyltransferase CBP and is critical for recruitment of CBP to the MHC-II 

proximal promoter. Our current study strongly implicates the 19S ATPase Sug1 in modifying 

histones to initiate MHC-II transcription and provides novel insights into the role of the 

proteasome in the regulation of mammalian transcription. 

 

BACKGROUND 

Major histocompatibility class II (MHC-II) molecules are cell surface glycoproteins 

which bind and present processed antigenic peptides to CD4
+ 

T lymphocytes to initiate immune 

system protection against invading pathogens and tumors (Parham 2005).  Tight regulation of 

MHC-II expression is crucial to maintain a functional immune system and to limit the 

opportunity for the development of autoimmune diseases (Gerloni and Zanetti 2005; Parham 

2005).  MHC-II is expressed constitutively on antigen presenting cells and can be inducibly 

expressed on most nucleated cells by interferon gamma (IFN-) (7, 20).  Constitutive and IFN- 
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inducible MHC-II expression is regulated at the level of transcription by a series of elements in 

the MHC-II promoter.   Nuclear Factor Y (NFY), Regulatory Factor X (RFX), and cAMP 

response element binding protein (CREB) bind respectively to the Y and X elements of the 

MHC-II proximal promoter forming a multi-protein enhanceosome complex, which is necessary 

but not sufficient for transcription initiation.  Once the enhanceosome is assembled on the MHC-

II promoter, the Class II Transactivator (CIITA) can be recruited.  CIITA binding stabilizes the 

enhanceosome complex and recruits basal transcriptional components, including the CDK7 

subunit of TFIIH and the CDK9 subunit of P-TEFb, which phosphorylate Pol II and initiate the 

switch to an elongation complex (Mach, Steimle et al. 1996; Masternak, Barras et al. 1998; 

Kanazawa, Okamoto et al. 2000; Boss and Jensen 2003; Spilianakis, Kretsovali et al. 2003).  

CIITA is also known to interact with a variety of transcriptional cofactors including multiple 

histone acetyltransferases (HATs) and histone deacetyltransferases (HDACs) (Fontes, Kanazawa 

et al. 1999; Beresford and Boss 2001; Zika, Greer et al. 2003; Wright and Ting 2006).  Although 

much is known about the requirement of these basal and inducible transcription factors for MHC-

II expression, less is known regarding the importance of epigenetic modifications required to 

open the chromatin structure and allow these transcription factors to bind. 

 Integral to eukaryotic chromatin structure are nucleosomes, which consist of an octameric 

histone protein core.  There are four histone proteins in the octamer, H2A, H2B, H3 and H4, 

around which DNA winds to create an environment of reduced DNA accessibility.  The N-

terminal ends of histone proteins extend out of the nucleosome and are regions for post-

translational modifications (Carey and Smale 2000).  Potential covalent modifications of histone 

N-terminal tail regions include acetylation, phosphorylation, and methylation, which can occur at 

the approximately 30 amino acid residues in these tails (Carey and Smale 2000; Jenuwein and 
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Allis 2001; Liang, Lin et al. 2004; Shilatifard 2006).  It is now widely accepted that it is the 

complex combination of these modifications that opens the chromatin structure, creates docking 

sites for the recruitment of effector proteins, and thereby aids in determining the expressivity of 

the gene (Jenuwein and Allis 2001; Martens, Verlaan et al. 2003; Fish, Matouk et al. 2005; 

Francis, Chakrabarti et al. 2005).   

The most studied histone modification is acetylation of lysine residues in the N-terminal 

tails of H3 and H4, which counteracts the compact nature of chromatin by relaxing the 

interaction between histone proteins and DNA (Eberharter and Becker 2002; Freiman and Tjian 

2003; Gorisch, Wachsmuth et al. 2005).  Epigenetic studies of the IFN- inducible MHC-II 

promoter in HeLa cells have shown that prior to IFN- stimulation, histone H3 and histone H4 

are acetylated at low to moderate levels which coordinates with the assembly of the RFX, NFY 

and CREB components of the enhanceosome complex (Beresford and Boss 2001).  Following 

IFN- stimulation in HeLa cells, CIITA is expressed and bound to the proximal promoter, which 

recruits basal transcriptional machinery and enhances recruitment of HATs, thus increasing 

acetylation and allowing transcription of the MHC-II gene HLA-DRA (Beresford and Boss 2001; 

Wright and Ting 2006).  The CREB-binding protein (CBP)/p300 is a transcriptional co-activator 

with potent HAT activity which is capable of acetylating all four core histones (Bannister and 

Kouzarides 1996; Ogryzko, Schiltz et al. 1996).  CBP is thought to have multiple functions on 

the MHC-II promoter, both as a HAT that acetylates histones H3 and H4 and as an integrator that 

links CIITA and CREB (Chan and La Thangue 2001).  In HeLa cells, CBP binding to the MHC-

II proximal promoter is increased within two hours of IFN- stimulation, preceding CIITA 

promoter binding by several hours (Zika, Fauquier et al. 2005).  In IFN- inducible endothelial 

cells, CBP is associated with the MHC-II promoter at low levels prior to IFN- stimulation and 
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association increases rapidly upon IFN- stimulation (Adamski, Ma et al. 2004).  When CBP 

promoter binding is blocked, constitutive levels of MHC-II promoter acetylation are inhibited in 

unstimulated endothelial cells, indicating a closed chromatin conformation due to decreased CBP 

binding and promoter histone hypoacetylation that is independent of CIITA expression 

(Adamski, Ma et al. 2004).   

Although active expression of MHC-II genes is associated with robust histone H3 

acetylation, it is less understood how this and other modifications coordinate gene expression 

(Masternak, Peyraud et al. 2003; Spilianakis, Kretsovali et al. 2003; Gomez, Majumder et al. 

2005; Zika, Fauquier et al. 2005; Rybtsova, Leimgruber et al. 2007).  It is well established that 

many of the dramatic changes in acetylation occurring on histones H3 and H4 at the activated 

MHC-II promoter are CIITA dependent.   That CIITA is required for MHC-II gene expression 

indicates that CIITA promoter binding likely directs HAT activity towards histone H3 and opens 

up a large portion of the promoter for transcriptional activation (Beresford and Boss 2001).  

However, as to the initial acetylation events that precede CIITA binding, only limited 

information is available on how histone modifying enzymes are initially recruited to the MHC-II 

promoter in order to open the chromatin structure for CIITA binding, full enhanceosome 

formation, and transcription initiation and elongation.   

The 26S proteasome is a large, multi-subunit complex that functions to degrade 

polyubiquitinated proteins and has been determined to play an emerging role in transcriptional 

regulation (Baumeister, Walz et al. 1998; Ciechanover 1998; Muratani and Tansey 2003; Lee, 

Ezhkova et al. 2005; Sulahian, Johnston et al. 2006).  The 26S proteasome consists of two 

macromolecular complexes: the 20S catalytic core and the 19S regulatory complex.  The 20S 

catalytic core degrades proteins into peptides in an energy independent manner (Baumeister, 
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Walz et al. 1998; Voges, Zwickl et al. 1999).  The 19S regulatory complex regulates assembly of 

the 26S proteasome, recruits polyubiquitinated proteins to the proteasome and shuttles the 

targeted proteins to the 20S core for degradation (Coux, Tanaka et al. 1996; Glickman, Rubin et 

al. 1999; Strickland, Hakala et al. 2000).  The mammalian 19S consists of a lid, comprised of 

eight non-ATPase proteins, and a base comprised of six ATPase (S4, S6a, S6b, S7, S8 (Sug1) 

and S10b) and three non-ATPase (S1, S2 and S5a) proteins (Glickman, Rubin et al. 1999).  

Observations that Saccharomyces cerevisiae 19S ATPases associate with the Gal4 activator, are 

recruited to the GAL promoter (Gonzalez, Delahodde et al. 2002) and are critical for efficient 

transcriptional elongation by RNA polymerase II (Ferdous, Gonzalez et al. 2001) firmly 

established a role for the 19S proteasome in yeast transcription.  Specific alleles of Rpt6, the 

yeast ortholog of Sug1, rescue a class of Gal4 activation domain mutants (Rubin, Coux et al. 

1996), recruits transcription factors to TBP (Swaffield, Melcher et al. 1995), and is associated 

with actively transcribing genes (Gonzalez, Delahodde et al. 2002).  Rpt6 also has recently been 

shown to link histone ubiquitination and histone methylation, which precede acetylation as 

important steps in initiating transcriptional elongation (Sun and Allis 2002; Ezhkova and Tansey 

2004; Schubeler, MacAlpine et al. 2004; Pokholok, Harbison et al. 2005).  Reports in yeast that 

the 19S proteasome enhances recruitment of the histone acetyltransferase complex SAGA (Spt-

Ada-Gcn5-acetyltransferase) to promoters and that Rpt6 associates with SAGA and is required 

for SAGA targeting further imply that this 19S ATPase is also important for targeting histone 

acetyltransferases to promoters (Ferdous, Gonzalez et al. 2001; Gonzalez, Delahodde et al. 2002; 

Lee, Ezhkova et al. 2005; Daniel and Grant 2007).  In fact, the physical and functional 

interactions between 19S ATPases and chromatin structure seem to be quite widespread in yeast 
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as is evidenced by several recent reports (Auld, Brown et al. 2006; Sikder, Johnston et al. 2006; 

Sulahian, Sikder et al. 2006; Laribee, Shibata et al. 2007). 

The ubiquitin-proteasome pathway has also been linked to the regulation of transcription 

in mammalian cells (Conaway, Brower et al. 2002; Ferdous, Kodadek et al. 2002; Greer, Zika et 

al. 2003; Yu and Kodadek 2007; Bhat, Turner et al. 2008).  These emerging roles for the 19S 

ATPases in regulating transcription highlight the importance of understanding the biochemical 

function of Sug1 at mammalian promoters.  Sug1 is recruited to p21
waf1

 promoters in response to 

ultraviolet-induced DNA damage (Zhu, Wani et al. 2007) as well as to the HIV-1 promoter to 

enhance Tat-dependent transcription (Lassot, Latreille et al. 2007).  Sug1 also associates with 

p53, E1A and with several nuclear receptors (vom Baur, Zechel et al. 1996; Lee, Ezhkova et al. 

2005) however evidence of roles for the 19S in regulating mammalian chromatin structure has 

been lacking.  We have previously shown that Sug1 is rapidly recruited to the MHC-II promoter 

upon IFN- stimulation and that decreased expression of Sug1 results in reduced CIITA 

recruitment to the MHC-II proximal promoter and decreased MHC-II gene expression (Bhat, 

Turner et al. 2008).  However, the function of Sug1 in CIITA recruitment and the potential for 

interactions between Sug1 and histone modifications in mammalian cells remain to be 

investigated.  We therefore analyzed the role played by Sug1 in regulating histone H3 acetylation 

at HLA-DRA.  Data presented here offer new insights into MHC-II transcription and establish a 

role for Sug1 in the deposition of histone acetylation modifications at the MHC-II proximal 

promoter.  We show that Sug1 associates in vivo with acetylated histone H3 and that decreased 

expression of Sug1 and additional 19S ATPases decreases MHC-II promoter specific H3 

acetylation.  We also show that recruitment of the HAT CBP to the MHC-II promoter is blocked 

in the absence of Sug1.  Taken together, these studies offer novel information into the regulation 
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of MHC-II transcription and expand our knowledge of the role the proteasome plays in mediating 

the epigenetic regulation of mammalian genes.  

 

MATERIALS AND METHODS 

Cell Lines:  HeLa cells (human epithelial) from ATCC (Manassas, VA) were maintained in 

Dulbecco's Modified Eagle's Medium (DMEM, Mediatech Inc., Herndon, VA) supplemented 

with 10% fetal calf serum, 5mM L-glutamine and 5mM penicillin-streptomycin at 37°C with 5% 

carbon dioxide.   

Antibodies:  Histone H3, acetylated histone H3, acetylated histone H3 K9, and rabbit IgG 

isotype control antibodies were from Upstate (Lake Placid, NY).   Acetylated H3 K18, p53, and 

Myc antibodies were from Abcam (Cambridge, MA).  S5a, S6a, S7 and alpha 4 antibodies were 

from BIOMOL International, L.P. (Plymouth Meeting, PA).  Sug1 antibody was from Novus 

Biologicals (Littleton, CO), CIITA antibody was from Rockland (Rockland, Gilbertsville, PA) 

and CBP antibody was from Santa Cruz (Santa Cruz, CA). 

Plasmids:  The Myc Sug1 and Myc Sug1 ATPase mutant constructs were a generous gift from 

Dr. A. A. Wani (Zhu, Wani et al. 2007). 

Co-immunoprecipitations:  HeLa cells were plated at a cell density of 8 x10
5
 in 10cm tissue 

culture plates. Following adhesion, cells were transfected with 5μg of the indicated plasmids 

using FuGene 6 (Roche, Indianapolis, IN) according to the manufacturer’s protocol.  Twenty-

four hours following transfection, cells were harvested and lysed in RIPA buffer (1M Tris pH 

8.0, 5% DOC, 10% Nonidet P-40, 5M NaCl, 10% SDS, 5 mM EDTA, 1M DTT) supplemented 

with Complete EDTA-free protease inhibitors (Roche, Indianapolis, IN) on ice and then 

precleared with 30μl IgG beads (Sigma, Saint Louis, MO).  Cell lysates were 
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immunoprecipitated (IP) overnight with 5μg anti-acetylated histone H3 (Upstate), anti-CBP 

(Santa Cruz Biotechnology), rabbit IgG isotype control (Upstate) or Myc conjugated beads 

(Sigma).   Immune complexes were isolated by incubating lysates with 50μl protein G beads 

(Pierce, Rockland, IL) for 2 hours.  Immunoprecipitated proteins were denatured with Leammli 

buffer (BioRad, Hercules, CA) and subjected to sodium dodecyl sulfate-polyacrylamide 

electrophoresis (SDS-PAGE).  Associations were detected by immunoblotting (IB) with Myc 

HRP conjugated antibody (Abcam).  Horseradish peroxidase was detected with Supersignal West 

Pico Chemiluminescent substrate (Pierce).  Bradford assays were used to normalize for protein 

and equal loading was verified by immunoblot.   

siRNA constructs and transient transfections:  Short interfering RNA (siRNA) duplexes were 

used for transient knockdown of 19S ATPases Sug1, S6a and S7.  siRNA sequences were 

designed with a GC content of 35-55% containing dTdT overhangs and were blasted using NCBI 

nucleotide BLAST.  The target sequences of Sug1 and S7 siRNA used were 5’-

AAGGTACATCCTGAAGGTAAA-3’ and 5’-AACTGCGAGAAGTAGTTGAAA-3’, 

respectively (Qiagen, Valencia, CA).  S6a siRNA was predesigned siRNA directed against 

human PSMC3 (Qiagen).  siRNA for Lamin protein was used as positive control siRNA 

(Qiagen) and scrambled sequence siRNA was used as negative control siRNA (Qiagen).  HeLa 

cells were transfected with scrambled sequence control siRNA (Qiagen; Santa Cruz 

Biotechnology) or ATPase specific siRNA (Qiagen) and were treated with IFN- as indicated.  

Cells were lysed in NP40 lysis buffer (1M Tris pH 8.0, 1M KCl, 10% NP40, 0.5M EDTA, 5M 

NaCl, 1M DTT, dH2O) supplemented with Complete EDTA-free protease inhibitors (Roche) 

and knock down efficiency and specificity was assessed by western blotting for ATPase 

expression as described above. 
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Histone Extractions:  HeLa cells were treated with Sug1 siRNA (Qiagen) or scrambled 

sequence control siRNA.   Forty-eight hours after siRNA transfection, 10% of the total cell 

volume was lysed with 1% Nonidet P-40 buffer (1M Tris pH 8.0, 1M KCl, 10% NP40, 0.5M 

EDTA, 5M NaCl, 1M DTT, dH2O) with protease inhibitor and analyzed by western blot for 

ATPase knockdown as described above.  The rest of the cell volume was lysed in triton 

extraction solution (0.4M sodium butyrate, 10 % triton-X-100, 2% NaN3) supplemented with 

Complete EDTA-free protease inhibitors (Roche) at 4°C.  Histone proteins were isolated by 

incubation with 0.2N HCl at 4°C for 4 hours.  Lysate samples were normalized for protein 

concentration, supplemented with 5% (v/v) -mercaptoethanol, denatured with Leammli buffer 

(BioRad) and separated by SDS-PAGE.  Gels were transferred to nitrocellulose and IB using 

polyclonal acetylated histone H3 or acetylated histone H3 K18 primary antibodies (Upstate) and 

HRP conjugated rabbit secondary antibody (Santa Cruz).  Horseradish peroxidase was detected 

with Supersignal West Pico Chemiluminescent substrate (Pierce).  Bradford assays were used to 

normalize for protein. 

Chromatin immunoprecipitations (ChIPs):  ChIP assays were performed as previously 

described (Greer, Zika et al. 2003).  Briefly, HeLa cells were stimulated with 500 U/ml IFN- 

(Peprotech, Rocky Hill, NJ), 5 mM HDAC inhibitor sodium butyrate (Upstate), 5.2 

proteasome inhibitorMG132 (EMD Biosciences, San Diego, CA  or 10proteasome 

inhibitorLactacystin (BostonBiochem, Cambridge, MA) as indicated.  Cells were crosslinked 

with 1% formaldehyde for 10 minutes at room temperature.  Crosslinking was stopped by the 

addition of 0.125 M glycine for 5 minutes at room temperature.  Cells were lysed in SDS lysis 

buffer (1% SDS, 10mM EDTA, 50mM Tris pH 8.0, dH20) with protease inhibitor for 30 minutes 

on ice and were sonicated at constant pulse to generate an average of 500-750 bp sheared DNA.   
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Sonicated lysates were precleared with salmon-sperm coated agarose beads (Upstate) and half of 

the lysate was IP with 10μg of polyAb against CIITA (Rockland), acetylated H3 (Upstate), 

acetylated H3 K18 (Abcam), acetylated H3 K9 (Upstate), S6a (Biomol), S7 (Biomol), S5a 

(Biomol), alpha 4 (Biomol) or CBP (Santa Cruz) overnight at 4°C. The remaining half of the 

lysate was used as a control and was IP with isotype control antibody (Upstate).  Following an 

additional 2 hour IP with 50μl of salmon-sperm coated agarose beads, samples were washed for 5 

minutes at 4°C with the following buffers:  Low salt buffer (0.1% SDS, 1% Triton X-100, 2mM 

EDTA, 20mM Tris pH 8.0, 150mM NaCl, dH20), High salt buffer (0.1% SDS, 1% Triton X-100, 

2mM EDTA, 20mM Tris pH 8.0, 500mM NaCl, dH20), LiCl buffer (0.25M LiCl, 1% NP40, 1% 

DOC, 1mM EDTA, 10mM Tris pH 8.0, dH20) and 1xTE buffer and were eluted with SDS 

elution buffer (1% SDS, 0.1M NaHCO3, dH2O).  Following elution, crosslinks were reversed 

overnight with 5M NaCl at 65°C and IP DNA was isolated using phenol:chloroform:isoamyl 

alcohol mix (Invitrogen) as per the manufacturer’s instructions.  Isolated DNA was analyzed by 

real-time PCR using primers spanning, the W-X-Y box of the MHC class II HLA-DRA promoter, 

MHC class II HLA-DRA exon III (Chou and Tomasi 2008)  MHC class II HLA-DRA exon V 

(Chou and Tomasi 2008) the GAPDH promoter and CIITA pIV (Morris, Beresford et al. 2002).  

Sequences for primers and probe are located in Table 2-1.  Values graphed were calculated based 

on standard curves generated.   Chromatin immunoprecipitation in ATPase knockdowns:  HeLa 

cells were transfected with ATPase specific siRNA (Qiagen) or control siRNA (Qiagen).  Cells 

were treated with 5mM sodium butyrate (Upstate) and 500U/ml IFN- as indicated and 10% of 

the total cell volume was lysed with 1% Nonidet P-40 buffer (1M Tris pH 8.0, 1M KCl, 10% 

NP40, 0.5M EDTA, 5M NaCl, 1M DTT, dH2O) with protease inhibitor and analyzed by western 

blot for ATPase knockdown as described above.  The remaining fraction of cells was  
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Table 2-1.  Primer and probe sequences for real time PCR   

Note:  ChIP isolated DNA was analyzed by real-time PCR using primers spanning, the MHC class II HLA-DRA 

promoter, MHC class II HLA-DRA exon III, MHC class II HLA-DRA exon V, CIITA pIV or the GAPDH promoter. 
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subjected to ChIP assay.  Chromatin immunoprecipitation with ATPase overexpression:  HeLa 

cells were transfected with 5μg of the indicated plasmids using Fugene 6 (Roche) according to 

the manufacturer’s protocol. Cells were treated with 500U/ml IFN- as indicated and 10% of the 

total cell volume was lysed with 1% Nonidet P-40 buffer (1M Tris pH 8.0, 1M KCl, 10% NP40, 

0.5M EDTA, 5M NaCl, 1M DTT, dH2O) with protease inhibitor and analyzed by western blot 

for Sug1 overexpression as described above.  The remaining fraction of cells was subjected to 

ChIP assay. 

In vivo Proteolytic Activity:  HeLa cells were transfected with Sug1 specific siRNA (Qiagen) or 

control siRNA (Qiagen).  Cells were treated with 5.2MG132 proteasome inhibitor (EMD 

Biosciences) and 100 cycloheximide (Sigma) as indicated.  Total cell volume was lysed with 

1% Nonidet P-40 buffer with protease inhibitor and analyzed by western blot for ATPase 

knockdown efficiency and p53 degradation as described above. 

 

RESULTS 

Sug1 associates with histone H3 and acetylated histone H3 in vivo.   The 19S 

proteasome recruits polyubiquitinated proteins to the 20S catalytic core for degradation.  

Research in yeast has also suggested that the 19S proteasome functions independent of protein 

degradation to regulate transcription by aiding in the opening of the chromatin structure 

(Ferdous, Kodadek et al. 2002; Gonzalez, Delahodde et al. 2002; Lassot, Latreille et al. 2007).   

In yeast the 19S proteasome associates with the activated Gal1-10 promoter (Gonzalez, 

Delahodde et al. 2002; Lee, Ezhkova et al. 2005) and in mammalian cells, components of the 19S 

proteasome are recruited to p21
waf1

 promoters in response to ultraviolet-induced DNA damage 
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and to MHC-II HLA-DRA promoters in response to IFN- stimulation (Zhu, Wani et al. 2007; 

Bhat, Turner et al. 2008).   Furthermore, the yeast 19S ATPase Rpt6 has been implicated in 

regulating histone modifications, including histone acetylation and methylation (Ezhkova and 

Tansey 2004; Lee, Ezhkova et al. 2005).   We therefore sought to determine whether the 

mammalian ortholog of Rpt6, Sug1, plays a role in mediating posttranslational histone 

modifications in mammalian cells.  To determine whether Sug1 associates with histone H3 in 

vivo, co-immunoprecipitations were performed in HeLa (human epithelial) cells transfected with 

Myc-tagged Sug1 (Fig.1).  Polyclonal antibody was used to IP endogenous acetylated histone H3.  

Sug1 and acetylated histone H3 precipitated together (Fig.1, upper panel, lane 3).  Control 

samples were immunoprecipitated with Myc beads (Figure 2-1, upper panel, lane 1) or an isotype 

control (Figure 2-1, upper panel, lane 2).  Equal loading was confirmed by immunoblot analysis 

of lysates (Figure 2-1, lower panel). 

Sug1 knockdown decreases MHC-II promoter specific histone H3 acetylation.  We 

have previously shown that the 19S ATPase Sug1 is recruited to the MHC-II proximal promoter 

(Bhat, Turner et al. 2008).  In the absence of Sug1, IFN- stimulation fails to recruit CIITA to the 

MHC-II promoter and results in a dramatic loss of MHC-II gene expression (Bhat, Turner et al. 

2008).  The molecular mechanism responsible for the loss of CIITA promoter binding in Sug1 

deficient cells remains unknown.  To investigate potential roles for Sug1 in regulating chromatin 

modifications responsible for stabilizing and/or recruiting CIITA to the MHC-II proximal 

promoter, we utilized a siRNA duplex to specifically knockdown endogenous Sug1 expression in 

HeLa cells and then performed ChIP experiments to detect endogenous levels of H3 acetylation 

at the MHC-II proximal promoter (Figure 2-2).  siRNA-mediated knockdown of Sug1 resulted in  
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Figure 2-1.  Sug1 associates with acetylated histone H3 in vivo. HeLa cells transfected with Myc tagged Sug1 

were lysed and immunoprecipitated (IP) with polyclonal antibody against acetylated histone H3 (top panel, lane 3). 

Control samples were IP with Sug1 antibody (top panel, lane 1) and isotype control IgG (top panel, lane 2). IP and 

lysate control samples (bottom panel) were immunoblotted (IB) for Myc. Results reported are representative data of 

3 experiments. 
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Figure 2-2.  Sug1 knockdown decreases MHC-II promoter histone H3 acetylation.  (A) Sug1 siRNA 

specifically and efficiently decreases Sug1 protein expression in the presence or absence of IFN-γ stimulation. HeLa 

cells transfected with control or Sug1 specific siRNA were harvested and subjected to Western blot analysis of 

endogenous 19S ATPases Sug1, S6a and S7 expression. Western blot shows >90% knockdown of Sug1 and stable 

expression of S6a and S7. (B) Sug1 knockdown decreases histone H3 acetylation at the MHC-II proximal promoter. 

ChIP assays were carried out in HeLa cells stimulated with IFN-γ for 0-18 hours or in HeLa cells transfected with 

control or Sug1 siRNA and stimulated with IFN-γ for 0-18 hours. Lysates were immunoprecipitated (IP) with control 

or acetylated histone H3 antibody.  Associated DNA was isolated and analyzed via real-time PCR using primers 

spanning the W-X-Y box of the MHC-II HLA-DRA promoter.  Real-time PCR values were normalized to the total 

amount of HLA-DRA promoter DNA added to the reaction (input). Input values represent 5% of the total cell lysate. 

IP values are presented as fold increase in the MHC-II promoter DNA relative to unstimulated acetylated histone H3 

IP samples. Control values were 1.2 ± 0.3. Control and IP values represent mean ± SEM of (n = 3) independent 

experiments. (C) Sug1 knockdown decreases histone H3 acetylation at the MHC-II proximal promoter in the 

presence of HDAC inhibition. ChIP assays were carried out in untransfected or siRNA transfected HeLa cells and 

were treated with HDAC inhibitors and stimulated with IFN-γ for 0-18 hrs. Lysates were IP with control antibody or 

with antibody to endogenous acetylated histone H3 and associated DNA was isolated and analyzed via real-time 

PCR as in B. IP values are presented as fold increase in the MHC-II promoter DNA relative to unstimulated 

acetylated histone H3 IP samples. Control values were 2.7 ± 0.8. Control and IP values represent mean ± SEM of (n 

= 3) independent experiments. *** P < 0.001 vs control siRNA. 
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an approximate 90% decrease in endogenous Sug1 expression (Figure 2-2a, top panel), but did 

not impact expression of additional proteasomal ATPases, S6a and S7, (Figure 2-2a, bottom 

panels).  Initial ChIP mapping experiments demonstrated that constitutive levels of histone 

acetylation at the MHC-II promoter are enhanced upon IFN- stimulation (Figure 2-2b, left 

panel).  When siRNA was used to knockdown Sug1 expression, dramatic effects on MHC-II 

promoter acetylation were observed.  Upon IFN- stimulation, H3 acetylation was enhanced in 

control siRNA treated cells (Figure 2-2b, right panel, black bars), but was inhibited in Sug1 

siRNA treated cells (Figure 2-2b, right panel, grey bars).  Histone deacetylase (HDAC) enzymes 

were inhibited by pre-treating cells with HDAC inhibitor, which resulted in histone H3 

hyperacetylation (compare Figure 2-2c, left panel to Figure 2-2b, left panel).  Even in the 

presence of HDAC inhibition and IFN- induced H3 acetylation,  H3 acetylation was 

dramatically decreased in the absence of Sug1 (Figure 2-2c, right panel, grey bars) as compared 

to control siRNA treated cells (Figure 2-2c, right panel, black bars).  These experiments indicate 

that Sug1 plays a critical role in regulating MHC-II transcription by regulating key epigenetic 

events at the proximal promoter.   

To determine if the loss of MHC-II promoter acetylation at histone H3 is indicative of a 

global decrease in levels of acetylated histone H3, siRNA was used to knockdown Sug1  

expression in HeLa cells.  Histones were acid extracted and lysates were immunoblotted for 

acetylated histone H3.  Although Sug1 was sufficiently knocked down (Figure 2-3a, lower 

panel), levels of acetylated histone H3 were unaffected by the loss of Sug1 (Figure 2-3a, upper 

panel).  Serially diluted lysates verified that H3 acetylation is indeed maintained in the Sug1 

deficient cells (Figure 2-4).   To account for potential loss of histone H3 at the MHC-II promoter 

upon IFN- stimulation and/or Sug1 knockdown, ChIP assays were repeated utilizing an antibody  
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Figure 2-3.  Sug1 knockdown decreases histone H3 acetylation in a promoter specific manner.  (A) Global 

histone H3 acetylation is unaffected by Sug1 knockdown. HeLa cells were left untreated, or were transfected with 

either scrambled control siRNA duplexes, or with Sug1specific siRNA duplexes. Lysates were immunoblotted (IB) 

for acetylated histone H3 (upper panel) or for endogenous Sug1 (lower panel). Results reported are representative 

data of 3 independent experiments. (B) Sug1 knockdown does not impact levels of histone H3 at the MHC-II 

proximal promoter. ChIP assays were carried out in HeLa cells stimulated with IFN-γ for 0-18 hours (left) or in 

HeLa cells transfected with scrambled siRNA control or Sug1 specific siRNA duplexes and 24 hours later 

stimulated with IFN-γ for 0-18 hours (right). Lysates were immunoprecipitated (IP) with control antibody or 

antibody to endogenous histone H3. Associated DNA was isolated and analyzed via real-time PCR as in Figure 2-

2B. IP values are presented as fold increase in the MHC-793 II promoter DNA relative to unstimulated histone H3 

IP samples. Control IP values were 1.15 ± 0.15. Control and histone H3 IP values represent mean ± SEM of (n = 2-

3) independent experiments. (C) Sug1 knockdown does not impact levels of acetylated histone H3 at the GAPDH 

promoter. ChIP assays were carried out in HeLa cells stimulated with IFN-γ for 0-18 hours (left) or in HeLa cells 

transfected with  scrambled control or Sug1 specific siRNA duplexes and 24 hours later stimulated with IFN-γ for 

0-18 hours (right). Lysates were IP with control antibody or antibody to endogenous histone H3. Associated DNA 

was isolated and analyzed via real-time PCR using primers spanning the GAPDH promoter. Real-time PCR values 

were normalized to the total amount of GAPDH promoter DNA added to the reaction (input). Input values represent 

5% of the total cell lysate. IP values are presented as fold increase in GAPDH promoter DNA relative to 

unstimulated acetylated histone H3 IP samples. Control IP values were 0.75 ± 0.25. Control and histone H3 IP 

values represent mean ± SEM of (n = 3) independent experiments. 
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Figure 2-4.  Global histone H3 acetylation is unaffected by Sug1 knockdown.  HeLa cells were left untreated, or 

were transfected with either scrambled control siRNA duplexes, or with Sug1 specific siRNA duplexes.  Histones 

were subjected to acid extraction.  Lysates were serially diluted and immunoblotted (IB) for acetylated histone H3.  

Results reported are representative data of 2 independent experiments. 
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specific for endogenous histone H3.  Neither IFN- treatment (Figure 2-3b, left panel) nor IFN- 

treatment combination with Sug1 siRNA transfection (Figure 2-3b, right panel) affected levels of 

histone H3 at the MHC-II proximal promoter.  To ascertain if additional IFN- inducible 

promoters are also epigenetically regulated by Sug1, ChIP experiments were performed to detect 

endogenous levels of H3 acetylation at the IFN- inducible CIITA promoter, pIV, in the absence 

of Sug1.  ChIP mapping experiments demonstrated that levels of histone H3 acetylation at CIITA 

pIV are enhanced upon IFN- stimulation (Fig.2-3c, left panel).  Consistent with ChIP studies 

indicating Sug1 association with CIITA pIV (data not shown), Sug1 knockdown resulted in 

reduced CIITA pIV acetylation (Fig.2-3c, right panel, grey vs black bars).  We have previously 

shown that Sug1 knockdown decreases MHC-II transcript levels but not CIITA transcript levels 

(Bhat, Turner et al. 2008), suggesting that despite binding multiple inducible promoters, Sug1 

binding may differentially regulate specific genes.  To further determine if Sug1 is specifically 

regulating H3 acetylation at inducible promoters, we performed ChIP experiments to detect 

endogenous levels of H3 acetylation at the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

promoter, in the absence of Sug1.  ChIP mapping experiments demonstrated that levels of 

histone acetylation at the GAPDH promoter were comparable to previously published results 

(Beresford and Boss 2001; Morris, Beresford et al. 2002), indicating that IFN- stimulation 

results in only a marginal change in histone acetylation (Fig.3d, left panel).  Furthermore, 

siRNA-mediated Sug1 knockdown had no effect on GAPDH promoter acetylation (Fig.3d, right 

panel, grey vs. black bars).  These studies strongly implicate the Sug1 19S ATPase in the specific 

epigenetic regulation of transcription at inducible genes. 

Inhibition of proteasomal activity does not affect MHC-II promoter acetylation.  

Sug1, a component of the 19S proteasome, works with the other 19S ATPases (S4, S6a, S6b, S7, 
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and S10b) to recruit polyubiquitinated proteins for degradation (Ciechanover 1994; Glickman, 

Rubin et al. 1999).  To determine the impact Sug1 knockdown has on proteasome function, we 

assayed in vivo proteolytic activity in HeLa cells transfected with Sug1 specific or control siRNA 

over a time course of cycloheximide treatment to prevent de novo translation.  Because it is well 

established that p53 is polyubiquitinated and degraded via the 26S proteasome (Athanassiou, Hu 

et al. 1999; McVean, Xiao et al. 2000; Alarcon-Vargas and Ronai 2002; Zhu, Wani et al. 2007), 

cells were lysed and analyzed for expression of this relatively short-lived protein.   Consistent 

with published reports (Buschmann, Potapova et al. 2001; Wesierska-Gadek, Schloffer et al. 

2002), control siRNA transfected cells showed a loss in p53 expression by 90 minutes post 

cycloheximide treatment (Figure 2-5a, top panel).  As a control, one set of control siRNA 

transfected cells were pretreated with proteasome inhibitor MG132, which resulted in p53 

accumulation upon cycloheximide treatment (Figure 2-5a, bottom panel).  Not surprisingly, Sug1 

knockdown impacted proteasome activity.  Although p53 accumulation was not as drastic as in 

MG132 treated samples, cells transfected with Sug1 siRNA also showed elevated p53 expression 

upon cycloheximide treatment (Figure 2-5a, middle panel).  To determine if non-ATPase 

components of the 19S proteasome as well as components of the 20S core are also associated 

with the MHC-II proximal promoter, ChIP assays were performed to detect the 19S non-ATPase 

S5a and the 20S Alpha 4 subunit.  The 19S non-ATPase S5a associated with the MHC-II 

proximal promoter and this low association was enhanced and maintained upon cytokine 

stimulation (Figure 2-5b).  The Alpha 4 subunit of the 20S catalytic core also showed low level 

binding upon cytokine stimulation that appeared to dissipate by 18 hrs post stimulation (Figure 2-

5c).  The binding of these additional subunits to the MHC-II proximal promoter might indicate a 

role for the intact proteasome in regulating epigenetics at the MHC-II promoter.  Therefore, we  
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Figure 2-5.  Sug1 dependent regulation of MHC-II promoter histone acetylation is proteolysis independent. 

(A)  Sug1 is critical for degradation mediated by the 26S proteasome.  HeLa cells were transfected with Sug1 

specific or control siRNA and were treated with proteasome inhibitor MG132 as indicated.  Following 

cycloheximide treatment, cells were lysed and lysates analyzed by western blot for p53 degradation.  Results 

reported are representative data of 3 independent experiments.  (B-C) 19S non-ATPase S5a and 20S core protein 

alpha 4 are recruited to the MHC-II proximal promoter upon IFN- stimulation. ChIP assays were carried out in 

HeLa cells stimulated with IFN-γ for 0-18 hours.  Lysates were IP with control antibody or antibody to endogenous 

S5a (B) or alpha 4 (C) and associated DNA was isolated and analyzed via real-time PCR as in Figure 2-2b.  IP 

values are presented as fold increase in the MHC-II promoter DNA relative to unstimulated S5a or alpha 4 IP 

samples.  Control IP values were 0.8 ± 0.1.  Control and IP values represent mean ± SEM of (n =2) independent 

experiments. (D-E)  MHC-II proximal promoter histone H3 acetylation is unaffected by proteasome inhibition.  

ChIP assays were carried out in HeLa cells stimulated with IFN-γ for 0-18 hours and treated with proteasome 

inhibitors MG132 (D) or lactacystin (E) for 4 hours prior to harvesting.  Lysates were immunoprecipitated (IP) with 

control antibody or antibody to endogenous acetylated histone H3 and associated DNA was isolated and analyzed 

via real-time PCR as in Figure 2-2b.  IP values are presented as fold increase in the MHC-II promoter DNA relative 

to unstimulated acetylated histone H3 IP samples.  Control IP values were 1.2 ± 0.25.  Control and acetylated 

histone H3 IP values represent mean ± SEM of (n = 2-3) independent experiments. 
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sought to ascertain if the loss of histone acetylation observed in Sug1 deficient cells was due in 

part to lack of proteasome function.  Cells were treated with proteasome inhibitors MG132 or  

lactacystin and ChIP experiments were performed to detect endogenous levels of H3 acetylation 

at the MHC-II proximal promoter.  MG132 treated HeLa cells (Figure 2-5d) or lactacystin treated 

HeLa cells (Figure 2-5e) stimulated with IFN- showed levels of H3 acetylation that were 

comparable to those observed in untreated cells (Figure 2-2b, left panel).  These experiments 

emphasize that although Sug1 function is required for proteolysis mediated by the 26S 

proteasome, the role played by Sug1 in regulating MHC-II proximal promoter acetylation is 

independent of proteolysis. 

 Sug1 knockdown decreases lysine 18 acetylation at the MHC-II proximal promoter.  

Acetylation occurs on lysine residues in histone tails.  Epigenetic mapping of the MHC-II 

promoter has shown that lysines (K) 9, K14, K18 and K27 of histone H3 are acetylated (Gomez, 

Majumder et al. 2005; Rybtsova, Leimgruber et al. 2007).   Acetylation of H3 K9, K18 and K27 

are CIITA dependent, whereas H3 K14 acetylation is also found constitutively in B cells lacking 

functional CIITA (RJ2.2.5).  H3 K18 acetylation is robustly elevated at the activated MHC-II 

proximal promoter (Gomez, Majumder et al. 2005).  To determine whether Sug1 preferentially 

associates with acetylated H3 K18 in vivo, co-immunoprecipitations were performed in HeLa 

cells transfected with Myc-tagged Sug1 (Figure 2-6a).  Polyclonal antibody was used to IP 

endogenous histone H3, acetylated H3 or acetylated H3 K18.  As expected, Sug1 and histone H3 

as well as acetylated histone H3 precipitated together (Figure 2-6a, upper panel, lanes 2 and 4).  

Enhanced binding was observed in cells IP with acetylated H3 K18 (Figure 2-6a, upper panel, 

lane 5).  Control samples were immunoprecipitated with Myc beads (Figure 2-6a, upper panel, 

lane 1) or an isotype control (Figure 2-6a, upper panel, lane 3).  Equal loading was confirmed by 
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Figure 2-6.  Sug1 knockdown decreases histone H3 lysine 18 acetylation at the MHC-II proximal promoter.   

(A) Sug1 associates with acetylated H3 K18.  HeLa cells transfected with Myc-tagged Sug1 were lysed and IP with 

polyclonal antibody against histone H3, acetylated histone H3 or acetylated H3 K18.  Control samples were IP with 

Myc beads and isotype control IgG.  IP and lysate control samples were immunoblotted (IB) for Myc.  Results 

reported are representative data of 3 experiments.  (B)  Histone H3 K18 acetylation at the MHC-II promoter is 

enhanced upon IFN- stimulation and HDAC inhibition. ChIP assays were carried out in HeLa cells treated with 

IFN-γ for 0-18 hrs or HDAC inhibitor (20 hours) and IFN-γ (18 hrs).  Lysates were IP with control or acetylated 

histone H3 K18 antibody and associated DNA was isolated and analyzed via real-time PCR as in Figure 2-2b.  IP 

values are presented as fold increase in MHC-II promoter DNA relative to unstimulated acetylated H3 K18 IP 

samples.  Control IP values were 0.8 ± 0.2.  Control and IP values represent mean ± SEM of (n = 3) independent 

experiments.  (C) Sug1 knockdown specifically decreases H3 K18 acetylation at the MHC-II proximal promoter.  

HeLa cells transfected with control or Sug1 siRNA were treated with HDAC inhibitor (20 hrs) and stimulated with 

IFN-γ for 0-18 hrs.  Lysates were IP with control or acetylated H3 K18 antibody and associated DNA was isolated 

and analyzed via real-time PCR as in Figure 2-2b.  Data are presented as fold increase in the MHC-II promoter DNA 

(left) or GAPDH promoter DNA (right) relative to unstimulated IP samples.  Control IP values were 1.0 ± 0.4. 

Control and IP values represent mean ± SEM of (n = 2-4) independent experiments.  (D) Real-time PCR primer 

locations in the MHC-II gene.  (E-F)  Sug1 knockdown decreases H3 K18 acetylation within the MHC-II coding 

region.  ChIP assays were performed as in C.  Isolated DNA was analyzed via real-time PCR using primers and 

probes specific for MHC-II exon III (E) or exon V (F).  Data are presented as fold increase in MHC-II exon DNA 

relative to unstimulated acetylated H3 K18 IP samples.  Control values were 0.9 ± 0.3. Control and IP values 

represent mean ± SEM of (n = 3) independent experiments.  *** P < 0.001    
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immunoblot analysis of lysates (Figure 2-6, lower panel).  To evaluate H3 K18 acetylation levels 

at the MHC-II proximal promoter, HeLa cells were stimulated with IFN-, immunoprecipitated 

(IP) with antibody to endogenous H3 K18, and analyzed by real-time PCR with primers spanning 

the MHC-II HLA-DRA proximal promoter.  ChIP assays showed elevated levels of H3 K18 

acetylation at the MHC-II promoter upon IFN- stimulation that were substantially enhanced 

upon HDAC inhibition (Figure 2-6b).  While cells transfected with control siRNA showed a ~40 

fold increase in histone H3 acetylation upon IFN- stimulation and HDAC inhibition (Figure 2-

6c, left panel, black bars), similarly treated cells that were transfected with Sug1 specific siRNA 

showed dramatically decreased histone H3 K18 acetylation at the MHC-II promoter (Figure 2-6, 

left panel, grey bars). To further determine if Sug1 is specifically regulating H3 K18 acetylation 

at the MHC-II proximal promoter, we performed ChIP experiments to detect endogenous levels 

of H3 K18 acetylation at the GAPDH promoter.  In the absence of Sug1, GAPDH promoter H3 

K18 acetylation levels (Figure 2-6c, right panel, grey bars) were comparable to those in cells 

treated with control siRNA (Figure 2-6c, right panel, black bars).  Because H3 K18 acetylation 

appears to be preferentially impacted by Sug1 knockdown, we sought to determine the extent 

with which this interaction extends into the coding sequence of MHC-II genes.  Therefore we 

repeated real-time PCR using primers and probes specific for regions within MHC-II exon III and 

MHC-II exon V (Figure 2-6d) on the ChIP studies for acetylated H3 K18 in Sug1 specific or 

control siRNA transfected cells.  Upon cytokine stimulation and in the presence of HDAC 

inhibition, H3 K18 acetylation was diminished within both exon III (Figure 2-6e, grey bars) and 

exon V (Figure 2-6f, grey bars) in Sug1 knockdown cells as compared to control samples (Figure 

2-6e-f, black bars).   
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To determine if the loss of MHC-II promoter H3 K18 acetylation is indicative of a global 

decrease in levels of histone H3 K18 acetylation, siRNA was used to knockdown Sug1 

expression in HeLa cells.  Histones were acid extracted and lysates were immunoblotted for 

acetylated H3 K18.  Although Sug1 was sufficiently knocked down (Figure 2-7a, lower panel), 

levels of acetylated H3 K18 were unaffected by the loss of Sug1 (Figure 2-7a, upper panel).  

Serial dilutions of lysates verified that H3 K18 acetylation is indeed maintained in the Sug1 

deficient cells (Figure 2-8).  To verify that this phenomenon is lysine residue specific, ChIP 

studies were performed in Sug1 knockdown cells using endogenous antibody against acetylated 

histone H3 lysine 9.  HeLa cells stimulated with IFN- showed elevated levels of H3 K9 

acetylation at the MHC-II promoter that were enhanced upon treatment with HDAC inhibitors 

(Figure 2-7b).  H3 K9 acetylation was not decreased by Sug1 siRNA transfection (Figure 2-7c, 

grey bars) as compared to control transfected cells (Figure 2-7c, black bars).   

Sug1 knockdown decreases recruitment of the HAT CBP to the MHC-II promoter. 

An open chromatin conformation is required for the initiation of transcription.  This restructuring 

event involves the recruitment of histone acetyltransferase (HAT) enzymes which add acetyl 

groups to lysine residues of the N-terminal tail region of histones and loosen protein-DNA 

interactions.  One of the most studied HATs in yeast is GCN5, which is the catalytic subunit of 

the SAGA complex.  The SAGA complex associates with various transcriptional activators in 

vivo and is recruited to promoters where GCN5 is able to acetylate nearby histones (Roth, Denu 

et al. 2001; Bhaumik, Raha et al. 2004).  Proteasomal ATPases interact with the SAGA complex 

in yeast and decreasing expression of the 19S ATPases reduces global histone acetylation and 

SAGA recruitment to actively transcribing promoters (Lee, Ezhkova et al. 2005; Daniel and 

Grant 2007).  We therefore sought to determine if the Sug1 ATPase associates with HATs in  
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Figure 2-7.  Sug1 knockdown decreases histone H3 lysine 18 acetylation in a promoter specific manner.    (A) 

Global histone H3 K18 acetylation is unaffected by Sug1 knockdown.  HeLa cells were left untreated, or were 

transfected with either control or Sug1 siRNA.  Histones were subjected to acid extraction.  Lysates were 

immunoblotted (IB) for acetylated H3 K18 (upper panel) or for endogenous Sug1 (lower panel).  Results reported 

are representative data of 2 independent experiments.  (B)  Histone H3 K9 acetylation at the MHC-II proximal 

promoter is enhanced upon IFN- stimulation and HDAC inhibition. ChIP assays were carried out in HeLa cells 

stimulated with IFN-γ for 0-18 hours in combination with HDAC inhibitor (20 hours) as indicated.  Lysates were IP 

with control or acetylated histone H3 K9 antibody and associated DNA was isolated and analyzed via real-time PCR 

as in Figure 2-2b.  IP values are presented as fold increase in the MHC-II promoter DNA relative to unstimulated 

acetylated H3 K9 IP samples.  Control values were 1.15 ± 0.1.  Control and IP values represent mean ± SEM of (n = 

3) independent experiments.  (C) H3 K9 acetylation at the MHC-II proximal promoter is unaffected by loss of Sug1 

expression.  HeLa cells were transfected with control or Sug1 siRNA and 24 hours later were treated with HDAC 

inhibitor and stimulated with IFN-γ for 0-4 hours.  Lysates were IP with control or acetylated H3 K9 antibody and 

associated DNA was isolated and analyzed via real-time PCR as in Figure 2-2b.  Data are presented as fold increase 

in the MHC-II promoter DNA relative to unstimulated acetylated H3 K9 IP samples.  Control values were 1.6 ± 

0.27. Control and IP values represent mean ± SEM of (n = 4) independent experiments.  
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Figure 2-8.  Global histone H3 K18 acetylation is unaffected by Sug1 knockdown.  HeLa cells were left 

untreated, or were transfected with either scrambled control siRNA duplexes, or with Sug1 specific siRNA duplexes.  

Histones were subjected to acid extraction.  Lysates were serially diluted and immunoblotted (IB) for acetylated H3 

K18.  Results reported are representative data of 2 independent experiments. 
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mammalian cells.  Sug1 deficient cells show dramatically decreased levels of histone H3 lysine 

18 acetylation (Figure 2-6c, left panel and 2-6e-f), a modification that can be mediated by the 

HAT CBP (Schiltz, Mizzen et al. 1999; Agalioti, Chen et al. 2002).  To determine whether Sug1  

associates with CBP in vivo, co-immunoprecipitations were performed in HeLa cells transfected 

with Myc-tagged Sug1, Myc-tagged ATPase mutant Sug1 or Myc control plasmid (Figure 2-9a).  

Polyclonal antibody was used to IP endogenous CBP and associations were detected by 

immunoblotting the samples with Myc antibody.  Sug1 and CBP precipitated together (Figure 2-

9a, upper panel, lane 3) whereas the empty Myc-plasmid showed no association with CBP 

(Figure 2-9a, upper panel, lane 2).  This interaction appeared independent of ATPase activity, as 

over-expressed ATPase mutant Sug1 also associated with CBP (Figure 2-9a, upper panel, lane 

4).  A positive control sample was immunoprecipitated with Myc beads (Figure 2-9a, upper 

panel, lane 1).  Equal loading was confirmed by immunoblot analysis of lysates (Figure 2-9a, 

lower panels).   

To determine the role played by Sug1 in recruiting CBP to the MHC-II proximal 

promoter, we performed ChIP experiments to detect endogenous levels of CBP at the HLA-DRA 

proximal promoter.  Initial ChIP studies confirmed endogenous levels of CBP recruitment that 

rapidly increase upon IFN- stimulation in HeLa cells (Kretsovali, Agalioti et al. 1998; Fontes, 

Kanazawa et al. 1999; Zhu and Ting 2001; Zika, Fauquier et al. 2005).   CBP interacts with 

CREB, a component of the MHC-II enhanceosome complex and thus can be found associated 

with the promoter region in unstimulated HeLa cells and in stimulated cells prior to CIITA 

recruitment (Figure 2-9b-c).  CBP binding is enhanced upon prolonged cytokine stimulation 

when CIITA is also bound (Figure 2-9b-c).  To determine if the decreased acetylation of histone 

H3 at the MHC-II HLA-DRA promoter in the absence of Sug1 is due to decreased recruitment of  
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Figure 2-9.  Sug1 knockdown decreases HAT recruitment to the MHC-II promoter.  (A) Sug1 associates with 

CBP in HeLa cells.  HeLa cells were transfected with Myc-tagged Sug1, Myc-tagged ATPase mutant Sug1, or Myc-

control plasmid as indicated.  Cells were lysed and immunoprecipitated (IP) with polyclonal antibody against CBP 

(lanes 2-4).  A control sample was IP with Myc beads (lane 1).  IP and lysate control (lower panel) samples were 

immunoblotted (IB) for Myc.  Results reported are representative data of 3 experiments.  (B-C)  CBP association 

with the MHC-II proximal promoter precedes CIITA and is enhanced upon IFN- stimulation.  ChIP assays were 

carried out in HeLa cells stimulated with IFN-γ for 0-18 hours.  Lysates were IP with control or endogenous CBP 

antibody (B) or CIITA (C).  Associated DNA was isolated and analyzed via real-time PCR as in Figure 2-2b.  IP 

values are presented as fold increase in MHC-II promoter DNA relative to unstimulated CBP or CIITA IP samples.  

Control values were 1 ± 0.4. Control and IP values represent mean ± SEM of (n = 2-4) independent experiments.  

(D) Sug1 knockdown decreases CBP association with the MHC-II proximal promoter.  HeLa cells were transfected 

with control or Sug1 specific siRNA and stimulated with IFN-γ for 0-18 hours.  Lysates were IP with control or CBP 

antibody and associated DNA was isolated and analyzed via real-time PCR as in Figure 2-2b.  Data are presented as 

fold increase in the MHC-II promoter DNA relative to unstimulated CBP IP samples.  Control values were 1.2 ± 0.3. 

Control and IP values represent mean ± SEM of (n = 3) independent experiments.  *** P < 0.001 vs control siRNA. 
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CBP, we performed ChIP experiments in the presence of siRNA-mediated knockdown of Sug1.  

Cells transfected with control siRNA showed a 3 fold increase in CBP recruitment following 

IFN- stimulation (Figure 2-9d, black bars), while cells transfected with Sug1 specific siRNA 

lacked this enhanced IFN- dependent recruitment of CBP to the MHC-II promoter (Figure 2-9d, 

grey bars).     

ATPase activity is not required for Sug1 mediated MHC-II chromatin remodeling.  

Because the Sug1 ATPase mutant associated with CBP (Figure 2-9a, upper panel, lane 4), we 

sought this Sug1 ATPase mutant had on H3 K18 acetylation.  ChIP assays for endogenous 

acetylated H3 K18 at the MHC-II HLA-DRA proximal promoter were performed in HeLa cells 

transfected with either Myc-tagged Sug1 or Myc-tagged ATPase mutant Sug1 and stimulated 

with IFN-.  Although the absence of wild type levels of Sug1 results in almost a complete loss 

of the H3 K18 acetylation necessary for chromatin remodeling at the MHC-II proximal promoter 

(Figure 2-6c, left panel, grey bars), overexpressing a single 19S ATPase (Sug1) showed only a 

marginal increase in the levels of H3 K18 acetylation observed at the MHC-II proximal promoter 

(Figure 2-10, grey bars vs black bars).  Consistent with CBP binding to ATPase mutant Sug1 

(Figure 2-9a, upper panel, lane 4), the lack of Sug1 ATPase activity did not impact H3 K18 

acetylation (Figure 2-10, white bars). 

Additional 19S ATPases also play a role in remodeling MHC-II chromatin.  

Overexpressing Sug1 did not result in substantial enhancement of histone H3 acetylation at the 

MHC-II proximal promoter (Figure 2-10).  Therefore, we sought to determine the contribution of 

additional 19S ATPases to histone H3 acetylation.  First, ChIP assays were used to determine 

that both S6a (Figure 2-11) and S7 (Figure 2-11b) are recruited to the MHC-II promoter upon 

cytokine stimulation, preceding CIITA recruitment (Figure 2-9c).  Next, specific siRNAs were  
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Figure 2-10.  ATPase activity is not required for Sug1 mediated MHC-II chromatin remodeling.  HeLa cells 

were transfected with Myc-tagged Sug1, Myc-tagged ATPase mutant Sug1, or Myc-control plasmid as indicated and 

treated with IFN- for 0-18 hours.  10% of the total cell volume was lysed and analyzed by western blot for Sug1 

overexpression (lower panel) as described in Figure 2-1.  The remaining fraction of cells was subjected to ChIP 

assay. Lysates were immunoprecipitated (IP) with control or acetylated H3 K18 antibody and associated DNA was 

isolated and analyzed via real-time PCR as in Figure 2-2b.  Data are presented as fold increase in the MHC-II 

promoter DNA relative to unstimulated empty vector transfected acetylated H3 K18 IP samples.  Control values 

were 1.0 ± 0.1. Control and IP values represent mean ± SEM of (n = 4) independent experiments. 
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Figure 2-11.  Additional 19S ATPases also mediate MHC-II promoter histone acetylation.  (A-B) 19S ATPases 

S6a and S7 are recruited to the MHC-II promoter upon IFN- stimulation.  ChIP assays were carried out in HeLa 

cells stimulated with IFN-γ for 0-18 hours.  Lysates were immunoprecipitated (IP) with control, S6a (A) or S7 (B) 

antibody and associated DNA was isolated and analyzed via real-time PCR as in Figure 2-2b.  IP values are 

presented as fold increase in the MHC-II promoter DNA relative to unstimulated S6a or S7 IP samples.  Control 

values were 1.2 ± 0.2.  Control and IP values represent mean ± SEM of (n =2-4) independent experiments. (C-D) 

S6a and S7 knockdowns diminish H3 acetylation at the MHC-II proximal promoter. ChIP assays were carried out in 

HeLa cells transfected with S6a, S7 or control siRNA and stimulated with IFN-γ for 0-18 hours.  10% of the total 

cell volume was lysed and analyzed by western blot for S6a or S7 knockdown (lower panels).  The remaining 

fractions of cells were subjected to ChIP assay.  Lysates were IP with control or acetylated H3 antibody and 

associated DNA was isolated and analyzed via real-time PCR as in Figure 2-2b.  IP values are presented as fold 

increase in the MHC-II promoter DNA relative to unstimulated acetylated histone H3 IP samples.  Control values 

were 0.85 ± 0.4.  Control and IP values represent mean ± SEM of (n = 2) independent experiments.  *** P < 0.001 

vs control siRNA.      
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generated to knockdown 19S ATPases, S6a (Figure 2-11c, lower panel) and S7 (Figure 2-11d, 

lower panel).  Similar to experiments in Sug1 knockdown cells (Figure 2-2b, right panel), 

acetylated H3 ChIP assays performed in S6a siRNA (Figure 2-11c, upper panel, grey bars) or S7 

siRNA (Figure 2-11d, upper panel, grey bars) transfected cells exhibited impaired H3 acetylation 

at the MHC-II promoter as compared to control siRNA transfected cells (Figure 2-11c-d, lower 

panels, black bars). 

 

DISCUSSION 

Our results have provided novel evidence that the 19S proteasome plays an important role 

in mediating the epigenetic regulation of MHC-II transcription.  Several pieces of data above 

argue that the 19S ATPase Sug1 recruits the histone acetyltransferase CBP and potentially 

additional histone modifying enzymes, to the MHC-II proximal promoter to enhance activation 

induced promoter acetylation and to establish a necessary platform for CIITA binding, additional 

HAT recruitment and robust histone H3 acetylation.  We have previously demonstrated that 

following IFN- stimulation, Sug1 rapidly binds the MHC-II proximal promoter (Bhat, Turner et 

al. 2008).  We now show that Sug1 associates in vivo with histone H3 and acetylated histone H3 

and that when Sug1 is knocked down, levels of histone H3 acetylation are markedly reduced at 

the activated MHC-II proximal promoter.  Despite our observations of several proteasomal 

subunits binding to the MHC-II promoter, the effects of Sug1 are independent of proteasome 

proteolytic function as proteasomal inhibition does not impact MHC-II promoter H3 acetylation.  

Furthermore, the effects observed on histone H3 acetylation by Sug1 knockdown are specific as 

whole cell lysates show no global change in levels of acetylated histone H3 upon Sug1 

knockdown.  The effects of Sug1 are also lysine specific as histone H3 lysine 18 acetylation is 
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diminished by Sug1 knockdown at the activated MHC-II promoter whereas H3 lysine 9 

acetylation remains unaffected.  The impact of Sug1 on MHC-II transcription is substantial and 

extends beyond the proximal promoter as exons III and V also show markedly decreased histone 

H3 lysine 18 acetylation in the absence of Sug1.  These observations correlate with decreased 

binding of the HAT CBP to the MHC-II promoter, data consistent with experiments that indicate 

in vivo association between Sug1 and CBP.   

 The seminal discovery that 19S ATPases are recruited to activated yeast promoters in the 

absence of proteolytic components of the proteasome first suggested a non-proteolytic role for 

the 19S proteasome in transcriptional regulation (Gonzalez, Delahodde et al. 2002).  We have 

recently demonstrated a role in mammalian transcription for the 19S as a positive regulator of 

MHC-II transcription initiation.  Studies by Bhat et al. indicate that the 19S ATPase Sug1 is 

recruited to the MHC-II proximal promoter prior to CIITA, that knocking down Sug1 decreases 

MHC-II but not CIITA expression, and that in the absence of Sug1, markedly reduced levels of 

CIITA are recruited to the MHC-II HLA-DRA proximal promoter (Bhat, Turner et al. 2008).   

Research in yeast has recently indicated novel roles for the ortholog of Sug1, Rpt 6, in 

epigenetically regulating transcription.  The ATPase activity of Rpt 6 is required to target the 

Saccharomyces cerevisiae SAGA histone acetyltransferase complex to a DNA bound activator 

and to globally regulate acetylation of histone H3 (Lee, Ezhkova et al. 2005; Daniel and Grant 

2007).  Our results illustrate similar regulatory activity in mammalian cells and indicate that in 

the absence of wild type levels of Sug1, necessary chromatin remodeling does not occur at the 

MHC-II proximal promoter, even in the presence of sustained HDAC inhibition.   As in our 

study, in yeast cells ATP hydrolysis is less important for SAGA binding to promoters but is 

required for optimal dissociation of SAGA from the 19S (Lee, Ezhkova et al. 2005).  It will be 
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useful to next determine the role played by energy utilization in the actions of the 19S and Sug1 

on chromatin at the MHC-II proximal promoter. 

Levels of histone H3 K18 acetylation are substantially reduced and the MHC-II promoter 

is rendered hypoacetylated in the absence of Sug1.  H3 K18 acetylation occurs at the MHC-II 

proximal promoter within 4 hours of IFN- treatment and is sustained for 48 hours (Gomez, 

Majumder et al. 2005).  The rapid occurrence of H3 K18 acetylation correlates with our 

demonstrated CBP promoter recruitment and CBP can generate this modification in vitro 

(Schiltz, Mizzen et al. 1999).  Previous studies have shown that the association of CIITA with 

the MHC-II proximal promoter correlates with dramatic increases in histone H3 and H4 

acetylation (Beresford and Boss 2001; Masternak, Peyraud et al. 2003).  As CIITA binding to the 

MHC-II promoter is reduced in the absence of Sug1, it is not surprising that this specific CIITA 

driven modification would also be targeted.  What is unexpected is the dramatic loss of MHC-II 

proximal promoter histone H3 acetylation in the absence of Sug1.  The hypoacetylated state of 

the MHC-II promoter following IFN- stimulation and HDAC inhibition indicates that even the 

moderate levels of acetylation normally seen prior to CIITA expression are blocked in Sug1 

knockdown cells.  That CBP is the likely target of Sug1 is supported by data demonstrating CBP 

binding to the MHC-II promoter prior to CIITA and by a failure to increase CBP binding upon 

IFN- stimulation in the Sug1 knockdown cells.  Our data do not however rule out the interesting 

possibility that Sug1 interacts with additional HATs to regulate histone modifications at the 

MHC-II promoter prior to, or in addition to, interactions with CBP.  Future studies will enable 

determination of the full extent of the mechanisms by which Sug1 and additional 19S ATPases 

regulate HAT recruitment to the MHC-II promoter. 
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The finding that levels of H3 acetylation at the MHC-II proximal promoter are 

dramatically reduced in the absence of Sug1 suggests a model whereby Sug1 controls histone 

modifications associated with IFN- induced HLA-DRA gene activation.  An interesting recent 

report suggests that histone modifications introduced at the MHC-II proximal promoter are likely 

important in activities such as promoter clearance, transcriptional elongation and transcriptional 

memory rather than transcription initiation (Rybtsova, Leimgruber et al. 2007).  If so, Sug1 and 

the 19S ATPases may ultimately provide spatial and temporal regulation of mammalian 

transcription by controlling transcription elongation through the recruitment of histone modifying 

activators.  It remains to be determined if additional histone modifying enzymes interact with 

19S ATPases to coordinate MHC-II transcription.  A complex series of specific histone 

modifications occurs to open the MHC-II chromatin structure and allow CIITA binding, but what 

links these modifying enzymes to each other and to other co-factors is not known.  Active 

expression of MHC-II is associated with histone H3 acetylation, histone H4 acetylation, histone 

H3 methylation, and histone H2B ubiquitination (Masternak, Peyraud et al. 2003; Spilianakis, 

Kretsovali et al. 2003; Gomez, Majumder et al. 2005; Zika, Fauquier et al. 2005; Rybtsova, 

Leimgruber et al. 2007).  Multiple possible scenarios exist for Sug1 and the 19S functioning in 

mediating these histone modifications at the MHC-II promoter.  Similar to the role played by the 

19S in targeting SAGA to yeast promoters, Sug1 may mediate promoter recruitment of CBP and 

additional HATs, like the elongator complex, that move along chromatin by binding elongating 

Pol II (Hawkes, Otero et al. 2002; Kim, Lane et al. 2002; Close, Hawkes et al. 2006).  Indeed, 

ATPases of the 19S have been demonstrated to bind to coding sequence of yeast genes and to be 

required for transcriptional elongation (Ferdous, Gonzalez et al. 2001; Gonzalez, Delahodde et 

al. 2002; Rasti, Grand et al. 2006; Laribee, Shibata et al. 2007).  Our demonstration of decreased 
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histone H3 lysine 18 acetylation in exons III and V of HLA-DRA support a similar role for Sug1 

in elongation in mammalian cells.  The yeast ortholog of Sug1, Rpt 6, is recruited to promoters 

by the ubiquitination of histone H2B and is necessary for methylation of histone H3 (Ezhkova 

and Tansey 2004).  Evidence that mammalian H3 acetylation is coupled to prior H2B 

ubiquitination and H3 K4 methylation provide the interesting possibility that Sug1 and the 19S 

will recruit histone modifying enzymes linked to these modifications as well (Bernstein, Kamal 

et al. 2005; Pavri, Zhu et al. 2006).  Our observations that 19S ATPases S6a and S7 also bind 

MHC-II promoters and modulate MHC-II histone H3 acetylation provide evidence that multiple 

19S ATPases play important roles in regulating mammalian transcription.  Our demonstration 

that the 19S non-ATPase S5a and 20S subunit Alpha 4 also bind the  MHC-II proximal promoter 

suggest that, despite the lack of  a requirement for proteasome activity in the Sug1 dependent 

transcriptional regulation of HLA-DRA genes, additional components of the 26S proteasome are 

present at this promoter.  These results support findings in the yeast literature that an intact, albeit 

proteolytically inactive, proteasome binds yeast promoters (Morris, Kaiser et al. 2003; Ezhkova 

and Tansey 2004; Lee, Ezhkova et al. 2005; Collins and Tansey 2006).  However, the 

observation that binding of non-ATPase proteasome components is relatively low as compared to 

19S ATPases does not rule out the possibility that APIS (19S ATPase proteins independent of 

20S) structures also bind the MHC-II promoter as unique complexes, a finding which has also 

been supported by the yeast literature (Ferdous, Kodadek et al. 2002; Gillette, Gonzalez et al. 

2004; Sikder, Johnston et al. 2006; Sulahian, Sikder et al. 2006). 

Ours is the first report demonstrating a role for the 19S proteasome and the Sug1 ATPase 

in aiding in the transition to an open chromatin structure in a mammalian system and suggest an 

evolutionarily conserved role for the 19S in histone modifications. The finding that Sug1 
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modulates CBP promoter recruitment and acetylation of histones at the MHC-II proximal 

promoter advances our knowledge of 19S function in histone modifications.  Evidence that 

promoter acetylation is dramatically reduced in the absence of Sug1 implicate Sug1 as being 

deeply involved in a mammalian histone modification pathway.  Chromatin must be opened 

before transcription factors can bind and initiate transcription and it is a complex set of histone 

modifications that allow for this opening.  A full understanding of the contributions of Sug1 and 

the 19S to the epigenetic regulation of MHC-II transcription will require further studies into the 

molecular interactions occurring at this and other promoters.  
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SUMMARY 

Studies indicate that the 19S proteasome functions in the epigenetic regulation of 

transcription.  We have shown that as in yeast, components of the 19S proteasome are crucial for 

regulating inducible histone acetylation events in mammalian cells.  The 19S ATPase Sug1 binds 

to histone acetyltransferases and to acetylated histone H3 and, in the absence of Sug1, histone H3 

acetylation is dramatically decreased at mammalian promoters.  Research in yeast further 

indicates that the ortholog of Sug1, Rpt6, is a link between ubiquitination of histone H2B and H3 

lysine 4 trimethylation (H3K4me3).  To characterize the role the 19S proteasome plays in 

regulating additional activating modifications, we examined the methylation and ubiquitination 

status of histones at inducible mammalian genes.  We find that Sug1 is crucial for regulating 

histone H3K4me3 and H3R17me2 at the cytokine inducible MHC-II and CIITA promoters.  In 

the absence of Sug1, histone H3K4me3 and H3R17me2 are dramatically decreased, but the loss 

of Sug1 has no significant effect on H3K36me3 or H2BK120ub.  Our observation that a subunit 

of hCompass  interacts with additional activating histone modifying enzymes, but fails to bind 

the CIITA promoter in the absence of Sug1, strongly implicates Sug1 in recruiting enzyme 

complexes responsible for initiating mammalian transcription.    

 

BACKGROUND 

Components of the large macromolecular 26S proteasome have recently been identified 

as playing novel roles in regulating transcription independent of the intact proteasome’s primary 

function of degrading polyubiquitinated proteins (Baumeister, Walz et al. 1998; Ciechanover 

1998; Muratani and Tansey 2003; Lee, Ezhkova et al. 2005; Sulahian, Sikder et al. 2006).  The 

26S proteasome consists of two subunits: a 19S regulatory particle and a 20S catalytic core.  
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When associated with the 20S core, the 19S regulatory particle regulates assembly of the 26S 

proteasome, recruits polyubiquitinated proteins and shuttles targeted proteins to the 20S core for 

degradation (Coux, Tanaka et al. 1996; Baumeister, Walz et al. 1998; Glickman, Rubin et al. 

1999; Voges, Zwickl et al. 1999; Strickland, Hakala et al. 2000; Rabl, Smith et al. 2008).  The 

19S consists of a lid which is comprised of eight non-ATPase proteins, and a base which is 

comprised of six ATPase (S4, S6a, S6b, S7, Sug1(S8) and S10b) and three non-ATPase (S1, S2 

and S5a) proteins (Glickman, Rubin et al. 1999).  Work in yeast has established a role for 

ATPase components of the 19S as transcriptional regulators.  Yeast 19S ATPases can associate 

with actively transcribing genes (Rubin, Coux et al. 1996; Chang, Gonzalez et al. 2001; 

Gonzalez, Delahodde et al. 2002; Archer, Burdine et al. 2008),  facilitate recruitment of 

transcription factors (Swaffield, Melcher et al. 1995), are necessary for efficient transcriptional 

elongation (Ferdous, Gonzalez et al. 2001) and are important for targeting histone modifying 

enzymes to promoters (Ferdous, Gonzalez et al. 2001; Gonzalez, Delahodde et al. 2002; Lee, 

Ezhkova et al. 2005; Daniel and Grant 2007).  More recent studies have implicated roles for the 

19S as a regulator of transcription in mammalian cells as well (Lassot, Latreille et al. 2007; Zhu, 

Wani et al. 2007; Bhat, Turner et al. 2008; Koues, Dudley et al. 2008).  We have recently shown 

that decreased expression of endogenous Sug1 results in impaired recruitment of the class II 

transactivator (CIITA), the master regulator, to the major histocompatibility class II (MHC-II) 

proximal promoter and in reduced MHC-II expression (Bhat, Turner et al. 2008).   

Despite these advances, evidence of roles for the 19S in regulating mammalian chromatin 

structure remains limited.  We have recently shown that components of the 19S proteasome 

positively regulate acetylation of the chromatin structure of the above mentioned critical 

inflammatory genes, MHC-II and CIITA.  MHC-II molecules are cell surface glycoproteins 
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which perform crucial roles in initiating adaptive immune responses against invading pathogens 

and tumors by binding and presenting exogenously derived antigenic peptides to CD4
+ 

T 

lymphocytes (Parham 2005).  MHC-II proteins are constitutively expressed on antigen presenting 

cells and are inducibly expressed on nucleated cells by the inflammatory cytokine interferon 

gamma (IFN-) (7, 20).  In order to limit opportunistic infection, autoimmune disease and  tumor 

growth, MHC-II expression is tightly regulated at the level of transcription (Gerloni and Zanetti 

2005; Parham 2005).  Following IFN- stimulation, transcription of the MHC-II master regulator 

CIITA is induced at CIITA promoter IV (pIV).  CIITA is subsequently expressed and recruited to 

the MHC-II proximal promoter (Beresford and Boss 2001; Spilianakis, Kretsovali et al. 2003; 

Zika, Fauquier et al. 2005).  These events correlate with recruitment of basal transcriptional 

machinery and histone acetyltransferases (HATs) to the MHC-II proximal promoter (Beresford 

and Boss 2001; Wright and Ting 2006).  Furthermore, extensive studies have established an 

epigenetic map for the MHC-II gene HLA-DRA at the proximal promoter that corresponds to 

these initial transcriptional events (Beresford and Boss 2001; Gomez, Majumder et al. 2005; 

Zika, Fauquier et al. 2005; Gialitakis, Kretsovali et al. 2006).  Prior to IFN- stimulation, HLA-

DRA promoter histone H3 and histone H4 are low to moderately acetylated, which correlates 

with the assembly of an enhanceosome complex at the MHC-II proximal promoter (Beresford 

and Boss 2001; Adamski, Ma et al. 2004).  Following IFN- stimulation, the CREB-binding 

protein (CBP/p300) rapidly binds the MHC-II proximal promoter and results in increased histone 

acetylation at lysine residues.  The relaxation of chromatin that follows allows for CIITA 

binding, full enhanceosome formation and transcription initiation and elongation (Eberharter and 

Becker 2002; Freiman and Tjian 2003; Gorisch, Wachsmuth et al. 2005).  Our recent studies 

demonstrate that 19S ATPases play important roles in regulating activating acetylation events at 
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the MHC-II promoter.  We identified a role for the19S ATPase Sug1 (PSMC5) in regulating K18 

acetylation at histone H3 that correlates with a loss of the initial stable binding of the histone 

acetyltransferase CBP in the presence of reduced Sug1 expression (Koues, Dudley et al. 2008).     

The evidence above has now prompted further studies into the contributions of Sug1 and 

the 19S in the full epigenetic regulation of MHC-II transcription.  It is well accepted that specific 

histone acetylation, methylation, phosphorylation and ubiquitination events alter the 

transcriptional status of chromatin.  Less is known as to how this “histone code” is organized and 

how sequential crosstalk between these histone modifications results in the subsequent 

recruitment and/or activation of additional remodeling enzymes to allow chromatin 

reorganization.  Here we analyze the role of the 19S proteasome ATPase Sug1 in regulating 

activating methylation events at these inducible mammalian genes and the previously proposed 

potential for H2B ubiquitination to initiate these remodeling events.  We report that Sug1 

associates in vivo with histone H3 trimethylated at lysine 4 (H3K4me3) and that knocking down 

Sug1 blocks H3K4me3 at the promoters of the inflammatory genes MHC-II HLA-DRA and 

CIITA pIV.  The effects observed on histone H3 methylation are residue specific and are 

localized to the promoter as histone H3 trimethylated at lysine 36 (H3K36me3), which is found 

throughout the MHC-II coding sequence, is not impacted by Sug1 knockdown while histone H3 

dimethylated at arginine 17 (H3R17me2) is dramatically impaired at both the MHC-II promoter 

and at CIITA pIV.  Furthermore, we have mapped the ubiquitination of histone H2B at both the 

MHC-II promoter and at CIITA pIV and have found Sug1 knockdown to have no significant 

impact on this activation associated modification.  Moreover, the lack of H3K4me3 correlates 

with impaired recruitment of critical hCompass subunits, the mutltisubunit histone 
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methyltransferase required for efficient H3K4 trimethylation.  These results reveal that Sug1 

positively regulates activating histone H3 methylation events at inducible mammalian genes. 

 

MATERIALS AND METHODS 

Cell Lines:  HeLa cells (human epithelial) from ATCC (Manassas, VA) were maintained in 

Dulbecco's Modified Eagle's Medium (DMEM, Mediatech Inc., Herndon, VA) supplemented 

with 10% fetal calf serum, 5mM L-glutamine and 5mM penicillin-streptomycin at 37°C with 5% 

carbon dioxide.  Raji B cells (Burkitt’s lymphoma-derived cell line) from ATCC were 

maintained in Roswell Park Memorial Institute (RPMI) Media (Mediatech) supplemented with 

10% fetal calf serum, 5mM L-glutamine and 5mM penicillin-streptomycin at 37°C with 5% 

carbon dioxide.    

Antibodies:  Histone H3 (06-755), histone H2B (07-371), acetylated histone H3 (06-599), rabbit 

IgG isotype control (12-370) and mouse IgG isotype control (12-371) antibodies were from 

Upstate (Lake Placid, NY).   Trimethylated H3K4 (ab8580), trimethylated H3K36 (ab9050), 

dimethylated H3R17 (ab8284), CARM1 (ab51742), WDR5 (ab22512), Ash2L (ab50699) and 

Myc-HRP (ab1326), hBre1 (ab32629) antibodies were from Abcam (Cambridge, MA).  

Monoubiquitinated H2B antibody (MM-0029) was from MediMabs (Montreal, Canada).  Sug1 

antibody (NB100-345) was from Novus Biologicals (Littleton, CO).  CBP antibody (sc-369) and 

IRF1 antibody (sc-497) were from Santa Cruz Biotechnology Inc. (Santa Cruz, CA).  CIITA 

antibody (100-401-192) was from Rockland Immunochemicals Inc. (Gilbertsville, PA).  Flag-

HRP antibody (A8592) was from Sigma (Saint Louis, MO).  HRP conjugated mouse antibody 

(W4021) was from Promega (Madison, WI) and HRP conjugated rabbit antibody (1858415) was 

from Pierce (Rockland, IL). 
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Plasmids:  Flag-CIITA, HLA-DRA-Luc, pcDNA3 plasmids were previously described (Bhat, 

Turner et al. 2008) Renilla luciferase control vector (E2231) was from Promega (Madison, WI).  

Myc-Sug1, Myc-ATPase mutant Sug1and myc-control plasmids were generously provided by A. 

A. Wani (Zhu, Wani et al. 2007).  

Co-immunoprecipitations:  Over-expression co-immunoprecipiations:  HeLa cells, plated at a 

density of 8 x10
5
 in 10cm tissue culture plates, were transfected with 5μg of the indicated 

plasmids using FuGene 6 (Roche, Indianapolis, IN) according to the manufacturer’s protocol.  

Twenty-four hours post transfection, cells were lysed in RIPA buffer (1M Tris pH 8.0, 5% DOC, 

10% Nonidet P-40, 5M NaCl, 10% SDS, 5 mM EDTA, 1M DTT) supplemented with Complete 

EDTA-free protease inhibitors (Roche, Indianapolis, IN) on ice and then precleared with 30μl 

IgG beads (Sigma).  Cell lysates were immunoprecipitated (IP) overnight with 5μg anti-

H3K4me3 (Abcam), anti-CARM1 (Abcam), anti-CBP (Santa Cruz) rabbit IgG isotype control 

(Upstate), Flag conjugated beads (Sigma) or Myc conjugated beads (Sigma).   Immune 

complexes were isolated by incubating lysates with 50μl protein G beads (Pierce) for 2 hours.  

Immunoprecipitated proteins were denatured with Laemmli buffer (BioRad, Hercules, CA) and 

subjected to sodium dodecyl sulfate-polyacrylamide electrophoresis (SDS-PAGE).  Associations 

were detected by immunoblotting (IB) with Myc HRP conjugated antibody (Abcam) or Flag HRP 

conjugated antibody (Sigma).  Horseradish peroxidase was detected with Supersignal West Pico 

Chemiluminescent substrate (Pierce).  Bradford assays were used to normalize for protein and 

equal loading was verified by immunoblot.   Endogenous co-immunoprecipitations:  Raji cells 

were lysed in RIPA buffer supplemented with Complete EDTA-free protease inhibitors (Roche) 

on ice and then precleared with 30 μl IgG beads (Sigma).  Cell lysates were IP overnight with 5 

μg anti-H3K4me3 (Upstate), anti-Sug1 (Novus Biologicals or rabbit IgG isotype control 
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(Upstate).  Immune complexes were isolated by incubating lysates with 50 μl protein G beads 

(Pierce) for 2 hours.  Immunoprecipitated proteins were denatured with Leammli buffer (BioRad) 

and subjected to SDS-PAGE.  Associations were detected by IB with monoclonal Sug1 antibody 

(Novus Biologicals) and HRP conjugated mouse antibody (Promega) or polyclonal CARM1 

antibody (Abcam) and HRP conjugated rabbit antibody (Pierce).  Horseradish peroxidase was 

detected with Supersignal West Pico Chemiluminescent substrate (Pierce).  Bradford assays were 

used to normalize for protein and equal loading was verified by immunoblot.   

siRNA constructs and transient transfections:  Short interfering RNA (siRNA) duplexes 

previously described (Bhat, Turner et al. 2008; Koues, Dudley et al. 2008) were used for transient 

knockdown of the Sug1 19S ATPase.  siRNA sequence was designed with a GC content of 35-

55% containing dTdT overhangs and were compared to the NCBI BLAST nucleotide database.  

The target sequence of Sug1 was 5’-AAGGTACATCCTGAAGGTAAA-3’ (Qiagen, Valencia, 

CA).  HeLa cells were transfected with Allstar scrambled sequence control siRNA (Qiagen) or 

Sug1 ATPase specific siRNA (Qiagen) and were treated with IFN- as indicated.  Cells were 

lysed in NP40 lysis buffer (1M Tris pH 8.0, 1M KCl, 10% NP40, 0.5M EDTA, 5M NaCl, 1M 

DTT, dH2O) supplemented with Complete EDTA-free protease inhibitors (Roche) and knock 

down efficiency and specificity was assessed by western blotting for ATPase expression as 

described above.  siRNA sequence for human ubiquitn ligase hBre1 was kindly provided by Dr. 

Moshe Oren. 

Luciferase reporter assays:  HeLa cells were plated in 6-well plates at a density of 

5 × 10
4
 cells/well and transfected with 0.7 μg of control or Sug1 siRNA using the RNAi 

transfection reagent (Qiagen) according to manufacturer's instructions.  Twenty-four hours post 

siRNA transfection, CIITA, HLA-DRA-Luc, Renilla, Sug1, ATPase mutant Sug1and pcDNA3 
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plasmids were transfected as indicated using Fugene 6 (Roche, Indianapolis, IN) according to the 

manufacturer's instructions.   Twenty-four hours following DNA transfection, cells were 

subjected to dual-luciferase assay (Promega) according to the manufacturer's instructions.   

Histone immunoblotting:  HeLa cells were transfected with Sug1 siRNA (Qiagen) or scrambled 

sequence control siRNA using RNAiFect transfection reagent (Qiagen) according to 

manufacturer’s protocol.   Forty-eight hours following siRNA transfection, 10% of the total cell 

volume was lysed with 1% Nonidet P-40 buffer (1M Tris pH 8.0, 1M KCl, 10% NP40, 0.5M 

EDTA, 5M NaCl, 1M DTT, dH2O) with Complete EDTA-free protease inhibitors (Roche) and 

analyzed by western blot for ATPase knockdown as described above.  The rest of the cell volume 

was lysed in SDS lysis buffer (1% SDS, 10mM EDTA, 50mM Tris pH 8.0, dH20) supplemented 

with Complete EDTA-free protease inhibitors (Roche) at 4°C and subjected to sonication to 

shear the chromatin.  Lysate samples were normalized for protein concentration, denatured with 

Leammli buffer (BioRad) and separated by SDS-PAGE.  Gels were transferred to nitrocellulose 

and subjected to IB using polyclonal H3K4me3 (Abcam), H3K36me3 (Abcam), H3 (Upstate), 

H3R17me2 (Abcam), H2BK120ub (MediMabs), H2B (Upstate) and either HRP conjugated 

rabbit secondary antibody (Pierce) or HRP conjugated mouse secondary antibody (Promega).  

Horseradish peroxidase was detected with Supersignal West Pico Chemiluminescent substrate 

(Pierce).    

Chromatin immunoprecipitations (ChIPs):  ChIP assays were performed as previously 

described (Greer, Zika et al. 2003).  Briefly, HeLa cells were stimulated with 500 U/ml IFN- 

(Peprotech, Rocky Hill, NJ) as indicated.  Cells were crosslinked with 1% formaldehyde for 10 

minutes at room temperature.  Crosslinking was halted by the addition of 0.125 M glycine for 5 

minutes at room temperature.  Cells were lysed in SDS lysis buffer (1% SDS, 10mM EDTA, 
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50mM Tris pH 8.0, dH20) with Complete EDTA-free protease inhibitors (Roche) for 20 minutes 

on ice and were sonicated at constant pulse to generate an average of 500-750 bp sheared DNA.   

Sonicated lysates were precleared with salmon-sperm coated agarose beads (Upstate) and half of 

the lysate was IP with 5μg of polyclonal antibody against, H3K4me3 (Abcam), H3K36me3 

(Abcam), H3 (Upstate), H3R17me2 (Abcam), CARM1 (Abcam), H2BK120ub (MediMabs), 

H2B (Upstate), Sug1 (Novus Biologicals), WDR5 (Abcam) and Ash2L (Abcam) overnight at 

4°C. The remaining portion of lysate was IP with isotype control antibody (Upstate).  Following 

an additional 2 hour IP with 60μl of salmon-sperm coated agarose beads, samples were washed 

for 5 minutes at 4°C with the following buffers:  Low salt buffer (0.1% SDS, 1% Triton X-100, 

2mM EDTA, 20mM Tris pH 8.0, 150mM NaCl, dH20), High salt buffer (0.1% SDS, 1% Triton 

X-100, 2mM EDTA, 20mM Tris pH 8.0, 500mM NaCl, dH20), LiCl buffer (0.25M LiCl, 1% 

NP40, 1% DOC, 1mM EDTA, 10mM Tris pH 8.0, dH20) and 1xTE buffer and were eluted with 

SDS elution buffer (1% SDS, 0.1M NaHCO3, dH2O).  Following elution, crosslinks were 

reversed overnight with 5M NaCl at 65°C and IP and control DNA was isolated using 

phenol:chloroform:isoamyl alcohol mix (Invitrogen) as per the manufacturer’s instructions.  

Isolated DNA was analyzed by real-time PCR using previously published probes and primers 

spanning the W-X-Y box of the MHC-II HLA-DRA promoter, MHC-II HLA-DRA exon III, 

MHC-II HLA-DRA exon V, GAPDH promoter (Koues, Dudley et al. 2008) and CIITA pIV.  

CIITA pIV primer and probe sequences were as follows:  sense primer 5’-

CAGTTGGGATGCCACTTCTGA-3’, antisense primer 5’-TGGAGCAACCAAGCACCTACT-

3’ and probe  5’-6FAM-AAGCACGTGGTGGCC-TAMRA-3’.  Values graphed were calculated 

based on standard curves generated.  Chromatin immunoprecipitation in ATPase knockdowns:  

HeLa cells were transfected with ATPase specific siRNA (Qiagen) or control siRNA (Qiagen) 
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using RNAiFect transfection reagent (Qiagen) according to manufacturer’s protocol.  Cells were 

treated with 500U/ml IFN- as indicated and 10% of the total cell volume was lysed with 1% 

Nonidet P-40 buffer (1M Tris pH 8.0, 1M KCl, 10% NP40, 0.5M EDTA, 5M NaCl, 1M DTT, 

dH2O) with Complete EDTA-free protease inhibitors (Roche) and analyzed via western blot for 

ATPase knockdown verification.  The remaining fraction of cells was subjected to ChIP assay. 

 

RESULTS 

Sug1 is not critical for histone H2B ubiquitination at lysine 120.  The 19S proteasome 

is recruited to active promoters and functions to regulate transcription by aiding in the opening of 

chromatin structure (Gonzalez, Delahodde et al. 2002; Lee, Ezhkova et al. 2005; Lassot, Latreille 

et al. 2007; Bhat, Turner et al. 2008; Koues, Dudley et al. 2008).   In yeast cells, 19S ATPases 

associate with the chromatin remodeling Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, are 

required for efficient histone H3 acetylation, and have been implicated in regulating histone 

methylation modifications (Ezhkova and Tansey 2004; Lee, Ezhkova et al. 2005; Laribee, 

Shibata et al. 2007).   In mammalian systems, components of the 19S proteasome are recruited to 

inducible promoters (Zhu, Wani et al. 2007; Bhat, Turner et al. 2008) and we have previously 

shown that 19S ATPases positively regulate histone acetylation at cytokine inducible promoters 

(Koues, Dudley et al. 2008).    In yeast, recruitment of 19S ATPases require prior histone H2B 

monoubiquitination and inactivating mutations of these ATPases prevent subsequent H3K4 

methylation (Ezhkova and Tansey 2004).  Until recently, studying H2B ubiquitination in higher 

eukaryotes has been difficult due to the lack of a suitable antibody recognizing ubH2B.  

However, a recent monoclonal antibody recognizing histone H2B ubiquitinated at lysine 120 

(ubH2B) has provided evidence that ubH2B is found associated with robustly expressed genes 
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and extends into coding sequence (Minsky, Shema et al. 2008).   Consistent with this, we 

observed that levels of ubH2B at the MHC-II HLA-DRA gene were initially low and were 

enhanced upon prolonged IFN- stimulation (data not shown).  MHC-II expression is likewise 

delayed due to the need to synthesize and bind CIITA and levels of ubH2B mirror the established 

pattern of MHC-II expression (Beresford and Boss 2001; Spilianakis, Kretsovali et al. 2003; 

Zika, Fauquier et al. 2005).  To investigate contributions of the 19S ATPases to ubH2B, we 

utilized RNA interference to knockdown endogenous Sug1 expression in HeLa cells (Figure 3-

1a, right panel) and then performed ChIP experiments to detect endogenous levels of ubH2B at 

the MHC-II proximal promoter (Figure 3-1a, left panel).  In contrast to the dramatic loss in 

histone acetylation previously observed in Sug1 kno ckdown cells (Koues, Dudley et al. 2008), 

no significant decrease in ubH2B levels were found at the MHC-II promoter (Figure 3-1a, left 

panel) or within the MHC-II coding sequence (data not shown) in Sug1 siRNA treated cells as 

compared to control siRNA treated cells or untransfected cells (Figure 3-1a, left panel). 

As robust expression of MHC-II genes is delayed in HeLa cells due to the requirement for 

transcription, translation and recruitment of CIITA (Beresford and Boss 2001; Spilianakis, 

Kretsovali et al. 2003; Zika, Fauquier et al. 2005), we sought to determine the levels of ubH2B of 

the more rapidly expressed CIITA pIV.  Indeed, a more rapid increase in ubH2B was observed 

upon IFN- stimulation (Figure3-1b, left panel).  However, siRNA-mediated Sug1 knockdown 

did not significantly impact ubH2B at CIITA pIV (Figure 3-1b, right panel).  Furthermore, 

diminished expression of Sug1 did not impact ubH2B in whole cell lysates (Figure 3-1a, right 

panel; Figure 3-2).  Taken together these experiments suggest that the Sug1 ATPase is not a 

requirement for H2B ubiquitination but do not rule out a potential role, similar to that observed 

in yeast (Ezhkova and Tansey 2004), for H2B ubiquitination in recruiting 19S ATPases to 



86 

  

 

Figure 3-1.  Sug1 is not critical for histone H2B ubiquitination at lysine 120.  (A) Sug1 knockdown does not 

significantly impact ubH2B levels.  HeLa cells untransfected or transfected with either control or Sug1 specific 

siRNA were stimulated with IFN-γ and subjected to ChIP assay.  Lysates were immunoprecipitated (IP) with control 

or ubiquitinated histone H2B antibody.  Associated DNA was isolated and analyzed via real-time PCR using primers 

specific for the MHC-II promoter.  IP values were normalized to unmodified histone levels and presented as fold 

changes in bound DNA relative to unstimulated samples.   Isotype control values were 0.5 ± 0.3.  Values represent 

mean ± SEM of (n = 3) independent experiments.  (B) Sug1 siRNA efficiently decreases Sug1 protein expression, 

but does impact global histone H2B ubiquitination.  HeLa cells were transfected with control or Sug1 specific 

siRNA, harvested and subjected to Western blot analysis for endogenous Sug1, global histone H2B and global 

monoubiquitinated H2B.  Results reported are representative data of 3 independent experiments.  (C)  Sug1 

knockdown does not significantly impact ubH2B levels at CIITA pIV.  HeLa cells untransfected (left panel) or 

transfected with control or Sug1 specific siRNA (right panel) were stimulated with IFN-γ and subjected to ChIP 

assay.  Lysates were IP with control or ubiquitinated histone H2B antibody.  Associated CIITA pIV DNA was 

isolated and analyzed via real-time PCR as described in (A).  Data are presented as fold changes in bound DNA 

relative to unstimulated samples.  Isotype control values were 0.1± 0.1.  Values represent mean ± SEM of (n = 3) 

independent experiments. 
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Figure 3-2.  H2B polyubiquitination is unaffected by Sug1 knockdown.  Global histone H2B polypubiquitination 

is unaffected by Sug1 knockdown.  HeLa cells were left untreated, or were transfected with either scrambled control 

siRNA duplexes, or with Sug1 specific siRNA duplexes.  Lysates were immunoblotted (IB) for ubH2B.  Results 

reported are representative data of 3 independent experiments. 



88 

inducible gene promoters.  To determine if 19S recruitment is dependent on H2B ubiquitination, 

RNAi was used to knockdown the H2B ubiquitin ligase, hBre1 (Figure 3-3a).  Chromatin 

immunoprecipitations in these Bre1 knockdown cells showed reduced H2B ubiquitination 

(Figure 3-3b).  However, the loss of H2B ubiquitination did not impact Sug1 binding to CIITA 

pIV (Figure 3-3c). 

 Sug1 inhibits histone H3 arginine 17 dimethylation.  We have recently shown that 

Sug1 plays a critical role in stabilizing MHC-II promoter recruitment of the histone 

acetyltransferase CBP and in acetylating histone H3 at lysine 18 (Koues, Dudley et al. 2008).  

Previous studies have indicated a link between the HAT CBP which can acetylate histone H3 at 

lysine 18 and the coactivator-associated arginine methyltransferase 1 (CARM1) which mediates 

H3 arginine 17 dimethylation (H3R17me2) (Ma, Baumann et al. 2001; Daujat, Bauer et al. 2002; 

Zika, Fauquier et al. 2005).  At the MHC-II promoter, CBP and CARM1 bind in parallel and 

CARM1 dependent methylation of CBP likely stabilizes association of CBP with the promoter to 

allow for histone acetylation and chromatin opening (Zika, Fauquier et al. 2005).  Therefore, we 

sought to determine if the 19S proteasome also plays a role in CARM1 mediated events.  

CARM1 is recruited to the HLA-DRA promoter rapidly upon cytokine stimulation (Figure 3-4a) 

preceding CIITA recruitment by several hours (Figure 3-5) (Beresford and Boss 2001; 

Spilianakis, Kretsovali et al. 2003; Zika, Fauquier et al. 2005; Koues, Dudley et al. 2008).  

Furthermore, endogenous CARM1 associated with immunoprecipitated endogenous Sug1 in Raji 

(Burkitt’s lymphoma-derived) B cells (Figure 3-4b, upper panel, lane 3).  Similarly, Myc-Sug1 

associated with immunoprecipitated endogenous CARM1 (Figure 3-6) in unstimulated HeLa 

cells which lack CIITA expression.   
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Figure 3-3.  H2B ubiquitination at lysine 120 is not critical for Sug1 recruitment to CIITA pIV. (A) hBre1 

siRNA efficiently decreases hBre1 protein expression.  HeLa cells (untreated or stimulated with IFN-) were 

transfected with control or hBre1 specific siRNA, harvested and subjected to Western blot analysis for endogenous 

hBre1 (top) and endogenous Sug1 (bottom).  Western blot shows >80% knockdown of hBre1.   (B) hBre1 siRNA 

efficiently decreases CIITA pIV H2B ubiquitination.  HeLa cells transfected with scrambled control or hBre1 

specific siRNA were stimulated with IFN-γ and subjected to ChIP assay.  Lysates were IP with isotype control or 

ubiquitinated histone H2B antibody.  Associated CIITA pIV DNA was isolated and analyzed via real-time PCR as in 

Figure 1.  Data are presented as fold changes in bound DNA relative to unstimulated samples. Isotype control values 

were 0.1 ± 0.1.  Values represent mean ± SEM of (n = 3) independent experiments.  (C) H2B ubiquitination at lysine 

120 is not critical for Sug1 recruitment.  HeLa cells transfected with scrambled control or hBre1 specific siRNA 

were stimulated with IFN-γ and subjected to ChIP assay.  Lysates were IP with control or endogenous Sug1 

antibody.  Associated DNA was isolated and analyzed via real-time PCR using primers spanning CIITA pIV.  Real-

time PCR values were normalized to the total amount of CIITA pIV DNA added to the reaction (input).  Input values 

represent 5% of the total cell lysate.  Data are presented as fold changes in bound DNA relative to unstimulated 

samples.   Isotype control IP values were 0.5 ± 0.1.  Values represent mean ± SEM of (n = 2) independent 

experiments. 
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Figure 3-4.  CARM1 associates with Sug1.  (A) CARM1 associates with the MHC-II proximal promoter.  ChIP 

assays were carried out in HeLa cells stimulated with IFN-γ for 0 to 18 hours.  Lysates were IP with control or 

endogenous CARM1 antibody.  Associated MHC-II DNA was isolated and analyzed via real-time PCR as described 

in figure 2.  Data are presented as fold changes in bound DNA relative to unstimulated samples.  Isotype control 

values were 0.5 ± 0.2.  Values represent mean ± SEM of (n = 3) independent experiments. (B) Sug1 associates with 

CARM1.   Raji cells were lysed and immunoprecipitated (IP) with endogenous Sug1 (top panel, lane 3).  Control 

samples were IP with endogenous CARM1 antibody (top panel, lane 1) and isotype control IgG (top panel, lane 2).  

IP and lysate control samples (bottom panel) were immunoblotted (IB) for CARM1.  Results reported are 

representative data of 3 experiments. 
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Figure 3-5.  CIITA pIV and the MHC-II proximal promoter are differentially activated upon cytokine 

stimulation.  (A) CIITA pIV is activated rapidly upon cytokine stimulation.  ChIP assays were carried out in HeLa 

cells stimulated with IFN-γ as indicated.  Lysates were IP with control, endogenous acetylated H3, or endogenous 

IRF1 antibody.  Associated DNA was isolated and analyzed via real-time PCR.  Data are presented as fold changes 

in bound DNA relative to unstimulated samples.  Isotype control values were 0.5 ± 0.2.  Values represent mean ± 

SEM of (n = 3) independent experiments.  (B) The MHC-II proximal promoter is activated upon prolonged cytokine 

stimulation.  ChIP assays were carried out in HeLa cells stimulated with IFN-γ as indicated.  Lysates were IP with 

control, endogenous acetylated H3, or endogenous CIITA antibody.  Associated DNA was isolated and analyzed via 

real-time PCR.  Data are presented as fold changes in bound DNA relative to unstimulated samples.  Isotype control 

values were 0.4 ± 0.1.  Values represent mean ± SEM of (n = 3) independent experiments.    
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Figure 3-6.  CARM1 associates with Sug1 in the absence of CIITA.  Unstimulated HeLa cells transfected with 

Myc-Sug1 or empty vector were lysed and IP with polyclonal antibody against CARM1 (top panel, lane 3).  Control 

samples were IP with myc beads (top panel, lane 3).  IP and lysate control samples (bottom panel) were IB for Myc.  

Results reported are representative data of 3 experiments. 
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CARM1 is known to specifically enhance transcriptional activation by methylating 

histone H3 at arginine 17 rapidly upon cytokine stimulation at MHC-II promoters (Bauer, Daujat 

et al. 2002).  Chromatin immunoprecipitation experiments confirm that levels of H3R17me2 

parallel CARM1 recruitment to the MHC-II promoter (data not shown).  Therefore, we sought to 

determine the pattern of H3R17me2 at the MHC-II HLA-DRA promoter under Sug1 knockdown 

conditions (Figure 3-7a).  Sug1 siRNA transfected HeLa cells lacked IFN- enhancement of 

H3R17me2 levels at the MHC-II proximal promoter (Figure 3-7a , white bars) as compared to 

similarly treated control siRNA transfected cells (Figure 3-7a, black bars).  To determine if Sug1 

knockdown influences H3R17me2 at additional genes, chromatin immunoprecipitations were 

performed and isolated DNA was subjected to real-time PCR using primers specific for the 

cytokine inducible CIITA pIV as well as GAPDH.   A loss of CIITA pIV H3R17me2 was 

observed upon siRNA-mediated Sug1 knockdown (Figure 3-7b), but GAPDH promoter  

H3R17me2 levels were unaffected (Figure 3-7c).  To further ensure that the loss of H3R17me2 

observed at the two cytokine inducible promoters is not indicative of a total loss of H3R17me2 in 

the cells, whole cell lysates were immunoblotted for endogenous levels of H3R17me2 (Fig.4D).  

Although levels of Sug1 were efficiently diminished (Figure 3-7d, bottom panel), cells treated 

with Sug1 specific siRNA showed H3R17me2 levels equal to those observed in control siRNA 

treated and untreated cells (Figure 3-7d, top panel).  Taken together, these experiments strongly 

implicate the 19S ATPase Sug1 in mediating methylation events at cytokine inducible genes.   

 Sug1 regulation of histone H3 lysine methylation is localized to the MHC-II HLA-

DRA promoter.  We have previously shown that 19S ATPases are recruited to the MHC-II 

proximal promoter (Bhat, Turner et al. 2008; Koues, Dudley et al. 2008).  In the absence of the  
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Figure 3-7.  Sug1 knockdown prevents inducible histone H3 arginine 17 dimethylation.  (A-C) Sug1 

knockdown decreases H3R17me2 at IFN-inducible promoters.  HeLa cells transfected with scrambled control or 

Sug1 specific siRNA were stimulated with IFN-γ and subjected to ChIP assay.  Lysates were IP with isotype control 

or H3R17me2 antibody.  Associated DNA was isolated and analyzed via real-time PCR as described in Figure 1 

using primers specific for the MHC-II promoter (A), CIITA pIV (B) or the GAPDH promoter (C).  Data are 

presented as fold changes in bound DNA relative to unstimulated samples.  Isotype control values were 0.8 ± 0.1.  

Values represent mean ± SEM of (n = 3) independent experiments.  *P < 0.05 vs control siRNA.   (D) Global histone 

H3R17me2 is unaffected by Sug1 knockdown.  HeLa cells were left untreated, or were transfected with either 

scrambled control or Sug1 specific siRNA.  Lysates were immunoblotted (IB) for H3R17me2 (upper panel) or for 

endogenous Sug1 (lower panel).  Results reported are representative data of 3 independent experiments. 
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19S ATPase Sug1, histone H3 is hypoacetylated and IFN-stimulation fails to recruit CIITA to 

the MHC-II promoter, resulting in a dramatic loss of MHC-II gene expression (Bhat, Turner et al. 

2008; Koues, Dudley et al. 2008).  In yeast, components of the 19S proteasome have been 

identified as a link between histone ubiquitination and activating histone lysine methylation 

events (Ezhkova and Tansey 2004; Laribee, Shibata et al. 2007).    Previous studies have shown 

that at MHC-II genes, trimethylation of histone H3 lysine 4 (H3K4me3) overlaps spatially and 

temporally with histone H3 acetylation events (Gomez, Majumder et al. 2005; Rybtsova, 

Leimgruber et al. 2007; Chou and Tomasi 2008).  Therefore we sought to determine if Sug1 

plays a role in mediating posttranslational histone lysine methylation modifications in 

mammalian cells.  To investigate contributions of the 19S ATPases to activating H3K4me3 and 

H3K36me3, we utilized RNA interference to knockdown endogenous Sug1 expression in HeLa 

cells and then performed ChIP experiments to detect endogenous levels of these two 

modifications at the MHC-II HLA-DRA gene (Figure 3-8).  Consistent with previous reports 

(Chou and Tomasi 2008), ChIP mapping experiments demonstrated that IFN- inducible levels 

of H3K4me3 are localized to the MHC-II promoter whereas H3K36me3 levels are localized to 

MHC-II coding sequence (data not shown).  RNAi-mediated knockdown of Sug1 negatively 

impacted H3K4me3 levels at the MHC-II promoter (Figure 3-8b).  In contrast, H3K36me3 levels 

localized to MHC-II coding sequence were not significantly impacted by the Sug1 knockdown 

(Figure 3-8c).  As an additional control for Sug1 siRNA specificity, reconstituting Sug1 

expression in cells transfected with Sug1 siRNA, restores HLA-DRA promoter activity (Figure 3-

9).   
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Figure 3-8.  Sug1 knockdown decreases histone H3 trimethylation at lysine 4.  (A) Location of MHC-II 

primer/probe sets.  (B-C) Sug1 preferentially targets H3K4me3 and effects are localized at the MHC-II genes 

proximal promoter.  HeLa cells transfected with scrambled control or Sug1 specific siRNA were stimulated with 

IFN-γ and subjected to ChIP assay.  Lysates were IP with control, H3K4me3 (B), or H3K36me3 (C) antibody.  

Associated DNA was isolated and analyzed via real-time PCR as described in Figure 1 using primers and probes 

specific for the MHC-II promoter, exon III, and exon V.  Data are presented as fold changes in bound DNA relative 

to unstimulated samples.  Isotype control values were 0.2 ± 0.2.  Values represent mean ± SEM of (n = 3) 

independent experiments.  ** P < 0.01 vs control siRNA. 
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Figure 3-9.  Overexpressing Myc-Sug1 restores promoter activity in Sug1 knockdown cells.  HeLa cells were 

transfected with control or Sug1 siRNA and were co-transfected with HLA-DRA-Luc, Renilla, pcDNA3, CIITA, 

Sug1 or ATPase mutant Sug1 as indicated. Luciferase activity is reported as fold activation relative to that of the 

reporter alone. Luciferase readings were normalized to Renilla activity. Luciferase assays were performed in 

triplicate and values represent mean ± SEM of (n = 3) independent experiments. 
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Sug1 knockdown decreases CIITA pIV promoter specific histone H3 trimethylation 

at lysine 4.  We have previously observed that Sug1 positively regulates histone acetylation 

(Koues, Dudley et al. 2008) and H3R17me2 (Figure 3-7b) at the IFN- inducible CIITA pIV.  To 

determine if a similar regulatory pattern occurs with H3K4me3, chromatin immunoprecipitation 

experiments were performed to determine levels of H3K4me3 at CIITA pIV upon treatment with 

Sug1 specific siRNA.  Consistent with published reports (Ni, Karaskov et al. 2005), H3K4me3 

levels do not accumulate at CIITA pIV until prolonged IFN- stimulation (Figure 3-10a).  

However, similar to observations at the MHC-II promoter, RNAi-mediated Sug1 knockdown has 

a negative effect on inducible H3K4me3 levels at CIITA pIV (Figure 3-10b).  To verify that the  

loss of H3K4me3 is due to diminished Sug1 expression and not loss of proteasomal function, 

chromatin immunoprecipitation experiments were also performed in the presence of proteasome 

inhibitor MG132 (Figure 3-10b).  Proteasomal inhibition did not impact H3K4me3 levels at 

CIITA pIV.  Levels of H3K4me3 in cells treated with MG132 (Figure 3-10b) were comparable to 

those in untreated samples.  Furthermore, Sug1 knockdown showed no impact on H3K4me3 

levels at the constitutively active GAPDH promoter (Figure 3-10c).  To ensure that the loss of 

H3K4me3 observed at these two cytokine inducible promoters is not indicative of a global 

decrease in H3K4me3, whole cell lysates were immunoblotted for endogenous levels of 

H3K4me3 (Figure 3-10d).  Although levels of Sug1 were efficiently diminished (Figure 3-10d, 

bottompanel), cells treated with Sug1 specific siRNA showed levels of total H3 and 

trimethylation at both lysine 4 and lysine 36 that were equivalent to those observed in control 

siRNA treated cells (Figure 3-10d).  These studies strongly emphasize a specific role for the  
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Figure 3-10.  Sug1 knockdown decreases histone H3K4 trimethylation in a promoter specific manner.  (A) 

Levels of H3K4me3 at CIITA pIV are enhanced upon prolonged IFN- stimulation.  ChIP assays were carried out in 

HeLa cells stimulated with IFN-γ for 0 to 18 hours.  Lysates were IP with control or H3K4me3 antibody.  Associated 

CIITA pIV DNA was isolated and analyzed via real-time PCR as described in Figure 1.  Data are presented as fold 

changes in bound DNA relative to unstimulated samples.  Isotype control values were 0.4 ± 0.4.  Values represent 

mean ± SEM of (n = 4) independent experiments.  (B-C) Sug1 knockdown, not proteasomal inhibition, decreases 

histone H3K4me3 at CIITA pIV.  HeLa cells transfected with scrambled control or Sug1 specific siRNA were 

stimulated with IFN- and treated with proteasomal inhibitor MG132 as indicated and subjected to ChIP assay.  

Associated DNA was isolated and analyzed via real-time PCR as described in Figure 1 using primers and probes 

specific CIITA pIV (B) and the GAPDH promoter (C).  Data are presented as fold changes in bound DNA relative to 

unstimulated samples.  Isotype control values were 0.1 ± 0.1. Values represent mean ± SEM of (n = 3) independent 

experiments.  *P < 0.05 vs control siRNA.  (D) Global histone H3K4me3 is unaffected by Sug1 knockdown.  HeLa 

cells were left untreated, or were transfected with either scrambled control or Sug1 specific siRNA as indicated.  

Lysates were immunoblotted (IB) for H3K4me3, H3K36me3, H3 or for endogenous Sug1.  Results reported are 

representative data of 3 independent experiments. 



100 

Sug1 ATPase in regulating promoter specific activating histone methylation events at cytokine 

inducible genes independent of proteasomal degradation. 

Sug1 is critical for recruitment of a hCompass subunit.  We have previously shown 

that Sug1 positively regulates CBP mediated histone H3 lysine 18 acetylation (Koues, Dudley et 

al. 2008) and now show that Sug1 also positively regulates CARM1 mediated H3R17me2 as 

well as SET1 mediated H3K4me3 at the IFN- inducible promoters.  The H3K4 

methyltransferase SET1 is recruited to DNA as part of a large complex of proteins, hCompass 

(Lee, Tate et al. 2007; Wu, Wang et al. 2008).  Chromatin immunoprecipitations show that a 

common subunit of hCompass, WDR5 (Figure 3-11a) binds constitutively to CIITA pIV with 

moderate enhancement enhancement observed early upon cytokine stimulation.  Previous studies 

have demonstrated association of CBP with immunoprecipitated MLL (mixed lineage leukemia)-

like methyltransferases (Demers, Chaturvedi et al. 2007).  To determine if WDR5 similarly 

interacts with  additional histone modifying enzymes, co-immunoprecipitation experiments were 

performed in unstimulated HeLa cells overexpressing the hCompass subunit WDR5 (Figure 3-

11b).  Both the HAT CBP (Figure 3-11b, lane 3) and arginine HMTase CARM1 (Figure 3-11c, 

lane 4) associate with Flag-WDR5.  Although endogenous WDR5 expression is unaltered in 

Sug1 knockdown cells (Figure 3-11c), IFN- inducible WDR5 recruitment to CIITA pIV, but not 

the GAPDH promoter, is inhibited (Figure 3-11d).  Similarly Ash2L, an additional hCompass 

subunit, fails to bind to CIITA pIV upon Sug1 knockdown (data not shown).  Taken together, 

these results suggest that the 19S proteasome may play a role in targeting stable hCompass 

association and multi-enzyme recruitment at cytokine inducible promoters.     
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Figure 3-11.  Sug1 is critical for recruitment of a hCompass subunit.  (A) Common hCompass subunit WDR5 

associates with CIITA pIV.  ChIP assays were carried out in HeLa cells stimulated with IFN-γ for 0 to 18 hours.  

Lysates were IP with control or endogenous WDR5 antibody.  Associated CIITA pIV DNA was isolated and 

analyzed via real-time PCR as described in figure 2.  Data are presented as fold changes in bound DNA relative to 

unstimulated samples.  Isotype control values were 0.2 ± 0.2.  Values represent mean ± SEM of (n = 2) independent 

experiments.  (B)  WDR5 associates with CBP and CARM1.   Unstimulated HeLa cells transfected with Flag-WDR5 

were lysed and immunoprecipitated (IP) with endogenous CBP (top panel, lane 3) or endogenous CARM1 (top 

panel, lane 4).  Control samples were IP with Flag-beads (top panel, lane 1) and isotype control IgG (top panel, lane 

2).  IP and lysate control samples (bottom panel) were immunoblotted (IB) for Flag.  Results reported are 

representative data of 3 experiments.  (C)  Sug1 knockdown does not impact endogenous WDR5 expression.  HeLa 

cells (untreated or stimulated with IFN-) were transfected with control or Sug1 specific siRNA, harvested and 

subjected to Western blot analysis for endogenous WDR5 (top) and endogenous Sug1 (bottom).  (D) Sug1 

knockdown decreases WDR5 association with CIITA pIV.  HeLa cells transfected with scrambled control or Sug1 

specific siRNA were stimulated with IFN-γ and subjected to ChIP assay.  Lysates were IP with control or 

endogenous WDR5 antibody.  Associated DNA was isolated and analyzed via real-time PCR as described in Figure 

2 using primers and probes specific for CIITA pIV (left) and the GAPDH promoter (right).  Data are presented as 

fold changes in bound DNA relative to unstimulated samples.   Isotype control IP values were 0.1 ± 0.1.   Values 

represent mean ± SEM of (n = 2) independent experiments.  *P < 0.05 vs control siRNA. 
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 DISCUSSION 

Previous studies from our laboratory indicate that 19S ATPases regulate transcription at 

inducible mammalian genes by recruiting histone acetyltransferases and activators to activated 

promoters.  We have demonstrated that following IFN- stimulation, 19S ATPases rapidly bind 

the MHC-II proximal promoter and that diminished expression of the ATPase Sug1 substantially 

inhibits MHC-II promoter acetylation and decreases recruitment of the transactivator CIITA, 

resulting in diminished MHC-II expression (Bhat, Turner et al. 2008; Koues, Dudley et al. 2008).   

Results shown here further this argument and indicate that the 19S proteasome participates in the 

cascade of regulatory histone modifications that occurs following stimulation of mammalian 

gene transcription.  We showed recently that the loss of association of the HAT CBP with the 

MHC-II proximal promoter correlates with the dramatic inhibition of H3K18 acetylation (Koues, 

Dudley et al. 2008).  Others have shown in yeast that the 19S complex is important for targeting 

HATs to promoters (Lee, Ezhkova et al. 2005) and that mutations in 19S ATPases specifically 

disrupt H3K4 and -K79 methylation (Ezhkova and Tansey 2004).  We now demonstrate that 

Sug1 knockdown impairs the additional activating HMTase mediated modification of H3R17 at 

both the MHC-II promoter and CIITA pIV.  These data indicate an inability of CARM1, the 

HMTase responsible for the H3R17me2 modification, to bind inducible promoters in the absence 

of Sug1.  Despite multiple attempts, we were unable test this hypothesis as we failed to 

successfully perform chromatin immunoprecipitation experiments to isolate endogenous CARM1 

at MHC-II promoter sequences in siRNA transfected cells.  However, given the substantial 

evidence that CBP and CARM1 crosstalk on chromatin to link H3 acetylation and arginine 

methylation (Ma, Baumann et al. 2001; Daujat, Bauer et al. 2002; Zika, Fauquier et al. 2005), it 

is not surprising that CARM1 mediated H3R17me2 is regulated by Sug1.   
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The roles of histone methylation in regulating transcription are complex as this 

modification is associated with both gene expression and gene silencing.  H3K36 methylation is 

found within actively transcribed genes and is thought to have a role a role in transcriptional 

termination and/or early RNA processing (Krogan, Kim et al. 2003; Xiao, Hall et al. 2003; 

Bannister, Schneider et al. 2005).  In addition, histone H3K4 hypermethylation has been found at 

active genes and may inhibit methylated H3K9 gene silencing, perhaps allowing for acetylation 

to occur (Wang, Cao et al. 2001; Santos-Rosa, Schneider et al. 2002; Schneider, Bannister et al. 

2004; Francis, Chakrabarti et al. 2005).  Here we show that when Sug1 is knocked down, levels 

of histone H3K4me3 are markedly reduced at the cytokine induced MHC-II proximal promoter 

and CIITA pIV.  Sug1 appears to mediate H3K4me3 at inducible promoters as H3K4me3 at the 

GAPDH promoter is not impacted by Sug1 knockdown and whole cell lysates show no global 

change in levels of H3K4me3.  Furthermore, the effects observed on histone H3 methylation are 

localized to the promoter as H3K36me3, which is found throughout the MHC-II coding 

sequence, is not impacted by Sug1 knockdown.   Importantly, the effects of Sug1
 
are independent 

of proteasome proteolytic function, as proteasomal
 
inhibition does not impact promoter 

H3K4me3.  Additionally as a control for siRNA specificity, reconstituting Sug1 expression in 

Sug1 siRNA transfected cells restores promoter activity.   

Promoter methylation of H3K4 is thought to promote activating acetylation events at 

promoters; our results therefore link the 19S proteasome and its ATPase components to 

transcriptional regulation by demonstrating preferential promoter regulation of activating histone 

modifications by the 19S ATPase Sug1.  As further evidence, we show that WDR5, a component 

of the Set1 containing histone methyltransferase hCompass, associates with two additional 

histone modifying enzymes, CBP and CARM1.  Moreover, WDR5 recruitment to CIITA pIV is 
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inhibited when endogenous Sug1expression is diminished.  The novelty in our study results from 

our observation that the effects of 19S ATPases on mammalian transcription extend beyond 

recruitment and regulation of enzymes responsible for lysine residue modifications.  Our data 

argues that upon gene activation, 19S ATPases reorganize chromatin to allow multiple specific 

enzymes access to their target residues in a promoter specific fashion.  We propose that one way 

in which 19S ATPases facilitate elongation is promoting binding of multiple enzymes 

responsible for activating modifications to histone H3.   

Studies in yeast have identified 19S ATPases to be a link between H2B 

monoubiquitination and activating lysine methylation modifications (Wood, Schneider et al. 

2003; Ezhkova and Tansey 2004; Laribee, Shibata et al. 2007; Lee, Shukla et al. 2007).  The 

effects of ubiquitination of histones are complex with reports indicating roles for histone 

ubiquitination in both gene inactivation and activation.  Indeed, ubiquitination of histone H2A 

has recently been shown to precede gene silencing (de Napoles, Mermoud et al. 2004; Cao, 

Tsukada et al. 2005) while ubiquitination of histone H2B is associated with robustly transcribed 

regions of DNA (Henry, Wyce et al. 2003; Minsky, Shema et al. 2008).   We are the first to map 

the ubiquitination of histone H2B at both the MHC-II promoter and at CIITA pIV.   Our 

observations that a decrease in endogenous levels of Sug1 prevents efficient H3K4me3, but not 

H2B ubiquitination, first suggested that similar links of H2B ubiquitination and activating lysine 

modifications exist in higher eukaryotes and that recruitment of mammalian 19S ATPases to 

chromatin might require ubiquitination of H2B.  However, the 19S ATPase Sug1 was efficiently 

recruited to CIITA pIV in the presence of reduced H2B ubiquitination, implying that an 

additional mechanism/s exists in mammalian cells to initiate recruitment of 19S ATPases 

following transcription stimulation.   
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Ours is the first report demonstrating a role for the 19S proteasomal ATPases in 

regulating the initial activating methylation events at inducible mammalian promoters.  Our 

observations that in the absence of Sug1, activating methylation and acetylation modifications to 

histone H3 do not occur while H2B ubiquitination does, strongly implicate the 19S ATPases in 

targeting histone modifying enzymes to activated mammalian genes and indicate specificity in 

not only the enzymes recruited, but in the residues targeted. 

   

ACKNOWLEDGEMENTS.  This work was supported by funding from the Molecular 

Basis of Disease Area of Focus at Georgia State University (in support of O.I.K.), the HHMI 

Biotechnology Scholars Program (in support of R.K.D.), and grants from the American Cancer 

Society; the Georgia Cancer Coalition; and the Georgia Research Alliance (to S.F.G.). 



106 

CHAPTER 4 
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SUMMARY 

Studies indicate that the 19S proteasome contributes to chromatin reorganization, 

independent of the role the proteasome plays in protein degredation.  We have previously shown 

that components of the 19S proteasome are critical for regulating inducible histone activation 

events in mammalian cells.  The 19S ATPase Sug1 binds to histone remodeling enzymes and, in 

the absence of Sug1 a subset of activating epigenetic modifications including histone H3 

acetylation, H3 lysine 4 trimethylation and H3 arginine 17 dimethylation are inhibited at cytokine 

inducible MHC-II and CIITA promoters.  Furthermore, we observed that a subunit of histone H3 

lysine 4 mehtyltransferase MLL/COMPASS binds activating histone modifying enzymes in 

addition to the HMTase Set1, implicating Sug1 in recruiting multiple enzyme complexes 

required to for initiate mammalian transcription.  Here we show that multiple subunits of 

MLL/COMPASS bind constitutively to the inducible MHC-II and CIITA promoters and that 

over-expressing a single MLL/COMPASS subunit significantly enhances promoter activity.  In 

addition, we show that H3 lysine 27 trimethylation is elevated in the presence of diminished 

Sug1, suggesting that the 19S proteasome plays a role in the initial reorganization of events 

enabling the relaxation of the repressive chromatin structure surrounding inducible promoters.  

 

BACKGROUND 

Critical for immune system protection against invading pathogens and tumor formation 

are major histocompatibility class II (MHC-II) molecules, which are cell surface glycoproteins 

that function to present antigenic peptides to CD4
+ 

T lymphocytes of the adaptive immune 

system (Gerloni and Zanetti 2005; Parham 2005).  MHC-II molecules are expressed 

constitutively in only a small subset of cells referred to as antigen presenting cells (APCs).  
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However the interferon gamma (IFN-) cytokine can induce MHC-II expression in all nucleated 

cells (Masternak, Barras et al. 1998; Masternak, Muhlethaler-Mottet et al. 2000).  Constitutive 

and inducible MHC-II expression is regulated at the level of transcription by a series of well 

studied elements within the MHC-II proximal promoter.   Nuclear Factor Y (NFY), Regulatory 

Factor X (RFX), and cAMP response element binding protein (CREB) bind to the Y and X 

elements of the MHC-II promoter forming a multi-protein enhanceosome complex (Steimle, 

Durand et al. 1995; Masternak, Barras et al. 1998; Nagarajan, Louis-Plence et al. 1999).  Once 

assembled the enhanceosome recruits the master regulator, the Class II Transactivator 

(CIITA)(Masternak, Muhlethaler-Mottet et al. 2000).    

CIITA expression mirrors that of MHC-II expression with cells deficient in CIITA 

expression being deficient in MHC-II expression as well.  Transcription of CIITA is driven by 

one of four distinct promoters in a cell-type specific manner.  Promoter I (pI) and III (pIII) drive 

constiutuive CIITA expression in APCs, dendritic and B cells, respectively.  The function of 

promoter II (pII) remains unclear whereas the well characterized CIITA promoter IV (pIV) is 

responsible for IFN- inducible expression in all other nucleated cells (Muhlethaler-Mottet, Otten 

et al. 1997; Piskurich, Linhoff et al. 1999).  Rapidly upon cytokine stimulation, the 

phosphorylation and nuclear translocation of signal transducer and activator of transcription 1 

(STAT1) via the Janus kinase (JAK)/STAT pathway is triggered.  Activated STAT1 homodimers 

are recruited to the interferon regulatory factor 1 (IRF1) gene to intiate transcription.  STAT1 and 

subsequently IRF1 bind to the IFN- activated sequence (GAS) and IFN response element (IRE) 

of CIITA pIV, joining the consitutively expressed ubiquitous factor 1 (USF-1) which binds the E 

box (Muhlethaler-Mottet, Di Berardino et al. 1998; Morris, Beresford et al. 2002).  CIITA 

transcripts are observed 2 hours post IFN- stimulation (Morris, Beresford et al. 2002; Wright 
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and Ting 2006).  Thus inducible MHC-II expression is delayed due to the time it takes to 

synthesize and bind CIITA (Beresford and Boss 2001; Spilianakis, Kretsovali et al. 2003; Zika, 

Fauquier et al. 2005).  Once recruited (4-6 hours post IFN- stimulation) CIITA binding 

stabilizes the enhanceosome complex and recruits basal transcriptional components, including 

the CDK7 subunit of TFIIH and the CDK9 subunit of P-TEFb that phosphorylate Pol II to initiate 

the switch to an elongation complex (Mach, Steimle et al. 1996; Masternak, Barras et al. 1998; 

Kanazawa, Okamoto et al. 2000; Boss and Jensen 2003; Spilianakis, Kretsovali et al. 2003).  

Although much is known about the requirement of transcription factors at these two cytokine 

indicible promoters, considerably less is understood about the histone modifying enzymes that 

bind these promoters and regulate access to the DNA. 

 It is now well accepted that histone acetylation of lysine residues relaxes the interaction 

between histone proteins and DNA to promote gene transcription (Eberharter and Becker 2002; 

Freiman and Tjian 2003; Gorisch, Wachsmuth et al. 2005).  Epigenetic studies of the inducible 

CIITA and MHC-II promoters in HeLa cells have shown that prior to IFN- stimulation, histone 

H3 and histone H4 lysines are acetylated at low levels which coorelates with the binding of 

consitutively expressed transcription factors, RFX, NFY and CREB at the MHC-II promoter and 

USF-1 at CIITA pIV (Beresford and Boss 2001; Ni, Karaskov et al. 2005).  Following IFN- 

stimulation in HeLa cells, several well known histone acetyltransferases, including CREB 

binding protein (CBP)/p300 and p300/CBP-associated factor (pCAF), are recruited and levels of 

histone lysine acetylation are dramatically enhanced to fully open the chromatin structure 

allowing for CIITA and subsequently MHC-II to be expressed (Beresford and Boss 2001; Wright 

and Ting 2006).   
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The requirement for histone methylation in opening the chromatin structure is both less 

understood and more complex as multiple methyl groups can be added to either arginine (R) 

residues or lysine (K) residues.  Methylation of arginine residues is associated with gene 

activation (Bauer, Daujat et al. 2002), but methylation of lysine residues has been historically 

associated with gene inactivation as methylation was thought to be both silencing and irreversible 

(Jenuwein and Allis 2001; Nakayama, Rice et al. 2001; Berger 2002; Lehnertz, Ueda et al. 2003; 

Plath, Fang et al. 2003; Shilatifard 2006; Sparmann and van Lohuizen 2006).  Some of the first 

histone methylating events identified were silencing in nature.  Histone H3 dimethylated at lysine 

9 (H3K9me2) interacts with heterochromatin protein 1to facilitate chromatin silencing (Lachner, 

O'Carroll et al. 2001; Nakayama, Rice et al. 2001; Jacobs and Khorasanizadeh 2002) and histone 

H3 trimethylated at lysine 27 (H3K27me3) has been associated with a variety of processes 

including X chromosome inactivation and imprinting (Plath, Fang et al. 2003; Sparmann and van 

Lohuizen 2006).   However with the discovery of histone demethylases, lysine methylation is 

now known to be dynamic and certain methylation events are intrinsic for gene expression as 

modifications such as the di- and trimethylation (hypermethylation) of H3 at lysine (K) 4 and 

K36 are found at actively transcribed genes (Bernstein, Humphrey et al. 2002; Santos-Rosa, 

Schneider et al. 2002; Bannister, Schneider et al. 2005; Shilatifard 2006; Tsukada, Fang et al. 

2006; Whetstine, Nottke et al. 2006).   Histone H3K36 methylation is localized within gene 

coding sequence and functions in transcriptional memory to prevent inappropriate transcription 

initiation by recruiting histone deacetylases (HDACs) in the wake of elongating RNA polymerase 

II (Carrozza, Li et al. 2005; Joshi and Struhl 2005; Lee and Shilatifard 2007).   In addition 

histone H3K4 hypermethylation has been found to inhibit H3K9 methylation and is associated 

with the demethylation of H3K27 to release chromatin from a silencing conformation (Wang, 
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Cao et al. 2001; Agger, Cloos et al. 2007; Lee, Villa et al. 2007).  Epigenetic studies have shown 

that upon prolonged cytokine stimulation both the MHC-II proximal promoter (Gomez, 

Majumder et al. 2005; Chou and Tomasi 2008) and CIITA pIV (Ni, Karaskov et al. 2005) are 

trimethylated at H3K4 (H3K4me3).  Unfortunately the mechanisms by which histone 

methylation contributes to an open chromatin structure remain poorly understood.  

H3K4 methylation is mediated by mixed lineage leukemia (MLL)/complex of proteins 

associated with Set I (COMPASS) - like complexes, which can monomethylate, dimethylate or 

trimethylate histone H3 at lysine 4 (Hughes, Rozenblatt-Rosen et al. 2004; Yokoyama, Wang et 

al. 2004).  MLL/COMPASS-like complexes contain several well characterized, common 

subunits, Ash2L, WDR5 and RbBP5, which are conserved from yeast to humans (Dou, Milne et 

al. 2006; Steward, Lee et al. 2006; Lee, Tate et al. 2007).  These subunits are thought to 

constitute a MLL/COMPASS subcomplex that forms a platform to mediate the Set1 enzyme and 

H3K4 substrate interaction (Crawford and Hess 2006; Cho, Hong et al. 2007).  WDR5 is 

necessary for proper complex formation and stabilizes Ash2L association (Dou, Milne et al. 

2006; Seward, Cubberley et al. 2007).  Ash2L and RbBP5 are required for proper Set1 enzymatic 

activity (Dou, Milne et al. 2006; Steward, Lee et al. 2006).      

As previously stated H3K4me3 is highly associated with active transcription and is 

induced by IFN- at both CIITA pIV and the MHC-II proximal promoter (Gomez, Majumder et 

al. 2005; Ni, Karaskov et al. 2005; Chou and Tomasi 2008; Koues, Dudley et al. submitted 

2009).  Promoter H3K4me3 is associated with a release from a repressive state by 

MLL/COMPASS associated histone demthylase, UTX (Lee, Villa et al. 2007), and is 

functionally linked to activating acetylation events at promoters (Nightingale, Gendreizig et al. 

2007).  Previously we have demonstrated that the 19S proteasome and its ATPase components 
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preferentially regulate activating histone acetylation, H3R17me2 and H3K4me3 at cytokine 

inducible promoters (Koues, Dudley et al. 2008; Koues, Dudley et al. submitted 2009).  

Furthermore, we have identified an association between WDR5, a component of the 

MLL/COMPASS complex, and two additional histone modifying enzymes, CBP and co-activator 

associated arginine methyltransferase (CARM1).  Moreover, inducible WDR5 recruitment to 

CIITA pIV is inhibited when endogenous Sug1expression is diminished (Koues, Dudley et al. 

submitted 2009), suggesting a role for the 19S proteasome in promoting an open chromatin 

structure by regulating multiple enzyme associations with inducible promoters.   

Here we show that common MLL/COMPASS subunits, Ash2L, RbBP5 and WDR5 are 

recruited to both the MHC-II promoter as well as CIITA pIV and overexpressing a single subunit 

significantly enhances promoter activity in overexpression-reporter assays.  Conversely, although 

knockdown of a single subunit decreases promoter specific H3K4me3, it does not impact 

promoter activity in similar reporter assays.  Interestingly, although WDR5 co-

immunoprecipitates with a histone acetyltransferase (Koues, Dudley et al. submitted 2009), there 

was no observable change in levels of histone H3 lysine 18 acetylation.  Furthermore, 

knockdown of Sug1 promotes a more silenced chromatin structure as is evidenced by elevated 

H3K27me3 levels at cytokine inducible promoters upon Sug1 knockdown.  Together these 

results implicate the 19S proteasome in the initial reorganization of chromatin to relaxe the 

repressive histone environament surrounding cytokine inducible promoters. 

 

MATERIALS AND METHODS 

Cell Lines:  HeLa cells (human epithelial) from ATCC (Manassas, VA) were maintained in 

Dulbecco's Modified Eagle's Medium (DMEM, Mediatech Inc., Herndon, VA) that was 
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supplemented with 10% fetal calf serum, 5mM L-glutamine and 5mM penicillin-streptomycin at 

37°C with 5% carbon dioxide.   

Antibodies:  Trimethylated H3K4, acetylated H3K18 and WDR5 antibodies were from Abcam 

(Cambridge, MA).  Ash2L and RbBP5 antibodies were from Bethyl Laboratories (Montgomery, 

TX).  Rabbit IgG isotype control and mouse IgG isotype control antibodies were from Upstate 

(Lake Placid, NY).   Sug1 antibody was from Novus Biologicals (Littleton, CO).    HRP 

conjugated mouse antibody (W4021) was from Promega (Madison, WI) and HRP conjugated 

rabbit antibody (1858415) was from Pierce (Rockland, IL). 

Plasmids:  Flag-CIITA, HLA-DRA-Luc, pcDNA3 plasmids were previously described (Bhat, 

Turner et al. 2008) Renilla luciferase control vector (E2231) was from Promega (Madison, WI).  

Myc-Sug1, was generously provided by A. A. Wani (Zhu, Wani et al. 2007).  Flag-WDR5, Flag-

Ash2L and Flag-RbBP5 were graciously provided by A. Shilatifard (Wu, Wang et al. 2008).  

siRNA constructs and transient transfections:  Short interfering RNA (siRNA) duplexes 

previously described (Bhat, Turner et al. 2008; Koues, Dudley et al. 2008) were used for transient 

knockdown of the Sug1 19S ATPase.  Pooled siRNA duplexes for WDR5 were purchased from 

Santa Cruz  Biotechnology (Santa Cruz, CA).  HeLa cells were transfected with Allstar 

scrambled sequence control siRNA (Qiagen) or specific siRNA were treated with IFN- as 

indicated.  Cells were lysed in NP40 lysis buffer (1M Tris pH 8.0, 1M KCl, 10% NP40, 0.5M 

EDTA, 5M NaCl, 1M DTT, dH2O) supplemented with Complete EDTA-free protease inhibitors 

(Roche) and knockdown efficiency was assessed by immunoblotting as described above.   

Luciferase reporter assays:  Overexpression luciferase assays.  HeLa cells were plated in 6-

well plates at a density of 5 × 10
4
 cells/well were transfected with CIITA, HLA-DRA-Luc, 

Renilla, pcDNA3 and hCompass subunit plasmids as indicated using Fugene 6 (Roche, 
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Indianapolis, IN) according to the manufacturer's instructions.   Twenty-four hours post 

transfection cells were subjected to dual-luciferase assay (Promega) according to the 

manufacturer's protocol.   Knockdown luciferase assays.  HeLa cells were plated in 6-well plates 

at a density of 5 × 10
4
 cells/well and transfected with 1.0 μg of control or WDR5 siRNA using 

the RNAi transfection reagent (Qiagen) according to manufacturer's instructions.  Twenty-four 

hours post siRNA transfection, CIITA, HLA-DRA-Luc, Renilla and pcDNA3 plasmids were 

transfected as indicated using Fugene 6 (Roche, Indianapolis, IN) according to the manufacturer's 

instructions.   Twenty-four hours post DNA transfection cells were subjected to dual-luciferase 

assay (Promega) according to the manufacturer's instructions. 

Chromatin immunoprecipitations (ChIPs):  ChIP assays were performed as previously 

described (Greer, Zika et al. 2003).  In brief, HeLa cells were stimulated with 500 U/ml IFN- 

(Peprotech, Rocky Hill, NJ) as indicated.  Crosslinked cells were lysed in SDS lysis buffer (1% 

SDS, 10mM EDTA, 50mM Tris pH 8.0, dH20) with Complete EDTA-free protease inhibitors 

(Roche) for 20 minutes on ice and sonicated to generate an average of 500-750 bp sheared DNA.   

Sonicated samples were precleared with salmon-sperm coated agarose beads (Upstate) and half 

of the lysate was IP with 5μg of polyclonal antibody against, H3K4me3 (Abcam), H3K18ac 

(Abcam), WDR5 (Abcam), Ash2L (Bethyl Laboratories), RbBP5 (Bethyl Laboratories) overnight 

at 4°C. The remaining lysate was IP with isotype control antibody (Upstate).  Following a 2 hour 

incubation with 60μl of salmon-sperm coated agarose beads, samples were washed for 5 minutes 

at 4°C with the following buffers:  Low salt buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 

20mM Tris pH 8.0, 150mM NaCl, dH20), High salt buffer (0.1% SDS, 1% Triton X-100, 2mM 

EDTA, 20mM Tris pH 8.0, 500mM NaCl, dH20), LiCl buffer (0.25M LiCl, 1% NP40, 1% DOC, 

1mM EDTA, 10mM Tris pH 8.0, dH20) and 1xTE buffer and were eluted with SDS elution 
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buffer (1% SDS, 0.1M NaHCO3, dH2O).  Following elution, crosslinks were reversed with 5M 

NaCl at 65°C and IP and control DNA was isolated using phenol:chloroform:isoamyl alcohol 

mix (Invitrogen) as per the manufacturer’s protocol.  Isolated DNA was analyzed by real-time 

PCR using probes and primers spanning the W-X-Y box of the MHC-II HLA-DRA promoter and 

CIITA pIV (Bhat, Turner et al. 2008; Koues, Dudley et al. 2008; Koues, Dudley et al. submitted 

2009).  Values graphed were calculated based on standard curves generated.  Chromatin 

immunoprecipitation in siRNA knockdown cells:  HeLa cells were transfected with specific 

siRNA (Qiagen, Santa Cruz) or control siRNA (Qiagen) using RNAiFect transfection reagent 

(Qiagen) according to manufacturer’s instructionsl.  Cells were treated with 500U/ml IFN- as 

indicated. 10% of the total cell volume was lysed in 1% Nonidet P-40 buffer (1M Tris pH 8.0, 

1M KCl, 10% NP40, 0.5M EDTA, 5M NaCl, 1M DTT, dH2O) with Complete EDTA-free 

protease inhibitors (Roche) and analyzed via immunoblot for knockdown verification.  The 

remaining fraction of cells was subjected to ChIP assay. 

 

RESULTS 

MLL/COMPASS subunits constitutively associate with cytokine inducible 

promoters.  We have previously shown that Sug1 positively regulates the trimethylation of 

histone H3 at lysine 4 (H3K4me3), a common activating methylation event, at the MHC-II 

proximal promoter and CIITA pIV, potentially by stabilizing the association of MLL/COMPASS 

subunits (Koues, Dudley et al. submitted 2009).  H3K4me3 is mediated by histone 

methyltransferase (HMTase) enzymes, which are typically recruited to DNA as part of a larger 

complex of proteins MLL/COMPASS (Hughes, Rozenblatt-Rosen et al. 2004; Yokoyama, Wang 

et al. 2004; Lee, Tate et al. 2007; Wu, Wang et al. 2008). We have previously observed that 
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WDR5 consitutively binds to CIITA pIV with a moderate enhancement in recruitment, which is 

lost upon Sug1 knockdown, observed upon cytokine stiumation (Koues, Dudley et al. submitted 

2009).   To expand on the potential for MLL/COMPASS recruitment to CIITA pIV, we 

performed chromatin immunoprecipitations to determine if additional subunits are also recruited 

to CIITA pIV (Figure 4-1a-b).   RbBP5 (Figure 4-1a) and Ash2L (Figure 4-1b) also associate 

with CIITA pIV.  To determine if MLL/COMPASS subunits are recruited to the MHC-II 

proximal promoter, similar chromatin immunoprecipitations were performed for three common 

MLL/COMPASS subunits (Figure 4-1c-e).  Similar to observations at CIITA pIV, all three 

MLL/COMPASS subunits RbBP5 (Figure 4-1c), Ash2L (Figure 4-1d) and WDR5 (Figure 4-1e), 

bind constitutively to the MHC-II promoter, suggesting that indeed MLL/COMPASS mediates 

H3K4me3 at cytokine inducible genes. 

Overexpression of a single MLL/COMPASS subunit enhances CIITA transactivity.  

To characterize the impact MLL/COMPASS has on the MHC-II proximal promoter, we 

performed luciferase reporter assays in unstimulated HeLa cells in which the MHC-II HLA-DRA 

promoter is fused to the luciferase gene, CIITA and various MLL/COMPASS subunits, RbBP5 

(Figure 4-2a), Ash2L (Figure 4-2b), and WDR5 (Figure 4-2c) are overexpressed.  In cells 

transfected with CIITA alone, there is a 15-20 fold increase in HLA-DRA promoter activity 

(Figure 4-2a-c, gray bars).  Interestingly, overexpressing a single MLL/COMPASS subunit 

(Figure 4-2a-c, white bars) significantly enhances CIITA’s ability to drive the HLA-DRA 

promoter.  In contrast performing the same luciferase reporter assay in cells in which a single 

MLL/COMPASS subunit was knocked down (Figure 4-3a) showed no changes in CIITA’s 

ability to drive the HLA-DRA promoter.  HeLa cells transfected with WDR5 siRNA showed  
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Figure 4-1.  Subunits of MLL/COMPASS associate with cytokine inducible genes.  (A-B) Subunits of 

MLL/COMPASS associate with CIITA pIV.  ChIP assays were carried out in HeLa cells stimulated with IFN- for 0 

to 18 hours.  Lysates were IP with control or endogenous RbBP5 (A) or Ash2L (B) antibody.  Associated DNA was 

isolated and analyzed via real-time PCR using primers and probe spanning CIITA pIV.  (C-E) Subunits of 

MLL/COMPASS associate with the MHC-II proximal promoter.  ChIP assays were carried out in HeLa cells 

stimulated with IFN- for 0 to 18 hours.  Lysates were IP with control or endogenous RbBP5 (C), Ash2L (D) or 

WDR5 (E) antibody.  Associated DNA was isolated and analyzed via real-time PCR using primers and probe 

spanning the MHC-II proximal promoter.  Real-time PCR values were normalized to the total amount of DNA added 

to the reaction (input).  Input values represent 5% of the total cell lysate.  Data are presented as fold changes in 

bound DNA relative to unstimulated samples.   Isotype control IP values were 0.2 ± 0.2.  Values represent mean ± 

SEM of (n = 2) independent experiments. 
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Figure 4-2.  Overexpressing a single MLL/COMPASS subunit enhances CIITA transactivity.  HeLa cells were 

transfected with HLA-DRA-Luc, Renilla, pcDNA3, CIITA, and RbBP5 (A), Ash2L (B), WDR5(C).   Luciferase 

activity is reported as fold activation relative to that of the reporter alone. Luciferase readings were normalized to 

Renilla activity. Luciferase assays were performed in triplicate and values represent mean ± SEM of (n = 3) 

independent experiments. * p < 0.01 over CIITA alone 
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Figure 4-3.  Knockdown of a MLL/COMPASS subunit does not influence CIITA transactivity.  (A)  WDR5 

siRNA reduces levels of endogenous WDR5.  HeLa cells were transfected with control or WDR5 specific siRNA, 

harvested and subjected to Western blot analysis for endogenous WDR5 (top) and endogenous tubulin (bottom).  (B)  

WDR5 knockdown does not impact CIITA’s ability to drive the MHC-II HLA-DRA promoter.  HeLa cells were 

transfected with control or WDR5 siRNA and subsequently co-transfected with HLA-DRA-Luc, Renilla, pcDNA3, 

CIITA as indicated. Luciferase activity is reported as fold activation relative to that of the reporter alone. Luciferase 

readings were normalized to Renilla activity. Luciferase assays were performed in triplicate and values represent 

mean ± SEM of (n = 3) independent experiments.  
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levels of CIITA transactivity (Figure 4-3b, white bars) comparable to those in control siRNA 

transfected cells (Figure 4-3b, black bars). 

MLL/COMPASS trimethylates H3K4 at cytokine inducible genes.  We have now 

observed that various MLL/COMPASS subunits are recruited to both the MHC-II proximal 

promoter as well as CIITA pIV (Figure 4-1).  To determine if MLL/COMPASS contributes to the 

trimethylation of histone H3 lysine 4 at these genes, ChIP assays were performed in HeLa cells 

transfected with WDR5 siRNA (Figure 4-4).  Knockdown of WDR5 resulted in a loss in both 

basal and inducible H3K4me3 at the MHC-II proximal promoter (Figure 4-4a) and CIITA pIV 

(Figure 4-4b).   

WDR5 does not contribute to histone H3K18 acetylation.  The ATPases of the 19S 

regulator, which serves as the cap of the 26S proteasome, have been implicated in mediating a 

subset (H3K18ac, H3R17me2 and H3K4me3) of histone activating modifications, independent 

of the canonical protein degradation role of the proteasome (Koues, Dudley et al. 2008; Koues, 

Dudley et al. submitted 2009).  Previously we have observed that WDR5 associates with histone 

modifying enzymes known to be able to mediate this subset of acitivating modifications, CREB 

binding protein (CBP) and coactivator -associated arginine methyltransferase 1 (CARM1) 

(Koues, Dudley et al. 2008; Koues, Dudley et al. submitted 2009), in addition to the HMTase 

SET1 (Lee, Tate et al. 2007; Wu, Wang et al. 2008).   To characterize WDR5’s role in mediating 

additional histone modifications, we performed chromatin immunoprecipitations in cells 

transfected with WDR5 siRNA (Figure 4-5).  Since, CBP is capable of mediating H3K18ac 

(Schiltz, Mizzen et al. 1999; Agalioti, Chen et al. 2002), we determined by ChIP assay, the levels 

of H3K18ac at the MHC-II proximal promoter (Figure 4-5a) and CIITA pIV (Figure 4-5b) in 

WDR5 knockdown cells.  Levels of H3K18 acetylation in WDR5 knockdown cells (Figure 4-5a- 
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Figure 4-4.  Knockdown of a MLL/COMPASS subunit decreases H3K4me3.  (A-B) WDR5 knockdown 

decreases H3K4me3.  HeLa cells transfected with scrambled control or WDR5 specific siRNA were stimulated with 

IFN-γ and subjected to ChIP assay.  Lysates were IP with control or endogenous H3K4me3 antibody.  Associated 

DNA was isolated and analyzed via real-time PCR as described in Figure 2 using primers and probes specific for the 

MHC-II promoter (A) or CIITA pIV (B).  Data are presented as percent input.   Isotype control values were 0.1 ± 

0.1.   Values represent mean ± SEM of (n = 2) independent experiments.   
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Figure 4-5.  Knockdown of a MLL/COMPASS subunit does not impact H3K18 acetylation.  (A-B)  HeLa cells 

transfected with scrambled control or WDR5 specific siRNA were stimulated with IFN-γ and subjected to ChIP 

assay.  Lysates were IP with control or endogenous H3K18ac antibody.  Associated DNA was isolated and analyzed 

via real-time PCR as described in Figure 4-4 using primers and probes specific for the MHC-II promoter (A) or 

CIITA pIV (B).  Data are presented as percent input.   Isotype control values were 0.1 ± 0.1.   Values represent mean 

± SEM of (n = 2) independent experiments.   
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b, white bars) were comparable to those in control siRNA transfected cells (Figure 4-5a-b, black 

bars).  Although we had previously observed a common binding partner of three histone 

modifying enzymes known to be capable of mediating a subset of activating events that are also 

impacted by knockdown of a 19S ATPase Sug1, knockdown of WDR5 did not mirror that of 

Sug1 knockdown as there was no impact on histone H3K18 acetylation. 

H3K27me3 is enhanced upon Sug1 knockdown.  Evidence now suggests that 

demethylation of silencing modifications is intimately linked to the deposition of histone 

activating events to promote the relaxation of the repressive nature of chromatin.  One such 

instance of this was the identification of the H3K27me3 histone demethylase UTX, which is 

found complexed to MLL/COMPASS subunits (Agger, Cloos et al. 2007; Lee, Villa et al. 2007).  

Therefore, we sought to determine the degree of chromatin silencing in Sug1 knockdown cells.   

Chromatin immunoprecipitations in HeLa cells transfected with Sug1 siRNA (Figure 4-6b-c, 

white bars) show that H3K27me3 levels are elevated over similarly treated control siRNA 

transfected cells (Figure 4-6b-c, black bars).  Together these data strongly suggests that the lack 

of Sug1 promotes a more closed chromatin structure.     

 

DISSCUSSION 

Previously we have demonstrated that the 19S proteasome regulates activating histone 

H3K4 trimethylation at cytokine inducible promoters, potentially through an interaction with the  

MLL/COMPASS subunit WDR5 as a loss of recruitment of WDR5 is observed upon Sug1 

knockdown (Koues, Dudley et al. 2008; Koues, Dudley et al. submitted 2009).  Now we have 

shown that multiple common MLL/COMPASS subunits, Ash2L, RbBP5 and WDR5 

constitutively bind are and inducibly recruited to both the MHC-II promoter and CIITA pIV.  The  
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Figure 4-6.  H3K27me3 is enhanced upon Sug1 knockdown.  (A) Sug1 siRNA efficiently decreases endogenous 

Sug1.  HeLa cells were transfected with control or Sug1 specific siRNA, harvested and subjected to Western blot 

analysis for endogenous Sug1 (top) and endogenous tubulin (bottom).  (B-C) H3K27me3 is elevated at cytokine 

inducible genes upon diminished Sug1 expression.  ChIP assays were carried out in HeLa cells stimulated with IFN- 

for 0 to 18 hours.  Lysates were IP with control or endogenous H3K27me3 antibody.  Associated DNA was isolated 

and analyzed as in Figure 4-1 using primers and probe spanning CIITA pIV (B) and the MHC-II proximal promoter 

(C).  Data are presented as percent input.   Isotype control values were 0.005 ± 0.005.   Values represent mean ± 

SEM of (n = 3) independent experiments.  * p < 0.05 as compared to control siRNA transfected samples 
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timecourse for recruitment of individual subunits varies slightly, likely due to differences in 

antibodies.  However, there remains the possibility that MLL/COMPASS is assembled on 

promoters rather then binding as a single complex.  Using a reporter assay, overexpressing a 

single MLL/COMPASS subunit significantly enhances promoter activity implicating these 

subunits as strong co-activators of the MHC-II promoter.  However knocking down a single 

subunit does not impact promoter activity in similar reporter assays.  MLL/COMPASS functions 

in hypermethylating H3K4 and thus it is unsurprising that plasmids in an overexpression system, 

which are not found in native chromatin structure, are not preferentially impacted by knockdown 

of a single HMTase subunit.  Consistent with this, we observed a loss of H3K4me3 at the MHC-

II promoter and CIITA pIVwhen endogenous WDR5 is diminished.  

We also found that WDR5, a component of the MLL/COMPASS complex, associates 

with CBP and CARM1, both of which perform histone modifying events targeted by the 19S 

proteasome, H3K18ac and H3R17me2, respectively.  In addition, we have observed a loss in 

inducible WDR5 binding to CIITA pIV when endogenous Sug1 is diminished (Koues, Dudley et 

al. submitted 2009).  This insinuated that the the 19S proteasome may play a role in stabilizing a 

large multi-enzyme histone remodeling complex through an interaction with WDR5 at cytokine 

inducible genes.  Therefore, we sought to determine if knockdown of WDR5 mirrors that of Sug1 

knockdown which results in a loss of H3K18ac in addition to H3K4me3 (Koues, Dudley et al. 

2008; Koues, Dudley et al. submitted 2009).  However, knockdown of endogenous WDR5 did 

not result in a corresponding loss in H3K18ac.   

We have shown that in mammalian cells, 19S ATPases are crucial for regulating a subset 

of inducible histone activation modifications; H3K18ac, H3R17me2 and H3K4me3 (Koues, 

Dudley et al. 2008; Koues, Dudley et al. submitted 2009).  Although we have previously 
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observed a common binding partner, WDR5, of histone modifying enzymes known to be capable 

of mediating these modifications, knockdown of WDR5 did not mirror that of Sug1 knockdown 

as there was no impact on histone H3K18 acetylation upon WDR5 knockdown.  Evidence now 

suggests that demethylation of silencing modifications is intimately linked to the deposition of 

histone activating events to promote the relaxation of the repressive nature of chromatin (Agger, 

Cloos et al. 2007; Benevolenskaya 2007; Lee, Norman et al. 2007; Lee, Villa et al. 2007).  This 

same common MLL/COMPASS subunit is also associated with the histone demethylase UTX 

(Lee, Villa et al. 2007).  Here we show that the 19S ATPase Sug1 functions to release chromatin 

from a repressive state.  Previously we have observed that WDR5 binding to CIITA pIV is 

inhibited, implying that UTX recruitment may also be lost upon diminished Sug1 expression 

(Koues, Dudley et al. submitted 2009).  Consistent with this hypothesis, H3K27me3 levels are 

elevated in Sug1 siRNA transfected cells.  Further studies are required to characterize the 

molecular interactions between 19S ATPases, UTX and silenced chromatin. 

Ours is the first report implicating the 19S proteasomal ATPases in regulating the initial 

chromatin remodeling events at cytokine inducible promoters that releases surrounding 

chromatin from a more condensed, repressive state.  Our observations that in the absence of 

Sug1, silencing methylation of histone H3 is not only elevated, but also persistent, strongly 

implicate the 19S ATPases in chromatin reorganization in response to stimuli.   A full 

understanding of the contributions of Sug1 and the other 19S ATPases into the initial epigenetic 

regulation and chromatin reorganization at cytokine inducible genes requires further studies into 

the molecular interactions occurring at these promoters.  
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CHAPTER 5 

 

CONCLUSIONS 

To accommodate the over 20,000 genes in the human genome (Human Genome Project 

2008), DNA is highly organized and tightly packed into nuclei (Lewin 2004).  DNA is wrapped 

around histone proteins (H2A, H2B, H3 and H4) which are then condensed into chromatin 

(Luger, Mader et al. 1997; Carey and Smale 2000; Richmond and Davey 2003; Lewin 2004).   In 

any given cell, there are groups of genes constitutively silenced, those that are constitutively 

expressed, and finally those that are inducibly expressed when necessary (Lachner, O'Carroll et 

al. 2001; Nakayama, Rice et al. 2001; Agalioti, Chen et al. 2002; Jacobs and Khorasanizadeh 

2002; Plath, Fang et al. 2003; Sparmann and van Lohuizen 2006; Shukla, Vaissiere et al. 2008).  

Thus chromatin needs to be quite dynamic for genes to be up or down regulated in response to 

various stimuli.  One of the fundamental obstacles of this process is the nature of the chromatin 

structure.   

The various stages of chromatin are characterized by the presence of particular post-

translational modifications located on the tails of histones.  Heterochromatin is methylated 

predominantly on histone H3 at lysines 9 and 27 (Lachner, O'Carroll et al. 2001; Nakayama, Rice 

et al. 2001; Jacobs and Khorasanizadeh 2002; Plath, Fang et al. 2003; Sparmann and van 

Lohuizen 2006).   Euchromatin is highly acetylated on histones H3 and H4 and poised for 

transcription chromatin is characterized by a combination of activating and silencing 

modifications (Jenuwein and Allis 2001; Eberharter and Becker 2002; Schubeler, MacAlpine et 

al. 2004; Gorisch, Wachsmuth et al. 2005).  The addition and removal of these modifications are 

mediated by a group of histone modifying enzymes, including histone acetyltransferases, histone 
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deacetylases, histone methyltransferases and histone demethylases.   The coordination of these 

enzymes and the histone code they regulate remains an area of intense investigation.  

The ubiquitin-proteasome system (UPS) has been implicated as a regulator of 

transcriptional activity for some time as the UPS is known to terminate transcription by 

degrading transcription factors and chromatin remodelers (Ciechanover 1994; Hochstrasser 1996; 

Conaway, Brower et al. 2002; Ferdous, Kodadek et al. 2002; Greer, Zika et al. 2003).  More 

recently, a novel role for the UPS in regulating transcription has emerged in which components 

of the proteasome have been found to be essential for transcription, independent of protein 

degradation (Salghetti, Caudy et al. 2001; Conaway, Brower et al. 2002; Dennis and O'Malley 

2005).  The 20S core complexes and 19S regulatory particles of the 26S proteasome were 

identified as existing as individual complexes in the nucleus as well as the cytoplasm of cells 

(Brooks, Fuertes et al. 2000).   Furthermore, 19S proteasomes were found to disassociate with the 

six ATPases of the 19S foming an independent 19S subcomplex that associates with 

transcription factor activation domains and is recruited to inducible yeast promoters (Swaffield, 

Melcher et al. 1995; Rubin, Coux et al. 1996; Gonzalez, Delahodde et al. 2002; Sun, Johnston et 

al. 2002).  At the level of chromatin remodeling, the 19S proteasome was found to enhance 

promoter targeting of the large histone remodeling complex, SAGA (Spt-Ada-Gcn5-

acetyltransferase) that contains both histone acetylase and histone deubiquitinase activity (Henry, 

Wyce et al. 2003; Ezhkova and Tansey 2004; Lee, Ezhkova et al. 2005).  However, it remained 

unclear if the 19S proteasome’s non-proteolytic role in regulating transcription was present in 

higher eukaryotes.   

Studies by Bhat et al. indicated that the 19S ATPase Sug1 is recruited to the MHC-II 

proximal promoter prior to the master regulator CIITA and that in the absence of Sug1, markedly 
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reduced levels of CIITA are recruited to the MHC-II HLA-DRA proximal promoter (Bhat, Turner 

et al. 2008).   Yeast studies have implicated the ortholog of Sug1, Rpt 6, in epigenetically 

regulating transcription (Lee, Ezhkova et al. 2005; Daniel and Grant 2007).  Although there 

remained a lack of evidence for the 19S proteasome’s role in chromatin remodeling in higher 

eukaryotes, the 19S proteasome was found to associate with a variety of inducible mammalian 

promoters suggesting this might indeed be the case (Conaway, Brower et al. 2002; Ferdous, 

Kodadek et al. 2002; Greer, Zika et al. 2003; Lassot, Latreille et al. 2007; Yu and Kodadek 2007; 

Zhu, Wani et al. 2007; Bhat, Turner et al. 2008; Ferry, Gianni et al. 2009).   

To this end, we found that the 19S ATPase Sug1 associates with histone H3 and 

acetylated histone H3.  Furthermore when Sug1 is knocked down, levels of histone H3 

acetylation are markedly diminished at the cytokine inducible MHC-II and CIITA promoters in a 

proteolytic independent manner as proteasomal inhibition does not impact H3 acetylation.  

Moreover, the effects of Sug1 are lysine specific with a preferential loss of histone H3 

acetylation occurring on lysine 18 while lysine 9 acetylation remains elevated in the presence of 

diminished Sug1 expression.  This loss of H3K18 acetylation correlates with the observed loss of 

CBP recruitment, a histone acetyltransferase known to bind the MHC-II promoter.  Furthermore 

bulk histone acetylation was unaffected by Sug1 knockdown suggesting that the effects observed 

on histone H3 acetylation by Sug1 were promoter specific.   

The initial observations indicated that the 19S ATPase Sug1 plays a role in mediating 

promoter acetylation at cytokine inducible genes.  The function of histone methylation in 

regulating transcription is more complex then acetylation as this modification is associated with 

both gene expression and gene silencing (Wang, Cao et al. 2001; Santos-Rosa, Schneider et al. 

2002; Krogan, Kim et al. 2003; Xiao, Hall et al. 2003; Schneider, Bannister et al. 2004; 
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Bannister, Schneider et al. 2005; Francis, Chakrabarti et al. 2005).  Histone H3 dimethylation at 

lysine 9 (H3K9me2) and trimethylation at lysine 27 (H3K27me3) are associated with a closed 

chromatin structure (Lachner, O'Carroll et al. 2001; Nakayama, Rice et al. 2001; Jacobs and 

Khorasanizadeh 2002; Plath, Fang et al. 2003; Sparmann and van Lohuizen 2006).  Interestingly, 

recent findings indicate that methylation may prove to be as relevant for the activation of gene 

transcription as acetylation.  Trimethylation at H3K4 is associated with actively transcribed genes 

and the demethylation of H3K27 to release chromatin from a silencing conformation (Wang, Cao 

et al. 2001; Agger, Cloos et al. 2007; Lee, Villa et al. 2007).  H3K36 hypermethylation marks 

recently transcribed regions of DNA to prevent spontaneous transcription initiation with coding 

sequences (Carrozza, Li et al. 2005; Joshi and Struhl 2005; Lee and Shilatifard 2007).    

Others have shown in yeast that mutations in 19S ATPases specifically disrupt H3K4 and 

-K79 methylation (Ezhkova and Tansey 2004).  Similarly, we were able to demonstrate that Sug1 

knockdown impairs the additional activating dimethylation of H3R17 and trimethylation of 

H3K4 at both the MHC-II promoter and CIITA pIV.  Consistent with roles for Sug1in mediating 

inducible chromatin modifications at specific genes, levels of H3R17me2 and H3K4me3 at the 

GAPDH promoter and in whole cell lysates were not impacted by Sug1 knockdown.  Lysine 

methylation modifications are restricted in their localization on DNA; H3K4me3 is found 

clustered around gene promoters whereas H3K36me3 is found throughout gene coding regions 

(Bannister, Schneider et al. 2005; Chou and Tomasi 2008).  Therefore the spatial distribution of 

histone lysine methylation allowed us to localize the effects of Sug1 chromatin reorganization to 

inducible gene promoters as H3K4me3 but not H3K36me3 levels were impacted at MHC-II 

genes by Sug1 knockdown.    



132 

Initially our data suggested that the 19S ATPase Sug1 helps target CBP to the MHC-II 

proximal promoter to enhance promoter acetylation, loosen the chromatin structure and establish 

a platform for additional histone remodeling enzymes and transcription factors to bind.  As 

H3K4me3 levels were also inhibited in Sug1 knockdown cells, we investigated the histone 

methyltransferase that targets H3K4, the large, multi-protein MLL/COMPASS complex.   

Similar to the previously observed loss in CBP binding to the MHC-II promoter, we found a loss 

in MLL/COMPASS subunit, WDR5, recruitment to CIITA pIV when endogenous Sug1 is 

diminished.  Furthermore, the loss in H3R17me2 indicated a similar loss of the arginine 

methyltransferase CARM1 binding to inducible promoters in the absence of Sug1.  We were 

unfortunately unable test this as we failed in multiple attempts to perform chromatin 

immunoprecipitation experiments to isolate endogenous CARM1 in siRNA transfected cells.  

Nevertheless, it is unsurprising that CARM1 mediated H3R17me2 is also regulated by Sug1 as 

substantial evidence supports the notion that CBP and CARM1 crosstalk on chromatin to link H3 

acetylation and arginine methylation (Ma, Baumann et al. 2001; Daujat, Bauer et al. 2002; Zika, 

Fauquier et al. 2005).  Combined these results argue that upon gene induction, 19S ATPases 

reorganize chromatin to allow multiple enzymes access to their target histone residues in a 

promoter specific fashion.   

Importantly, the effects of Sug1 on chromatin remodeling are independent of proteasome 

proteolytic function as proteasomal
 
inhibition does not impact either histone H3 acetylation or 

H3K4 methylation.  As a further control for siRNA specificity, reconstituting Sug1 expression in 

Sug1 siRNA transfected cells restores promoter activity.  Previously studies by Bhat et al. 

showed that the 19S ATPase Sug1 is recruited to the MHC-II proximal promoter prior to CIITA 

(Bhat, Turner et al. 2008).  Our data now suggests that multiple 19S ATPases play roles in 
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regulating mammalian epigenetics as both S6a and S7, in addition to Sug1, bind MHC-II 

promoters and are required for efficient histone H3 acetylation.  Although proteasome activity is 

not a requirement for transcriptional regulation of histone acetylation, we found that additional 

proteasome subunits, the 19S non-ATPase S5a and 20S subunit Alpha 4, also bind MHC-II 

promoters implicating the eventual recruitment of intact 26S proteasomes to these promoters.  

These results support findings in the yeast literature that an intact, non-proteolytic proteasome 

binds promoters (Morris, Kaiser et al. 2003; Ezhkova and Tansey 2004; Lee, Ezhkova et al. 

2005; Collins and Tansey 2006).  However, the observed binding of non-ATPase proteasomal 

components was relatively low and does not rule out the potential for recruitment of an 

independent 19S ATPase subcomplex, a finding also reported in yeast (Ferdous, Kodadek et al. 

2002; Gillette, Gonzalez et al. 2004; Sikder, Johnston et al. 2006; Sulahian, Sikder et al. 2006). 

Despite the growing evidence indicating non-proteolytic roles for the 19S proteasome in 

regulating mammalian transcription (Makino, Yoshida et al. 1999; Ferdous, Kodadek et al. 2002; 

Rasti, Grand et al. 2006; Lassot, Latreille et al. 2007; Zhu, Wani et al. 2007; Bhat, Turner et al. 

2008; Koues, Dudley et al. 2008; Ferry, Gianni et al. 2009), the mechanism by which the 19S 

proteasome or a 19S subcomplex is recruited to inducible mammalian genes remains unclear.  

Studies in yeast have identified H2B monoubiquitination to be a prerequisite for 19S ATPase 

recruitment and subsequent activating lysine methylation (Wood, Schneider et al. 2003; Ezhkova 

and Tansey 2004; Laribee, Shibata et al. 2007; Lee, Shukla et al. 2007).  As with methylation, the 

effects of histone ubiquitination are complex with reports indicating roles in both gene 

inactivation and activation.  Although more difficult to study due to the transient nature of the 

ubiquitination modification and lack of suitable reagents, ubiquitinated histone H2B has been 

found to be associated with robustly transcribed regions of DNA (Henry, Wyce et al. 2003; 
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Minsky, Shema et al. 2008).   Using a new H2BK120ub antibody, we were able to map the 

ubiquitination pattern of histone H2B at both the MHC-II promoter and at CIITA pIV and found 

that this pattern was not effected by Sug1 knockdown, suggesting that recruitment of mammalian 

19S ATPases , as in yeast, might also require ubiquitination of H2B.  Yet in the presence of 

reduced H2B ubiquitination, the 19S ATPase Sug1 is recruited to CIITA pIV.  This implies that 

H2B ubiquitination may not be be a prerequisite for 19S recruitment and suggests that additional 

mechanisms may exist in mammalian cells.   

Although proteasome activity does not appear to be required for Sug1 mediated 

chromatin remodeling, it remains unknown if the enzymatic activity of the 19S ATPases are 

necessary.   The ATPase activity of the 19S proteasome is required for optimal global in vivo 

histone H3 acetylation and H3K4 dimethylation in Saccharomyces cerevisiae and mutations 

within the ATPase domain disrupts targeting of the HAT containing SAGA complex to DNA 

(Lee, Ezhkova et al. 2005; Daniel and Grant 2007).  Our observations that in the absence of 

endogenous Sug1 chromatin remodeling is inhibited at cytokine inducible genes, indicated that 

similar regulatory activity may exist in mammalian cells.   However, we were able to reconstitute 

promoter activity in Sug1siRNA transfected cells by overexpressing an ATPase mutant Sug1, 

suggesting that ATPase enzymatic activity may not be required for the initial recruitment of 

histone modifying enzymes.  This is consistent with our observations that the Sug1 ATPase 

mutant efficiently associates with CBP and overexpression of the mutant has no effect on histone 

acetylation at the MHC-II promoter.  Likewise, it has been proposed that in yeast cells ATP 

hydrolysis is less important for SAGA targeting to DNA but may be required for optimal 

dissociation of SAGA from the 19S proteasome (Lee, Ezhkova et al. 2005).   Further studies are 
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needed to characterize the requirement of energy in the form of ATP hydrolysis for the role the 

19S proteasome plays in chromatin reorganization at cytokine inducible promoters.   

We have demonstrated that the 19S proteasome regulates histone H3K4 trimethylation at 

cytokine inducible promoters, potentially through an interaction with the MLL/COMPASS 

subunit WDR5 as a loss of recruitment of WDR5 is observed upon Sug1 knockdown.  For the 

first time, we have shown that multiple common MLL/COMPASS subunits, Ash2L, RbBP5 and 

WDR5 bind constutively to both the MHC-II promoter and CIITA pIV, joining the host of other 

histone modifying enzymes known to interact with these promoters (Spilianakis, Papamatheakis 

et al. 2000; Pattenden, Klose et al. 2002; Zika, Greer et al. 2003; Ni, Karaskov et al. 2005; Zika, 

Fauquier et al. 2005; Wright and Ting 2006).  Reporter assays implicate these subunits as strong 

co-activators as overexpressing just a single MLL/COMPASS subunit significantly enhances 

MHC-II HLA-DRA promoter activity.  Unsurprisingly, knocking down just one subunit does not 

impact promoter activity in the same reporter assay due to the lack of proper chromatin structure 

associated with plasmids.  MLL/COMPASS functions to hypermethylate H3K4 and we observed 

that knockdown of WDR5, a subunit critical for MLL/COMPASS formation and HMTase 

activity, resulted in a loss of H3K4me3 at the inducible MHC-II and CIITA promoters, furthering 

our observations of a novel interaction between MLL/COMPASS and cytokine inducible genes.  

We have observed a loss in WDR5 binding to CIITA pIV when endogenous Sug1 is 

diminished.  In addition, we found that WDR5 associates with CBP and CARM1, which mediate 

H3K18ac and H3R17me2, respectively.  This provided a link between all three events, 

H3K4me3, K3K18ac and H3R17me2, identified as targets of the 19S proteasome and suggested 

that the 19S proteasome may interact with WDR5 to stabilize the association of a large multi-

enzyme histone remodeling complex with cytokine inducible promoters.  Alas, knockdown of 
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WDR5 did not mirror that of Sug1 knockdown as Sug1, but not WDR5, siRNA resulted in a loss 

of H3K18ac in addition to H3K4me3.  Nevertheless, WDR5 is also associated with the histone 

demethylase UTX and research now suggests that demethylation of H3K27me3 silencing is 

associated with the deposition of histone activating events (Lee, Villa et al. 2007).  We have 

shown that recruitment of MLL/COMPASS subunits is associated with the release of the 

repressive nature of chromatin at cytokine inducible genes.  Moreover, loss of Sug1 inhibits 

recruitment of WDR5 which correlates with the observed enhancement of H3K27me3 silencing, 

potentially through a loss in UTX association as well.  The maintainance of a closed chromatin 

structure in Sug1 knockdown cells demonstrates a novel role for the 19S ATPases in regulating 

the initial events that reorganizes chromatin in response to stimuli (Figure 5-1).  Further 

molecular investigations into the initial histone changes at these promoters are required for the 

full characterization of epigenetic regulation by the 19S proteasome.      

In conclusion, we have shown that in mammalian cells 19S ATPases are essential for 

regulating a subset of inducible histone activation modifications; H3K18ac, H3R17me2 and 

H3K4me3.  Although our study looked solely at cytokine inducible genes, studies have now 

shown that the APIS subcomplex associates with a variety of inducible mammalian promoters 

suggesting that the APIS may have a conserved, non-proteolytic function in regulating chromatin 

remodeling (Conaway, Brower et al. 2002; Ferdous, Kodadek et al. 2002; Greer, Zika et al. 2003; 

Yu and Kodadek 2007; Bhat, Turner et al. 2008).  19S ATPases are recruited to p21
waf1

 

promoters in response to ultraviolet-induced DNA damage (Zhu, Wani et al. 2007), to the HIV-1 

promoter to enhance Tat-dependent transcription (Lassot, Latreille et al. 2007) and to retinoic 

acid (RA) induced genes via an interaction with Steroid receptor co-activator  (SRC)-3  
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Figure 5-1.  The 19S proteasome promotes the switch from a closed to open chromatin conformation in 

inducible gene expression.  The 19S proteasome binds to heavily methylated (met) silenced promoters of inducible 

genes and is required for recruitment of histone modifying enzymes that acetylate (ac) and methylate histones to 

open chromatin and allow transcription factors access to DNA.  Potentially the 19S proteasome associates with the 

20S catalytic core, forming a functional 26S proteasome that helps return recently transcribed genes to their native 

conformation. 
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(Ferry, Gianni et al. 2009).  Therefore it is likely that components of the 19 proteasome play a 

similar role in regulating chromatin structure at a variety of inducible genes.   

Moreover, we showed that the 19S ATPases contribute to chromatin structure 

independent of the proteasome’s proteolytic function and that ATP hydrolysis may not be central 

to their interaction with chromatin remodelers.  How these 19S ATPases are functioning to 

regulate chromatin reorganization remains a mystery.  Although we observed a common binding 

partner of the various histone modifying enzymes known to mediate events targeted by the 19S 

proteasome, knockdown of the binding partner did not mirror that of Sug1 knockdown.  In 

addition, we were not able to determine the mechanism by which the 19S proteasome gets 

recruited to induced promoters.  Evidence suggests that removal of silencing modifications is 

intimately linked to the deposition of histone activating events to reorder chromatin structure. 

 We found that levels of the silencing modification H3K27me3 are elevated and prolonged in the 

presence of diminished Sug1 expression at early timepoints post induction.  A proposed model 

for these findings is shown in Figure 5-1.  It is likely that the 19S ATPases are working to 

promote the relaxation of the repressive chromatin structure.  Consequently, further studies into 

the early events that occur at inducible promoters are required for a full understanding of the 

contributions of the 19S proteasome to the epigenetic regulation of mammalian transcription. 
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